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-ABSTRACT
From group theoretical considerations, invariant scattering amplitudes
for two-body reactions of particles with arbitrary spins and. nonzero masses -are
constructed in various forms, including helicity amplitudes and amplitudes freé
of kinematical singularities. They are linear combinations of spin basis functions

with scalar coefficients. In the process of construction .the Pauli spin matrices

are generalized for arbitrary spin. On the basis of a Mandelstam representation

¢

for the scalar coefficients, the uni@ue.analytic‘continuation.of the~amplitudes'

"in total angular momentum. is obtained. - Possible kinematical singularities- of

the scalar amplitudes at- the boundary of the physical region are discussed.
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~I.  INTRODUCTION
The basic quantities of S-matrix theory are the Lorentz-invariant
- scattering matrix elements (s functions), which depend on the spins and types of
incoming and outgoing particles and on the mass shellkvaluesnof‘their four-momenta.
From the S funetions, invariant scattering amplitudes (M functions) that have
simpler transformation properties and that are expectedlto be free of kinematical
singularities can be defined.l A general procedure has been given to construct
the invariant amplitudes in terms .of the irreducible unitary representations of the
inhomogeneous proper Lorentz group, based on a two-component.spinor formalism.
Although the invariant scalar amnlitudes for Vhichxthe Mandelstam repre-
sentation is expected to be valid have been known for some time in the simpler

3

cases such as those of the pion-nucleon” and nucleon-nucleonh scattering systems;
there is to our knowledge no systematic construction of such amplitudes for
arbitrary spins.5 The purpose of this paper is, firstly; to construct. the

invariant M functions of arbitrary spin for two-body reactions (two particles .in,
two particles out), and also to construct.the S functions in varidus representations
(for example, the helicity representation) in terms of scalar amplitudes and
explicitly given basis functlons,6< Secondly, it is our purposevto define, on the
basis of a Mandelstam representation for the two-body scalar amplitudes, an
analytic continuvation in total angular momentum that generalizes the recent work

7

on simpler cases. In pion-nucleon scattering, as already mentioned, there exist

i
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scalar amplitudes that are known fo have. no kinematical singularities. An inves-
tigation of this questién for arbitrary spin will be reported in a separate paper? ~
We proceed here on the assumption that one among a large class of possible bases
will lead to scalar amplitudes without poles.
In this paper, we ignore isotopic‘spin and give no systematic discussion
of C, P, and T.transformations, but make only occasiénal comments where appropriate.
Apart from their theoretical interest, the considerations involving higher
spins will be, we believe, of practical importance in connection with the new
higher-spin resonances, and perhaps in the problem of ansdlytic continuation in
" gpin of the S-matrix elements. . Many of these considerations apply to processes
involving arbitrary numbers of particles and are not restricted to two=body
systems, vFor example; the spin matrices introduced in this paper generalizing
the Pau;i matrices to higher spins may be of interest. in other applications. From

these matrices we obtain the projection operators for the irreducible invariant

subspaces of the tensors. -of arbitrary rank.
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II. DEFINITION OF INVARIANT FUNCTIONS
AND GENERAL FRCCEDURE

The formulas developed in the succeeding sections are rather involved.
To facilitate the reading, we.outline in this section the procedure that we have
followed; but first we define the transformation laws of the various invariant
functions. It is often said that spin is only an inessential complication. Never-
theless, it appears that except in simple cases a certain amount of complication
is, 1if not essential, at least unaVoidable.

A, The Invariant Functions

We consider scattering processes for outgding particles and incoming
antiparticles with épins and four-momenta Si’ ki’ and incoming particles and
outgoing antiparticles with spins and four ~-momenta Sj’ kj; all with nonzero
rest masses., The invariant scattering functions (or S-matrix elements) have the
following'transformation property under representations of the inhomogeneous

orthochronous proper Lorentz group:e’

5, S, . 1
s(x) = 81 [a'(-k;)) 88,0 I [at(x)]" sla™ ()], (2.1)

where

-1 -1
A'{k) =B A B and A(A 7))k = .
() =3, 4B, e MK =G

Here K stands for the set of incoming and outgoing four-momenta, kn’ with

ann = 0 from momentum conservation; and AK stands for the set of transformed
momenta, Ak.n . - Elements of the orthochronous proper homogeneous Lorentz group
L] are denoted by A(A), where ¥A are the corresponding elements of the two-by-
two unimodular group. The spin indices of the S function, which have been

5]

suppressed, are transformed by direct products of the unitary matrices P * and
g *

RJ , which are the well-known [(esi + 1), (es(j + 1)]-dimensional irreducible
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representations of the three-dimensional propér real orthogonal group. An index
transforming : according to Eﬁs corresponds to an outgoing particle or incoming
antiparticle and one transforming according toﬁas* correéponds to ah incoming
partiecle or outoing antiparticle.g In the argument A'(k) of 5 oD S*, the
unimodular matri¢es B are so defined that |

A(B )sz,

kep

and similarly for qup . The Lorentz transformation corresponding tovthe unitary-

unimodular matrix A' = Bkep-l Aquyp transforms the vector p into itself (it

is an element of the little group of the vector p), where p = (m, .0, O, 0) is

the rest-frame value .of k; hence this transformation is a rotation.

From the definition of p and Eq. (Al.l) in Appendix I, we have, in terms

of Pauli matrices, UH’ 8
T ' 5
qu) Bk<_P ['s cu/m - (2.2)

The general solutibﬁ of this equation can be written in the form

Bkep = Akep U, where Akep is the Hermitian matrix (k-c/m)l/2 and U'-is an

arbitrary unitary matrix corresponding to the freedom of arbitrary rotations in

the rest system of the particle. We use this freedom: later in the construction

of helicity amplitudes. An important characteristic - of the invariant M.functions «
defined below ié that their transformation property is independent. of B.

The transformation.law,(E.l) also holds for the R functions,

R=5S-1I. . (2.3)

There is a natural way of $implifying this traﬁéfOrmation law. Because the matrix
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=1 ... .
A'(k) =B A’B is unitar we have the identit

D% 01 =B Va1 - RO, e

1 . B
whereED(S’S ) are the irreducible, in general nonunitary, representations of
dimension (28 + 1)(2S' + 1) of L;T . We can then use the group property of

SICA) and obtain
%z tazs ) =b(s’o)(}3 )=t ‘b(s’o)(A)‘b'(s’o)(B ) . (2.5)
kep q&p kep ' T Taep )

Thus if we introduce M. functions defined by

IS

) - 8,056, ) eg 96, ) rE), (2.6)
i i - J

we see from (2.1) that they have the simple transformation law under

SRR (s,,0)
u(k) - 8 D1

(5,,0) - 4 |
-1
() ®S,R 7 @) s (a7 (2.7)
Tt is simpler to construct.the solutions of:this equation than those of (2.1).
Equations (2.3), (2.6), and (2.7) are the basic formulas from which the con-
struction of the M and S functions begins. For spin % these ‘are just the M
functions introduced by Stapp;l

B. The Scalar Amplitudes
For practical purposes, such as the application of the Mandelstam
representation, it appears convenient to use a representation of the dnvariant

functions in which all of the dynamics is contained in a set scalar amplitudes.
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‘In a senge this removes -spin from the problem. Our problem is thus to find a
simple, explicit set of basis functions, Y(1>(K) , in the spin space which have

the same transformation property (2.7) as the M functions. Then we write
Y o |
M(K) =&, A D) y By S . (2.®)

where the A(i)(K) are Lorentz.scalars and must therefore be functions of the
scalar invariants formed from the four-momenta (and possibly of the signs. of the
" energies). One can also require that the basis functions Y(i)(K)_havevdefinite
transformation properties under P and T. Thus, if P and'T are conserved, the
total number -of independent scalar amplitudes will be smaller than the

Hi(esi + 1) IIJ.(ESJ + 1) resulting from (2.7) and (2.8).

The essential requirement-og the  scalar amplitudes is that they shall
have only the singularities of the M function itself, which on the basis of per=
turbation theory or of a pure S-matrix theory are expected to be only.dynamical;l
furthermore, we wish to require that the basis functions themselves have no
singularities. The simplest possibility is that the basis functions should be
polynomials in the components of the linear momenta. To require that the baéis
functions have this form is not enough, however, for the scalar amplitudes
could still have kinematical poles at various degenerate points where the basis
functions become linearly dependent. Indeéd, thé guestion of'whgther there exists
8 set of basis functions that never induces kinematical poles in the scalar
amplitudes already.involves considerable subtlety in the case of two-body reactions,
and therefore we shall restrict ourslves primarily to this case in any discussion
where. the singularities are: important.

