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STRANGE-PARTICLE DECAYS
" - Frank S, Crawford, Jr.
Lawrence Radiation Laboratory
- ' * University of California

Berkeley, California

November 2, 1962

INTRODUC TION
In these lectures we discuss the weak decayé of strange paL'rtikcl'esc In
particular, we discuss the present evidence concerniné the \&i/_z_l;lil__e_l/n/\
the nonleptonic decays, and the Al :1/2 and AS = AQ rules in tl';e 1eg>"toni'c
decays of strange particles. A ‘ N
We consider the hyperon decays
A - N+,
Z - N+,
and E - A+
and the K-meson decays
K - 27w,
K - 3n, .
and K - 7+ L +v, where
L (lepton) stands for e or pu.
[ will assume that the students are partly familiar with the material in
Gell-Mann and Rosenfeld, 1 I will furthermore try to avoid repeating material

.given here at Varenna by Professor Rosenfeld,

Lectures given in the course on "Elementary Particles, "

Enrico Fermi International School of Physics,

July 23 through August 4, 1962, at Varenna, Como, Italy,
(To be published by the Italian Physical Society

in the Proceedings of the Varenna summer school,)
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The five lec‘t}ureslAa_re as follows:
I, Simple introductory examples illustra'tingv-‘i'n‘variance (or lack of
invariance) with 1;espect to S, I, I3, P, T, and C in weak decays,
II. 'Revie.w'of the definition and measurement of the decay parameters
a, B, ‘and y in. hyperon»decay.b k
III, AI = 1/2 rul_e,, for the nonleptonic decays K -~ 27, A » N + «,
2> A+m and T >N + 7.
IV. K - 37 and the AI = 1/2 rule. |
V. The Al = 1/2 rulﬁe. for. leptonic K deca,ys.‘
There will ‘E)e no attempt to gi‘ve.complete references, e'SPe‘?i?llY to

‘!well -known'' results,

ot



-3~  UCRL--10540

Lecture I. INTRODUCTORY EXAMPLES

We begin by considering the quantities Si, I, I, P, T, and C, All of
these (except T) are conserved in the strong;ipteractions but not in the weak
interactions. Z(_time-reversal) invariance is usually assumed to hold in
-both the strong and weak reactions, (Thgre is no experimental eyidence to
the contraW,//

To illustrate nonconservation of (S, I, _I3) in weak (decay) interactions,
consider A —p +,‘1r_. We have (S = -1, [ = 0, I3 = Q)A - (0, 1/2 or 3/2, »l/Z-)pTr.m,

Thus none of S, I\, or I = 1‘/2 but that

is conserved. Notice that 'AI?,I

3
Al = 1/2 or 3/2.

We now turn our attention briefly to P, T, and C, using a minimum
of formalism,
. .’I‘n }:bﬂgideririg the meaning of P(parity) conservation i(or nonconserva-
tion) we will use mirrors, The space invgrsion X, ).r, z - -X, -y, -z .is
‘(for egample) equivalent to the reflection x,y, z > -%, y, z, foll\owed by ai
rotation R of,_l.’800 about the x axis, x,vy,z ~ X, -y, -2, Since R is assumed
to have no observable consequences (i,e., the orientation of the system with
res’ﬁéét‘toAndromeda, for instanc?e, is assumed to be irrelevant), it is
sufficient to consider only reflections in a mirror, The behavior of an axial
vector (spin) or of a pqlar vector (linear momentum) upon reﬂectiqn in a
mirror is shown in Fig, 1.
To designate a spin we usually use 'ﬂ instead of 4} Sometimes we
uée (3 if the spin is perpendicular to the paper.
| We now consider, as an example of P conservation, the strong process
T +p—> A+ Kvo. Suppose the target proton is unpolarized. Let the plane of
the paper be the production plane. Consider the three production configura-

tions of Fig., 2, which differ only as to the orientation of the spin of the A.
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spin - linear momentum
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Fig, 1
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™= K®° LA K®° - K®°
(i) (i) (i)
MU-28581

Fig, 2



-6- UCRL-10540

In case (i) the A spin.is perpendipular to the production plane. In (ii)
the A spinlies in the productipn.plgne. In .(iii): the A spin is opposite to
that in case (ii), If we view process (i) in a mirror held parallel to the pro-
duction plane (plane of the paper) we ''see'' a process which we call (i).. A
real process (i,e., with no mirror) that looks like (i') is also called (i’).
Notice that, in.our example, _(i') happens to be indistinguishable from (i).
Similarly the process (ii') looks liker(viii), and v(ii-i') looks like (ii), The
following statements are all equiva-.len»t”:- |

—_———

-‘(a) "'I"’l:ue: process is.invarian't’“lunderv reflection, "

(b): "Parity is conserved in the process, "

"(}c) "The process p and its re:f.l'ected process‘p"'b‘occur.: _wi,f.h- equal

‘probability, " B

Thus if parity is conserved, procesées (ii) and _(ii')—that is (ii) and (iii)-
occur with equal probability; therefore the A polarization components in the
produétion plane must average to zero, Similarly (i) and (i') occur with
-equal:probabijlity. But these are the same process. Therefore a net polari-
zation perpendicular to the production plane [as in _(i)]‘ is al}owed (but not
required), As a matter of fact, one finds experimentally that, in
T+tp > A+ KO, the A's often have polarization of nearly 100% perpendicular
to the production plane, but are never polarized in.the production plane, 2

Next consider the weak process A —~p + n . Consider the dgcay con-

figurations (i) and (ii) of Fig. 3. Here we have suppressed the arrows

corresponding to the vectors representing linear momentum. We represent

el

a spin-zero pibn by a dot, and a spin-1/2 particle by 1‘ , and think of the
picture as a diagram in momentum space; the position x,y, z of the particle
-on.the diagram gives its momentum p_, p‘y, j (We.will use this convention

several times more in.this lecture.)



(i)
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The decay (ii) is the reflection of the decay (i), for a mirror oriented
as indicated., (Of course for any orientation of the mirror, (ii) is obtained by
reflection of (i), followed by some rotatiqn of the entire process. We have
chosen the orientation of the mirror so arshto p:éserve the A spin direction,
and thus avoid an additiona.l}irrelevant rbtatiéh.'-') If P were conserved,in the
decay, then process (i) and jits reflection (ii) wo"illd occur with equal proba- .
bility. Thus there would be no\decay asymmetrny for a polarized source of
A's—as many pi'ot;ons wou’l’&,bev.ei'ﬂitt.ed Ai)'a;ra,ll.el’ and antiparallel to the A
polarization, The large '.’uﬁ —dov§n" decay asymmetries (with respect to the
production plane) that are o_‘é)served experimentally show that P is not con-
servedin A>p + 1, and‘a‘l_-"so in most of the other hyperon.decays. The
large asymmetries often observed correspond to nearly maximum parity
nonconservation.in thve decay, and.to A's strongly polarized iﬁ—the production
is the. decay

.proces-s. The decay asymmetry determines a where a

A5 Pp? A
parameter, and pA is the A polarization. That is, Pp = (number of + spins)
minus (number of - spins) divided by the total number of 'A's. These
quantities will be discussed in more detail in the second lecture,

Next we consider the consequences of T(time-reversal) invariance for
hyperon decay. We will use the same type of pictures as before: diagrams
in.three -dimensional momentum space, with double -shafted arrows to rep-
resent spins, The app(lisa_tiﬁlﬂ—to a physical state leads to a new state
related to the original state through reversal of all linear momenta and spins,
Furthermore an. outgoing wave becomes an.incoming wave, (Think of a play -
back of a movie film in reverse.) An incoming wave does not correspond to

T ———

an observable ''final'' state of free particles —the incoming particles must

_interact before one obtains an outgoing wave that can correspond to final free

particles, Furthermore, consider a process in which an initial state i, say

.
it
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a A, evolves into a final state f, say p + m . Then in the time-reversed
picture the sense of evolution is reversed, and p + n~ evolvesinto A. This
process is of course unobservable by presently conceivable technique. How-
ever, in quantum mechanics, interchange of i and f in <¢f'H| Lpi> = m

e e

merely corresponds to complex conjugation, and thus does not affect [m 2.

Our pictures of course correspond to Imlz, We therefore draw pictures in

which the initial and final states are both present, with labels i and f, and
include a step called '"'complex conjugation' (c,c.) which does not change the
picture but .interchanges i and f,

Consider an initial .state that consists of a A at rest (and therefore at

the origin in pg, Py Py space) with spin along +z. It evolves into a final state

EARE——

that is an outgoing proton with momentum along +x and spin along +y€ | This
is picture .(i), Fig, 4. (We have not chosen this configuration by accident,
of course.) Now apply time reversal, T, to (i), to get (ii). Under T the

A spin reverses, .the decay proton spin and linear momentum reverse, and
the outgoing proton wave becomes an incoming wave. The sense of evolution.
is revers.ed so A is final, f, instead of initial, i. Next apply c.c., to
interchange i and f. Also perform a rotation R, of the entire process by
180° about the y axis, so that the A spin is again along +z. R and c.c.
give (iii), and are assumed to have no observable consequences, Finally,
let the incoming p-7 wave scatter and become an outgoing wave, corres-
ponding to an observable final state. Here, if we were using the formalism,
we would_obtain an s-matrix element factor. Instead we will merely give
two extreme illustrations, One extreme is a "'weak scattering"' in the final
(f) state, so weak in fact that '"nothing happens, ' and the incoming wave
becomes an outgoing wave with the same linear momenta and spins. This is

picture (iv). In the other extreme example there is a strong spin-flip
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scattering and the proton spin is réversed without deflection of the linear
momentum, to give picture v(iv').

The following statements are equivalent:

(a) "Time-reversal jnvariance,hélds' in A—décay. "

(b) "The decay corresponding to (iv) (for weak final -state scattering)
or (iv') (for strong scattering) occurs with the same probability as
that corresponding to (i). " -

From the pictﬁres we see that if the n -p scattering is weak and if T invari-
ance holds, then the A polarization.correspondithg»,to »('i')‘ is .exa.c;tly canceled
by the equally probable decay (iv), 'so that there is zero net polarization of
the type (i). On .the other hand.,' if the w-p scattering is strong, as in (iv'),

a net polarization can _be‘obtainéd. However, if fhe T-p scati:e'r»irig phase
shifts are known (at the. décay momentum) the effect of the scattering can be
exactly taken into account, and one can still test T invariance, We need not
write down the formulas, which are well known;l‘

The decay parameter corresponding to the A polarization shown in (i)
is éalled B, with -1<pBp<1. Wehavefp=0if T invariance holds and the"

f scdtféring is-weak, This parameter will be di§cussed,in tﬁe second.lecture,
It is clear from the discussioh.of Fig. 4 that one needs polarized A's in
order. to measuré‘ﬁA.

There are two measurements of  for hyperon decays so far. Cronin:
and Oversethzvfind for A~ p + 7 a value BA. = 0,19+ 0.19. This value is
consistent with T invariance and the known m-p phase shifts. Another result
is that of the U. C, -Berkelley':-U’. C.L. A, experiment, The experimenters
find? for B > A + n_the . preliminary result .[SE'--? -9.681: 0.27. The
experifnenﬁal‘unéertainty is of course large, but the large value of B, if

substantiated, probably'i’nldic'ates a strong A-m interaction, This should
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b

2
] Tesonance..

not be surprising,. ,sin_’ce.,t]‘:vl,ev E mass is near that of the Y
Lastly we consider C invariance. Again we use the example,of A
decay. Chargé conjugation C agplied_td the process A— p + 7~ gives the
process A —-p +.1r+’., If C invariance.holds then these two decays should
occur with equal amplitudes for the same configuration of momentum and
spins.,
Insufficient experimental information is available for A decay. However,
‘ /CP’;‘ invariance allows.us to substitute PT for C. We can then consider .the
effect of PT invariance on A decay, since PT does not change A into A.
Our pictures.will be similar to those used previously. We will prove that
PT Tinifarianc;e would, in the abvsenc:e .of final -state interactions, vgive...v;ezj_.q

for the ''up-down'' decay parameter a We start with configuration (i), .

A
, of F1g.5, which implies a source of pgla:,,‘rize,gi A's. Application of | T gives
- Aii),. with, reversed linear momenta and spins, with incoming p-#7, and with
i (initial) and f(final) reversed, C§mp1ex conju__gati‘on.(ic, c.) and .revﬂ\ec_tion
P in a vertical mirror _(chosen_to eliminate the need for a further rotation
to orient the A spin): give (iii). The incoming f(final) wave scatters and
becomes an. outgoing f. state. A weak f scattering ("'nothing happens'') is
shown in(iv). A strong scattering, in which the n~ and p lje_vérse their
linear momént_a (180° scattering) is shown in (iv'). The following statements
are Aequivayl_en!::
(a) "PT invariance is satisfiedin A »p + n". "
. (b) ‘ ""Dec.a.y_~vconf~i‘gu:g,.ati‘on (iv), for weak final state scattering v[o_r T(iv')
., ., for a particular strong sc_at_tgl"ing] has the same probability as
configuration (i)."

We see that any up-down.decay asymmetry implied by (i) is completely

cancel_gd_‘t‘)y {iv), for weak scattering. Thus PT invariance (i.e., C
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invariance) guarantees a, = 0, in the absence of w-p final -state interactions.

A
At the momentum of A decay (100 MeV/c) the w-p scattering phase shifts are

very small, 1 so that ""weak scattering'' holds, Experimentally the decay

parameter a , is.large, We conclude that A—» p + m  does not satisfy PT

A
3

invariance. This was first pointed out by R. Gatto.
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Lecture II.. DECAY PARAMETERS

In this lecture we consider in.detail the hyperon decay parameters
a, B, and y, and how they are measured. In every case we have a parent
particle of spin 1/2 decaying-into a daughter of spin 1/2 plus a pion (spin
~zero), The decays of interest are A= N+ 7, 2 - N+ 7, and 5 = A+ 7.
Instead of speaking of "parent'" and ''daughter, ' we will for convenience
take A= p + m as ; model, most of the time,

Since the A has J = 1/2, the p—ﬁ' system can only be in the state

Sl/Z or Pl/Z“ Call S and P the corresponding amplitudes, Let‘kb+ des-

cribe the w ™+ p spin and.vspace configuration for (J, JZ) = (1/2,7 +l/2), and

——

Y _ that for (J,JZ) =(1/2, -1/2). We can use the Clebsch-Gordan coefficients

of Table I to construct ¢+, We will represent the proton's spin state by
ﬂ'z (é)z (1/2, +1/2) and |

= ()

= G

given by Yim(99¢), where 6 and ¢ are the polar and azimuthal angles of

I

(1/2, -1/2). The orbital angular momentum state of 7+ p is

emission of the proton with respect to the z axis (see Fig. 6).

