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From gro~p theoretical considerations, invariant scattering amplitudes 

for two-body reactions of particles with arbitrary spins and. nonzero masses ·are 

constructed in various forms, including helicity amplitudes and amplitudes free 

of kinematical singularities. They. are linear combinations of spin basis functions 

with scalar coefficients. In the process of construction the.Iauli spin matrices 

are generalized for arbitrary spin. On the basis· of a Mandelstam representation 

for the scalar coefficients, the unique analytic continuation of the amplitudes 

in total angular momentum is obtained. Possible kinematical singularities of 

the scalar amplitudes at the boundary of the physical region are discussed • 
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The basic quantities of S-matrix theory are the Lorentz-invariant 

. scattering matrix elements (S functions), which depend on the spins and types of 

incoming and outgoing particles and on the mass shell values of their four-momenta. 

From the S functions, invariant scattering amplitudes (M functions) that ~~ve 

simpler transformation properties and that are expected to be free of kinematical 
. l 

singularities can be defined. A general procedure has been given to construct 

the invariant amplitudes in terms: of the irreducible unitary representations of the 

inhomogeneous proper Lorentz group, based on a two-component spinor formalism. 2 

Although the invariant. scalar amplitudes for which .the Mandelstam repre-

sentation is expected to be valid have been known for some time in the simpler 

cases such as those of the pion-nucleon3 and nucleon-nucleon
4 

scattering systems, 

there is to our knowledge no systematic construction of such amplitudes for 

arbitrary spins.5 The purpose of this paper is, firstly, to construct the 

invariant M functions of arbitrary spin for two-body reactions (two particles in, 

two particles out), and also to construct the S functions in various representations 

(for example, the helicity representation) in terms of scalar amplitudes and 

explicitly given basis functions. 6 .· Secondly, it is our purpose to define, on the 

basis of a Mandelstam representation for the two-body scalar amplitudes, an 

analytic continuation in total angular momentum that generalizes the recent work 

on simpler cases. 7 In pion-nucleon scattering, as already mentioned, there exist 
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scalar amplitudes that are known to have no kinematical singularities. An inves

tigation of this question for arbitrary spin will be reported in a separate paper. 

We proceed here on the assumption tha=t one among a large class of possible bases 

will lead to scalar amplitudes without poles. 

In this paper, we ignore isotopic spin and give no systematic discussion 

of ~ P, and T transformations, but make only occasional comments where appropriate. 

Apart from their theoretical interest, the considerations involving higher 

spins will be, we believe, of practical importance in connection with the new 

higher-spin resonances, and perhaps in the problem of analytic continuation in 

spin of the S-matrix elements. Many of these considerations apply, to processes 

involving arbitrary numbers of particles and are not restricted to two~body 

systems. For example; the spin matrices introduced in this paper generalizing 

the Pauli matrices to higher spins may be of interest. in other applications. From 

these matrices we obtain the projection operators for the irreducible invariant 

subspaces of the tensors of arbitrary rank. 
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AND GENERAL PROCEDURE 
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The formulas developed in the succeeding sections are rather involved. 

To facilitate the reading, we outline in this section the procedure that we have 

followed; but first we define the transformation laws of the various invariant 

functions. It is often said that spin is only an inessential complication. Never~ 

theless, it appears that except in simple cases a certain amount of complication 

is, if not essential, at least unaVOidable. 

A. The Invariant Functions 

We consider scattering processes for outgoing particles and incoming 

antiparticles with spins and four-momenta S., k., and incoming particles and 
l l 

outgoing antiparticles with spins and four-momenta S., k.~ all with nonzero 
J J 

rest masses. The invariant scattering functions (or S-matrix elements) have the 

following transformation property under representations of the inhomogeneous 

2 8 
orthochronous proper Lorentz group: ' 

S(K) 

where 

A I (k) 

s. 
= s.e l 

l 
[A I ( -k. ) ] 

l 

= B -l A B 
k~ q~ 

and 

s 
~ g_e j [A' (k.)J* S[/\-l(A)K] , 

J J 

q • 

Here K stands for the set of incoming and outgoing four-momenta, k , with 
n 

(2 .1) 

~ k = 0 from momentum conservation; and AK stands for the set of transformed n n 

momenta, Ak n Elements of the orthochronous proper homogeneous Lorentz group 

L+t are denoted by A(A), where ~ are the corresponding elements of the two-by

two unimodular group. The spin indices of the S function, which have been 
s. 

suppressed, are transformed by direct products of the unitary matrices~ land 
s * 

10j , which are the well-known [(2S. + 1), (2S. + 1)]-dimensional irreducible 
l J 
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representations of the three-dimensional proper real orthogonal group. An index 

transforming : according to /D 8 corresponds to an outgoing particle or incoming 

corresponds to ah incoming antiparticle and one transforming according tolJ8* 

particle or outoing antiparticle. 9 In the argument a S C:\ S* A' (k). of v or V , the 

unimodular matrices B are so defined that 

and similar~y for B q(-j? The Lorentz transformation corresponding to the unitary-

unimodular matrix A' = B -l A B transforms the vector k(-j? q(-j? p into itself (it 

is an e.J.:-ement of the little group of the vector p), where p = (m, . 0, 0, 0) is 

the rest-frame value .of k; hence this transformation is a .rotation. 

From the definition of p and Eq. (Al.l) in Appendix I, we have, in terms 

of Pauli matrices, 
()' ' ll 

8 

The general solution of this equation can be written in the form 

(2.2) 

Bk(-j? = Ak(-j? U , where ~(-j? is the Hermitian matrix (k· o/m)1/
2 

and U is an 

arbitrary unitary matrix corresponding to the freedom of arbitrary rotations in 

the rest system of the particle~ . We use this freedom,' later in the construction 

of helicity amplitudes; An important characteristic of the invariant .M functions 

d~fined below is that their transformation property is independent of B. 

The transformat·ion law (2 .l) also holds for the R functions, 

R = S - I • (2 .3) 

There is a natural way of simplifying this transformation law. Because the matrix 

\i 
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. A'(k) = Bk~-l ·A:Bq~ is unitary, we have the identity 

where~(S,S') are the irreducible, in general nonunitary, representations of 

dimension (28 + 1) (28' + 1) of L+ t . We can then use the group property of 

~ (s, 0 ) and obtain 

Thus if we introduce M functions defined by 

M{K) 

we see from (2.1) that they have the simple transformation law under 

: . 
. ' 

® o-.(s.,o) o.(s.,o) · * 1 M(K) = . h-1 
1 (A) ®~. tv J (A) M[A {A- )K] .• 

]_ J 

It is simpler to construct the solutions of:<'this equation than those of (2 .1). 

Equations (2.3), (2.6), and (2.7) are the basic formulas from which the con

struction of the M and S functions begins. For spin ~these are just .the M 

functions introduced by Stapp. 1 

B. The Scalar Amplitudes 

For practical purposes, such as the application of the Mandelstam 

rE'lpresentation, it appears convenient to use a representation of the linva'l:'iant 

(2 .4) 

(2.5) 

(2 .6) 

functions in which all of the dynamics is contained in a set scalar amplitudes. 
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·In a sense this removes ·spin from the problem. Our problem is thus to find a 

simple, explicit set of basis functions, Y(i)(K), in the spin space which have 

the same transformation property (2.7) as theM functions. Then we write 

M(K) == I: (i) 
A (i) (K) Y(i) (K) , (2.8) 

where the A (i) (K) are Lorentz scalars and must therefore be functions of the 

scalar invariants formed from the four-momenta (and possibly of the signs. of the 

energies). One can also require that the basis functions Y(i)(K) have definite 

transformation properties under·P and T. Thus, if P and Tare conserved, the 

total number of independent scaJ_ar amplitudes will be smaller than· the 

IT.(2S. + l) IT.(2S. + l) resulting from (2.7) and (2.8). 
l l J J 

The essential requirement on the scalar amplitudes is that they shall 

have only the singularities of the M function itself, which on the basis of per

turbation theory or of a pure S-matrix theory are expected to be only dynamicaL 1 

Furthermore, we wish to require that the basis functions themselves have no 

si.ngularities. The simplest possibility is that the basis functions should be 

polynomi.als in the components of the linear momenta. To require . that the basis 

functions have this form is not enough, however, for· the scalar amplitudes 

could still have kinematical poles at various degenerate points where the basis 

functions become linearly dependent. Indeed, the question of whether there exists 

a set of basis functions that never induces kinematical poles in the scalar 

amplitudes already.involves considerable subtlety in the case of two-body reactions, 

and therefore we shall restrict ou..l"S':lves primarily ~to this case in any discussion 

where. the singularities are: important .. 

