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* STRANGE-PARTICLE DECAYS 

. Frank S. Crawford, Jr. 

Lawrence Radiation Laboratory 
University of California 

Be:rkeley, California 

November 2, 1962 

INTRODUCTION 

UCRL-10540 

,:, ·; 

In these lectures we discuss the weak decays of strange pa.rticles, In 

particular, we discuss the present evidence concerning the A.L::___!L2 -~ 

the nonleptonic decays, and the 6.I = 1/Z and 6.S = 6.Q rules in the leptonic 

~ 
decays of strange particles. 

We consider the hyperon decays 

A_. N+n, 

::E-+ N+n, 

and ~ -+ A+ 1r 

and the K -me son decays 

K _,. 2rr 

K _,. 3rr , 

and K -+ rr + L + v, where 

L (lepton) stands for e or fl. 

I will assume that the students are partly familiar with the material in 

1 Gell-Mann and Rosenfeld. I will furthermore try to avoid repeating material 

given here at Varenna by Professor Rosenfeld. 

~:c 

Lectures given in the course on "Elementary Particles, 11 

Enrico Fermi International School of Physics, 
July 23 through August 4, 1962, at Varenna, Como, ItalyA 
(To be published by the Italian Physical Society 
in the Proceedings of the Varenna summer school.) 
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. . 
The five lectures are as follows: 

I. Simple introductory examples illustrating invariance (or lack of 

invariance) with respect to S, I, I 3 , P, T 9 and Gin weak decays. 

II. ·Review of the defin~tion and measurement of the decay parameters 

a., j3, and '{ in hyperon decay. 

III. .6.1 = 1/2 rule. for the nonleptonic decays K ....... 21T, A - N + 1T, 

E: ....... A+ 1r, and !: -N + 1r. 

IV. K ....... 31T and, the .6.I = 1/2 rule. 

V. The .6.I = 1/2 rule for leptonic K decays., 

There. will ?e no attempt to give complete references, especially to 

"well-known" re suits. 
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Lecture I. INTRODUCTORY EXAMPLES 

We begin by considering the quantities S, I, I 3 , P, T, and C. All of 

these (except T) are conserved in the stronginteractions but not in the weak 
. . 

interactions. ]'(time -reversal) invariance is usually assumed to hold in 

. both the strong and weak reactions. (There is no experimental evidence to 

the contrary. ) 

To illustrate nonconservation of (S, I,_ I
3

) in weak (decay) interactions, 

consider A -p + rr-. We have (S = -1, I = 0, I 3 = 0) A -. ( 0, 1/2 or 3/2, -·l/2)prr-· 

Thus none of S, I, or I
3 

is conserved. Notice that I ~I3 ! = l/2 but that 

.D.I = l/~2. 

We now turn our attention briefly to P, T, and C, using a minimum 

of formalism. 

In c'onsideririg the meaning of P (parity) conservation.( or nonconserva·-

tion) we will use.mirrors. The space inversion x, y, z -+ -x, -y • - z is \ 

z, followed by a l (for example) equivalent to the reflection x, y, z .- -x, y, 

rotation R of !80° about the x axis, x, y, z,... x, -y, -z. Since R is assumed 

to have no observable consequences (i.e., the orientation of the system with 

respe~t·to Andromeda, for instance, is assumed to be irrelevant), it is 

sufficient to consider only reflections in a mirror. The behavior of an axial 

vector (spin) or of a polar vector (linear momentum) upon reflection in a 

mirror is shown in Fig. l. 

To designate a spin we usually usy ~ instead oft. Sometimes we 

use Q if the spin is perpendicular to the paper. 

We now consider, as an example of P conservation, the strong. process 

1r- + p ...... A + KO. Suppose the target prot~n is unpolarized. Let the plane of 

the paper be the production plane. Consider the three production configura-

tions of Fig. 2, which differ only as to the orientation of the spin of the A. 
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In case (i) the A spin is perpendicular to the production plane. In (ii) 
. ' 

the A spinlies in the production plane. In (iii), the A spin is opposite to 

that in case (ii). If we view process (i) in a mirror held parallel to the pro-

duction plane (plane of the paper) we 11see11 a process which we call (i'~- A 

real process (i.e., with no mirror) that looks· like (i 1 ) is also called (i 1). 