The appropriate spherical harmonics are Yé) for the Sl/z state of

1 0 Y | v
T-p, and Yl’ Yl’ and Yl for PI/Z_' We use
0 _
~Y0 = 1 |, (la)
Y = 372 singel?, (1b)
YIo = N3 cos#, (lc)
vl = W3/Zsing e, (1d)

That part of ¢+ that corresponds to SI/Z can be written down without using
.the table. It is just SY(? ﬂ = S 1- ﬂ . To obtain the Pl/Z part, we use

Table I, which gives the composition.of 1(P wave) X 1/2. (spin).
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MU-28585

Fig. 6
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Looking in the column (1/2, +1/2) »[because,we want L|J+]_ we find the decom-

(1/2,+1/2) = N2/3 (1,+1)(1/2, -1/2) -N1/3 (1,0)(1/2,+1/2) .. 7 = *

Putting the Sl/Z and Pl/z_parts together, we have
_ 0 _- 1 —77 v 0
b, =8Y, ﬂ+P['\/2/3‘Yl_ U =N1/3 Y, ﬂ 1.
Similarly, using the table, we get

v = s‘YOOlL + P [N1/3 Ylojj -N2/3 Y

- 1

Usir;g the spherical harmonics of Eq. (1), we have

Sﬂ+P [—sinGeiq)u -‘COSGT[]

4, =
:(s-Pcose)ﬂ-Psmeeiq’J},‘ ’ (2a)
o= SllJrP [cos @ JJ, - sin 0 e"_id)ﬂ ]
= (S +Pcos 0) | Psinge®l . (2Db)
The decay angular distribution for L|J+ is given by llIJ+ IZ = l.lJ+*L|J+. We

use the orthogonality of the spin functions, namely ﬂﬂ = (1,0) (10\) =1,

) = (O) =1, 1% = U™ cosomar TEO v

IH

{12 ) < 2=
ILIJ,_I_ ]2 = [S—P cos 6'2 + '-P. sin 9'2 -
= IS|2 + IPIZ -2 Re S*P cos 8.
"Ilj)-_.lz = ’,l’S + P cos 6!2 + _,—P sin 6]2
= |sF+ |P|* + 2Re " P cos 0.
It is customary to define
a = EB'.?___S_:.E . (3)
sP+Ipf
2Ims’p

(4)

ke
1l

B
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= M . :{5)
IsP e
(not(g\%/hat e [32'+ YZ =1,) |
Then, from the above,
l¢+|2=[ |s|2 + |PPI[1 - a cos 6], (6)
W [P =1 |s]? + |PPI1 +a cos 6] . (7)

Now suppose a collection of A's is partially polarized, with a fraction
fy in the state Y, and a fraction f_ in the state {_,. with f, +f_=1. Then
.the weighted decay angular distribution is given by

IZ

2 2
LA N L o 3 [

[IsP + |P)] {(f,+£) - a(f, -f) cos 6}.

The polarization p of the collection of A's.is defined to be

PA=(f+-f_)/(f++ £), ’ (8)
i with -1spAs+1_, so that
I._,plzz [|s|2+|-P|2] {1 -apcost}. (9)

The decay distribution for N decays is thus given by

dN = N[1 -apcos 8] EJ—EEOS—G)» (10)
1
Notice that[ dN = N, and

J-1

! N

[ cos 6+ dN = -—?‘:'p , so that

-1

3 3Zi cos Bi :

-ap = fcosGdN =rf+—ﬁ———, (11)
-1
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where the sum is over all the decays, and where the arrow means

"corresponds, for large numbers, to'. Equation (11) is often used by

experimenters. An equivalent formula is -ap = 2(up-down)/(up+down),
We see that measurement of ''up-down'asymmetry' does not give a,

but gives ap. Since the sign and magnitude of p are generally unknown, a

measurement of ap gives a lower limit to ]a ! That is, la' = lap ’/ lp' - 'ap o

In order to measure a directly one can measure the longitudinal polari-
zation of the decay protons from an unpolarized collection of A's. This is
easily seen as follows, First, consider only proton emission along the
+z axis, From Eqs. (6) and (7), with cos § = +1 we obtain the relative
probabilities shown in Fig, 7. Noti.ce that because of angular momentum
conservation the proton vs‘pin direction must be the same as that of the A,
for emission along the z axis (quantization axis), because the w-p orbital
angular momentum can have no component along the proton's linear momen-
tum, and therefore cannot flip the baryon spin, The definition of the longi-
tudinal polé.rization of the proton, along its velocity ¥ with respect to the
A rest frame, is given by an expression analogous to Eq. (8). Using Fig. 7,
we get, for the longitudinal polarization, |

N,-N

+ - _(l-a)Hl-a) -(1l+a) -(l+4a) - _,

p(long.) = where N refer
N AN (1-a)Hl-a)+(1+a) + (1+a) *

A’
to + \;, and where we have used equal weights for Lp+ and y ., Since the A
collection is unpolarized, all quantization directions are equivalent, so that
. we can-always choose the zaxis to be along the direction of emission of the
proton and be assured that Y4 and §_ have equal populations. The above result
therefore is general.

One still has the problem of measuringthis longitudinal polarization of

the daughter, In the case of = — A +m one can measure the decay asymmetry
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-

of the daughter A with respect to the direction of v, - \_r),:. , and thus deter-

A =
mine a,Pp (longitudinal), using Eq. (11), But pA(longo) = O . Thus one
Measures a , o . 2 4
In the case of A= p + T one can scatter the decay proton for instance
from carbon to look for a scattering asymmetry, using a spark chamber, 2
Notice that if the “A:(unpolarized collection) decays at rest in the laboratory
system, then the proton has a purely longitudinal polarization in the labora-
tory system (where the carbon scatterer is at rest), When this proton
scatters from carbon (spin zero) there cannot be any 'left-right' scattering
asymmetry, merely from the symmetry of the initial p-carbon configuration,
There also cannot be any front-back (0° versus 180°) scattering asymmetry
that depends on the proton's longitudinal polarization., This follows from
parity conservation in the strong p-carbon reaction., We can see this with
our mirror, Suppose an incoming ''spin-head-on''(as opposed to ''tail-on")
proton likes to scatter "strongly'' (i.e., through 180°) from carbon. If the
tail-on collision = does not like to occur, we have a means of determining
the .i}')’v‘o?‘.l;;riza.tion, - However, the image of a head-on collision in a-mirror
.held parallel to the proton velocity is a tail-on collision, By P conserva-
tion the two processes have the same probability. Thus head-on and tail-on
protons both scatter strongly (or weakly), and we c.annot distinguish the two
polarizations (since parity is conserved in the strong reactions).
One gets around this by using fast A's that decay in flight, Then the

decay protons, which have a polarization along v proton - v,, can have a
component _'_ to. v proton - v Vcarbovn, It is then possible to get azimutha;l
asymmetry in the scattering. This is illust.rated in Fig. 8, which is our
usual diagram in velocity space, We choose the carbon at rest, Th"e Ais

—

shown without an arrow, since it is unpolarized. If v—')proton “ VA is along

-
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+X or £z we see that the proton has a transverse polarization of approximately
—aAcos 6, where 0 is as shown, If ;proton—VA is along ‘—;A _:;c , i.e., along
+y, there is no transverse polarization. - Thus about 4/6 of the decays are
useful, ‘

We turn now to the problem of measuring the decay parameter g, It
was already mentioned in the first lecture that § is a measure of T invariance,
and also it was shown that the proton polarization shown in Fig, 4 (i) (for
a polarized A) must average to zero if T invariance holds and the scattering
is weak (as it is in A decay). We will calculate the slightly more general
proton polarization component shown in Fig, 9. We choose the A state ¢+
i.e., 100% polarized A's along +z, (Our final answer can then be multiplied
by P if P # +1). We choose the decay configuration with ¢ = 0, as shown

in Fig, 9. This simplifies the formulas and corre sponds to an unessential

rotation of the axes., We wish to calculate <0‘Y'> . We have, for the state

g

+7? &

: = —— . (12)
<gy> 5 | 12

The denominator is given by Eq. (6). To calculate the numerator we use

'y"'(f 5) Tf?-(é) Jlf(()) ;0--Tf=iﬂ o-ﬂz_iﬂ;

(S- PcosG)ﬂ Ps1n9ﬂ 0 LIJ =i [(S- PCOSQ)\u +Ps1n9ﬂ]

TTH =ﬂﬂ=ﬂﬂ :0;¢+o~¢+

[(s - Pcosf) ﬂ TP mn@ﬂ 1i[(S-P cos G)jl +Ps1n6ﬂ]

0]

!

i {(S-P cos 8) Psinf - P sin 6 (S-P cos 6)}

I}

i {2il m S*P sin 0} = -(|s|2+ |PP) g sing.

Finally,then, for ¢ =0, and Py~ 1,

<gy> - psinb (13)

l-acos @
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Clearly, for Pa # 1 we have, for ¢ =0,

—ﬁpA sin 6

<O’Y-> :'l-apAcos() ° : (14)

It is clear that our choice of ¢ = 0 was unessential, and Eq. (14) gives, more
generally, the azimuthal or 4; component of polarization,

The case shown in Fig. 4 (i) has ¢ =0, 6 = 90° 1, so that

> Po =
<OY'> = -B. Since we had previously concluded that this polarization must
vanish if T invariance holds, we see that § is a measure of lack of T
invariance .(foi' weakﬂfinal-state interacfcion);, If T-invariance holds, S and
P are “relatibvely real,' i,e., S/P is real,

The problem of measurement of <O‘Y> (of the proton in Fig. 9) is
illlustrated in Fig, 10, . We see that as far as transverse proton polarization
is concerned, we could use A's at rest in the laboratory system and have
four out of six '"fuseful directions.' However, we need polarized A's, and
polarized A's are not'pfoduced at rest; fu;'thermore, the proton would then
have only a few MeV, and would not penetrate a scatterer .of reésonable
‘thickness, For fast A's we see that only 2/6 of the decays are useful ~those
vvi’ch-y'p—vA

. four' directions of A emission in the production plane are useful.

along +y in Fig, 10, Of course,. in the decay & — A+ 7 , "all

One may ask: How can one in a single experiment measure a, using
an unpolarized sample of parent hyperons, and f, using polarized parenjcs?
The answer-is that, since the parent polarization must be perpendicular to
.the production plane, one obtains ”effective;ly" unpolarized p'arents if one
throws away information . as to the orientation. of the production plane, Crucial
to this argument is the fact that, for a. spin_—i_/Z parent, the decay distribution,
Eq. »(9), is linear in PA cos 0, and so the term containing Py averages.to zero

when we average over the distribution,
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We turn. now to the measurement of y. From Eq. (3) we see that a is

~ unchanged by the interchange of S .and P Thus if we know a we know the
relative amounts of S and P, but don’t know "which is which, " That is,
|s|/|P|=10/1 and |S|/ [P} = 1/10 are indistinguishable. . From Egq. (5)

we see that it is the sign of y that tells us the correct ratio. (The magnitude
of y is already known once a and B are known, since yz =1 - az-ﬁz,)

’ro determine which is which (S or P) we consider first the limiting
case of. pure S-wave decay for a 100% polarized A, v¢+, For pure S-wave
there is no orbital angular fnomentum to flip the spin, and the proton polari-
zation is the same as that of the A for all directions of emission, This also
follows from Eq, (1) if we set P = 0 to get Y, =8 ﬂ

- We next calculate <OX> and <IGZ> for the general case. We still
set ¢ = 0 for conveﬁience, (Since we have already calculatéd <O‘Y’>
Eq. (13), we are at present interested only in <0:X> and <Oz> .). We use
Oy 2((1) (1)), O, ﬂ = ﬂ, 3 Ox Jl= ﬂ;Ox Lj;f+:: O:X;[(S -P cos 0) .‘W— P sin 6 JL]

= [(S-P cos 6) \”—Psin@llr]., .
= [(S-P cos 6)* Tr* - P* sin 8 JJ/*][(S-P cos ) Jl -P sin 8 ﬂ]

ol

-(S-P cos 6)* P sin 6 - P sin 6 (S -P cos 0)

-&r
+
Q
b
-&=
+
|

2 |P!2 sin 8 cos 0 - 2 Re S*P sin 6

| sin 20 - (|S] + |[P]) a sin 6. (15)

Similarly, o, 2((1)_?), g, /]T=7ﬂ, g, J‘= - \U ;

O‘leJ_l_ a, [{(S-P cos6) T[—Psin@ﬂ]

[(S-P cos 6) ”+Ps1n9u]

L]J+ o} LIJ+= [(S-P cos 6) ™ T[ _p* s1n6l[ ][(S P cos 0) ﬂ+Ps1n6Jl

lS-P-cos 6!2— ]Pl s1n 0

ISIZ + IPI2 (cosZG - sirize) - 2Re S*P cos 6

t

IS|2+ IP]2 cos 268 —(|S|2+|P'l2)acos 6. (16)
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We can combine (16) and (15) into a vector ¢ in the xz plane, (We are not

concerned with O"Y at the moment; we are n_ot'assum'ing <CY> ='0.) We f{find

by 0 b, =4, [o,z+0 X]y,
= JSI2 z + [PIZ [(cos 26) z + (sin 26) % ]
—(IS!2+ IPIZ)CI.[COSQ z +sinf x] . (17)
But cos 6 Z + sin 8 £ = q (), where  is the unit vector along the proton

momentum (in the A rest frame), And (cos 26)z +(sin26)x = ﬁ(-ZG), where
n(26) is a unit vector in the zq plane, making an angle 2 6 with z.
Finally we obtain, from these definitions and Eqs. {(16) and (6),
S PN Z PN
2+ |PPAaze) -([s+|P[)a qlo)

2

S

<6”>=’ | 3 > . (18)
(|s| +IP|) [1 -acos @] .