·.The, question of to what extent. these various requirements determine a 

set . of.. b13,sis functions is not settled in this paper. Rather we seek t.o 

.. · 



'·• 

.• 

'•' 

UCRL-10463 

establish a basic formalism for arbitrary spins that can be used in the con-

struction of a large class of basis functions. We follow a procedure that is 

natural and systematic, and that yields the usual analytic amplitudes in special 

cases. It consists first of building up in Section III a set of higher-spin 

matrices from the spin-~ matrices, cr~, by using Clebsch-Gordan coefficients in 

a process corresponding to. the addition of spins. For two-body reactions we then, 

in Section IV,·. combine the spin matrices with tensors formed from the four

momenta to obtain a set of basis functions, Y(i)(K);and we give a· brief dis-

cussion of the question of kinematicalpoles in the resulting scalar amplitudes. 

If preliminary results,are substantiated, a second paper showing how to eliminate 

the kinematical poles will be submitted by one of·us (DNW). 

: C; Angular. Momentum ' ' · 

In Section V we define an analytic continuation in total angular momentum 

for th~ scattering functions shown in Fig. 1. For this purpose is is convenient 

to use helicity amplitudes. Having constructed Y(i)(K) and therefore M(K) by 

(2.8), we obtain the helicity amplitudes H(K) from (2.6) by making the appro-

p:;.~iate choice for B in the expression 

L(i) A (i) (K) y(i) (K) ' (2. 9) 

where now the A (i) (K) can be taken as functions df the Mandelstam variables, 

I . ' ; ~ • ' 

The helicity amplitudes H(K) are defined to be R(K) 
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when 

(2 .10) 

where q_11 = (k
0

, 0, o, 1151 ), i.e., a velocity transformation from the rest frame 

to the z direction followed by a rotation to the direction (g,¢), of k.
10 -

Without loss of generality we can put, in the center-of-mass f'rame of 

the s channel, ¢ = 0. It turns out that for any among a large class of basis 

functions the angular dependence (g dependence) of the helicity amplitudes 

can be factored into a product.of d
8 (g) functions in the form 

where z(i) does not depend upon g, and R is determined by the spins of the 

particles. Here (A.) stands for the indices (!l', A.', jl, ~) and 

d8 (g)= t:J(s,o)[exp (igcr
2

/2)]. 

(2 .ll) 

The projection over the total angular momentum J · of H(A.) is defined 

J l l/2 l J & 
h(A.) (s) =2(q_q_') · f dzd&' H(A.)' 

-1 
(2 .12) 

where z = cos g, & = A. - !l, &' = A.' - !l', and q_ and q_' are the magnitudes 

of the momenta of the initial and final particles, respectively. 

We now write for the scalar amplitudes a partial-wave expansion in the 

s channel, for example, 

.... 
~ 
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where we put for the Legendre polynomials, 

If we insert this into H(/1.) and combine dR(Q) with d.e(Q) 0° into a 

single d function and perform the angular integration, wh~ch is of the form 

oJR' 

we obtain 

J 
h(/1.) (s) = 

I (i) (i) 
.e,(i)A (.e,s) z(/1.) , 

(2 .13) 

(2 .14) 

(2 .15) 

where Z contains a sum of the original Z times a number of Clebsch-Gordan 

coefficients. In the above sum• the .e values are restricted by the given J. 

From the fixed-energy dispersilion relation for A(i)(s,t,u) we express 

A (i) (£, s) in terms of the absorptive parts At (i) and Au (i) of the amplitudes 

j_n the crossed channels and obtain 

J( ) \ -,-(i) rrf ( -) (i) ( ) 
h(/1.) s = L.e, (i) z(/1.) J dz Q.e z At s, z 

+ (-1)£ J dz 

where the Q.e(z) are Legendre functions of the second kind. Assuming that the 

absorptive parts At and Au are uniformly bounded in t and u by tN 

(or uN), we see that the expression (2.16) defines an analytic function of J 

for Re J > N 1 , where N 1 is displaced from N by some integer determined by the 

spins of the particles. 

Details are given in Section V. 

(2 .16) 
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III. CONSTRUCTION OF SPIN MATRICES· 

It is convenient to separate into two parts the construction of the basis 

functions Y(i)(K) for arbitra~y spin. In this section we construct a set of 

matrices which span the spin space and which contain most of the complications 

in the transformation law due to spin. These matrices are independent of the 

four-momenta in the problem, except under special circum~tances to be mentioned 

later; they have essentially no effect. on the singularity structure of the scalar 

amplitudes. The results of this section apply to M functions that describe 

arbitrary numbers of particles. 

The matrices that span a given spin space are labeled with tensor indices 

in addition to spin indices labeling their matrix elements. A complete set of 

basis functions Y(i)(K) is obtained by contracting the tensor indices of the 

spin matrices with a complete set of tensor functions which are polynomials in 

the components of the four-momenta. Given a spin basis, it is the construction 

of a basis for the space of tensor functions that can lead to possible kine-

matical poles in the scalar amplitudes. This ~uestion is discussed in~ Section IV. 

A.· Spin-~ .Matrices 

The basis for general spin is constructed from.two-component.Pauli spinors. 

Since; the total number of incoming and outgoing fermions in any scattering 

process must be even, 11 the simplest case that we can consider involves two 

spin-~ particles, one incoming, the other outgoing. 

E~uation (2. 7) then llJ.ecomes 

or, writing the spinor indices, 

(3.1) 

·.! 

(,' 
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M (K) -- A a' A·~' M [A(A-1 )K] (Xf3 . a: ~ a'~' . . (3 .2) 

As usual, the dotted index_ (incoming particlec: or.;: outgoing antiparticle )-:-.trans

* forms according to A and the undotted index (outgoing particle or incoming 

antiparticle)according to A. 12
- Any two-by-two matrix can be written as a linear 

combination of Pauli matrices, a • Hence we can put 
Jl 

From the transformation law of a given by (ALl), it is clear that we must have 
Jl 

A v f (A -l K) = f (K) , 
Jl v Jl 

( (3:4) 

if (3.1) is to be satisfied. 

The four-vector function fJl(K) can be expanded in terms of the four-momenta 

~ but that construction is reserved for ·Section IV. 

If we define 

.and (3 .5) 

'P = (1//2) -a , 
Jl Jl 

where cr is defined in Appendix I, the orthogonality relations (Al.6) in Appendix 
Jl 

I become 

and (3.6) 

where C is the "lowering" spinor defined in (Al.2). 
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The general formalism of the theory also requires basis SJ?inors ·with two 

undotted or two dotted indices. Such spinors can be obtained in several different ·.: 

ways. For example, the matrices "" -1 
~~ py. C have lower undotted indices, and they 

certainly span the space. 1 There is a choice, however, introduced by Stapp, ·that 

·is natural and especially convenient for a discussion of crossing·relations. It 

consists in defining the special spinors 

ga{3(k) = (3. 7) 

which can be used to change a dotted index into an undotted one and vice versa, 

where k is taken to be the fouramomentum of the particle whose spin index is 

to be operated upon. 

We then define basis spinors 

. 
ro~(k)af> 

-a' ( - -1; ) = gaO:, p~ = k• a p~ C m Of> , f3 

a;~(k)~ - ,(3' 
gf3'~ (c p k· cr/m) · • = p • = IJ.(X ~ Of> 

(3.8) 

These spinors transform according to .Ptg)A and * * A ~A .·, respectively. For 

example, 

(3. 9) 

They satisfy orthogonality relations 

~ ( )a'f3' a' Q f3' ro (k)rvA c.o k = 5 "' 
'-"'!-' 1-l . a f3 

and (3.10) 

afi(k)af> (!)~ (k)a'f3 r = coo:, cf3f3 r ' 

i> \ ., • 
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with corresponding formulas for·dotted indices. 

A spin basis for arbitrarily many spind~ particles is obtained by taking 

direct products of matrices chosen from among p ~ w (k), and ill (k), depending 
fl IJ. !l 

on the desired index types. 

B. Properti~s of Matrices for Arbitrary. Spin 

}J..any. of the characteristics :of the spin matrices· for higher spin are a 

straightforward generalization from the spini:-.matrices and can be understood 

witho:ut going through the details of a somewhat involved construction. Before 

proceeding to the actual construction~ we shall therefore clescribe the essential 

results. 