~_ The gquestion of to what extent these various requirements determine a

set . of basis functions is not settled in this paper. Rather we seek to
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’I

establish a basic formalism for arbiﬁrary spins that can be used in the con-
" . struction of a large ¢lass of basis functions. We follow a procedure that is

natural and systematic, and that yields the usual analytic amplitudes in special

. cases., It consists first of buildihg up in Section III a‘ set of higher-spin
matrices from the spin-%-matrices, og, by using Clebsch-Gordan coefficients in

‘a process COrrespondihg'to\the’addition-of spins. .For two-body reactions we then,
in Section IV, combine the spin matrices with tensors formed from the four-
momenta to obtain a set of basis functions, Y(i)(K);'and we give & brief dis-
cussion of the question of kinematical poles in the resulting scalar amplitudes.
If preliminary re;ultSJare substantiated, a second paper. showing how to eliminate

the kinematical poles will be submitted by one of us (DNW). .

fC;:'Aﬁgular.Momentum f&:

In Section V we define an analytic continuation in total angular momentum
for the scattering_functions shown in Fig. l,‘vFor,this purpose is is convgnient
to use helicity amplitudes. Having gonstruqteq’Y(;)(K) and therefore M(K)_by
(2.8), we obtain the helicity amplitudes H(X) from (2.6) vy making the appro-

priate choice for B in the expression

(5, 0) e 155 0) IV
O <D e OSY a)T OF )
. (8,0 e Y ) ‘('i) N l(i) N
- RV (Bkﬁ’l) Liy A (®) Y(K) | (2.9)

where now the A(l)(K)Jcan,be taken as functions of the Mandelstam variables,

s = (k + k2)2 y .t = “(kl_;+!_1;3).2,‘. u= (k o+ kh)2

2

R : .
with s + t + u»:izé m, . The helicity amplitudes H(K) are defined to be R(K)
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when

o
[l

wep = (o) 2 exp (<180 /p) exp (00y/2) exp (ifo/2)

1/2 (2.10)

exp (-i¢03/2) exp (-iOOé/é exp (1¢0 /2 )(a-0o/m)

where ¢ = (ko, 0, 0, |k|), i.e., a velocity transformation from the rest frame
to the z direction followed by a‘rotation to the direction (O,¢), of gblo

Without loss of generality we can put, in the center-of-mass frame of
the s channel, ¢ = 0. It turns out that for any among a large class of basis

functions .the angular dependence (6 dependence) of the helicity amplitudes

can be factored into a product.of dS(O) functions in the form

HO") (X) = 21), (1 )(SJ t,u) Z()\.)R (1) dR(g) ? _ (2._11)

where Z(l) does not depend upon 6, and R is determined by the spins of the
particles. Here (M) stands for the indices (A", LX) and

B(0)= D [exp (100,/3].

The projection over the total angular momentum J . of H(X) is defined

ble

1/2 [ az SRS

J 1
Boo (9 =3le a1 T Gy (&:22)

where z = cos o, AN =N=-p AN =A'" -p', and q and q' are the magnitudes .
of the momenta of the initial and final particles, respectively.
We now write for the scalar amplitudes a partial-wave expansion in the

s channel, for example,
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A(i)(s, t,uj = ;(22 + 1) A(i,)(_ﬂ,s)\ dz(o)oo "

(2.13)
; . 2 0.
where we put for the Legendre polynomials, Pz(z) =d (O)O .
If we insert this into H(M and combine dR(Q). with a? (9) O'O into a
single d function and perform the angular integration, which is of the form
1 _
1 J v R v 1 v
5 f dz d .(@)va ) ('Q)u =5FiT 8.p : (2.1k4)
-1
we obtain
Syl W, e ()
hm)(@- L(ﬂA (@S)ZQ) ’ (2.15)

where 2% contains a sum. of the original Z +times a number of Clebsch-Gordan

coefficients. - In the above sum - the

From the fixed~energy dispersdion relation for A(l)(s,t,u) we express

A(l)(ﬂ,s) in terms of the absorptive parts Af(l) and Au(l)vof the amplitudes
in the crossed channels and obtain

L () L ()
h()\) (s) = ZZ,(i) Z(M E[dz Qz(z) At( (s,2)

£ +values are restricted by the given J.

+ (-1)’3[(12 a,z) 8 M1, | (2.16)

where the Qz(z) are Legéndre functions of the second kind. Assuming that the
absorptive parts At,and Au are uniformly bounded in +t and u Dby tN

(or u'), we see that the expression (2.16) defines an analytic function of J

for Re J > N', where N' is displaced from N by some integer determined by the
spins of the particles.

Detdails are given in Section V.
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ITII. CONSTRUCTION OF SPIN MATRICES
It is convenient to sepafate into two parts the construction of the basis ~
functions Y(i)(K) Tfor arbitrafy spin. .In this section we :construct a set .of
matrices which span the spin space and which contain most of the complications
in the transflormation law.dué to spin. These matrices are independent of the
four-momenta in the problem, except under special circumstances to be mentioned
later; they have. essentially no effect.on the singularity structure of the scalar
amplitudes. The results of this section apply to M functions thaﬁ describe
arbitrary numbers of particleé.

The matrices that span a given spin space are labeled with tensor indices
in addition to spin indices labeling their matrix elements. A complete set . .of
basgis functions Y<i)(K).is obtained by contracting the tensor indices of the

- spin matrices with a complete set of tensor functions which are polynomials in
the components of the four-momenta. Given a spin basis, it is the construction
of a basis for the space of tensor functions that can lead to possible kine-
matical poles in the scalar amplitudes. This qﬁestion is discussed infS¢ction:IV,

A, Spin-%;Matrices

The basis for general spin is constructed from. two-component Paull spinors.
Since: the total number of incoming and outgoing fermions in any scattering |
prbcess must be eV'en,ll the simplest case that we .can consider  involves.two
spin-% particles, one incoming, the other outgoing.

Equation (2.7) then becomes o

M(X) = A®A* M[A(A"l)K]
(3.1)

- aMa(a™HKaf

or, writing the spinor indices,
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_ ot ‘éi . T a1 . .
MdéA(K_) = Ay A Ma,B,[A(A K] . (3.2)

" As usﬁal, the dotted index (incoming particle: -or: outgoing antiparticle ) trans-
* .

forms according to A and the undotted index (outgoing particle or incoming

antiparticle)according to A;lg_ Any “two-by-two matrix can be written as a linear

-combination of Pauli matrices, o, Hence we can put
M(K) = 'f“(K)cruv . (3.3)

From the. transformation law. of ou.givenvby (A1.1), it is clear that we must have

Vool g (5
A £, (AT K) = fu(K) ’ <(3:4)
if (3.1) is to be satisfied.
The four-vector function fH(K)_can be expanded in terms of the four-momenta

K, but that construction is reserved for -Section IV,

If we define

©
1

(1A/2) 9
.and | (3.5)
aN2) 5, ,

o X4
I

where Eu.is defined in Appendix I, the orthogonality relations (Al.6) in Appendix .

I become

Puop BT
and | - ' (3.6)

u' ‘e e = | o0
b Puatpt = Comr Cagr

where C is the "lowering" spinor defined in (Al.2).
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The general formalism of the theory also requires;ﬁésis spinors with two
undotted or two dotted indices. Such spinors-can-bevobfained in.several‘different
ways. For example, the matrices gu EM C'l.have 1ower-undotted-indices, and. they
certainly span the space. There is a choice, however, introduced by,Stapp,;-that
"is natural and especially convenient for a discussion -of crossing relations. It

consists in defining the special spinors

gaé(k) = keoaé/m, (3.7)

which can be used to change a dotted index into an undotted one and vice versa;
where k is taken to be the four-momentum of the particle whose. spin index is
to be operated upon.

We then -define basis spinors

_ i ~.&’
wu(k)aﬁ 8 Py g

1

(oo B, ,c’1/m>a5‘ ,

I s 0 = 3 ’;B' .0 ’ 3 o o0 . - p

' % %
These spinors transform according to AQDA and AQA ', respectively. For

“exXample,
adin’ = A M) JIa@K . (3.9)

They satisfy orthogonality relations
u a?Bi ol . B'
“w (k w (k =0
(K)gg 0,7 =0 &'
and o ‘ - (3.10)

aH(k)aB gh(k)a’ﬁ' =:gmz' CBB' s

P .
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with corresponding formulas for dotted indices.
A spin basis for arbitrarily,many‘spin-% particles is obtained by taking
direct products of matrices chosen from among Py ah(k), and ZL(k),'depending

on the desired index types.

B. DProperties of Matrices for Arbitrary Spin

Many. of the characteristics of thé spin matrices for highef'spin.are a
straightforward generalizetion from the spin-%«matrices and can be understood
without going through the details of a somewhat involved construction. Before
Proceeding to the actual construction, we shall therefore describe the essential -
results.

As already indicated, the fermion spin indices can always be paired; and
‘Wwe can also pair the boson indices by adding a dummy spin-O index whenever the
total number of particles is odd. 'Thus we require & basis for matrices with two
fermion or two boson spin‘indices;-any spin space can be spanned with direct
rroducts of these., This basis is given by a set-of rectgngular.matrices
p‘Ml MMEM(SS’), '5“‘1”0“21’1(35:‘;'9)y mulmugM(ss*;k), end @ pngaﬂ"'LeM(s:s“;k),, where
M = max [S,8'], which span the spin-S, spin-S' space, and which reduce to (3.5)
and (3.8) when 8 = 8' = % . Here S and 8! are the spins of the pair of bosons
or fermions. The spinvindi;esilabeling the matrix elements have 2S5 + 1,

28° + 1 wvalues, reépéctively; ranging through S, 8=1, °°°¢, =S and Sf, S7=1,°0°, =87,

1. Transformation Properties

The spin matrices just described are classified according to the repre-
sentations of L+? of the types ﬁD(S’VO)(A),0 ﬁi(s’o)(A*), or the respective
contragredient representations R(s,0) (A_lT), B (S"O)(A’lf) . The whole apparatus
of the spinor calculus can be taken over for arbitrary spin. The spin indices

will be written as lower undotted, lower dotted, upper undotted, and upper
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dotted, respectively, corresponding to the four representations listed above.
The contraction of an upper with a lower index of the same type is then an
invariant operation.