In addition there is a y component given by Eq. (13) or by (14). If we do
not have p. = +1 (pure d,l+ state) we obtain, by a weighted average over lIJ+7
and §_, the final general result

- -~ A o~ * __a
p[|s|? 2+ |PPa(26) - 2Im S P sin6d] -2ReS" PG (6)
. (19)

. —
5 (T)=

For a pure P wave, IS[ =0, a =0, B =0 and we obtain, for the proton

(JSI2 + |P|2) [1 -ap cos 8]

polarization

<€>P_wave =ph(26) . (20)

Then the proton spin lies in the plane of the emission of the proton (and the
A polarization z axis). Proton emission at angle 6 gives proton spin at 2 0,

For pure S wave we have

<0>S-wave “PZz. (21)

The two extremes are illustrated in Fig, 11,
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We can now put the proton polarization [Eqs. (19) and ( 14)] in a simpler
form if we go to the unit vectors g, 8, and corresponding to spherical coordi-
nates. See Fig. 12. Here c;(G, ¢) is a unit vector in the direction of emission
of the proton, relative to A rest frame, and 6 and a)are unit vectors corres-

ponding to increases in 6 and ¢. By inspection of Fig. 12, we see

z =q cos 0 - 6 sin 6,
n(26) = a cos 6+ 6 sin 6.

Therefore for one part of the numerator of (19), we have

|sP2+ [PPa2e) =(|sP+|P[) qcos 0 - (|sF- |P[*) 8 sin 6

= (.ISI2+ IP!Z)[CE cos 0 -y é.sin 8] .
Accordingly from Eq. (19) we find the general expression for the daughter
polarization <5> > in.-terms of.the daughter emission direction {:i , the parent

polarization pg , and the decay parameters a, B8, and y:

<(—)"> - a(pcose—a)—pSine(Yé"'ﬁa’)' (22)
: (1l -apcos @)

As checks, we see that for pure S wave we havea =g =0, y = +1, and
thus
<b>> =p[£i cos 6 - § sinf] =pz.
For pure P wave we havea = 8 =0, y = -1, and find
<3> =pl[q cos 8 + 8 sin 8] = pn(26).
The longitudinal polarization of the daughter along its direction of emission

is given by

>\ .~ _ pcosf-a ‘
<0> k! 1l -apcos 8 ’ (23)

which reduces to -a if the A polarization p is zero,

The expression(22) has the advantage that the usually used parameters
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a, B, and y appear explicitly, and the unit vectors are orthonormal, Expression
(19) has perhaps the advantage that it is easier to see the separate effects of
S and P wave,

From Eq. (22), by squaring and adding the three orthonormal components
(and by using.u2 + ﬁz' + yz = 1), we find the square of the magnitude of the

proton's polarization vector,

+\2 _; . (-pA - a?)
=1 - . (24)
(<0>) (l-ap cos 6)2

This means that if the A is 100% polarized (p = £1), then for any given
direction of emission of the proton, the proton polarization is 100%, in some
. direction [given by (22)]. On the other hand, if the A polarization is p # 1,

the proton's polarization is not p but is given by Eq. (24).
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Lecture III. AT = 1/2 RULE FOR NONLEPTONIC DECAY
In this lecture we review the well —knownl-evidence that has led to the
hypothesis of the Al = 1/2 rule, for nonleptonic decays. We consider the

decays K- 2w, A-N+1n, E - A+7, and £ - N + 1, and will make calcu-

lations illustrating . spur.ion-technique, 1
1. The Decay K — 27
‘We consider theAdeoays
K" >t + a0, (25)
KO >t a7, | (26)
and Ko —>'1r0 + TTO . : : (27)

Two pions can have total I = 0, 1, or 2, Let us use our Clebsch-Gordan
Table V to construct the charge states for 2w withI =0, 1, or 2., Reading

from the table we get, using the notation $(1, 13),

$(0,0) =N1/3 (1, +1)(1, -1) - N1/3 (1, 0)1,0) +~N1/3 (1, -1)(1, 1), or

$00,0) =n1/3 {x'n” - 70+ 27at ). (28)
Sirtlilarly we read, by inspection of the table,

W(1,0) =N1/2 {ote” - 77}, | (29)

$(1,41)=N1/2 {nta0 - Ort} (30)

W(2,0) =N1/6 {nTn + 27020 + =™}, (31)

$(2,+1)=N1/2 {ata0 + o047}, (32)

‘We do not need any other components in considering reactions (25),
(26), and ’(27).,

In this notation '1'T+n-_ means that pion , #1 is 1T+, #2is . _ The expressions
TT+1T— and v-n' do ot mean the same thing, since #l and #2 may be distinguishable

by position or by energy.
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By inspection of Eqs, (28) through (32) ‘we." see that, upon interchanging
the charge of #1 and #2, we have § - (—1)I U, forI =0, 1, or 2,

‘Since the two pions are identical bosons, the total exchange of space
(x), spin (0), and’ charge (Q) must leave uncha-.ngedo The pions have no spin,
so we have

(xN(Q) = +1, i.e.,

(-0t of=41, (33)
where £ is the relative angular momentum of the two pions. For K decay,
the total spinJ =0, sof =0, so (-1)I =41, sol =0o0r 2 only., I=20is
excluded for K* by charge conservation; so K" can go to 2w only in the state
$(2,+1). However, K° can go either to y(2, 0) or (0, 0). ‘

In discussing K9 we must distinguish between Klo and-KZO, which are
even and odd, respectively under CP., For 7970 or ntw~, CP has the same
effect as interchanging the charge (when present) and space coordinates of the
two particles, Therefore CP = +] (identical bosons). Therefore KO can and

1
0.0 +_-

0 .
K_~ cannot decay into 7 w~ and ' 7w .

2
vy Since K" and KO have I'= 1/2, the change of I in the decay of K+-—>21'r

1slAT[ =Al=2%1/2=5/20r3/2. In Kf—» 2w we have Al =2+1/2=5/2 or 3/2;

or;0 + 1/2 = 1/2. Thus Al = 1/2 is available for K?}@ 2w, but not for

+ 1

K;+"—>‘,21r., The rate R(K+ - -+ wo) is only about 1/600 of R,(K10—> 2n). ~  The
most natural explanation is that there is a selection rule that nearly forbids
decays with Al = 3/2 or 5/2 but allows those with AI = 1/2. This proposed
selection rule is called the Al = 1/2 rule. If the Al = 1/2 rule were strictly
obeyed, K- .1T++ 170 would be forbidden. F rthermore K®- 27 would go only
to {(0,0). By Eq. (28) we see that in that case the branching ratio

R(K) ~ n%) R (00)

B, = = - (34)
1 R(Kf—> 'frono) +R_(K10—>1'r++ T ) R({00)+R(+-)
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2 ) .
would have the value B = "1 l S . This is close to what is

y L B RERE

in fact observed,
. + +. 0 .
.Since K - 1 +n does afterall exist, we next calculate the effect on the

prediction of B, = 1/3, using spurion technique. 1

1
- The spurion s(AI, AI3) is introduced in order to keep track of the
change of _fin.thé decay.. One can think of the spurion as car.rYing_off AT,
so that one now has T conser.vationvin the decay., . We illustrate by considering
the K decay into 2w with I = 2, - We assume that AL = 3/2 occurs, but that there
is no AL =5/2, We use Eqs.. (31) and (32) to describe the 2m state. We have,
using the notation (I, 13),
K'(1/2,+1/2) - $(2, +1) + s(3/2, -1/2), (35)
KO9(1/2, -1/2) = ¢(2,0) + s(3/2, -1/2). (36)
Here we have chosen the Al = 3/2 spurion, and have chosen AI3 = -1/2 for

the spurion in order to ''conserve" 13, Notice also that because of the famous

formula

LS Y @

""conservation' of I3 implies strangeness (S) conservation.
...Fotr convenience we now transpose the K and the spurion.to opposite
sides of the equation. . To maintain conservation of I3 we see, from Eq. (35),

that we must reverse the sign.of [3 when we transpose, From (37) this means

that S also must reverse its sign., Eqs. (35) and (36) can be combined as

K(1/2) = y(2) + s(3/2,-1/2). (38)
After transposing we get
s(3/2,+1/2) - ¢(2) + K(1/2), (39)
which means
s(3/2,+1/2) - ¢(2,+1) + K~ (1/2, -1/2) , (40)

and s(3/2,+1/2) = $(2,0) +K° (1/2,+1/2) . (41
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We now go to the Clebsch-Gordan Table III, According to Eq. (39) we
want to compose 2X1/2 so as to get (3/2,+1/2). We therefore look under the
column (3/2, +1/2) to find :

(3/2,+1/2) = N3/5 (2, +1)(1/2, -1/2) - N2/5 (2,0)(1/2,+1/2)
N3/5 (2, +1) K™ - N2/5 (2, 0) RC
=N3/5K™ NT/2 (rt a0+ 0} -NZ/5 RO W76 (w4 20040 + n-ah)} .

(42)

Similarly we consider the Al= 1/2 spurion, This cannot be obtained

by composition of 2X 1/2, but only by 0X1/2, so we have, analogous to (39),

s(1/2,+1/2)~K(1/2) + &:(0), (43)
e or (1/2,+1/2) = (1/2,+1/2)0, 0)
\ =RON1/3 {atn - n0n0 4 n 't} (44)

Suppose now that both AI = 1/2 and 3/2 occur, with amplitudes a and

ass respectively., Then from (44) and (42), the total amplitude is

y = al(l/2,+1/2)+aa3(3/2,1/2), or o
o b = ROt nt w73 ap -N2/30 ag) + 1070 (<N 1/ a, -2N2/30 a5)]
+K-[(1T+TI'0+TTOTI'+) '\/-71_0 a.3] . (45)

We now remark that the overall relative phase between the E_(o and K~
parts of y has no physical meaning. This is because charge conservation
prevents "interference'' between KO and K~. We can.only compare intensities,

We next recall that it is KlO decay we are interested in, not KO or R",

In Eq. (45), that part of y proportional to Ko(w"'-n' + 1r—1'r+), for example,

represents (after transposing), the amplitude for KO (‘IT+'n'_ +1r"1r+)., Now,
o_ KI+K
Ky = —z7—- (46)
. We have chosen the final state of 2 so that it corresponds to Klo decay.
Thus as far as decay into a state with CP = +l.(Kl0 decay) is concerned, the

K and B? behave in exactly the same way.
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That is, they interfere constructively in just such-a:way as to give CP = +1,
Therefore the amplitude for KO ~ (-rrv‘+1r- + n';r+) is exactly the same as.that
for KO — ('rr_+17'_+ 1r_1r+). From Eq. (46), the._ampliltt:lde for Klo—»(;r,+1'r;+ nh-n+)
is just (1 + 1)/'\/_2_2 N2 times that for K,O - (-Trfl-'n'- + T'I'—TI'+<). ' Therefore when we
‘write rate's," we have v | '

RE > 2m) = (NZ)P R~ 2m). (47)
[Note: This argument is rephrased .following.Eq.‘ ( 1 09). ]

From Eq. (45) we now write the decay rates
R(K' > n720) = R(40) = [(W3710)° + (N3/10)2] a5 [? , iee.,

R(+0) = 3/5 |a,|°. T~ s

R(E) w7 = R(+-) = 2 (12 +12) V173 a1 -N1715 a3 %, (49)
R(K "~ 701%)= R(00) = 2 | -NT/3 a,-2NT/T5 a,[*. + (50)

Now choosé units such that a

1= L Set 'aé = |a3 I gxp.i 5. Expand
(49) and (50), negiecfcing quadratic terms in a,, to get | |
R(+-)=4/3 -8/3 1/«/?]33-1 | cos s, (51)
R(00) =2/3 +8/3 1/N5 |a;,|cos 5, (52)
so that in these units s ’
R, = R(+-) + R(00) = 2. ' : (53)

R(+0) = 3/5 |a3:]2 = 3/10 EN i R, ,

go that , : a : o
|a | = NTO73 N RUO (54)
1 _
_ Putting in numbers, 1,’ 2 .Rl = 550 R(+0), so
lag] =0.078 |a, | . (55)

Now

. a
B, = ROO _ /3, 4/3 1/5 cos s s ,

191 |
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or ' finally,
» Bl‘ =.0.333 +.0,047 cos &.
For -1< cos §< 1 we get
0.29 <B; <0.38, (56)
as the prediction of the AI = 1/2 rule,

If there were no 7-mw interaction at 200 MeV/c in-the S state, a, and a

3 1

~would be relatively real, by T-invariance. Then cos § = +1,!

2

Recent values of B, are

1
0.260+0.024, Anderson et al.,
0.294i 0,021,‘ Chrétien, et a1, .

‘ 0.329+0.013, Brown, et al.

All are consistent with Eq. (56), although not completely with one another.

2., The Decay A= N +
Since =0 for the A, we can have Al = 1/2 or 3/2. We write the

spurion.reactions

s(1/2, -1/2)> A(0, 0) N(1/2) w(1). (56)

. The A(0, 0) contributes only a factor of unity, so, from Table I we find

(1/2, -1/2) = A[N1/3 nx-N2/3 pr7] . (57)
Similarly for AL = 3/2 we have, by inspection Table I,
(3/2,-1/2) = AN2/3n10+N1/3pn7] . (58)

The total amplitude is
b= a, (1/2, -1/2) + a'3 (3/2,-1/2), or

g = (N1/3 a; +N2/3a3) Annl+(N2/3 a +N1/3a,) Apw .