As already indicated, the fermion spin indices can always be p~ired;·and 

we can also pair the boson indices ·by adding a dummy spineO index whenever the 

total number of particles is odd. 'rhus· we req_uire a basis for matrices with two 

fermion or two boson spin indices; any spin space can be spanned with direct 

products of these. This basis is given by a set of rect~ngular matrices 
u... •••1-J, u... •••1-J, !l •••1-J, 'u... ••• ~,~, 

p·1. 
2M(SS'), 'P'J. 2M(SS'), w 1 2M(ssv;k), and ru '1. 

2M(ss~;k), where 

M = rr.ax [S, S g ], which span the spin~S7 spin-S~ space, and which reduce to (3.5) 

and (3.8) when S = sv = ~ • Here S and S! are the spins of the pair of bosons 

or fermions. The spin indices labeling the matrix elements have 2S + 1, 

2S w + 1 values, respectively, ranging through s, S=l, • • •, -s and S ~, S ~ -1, • o o, =S w o 

L Transformation Properties 

The spin matrices just described are classified according to the repre-

~ (s o) PI (s o) * sentations of L+ f of the types IV ' (A), IV 7 (A ), or the respective 

contragredient representations fJ(S, O) (A -lT), B (s, O) (A =lt) • The whole apparatus 

of the spinor calculus can be taken over for arbitrary spin. The spin indices 

will be written as lower ~~dotted, lower dotted, upper undottea, and upper 
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dotted, respectively, corresponding to the four representations listed above. 

The contraction of an upper with a lower index of the same type is then an 

invariant operation. 

The raising of a spin-S index is accomplished by contracting on the right 

with the matrix 

and lowering by contracting on the right with 

The sp~nor for changing dotted to undotted indices and vice versa, defined in 

1 (3.7) for spin 2, becomes 

By convention we take the types of the indices of the matrices kj(S,O) to be 

the same as those of their arguments. 

(3.11) 

(3 .13) 

The matrices , p (li) (SS' ), where (ll) = (Ill .. •112M), are constructed to have 

a lower undotted spin-S index and a lower dotted spin-S' index, while the 

-P( 11 )(SS') have an upper dotted spin-S index and an upper undotted spin-S' index. 

The construction is such that (Al.4) generalizes to 

(3 .14) 

The ill matrices are defined by analogy with (3.8): 

·1 
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(3.15) 

and similarly for the corresponding matrices with lower dotted indices. 

The transformation laws :are given explicitly by ·. 

and (3.16) 

where A(v) (!l) stands fora direct product of Lorentz transformations, one for 

each tensor index of. (v). 

2. Orthogonality Relations 

The fact that the spin matrices actually span the spin space is exhibited 

explicitly by the relations 

(")(s •) fs···s· 'j)\ =· C\(.s,o)(c)rwv, ... ,e:.(.s',O)(c)~~'' 
P ,... · 8 af3 P(!l)~ ex'~' tv uu- tV (3.17) 

(l)(!l)(SS'·k') (l) (SS'·k)a'f3' = 
' a(3 (IJ.) ' 

and those formulas·obtained from these by raising and lowering indices. These 

relations are a special case of more general formulas given in Section III.D.3. 

3. Symmetry Properties 

It will turn out that there is a connection between the p matrices and 
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the irreducible subspaces or' the tensors of rank 2M. This connection induces 

various symmetries among the tensor indices of p , as well as making p 

traceless in the contractionof any pair of tensor indices. Actually, we have 

omitted an extra label in the description of the p matrices,- expressing a freedom 

in their construction which corresponds to the fact that-there are in general 

several irreducible subspaces of the same dimension in the space of tensors of 

rank 2M. When S = S', howeve;, the p(~)(SS) are essentially unique; and they 

are symmetric in the interchange of· any t_~nsor indices. Similar results hold 

for p and w. 

C. Spin-1 Matrices 
I 

Matrices for higher spin can be constructed from the p . matrices by a 
ll . 

process of spin addition with the use of Clebsch-Gordan coefficients~ Consider 

the quantities 

= 

X C (! 1. 8 t , • • 1 f3• ) IJ. V 2'_. 2' J K,K' . p?'K p?''~' ' 

where s, S' can have 'either of the values one or zer~, and C(j
1

,_j2;A
3

; a:1,a:2,~) 
are the Clebsch~Gordan coefficients-in· Rose's notation. 13 The new quantities 

1..1.v ~ (s, o) 1'\1\ D(s ',_o_)* • p transform according to the representation IV 'Lll tv To prove 

this we start from the identity 

= (3.19) 
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which expresses the reduction of a direct product .of representations into a 

direct sum:. ·By using the orthogonality of the Clebsch-Gordan coefficients, 

and 

we get from (3.19) the identity 

f 
= 8 ~ s ~ 

r r' ' 

This leads at once from (Al.l) .to the transformation law 

In.matrix notation this is the same as 

(3.16) when (s,s•) = (1,1); (l,o); (O,l). 

According to the values of s, S', the piJ.V(SS') provide spin matrices 

for the four different situations shown schematically in Fig. 2. It is clear 

from the construction·in.(3.18) that because the direct product matrices 

pi-! ® p v span the 16-dimensional product space, the matrices piJ.V (SS'). must 

span the corresponding four direct-sum spaces of dimensions 9, 3, 3,. and l. 

(3.20) 

(3.21) 
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there are 16 values oftq.e tensor 

indices, and hence the pf..!V (SS') are not all. linearly independent. In fact, 

various symmetry properties of the Clebsch-Gordan coefficients, for example, 

(3.23) 

are reflected in symmetries of the tensor·indices. A straightforward calculation 

gives 

and 

p ll(ll) = 0 ' 
. ll 

flV ( ) 1 f..!VAO' ( ) 
p 10 = 2 e: PA.a 10 , 

The various symmetries follow.·from (3.23) and (3.18). 

(3.24) 

Tbat p ll(ll) .:::: 0 follows 
ll 

from (3.6),. (3.18), {3.23), and the fact that C is antisymmetric. We have 

used also (Al.5) and(A1.6) from Appendix I, as well·as the often useful identity 
~ 1 1 . . -1 

'~,c. C(2' 27· 0; a,t?>,O) =Gat:> .• There is a correspondence between the expressions 
•. 

(3.24) and the irreducible subspaces of the second-rank tensors of dimensions 

nine (symm.etric and traceless), :twee (self-d~l), three (anti-self-dual), and 

one (scalar·proportional to g ), which will be further explained after ortho-
. .flV 

gonality relations are obtained. 
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~IIV( ) ~ The matrices · pr- ss• .can be obtained by replacing p with p in the 

construction (3 .18), or they can be obtained directly from p!J.V ( SS' ) by the 

general procedure (3.14). Using (3.21) and (Al.4), we find that the two methods 

give the s.ame result. Then the orthogonaliyY relations, (3.6) and (3.20),·-·lead to 

and (3 .25) 

PI-Lv (ss' )· · p (LL') • 
at3 IJ.V a'f3' 

Making use of the relation 

(3 .26) 

and the s·econd relation in (~j?_:0)_, we get 

AoiJ. ov 
== g g • (3.27) 

These relations can be used to get a compact characterization of the invariant 

· subspaces·of the second-rank tensors. An arbitrary tensor ·can be expanded: 

• 
(3 .28) 

Clearly the 11projected11 tensors defined by 

{3 .29) 
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lie in the four invariant subspaces mentioned previously. 

D. Matrices for Arbitrary Spin 

For arbitrary pairs· of boson or fermion J3pins we proceed inductively, 

generalizing the construction for spin 1. By addition of spins we reduce the 
~ ~ ,.1' 

direct-product space p ® · · • © p = ® WPI-L into a direct-sum space. 

There is, of course, a freedom in the order for coupling the spins. We shall 

follow the convention that the reduction is always carried out beginning at the 

All other choices are related to this 

one by a unitary transformation. 