The raising of a spin-S index is accomplished;by contracting on the right

with the matrix

ch(S, 0)(0-1)04[3 - B(S’O)(C-l)dé _ (_l)S-Ol 805,--3 Y (3.11)
and lowering by contracting on the right with
B(S: 0)(0) =(B (S’O)(c).. = (-1)8"3 ) . | (3.12)
ap aB Loy =B ‘

The spinor for changing dotted to undotted indices and vice versa, defined in

(3.7) for spin'% s becomes

Q(S’o)[g(k)] - B(S’O)(k'd/m) . | (3.13)

. 0
By convention we take the types.of the indices of the matrices &3(3’ ),to be
the same as those of their arguments.
The matrices ‘p(u)(SS’),.where.(u) =,(ui...H2M),.are constructed to have
a lower undotted spin-S index and a lower dotted spin-S' index, while the
p(u)(SS') have an upper dotted spin-S index and an upper undotted spin-S!' index.

The construction is such that (Al.4) generalizes to

B8 = REIE™) o, 60" B V00 (5.14)

The ® matrices are defined by analogy with (3.8):
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@) (8875K) = %(S’°)<k--o/m)'3(u)(ss') SRR | (3.15)

and similarly for the éorresponding matrices with lower dotted indices.

The transformation laws are given explicitly by
RE M) o) PEV At = 4w oMissr)

. %(S: O)(A)"lf E(u),(SS") %(S}O}(A)-l =,A(V)(u)(A) .P(v)(ss') ’

and i (3.16)
B &) o)) B YO W < a W) o) [ss05 Al

where A(v)(u) - stands for a direct'product'of Lorentz transformations, one for
each tensor index‘of.(v).

2., Orthogonality Relations

The fact that the spin matrices actually span the spin space is exhibited

explicitly by the relations

. p(u)(ss,)défséﬁ:)(s,s)édu' _ SC'XO!", séé’
“('u><ss’?k>a3 w(u)@s,;k)awsy =, _,%a.:_ SBB.; ’

and those formulasobtained from these by raising and lowering indices. These

relations are a special case of more generél formulas given in Section III.D.3.

3. Symmetry Properties

It will turn out that there is a connection between the p matrices and
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" the irreducible subspaces of the tensors of rank 2M. This connection induces
vérious symmetries among the tensor indices of p , as well as making p
_traceless in the contraction:of any pair of tensor indices. ,Actually? we have
omitted an extra label in the description of the p matrices,. expressing a freedom
in their construction which corresponds to the fact that there are in general
several irreducible_subspaées of the same dimension in the space of tensors of

(

rank 2M. When S = S', however, the p M)(SS) are essentially unique; and they
are symmetric in the inﬁerchange_of'anyﬁtensor indices.  Similar results hold

for 'B and. .

C. Spin-l Matrices
{
Matricées for higher spin can be_constructed from the pu matrices by a
process of spin addition with the use of Clebsch-Gordan coefficients. Consider

the quantities

Voo 1 1 :
osst) s = 5y C55% S5 wyYa)
1 1. o o ° v
XC(E’J'E’, S*; Kk B_)'PE?,I“’: p:,},,;' ) (3018)

where S, S' can have either of the values one or zero, and C(jlij;JB; Qﬁ}0é,03)
s

are the Clebsch=-Gordan coefficients in Rosefs notation.

5 (5:0) @ gfs’ 00

The new quantities

U

p transform according to the representation . To prove

this we start from the identity

. . | e o (85,0) (8,5 0) ‘
;771KK1 C(Sl: Sg’ S."i 75 17'»}05.) C(Slﬂ SE,S', H;“*': B) | R * (A)7R @ 2 (A)ysn,
S SRV | (5.19)
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which éxpresséé the reduétioﬁ.of a direct prodﬁct;of'reprééentationS'into a

direct sume By using the orthogonality of the Clebsch-Gordsn coefficients,

. ot
Tyt C(81,8585 7,7%,0) C(8,8,,8%5 7,7%,01) .= Byqy By
and . '
. K gt
S, C(S '2"55' 7:7':03)/0(51:52:55 "K:"f':a) = 57 571K P)
we get from (3.19) the identity
S, 0 .
Ty R (5 )(A)GB (555,55 K, k", B)
A 2’
= ;771 C(Sj_)SQ)SE' 7:7':@) b K 8 (A) °

This leads at once from (Al.l) to the transformetion law

RE O () PR ), B o (s,

= Ay A Y (R) oM (s8Y) g s

where Ej(S,O)(A) ; ==E5(S’O)(A) 52. In matrix notation this is the same as

(3.16) when @ﬂ?) (1,1); u,m,(01)
' According to the values of S, S' the - pu (8s') provide spin matrices

for the four dlfferent s1tuat10ns shown schematlcally in Fig, 2, It.is clear

from the construction-in.(3.18),that because the direct product matrices

X ® p? span the 16-dimensional product space, the matrices p“V(SS');must

span the corresponding four direct-sum spaces. of dimensions 9, 3, 3, and 1.

(3.20)

(3.21)
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For any given pair of values 5, S' there are l6_va;ues:of‘the tensor
indices, and hence the p“y(SS') are not all linearly independent, In fact,
various symmetry properties of the Clebsch-Gordan coefficients, for example,
(3.23)

| N S§-8.-8. Ui . f e
C(Slfsgysi al’Qé9a) = (-1)°77172 C(S 1, d’ Qiya) 5

are reflected in symmetries of the tensor indices. A straightforward_caiculation

gives
vV .V .
o™ (11) = ¢"H(11),
p, (11) = 0,
pv _ 1l _uvAio : »
p" (10) = e _:%(10) ;- _ (3.2h)
$h% _ 1 _phe
P (01) = -5e Py ,(OL) 5
and
v 1 V.
P (00) = 5 " .

The various symmetries follew -from (3.23) and (3.18). That p LL(ll) 0 follows
kfrom-(B 6), (3.18), (3:255, ard-the.factvthat c is~ant1symmetr1c, We have

used also (Al 5) and(Al 6) from Appendlx I, as well as the often useful identity
J75 C( 2, 0; q,ByO) = Caﬁ }., There is a correspondence between the expressions
.(3 oh) and the 1rreduc1ble subspaces of the second~-rank tensors of dlmen51ons

nine (symmetrlc and traceless), three (selfndual), three (antluself-dual), and

one (scalar proportlonal to g ), which w1ll be Purther explalned after ortho-

gonality relations are obtalned
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The matrices  p"' (SS') can-be obtained by replacing p with p in the
construction (3.18), or they can be obtained directly from p" (SS ) by the
general procedure (3.14). Using (3.21) and (Al.4), we find that the two methods

give the same result. Then the orthogonality relations, (3.6) and (3.20),+lead to

WV ey . ™ ' Bt _ o O 4 B
p (88 )aB puv(L L) = By 84 8,7 8

and ' ‘ (3.25)

p (SS )O’B puv(LL')O!?é' = S'L'Q (S,O)(C) @(S O)(C) Bi °

Meking use of the relation

%) = & ' | (3.26)

o ~fa 1
P o, = = Tr(o w

v 2 nov
and the second relation in(¥:20), we get

5 SM(51g)PE BV (g Do 3 (s1s) oMV (s87)]

sst P

SS’

- g™ g™, (3.27)

. These relations can be used to get a compact characterization of the invariant

- subspaces: of the second-rank tensors. An arbitrary tensor can be expanded:

™ - ™ (B (5'5) p“V(ssv) ) (3.28)

SS'
Clearly the "projected" tensors defined by

™ (ss1) = 77 B, (5'8) o (55")] (3.29)
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lie in the four invariant subspaces mentioned previously.

D. Matrices for Arbitrary Spin
For arbitrary pairs-of boson or fermion spins we proceed inductively;

generalizing the construction for spin 1. By addition of spins we reduce the
i

direct-product space p  09 eee @ puN = <Xhﬁ5u into a direct-sum space.

There is, of course, a freedom in the order for coupling the spins. We shall

follow the convention that the reduction is always. carried out beginning at the
M K ‘

left: {°°°[(p L X o] 2)v°9¢] X puN} . All other choices are related to this

one by a unitary transformation.

1. Reduction of the Product Space

As an example, consider the‘reduction of the space & BpH-a We obtain

a set of matrices

b Mo
o T2 st (1wl : =

: .1 .
op 2771};‘2'1 C(L; 5’983’ 7;7";05)

DTG By
Y20y . 0.0

l ,.0 T e
XC(L', E,S';‘K,nﬂ,g) 0 - oy (3030)

where I, L' can have any combination. of the values 1 and O, and S, S' can have

any. combination of the values J% and %., The spin indices are labeled by S,
S'; and I, L' label the intermediate spins that are added:to '%3 % t0 produce

, . HyPobs . :
S, S', The set of matrices p [ss': (L)), where (L) = (LL'), will be

called the "reduction" of the space @BQH Do general we shall use the
notation ~le uVN[SS':(L)]\for the matrices that are the reductionof@Npp'.°

The'spin:indiCes-are lower undotted for spin-S and lower dotted for spin-S',
and (L) labels the set of pairs -of intermediate spins that are the "path" by

which the spins S, S' are reached,
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The reduction is defined inductively by

pl\”:L{ss' [13,': (L")]} A
=%, e OL 5,85 7%,70) O, 58 % &',8)
X o1 My, oM, o (3.31)
1 HiTe by

where 8 = L %, 8t=g't [ss*: (L)) , which have an

ol o

. The matrices B-
upper ‘dotted spin-S index and an upper undotted spin-S' index, are defined
inductively by replacing p with p in (3.31).