(59)
The decay rates are therefore
R(nm0)= 1/3 |a, +NZ a, [, (60)
Ripr)=1/3 Il\/Z al—a3'|2 . (61)
We define the branching ratio
_ R(pn’)
B,= : , (62)

R,= R(pw’) + R(nﬁo)
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and notice that if the Al ='1/2 rule holds, i.e., if a, = 0, then B ;= 2/3.

3 A
~ If we expand (60) and (61), set a, = 1, call 2y = l a, I é16, and neglect
v,a3 !2', we find
) .R(n-rro) =1/3 + E%/——? v]a3| cos &,

Ripw ) :.2/3 - 2'\/3? : '[a3|cos_6 s

‘R, = R(r®) +R(pr) =1
R( 2N2
B, = 1§)1T)—2_/3—.—73——. [a3l€:os\6,
B, = 0.660-0.95l]a;[coss. (63)

Here we know that the Nx _sca.tterin'g;is.weak, s0 we expect cos § = +1. Also,
we have corrected 2;/3 - 0,660, for phase space (n-rro is lighter than pw’).

A recent accurate value of B, by Anderson et al. 2 gives

A

B, = 0.685+0,017, If we take cos § = =1 then we see that we must choose
cos 6§ = -1, and _
EN
= 0,026+ 0,018 . (64)
._.-lal.l

This result is of the same order as Eq. A(55‘), for K+—* 2w. Of course the

value. of _la.3 l/ I:a.l l for A decay need have no relation to that for K- 2w,

*

It is intere s’ci_ng_to_obse_rve4 that B, = 2/3 is obtained not only for

A
ag =“0_, but also'_>fo.fr az = -2N2~ a. Thisrcan.be seen by inspection of Egs. (60)
and (61). Let us examine this possibility more closely. So far we have
discussed only branching ratios, as predicted by the Al = ln/erule. .."That is,

in terms of the decay amplitp.des S and P we_have.been.cons.idering only

IS_IZ + IP'IZ = R. The AI = 1/2 rule predicts much more. For instance,

Eq. (57) holds for every decay configuration, for the Al = 1/2 decay, and

- thus holds for the S-wave and P-wave parts s‘epara,tely. That is, fromv(57_,);
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and using the subscript 1 to stand for the AI = 1/2 amplitude,

A (A=pr7) = -N2 A (A~ nr0), (65)
. which means, for Al = 1/2,

S,(A=pn) = -NZ S (A ~»n1¥), and (66)

P (A>pr’) = -NZ P(A ~nr0). (67)

Then for the decay parameters a, f, and Ys defined in Eqgs. (3), (4), (5), we

see
a (A —>pr7) =a (A >nrd), (68)
BI(A ~pr7) = (A~ nn0), (69)
Yl(A—’PTT-)=Y1(A—> nr0) , (70)

R (A~ pn7) = 2R (A =nn0) . (71)

Similarly if we had a pure Al = 3/2 decay, then, from Eq. (58),

Ay(A = pr) = (1/NZ) Ag(A = na)
This again leads to equality of @gs [33,- and Y3 for A>p+w and A~ n+ vo,'
and a branching ratio R, (A—=pn”) =1/2 R3(A—>n1rq\).

Suppose now that one has. a mixture of Al = 3/2 and 4l = 1/2. In general,
the two deééys (AT = 3/2 and 1/2) should have different S/P ratios. In that
case, the S/P ratios for A »pw_ and nwo will not be the same, in general. We
can see this in detail as follows., For Al = 1/2 (designated by subscript 1),

0 to denote A = p + v and n + +9, we have, from Eq. (65),

if we use m and =«
for the S- and P-wave parts separately,
S (x7) = -NZ 5, () (72)

and Py(n7) = N2 P («0) . (73)

-
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For Al = 3/2 (subscript 3) we have
S,(77) = (1/N2) 8, (n0) (74)

and P r)=(UND P (x) . (75)

" Now suppose Al '='1/2 occurs with amplitude ar and Al ="3/2 with vanipl‘itude

§,3, then
S(rn") = alsl(w_) +. 'a3S3‘(1r )
= -N2a.S (n0)+(a,/N2) S (1r0) ,
17D R A S
P(n )= aflpl (vw) + a3P3_(1r')
= NZ a P (1)) +(a,/N2) P, (),
0, _ 0, 0 |
S(w") = al,sl(v ) +.a, 53(11' )
Oy _ . o 0, ., . ¢ 0
‘P(w )= a.lP,l(Tr )+ 2, P3(1r ) .
We see by inspection of these equations that if a,= 0 or if a, = 0, then

3 1
S(n7)/P(n7) = $(#0)/P(x0). The same is true if §,/P, = S,/P,. In both

cases a, B, and y are the same for pn~ and n‘1‘ro, The choice ag = -2N2 a,
gives BA‘ =2/3. In general, if SI-/PI # S?’/P3 , then a.value for a.?)/al.;l that
gives B = 2/3 leads to differernt values of a, B, and y for pr~ and an’,

It is thus importa_.nt to check a, B, and y for A— n-rro._ Cork et al, 5
have measured the up-down asymmetries for A— pn and A - nr0
"simultaneously", i,e,, from _A's,produced in the ;ame way. Therefore
the;e ié a si_ngle‘A polariéation.pA. The decay asymmetries yield o.,(Tr')pA
and a'_(-n-o)pA, and the ratio gives

o (nno)

= +1,10+£0.27,
alprs)

in agreement with the Al = 1/2 rule.
Block et al. 2 have measured y_(nwo) by an indirect method., The branching

ratio for-: He4 ;;'("0 modes)

A

AHe4 - (7 modes)
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depends strongly on S(n-o)/P_(n-o), They find that S wave predominates. They
find
0y - +0.22

y(nw") = +0.78 L0.42 °

This is to be compared with, for instance, the value obtained by Cronin and
2

Overseth,

v{pm ) = +0.78+0.04 .

Thus an '‘accidental' solution with a, = -2N7Z a, must (within the errors)

3
also have the same S/P ratio for Al = 3/2 and 1/2, to agree with experiment,

Such a . double accident seems unlikely.

3. The Decay & - A+«

To find the prediction for Al = 1/2 we write

s(1/2,+1/2) - A(0) 2 (1/2) w (1),

(1/2,+1/2) = A [N2/3 (1, +101/2, -1/2) -N1/3 (1,0)1/2,1/2)]
| = A[NZ/3 7T B -NI/3 «950], |
A T(2°) = 3¢, < /72 4.3
which gives (transposing) TUE") T hqueas
R(E-=A+7)=2R(E0> A +x0). (76)

2

The =~ lifetime is about 1.2%X 10710 sec.® The EC lifetime is not yet known

‘well enough to te st Eq. (76).

4, The Decay T~ N +#

The final state N.+ 7 can have I = 1/2 or 3/2. The = has I =1. There-
fore we can have Al = 1><1‘/2 =3/2 or 1/2; or 1X3/2=5/2, 3/2, or 1/2. We
assume, for simplicity, that Al =5/2 is absent, but include AL = 3/2 as well
as 1/2.

We write Z-—-N + mw + s, Transposing, we have s - Z(N.—E), From an
= +1/2 for the spurion

3

s. There are four possible transition amplitudes, corresponding to Al = 1/2

example, say T —n + 7~ + s, we see that we have Al
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and 3/2, and I{N¥%) = 1/2 or 3/2. We write down the four charge states,
using the notation

I(N¥) = 1/2),

1l

b
\ .
[\

W(1, 1)= ¢ (Al
U(1,3)= (AL = 1/2, [(N¥F) = 3/2) ,
(3, 1)= y(AL = 3/2, I(NT) = 1/2),

“and (3, 3)= ¢(Al ='3/2, 1(Nw) = 3/2) .

Corr'erspondingly we define the four decay amplitudes A(l, 1), A(1, 3), A(3,1)

and A(3, 3), and have the superposition

PETF) = AL, DY, 1D +A(L 3)(1,3) +A(3, 1 $(3, 1) +A(3, 3$(3, 3). (77)
We now write down (1, 1), etc., using Tables I and II, and recalling that

A13 = +1/2 in each case, To aid in reading the table we write an intermediate

step, in a notation that is self-explanatory:

¢U;U=(%Hﬁnx%fﬁﬂh+%)

=NZ/3 255, -5) -N173 (5,47
=NZ/3 ST W1/3 105 -NZ/3 noh) -N1/3 (W23 7’5 - V173 05,

(78)
L3 =G @ XS (R +3)
| =N1/2 z‘(%, +-§4) -N1/3 ZO(%,+%-) +N1/6 E“L(%,-%)
=NT/Z 2 o'® - N1/3 22 (NT/3 o5 + N2/3 «0R)
+N1/6 5 (W273 +% + N1/3 = 7h). L (79)

$(3,1) = (G [1 (D X 5 (N7); + 3)

=N1/3 = (%-, -2) +N2/3 zo(-;-,+%)
=N1/3 =5 (WT/3 «0p - NZ/3 n" 1) + N2/3 2 (NZ/3 5 -N1/3 «05).

(80)
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$(3,3) = (G [1(Z) X 2(NF); + 2)

=NZ/5 = (2, +3) +NT71s (2, 41y - wers =3, -1
2072 2073 2072

=N2/5 o n+NI/15 0 (W1/3 n'p +N2/3 «° 1)
-NB/T5 = (N2/3 «0p +N1/3 n~1n). (81)

We could now write down the general superposition LP(EN;) given by

[o¥]

Eq. (';77). However, since we are interested in the charge states rather than
-the I-spin states, we rewrite Eq. (77) as
Y(=NT) = A(ZOF) 4 (F0p) + a=TrTE) ¢ (=T E)
4+ APy (Pt )+ AP w0R)y (0r07)
+A(Z @) $(ZTnm) . - (82)
From Eqs. (77) through _(82) we obtain the amplitudes

1 1

Asta0%) = "/—3—A(1, 1)+ = A(1,3)+ = A(3,1) - % «/;jA(3,3), (83)

3 3
A(ztema) = -% A(l,1) +% A(L,3) - @A(z., 1) - %«@ A(3,3) (84)
A(Z o' E) = g A(1,3) + Jéj A(3,3), (85)
A5 = Y2 a0y -Lawnezac LAk A, )

A(Zowoﬁ'_) = L A(1,1) “/3—7 A(l, 3) -”/—;5- A(3,1) +% «/g A(3,3). (87)

w
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Unfortunately we cannot make use of Egs. (86) and {87), since ZO—’?N"%--H: is
unobservable because of the rapid death of the ZO via the electromagngﬁc
decay ZO - A+, | | |

We are left with Eqgs. (83), (84), and (85). These equations hold for
either the S-wave or the P-wave parts 6f the‘ decay amplitﬁde, If we“wished
we could write the equations twice, once with new subscﬂpts for S and once
for P, In general the separate terms are complex numbers, However, if
the final N-x interaction is small, then T invarinace demapds that the separate
terms all be real, except for an unimportaht phase factof corrllmo\n to al‘l. terms.
The N-w interaction is indeed negligible at the decay moméntun;a 1 .We there-
fore take all the terms to be real., We now imagine Eq. (>83) (fdr instance)
written twice (once with subscripts for S wave, and once for P wave)‘o We .
can imagine a two-dimensional S-P space, and think of the :two equations
(i.e., S and P) as equations involving the S and P components of vectofs, We
combine the components and write, for instance, | _

AL =AgL DS+ (LP, (88)

with g and fDas unit vectors, and with similér expressions for'é(ll, 3),-_5(3, 1),
and A(3, 3). Since Eqs. (83), (84), and (85) hold for both the S and P compo -
nents, they hold for the vectors. We can therefore imaginé these equétiérié
rewritten, with the substitution of é_(i, 1) for A(1,1), etc. -

At first glance the right-hand sides of Eqs;, (83), (84)', énd (85) seem _
to involve the four independent Ve.céors A(l, 1), _A(l, é),vé (3, i)g ;nd é(3, 3).

However, we observe that é{l, 1)'and A(3, 1) occur only in tﬁe combin_atibn

AL 133, 1) = A(L 1) +NT/Z A(3, 1) (89)
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so that we may rewrite Eqs. (83), (84), and (85) as follows:

Atz A ) = -2 A3, V5 ALY —J%Mm)s (91)
A= a(matE) = L AL+ N2 A3, (92)

- 5

[\

From Egs. (90), (91), and (92) we form the linear combination

NZ AE0p) + AT - Az ) = - "*—58— A (3,3). (93)
Using Eq. (93), we can make the f.ollowing observations., (a) Suppose the
AL = 1/2 rule holds, Then A(3,1) =0 and A(3,3) = 0. Since A(3,3) =0,
Eq. (93) corresponds to a closed triangle in the S-P plane, This is the well-
known triangle of Gell -Mann and Rosenfeld,l {(b) Suppose we have
A(3,1) #0, but A(3,3) = 0. Since A(3,1) # 0, the Al = 1/2 rule does not
hold. Nevertheless, according to Eq. (93) we obtain a closed triangle in the
"S-P plane. Thus if we find a closed triangle {experimentally) we cannot rule
out Al = 3/2, The linear combination of Al = 1/2 and 3/2 given by Eq. (89)
cannot be resolved. (c) Suppose we have A (3, 3) #0. Then Eq. (93) corres-
poﬁds to a closed quadrangle instead of a triangle, Equation (93) can be used
to determine A (3, 3). Of course then the Al = 1/2 rule does not hold exactly,
(We already know this, from the decay Kt - 1r+1ro., )
We turn now to our experimental knowledge of é(Z"’TrO'p—), é(2+w'ﬁ),
1,6

and'_é(Z)'-;r-l-h—;), From the partial decay rates we know that

|a"08) = [a =T E) | & [T (94)

Therefore, if A(3,3) = .0, we see from Eq. (93) that the resulting trianglié

will be an isosceles right triangle with equal legs ié(ZJrTr"ﬁ‘)' and
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[é(Z *1r+'r'1‘) I,, and hypotenuse '\/_Z_lé (Z‘i"-rrof)')i, The decay parameter LA

corresponding to 1_X(E+7ro pl)--i.e., to_Z)+—> p + 11-0—_nhas been determined by .