1. Reduction of the Product Space 

As an example, consider the reduction of the space ~ 
3

pi-L • We obtain 

a set of matrices 

j.l 1-L j.l 
p 1 2 3[SS': (LLI)] • 

af3 I; I 0 
•· I 'Y'Y KK 

1 c(L, 2 ,s; 'Y:;'Y',a) 

1 j.llj.l2. ' j.l3 
X C (L 1, _, S I 0 

· Kn ~ 1, (3• ) (LL I) 0 

2' ' / p • 'YK p'Y I K' ' 

where L, L' can have anycombination of the values .1 and o, and s, 8 1 can have 

any combination of the values ~ and ~ • The spin indices are labeled by s, 

S 1
; and L, L' label the intermediate spins that are added. to ~' ~ to produce 

j.llj.l2j.l3 
s, S'. The set of matrices p [SS':(L)], where (L) = (LL'), will be 

called the "reduction" of the space ~ 
3

pi-L .• In general we shall use the 

~···~ ' 

notation · p . [SS': (L)] for the matrices that are the reduction of Q9 NPI-L 

The spin indices are lower undotted for spinS and lower dotted for spin·S', 

and (L). labels the set of pairs of intermediate spins that are the "path" by 

which the spins s, S' are reached. 

.. 
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The reduction is defined inductively by 

. ~~i· · ·~1 \ss I: ,., l [ LL I : (L") J} O:t3 

( 1 ) ( 1 .. 'f" • ) = L: I •• I c' L, 2- ' s; r, r I' a c L 1
, -2, s I; . K, K I' t3 ·rr KK 

>( n~l ·u~[LLI:(L"·)J .• ~1 
,., 'YK p'Y 'K I ' 

(3.31) 

···+ 1 '+ 1 _where S = L- - 2 , · S 1 =L - 2 • 
~ .. ·~ 

The matrices p 1 . (SS ': (L)] , . which have an 

upper dotted spin-S index and an upper Undotted spin-S' index, are defined 

inductively by replacing p with p in (3.31). 

2. Transformation Properties 

We have already the transformation laws (Al.l) _:for p~ and (3.22) .for 

the reduction of ® 2p~ •. A simple induction argument in which we use the identity 

(3.21) and the definition (3.31) then gives the general Jaw, 

(3. 32) 

where we use the same notation as in (3.16). with (~) = (~ .. ·~). By the same 

kind of argument we can conclude that 

' (3.33) 

and obtain the law 

(3. 34) 



Generalized romatrices with two undotted or two dotted spin indices can be 

obtained by procedure in (3.15). 

3. Orthogonality Relations 

Again by induction, the orthogonality relations for spin~, (3.6), and 

for the reduction of® 
2 

pi-!., (3.25), readily generalize to 

(3.35) 

for the reduction of ® N pi-! • Similarly, 

where '(L') is (L') .with each pair of spins interchanged. Either of these 

equations proves that t~e p(I-!)[SS':(L)] span the spin·(S,S') space. Further-

more, from-~;the first. equation in (AJ..6), from (3.27), and from the second 

orthogonality relation for Clebsch-Gordan coefficients, (3.20), one.can show 

by induction that 

l:SS'(L) Tr[p(I-!)[S'S:(L)] p(v)[SS':(L)]J 

(3.37) 

where the trace is with respect to the matrix product in the spin·(S,S') space. 
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4. Irreducible Tensors 

Equation· (3.37) leads directly to an ex:p3.nsion for an aribtrary tensor 

of rank N into a sum of its irreducible p3.rts. In fact the tensors 

are for each label [SS 1
: (L)] projection operators into orthogonal, irreducible>' 

invariant·subspaces. It follows from. (3.36) that they are projection operators 

into orthogonal subs:p3.ces; and the fact that they project into subsPa,ces invariant 

under L+1 follows from the transformation laws (3.32) and (3.34), which show 

that they are isotropic tensors with respect to L ~. • 
+I. 

That they project into 

·irreducible subs:p3.ces can be seen by noting that-the ordinary Lorentz trans· 
1 1 . 

formations, A, are equivalent to the repres~ntation Rl (2 ' 0) ® J8 ( o, 2) , . which 

is equiwlent to ~ (~ 'o) ~ B (~ 'O)* • Thus the irreducible representations 

that occur in the reductionof the direct product A(!l)(v) are equivalent to 

those that occur in .the reducti. ori of ®N pll • For· any tensor ·of rank N we 

get 

where T(!l) [SS 1 : (L)] are the irreducible p3.rts of T(!l) • 

5. The Spin Basis 

In order to span ~he spin-(S,S 1
) ·space, we can use any of the sets of 

matrices p(!l)[SS 1 :(L)] for N greater than or equal to the minimum integer such 

that the spins s, S 1 occur· in the reduction of® N p (!l). This freedom will be 
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reduced by requiring that N actually be the minimum integer. Because at 

.least 28 undotted spin- ~ indices are needed to build up an undotted spin-S 

1 index and 2Sv dotted spin- 2 indices to build up a dotted spin-S' index, the 

minimum integer is N = 2M,. where M = max[S, S ']. Thus, we s.hall choose a set 
~··•iJ.2M 

to span the spin space from among p [SS': (LH. 

In general there will still be a freedom in the choice of (L), the 

i~termediate spins that a~e passed through in order to arrive at s, S'. This 

freedom is present, .however, only in the set of left elements or the set of 

right elements of the pairs of spins in (L) and not in both; for either, S or 

S 1 is the maximum spin that can occur in the reduction of ® 2M piJ. ; and the 

maximum spin can be reached in only one way. When S = 8 1 this discussion im-

plies that (L) is uniquely determined. Furthermore~ as we shall see, in that 

case p(SS) is symmetric in all of its tensor indices, so that.all possible 

orderings for carrying out the reduction give the same result. If s¥s 9, then 
\ 

there is a genuine freedomrin the choice of .(L) that corresponds to the occurrence 

of the same representation of,L+t ·a number of times in the reduction. From the 

discussion in Sec. III. D. 4 on irreducible tensors,. each choice corresponds to a 

particular symmetry character of the tensor indices. 

A consequence of the requirement that the spin matrices have a minimum 

number of tensor indices is that they are traceless in the contraction of any 

pair of tensor indices. To see this.l' we suppose that S ~ S' and write out the 

recursion (3.31) in full: 

iJ.i • • • iJ..'"'S 
p · c. [SS': (L)]c@ 
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(3.39) 

There is .a special symmetry of the Clebsch-Gordan coefficients; for 

(3 0 40) 

1 By substituting s
2 

= 
2 

into this equation and comparing with (3.39), we see 

that the sum of Clebsch-Gordan coefficients over r~ is symmetric in the inter-. .. ~ 

c:b..ange of the ai. [Symmetry in a1, q2 follows from (3.23).] Contraction on 

·any pair of tensor indices gives a factor -c~,, from (3.6), which is ·anti

symmetric. Hence the sum is zero. When S=S' the sum of Clebsch-Gordan coeffi-

. 
cients over r i' tti is symmetric in the interchange of the t3i indices as well;> 

so that we then have symmetry in the interchange of the_tensor indices. The 

symmetric and traceless property of the equalaspin matrices in their tensor 

indices· can also. pe J?roved easily by induction, again,_ by the use of (3. 40). 

Finally, it is clear that the proof of the vanishing of t~e traces is the same 

for S < S r • 
'': 
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IV. TENSOR BASES AND KINEMATICAL SINGULARITIES 
OF THE SCALAR AMPLITUDES 

U.GRL-10463 

Having constructed a basis for the spin space, we can now expand any M 

function in the form 

(4.1) 

where the 
(!l. ) 

r ~ (si, s1 ') (a:.) represent either · p or ro spin matrices in the 
~ 

previous section, according to the index types; (!l.) for fixed i represents a 
~ 

total of 2 max[s.,s. '] tensor indices; (a:.) represents the two spin indices 
~ ~ ~ 

of the paired particles; (!l) represents the collection of all tensor indices; 

and (a:) represents the collection of all spin indices. From the transformation 

laws (2.7) and (3.16), it is clear that 

(v) . 
i\(!l) f'(v)(K) == ( 4.2) 

In general, the space of tensor functions f(!l)(K) can be spanned by a set of 

tensors formed from the four..;momenta K. For those cases where there are at 

least three linearly independent four-momenta in K, we can form a complete basis 

of' arbitrary rank, 15 and we shall suppose for the purpose of the discussion 

immediately following that we have done so. 