2, Transformation Properties

We have already the transformation laws (Al.1) .for o and (3.22) for
“the reduction.ofa&.Epu. . A simple induction argument in which we use the identity

(3.21) and the definition (3.31) then gives the general law,

RGO 4y o Mgsis ()1 REH O =-A(v)'(u)(A),-p’(’v-){SS':.(L)] ) (3.32)

where we use the ‘same notation as in (3.16) with (p) = (u1°"uN) By the same

kind of argument. we -.can conclude that
sgsr @)1 =0 &0y sWigsr, ()10 859 (3.33)
and obtain the law
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Generalized ® matrices with two undotted or two dotted spin indices can be
obtained by procedure in. (3.15).

3. Orthogonality Relations

Again by induction, the orthogonality,relations,for'spin'%:, (3.6), and

for the reduction of ® 5 o, (3.25), readily generalize to

oMissr: (1)1 o009 (L2050

- 055 S Sy @ @000 ey, (3.55)
for the reduction of‘QbN'pu . ‘Similarly;
(1) ', e t7. (T é'a'
o ’[ss .(L)]aB P(yld SENCAD N e
al X
='5SJ:§SJJ; S(L)(L')’aav 5é_ ’ o _ (3.36)

where @) is ('), w1th each pair of spins interchanged. Either of these
equatlons proves that the p(u)[SS' ()] span the spln-(S,S’) space. Further-
more, from: the first equation in (Al 6) from (3,27), and from the second
orthogonality relation for Clebsch-Gordan coefficients,‘(B,EQ),.One'can éhow

by induction that

Sagr (1) L P Wiges: @1 oMiss: 11}

v
MOOICONELS S (3.37)

where  the trace is with respect to the matrix product .in the spin-(S,S') space.
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-4, TIrreducible Tensors

Equation- (3.37) leads directly to an expansion for an aribtrary tensor

of rank ‘N into a sum of its irreducible parts. In fact the tensors
Tr{?:'(”)‘[s's:(i)] p(")[ss':(L)]} _

‘sre for each label [SS‘?(L)j projection: operators into orthogonal, irreducible,
invariant subspaées. It folléws:from (3.56) that they are projection operators
'into‘orthogoﬁal subspaces; and the fact that fhéy project:into subspaces invariant
under L1 follows from the transformation laws (3,32)vénd (3.34), which show
that they are isotropic tensors with respect to L;T.. That  they project into
:irfeducible subspaces can be seen by noting that the ordinary Lorentz trans-
formé,tions, A, are equivalent to the represén’cation%(é]:‘ 0 @ 9 (o, %) —, .which

, - : : 1 (L .

is ‘equivalent to N (5"O)é§fa(§"o)* . Thus the irreducible representations

() (v)

'that occur“in'the reduction of the direct product A are equivelent to
those that occur in .the reduction of ®1‘\T‘ b” . For-any tensor of rank N we

get

o)

Zs_s._' (1) r(") T { S(v.v‘)[s’S:'(i)]p(‘_l:)[ss":(L.)]}
| | (3.38)

Zag1 (1) () ssre ()],

where T(H)[SS‘:(L)] are the irreducible parts of T(u).

5. The Spin Basis

In order to span the spin-(S,S') space, we can use any of the sets of
matriceS'p(”)[SS':(L)] for N greater than or equal to the minimum integer such

that the spins S,S' occur in the reduction of ED]“'p(u). This freedom will be
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reduced by requiring that N actually be the minimum integer. . Beceuse at
least 25 undotted spin- % indices are needed to build up.an undotted spin-S

index and 28°' dptted spin- %‘ indices to build up a dotted spin-S* index, the

minimum integer is N = 2M, . where M = max[s,5°], Thus, ‘we shall choose a set
to span the spin .space from among p 1 2M[SS' (1.)3.
Tn general there Wlll still be & freedom in the choice of (L), the
~ intermediate splgs that are passed through in order tovarrive at S, S'. This
. freedom iz present,,however, only_in the setwof_left:elements:or'the set of .
right elements of the pairs of spins in (L) and not in both;‘for'either,_slor

S' 1s the maximum spin that can occur in the reduction of vl H ; -and the

om P
meximum spin- can be reached in only one way. When S = S' this discussion' im=
plies that (L) is uniquely determined. Furthermore, as we shall see, in that
case @(SS) is symmetric in all of its<teﬁsor'indices,‘so thattall possible
orderings for-earryipg out_the reduetion‘give'the”same result, If‘S%S”, then
there is a genuine freedom:in the choicevef,(L) that corresponds to the occurrence
of the same_representatiop éfngq “a-number'ef'times in the reduction, From the
discussion in Sec. IIT.D.L on irreducible tensors, each choice corresponds. to a
prarticular symmetry character of the tensoriindicesa

A consequence of the reduirement that'thevspin.matrices have a minimum
number -of tensor -indices. is that they are traceless'in the'contrection of any
rair of tensor indices, To see this, we. suppose that S S’ and write out the

recursion (3.31) in full: |

« 000

TERERIT)
1 P88 aa. .
0 [ss ,(L)]O@

1

11 |
3 5= 2"725;2" Upg.107pg-1)

= Ty oep »C(S"’e"efs Vpgor Y

S,a) o(s -1,
1717471

© o0 0 B I o .:|=-. 9.0 y . ..
)< XC( 23 l alﬂa 771) C(L2S=1?298 H Kgswl’ ézs) B) ] (3‘39)

continued
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Hog
’.OXC(2’ 2’ l’ Bl)BQ’K' ) p ... p"

al " "GpgBg ©:39)

There is a special symmetry of the Clebsch-Gordan coefficients; for

. Sl 28, , ve hza.vellL

Z C(S ; 2; By 7sQ). C(Sl 321 52: Sl’ 8, K;B)
=ZB,_C_,(S'1,s2,sl+sz, Bs K,Ot) c(sl-sz,sg,sl, 8,7,8). S (3.L0)

By substitutihg ) into this equation and comparing with (3.39), we see

- x
22
: fcha‘c the sum of Clebsch-Gordan coefficients over 'y. is symmetric in the inter-
change of the o. [Symmetry in &y, Q, follows from . (3.23). ] 'Contraction on
.-eny pair of tensor indices gives.a factor. Copyrs from (306), which is-anti-
symmetric. Hence ,the.sum is zero. When S=8' the sum of Clebsch-Gordan coeffi-
'ciehts over ¥ v,fc ‘is symmetrlc in the 1nterchange of the B indices as well,
50 tbat we then have symmetry in the 1ntev'change of the tensor 1nd1ces. The
. symmetric and prace;l.ess ,,prqperby of the e_qu_al—spln metrices: vln. their tensor

‘indices' can also be proved ea.,si_l'y_‘b_y ‘"ir‘lduc’c.ion, again, by H.ch'.e use of (3.40).

Finally, it is clear that the proof of the vanishing of the tracesis the same

for 5. € 8% ,
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IV. TENSCOR BASES AND KINEMATTICAT, SINGULARITTES
OF THE SCALAR AMPLITUDES

Having constructed a basis for the spin space, we can now expand any M
function in the form

(uy) . '
-M(a)(K) = f(u)(K) L, T -(si,si )(O‘i) , , (4.1)

where the T (Si’si')ta.) . represent either 'p or ® 'spin matrices in the
previous section, accordin; to the index types; (ui) for fixed i represents a

- total of 2 maxtsi,si'] tensor indices; (ai)-represents:the two spin indices
of the paired particles; (u) represents the collection of all tensor indices;
and (@) re?resents the collection of all spin indices. From the. transformation
laws (2.7) and (3.16), it is clear that

™ w0 - -
by En® = B0 -2)

In general, the space of tensor functions f(“)(K) can be spanned by a set of
“tensors formed from the fouramomentabK. For those cases where there are at
least three 1inéarly ihdependent four-momenta in' K, we can form a complete.basis
- of arbitrary rank.,l5 and we shall suppose.for'the purpose of the discussion
~immediately following that we have done so. |
A. The Tensor Basis

We suppose that we have introduced a set. of tensors of rank N, functions

of the four-momenta X,

v'Tgl '”MN(K;il.,-.,jN) = T(“).[K;(i)] ’

ij =1, 2 3 )'": (1) = il“‘j—N s



27= . UCRL-10463

and the reciprocal set T[K;(1)] defined by

Z(l) T(H)[K.E (1)) ,T\(V)[K; (i)fi] - g(p.)(v)’
(4.3)
ri (101 8,16 O = 805) ;) -

such that each tensor satisfies (4.2). We shall see how to form these tensors
for two~-body processes in Sec. IV.C. To form a basis for the Mffunctions, we

combine the tensor and spin spaces to obtain functions,
(1) o n® o
T(K) =T, N K ()2 R, T S.8." ok
(K) = 7K (103 B, (5585%) 5 | (1)

which then: transform as the M functions. Finally, we expend the M .functions in

terms of this bésié,
M(K) = 24y 2B x) Y(i)(K),, | - (k.5)