Beall, et al. 7 by measuring the scattering asymmetry of the decay proton,

+0.08
-0.09 "

are not known, We assume Bg = 0 (T invariance and small N-n interaction).

Their result is ag = +0.78 The other decay parameters, Bo-and Yo
The decay parameter ay, corresponding to A (Z*}fﬁ), --i,e,, to =t na -
has been measured by Cork et al. ;5 they measured ina single experiment the
up-down asymmetry for 2+—» n + -rr+,, to obtain at,+pz+ , and for Z+_><. p+ noy
to obtainagp +; - The ratio gives a+/m0, and the known value of a, gives a,.
They find o, = 0.0340,08. In our present notation, o = 2AAL /(A + A),

so that a, =0 means that é(Zﬂfﬁ) is oriented along ‘eif:her fhe S axis or

the P axis, Until Yy is measured we cannot choose between these alternative
possibilities, The decay parameter a_ ., corresponding to é(Z_‘ww*’E)-fia €.,

to Z - n + ¢~ --has been measured by Tripp, Watson, and Ferro-Luzzi,

who obtain a_= +0,16+0.21, and by Nussbaum et al., % who obtain a_=+0,04% 0,23,
Therefore A (Z “nt .} is oriented (approximately) either alongg or along P,
Thel;e is as yet no knowledge of Y_, SO that either alternative is possible,

L A(3,3) = 0, then according to Eqgs. (93) and {94) and the results a, " 0

and a_= 0, we have the two possibilities

A (Z+w”ﬁ‘) = -§ , : {952}
Az ntay= P, (95D}
Az 0p) = 5+4P , . {95¢)
N2
or, instead, _
A o my~ - P, (96a)
A{Zwtn)= S , "~ {96b}
A(sta0p) =~ EXS (96c)
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We have chosen units such that [A (Z7 ¢t n) |= 1. Either solution could of

course be multiplied by -1, or by exp ia, with no physical consequences,

Solutions (95) and (96) demand ay® +1. This is in disagreement with
the measured value, 7 ag = +,784_-°8§° In Fig, 13 we reproduce the diagram
from Tripp et al. 8 (Their notation'Ny, 'N_, and Nj corresponds to our

é(2+n'f1—), é(E“'Tr"-H)9 and A (Z+n0§)o Their sign convention for a is oppo-

site to ours.) The two possibilities for §Orc‘orrespond to the two possibilities
Vo> 0, and y5 < 0, i.e., [s|/|P|>1 and < 1. From the diagram and Eq. (93)
we find
|A(3,3)] |

—— =®=0,23+0.09, or 0,30+0.10, (97)
laE " m| | |
. where the errors are only estimated from tih¢ diagram, and where the first
possibility corresponds to Yo /y+ >0 and the second to YO/Y+ < 0. In.the dia-
gram it is implicitl.y assumed that y+/y_’ < 0;i.e., thaf if=t>n+qt goes
by S wave, then T >n+1n" goes by P wave, and vice versa., In other words
it is assumed that the violation of the AI = 1/2 rule is small, Of course, if
the Al = 1/2 rule does not hold, one can have ‘y+/y_n >0; that is, both decay‘s
can go by S wave or both by P wave. We must have some reservations until
Yoo ¥ s and Yq are measured,

It is p:erha.ps worth remarking that even if experimen‘tsvfinally tell us

+

+ : - -3
that, for example, X —-n + n' is pure P wave, Z — n + w~ is pure S wave,

and a, = +1.0 (instead of 0.78), then we still will not be able to rule out a
large violation of the Al = 1/2 rule. For instance if in the example of Eq. _(953,)
we repl;cedb-—sby S, but left (95b) and (95c) as they are, we would obtain |
'\/WS_ A(3,3) = 28, in'.steadvof zero, as is seen from Eq. (93). This type of
ambiguity, and also the ambiguity corresponding to Eq. (89), is not "inherent"
but, as we see from Eqs. (86) and (87), could be resolved if it v_vere; possible

. to measure the rates for EO—-» p+w” and ZO—> n + Tro,,
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P(S)

MU-26847

Fig, 13
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Lecture IV, K - 37 AND THE Al = 1/2 RULE

In this lecture we consider the decays

K+ - 1=r++ ‘rr++ T = (++-), 14
K" > ot 2%+ 20 = (+00) , f/
. A
YK'ZO» a2l = (+-0), R
and K20—> 2%+ 7%+ «0 = (000) .

The final (31) state can have I = 0, 1,2 or 3. For K+_ decay we have Q = +1,
Yo} 13 = +]; therefore I = 0 is excluded, Thus for K+—> 3w one has the possi-
bilities AL = L& 1_/2 =3/2or1/2, 2¢1/2 =5/2 or 3/2, and 3+1/2 = 7/2 or 5/2.
For K® - 31 we shall see that Klo goes tol = 0 or 2, and KZO goes tol =1 or 3,
We consider only KZ? decay. Thus for K?? —= 31 one has the possibilities

Al =1%1/2 =3/2 or 1/2, and 3x1/2 = 7/2 or 5/2.

Consider now the states 1T+1T-1f0 ahd Tro‘n’o‘rro., Let L be the angular

momentum of pion #l relative to the c.m. of #2 and #3, and let £ be the

-angular momentum of #2 and #3 in their. c.m, Then J=L+4. But J=0,

since the spin of the K is zero. Therefore |£..l = Bl Therefore
P = (—1)3(—1)L(—1)£ = -1, Thus for_Kl()»3_1r, for which GP = +1, we have
C = -1, and for KZO—*31r, we have CP = -1, and C = +1., (Here we are assuming

CP invariance in the decay.) Since 3170 obviously has C = +1, we see that

KZO - 31T0 is allowed, and Klo

We next wish to show that for 37w, I = 0 and 2 have C = -], and I = 1 and

- 311-0 is forbidde_n,

3 have C = +1. There are several ways to show this, The easiest is to
assume the theorem proven by Professor Rosenfeld in his accompanying

‘lectures, namely

c=a(-1k

For 3n we have G = -1, so we have C = (_1)I+1°
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Another way is to use the Clebsch-Gordan tables by brute force,:as™
follows, The notation.is (I, 13').,
I=0

We have from Table V,

"

(0,0); = 1{mx 1{zm) .
x/T]?Tnf(i, -1»)2;&['17? x9 (1, o;zﬂ'+ N1 3({(19 '”‘_)zﬂ
NT/3 ot (W12 % -Wi/2 v7e¥) o

N5 20 W73 ot e - NI/Z nont) |

+N1/3 =~ (N1/2 Tr+TrO‘f' N1/Z «9nt) . ‘ (98)

Under C, we have 70— 70, at - m~, and 77 - T, and by inspection of Eq. (98)

1}

1

we see _tha.tb((l, 0)317 - -{Q,0 That is, C = -1,

)311"’
I=1

Here there are three possibilities. We have,
1{m) X 0(2m) B S 993

TI’O_(O» O)Zw = 0 (N l;?»mnj'w - 173 ’iT01T0+- i17/3 n-"er)s

1

first, (1, 0)3Tr

second,
(1,0), = 1{mx1(2m) | - {991b)
=N1/Z w1, -1, - N1JZ w71, 4,
= '\/1_;2 1r+(‘\/1;2 1'r01r= - '\/172 TT'"T\jO)
“NIJZ n (NT7Z 7' a0 - N1/2 «%h),
and lastly, - v _
(1,00, =1 (mx2(zm) N (99¢)

VI7T0 iz, -1), -NZ/5 10(2,0), +N3/T0 w2, +1),,
=~N3/10 'rr+(\/41_;2 O + 1/2 ‘lTa1TO)

-N2/5 0 (N1/6 aia +'\/—27—3— 'n‘o'rrO +'\/T/—(; a"at)
+n3/10 w7 (N1/2 atx0 + N1/2 wOxty .
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We see that in all three cases, C = +1,

I=2

There are two possibilities,

first,

(2,0)31T 1 (m) x1(2w)

H

and second,

(2, 0); =1 (m) x2(2m)

NI/6 ' (1, -1), +~2/3 «0(1,0),
N176 w (N1/Z2 70 n™ - N1/2 = n°)
+N2/3 7O (N1/2 ntn-

1/6 «~ (N1/2 ='a0

-N1/2 TT—TT+)
-N1/2 TTOTI'+) s

= N1/2 7 (2,+1), - N1/2 (2, 1),
= ~N1/2 ’IT_('\/].;Z ‘n'+'rro +'\/1;2 1T01T+)
- '\/1/2.'17+('\/1/2 On= + N1/2 7 a0

In both (100a) and (100b) we have C = -1,

I=3

‘We have

(3,00, =1 () X 2(2%)

=N1/5 «' (2, -1),_+N3/5 110(2,0)_2 +N1/5 w7 (2,+1),

'\/;511'('\/;27r0"

3/5 'rro('\J 1/6 =« T
1/5 =~ (N1/2 =T n0

for which C = +1,

1/2 = 'rrO)
+ N2/3 TTOTT0+N/1;6 Tr"rr+)
+N1/2 1TOTT+).,

(100a)

. +N1/6 @ (1,+1)2v

(100b)

(101)
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In Eqs. (98) through (101) we have exhibited the seven:possible:charge

I+1

+ and 797919 and seen by inspection that we have C =:{=1)""",

states for ' 70
We notice as a check that 3170 occurs on%y for I = l or 3, ri,g,v, nfqr G = +1,

We.consider.at first only the predictions of the Al = 1/2 rule. Then
for KT > 31 and KZO - 317 we cén.havé only the 31 states (I, I;) =(1,+1), and
(1,0), respectivély, ” There are three independent 3w states with [ = 1, as
we. saw from the cofnbiﬁations 1 (3TI'“) = l_(Tr))(-O(H?.'rr‘)9 l(ﬂ'). X1 (ZTT.),, or
1{mr)xX 2(27). We could use the Clebsch-Gordan table to construct these
states, as was done for the (1, 0) states.in Egs. (99a, b, c.). ‘“I.-I.owever_,, it is
more convenient to use another approach. (The functions we obtain for (1,0)
are linear combinations of those found in Egs. (99).)

We have the three individual pion wave amplitudes Tys Moo a,nd.l'3 .
each of which transforms like a vector (I = 1) in I-spin space. We want to
fofm a probability amplitude for 3w. This must be trilinear in T T and
T3 We want that combination that transforms like a vector in I-spin space,

There are three such combinations, which are, most simply,

A= 1.1:,.(12‘ mg)y B=m,(my-my), and C = mal{m, - m,). The most

2
general vector is then
V=AA+BB +CC, - (102)
where A; B, and C are compiex nurhbérs, 'i ; | |
The meaning of, for instance, T, Ty, Can be expressed in two ways

(which unfortunately differ by a factor of -1). We can use the Clebsch-Gordan
table to find that combination of T, and T that transforms:like a 'scalar. That
is |

(my = ms) =(0,0), =1(r,) X1{n,) »

=(N1/3 'n'; n3' -N1/3 nzo n3° +A1/3 nz‘ ‘n;.. (103)
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Or, instead, we can use the spherical harmonics in Eq. 1. (with the addition
of a normalization.factor) and write

T, " T, = ©W_ T + ., + T, 0w
-3 xzx3 Y2Y3 2223

(‘nx+i1ry> (Trxfiwy> +(vx-1jy 'nx+1'n'y> P
NZ N2/ N L\ Nz /3 P s

2

-y ey ter -y @yl o+ vl v o)

which is the same as (103) except for a common factor, We use Eq. (103),
We.can take x, y, and z components of the vectors A, B, and C; or
we can take +, -, and 0 "components, ' sirce these are just-linear combina-

tions of the x,y, and z components, Thus

+ + + (“2+“3ﬂ+"2-"3+""20"30)
A = (12‘13)=w1 ' ) (104)
. N3
0_ 0 0 ("z+ my T, "3+ - “7? Tr'30)
AT =m (32'13)=“1 : - . (105)

Instead of A, B, and C we could take as our independent states the

linear combinations

S=A+B+C s (E2°713) +12(“3° 11) + LY (_"11"' _112)’ (106)
M, = B -C= 1, X(m,Xm,),
and _1\425 -A + _B=(11X_112)><1r3 .
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The combination S is. comple tely symmetric with respect to'interchange. of

any two pions, The functions Ml and M have mixed symmetries;  (For

1nstance Ml is. a.nt1symme.trlc.under. ‘l,nterch}a,n‘ge of #2 and #3 but has no

other symmetry, )
. We return to the general expression, Eq. (102). We first write out the
expression completely, Then we rearrange the terms so that Tys. Myy Ty

always occur in order. We can.then dro.p,.‘the. subscripts 1, 2, and 3\.‘,-_ v
- 0 - 4+ 0 + 0 _

. + — = - :
For instance, T, My Ty E Wy My Wy o = (-t0). Thus we have
V= AA+BB+CC

Am ('n n1r)+B'rr (m °1rl)+C1r3( 1«;2)

= A 1(1"-{_7"“""&_"&‘““‘*‘ ~ 59 ™ 0)
NEI

+ *E- (1r+1'rr'" +rTw 11'+ -u?r%_r_ 'rro)
3 ' .