A. The Tensor Basis 

We suppose that we have introduced a set of tensors of rank N, functions 

of the four-momenta K, 

== T(!l) [K; (i)] , 

i. == 1, 2, 3, 4, 
J 

(~) i · · • L. 1 l'l ' 
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and the reciprocal set T(~)[K;(i)] defined by 

( 4.3) 

such that each tensor satisfies (4.2). We shall see how to form these tensors 

for two-body processes in Sec. IV.C. To form a basis for the M functions, we 

combine the tensor and spin spaces to obtain functions, 

(4.4) 

which thentransform as theM functions. Finally, we expand the M:functions in 

terms of this basis, 

M(K) == L:(i) A (i) (K) Y(i) (K) , 

where A(i)(K) are scalars under L+i· 

B. Determination of Scalar Amplitudes 

In general there are considerably more of the labels (i) than the 

dimension of the spin space. As. we have seen in Sees. III.D. 4 and III.D.5, 

there are symmetries among the tensorindices of r<~!, which means that not 

all of the T(~)[K;(i):} are needed to span the tensor space. Thus Eq. (4.5) 

(4.5) 

does not determine a unique set of scalar coefficients. There is, however, a 

natural way to impose a set of subsidiary relations among th~ A(i)(K) so that 

they become determined. 

First we summarize the orthogonality relations among the spin matrices, 
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(3.17), by the notation 

r(Jl)(S S') r (S S')(~) = 5(rv)(~) 
' (aj (Jl) ' "" ' 

(4.6) 

~ -where r represents the appropriate p or w matrices with upper indices. Then 

we define reciprocal basis functions 

(4.7) 

which satisfy orthogonality relations 

-- . ft. (~) 
"'(a) ( 4.8) 

If we now require that the scalar amplitudes be defined by the equation 

A(i) (K):;: M(a) (K)'y(i) (K) (a) , 

we get an identity upon substituting into (4.5) and applying (4.8). This is 

precisely equivalent to requiring that the solutions for the scalar,amplitudes 

in (4.8) satisfy the set of linear relations 

(4.10) 

which just suffices to determine them uniquely. 

Equation (4.9) is basic for the study of kinematical singularities.in 

the scalar amplitudes. It is clear that any singularities of A(i)(K) not 

possessed by M(K) must come from Y(i) (K) •16 If the tensor basis T(Jl)[K; (i)] 
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in (4.4) is constructed from polynomials in· the momentum components, it will 

be holomorphic., and both T(!l)[K; (i)] and·Y(i)(K) will he meromorphic with 

poles at those points·where the T(!l)[K;(i)} become linearly dependent. The 

question is whether there exists a set of T(!l)[K; (i)] such that the poles do 

not appear in the A(i)(K). We do not attempt to give an answer for the many-

particle case; and we give only a discussion for the case of two-body reactions, 

to. which we restrict.ourselves from now on. 

C. Special Ba.ses·for Two-Iarticle Reactions 

It is straightforward to obtain Y'functions for two-particle scattering 

systems such as·are described by Fig. 1. A method for constructinga tensor 

basis has been given by Hearn, 5 and several examples of spin-~ basis functions 

1 have been worked out by Stapp. The simplest method is to construct a set of 

four independent four-vectors, vll(i),. i = 1,. 2, 3, 4, in the region·where at 

least three of the momenta are linearly independent, and then to construct a 

tensor basis 
ll' ••• u.. 

T 1 ·~(il···~) = ( 4.11) 

Unfortw.ately, as we shall see in Sec. IV.D, this procedure appears to lead to 

kinematical poles forhigherspins. 

A special basis for spin-~ spin-0 scattering having definte signature 

under · P and T . 1 
~s 

r = [<IJ_/IIJ_) - (k3/~)) • a, 

y'2 = -[<~_/~) + ~/~)] 0 
a, 

(J 

a p = 

= +l, aT = +1·' p 

-1, aT = -1 ' 

(4.12) 
continued 



·-30- UCRL-10463 

y3 (~·~/~) ""' (k]_ • crf~) , = n· cr - . n• cr crp = +1, crT = +1 ' 

y4 Cry ~cr/~) "" (k]_·cr/UJ_) ' (4.12) = n• cr + n•cr crp = -1, crT = +1' 

where n = ~ - k4' particles 1, 3 have spin, particles 1, 2 are incoming, and 

particles 3, 4 are outgoing. We show in Appendix II that the R amplitudes 

obtained with this basis are the same ones obtained from four-component spinors 

by 

. (4.13) 

In particular, the amplitudes A1 and A3 coincide with A and B. 

We can define a set of four-vectors sfl(i)
3
, 1 so that the basis (4.12) 

becomes 

= (4.14) 

where.the subscripts,. 3, 1, refer to the particles with spin. A basis for four 

spin=~ particles can then be obtained in t'he form 

= Y~, 1 ® = (4.15) 

where s ( j ) 4, 2 is obtained from s ( j )
3
, 1 by the interchange k]_ - k2 , ry <.- k4 

There willbe an appropriate reduction in the number ofbasis functions if P 

and T symmetry are imposed. 1 This kind of basis is a slight generalization 

of the one obtained from (4.11). 

Although the Y functions obtained from (4.11) or generalizations of (4.11), 

such as in the example (4.15), are not necessarily the best from the viewpoint 

•· 
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of kinematical poles,. they have certain advantages. The complete y function 

defined by (4.4) splits into a tensor product of two Y functions for the two 

spin pairs. These functions will be described by the notation 

Y(SS '; i .. •i ) 1 . 2M = 
u.. ~ ' ll2M 
· . .L(·· -) · · ( · ·) r · (s s ') · v ~ o o ov - ~ ( ). , ,. , 

· 1 2M J-1. 

where M = max [S, S 1 ] o They are mUltilinear· in their four-vector· arguments, 

(4.16) 

and in Sec. IV.D we shall see that they have simple inversion properties. When 

-the four-vector'arguments·a~e expressed in relativistic spherical coordinates 

theybecome a generalization of spherical harmonics to many arguments-and to 

the relativistic case, except for normalization-and possible phases. 17 Because 

of the method of construction of the p and -CO matrices, for example in (3.30), 

the two-spin Y functions satisfy~ursion formulas analogous to those for 

spherical harmonics. If 
18 

S ::> S' > 0 , we .have as· an example 

More generally-9 one can start from foUJ:'-spin basis functions 

Y(llll ••) 
--- -· ~J 2 2 2 2' that are not direct products of two Y(~ ~; i) functions .and 

define recursive sum rules such-as 

(4.17) 
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(4.18) 

where one must, of course, keep track of the coupling scheme. We shall write 

this in the short form 

Yr[;(s), (ij)](a) = C(J,L,S; (3,13',a) Y[(J), (i):](l3) Y[(L), (j)](l3') . (4.19) 

The reduction is shown schematcally in Fig. 3 for a simple case; the right-hand 

side corresponds to the binomial expansion. 

D. Kinematical Poles 

A reciprocal basis to (4.ll)~is easily obtained from the reciprocals of 

the four-vectors v(i), which are given by 

v(l) = [v(2) v(3) v(4)l/d, 

v(2) = -c[:v(l) v(3) v(4)]/d, 

~(3) = [v(l) v(2) v(4)]/d, 

v(4) = -[v(l).v(2) v(3)]/d, 

with 

( 4.20) 

where :[x y z] = e '\ xv yf..zp • From these definitions it is clear that 
1..1. I..I.V".p 
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= ·5 .. 
1J 
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= r:. 'V11 (i) v.v (i) 
1 

llV = g . 

The tensor ·basis reciprocal to (4.11}_. is then 

"~( .. •) ..... ~(. ) . 
= V _ 1l • "•V _ ~ :1 

-~ ( and the._Y functions. are obtained by substituting into _4.7). 
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(4.21) 

(4.22) 

From (4.9) it- is clear that any kinema.tic811 singularities irtcthe scalar 
·' 

amp_litud.es :must be poles coming from the vanishing of d, provided the v(i) are 

polynom~is. i,n• the compon~nts of the foUJ:"'><momenta. The determinant d vanishes 

--- if and only if th~ ~o~vectors v(i). become linearly:·dep~ndent; 19 
": • . : . . . ' ! . . • • ~ . . . • . 

_ Fo~-mo.r;nentum c,ons~rvation implies· that only.·three . of ·the- momenta can be 

independent ;f'or·two-particle reactions. For-the purpose of-this-discussion we 

shall choose 

.v(i) = k. 
1 

. v(l) = 

Clearly · v(l). is independent of ~~ ~' ~4' . and v(l) ::;; 0 if· and only if k2, 

_ ~' k4 are linearly·dependent. Equation {1t.20). implies that 

d = v(l)•v(l) = det(fi·kj) for· i, j = 2, 3, 4, 

(4.23) 

20 
which is familiar in the analysis of scattering kinematics. We shall write 

d in the fo:rm 
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1 2 ·2 2 
d = 4(stu - sa . - tb - uc + 2abc) · , 

a = 2 2 2 2 I (~ +~ -II13 -m4 ) 2 ' 

( 2 2 . 2 2)/2 
.· b , ~ +~ -~ -m4 · , 

d = 

UCRL-l0463 

( 4.24) 

2 
where we have used the identity s + t + u = E .. m

1 
.. 