.whéré A(i)(K> are scalars under LT .
- g, Determinatiéhvdf Scalar Amplitudes

Iﬁ general there are considerably more of the labels.(i)'thaﬁ the
»dimension-of'the spin space. As We have seen in Secs ITI.D.4 and IITI.D.5,
there are symmetries among the tensor indices of P(u?; which means that not
all of the T(“)[K;(i)ﬂ are needed to span the tensor space. Thus Egq. (4.5)
does not determine & unique set of scalar: coefficients. Thefe is, however, a
natufél'wéy‘tovimpose a sef.of subsidiary relaticns-among thé A(i)(K) so that
they beéoﬁe determined. |

First we summarize the orthogonality relations among the spin matrices,
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s

(3.17), by the notation

where .? represents the appropriate S or W matrices with upper indices. Then

we define reciprocal basis functions

X o o) (a,)
'§(1)(K)(a> = T(u)[K;(i)] nj:r(HJ (sj,sj,) % s | (L. 7)
which satisfy orthogonality relétions
(1 (1) (B) | |
Z(1)Y )(K)(a) Y (K)( ) :s(a)(5)~a (L4.8)

If we now require that the scalar amplitudes be defined by the equation
(% - S o).
2Bw= w0 W@, | (5.9)

we get an identity upon substituting into (4.5) and applying (4.8), This. is
precisely eqﬁivalent,to requiring that the solutions for the scalar amplitudes

in (4.8) satisfy the set of linear relations
A(i>(K) . 5;(3) A(j)(K) Y(j)(K)(a)/§(i)(K)(a)', : | (4.10)

which Jjust suffices to determine them uniquely.
‘Equation (L4.9) is basic for the study of kinematical singularities in
the scalar amplitudes. "It is clear that any singularities of A(l)(K) not

possessed by M(K) must come from y(l)(K),16 If the tensor basis T(”)[K;(i)]
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-in (h,h):isfconstructed from polynomials. in the momentum components, it will
be holomorphic, and both T(“)[K;(i)] gndj?(i)(K) will be meromorphic with
poles at those points where the T(u)[K;(i)]"ﬁecome linearly:dépéndenﬁ. The
question:is whether there exists a set . of T(u)[K;(i)] such that the poles do
not appear in-the.A(i)(K)o We do not attempt to give»aﬁ answer for the many-
particlé case; and we give only=é.discussion‘for the case of‘twé-body reactibns,
to Which we restrict.ourselves from now on. |
C. Special Bases-for.TWO-Iarticle Reactions

"It is straightforward to obtain Y functions for'two-particle~scattering

systems such-as-are described by Fig. 1. A method . for constructing a tensor

5

and several examples of spin-% basis functions

havé-been-worked out by Stapp.l The simplest method is to construct a set: of

basis has been given by Hearﬁ;

four -independent four=vectors, v“(i),.i =1,.2, 3, 4, in the region where st
least three of the momenta are linearly independent, and then to construct a
ﬁensorAbaSis

UGy 2 ) ) (b.11)

-Unfortunately, as.we shall see in Sec. IV.D, this procedure appears . to lead to
kinematical poles for higher spins.
. A special basiS'for-spin-%y spin=-0 scattering having-definte signature

under P and T 'isl

e [(ki/ml)' i ('k-a/m?)]' @ o =+ oy = 41,

e R ) I T TR

(k.12)

continued
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P omo- (pofn)nd Gyaf), oy - 4L, o - L,
- meos (grofn) n (grofn), oy = L @y = 41, (h2)

where n = k2 - kh? particles'i, 3 have spin, particles 1, 2 are. incoming, and
particles 3, 4 are outgoing. We show in AppendixtIIlthat the R'amplitudes

obtained with this basis-are the same ones obtained from four-component spinors

R=2 u(skB)(A_+ 7’n”B) u(kl);. | (4.13)

In particular, the amplitudes Al and A:vcoincide.with Avand B,
We can define a set of four-vectors s“(i)3 , 8o that the basis (4.12)
- ' 2 o "

becomes

Ty 1 = s(i)s 10,

(b.1h)
where the subscripts,. 3, 1, refer to the particles with spin. A basis for four
spin=% particles can then be obtained in the form

oo ® - M, ) e, (W)

N P 2 T 73,1 7 Mo Py Y Pyl :

where s(g_),_b2 is obtained from.s(J)B’l by. the interchange k; <+ Kk, , kjﬁﬁ k)
There will be an appropriate reduction in the number- of basis functions if P
rand T symmetry are ﬁuposed;1 This kind of basis is a slight generalization
of the one obtained from (4.11).

Although the Y functions obtained from (4.11) or generalizations of (4.11),

such as in the example (4.15), are not necessarily the best from the viewpoint
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of kinematical poles,. they have certain advantages. The.cémplete”Y'function
‘deflned by (h 4) splits into a tensor product of two Y functions for the two

~spin palrs, These functlons w1ll be descrlbed by the notatlon '

'vgliii)«e?vHEM(iéM) r

Y(SSt;di. eeed

1 EM) ')(S,S’)Q, - (4.16)

(n
" where M = max [S,S’],- They are 'rr;ultiiir!lear'inf their fou-r-veetor‘argu.ments,

- and in Sec, IV.D we. shall see that they have simple. inversion properties. . When
=v'l::]':ie-Ifoiil‘r-veic;sor"aJ:':gvumen’cs~a‘.§re;"elxpreﬂssed ih<relativisticespherical coordinates
they become a generalization'of spherical harmonics to many arguments and fo

the relativistic case, except for normalization and possible phases. 17 Because
“i;of the method of constructlon of the p and -® matrlces, for example in (3. 30),
the two=spin Y functions satisfyrecursion formulas :analogous to those for

spherical harmonics. If 8 > S8 > 0, we. have as an example L

1

d l i ey °..ooo°‘ ° ’
X(S te S ?Qs+1>a5
= 5.0, (8,5 5455 7,77,0) C(S",5 8155 #k%6)
T Ayt 9755 s Vs 7 ,a Y 55 Ky K 5P
7. i_ooed i v.. n- o ° ‘ ‘
XY(S875 1y vdpg)ys (2 2’ .28+1)7'n' : (k.17)

-More generally, one can start from foﬁr-spin basiS'funétions

1111
5535

define recursive sum rules such-as

Y(= ij) that are not direct products of two ¥ é 53 1) funétions and
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¥18),858,515 (1) (3) ] a0

= Zgamiiz ZeerﬁQ:,C(Jb;Lh;Su; 5,5',&) C(JB,LB,S3;:e,e'(7)

. * o & . .
A I Dps 85 M AT, B) C(Tqs Ty S5y 0T k)
X'Y[J4J5J2Jl5(i)]5€xﬁ YD) Ll 5 (D) gagrgge 2 (4.18)

‘where one must, of course, keep track of the coupling scheme. We shall write

this in.the‘short.form
), (U] = OB LS5 B,8%0) T@), (1] gy YLE), D],y - (%19)

The reduction is shown‘schematmaily‘in Fig, 3 for‘algimfle case; the right—hand
side corresponds to the binomial éxpansion, |
D. Kinematicalﬁrbles’
A reciprocal basis to (4.11) is easily obtained from the reciprocals of

‘the four-vectors v(i), which are given by

V(1) = [v(2) v(3) v(¥)1/a,
9(@) = Iv(1) v(3) v(B)1/a,
33) = v(@) v(e) v(»)1/a,
T = -[v().v(e) v(3)1/4,
with | | | ‘ '
R A IO | C (h20)

where {x y z]u = euvkvayxzp . From these definitions it is clear that
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V@A) = 8y,

~and -

5oV () () = 3 M) V(@R A o - (4.21)

The tensor basis reciprocal to (4.11).is then

T“lf'"“N(l el eyl(ii)a,;QHN(iN);,"' I (4.22)

and the Y functlons are dbtalned by substltutlng 1nto (h 7)

FTom (h 9) it is clear that any klnematlcdl s1ngular1t1es 1nuthe scalar

» ;amplltudes must be poles ‘coming’ from. the vanlshlng of. d, prov1ded the v(i) are

~rpolynom;g;gq;nttheAcompongntsnof‘the four~momenta. . The determinant ,dA'van}shes

fifiand iny;if‘tpéffqur«yectors ;&(i),beéqme’1iﬁearl&;depéndent;l
H_Fouremqmeétgm;qonéervaﬁéon=iﬁplieézﬁpaﬁboﬁlyfthpeefpf‘fhe:moﬁenta can be

-indégegdgppv;or-twofpérticie reactioﬁs, Fe£~th¢ pu%pose of:thié~di$cussién-we

shall choose
v(i) = k; for-i.=:2,3,h; v(l) [k2 k3 kh] | (h,23)

‘Clearly -v(1) is independent of kp, k3,'kh,,and v(1) = 0 if and only if X,

_k3, kh -are linearly dependent. Eqpation'KLJEO)Limplies'thgt»
d=v(1)v() = det(y-k,) for 1,5 =2, 3 b

- which is familiar in the analysis of'scattering'kinematics.zo7;We shalliwrite

d in the form
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a = %(stu.- sa® - £° - u02‘+.2abc)‘, ' - (k.2h)
with
2, 2 2 2
a = (m1 +m2'm3 "m)_*_ )/2 ’
2 e .2 2 '
b = (ml +m3 -m,"-m), )/2',
, 2 2 2 2.
¢ = (mySmy e -my /2,
where we have used the identity s+ t+ u = E,i‘mia,, .This reduces  in the: equal-

mass case, as usual, to (sfu/ﬁ). It:can=bé shown that the basis.in-(h;12)'or
(h,lh)fhas'a'deﬁefﬁinant proportional to 4. o

To analyée.the &iineﬁaiical siﬁgularities;induced'in the scalér amplitudes
-by,thiS'basis,.we cbnéider‘first-thé~casefof'spiﬁ-0, spin-% scatterihg--of which
pion-nucleon scattering:ié:an=exdnple. It iS'Well-knownhthat'the‘SCalar~ampli-
tudes.ih (4,13) have hoikinematicél singularitiéé;zlband,bﬁr:diécussion should
belregardéd as an‘illuétrationiofiﬁow.suéh:a proof'goés1in‘the'M-funcﬁion'
formalism.