+ L (1r+1r=3-r_+_'rrf7r+_11 - v(}worr)

_Taking components, we find
(1, 41); = V' = NI/3 {Al(++-) + (+-+)-(+00)]
| ' 1B [(+4-) + (~+4) v§_~(o+o)f]
+C [(+-4) + {-+4) -{004)] }
—'\/_7_{(A+B(++ )+ (B +C) (- J~+)+(C+A)(+ +)
- A(+00) - B(0+0) - c<oo+)}, | (107)
~/7” {A [(0+-) +(0-#) - (000)] I
+B [(+0 ) +{- 0+) - (000)]

m

(1,00,

+ C [(+ 0) +(-+0) - (000)]}

«/‘7— {A[(0+ +(o +)] + B [(+0- )+( 0+] +C[(+ 0) +( +o>]*

-(A + B +C) (000) } . (108)
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We now turn to the predictions of the Al = 1/2 rule, We have, using

~our usual notation (I, 13),_ and the spurion s(Al, A[3),

K+ - (37) + s ,
i.e., (1/2,41/2) - (1,+1) + s(1/2,-1/2),
and KO = {37 + s,
ive., (1/2,-1/2) ~ (1,0) + s(1/2,-1/2).
Or,. transposing both s and K, we havé, from Table I,
s(1/2,+1/2) = 1/2 (K)x 1(3w)
=nN2/3(1/2, -1/2)(1,+1)-N1/3(1/2, +1/2)(1, 0)
=NZ/3 KOV -N1/3 ROVO,
{109)
where V+ and VO are given by (107) and (108).
In the term ROV we have contributions like I_{O(O+-)° This represents,
after transposing, K0—> 1110 + 11'2+ + 173_, We are actually int‘erested_in
KZO - 3w, rather than in ‘KO - 31, Because of the relation KO = (Klo + KZO)/ '\/—2_,
,avpurerKO beam is, in terms of intensities, half Kl(.) and half KZO,, Only the

2
pure KZO beam would give twice the decay rate of a pure KO beam, intol =1,

0 . o
K. half of the beam contributes to KO—> 3w in the I = 1 state, Therefore a

In terms of amplitudes we should therefore multiply the K9 decay amplitude
0
by +A2 to get the'KZ decay amplitude, (The choice of sign is arbitrary,
: . 0
since charge conservation prevents interference between KZ and K* decay;

the relative phase of KZO

and-K+ has no physical consequence, )

- Finally we can write the decay rates, remembering that, for instance,
(++-) and (-+4) are distinguishable and do not interfere, After including a
factor of 2 for K“; decay, as discussed above, we have, from Eqs. (109),
(107), and (108), ;

+ 2 2 2
R(K '~ ++-)=2/3-1/3 - {|A + B["+|B+C["+|C+A["}, (110)

-
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R(K'~ +00) = 2/3 - 1/3 - {|af + [Bf + [c[ }, (111)

R(K, ~+-0)=2-1/3-1/3{z]|aP +2|Bf +2|c[}, (112) |

R(KZO—>000_) 2ol/3°l/3{iA+B+C]2}, '(113)

These equations contain the predicti;)ns Qf the. AL =1/2 rule. We can
‘think of A, B, and C as functions of the momenta in the de;:ay° Then the
equations refer to a given configuration. (We consider only the:.rates and
not tﬁe spectra. See Rosenfeld's nbotes for spectral considerations, )
From Eqs. (110) through (113) we find
R(KZO ~ +-0) = 2R(K" > +00) , (114)
~and R(E.(Jr - ++-) - 'R(K+-> +00) = R(KZO - 000). | (115)
Equations (114) and (115)_ hold for any choice of A, B, and C; in other words
for any admixture of the symmetric I =1 state S, given by A =B =C, and

the mixed symmetry states 1\_/[1,, and MZ . These two equations give: the

best tests for the ALl = 1/2 rule,9

The symmetric I = 1 state S plays a dominant role, empirically, as we

shall see, We therefore write down the predictions for this state, Taking
A =B =C in Eqs. (110) and (111), and then in Eqs. (112) and (113), we
obtain |

R(K' = ++-) = 4 R(K" - +00) , (116)

R(K, - 000) = 3/2 R(K » +-0). (117)
Notice that if the AL =‘l/2 rule holds then.I = 1 is the only allowed 3w state,
However;, I = 1 can be reached through either Al = 1/2 or Al = 3/2
Equations (116) and (117) hold only for the symmetric [ =1 state. We will
find they are well satisfied experimentally; but of course this has not much

bearing on the Al = 1/2 rule, since Al = 3/2 can reach this state. On the
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other hand, Eqgs. (114) and (115), which relate the charged and neutral decays,
depend directly on the Al = 1/2 rule through the spurion equation (109), and
do not hold when AL = 3/2 is present,

Before giving the predictions when AI = 3/2 is included, we turn tp the
experiments, We include phase-space factors and will indicate their insertion
by a double-stemmed arrow, => . From (116) we have, for the state §v,

R(KT> +00)
R(Kt—> ++-)

= 0.25 =>0.311 . (118)
Recent experimental values are summarized in Ref, 10, and average to
0.298+ 0,025, The agreement with (118) is excellent, We conclude. that the
~symmetric I = 1 state (S) is important.

From (117) we expect, for S,

R(KZO ~ 000)
=1,5 =>1,82. (119)

R(KZO - +-0)
Results from Dubnya presented at Geneva-(1962) by Anikina et al, 2 give

R(KZO - 000)/R(K2O - all charged) = 0.38+0,07, Luers et al. 11 have obtained

R(KZO - +-O)/R(KZO ~ all charged) = 0,134%0.018 , (120)

Combining these two results, we obtain R(KZO - OOO)/R(KZO - +-0)= 2.851 0.52.
This result is in only fair agreement with Eq. (119). On the otherhand, the
disagreement amounts to only two standard deviations, and does not shake
our faith in the dominance of the state S.

We now turn to the prediction (114) of the AI = 1/2 rule. Alexander

+

et al, 10 have measured an absolute decay rate for K20—> ™ + L+ +v. When

this is combined with the branching ratio (120) of Luers et al,, they find

R(K) — +-0) = (1.44£0.43) x 10° sec”L, (121)
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This is to be compared withl2

6 sect, (122)

2R(KT - +00) - (2.78+0,22) >< 10
The agreement with (114) is very poor., Alexander et a1: quote 100/1
statistical odds against agreement,

We are thus motivated to look at the more complicated formulas that
result when the AL = 1/2 rule does not hold, We must also ask whether it is
reasonable to expect that the presence of Al = 3/2 could preserve the beautiful
agreement of (116) with experiment and still give the expected disagreement
with (114). The point here of course is that once we.allow Al = 3/2 then we
must allow I = 2 {(for 37) in K+—-> 37, alsvwell as I =1, and (116) should pre-
sumably not hold, '

We now give up the Al = 1/2 rule and allow Al = 3/2, We still omit
Al =5/2 and 7/2. (They will be included later!)

With AI = 1/2 and 3/2 we can reach I =1 and 2 in K> 3w, and I = 1
for KZO —- 37, (CP invariahce rules outl =2 for KZO - 3m,) The relation
between K and KZO decay for AI = 3/2 going to I = 1 is given by a spurion

-equation similar to Eq. (109), namely, from Table I,
- s(3/2,+1/2) =~N1/3 K~ v N2/3 g% vO . {123)
In the arbitrary constants A, B, and C in V+ and V0 we use. subscript 1 for

Al = 1/2 and subscript 3 for AL = 3/2. We have, then,

1!

v c, (124)

1

1 =AA +B B +C

V,=A;A+B;B +C,C., {125)

Thus for the I = 1 part of the wave function we have; using (109) with (124),

and (123) with (125),
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s(1/2,1/2) +s(3/2,1/2)

K- [«/W?V;' +N1/3 V3+ ]

+RO [NI73 V) +N2/5 V)]

=NI/3K {(NZ A +4)) At +(NZ B +B,) Bt + (N2'C +C,) ct)

+N1/3 R° {(-a,+N2 A)) AO+(-B1+'\/7B3)BO+(-C1+4\/EC3)CO},

oy
—
—
"
—
A
1

But
AT = N1/3 [(«) ntn” + (o) woat - (o) 70207,
B = N1/3 [« («") o™ + o (ah) ot - 20(xt) #0] ,
ct= NI/3 [atn (oh) + nont (oh) - 70x0 (a1)] ,
A% NI/3[(+0) ntrm + (x0) w7t - (x0) 0407,
B = N1/3 [x7(x0) n= + 7 (n0) «t -n0(x0) =07,
cO= V173 [nTn (20 + woat (v9) - 7040 (=0)] .
Combining these, we find
Y(I=1)=1/3K" {(r\/?Al tA;+ «/z—B1 + By)(++-)
+ ('\fZ_Bl + B, + »\]—Z"Cl + Co)(-++)
+(N2'C, +C, +N2Z A + A)+-+)
-(NZ'A; + AJ)(+00)
-(N2 B, + B;)(0+0)
-(N2 G| + C;)(00+)}
+1/3K° {(-A; +NZ A [(0+-) +(0-4)]
+ (-B1 + ﬁB3)[(+O-) +(-04)]
+(-C + N2 C)[(+-0) +(-+0)]
+(A -NZ Ay + B -NZ B+ C - ~Z C)(000)} . (126)
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We still need the I = 2 wave function for 31, for K™ > 37, There are
two possibilities, which we label with subscripts D and E. We have, from

Table V,

l(TF)Xl'(HZTI')

= N1/2 n+(1,0)2n+ 172 70 (1,+1),
= N1/2 - (NT/2 wtn™ = N1/2 n7nh)
+'\/WE 170 (N1/2 ‘lr_+'r'rO < N1/2 1701r+

= 1/2 [(++-) - (+-4) + (0+0) - (00+)] ,' (127)

lit.

Y (2, +1)

and from Table VI (and Table V)

il

1(w) x2(2w)
NI/3 w7 (2,42), +N1/6 10 (2,41, NT/2n"(2,0),_
=NI/3 nnin +N1/6 10 W1/2 7m0 +n1/2 w0n"

N1/2 7T [N1/6 nin” +N2/3 100 +NT1/8 = nt]
=N1/3 {(-+4) -1/2 [(++-) +(+-+)] +1/2 [{0+0)+(00+)] - (+00)}.
' (128)

b (2, 41)
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For the general case (for I = 2) we have the superposition

Y(2,+1) = Dy + By, a9
where D and E are complex numbers, and llJD and hlJE are given by (127)
and (128).

The corresponding spurion equation is not really needed, since we have
only K’ decay into [ = 2, and thus no coefficients rela.ting,K+. and KZO decay.
However, for uniformity of notation we include the spurion. We have, from
Table III,

1/2 (R)x2(3m)
«/WEK'(z,+1)3ﬂ-~/’z75_K°(z, 0),_. (130)

decay and is of no interest to us

s(3/z,+;/2)

The term involving KO corresponds to Klo

here, Omitting this term, and using (129), (127), and (128), we have
$(I=2)=N3/5K {Dyy+Eys}
=N3/5K™ {1/2 D -N1/12 E)[++-) -(004)]

-(1/2 D +N1/12 E) [+-+) -(0+0)]

+N1/3 E [(-++) - (+00)]} . (131)
Finally we combine (131) and (126) to \x‘/rite

$ = §(I=1) + (I = 2).

We can now pick out the coefficients for (++-), etc., and write the intensities,
From (131), (126), and the above equation, and including the usual factor of:

2 for KZO decay, we have

R(K+—> +4-) = I% [\/7(A1+ Bl) + (A3+ B3)] + %»\/175 (N3 D"’—E)‘[Z

+ |2 NZ(B, +C)) +(B,+C,)] +N1/5 E |2
+ |3 INZAC +A)) +(Cy+A,)- 2NT/5 (W3 D+E)|5(132)
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R(K" > +00) = {% [-K/?Al - A, =N1/5 E |
+ !%—[-'\/—Z—Bl - B, +%,\/175 (N3 D+E)|°
+'|%[—«/701_-c3 --21-«/175 W3 D - E)|? (133)

R(K, » +-0)= 2 {| 3 (-A, +NZ 4;)]% (1% +17)
+ 5 (-B, +NZ By |? (1% + 12

+3(-c +NZ G2 1F+ 1%}, (134)

and

0 1 > 2 :
R(K,~000) =2 {|3[A) + B, +C -N2(A;+B;+Cy)]["}. (135)

Equations (132) through (135) are completely general for Al = 1/2 and
3/2., As a check we see that if we turn off the Al = 3/2 decay, i.e., set
O = A3 = B3 = C3 = D = E, we then get back our original equations {(110)
through (113). |

In order to simplify the equations, we now make two assumptions, (We

will later be able to verify that these were good assumptions. )

Assumption I, Assume that Al = 1/2 dominates. That is, neglect quadratic

terms in A3, B3, C3, D, and E, but keepb_linear terms in these quantities.
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Assumption II. Assume that the dominant terms-that is Al = 1/2-go completely

to the symmefric I = 1 state, but that Al = 3/2 is completely free in this respect,
Assumption Il is motivated by the good agreement o (116) with experiment,
According to assumption II we have

A =B, =C (136)

We choose units so that

Next, expand Eqs. (132) through (135) , dropping the quadratic terms accord-
ing to assumption I, It is easy to see by inspection of (132) and (133) that if
Al = B1 = C1 = 1, then the linear terms in D and.E cancel identically; ‘and in

addition the linear terms in A3, B3, and G3 occur only in the combination

A3+B3+C3E 3a,. (137)
We thus find (neglecting quadratic terms),
R(K' = ++-) = 1/9 [24 + 24NZ Rea,] , (138)
R(K'>+00)=1/9[ 6 + 6~NZ Re a,l (139)
R(KZO» +-0)= 1/9 [12 - 24 NZ Re a,], {140)
and
R(KZO -~ 000)=1/9 [18 - 36 N2 Re a,] . {141)

We see that we have R(K+—>‘ ++=) = 4R(K+—> +00), and
R(KZ()_—» 000) = 3/2 R(K; - +-0); i.e., Eqs. (116) and (117) still hold!
However, Eq. (114) does not hold. We thus see that there is no incompatibility
between the good agreement of experiment with (116), and the poor agreement
of the experimental results (121) and (122) with (114), provided AL = 3/2 is

present,
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We must still verify that the Al = 3/2 terms are small, to justify our

neglect of quadratic terms. From Egs. {139) and (140) we have

?