J. 
This reduces in the equal-

mass case, as usual, to (stu/4). It can. be shown that the basis. in ( 4.12) or 

(4.14) has a determinant proportional to d. 

To analyze .the Lk.iil:ematical singularities . induced in the scalar amplitudes 

by. this basis, .we consider·first the case of spin-0, spin-~ scattering--of which 

'' 

pion-nucleon scattering is ·an· exalllPle. It is well-known that the scalar ampli-

. 21 ' 
tudes in (4 •. 13) have no kinematical singularities, • and- our discussion should 

be regarded as an illustration of how such a proof goes in the M-function · 

.formalism. 

The basis functions and their reciprocals are 

Yi = v(i) •p , (4.25) 

and the scalar amplitudes are 

Tr [Mp~] ~~(i) = ai(s,t,u)= f~(K) ~~(i). ( 4.26) 

. 22 
. We suppose that we can invoke the Hall-Wightman theorem in a manner similar 

. . ', 4 
to that of GGMW to infer that ai(s,t,u) is holomorphic except for the dynamical 

singularities from M and the kinematical poles in v. We shall prove that 
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the poles.are not present. 

;: Disregarding the dynamical singuia:dties, we see by inspection: .of'. (4.20) 

.and (4.26) that 

lim ai(s,t,u)d = 0, 
d-+ 0 

(4.27) 

because . lim v(l) = .0. Using' (4;24)· and eliminating·u, ·we. can write d ih the 

form 

'd.= 1 - 4 t(s '(4.28) 

Thus, except for a finite number of' values of' t. where s (t) ~ s (t) or + ' -
i . . 

possibly t = o, a. (s, t L can have only simple poles in s. · But from :.(4.27), 

ai(s,t) must }1..ave at ieast a simple zero 'in s ·for the same values. By applying 

the argument to ~achvariable.in tUI'n, we r'ind that at most ai(s,t,u).can have 

poles at a finite number of' values of' its argument. But this is impossible 

because a function of' several· complex variables cannot have isolated poles. 

(See, f'or·example, the lectilre notes of' H. J. Bremermann~ Complex Analysis in 

Several Variables? page 91.) 

This proof' does.not, however, generalize for a product basis to higher 

spin or to the case where more tban two particles have spin. In general~ if' 

·we write 

= ( 4.29) 

.which is holomorphic except for dynamical singularities, and 

= (4.30) 
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the best that we can conclude is that the coefficients ( 4.30) have kinematical 

poles of order at most N-1 
d • That we can in fact get poles from a product 

basis is illustrated by the example f (K) = g.,~,· !J.V ...,... 
Then 

a(s,t,u; ij) = v(i)•v(j), and in particular a(ll) = v(l)•v(l) = 1/d. 

·In general· considerable case must be~ exercised in the selection of a 

basis, as is already known by experience with th= n:-N and N-N ·cases. ·one expects 

from perturbation theory that such a basis exists.5 In the N-N:case, GGMW were 

able to obtain a proof only by. doing a .partial-wave analysis. Pr~liminary results 

obtained by one of us (DNW) indicate that this is not necessary, and that in 

fact a .. complete solution can. be given for· the :problem ·of finding a basis leading 

to singularit~free amplitudes for two-body reactions. The details will be 

given in a.second paper. For the purpose of th~ continuation in total angular 

momentum, we need only a.ssume that there exists some .basis formed from poly-

nomials in the momentum components such that the scalar coefficients have only 

dynamical singularities; and that will be our procedure. 
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V. ·ANALYTIC CONTilWATlON · IN TOTAL , ANGULAR MOMENTuM 

The analytic continuation in total angular momentum J is most conveniently 

done in terms:of the helicity amplitudes H -r~, ~;~.which have simple projection 
jJ. ,.. ' ,...., .. 

properties ill terms of the partial-wave helicity amplitudes h~'')o..', ~- •
10 

In 

the s channel, for example, we have 

00 

1 
_l I 

2 (q_q_ 1 )2 · J'=O 

where q' and q_ are the magnitudes of the final and initial c.m. momenta, and 

where we have-introduced the:convention.that-the upper undotted index of·the 

dJ matrix shall be written as iower dotted because both have the same trans-

formation property far rotations. 

Eq_uation (5.1) can be formally transformed into a-Sommerfeld-Watson 

representation 

.+ 1! 

n 

J 
·Re J·= N 

(2J+l) he~~./ (s). dJ (G) &'
2
ti. (-l)J 

.(sin !tJ) 

.) 

where a(n) = a(ri, s) and ~(n, s) are the position and residue of the E_th Regge 

pole· of the partiU-wave helicity amplitude hJ(s) •. w:e wish now to estaf;>lish 

that there is a uniq_ue analytic-continuation of the partial-wave helicity 

amplitudes from the physical values of J. 
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Let us denote, in the center-of-mass system, the scattering angle of the 

outgoing part.icles 3 and 4 (F;i.g. l) by. Q and n:.:.Q. We. shall put ¢ = 0 without 

any loss of generality •. Also let us denote the helicities of particles 1, 2, 

3,. and 4 by ~' ~'. r..•, and ll'• . We write the M functions in the form of Eq •. (4.5) 

M(a)(.K) = L A(i) y(8 )(i)(K) (i) (a) (5.3) 

Here (i) labels the scalar amplitudes; (8) = (84,···,s1
) a~e the spins; and 

(a) = (a4'~,a2,~) are the spinor. indices. The helicity amplitudes are given 

according to Eg_s •. (2.9) and (2.10), by 

I • l 
(84'0) . . . "' 2 

H.= B· . [exp(i Q1 cr
2
/2)(-k4•o/m4) ] 

- (8 o) · · · ·· 1 
® 1Z), 3' [exp(iGcr2/2)(-~.'(Yj~)2 ] 

where . G' = n: - G. The angles in· the center-of-mass frame of particles ·l and 

2 have been taken to be zero and n:, respectively. 

We want now to separate the Q-dependent part of H(r..)• To see how the 

·1 . 
first two matrices· act, we consider firstly the case 81 = 8

3 
= 2 , . 82 = 84 = O. 

The general case will be built up from here. 

Consider the basis, Eg_. (4~12), for the spin-(~, 0) system. We first 

evaluate the R-basis functions, R(i), 
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! !. (i) 
y2 -~ - ' a'a 

or, in matrix form, 

We obtain in the center .. of-mass frame (after some calculation:): 

( 

l 
- - -- - ,..1' ,.... - - - - - 2 

+ q_~ cr q_ ocr [ (E - - ni.. ) (E - rn..,.)] { E + E4J 
,.,._N> ,._,_ l .L 3 ) 2 

l - l~ - [ ' [ 
H g_'[(~ - "'l) (~ + "'})] + g_[ (JS_ + "'l) (E3 - "3)] , 
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and 
. . 

~ -(~•~i ~ {ii:·! (q[ (~ +~)(~ + m3)]~ 
+ q I [ (~ - ~)(E3 - ")) ]~ T [JS, + E4HOS. - ~)(E3 + ")l ]~) 

,....... 
Here E

1
, E

2
, Ey- E4 are the c .m. energies of the four particles, and q_ .. and 

q_v ·are the unit- initial and final momenta •. In-the eq_ual~mass•case these· 

expressions .simplify to 

(2) 
.R 

. R(3)= g_ [(E+ m)(2E-- m) + q1 •<:r <l-c:r(E- ... m)(2E+ m)], 
m ..,... """""'",..,..... 

and 

These are just the standard expressions. 

. (5. 7) 

For the scattering of two spin~l/2 particles we have 16 combinatruons 
11(") 11(") - - . 

R(cx)2 2 ~ (a) ! Rcd{i 2 J (a'), where the argument a I indicates change of signs 

of (i and q' and change of E
1 
~ E

2 
, E

3 
~ E4, and ~ ~ m

2 
, . ~ ~m4 • There 

are, of course, other choices of basis functions possible that are not a direct 
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product of two R functions. 