Notice that, in our example, (i ') happens to be indistinguishable from (i). 

Similarly the process (ii ') looks like (iii), and (iii') looks like (ii). The 

following statements are all equivalent: 

(a) "The process is invarianfunder reflection. " 

(bL "Parity is conserved in the process. 11 

(c) "The process p and its reflected process.];) 1 occur. with equal 

probability. " 

Thus if parity is conserved, processes (ii) and (ii ')-that is (ii) and (iii)-

occur with equal probability; therefore the A polarization components in the 

production plane must average to zero. Similarly (i) and (i 1) occur with 

equal:probab~fity. But these are the same process. Therefore a net polari-

zation perpendicular to the. production plane [as in (i)] is allowed (but not 

required). As a matter of fact, one finds experimentally that, in 

1r""+ p-+ A+ K 0 , the A's often have polarization of nearly 100% perpendicular 

to the production plane, but are never polarized in the production plane. 2 

Next consider the weak process A-+ p + 1r-. Consider the decay con-

figurations (i) and (ii) of Fig. 3. Here we have suppressed the arrows 

corresponding to the vectors representing linear momentum. We represent 

a spin-zero pion by a dot, and <7 spin-1/2 particle by f , and think of the t... 

picture as a diagram in momentum space; the position x, y, z of the particle 

on the diagram gives its momentum p ., p , p • (We will use this convention 
X y Z 

several times more in this lecture.) 
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The decay (ii) is the reflection of the decay ( i), for a mirror oriented 

as indicated. (Of course for any orientation of the mirror, (ii) is obtained by 

reflection of (i), followed by some rotation of the entire process. We have 

chosen the orientation of the mirror so a}to pr~serve the A spin direction, 

and thus avoid an additional irrele:vant rotation~') If P were conserved.in the 

decay, then process (i) and 'its reflection (ii) wohld occur with equal proba-

bility. Thus there would by' no _decay asymmetry for a polarized source of 

1\ 1s-as many protons would be ehlitted -parallel and antiparallel to the A 

polarization. The large "up-down" decay asymmetries (with respect to the 
! 

production plane) that are observed experimentally show that P is not con-

served in A-+ p + n -, and' also in most of _the other hyperon decays. The 

large asymmetries often observed correspond to nearly maximum parity ,, 

nonconservation in the decay, and to A's strongly polarized in the production 

process. The decay asymmetry determines a A 6, p A' where aA is the decay 

parameter, and pAis the 1\ polarization. That is, p A =(number of+ spins) 

minus (number of- spins) divided by the total number of 1\'s. These 

quantities will be discussed in more detail in the second lecture. 

Next we consider the consequences of T (time -reversal) in variance for 

hyperon decay. We will use the same type of pictures as before: diagrams 

in three -dimensional momentum space, with double -shafted arrows to rep-

resent spins. The application of T to ~physical state leads to a new state 

related to the original state through reversal of all linear momenta and spins. 

Furthermore an outgoing wave becomes an incoming wave. (Think of a play-

.. 

back of a movie film in reverse.) An incoming wave does not correspond to 1
•• 

an observable "final" state of free particles -the incoming particles must 

interact before one obtains an outgoing wave that can correspond to final free 

particles. Furthermore, consider a process in which an initial state i, say 
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a A, evolves into a final state f, say p + 1T • Then in the time -reversed 

picture the sense of evolution is reversed, and p + 1T- evolves into A. This 

process is of course unobservable by presently conceivable technique. How­

ever, in quantum mechanics, interchange of i and f in ( tj;f I HI t~;i) = m 

merely corresponds to complex conjugation, and thus does not affect lm[2
• 

Our pictures of course correspond to I m 12• We therefore draw pictures in 

which the initial and final states are both present, with labels i and f, and 

include a step called "complex conjugation" (c. c.) whichdoes not change the 

picture but interchanges i and f. 