The basis:functions:and: their reciprocals are

v o= v(1)ep, o= S, (4.25)
and the scalar -amplitudes :are ’
Tr [Miph] ??u(i) = al(_s,:t,u)—::.'fH(K),?ru('i);. | (4.26)

. We suppose that:we:can invoke the Hall=Wigh.tman-'theoreﬁ122 in. a manner similar
‘to that of GGMW#*té,ihfér‘that a”(s,t,u) is holomorphic except for the dynamical

singularities from M -and the kinematical poles in ¥. We shall prove that
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the poles .are not present,’
“Disregarding the dynamicalréinguiaritiés,.we:éeefB&fiﬂépééﬁioﬁlof'(H,QO)

-and (4.26) that

lim a*(s,t,u)d = 0, S (4.27)
d -0 . : .

“because ..lim v(1) =LO°'mUsing!(h;2h);and eliminafiné*ﬁ;"ﬁewcankwrite ‘d " in the.

' form

@ = -Etle-s ))(s-s (&) - B O

Thus,‘ékcebt for a finite number of values of ;t"whére‘s+(t)-£*§_(t) or

| possibly t = O,.ai(s,t),cah have only simple poles in s. But from ih;27),.
ai(é,t) must have at least a simple zero in s for the same values. By applying
fheﬁérgﬁmenﬁ to éach'véfiablé.in %urh;vwe:fihd that at most‘ai(s,t;u),can have
poles at a finite number3of:values3of;ifé?argument; But this is impossible
.because a function of several complex variables cannot have isolated poles.

(See; for example, the lecture notes: of H. J. Bremermann;wCOmplex Analysis in

- Several Variables, page 91.)

This proof does not, however, generalize for a product. basis to higher
"spin. or to the case where more: than two particles have spin. In general, if
‘we write

() ,
Tr [M: T l'ﬂl-.(si,,si') Gb:f(Pg)(sz,sé')] - My, (4.29)

‘which is holomorphic except for -dymamical singularities, and

a(s,t,u; ii‘““iN) = .f(u)(K)fQHl(il)°°E9HN(1N)t, (4.30)
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the best that we can' contlude is that the: coefficients (4.30) have kinematical
.‘poles,of order at most .dN-l. That We.gan-in-fact get-poles:frqm‘a product
‘basis is illustrated by the example .f“y(K) = guM' Then
a(s,t,u; ij) =-v(i)5v(j), and in particular a(1l) = v(1)-v(1) = 1/4.

.In general considerable case must be exercised in the selection of a
basis, as is already.known“by-experiénce.withxthé n-N'énd N-N cases. "One,expects

5

from perturbation theory that such a basis exists.”. In thevN-N¢caSe,.GGMWZWere
able to obtain a proof only by doing a partial-wave analysis.  Preliminary results
obtained by one of us (DNw)_indicatg,that,this'is not necessary, and that in
:fact.aucomplete solution can.be given.for'the problem:of finding a basis leading
to singularity=free amplitudes-for two~body reactions, The{detailS'wiil be

v given in a;seconq ?aper, For- the purpose.of thg:continuation:in'total'angular
:momentum,,We¢need.only assume that.there.exists some_basis‘formed‘from poly-

nomials in:the.momentum'components such-that-the scalar-coefficients,have.only

~dynamical singularities; and that will be-our'prqcedureo_
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V. -ANALYPIC CONTINUATTON:IN TOTAL ANGULAR MOMENTUM
-Theian&lytic*continuation‘in'total ahgular~momentum_'J - is most-cohﬁeniently
done in terms :of the helicity amplitudes H“,x,;ﬁjz,which have simple projection
lﬁrdperties.ih terms -of the partial-wave helicityfamplitudes ;Hi'k’;ﬁi';lo In

the s channel, for example, we have

Beo

H“"}\.", ﬁ,}\, .= - 1-’ Z (2J +- l) h 1?\', p}\-(S)
o 2(ae')2 =0 -

Xvexp[i(i-ﬁ)fél cexpl=1(Nt-u*)¢) ,dJ-(Q_)w_u:,‘i_ﬁ s o (5.1)

where ¢! and q are the-magnitudes.bf‘thé'final'and'initialucomo‘momenta, and
“Where We have‘introduced.the:convention~that-the.upper'undotted index of the

d"  matrix shall be written as iowef-dotted[because_both have  the same trans-
-formation property for'rotgtions.

. Equation (5.1) can be formally transformed into a Sommerfeld-Watson

.representation
N U (2-J+1)«h(7\')‘7(s) a?(0) s A (1)
H(7\) i bl — (sin m3)
i E(qq ¥l Reg- |
¢ lealki] By, (e e) O Do |
o Zn (h)s1n :rroz(n) M > _ (5°2)v

4 '
where.a(n)'= a(n,s) and B(n,s) are the p051t10n and residue of the nth Regge

pole: of the partlal-wave hellclty amplitude . B (s). Wevw1sh.now to establish
that there is a unique analytic~continuation:of‘the.partiai—wave helicity

amplitudes from the physical values of J.
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-Let . us denote,. in the:center-of—mass system, the scattering angle of the
outgoing particles:3 and 4 (Fig. 1) by @ .and x-0. ‘We shall put @ = O without
any loss of generality. . Also let us denote the helicities of particles 1, 2,

3, and 4 ‘-byf'i,l A, and p'. We write the M functions in the form of Eq. (l.5)
_ 2 () L(8)(2) P |
M(a)(K) = Z(i)A Y ®) () | (5.3)

‘Here (i) labels the scalar amplitudes; (S) = (Sn,‘f‘,31) are the spins; and
(@) = (au,aé,aé;&i) are the spinor indices. The helicity amplitudes are given

according to Egs.. (2.9) and (2,10);.by

(Sy;5 0) T

=P ¥ _[exp(i.Q'qg/E)(»_k_’h*’a/mh)g]
(s,0) L

QR 7 lexn(i00,/2) (- Ffms )1

¢ (S :-O) ~ 2 *
@k 2 _‘[exp(i:r02/2)h(k2°c/i@2)2]v

| (S ;O) " i (= - V )
QR ¥y 21" Z(\) a0 &) (5.4)

ﬁhere- @'_= T =8, The angles.in. the CentefnofumaSS'fraﬁe;of'particleSfl and
2 have been taken to‘beizero and 1w, respectively.

We~want~now to sepa?ate'theQQQdépéhdentlpart~of E(x); :Tq.see{how the
first two matrices act, we consider firstly the case:Sl = 85 = %ﬁ,.s2 =‘Su =. 0.
The geheral case: will be built up:from here.

Consider the basis,.Eq; (h;lZ),.for'the'spin—(%;O):system. We first

evaluate the R-basis functions, R(ik,
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, . L 1/, Lo1/2.
L P I
* el At ' ‘,“1 bs o

.or, in matrix form,

b1 miL 11 ek | -
,Rgg(l) = —ki—-’ 0)2 _.Ygg(l)(klo “ . ‘ (5.5)
El Coom
We obtain in the centereof-mass frame (after-some-calculationﬂ:
R P (m1m3) @(-El+ m‘l)(E5+m3)]
, oy
-3feo «::&:g[(E‘l - m-_L)(EB-I%)]E} ’
L X(2) L Lk
2 = (mmg) 2 UE - m) (B, + ns) 1740
L8y + my) (B - mg)1° ggg%}, | . (5.6)
115, .1 " 1
B2 - (m) (M5, + Bk + n)(E ¢ n))°

+

_\ B N
al (B - m) (8 + m)1% ¢ o' L(m + m)) (B - my))°

| o 1 |
e E‘i([@l‘- EUCREA L S

4

' L ; L
QLB - mp) (B + m) )% e al(m + m)(Ey - m) ) )Y,

i
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, and
Loy U
B2 = -(mn) #{To q[('El+'m_1)(E5+ n;) 1°
. o L
‘ l l
+Gteo al (%, )(E m3)] +q[(E +m1)(E +m3)]
e 'i . |
B, + BI(E + mi).(E m3>12 :
-Here - E E., EB;-Eh are the cam,.eﬁergies s%'the four'particles, aﬁd.'a ,and

17 e | ' =

'@“ ‘are the unit initial and final momenta. . In.the equal-mass case these-

-

expressions .simplify to

R(l) = --{(E+ m) - q °g~ Q"i(E = m)] 2
2 - 2@, - 6D

‘ 3(5),# %n[(E.+-m)(2E-= m),+,af{g _a>c(Efe m)(2E + m) ],

and

R(h) s -ﬂg 9(%4‘

m = e~

')

3

These are just. the standard expressions.
For the scattering of'two spin=l/2 partlcles we have 16 -combinatdons
R(a)Q 2( )(a) R( )c E(J)(a '), where the argument a’ indicates change of signs
Cand A'
.of g;and q’ and change of El e—aﬁé 5 E% e—eEh; and mle—e m3 2m) . - There

~are, of course, other ch01ces of basis functions poss1ble ‘that are not a direct
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product of two. R functions.