0
2R(KY > +00) - R{K, — +-0)
'\/?Re a, = ( ' ) ( 2
4R(KT — +00) + R(K?f’ - +-0)
b 0
2R(K"— 400) - 0.97 R(K,’ ~ +-0)

- - 5 . (142)
4R(K" - +00) + 0,97 R(K, - +-0)

- Putting in the experimental values from (121) and (122) we find

Re a, = +0,136 + 0,053 , (143)
This is to be compared with Al =1,

We conclude from (143 ) that the neglect of quadratic terms is justified.
Furthermore, we see that the amount of Al = 3/2 needed to satisfy the experi-
ments is small, In fact, by comparision of Eq. (143) with Eq. {55) we see
that the ratio of the amplitude for AI = 3/2 to that for l_/Z that is required in
K- 37 is about the ''same'.as that requi_red_in K — 21 to explain the existence
of K+ - 1T++ 'rro., Thus the ratio of the experimental results (121) and (122) is
not actually in.disagreement with the Al = 1/2 rule, but rather is "expected, "
from the well -known inexactness of the rule,

We now turn to the question of the possible presence of Al = 5/2 and 7/2.
The AI = 5/2 decay can lead to 3w states with I = 2 or I = 3, The I =2 state
cannot be reached by KZO but only by Kf Therefore the AL = 5/2 spurion
equation relating,]i{+ and K [analogous to the AL = 3/2 equétion {130)] is of
no interest for I = 2, Weineed only the Kt amplitude, Aside from normaliza-
tion, we get the same answer as when we considered I = 2 in Kt = 37 v'ia

Al = 3/2, There we found that if the I = 2 amplitude is small (compared to

the I = 1 amplitude from AI = 1/2), so that quadratic terms are negligible,
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and if the Al = 1/2 amplitude goes to the symmetric [ = 1. state, then the
counting rates are not affected, - This conclusion still holds, {(This means
that I = 2 final states are difficult to detect, )

The Al = 7/2 decay can lead only to the 3w state with I = 3, Thus we
need consider only I = 3, from Al = VS/Z and 7/2 transitions, Both KZO and K"
can go to I = 3, so that the spurion relations are important. These are given
-by Table IV, We find

s(5/2,+1/2)

1/2 (K) X 3(3mn)

N4/7 1<;'(3,1)3Tr -N3/7 K°(390)3n, (144)
and
1/2 (K) X 3(3m)

N3/T KT (3, 1), +N4/7T K

s(7/2,+1/2)
0

(3, 0) {145)

3w °
We find the 3w states in the usual way. There is only one state with

I =3, givenby 1(w)X 2(2w). From Table VI (and Table V),

_ - 0 +
(3,+1)3Tr =nN1/15 « (.7,,,2)2Tr +N8/15 n (2, 1, +N6/15 w (2, 0),
=NI/5 vt + W15 70 W1/2 7 nl + N1/Z 700}
+N6/15 - N1/6 aiaT 4 '\/2.;3 w0n0 + N1/6 1r°'rr+}

=NT1/15 {(-+4) + (+-4) + (++-)}
+N4/15 {(+00) + (0+0) + (004)} ; - (146)
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(3,0)%:«/_17?“ (2, -1), +\/”375_n (2,0), +N1/5x"(2,1),
“NI/5 " {mz—non- +-Wz—n-w°}
iN3/5 70 (NT/6 ntn” +NE/6 w040 + N1/6 vt}
+N3/5 7= W72 ota® +N1/Z «00T )
= N1/10 {(+0-) + (+-0) (0+-) + {0-+) + (-+0) + (-0+)}
+ N2710 (000). , (147)

We now associate the complex numbers F_ and G7 with s(5/2., 1/2) and

5
s(7/2, 1/2), and write, for {, (omitting AI = 3/2),

U=s(1/2,1/2) + F, s(5/2,1/2) + G, s(7/2,1/2)
:W?K'Vf-«[ﬁ?ﬁovlov
+Fy (NE/7 K™ (3,1), -N3/TR"(3,0); )
+ G, OJ§77_K_(3,1)3ﬂ4-4277'ﬁp(3,0)3"}o

For Vl+ and Vlo we use Eqgs, (107) and (108), with A = B = C = 1 (assumption
that symmetric I = 1 dominates for Al = 1/2). Using Eqs. (146) and (147)

and collecting common terms, we have

b =K {Z"/_ ,\) F + ~/3 G YI(++-) + (+-4) +(=+4)]

105 105
+'“105 F +254105 Gy) [(+00) +(0+0) + (004)]}

-K {( +rJ »J G [(_0+-)+(o-+)+(+o-)+(-0+)+(+-0)+(-+0)]

+(-14+2 -2 J G-) (000)} . (148)
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Finally we can write down the counting rates, keeping only linear terms
in Fg and G5v, ‘We now include the terms due to Al = 3/2, as appearing in
. (138) through (141), We thus obtain from (148) the relative counting

rates

R(K' — ++-) = 1/9 [24 + 2442 Re a, +36NZ Re (“/105 F, + = 55 7)1, (149)

R(KT —+00) = 1/59 [6 + 682 Re ag - 3682 Re('\/lOS + 1(3)5 G )}, (150)
R(K20 - +-0) = 1/9 [12 - 24N 2 Re a, + 72 Re (:\f Fg - % G, (151)
and

R(KZO —~000) = 1/9 [18 - 3682 Re a, - 72 Re «/ =5 N ‘.1,0 G7)] . (152)

By inspection of (149) and (150) we see that for the ratio R(K+—>++-)/
R(K+—> +00) to equal 4, in agreement with experiment [following Eq. (118)],

we need, within rather small experimental errors,

3
Re( 105 F + 105 G 0. (153)
The. most reasonable conclusion is that
= = 154
F. =0, and G, = 0, (154)

The unlikely possibility that the result (153) is due to an accidental cancelation,
i, e,,
N3 G, =-N4 F, {155)

0

can be checked by measurement of the ratio R(K2 0

-000)/ R(K, — +-0).
According to (151 ) and (152) this ratio should be 3/2 (plus phase-space
corrections) if (154) holds, but not if {(155) holds. The present experimental

| results are consistent with {154) but are not accurate enough to rule out (155),

[See the discussion following Eq, (119)., ]

In summary, the evidence from K -» 37w branching ratios indicates

(a) Dominance of AI = 1/2,



(b)

(c)

(d)
(e)
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Dominance of the symmetric I = 1 state,

Roughly that amount of Al = 3/2 going to I = 1 expected from

K+—> ‘rr+1roa B

Negligible amounts of Al = 5/2 and 7/2 going to =3,

Possibly small amounts of I = 2 in K+ decay from Al = 3/2 and 5/2.
These could be present to, say, 30% in the amplitude (relative to
Al = 1/2) and still be undetectable via k' branching ratios, since
they give no effect in linear approximation, and the quadratic terms

should give effects of < 10%., (If I =2is present, the Al = 3/2 and

5/2 contributions can be separated only by comparing Klo - 37

‘with K > 37,)
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Lecture V., THE AI = 1/2 RULE FOR LEPTONIC K-DECAYS

We begin with a summary of the decays we have studied so far, and
also the strangeness-conserving decays, by means of a Puppi diagram, which
is constructed as follows. A decay, for instance n - pe v, is written in

' Similarly,

— - + :
transposed form, pn — e+v, Then pn and e v are called ‘'vertices, '
+ + + + - - -
B —e v becomespy v-—>e v, o tp—-n+vbecomespn—-> ptv, A->pe”v
becomes pA — e+v . (We do not need to distinguish between v, and vH,) A
given vertex is characterized by its quantum numbers for the strongly inter-
. . — +
acting particles, Thus the pn vertex has the same quantum numbers as « ,
— + + .
and p A the same as K+. We therefore call these the m and K vertices,
Transitions are assumed to occur between any pair of vertices, (With each
vertex we may associate a ''current. Then transitions between two vertices
are due to interaction between the two currents.)
. R + + + + ..
Until recently the four vertices e v, p'v, 7 , and K seemed sufficient
to summarize all known decays. One had a Puppi tetrahedron. [in addition
one has the charge-conjugate diagram, | In our discussion we will need two
additional vertices, Since a Puppi hexagon may become unwieldy, we use a

"Puppi Table.'" For each vertex we give the total charge Q, strangeness S,
PP g g g

isotopic spin I, and its third component 13, for the strongly interacting

particles only., Thus Q = 0 for the e+v vertex (and so are S and I} since there

are no strongly interacting particles, By this convention, Q is not conserved
in Tr+ — p +v, although of course the total charge is conserved, For each
vertex the baryon number is zero, and Q, 13, and S are related through the

famous formula

Q=I+§, (156)
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The two additional vertices, needed in our later discussion, will be named
the (3/2, 1/2) and (3/2,3/2) vertices, after their (I, 1'_3) values, The table

follows,

Vertex Q S I I Particles

3
ety 00 0 0 el
wty o 0 0o o puhv _
TI'+ 1 0 1 +1 1T+, P, Z+—./—X_, '\/_Z—lt(n+1ro - 17017+),
K' 1 +1 % +% K, pA, \/%—_nf'— «/g p X0 @K%*- @K%O,
(%,4‘%—) 1 +1 % +-é- '\/gnf)' J}«/-—‘g—:p'z‘zo, «/?Kon’f +\/§ Kt n0, ---
(—,+-g— 1 -1 % +-g- =t , RO 41, ...

Puppi Table

The first three vertices take care of neutron 8 decay, wdecay, p decay,
and p capture, aﬁd (for example) predict 2+—>Ae_+v . v(An example of this decay
has recently been reported by Block et al. Z)

The K+v vertex is certainly present, since K+——>'p+v occurs, Transitions
between the K and -rr+ vertices can give only Al = 1/2 and 3/2. (We have seen
‘that both AI = 1/2 and 3/2 are present but that Al = 1/2 dominates, in non-
leptonic decays of strange particles,) If either of the two I = 3/2 vertices is
present, transitions to the 1r+ vertex can occur with Al = 1/2, 3/2, or 5/2.

Transitions between the (3/2, 3/2) vertex, which has S =-1, and the K+
vertex (S = +1) can lead to decays with AS = 2, For instance = - nn~ can
take place via

"A~RY 1" =(3/2,3/2),

N
1}
I

or. transposing,

(157)
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(Here the ''equals' sign represents a strong reaction that conserves the
quantum numbers of the vertex, and the arrow répresents the weak reaction. )
Since the decay = — nmw has not yet been observed, there has been good
reason to assume the (3/29 3/2) vertex to be absent,

Another argument {by Okun) against the existence of the {3/2,3/2)

vertex is provided by the smallness of the observed K 0_ K; mass difference,

1

The transition (3/2, 3/2) — (1/2, 1/2) allows Rn' = (3/2,3/2) —{1/2,1/2) = K'n"
C L 0(__»—40 0 . v _ 0.1 0,.,0
in first order; i,e,, K K ?ap1dly° Since we have K —_«/”z_ (Kl +K2 )
and KO= -L(Klo - KZQ), rapid transitions KO > KO would correspond to rapid
2 ' ' ,

change of the relative phase of Klo and KZOs i, e. to rapid time variation in

exp i(El- EZ) t/’ﬁ , and thus to a large mass difference m, - m,., If the

(3/2,3/2) vertex is absent, KO<—-+ KO can.only proceed in second order, via
KO<——> 1T+1-r’ > K? leading to a "'small"’ Klo - KZO mass difference, as seems
to - be observed.

The "AS/AQ = +1" rule, for leptonic decays of strange particles follows
from the exclusion of the (3/2, 3/2) vertex, We see from the Puppi table
that AS/AQ = -1/-1 = +1_for the leptonic decays {1/2,1/2) - LT v (L' means
et or p¥), and for (3/2,1/2) ~ LT v, but we have AS/AQ = +1/-1 = -1 for
(3/2,3/2) = LTy,

We now turn to the three-body leptonic decays K - wl.v. We have the

three possibilities

Kkt 0Lty : - {158)
K > oLty (159)
K> TLv (160)

and the three reactions obtained from these by charge conjugation. The only

possibilities are Al = 1/2 or 3/2 (for the strongly interacting particles, always).

-
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We can transpose all particles to the left side of the equations, ahd
add a spurion s to the right side, to conserve I and I (a5 well as‘Q and 8),

Reactions (158) and (159) have I, = +1/2 for the spurion, so that the s'pur'ion

3
" canhave I = 1/2 or 3/2. Using Table I we find the amplitudes
s(1/2, +1/2 L v {J KOt - 5/%1{* wo} (161)
and
s(3/2,+1/2) = {J 1 NS o 20}, (162)

(These correspond to the K and (3/2, 1/2) vertices in the Puppi table, )

Reaction (160) has 13

I =3/2, We then have

= +3/2 for the spurion, so that the spurion must have

s(3/2,+3/2) =E;v KO n” o (163)

corresponding to the (3/2, 3/2) vertex in the Puppi table. We define the com~-
e 2390 and azs corresponding to s(1/2,1/2), s(3/2,1/2),
and s(3/2,3/2), and write

plex numbers a

ar s{1/2,1/2) + 25, s{3/2,3/2) + 254 s(3/2,3/2)

=T [N2/3 2, +n1/3 a31] KOTr+

+ L'V [-NT/3 a;, +N2/3 a 0

+ Ty oa. K% (164)
v 33 iy °

Thus we have the transition-amplitudes

a(K+—>w0 L+v): ~N1/3 a, +aN2/3 azy =

Y

=a_, (165)
a(k’ =" L") = NZ/3 a, *NI/3 a, =a, O (166)
and a(KO - 1'r+ Lv)= a = a, . (167)

33

(The amplitude a corre sponds to AS = -AQ.) Under the assumption of CP

33

invariance we have

a® > 'L T)= a® o LTy = a (168)

and a®9> s Lty = akl >t LTy = 3. (169)
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[Equations (168) and (169) are not completely obvious, See remarks following
Eq. (176)]. Therefore for KO and K._o , since K.O. = (Koil_{o) , we
: : ' 1 “2 : 1,2 NZ

have

aA(KIQ—> T L+v) - L [a;(KO—ﬁTr—Lfrv) + a(ﬁo ->1'rmL+v )]

1t
[ —
al= 3
o
+
2

(170)
a(Kol—>-rr+L-v) I s SN S
| NZ
S [a+a], (171)
N2 '
and similarly
0 -+ 1 — .
a(K, > nm L v)= — (a -2a), (172)
2 N2
a,(KZ()—»nJrL'v): —l—(E-a)., {(173)
NZ
Thus we have the rates
.,VO_> -t _‘0_> I A 2 1 2
R(K1 ™ L v) = R(Kl T L__v) =1/2 IJ; all'+ A[; 2z, + a_33! , {174)
. 0 L T O,__> Fr = N 2 1 . 2
R(K, ~n L'v)=R(K, - 'L v)-l/ZlNc; al1+-J;—a3l as,]% (175)
and .
S A R Y 2 g2
R(K" > L,v)—l-.m[; ay, +«/; a31| . (176)

Before examining the predictions of Eqs. (174), (175), and (176)
we make some parenthetical remarks, First, time-reversal invariance
requires that a

, and a,, be all real, except for a common phase

11° 31 33
factor, (Finalflstate interactions are negligible here.)