Consider an initial state that consists of a A at rest (and therefore at 

the origin in Px• Py• P:z._~~ce) wi:~---~~~-~-~long_~_::__ It evolves into a final state 

that is an outgoing proton with momentum along +x and spin along +y •• This 

is picture (i), Fig. 4. (We have not chosen this configuration by accident, 

of course.) Now apply time reversal, T, to (i), to get (ii). Under T the 

A spin reverses, the decay proton spin and linear momentum reverse, and 

the outgoing proton wave becomes an incoming wave. The sense of evolution 

is reversed so A is final, f, instead of initial, i. Next apply c. c., to 

interchange i and f. Also perform a rotation R, of the entire process by 

180° about the y axis, so that the A spin is again along +z. R and c. c. 

give (iii), and are assumed to have no observable consequences. Finally, 

let the incoming P-:1T wave scatter and become an outgoing wave, corres-

pending to an observable final state. Here, if we were using the formalism, 

we would obtain an s-matrix element factor. Instead we will merely give 

two extreme illustrations. One extreme is a "weak scattering" in the final 

(£) state, so weak in fact that "nothing happens, 11 and the_ incoming wave 

becomes an outgoing wave with the same linear momenta and spins. This is 

picture (iv). In the other extreme example there is a strong spin-flip 
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scattering and the proton spin is reversed without deflection of the lirted:r 

momentum, to give picture (iv'). 

The following statements are equivalent: 

(a) "Time -reversal in variance holds in A-decay. " 

(b) "The decay corresponding to (iv) (for weak final-state scattering) 

or (iv') (for strong scattering) occurs with the same probability as 

that corresponding to (i)." 

From the pictures we see that if)he rr- -p scatte·ring is weak and if T invari­

ance holds, then the A polarization correspondingJo (i), is exactly canceled 

by the equally probable decay (iv), -so that there is zero net polarization of 

the type (i). On the other hand, if the rr-p scattering is strong, as in (iv'), 

a net polarization can be obtained. However, if the rr-p scattering phase 

shifts are known (at the decay momentum) .the effect of the scattering can be 

exactly taken into accoun,t, and one can still test T invariance. · We need not 

write down the formulas, which are well known~~ 

The decay parameter corresponding to the A polarization shown in (i) 

is called f3, with -1 ~ f3 ~ 1. We have f3 = 0 if T invariance'holds and the 

f scattering is weak. This parameter will be discussed in the second lecture. 

It is clear from the discussion of Fig~ 4 that one needs polarized A's in 

order to measure' f3 A" 

There are two measurements of f3 for hyperon decays so far. Cronin 

and Overseth2 find for A-+p + 1r- a value f3A = 0.19::t;:O.l9. This value is 

consistent with T invariance and the known rr-p phase shifts. Another result 

is that of the U. C. -Berkeiey-U. c: L.A. experiment. The experimenters 

find2 forE:---+- A+ rr-the preliminary result f3 .... - = -0.68±0.27. The 
1-4 ., 

experimental uncertainty is of course large. -but the large value of [3, if 

substantiated; probably indicates a strong A_;rr interaction. This should 
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not be surprising, since t~e * 2 :E: mass is near tp.f!.t o~ the Y 1 .re sonanc~,., , : _ 

Lastly we consider C invariance. Again we use the. exampl~r,of A 
' -~ __ ,; -~ r ' . 

decay. Charge conjugation C ~:Bplied to the process. A-+ p + 1T- gives the 

- - + process A-+ p +1r ,•. If C invariance holds. then these,two decays should 

occur with eq~al amplitudes for th~ same ,c;onfiguratio;n of momentum and 

spins. 