For the spin- (1/2, 0) system, we have from Eg_. (5. 4) 

l l 

~~~ 2 2 ---

! 1 (i) 
Eg_uations (5.6) show that R2 2 are functions of· a·'i and a.'(lr, 

~~ ............. """" 

which are the helicities .of the two particles in the center-of-mass frame. 
' ., 

. ·,; 

The rotations merely diagonalize the helicities to their eigenvalues • A. and 

A.'. This is1 of course, precisely the meaning of the helicity amplitudes. 

Using the identity 

or in matrix notation 

we obtain from (5.8) 

1 1 

H.. · .• 2 2 = 
-7-. i A, 

= 

1, 1(.) --J. 

where z2 2 is independent.of the angle Q. It is obtained by replacing 

O'•q by 2)1. and a•q' by 2)1.' in Eg_s. (5.6). We have also used the identity 
""""""V>!": ~ ,.._ 

(~~8) 

(5.9) 

(5.10) 

fO {i/2, 0 ) [ exp(iQa /2)] = d1/ 2 ( Q) • The corresponding formula for the helicity 
2 . . 

ampli~udes of four spin-1/2 particles is 



H r r '" • 
IJ. ")... '~ 

1111(. •) 2 2 2 2 ~,J 

where we have used 

I 
_ __/ 

11(•) 11(•) .!,._,·, 
22~ 22J 2 r-

)( R • , R · • (-1) 
a, -IJ. ~A. 

l"'>.(J,O)[exp(i.rG /2)] ~ = 
IV 2 a - . 

Then, 

.1 1( .. ) 2 2 ~,J 
1 1 - -2 . 2 

UCRL-10463 

= z(A.) d (Q), i; d (.r~G) 1 • 
, ... ,... . . ll '- -IJ. 

(5c.ll) 

The separation of the angular part in the above manner can be performed 

for any basis that is a polynomial in the. momenta •. Such a basis· can. be reduced 

. . 1J. V - !J.V · 1J. .V to a sum of terms such,.as k. . k .. 1 k. • k. g 1 . and €'\ ·u -· k. k. .-.. for- example,. 
1 J -~ J , ... ar.v 1 - J. " 

in the caseof second .. rank tensors; and these multiplied with the spin basis give 

eventually terms like kYcr ~ k.v a - froin. which the angular parts can be 
~ IJ. J v 

obtained by use of E~. (5.9). The angular parts of the scalar products ki•kj, 

which are polynomials in s, t, and u;; are obtained by Legendre expansion. Thus, 

if a general polynomial basis is·used,. we obtain a sum of terrris•of the type 

The form of the transformation properties of'the-R and H functions is 

8 
(s., o) 

the same as that-of theM functions; only the argument of 1 .is different. 

Conse~uently the basis functions of the higher-spin R and H functions are 

constructed from E~s~· (5.6) and E~. (5.11) by means of Clebsch~Gordan coeff'i-

cients in exactly the same manner as the higher-spin M functions. We have, 
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therefore, corresponding to Eq_s. (4.18) and (4.19) the recursion formulas 

and 

R (s )(i, j) = 
(y) 

H (S)(i,j) = 
. (~) 

(O,JLS·aA'~~)R (J)(i)R (L)(j) 
\..../\ ' ' , ,._,,' (a) (f3) 

f"'(J L S · cr 'T '\)H (J) ( i )H (L) (j) 
v '',' ,,.._ ·(cr) (-r) 

We shall now exhibit the angular dependence of the higher-spin 

(5.12) 

(5.13) 

helicity amplitudes. Firstly, let us consider the spin-1 helicity amplitudes. 

H ( 1111 )( i j k£) 
(~) 

~ (1 1 ) (1 1 • 0 
• ) (1 l . ) 

= ~ . c . 2' 2' 1; a,' t3 , ' A.. f . c 2' 2' 1; a, ~' ")-... c 2' 2' 1 ;· K: , ' P'' Jl , 

From Eq_. (5.10) we have 

H (llll)(ijk£) = 
(~) .. 

! ! (k) 
2 2 

!! (£) 
2 2 

X H 1 • , (:rr - e) 
.· K K 

H . • . (:rr - e) • . pip 

! ! (k) ! ! (£) 1 1 
22 . 22 - -

X z (li;n) z (p 1
, p) d

2 (e) I. d
2 (e) • 

a a f3'f3 

l 1 
2 2 

d (:Jt - 9) I ' d (:Jt - Q) I • 
K , -K P , -p 

(5 .15) 
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Since the Z's depend upon the helicities but not the angles, we can 

write the Eq. (5.15) in the form 

l 

X d
2

(e) ,. a a 

(5.16) 

withthe obvious definitionof z(llll) (i) • 

In this form the equation can be generalized, and we obtain for the 

higher-spin case 

H 
. (S)(i) 

(A.) 
z{S)(i)[rv' ·a.···· a'·:·a.~· R'l,~l,····,· R' ·;,. ·(r..)] '--" 1' ·1' ' N' 1\J' f-' f-' f-' M' f-'M' . 

The and 

l 
2 

d (n.- e) 

functions can now be recombined into a sum of single d functions multiplied 

by Clebsch~Gordan coeff~cients by using the relations 

. 
J d (e) • = 

f.. I-! 

r....;jJ_ J 
(-l) d (e) :. 

-A.,-!-! 
{ ~l )A.;.. I-! dJ ( e )~j:_ = ( -l )J -A.d~ (n- e \, .:.jJ_ 

and 
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For. example, in the case of spin 1, Eq. (5.16), we find 

or 

X LI I' c(!:!,·'r; a',l3',a'+l3') c{~}~I· ;,~,m~) 
' ' k 2' 2 2' 2' ' 

; ' 

X C 1!o~ti 1 • -K 1,-p',-K'-p') C(~(;,J::,.I 1 ' • • • •) 
\2' 2' ' 2' 2' ' -K:, -p, ~K-P 

/( C(I,I',k; a'+l3', -K'-p', a'+I3 1 -K: 1 -p 1
) 

H · <nn)(i) = L.kw(i)[a',a; 13',~;-K:',K.;p'pi(r..);J:c] (r..) 

. where 

is the coefficient of dk(G) in (5.19). 

(5.19) 

(5.20) 

'The general case is ·also of this form but with a more canplicated lower 

index of the same form. 

We are now in the position to discuss the partial-wave helicity ampli-

tudes, which are defined by Eq. (2.12). We have 

1 1 

J 1 ' 2 f h(r..) (s) = 2(qq') 

(5.21) 
continued 



where 

l l 

= -~ (q_q_')
2 J dz d

3
(9)&,,& 

-1 

' \ .. -
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I: 
(i), £ 

(i) £ 
(2£ + l) ·A . (.e, s) d ~G) 00 

from the Clebsch-Gordan coefficients in Eq_. (5.19) with·the indices-on dk·.just 

M andlSA.'. Finally we combine d£(9) 00 with d3 (G)M,,i:J.. to obtain 

and integrate each term.· dL dk: by using Eq_. (2.14); hence~ 

l 

J( ) T·( )2 h(~) s = 2 q_q_' 

' . J+£ 

\ ,' \ (i) ' \ 
L(il) L ,e (2£ + l) A (.e, s) L 

. k= IJ-.e I 

and, because the· k values are restricted ·by the ··clebsch~G6rdan' coefficients in 

their definition, Eq_. (5 .20 ), only a restricted number· of .e values of 

A(i)(n.s) J -... 
h_.. contribute to each h(A.) . with a given J •.. For example~ in the case 

of spin-1 particles, k = o, 1,. 2, and only three £ values contribute; thus, 

£ = J, J -1, .and J- 2, respectively. Writing the terms separately, we have 
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(5 .23) 

-+ (2J .. - 3) A(i) (J- 2,s),w(i)[(~),2] c{J- 2,J,2; o,&',&') 

In the higher-spin case we will have, in general, more terms of·this 

form. 

This eq_uation and the generalization of it will-now be used to define 

l ,r+ • t . t . f hJ an ana ,y u~C con ~nua ~On •. 0 in J •. The Clebsch-Gordan coefficients can 

be continued analytically in J. in terms oftheirclosed-form expression. 

Note that this- continuation is naturally not uniq_ue. We can take one tbat does 

not chang~ the asymptotic behavior of A(J,s) for large jJj in order to i:nake the 

. Sonunerfeld-Watson transformation (5.2) possible. 

Assuming that the scalar amplitudes A(i)(s,t,u). satisfy the Mandelstam 

t t . ( . t . ) bt . . th 1 .. 2Y represen a ~on . see prev~ous sec ~on , we o a~n, . ~n. e: usua way, an 

expression for each term A(i)(J,s),in (5.19) suitable for analytic cOntinuation 

in J: 

A (i) (J, s) = ~ J dz '\ (i) (s, z) Q.J(z) + Hl ifaz Au (i) (s, ~) QJ(z) , 

. (5.24) 

where At(i) and A (i) are the absorptive parts of the scalar amplitudes, 
u 

A(i), in the t and u channels, respectively. These absorptive parts are 

N N ( ) assumed to be bounded uniformly ins by t and u, so that A J,s is a 
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holomorphic function of J for Re J > N~ The Eq. (5.24).inserted in (5.23) 