- Second, in Eqgs. (168) and (169) we wish to invoke CP invariance,
not C invariance. In order to have interferi‘nga‘.mplitudes we must have

exactly the same configuration of charges, momenta, and spins. In the K

rest frame the configuration can be specified by giving the linear momenta,
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;i (i =7, L, v) and spins g. (i =L, v). Under P the spin is'unchanged, but

the I_D)i are reversed, Then we should write that from CP invariance,

a= a(KO—> n-L+v; 1—)1; (_I)i) = a(I—{O - TT+L—V; {;i; gi) s
and
a= a.(E_{O—» n—L+v_;f)>.;5>.) = a(KO I L™V;-p.;0.) .
%74 1774
Then
-4 _
a(K1 - L ,pl,ol) = — {a+2),
N2
— — _ :ﬁ. —_
a(K - "L V:Pi,o'i) —'\/—E(a“’a)s
a(KO»Tﬁ'LMV"-I—;; ag.) =—1—("aT+a)
l . 2 i i \/? 9
a(K'20—> 1T+L—V;-;i; a)i) =4 {a - a)
N2
Finally, then, Eqgs. (174) and (175) should read
0 .+ 0 4.- = = _ 1 2
- . s 0.) = —- 5=P. = = ja
R(K = 7 L'v; p;;0,) = R(K »a" L'v;-p;0,)= 5 |a +a[%,
and ‘
0 -+ > 0 +,-— .= _1 2
R(K, » 7 L v;p;;0;) = R(K, —n L v,-piin)—Zl la +2 |%.

These equations should actually be modified once more. Since_f;'Tr +]_;L +—§v = 0,

o -

P_» Pp,» and P, cannot form a pseudoscalar, and the entire configuration
-P_» -Pp,s P, can be: rotated until it coincides w1th\ P.s PP, - (This is
allowed since the K spin is zero.) In this rotation the spins are also reversed,
Thus we have R(Kf - Tr_L+v;_§i;a>i) = R(Klo - 1T+L—‘ Tf;f;ira’i) and similarly

0 0 -+ 0 +oo-—
for KZ decay. Thus the spectra for KZ’ -7 L v and KZ -7 L v are the
same, and our use of (168) and (169) is justified, as long as we do not measure
spins,

Next we consider the predictions of Eqs. (174), (175), and {(176). We

first sum over both signs of charge and let

R(KIO» » LY+ R(Klo ~ LTv)=T, T
R(KZO» L)+ R(KZO ~7'Lv)=T,, (178)
and R(K+—> 'rrOL+ vy = T . (179)
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Y

The predictions become

I = NZ/3 a) +N1/3 a;, +a,,1%= [a+a|?, (180).

I‘Z = I'\/273 ar, +N1/3 azy - a33'|25 la —EIZ, (181)
2 12

L, = |-N1I/3 a), +N2/32,,[" = [a,]%. (182)

The predictions for some special cases. follow:

l.- Pure Al = 1/2 Rule, (Includes AS = +AQ rule,)

We have all ;f 09‘ a.?’l = a33 = 0, Then
I‘l = 1"2 =2l . (183)
2. AS = +AQ Rule. (Without AL =1/2 rule.)
We have ass =0, all‘%' Q, asy # 0. Then
I =T, #2T,. | (184)

3. No AI = 1/2 Rule. (For three-body decay.)
By this we mean aj, = 0; as; #0, ass # 0. At first sight we might expéct
that the existence of K+—>p + v would guarantee aj, # 0, since we can write
('K+1TO)I=1/Z =K" ~ p + v, where the ""equals' sign corresponds to a strong
reaction,‘ But conservation of angular momentum and parity forbids the
strong reac’gion in this case, (Of course there are other possibilities,) Thus
.we should not assume, a priori, that ayy ;é 0, for three-body decgy,

The No AL = 1/2 rule is easily seen to lead to a quadratic relation

between the counting rates, namely

T2 - )
(Ty=T,)° =4 T (I)+T, - T,). - (185)
If we let
X = rl/r2 (186)
and y=1,/T,, : (187)

then (185) becomes

x =142y +NI+8y . (188)
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4, No (3/2,1/2) Rule.

We mean-a,, = 0, a #£0, asz3 ,'é 0. Then we have the quadratic.relation

2 _
(Fl mI‘Z) =16 1"_|_<(I“l + 1"2 - 4F+) ) {189)
which is.equivalent to
x=1+8y+ 2N8y . | (190)

5, Takeda Rule,

The intermediate -boson scheme of Takedal? allows all of all‘ 5 a3l,

and a,, to be nonzero, but imposes the constraint

333 N3 2

33

- (191)

[Eq. (191) is equivalent to Eq. (48) of Takeda's paper, However, Takeda's

Eq. _(48) has a typographical error--the factor (1/3)-1/2 should be replaced

+l/2,, (Private communication from G, Takeda.)]. If we insert

by (1/3)
formula (191) into Eq. (181) and compare the result Wifh Egs. (182) and (180)

we find the predictions

r # I, =2r, . (192)

Remarkably, one of the predictions--namely FZ :vZI"+--coincides with a pre-
diction of the pure AI = 1/2 rule. [See Eq. (183).]
We now turn to the experiments. The K+ rates are obtained by

combining branching ratios from emulsions and bubble chambers, and the

K+ lifetime from counter experiments, 13 The combined rates for

K - e" 70y and }J.+TTOV give

L, (et,u*) = (8.2540.59)%10% sec ™t (193)
The rates for Klo

a number N of K0 produced at time t = 0, by means of a reaction like

and KZO are obtained as follows, Suppose one has

KT +n->k04p (194)

or T+ pA—>K0+A.., (195)
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At t = 0 we have, for y(t), the wave function in the rest system of the neutral

K-meson,

K0+ £0)
N2

For t >0 we must include the oscillating time -dependent factor

4(0) = [K%)=

exp (—iE_lt/’ﬁ) = exp -imlt),- and the decay factor ex,p(—)\lt/z), in the Kf

amplitude, and a similar factor for K 0

2 to get

Jegt) =\/_12; 1;(10 exp(-imlt-)\lt/z) + «/—1_7 IKZO exp(-imzt—)\ztf/z_)a

We now calculate the time -dependent amplitude for decay into 7 Ltv and

7'L7v, using Eqs. (170) to (173), to obtain

0

atr Ltv) = <K10 |v¢(t)> a(K~ L+ <KZOILM t)>4 a"(KzO .

)

:expz(-imlt - )\lt/Z) (a +F) . ,eXp(-_imZt-)\Zt/Z) (a - =)
N2 N2 N2 N2

Similarly,

exp[-imlt—xlt/.z] (Z+a) exp ['imzt“)‘zt/z] (g--a)
A | ) °

NZ N2 N2 N2

The decay rate is given by the absolute square, so that the two decay rates

a(1r+,L-7) =

(corresponding to a single KO att = 0) are
R(Li) =1/4 {.la+glz exp(-xlt) + via. "5:‘2 exp (-)\Zt)

:i:Z'(.’a.’lz— ’;lz) exp [-n(')\l+)\2_)t/2] cosAmt }, (196)
where the + and - signs in the cross term go Wi,th» LY and L~, respectively,
In the cross term we have sét equal to zero a term proportional to
sin{Amt) i m 5* a, Time-reversal invariance requires a ‘and>a to have a
cémmon phase factor, so that z%ais real, and I m2a *a.vanishes.

We see from Eq. (196) that att =0,
R(L*) = 1/4 {[a+3|% + |a-7 % £ 2(]a]®- 7|5}, (197)
IZ

i.e., R(LY = |a]®, R(L)=|7]%.
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Thus the ratio R(L')/R(L+)_at t = 0 gives.the ratio [Elzf/‘la.lz,,

If one adds the rates for LT and L~, the cross term in Eq. (194)
cancel_s, and one obtains |

R(LY) + R(L) = 1/2 |a+&|% exp(-2jt) + 1/2 |a -E_[Z,exp (-\5t)

=1/2 L) exp(-\;t) + 1/2 I, exp(-\,t). - (198)

1
Thus one. can ob’cain']."l and T}, by studying the time dependence of R(L+)+ R(L"),
without any knowledge of my -m, = Am, In this case, however, the result is
unchanged under the interchange of a and a, as is evident from Eq. (198).
Ely et al., 14 using KO produced by K’ in propane through reaction
(191), have studied the time dependence of decays.into w et and nte~ v s
using both Eqs. (196) and (198). They find, in disagreement with Eqs. (183)
or (184),
+
Fl(ei) =119t (199)
I, (e™) ha ' |
2
This is.in bad agreement with the prediction of the AS = +AQ rule. (They
are not able to find the absoiute rate for I‘l or 1"2, since their sample is
highly selected, so no comparigon-can be made with F+ .)
Alexander et al., 10 using K0 produced via reaction (1'9_5); in the 72 -inch
hydrogen chamber have. studied the time dependence of (-rrie;v ) +(1ri p;v).
No separation of charges was made, so that Eq. (198) was used, Combining
the decays into e and pi, they find

F,l.(ed: s Hi

) .
_ +6.0
) = 6.,6_4'00 . | (200)

They also measure the absolute KZO rates, and find

,Fz(ei’”i

T, (e*, 1*) = (9.31£2.49) x10® sec™h. (201)
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This is accomplished by using decays with sufficiently long K_O flight time to

-10 0

insure that the K 0 have completely decayed (7, ®0.9X10 sec) but the K2

1
have not (‘7"‘2 ~ 7X10-8 sec,). Comparing (201) with {193) we see that the

prediction, -FZ = 2P+u°f the Al = 1/2 rule, or of the Takeda rule,: is not
satisfied, ‘ g
Crawford et al, 15 used,K0 produced via reaction (195) in the 10-inch

hydrogen chamber. They found

+ +
Iple™, po) _ 35139
i) - o _207 °

— (202)
(e, p

The chamber was too.small to get rid of K 0 by attenuation in time, so that

i

to measure F‘Z (ei, pi) they had to assume. a value for 1"1/“1"2 . They assumed

I = 1—"2 [this is not in disagreement with (202)] and found

1
r (ei,pi) = 20°4-+7"2 X 106 sec-l, {203)
2 -5.6
if Fl = FZ . If instead one assumes ]."}‘/1"2 = 9, [this is taken as a compromise
between (199) and (200)] one obtains from the same experiment
].—‘Z(e:h,p.:t) - (8.5+2.8) X 10° sec”!,  (204) .

This agrees well with the result {201) of Alexander et al. (whose result does
7not depend on'I"l/]."Z), and poorly with the prediction of the Al = 1/2 rule, or
the Takeda rule,

Let us next see whether the '"No Al = 1/2 rule' can vbve ruled out, We
want to test Eq. (188). The KZO experiment of Alexander et ala,"lo, combined
with the K+ results of other experiments, 13 gives, from (201) and (193),

r(e¥, 1) /o (e*, 0®)

gy =
= (8.25+0.,59)/(9.3+2.49) = 0.89+£0.24 . ~ (205)
We i.nsert this into (188) to predict‘(if a;, = 0),
x =1 +2(.89) + VTT8(.89)

2,78+ 2,85

(5.63+ 0.83) or (0% 0.15), (206)
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where we have included the statistical errors in the last ‘s‘teIS.,' The '.pure.vdiction
(206) of the “No‘ Al = 1/2 rule' is to be compared with Eq (200), the value
_obtained by Alexander et al,, namely x = 6.6x5. We see that the No AI =1/2
rule (for three-body leptonic decays) cannot be ruled out by the prleseht
experimental data.

We next test the '""No (3/2,1/2) rule, " through its predictioh (190),
which becomes, according to (205), ‘
1 +8(0.89) + 2n8(0.89)

8.,1+5.3

X

H

(13.4+2.7) or_(2,8i 1.2), ' (207)
where experimental errors are only included in the final step. Neither of
these predictions can be said to be in strong disagreement with the experi-
mental result (200);

It is clear that more data are needed, to find the relative amounts of

1 and.a 32 and to see whether universality holds between e and p.

11’ 23 3
Lastly, we must remark that part of our discussion has been over-

simplified, Equations (180}, (181}, and (182) should be interpreted as giving

the counting rates for a specified configuration of all the momenta and spins,

Then ay1r 2310 and a,, are not constants, but are complicated functions of the

33
configuration variables, the function depending on the dynamics of the decay.
The comparisons of experiment with the predictions of the "pure Al = 1/2
rule” [Eq. (183)], the "AS = AQ rule' [Eq. (184)], and the "Takeda rule"
[Eq. (192)] are not affected by the fact that we have suppressed information
on the spectra, since these predictions are such that they refer both to a
given configuration, and to the total decay rates, and in fact to the surﬁ over

e and decays‘,i However, predictions (188) and (190}, of the "No Al = 1/2

* rule''and the '"No {3/2, 1/2) rule', while they do hold for a given configuration,
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are not applicable to the total decay rates, nor to a sum of e and p modés,
The reason is that these (quadratic) predictions:do not involve simple ratios,
Therefore the "predictions' (206) and (207), and subsequent comparison

with the experimental result (200), would make sense only if the form factors

were all the same function of the configuration

involved in ajps 2330 and a

3 33
and furthermore were the same for e and p decay. Thus, only to the extent
that the spectra correspond to phase space alone~and to the extent that we

neglect the p-e mass difference!~can the comparison.of (206) and {207) with

(200) be justified.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

.B.  Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in’
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor:
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