For the spin-(1/2,0) system, we have from Eq. (5.4)

. 11 1 S : 11,
= = (= 0) . . =z (1)
22 AP . B 2 (1) 22 .
H = B Iexp(1902/2)]K,. (i)A 'RBi . (5.8)
55 @) ORI
Equations (5.6) show that R are functions of g-q and ¢-q’,

which are the helicities .of the two particles in the center-of-mass frame.
Therotations merely diagonalize the helicities to their eigenvalues : A and
A'e This is, of course, precisely the meaning of the helicity amplitudes.

Using. the identity

[exp(iéég)])\,a (g'g)o-[x = 2\' Q[eXP(-iQQE/Q)]hw)‘\ s

or in matrix notation

eXp(lOO /2)] (gog) [exp(-igog/E)] = 0zq ‘ (5.9)

we | obtain from (5.8)

L L C(a) 2 & (1) L
.2 2 Z e ' e
H, . A 72 ° (X, A1) dg(g)w'i (5.10)
B
where Z _is independent .of the angle ©. It is obtained by replacing
- co@ by . 2\ and 0°q' by 2A' in Egs. (5. 6) ~We have also used the identity
i R (1/2’0)[exp(190 /2)] = dl/Q(O) The corresponding-formu.la for- the helicity

. amplitudes of four -spin-_l/2 particles is
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/

.
1.11 1 +1
§§§§(l:J) {5,0)

(5,0)
Hu,)‘,};m- =0 2 expli, (n.59)02/2] H,O‘BQ’ : v[exp‘(-igag/E)]wB

2(1) 3(3)  Fn
22 22 2
R ‘Ry2 -1
X Qly =1 RB (-1)
where we have used
(.J,O), < 3 B _ | J=0, "-,
SR [exp(;s:ag/z)]a = (1), .
Then,
LLdley 5 Ll gy L 1
22227 22\ 2
SO S Z(0) d.@kmd(nm P - (5.11)

The separation of the gngular'part;in the above manner can.be performed
. for-any basis that is a polynomial in the momenta. .Such a basis can.be. reduced
to é sum of terms .such.as kiH‘KjY’ kiokj.guy,:and ekoﬂv"kiu”kjyp’ - for- example,.
in the caseof secondsrank tensors; and these multipldied with the spin:basis»give
eventually'terms like ki“ﬂiéa kjy'cv - from. which the angular pdrts-can be
obtained by use of Eq. (5.9). The angular'parﬁS‘Of‘the saalar products'ki9kj,
which are polynomials in. s, .t,,'andu,;aré.o'btained-by”Legendre'expansion° Thus,
if a general polynomial basis is used, we.obtain a sum of terms:of the type
(5.11).

‘The form. of ‘the transformation properties of the R and H functions is
the same as that .of the M functions; only the argument of ED S O),ls different.
Consequently the basis functions of the higher-spin R and H functions-are

-constructed from Egs. (5.6) and Eq. (5.11) by means of Clebsch-Gordan:coeffi-

cients in exactly the. same manner as the higher-spin M functions. We have,
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therefore, corresponding to Egs. (4.18) and (4.19) the recursion formulas

»RW$HL“ =<3LL&%&7)mgﬂ)($mg) (5.12)
and
ITI()SS)»(LJ) - @(J.., L,S;0, T,x)H(GgJ)(i)H(T'gL)(‘j) n (5.13)

We shall now exhibit the angular dependence of the higher=spin

helicity amplitudes. TFirstly, let.ué consider the spin-1 helicity amplitudes.

. 11 . 11 e o 0 11
(llll)(leﬂ) = . _C(‘7"3l§a'35':K')C(‘V‘Vlia’syk)c('3'3l?K’)D';H')
(?\.) 2°2 2’2 272 _

nj =

EXE =2 ()

”(e) Héfé , (@)

M-

>< 0(29 2) l) K:) p} “’)Ha|

Qe -

(k) | (£)
X H . (x - 9) Byt (- 8) . (5.14)

K K

-
O
PO
PO

" From Eq. (5.10) we have

1111) (13k4) 11 :
(}\g ( . z 0(2,2,1 o, B, )0(2,2,1 &, B, A)C (2,§;l;n',p"_,u’)

X C(& 5 Lik, 65 1) 2 (@,8) z  (8',8)

Nj=

Xz iz eh) e, ),

(5.15)
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Since the Z's dépend upon the helicities but not the 'a',n’g"les‘,r we can
write the Eq. (5.15) in the form

1eeel 1111) (4 . . . . |
(h) = Z( )(l>[@':ai B',Bs k'yk; p',o5 (M)]
o1 [ R § 1.
2 2 = o L2 s
X a7(8) 5 d (G)B’Bs a~(x - e)m,’ﬂ,c d” (x - e)p,,l;p
with. the obvious definition of . Z(llll)(l) R

In this form the equation can be generalized, and we obtain for the

higher-spin case

(Kgs)( ) =;sZ(S)(i)[a'l;dl;’°°,a’N;dﬁ; B‘l,él;'°e;'B’M;éM;(h)]

|
|
N[

X 2 (e) Cy -;(e)d.,NdN:d (x --G)B,l, 5, (“'9>5'M, By »

(5.17)
i 2+
where N = max (23 2s ) and M= max(ES 284) The ag(e) and .dg(n.-.e)

- functions can now be recombined into a sum of SLngle da functlons multlplled

by Clebsch-Gordan coefficients by using the relations

B AefL.T VR T pay (eI AT
o (0, = (1)77aNe) , o = (DT a(e)z = (1) (- 8)y, 2
and
R C(T, Ty T3A, uhy N4t )C(T, Iy T3 Fe iy A 12)aT .,
)\0"/\' H"IJ' R Z‘I \vy L0 s b b A¥y s 9 M2 }\"+“"})\'+IJ'

(5.18)
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For.example, in the case of spin 1, Eq. (5.16), we find

I (1111)(1) _ Z(llll)(i)[a'

()\') :&iﬁg:réjlﬁ_', I:‘.',"p’, E,; ()\)] (_l)l-n-p

X

: . C(li’.j:;I; at,pt,a™pt) C(E;]::I; O By OB )
LI x 272 2’2

X C(5,51'5 K’y =P, =k'-p") C551"s -k =fy -k-p)

X (I, 1% k; a™+B', -k'-p', QMB'-k'-p?) (5.19)

°

L, o . e ©°. °‘°Aoo k
K e(T, 17,k 4B, -k-0, #B =k-p).d (O)yriptontopt, Gifoid

or

H(}\,) (]—1]—1)(1) = ka(l)[aiy&; .B.'yé; L éibtaé (N)3k]

K _ :
X d"(g)at_i_av_n'i_pz’ éﬂ-é-i:‘,=p 9 (5°2O)
. Where v

.w(l).[oz",&; B85 k'ks Pt R5(A);k]

is the coefficient of () in (5.19).

- The general case is'alsbv0f thié form but. with a more camplicated lower
‘index of the same form.

:We.are now. in the position fb.discﬁss:the.partial-wave helicity ampli-
tudes, Whi¢h are‘defined by Eq. (2;12), _We ‘have

11
hoy (9 = Baa? [ ateos ) &) a1 Biry
ST M .

(5.21)

continued
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i

11 : .
-5 @ [ e d)y L e 4D oy
, A i)y 4 ‘

X‘.‘;L_l{w(i)[a',&; 81,6351, %30% B3 (M) %)

. where

Ky . k
d. » - s e e o ..'\= - . . ®
(g)-a'+B'~K’¢pﬁ3-O*B,-n-p S a (Q)Ah’:-éh

from the Clebsch-Gordan coefficients in Eq; (5.19) with the indices on dk:just

A&.anduék’o’ Finally we combine ;dg(o)ob.with.dq(@)AK, > .to obtain

s DN
I+ 4
at . ad . - E: C(8,3,T50,801, 201) C(8, T, 150, A%, 88) a , .+
- 00 v=A7\.',A7\, Lo Iy HyNMyaie 5 L B A}\.',A}\,"
| 1=|g-4|
~and integrate each term - d~ d ::by using Eq. (2.14); hence,
| ) 1 \ . - J+d o
J R SR E:_ 3 E: Y (1), ‘ }:' T)riay.
| k=|J-2]

(5.22)
X C(ﬁ,J,k; O,M'-;A_X')‘C(l’/,%kﬁ O,A}:,A;\.),

and, because the k values are restricted by the Clebsch-Gordan' coefficients in

their'définition,.qu»(5,20), only a restricted number of £ .values of

-

A(l)(ﬂ,s)' contribute to each h( Y with a given J. . For example, in the case

1Y)
-of spin-1 particles, k=0, 1, 2, and only three £ -values contribute; thus,

L =3, J -1, and J - 2, respectiVely, Writing the terms separately, we have
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'h(x)J: %(qq-e)2 Z() £(2J.+v 1) A(l)-(J, s),w(l)[(x,,),o] 0(3,3,0; O,AN1,ANt)