. together with the analytically continued Clebsch..:Gordan coefficients define 

finally the analytic continuation-of the partial-wave helicity amplitudes. 

Note that tri various terms of hJ, J occurs in the argument of · A displaced 

by integer units, so that the poles will occur displaced in A(J,s}~ 

CONCLUSION 

By an application of the theory of representations· of the Lorentz groL!P, 
I 

we have sh~Nn in some detail. how to extend the two-componentS-matrix formalism 

to describe nonzero-mass particles of arbitrary spin. In the process we have 

obtained the generalization of the Iauli spinors ·to arbitrary spin and the' 

projection operators for the irreducible-subspaces of-the tensors:of arbitrary 

rank. 

Although we_have given a general prescription for expandingtheS matrix 

for·two~body reactions in terms .of a set-ofbasis functions;~ we-have not given 

in this paper specifications for choosing the basis functions for the general 

case in sucha·.waycas·to avoid possible kinematical poles at the boundary of the 

physical region. With the assumption that there exist scalar amplitudes that 

satisfy the Mandelstam representation, we have obtained the uniq_ue·continuation 

in total angular momentum • 
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APPENDIX I: NOTATION, CONVENTIONS, IROFERTIES ·oF SPINORS 

Our Lore~i:lz metric is g00 · = l = -gll = -g22 = -g
33

; also, E0l2
3 

= -l: o 

For matrices· we· use the notation MT, for· transpose, . W for· H~rmi tian conjugate, 

* M for· complex :conjugate o 

2~ 
A brief review of spinor calculus, leads· us· to· note a number· of relations 

involving the • Th.uli matrices, a , . where 
1-t 

(
l o) ·(o l) · . (o .-iJ . (l co) . : co,= . 0 l , '- al = l ·0 . ' , a2 = i 0 . '. and a3 = . 0 ,;;l , ' 

and the space ... inverted matrices. a = (a,..., -a.) 0 The. one-to-two homomorphism .~: 
I . . , ll v _,_ 

-· between• L 1 and the two-by-two unim0dular group is· expressed by +. 

A . (±A) = l·Tr ·tG .A a . At):, llV 2 · ~ell V 

"" ' and the transformation character. of o , a is expressed by 
1-t l.l. 

and 

where 

= ll [A(A)x] _a 
ll 

ll"" = [A(A)x] :.all, 

l ) (~ ,o 
A . is· a .two-by-two unimodUlar ·matrix, . and A = fO -(A). 

* For anyspinor, those indices transforming according to A,. A are 

(Alol) 

written as lower·undotted,.lower. dotted, respectively, and those transforming 

.;.lT -lt 
according to the contragredient. transformations A :, . A . are written as 

upper lllndotted, upper dotted, respectively •. Thus from (AJ..l),. c:r ,. tr _ 1...~ 
J.l ll ua.Ve 

indices Contraction of relatively upper and lower indices of 

the same ty:pe. is an invariant operation. We use the summation con\r,;uc:i_oj1 
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convention throughout.for·repeated relatively t):pper·and lower·tensor·or·spinor 

indices. 

If the matrix C is defined by 

=1 
C. ~c 

we have the general. matrix eq_uation for any M" 

-· M,-l d t' M - e · ..• 

The spinor indices are taken to be 

(A1.2) 

(Al.3) 

and C = C•• · and these Of3 Of3 J 

matrices are used as raising and lowering spinors,. contracting always:on the 

right index. The matrices .· c:r satisfy the identities 
l.l. 

"' . -1 T .cr = c ,c;y c 
l.l. 1-l 

·. -1 * = .·c : G c 
!J. 

(Al.4) 

·We write the. indices of the Kronecker . 8 symbol in two different ways, 

Both mean· the same thing. The indices ·are written 

as relatively upperand lower when we wishto emphasize the spinorcharacter 

of the symbol. .. 

The following· eq_uations and orthogonality relations are often· useful: 

and 

,...,. 
a .c;r 

l.l. v 

"' cr · . cr 
l.l. v 

·= g .~!iE d'-aP· 
. l.l.V 2 l.l.VAp ' 

! Tr (a 'G ) - g 2 1-L v - . jlll' p 

· (A1.5) 

continued 
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. 
~' 1 JL .0. a !3'a' 

= 8 a'. 8• 
2 CX!3. J.l. a ~-

, 
and 

~- JL~ a~,~' = coo, c~~, . (AL6) 

"' .. 
For any four-vector x we have (x•o)(x•o) = ~·x • The Hermitian matrix 

1-
(k· o/m)2 ·corresponds t:o a Lorentz ·transformation from rest to the foUr-

. i .: ·! . , A . . , ,._ 

momentum.k:(k•a/m)2 =cosh (X/2) + k•o ssmnh(X/2), where k is the unit.three--- -
vector· and X is the "angle" of the Lorentz transformation; also, 

A. 

k = km sinh: X, k
0 

= m cosh X • · 
"""' ,..,.. 

The representation matrices for the proper rotation group and the proper 
· ··· · ·. · · ·· (s s 1 ) · ·· · · · 

·homogeneous orthochronous Lorentz group, 'R.) S (A),. 9 ' (A), are defined for 

unitary-unimodular and unimodular twomby-two matrices A, respectively; with s, 

. S; half-integers. The matrices fa 8 (A) are unitary; and the representation f)S 
. . . s* . : 

is uni tary-eq_ui valent . to B , which . follows ·from (Al. 3) and the group property. 

But 8 (s, 8 1

) (A) is· in general not unitary, and the representation $C) (s., S 
1

) 

is ineq_uivalent. to 8 (s 
1

,S} unless·~ = ~ '· The following identities hold: 

kJCs,o)(A)=~(o,s)CArlt; ~(s,o)(A*) = f>Cs,o)(A)*;e;Cs,o)(AT) ~'B(s,<))(A)T: 

. The choice -~(l/2,o)CA) =A is a convention. The opposite·convention, 

t:2) ( o, l/2 ) (A)· = A, is often used~ If the latter· convention is used, 9 (s, <)) 

in our formulas should be 're;laced by eco,s) 0 
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APPENDIX II: RELATION TO FOUR-COMPONENT FORMALISM 

:The customary introduction of the invariant scattering amplitudes has 

been in terms of four-component. spinors •.. Stapp has already given the relation 

between his two-component M-function.formalismand the four-component formalism. 1 "" 

We give here a demonstration that exhibits· the relation between the ·corresponding 
¢!1 

scaiar amplitudes for pion-nucleon scattering Without isotopic spin. 

According to (2.6),. the M function for the situation.described in (.4.12). is 

(A2 .1) 

The positive•energy solutions of the free-particle Dirac eq_uation in momentum 

space can be written in the form 

(A2 .. 2) 

where ¢· represents .two two-compbnent vectors, .. which .we. take to be 
. o; . .. 

(A2.3) 

We use the: following representation, f'or the Dirac matrices: 

{A2.4) 

Then, writing 
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(A2 ·5) 

'R • 'at3 

and evaluating (A2.1) using (A2.2) and (A2.5 ), we. obtain 

k]_•O =~·a 
T22 + T-

- ~~a k]_•O 
(A2 0 7) M = ·T ..........., T21 - ., 

. . 11 ~ -~ 12 ~ -~ 

. where T.. are the two-by-two blocks of the T matrix~ From (4.13) and (A2.4'), 
~J 

these are given by 

(A2 .8) 

TheM function (A2.7) thus agrees completely with the.M.function given 

by the basis (4.12) in the~P- and T-conserving case, where A= A1 and 

B = A3• 
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FIGURE CAPriONS 

Fig. l. Two-body scattering parameters. 

Fig. 2. . Addition of spins. 

· Fig •. 3. l Decomposition of direct products of spin- 2 basis functions. 
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ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor • 
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