K 03,305 8,08y + (25 + 1) a1 (5= 1,0) WD (,1]

X e -1, J,l;v 0, ANL,ANY) (T - 1,d,15 O,AX,Ai) (5.23)
A+ (2. - j) A(i) (3 -e,s);.w(i,)[(z\,),e].-c\(i - 2,d,25 0, ANT,ANY)

X c(J-"- 2,J,2;776,'AX;A7°\,)}

In the higher=spin. case we will have, in-general, more terms of this
- form., |

This equation and the genéralization of it.willznow be used to. define
an analytic continuationaof.'Hq- in J. . The Clebsch-Gordan coefficients can
be'continued,analytically'in Jd - in- terms of their closed-form expression.
Note thét this' continuation is naturally not unique., We can take one that does
not change the asymptotic behavier of A(J,s) for large |J| in order to make the
:Sommerfeid-watsoh-transformation,(502)-péssibleo

| Assuming that the scalar amplitudes A(i)(s,t;u),satisfy,the‘Mandelstam

representation (see‘previous:section), we obtain, .in the: usual way; 5 an

expression for- each term.A(l)(J,s),in-(5919),suitable-for analytic continuation

in J

(1), ' 1| (1) : R (1)
A3, s) = F (s,2) Qz(2) + (-1)7 = [az A, (syzi).QJ(z).,
(5.24)
where At(l) and Au(l) ‘are the absorptive parts:of the scalar amplitudes;
A(;), in the t and u channels, respectively. These absorptive parts are

assumed to be bounded uniformly in s by £ and tN, so that A(J,s) is a
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holomorphiC'function of 'J for Re J >N, The. qu (5. 2#) 1nserted in (5 23)
~together with the analytically: contlnued Clebsch-Gordan coefflclents define
finally the analytic coutinuationuof the.partialmwave helicity,amplitudes.
Note that in various terms-of‘hq, J - oceurs in the argumenttof "A displaced

by integer units, so that the peles will occur displaced in-A(J,s);

- CONCLUSION

Byvau application of'the(theory of'representationStof'thetLorentz»group,
we have shown in some detail. how to extend the twomcomponentus-matrii'formalism
to describe nonzero-mass particles of arbitrarj spin, 'In the process we have
obtained the generalization.oef the Pauli spinors te arbitrary,spin_andfthé’
projection operators for the irréducible‘subspaoes'of‘the tensoro:of'arbitrary
rank. |

Although we havé glven a general prescrlptlon for expandlng “the' S matrix
for two=body reactlons 1n terms of a set.of basis funct10n59 we -have not given
in this papervspe01flcatlons forlch0051ng_the basis functions for the general
caoe in suchonwayggto avoid possiblelkiuematical poles at the boundory*of the

physical region. .With. .the assumption thatvthere.existuscalar‘amplitudes:that

_satlsfy the Marndelstam representatlon, we ‘have obtained the unique continuation

in total angular momentum.

"VIT.  ACKNOWLEDGMENTS

We wouid liﬁe to thank'Df:‘ﬁenryTPo‘Stappvfof-manyginteresting’discussiops

throughout the deVelopment~of this: work.



- © UCRL-10463

~ APPENDIX I: 'NOTATION, CONVEH\TTIONS‘;  PROPERTIES OF SPINORS
Ol.Jr-'Lorer}l’uz metric :Ls_goo»: 1 = --gﬂ = -g22'=,:-.g33;_:also, 60125 =” =1,
For matrices we: use the’ notation'MT.r for transpose,. MF for- Hérmi{:ian Eco_njugate,
M for complex. conjugate.
A brief review:of spinor calculus, 2h leads us: to note a number of relatiens
involving the: Pauli matrices, eru, . where
Cg= 1:0} Ios .= 0:1.,,',, g, - 0.-1 ;. and. @ = {109},

© o)t lio " % \i o > o=

24

~

a‘n,cii, the space=-inverted matrices, ou = (60, -g)., The - one=to-two -homomorphism -

. between: L_I_q“ and the twe-by-two unimodular ‘group is’ expressed by

1. ] ' ¥
+ = bead . o 3
A}.-J."V(—A) =5 Tr (EU- A Ofv. A ),,

LV

and the transformation character. of” Gﬁl’i UM iis expressed by

ooy "
Ax,%ﬁ‘_[umﬂ,%

and v o A » S (a1.1)
T U~ ‘
i ox o, A 1. .-[A(A)x]*f;.ouz,

1
. =,0)

>
where A . is'a two-by-twe unimodidlar matrix, and A-= 0° (a).

. *
-For any. spinor, those indices transferming according to A, A ‘are

written as lower- undotted,  lower dotted,; 'respectiv.ely, and those transforming

- =1t
according te the contragredient.transformations A -lT;,, A l .are written as

‘upper unddtted, upper- dotted,. respectively. - Thus from (Al.1l),. ou.,I ’gu,_ heve

5
~
indices @ 2 5 cuoﬁ-

Hop

‘the same type.is an. inveriant operation. = We use the summation. convention

o :Contraction of relatively upper and lower indices .of
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convention throughout .for repeated relatively upper and lower:tenser- or  spinor
~indices,

If the matrix C 'ideefined.by

L | (a1.2)

¢t ¢ o= Mt det M-, ‘ (A1.3)
The spinor indices -are taken to be- o108 _ leaé ~and VCQB;=TC&5-; and these

matrices are used as raising and lowering spinors,. contracting-always :en the

right index. .The’mza.tz'ices.-'_‘épl .satisfy the identities
R ¥ 1, e ! o *
ce = C l=euTc = .C 1aou C . (Al. k)

‘We write the. indices:of the: Krenecker .8 symbol in two.different ways,

. . y ' .
for example; . § 8 %, Both mean-the same thing. The indices-are written

2 %sst 7 %
as relatively upper and lower when we wish.to emphasize the spiner- character
-of the symbol. .

. The foilowingrequationS'and.orthbgonality'relations are often. useful:

pov SV HYAD
- and ”
.~ o v g;, - ~ . . N
CHLS =gt 5 S 7 @ (A1.5)
1 | .
5 Ir (Gp @v) T continued
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1 Bl at o B
598 % = 8% 8
and '
. - l V'a e - ‘voo‘ '. ‘
5 %% “worpr T oot Bhr - (41.6)

For any. fou.r-vec&:or X we have (xad)(xo?)e XoX . The Hermltlan ‘matrix
(kvo c/m)% correséonds fo a Lorentz transformatlon from rest to the four-
.momentum ks (k°o/m)% cosh (X/2) + k- ”smnh(X/E‘), where k 'is the unit .three-
vector and. . X is the "angle" of the Lorentz transformation; also,
| Al§‘= /l;m sinh X, k =m cosh X , | |
. The representatlon matrices - for the proper rotation group and the proper

"homogeneous orthochronous Lorentz group, % (A) ) (s, )(A), e,re deflned for
'u.nltary-unlmodular and unimedular two-=by-two matrlces A, respectlvely, with. Sy
. 8' half-integers., The: matrlces B (A) are unltary, and the representa’clon B
is unltary-equlvalentvto SS*, Whlch follows 'from (A1.3) and the group property.
But (s, 8 )(A) is in general not un:.tary, ‘and the represen‘batlon @ (s, S')
s 1neqﬁ1valent to B (S' S) unless S .—-' S's The follow:.ng tlden’cltles hold:

B(S,O)(A) %(O S)(A)“lT. %(S,O)(A*-) - %(S; O)(A)*; S(S"O.)(AI) QE(S’O)(A)T.
| The  choice %(1/2’ O)(A) A is a conventlon° v The opposite:convention,
) ©, 1/2)(A) =-A, is often used,  If ‘the latter convention is used, O (550)

in:our formu_'l.as should be: replaced by @(O’
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APPENDIX II: RELATTON TO FOUR~COMPONENT FORMALISM
The -customary introductioen of the invariant-scattering“ampiitudes has
. _been in terms of four-component. spinors. . Stapp has:already,given the relation
| between his two-component M-function .formalism and the four-component:formalism;l
'We-give.here\aademonstration-fhatvexhibits‘the.relationvbetween the corresponding
scalar-é%&iitudes,for:pioﬁ-ﬁucleon-séattering:withoutUisotopic épin.
vAcéérdingtton(206),.£h¢‘M;function f9r~the'situation,déscribea in,(h.i?),is
M“Q B

Pagmy Theem e

The. positivesenergy sQlutionsrof‘the‘free-particle-Diraé equation: in. mementum

space -can be written in. the form

- o (a2.2)

= = , 8 a I (82.3)

. (A2.Y)

Then, writing
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| Nos s (42.5)
| o Ry = 2 8(k) Tusl) | (42.6)

and evalvating (A2.1) using (A2.2) and (A2.5), we.obtain

NN L L 5T, B

M=T : =

11 ml -@3 00 10 m3 T21 ml B i (42.7)

. where Tij are the two=by-two blocks of the T matrix. From (4.13) and (a2.4),

these are given by

=Bem, T.. = B om . (a2.8)

11 22 12
. The M function (A2.7) thus agrees completely with the.M.function given
by the basis (h.lE)vin'thefPh and T-conserving case, where A =.Al and

B = ABc'
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FIGURE CAPTIONS

Fig. 1. Two-bedy. scattering ‘parameters.
Fig. 2. - Addition of spins.
' FigO' 30

- Decomposition of direct products ef spin- L basis functions.
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