Insufficient experimental information is av~il~ble for A decay. Howeve!• 

/CPJ invariance al~ows us to ,substitute PT for C. We can then consider, .the 

,effect of PT invariance on A de,cay, since PT. does not change, A. into A. 

pu~ f?ictur~s will be s,imil_a:r to those usedpreviously. We will pf<;>ye, t:hat 

PT-:-invariance would, in the absence of final-state interactions, give_~ero 

for .the,c"up -down" decay. parameter aA. We start, with configuration (i), 

. of F'~g •. 5, which. i~plie s ~ source of polq.rized A 1 ~. Application of_.·. T giye s 
.- ' .· -· , .. _. . .. · . -· '· . . : 

,(iH,.,~ith, reversed l:j.near mo,m~nta and spins, with incoming P,-1T~. ~nd,_with 

i (initial) and £(final) reversed. Complex conjugation (c. c.) _and refl,e<;:tion 

P in a. v~:rtical mirror (chosen to eliminate .the need for a further rotation 
. ~ I ·, - - . . . . . 

to <;>rient the A spin) give (iii). The incoming £(final) wave scatters and 

b~come s an outgoing f. state. A weak f scattering ("nothing happens") is 

shown in (iv). , (\ strong scattering, i'n whiCh.the 1T- and p :r:everse their 

linear momenta (180° scattering) is shown in (iv'). The following statements 

~r~ equivalent: 

(a) "PT invarianc~ is satisfied in A .... p + 1T-. '' 

(b) "Decay-con.figu:ration (iv), for weak final state scattering [or (iv 1
) 

' ' ' . .. . ~ 

' ' 
, fo_r a partic~laf: strong scattering] has the .~:>arne probability as 

configuration (i)_~" 

We see that ~~y up-down, decay asymmetry implied by (i) is completely 

cancel~d ~y (iv), Jo'r w.eak scattering. Thus PT invariance (i.e., G 
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invariance) guarantees a. A= 0, in the absence of 'J'T-p final-state interactions. 

At the momentum of A decay ( 100 MeV/ c) the TI-p scattering phase shifts are 

1 
very small, so that "weak scattering" holds. Experimentally the decay 

parameter a. A is large. We conclude th~t A-+ p + 'IT does· not satisfy PT 

invariance. This was first pointed out by R. Gatto. 
3 
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Lecture II. DECAY PARAMETERS 

I.n this lecture we consider in detail the hyperon decay parameters 

a, (3, and -y, and how they are measured. In every case we have a parent 

particle of spin 1/2 decaying into a daughter of spin 1/2 plus a pion (spin 

zero). The decays of interest are A-N+ TI, ::E __.. N + TI, and Z -""':' A+ 'IT. 

Instead of speaking of "parent'~ and ''daughter, 11 we will for convenience 

take A-+ p + TI as a model, most of the time. 

Since the A has J = l/2, the p-TI- system can only be in the state 

Sl/Z or P 1; 2 • Call S and P the corresponding amplitudes. Let 1.\J + des­

cribe the TI- + p spin and space configuration for (J, J ) = ( 1/2, +l/2), and 
z 

1.\J_ that for (J, J z) = (1/2, -l/2). We can use the Clebsch-Gordan coefficients 

bf Table I to construct 1.\J+. We will represent the proton 1 s spin state by 

fi = (;) = (l/2, +1/2) and 

~= (~) = ( 1/2, -1/2). The orbital angular momentum state of n-+ p is 

given by yf.m( e, <!>). where e and <I> are the polar and azimuthal angles of 

emission of the proton with respect to the z axis {see Fig. 6). 

0 The appropriate spherical harmonics are Y 
0 

for the s
1

/
2 

state of 

1 0 -1 
TI-p, andY 

1
, Y 1 , andY 

1 
for P

1
;

2
• We use 

yO = 1 
0 

( la) 

y +1 = -~3/2 sin e ei<l> 
1 

(1 b) 

yO = J3 cos e. 1 
(lc) 

-1 .J 3/2 sin e e -i<j> yl = ( ld) 

That part of 1.\J + that corresponds to s
1

/
2 

can be written down without using 

. the table. It is just S Y g n = S • 1 • ~ • To obtain the P l/
2 

part, we use 

Table I, which gives the composition of l(P wave) X l/2 (spin). 
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Looking in the column (1/2, +1/2) [because we wq..nt ljJ+] we find the ~com­

po si!l9n--_____... 

o;2, +1/2) = .J273 (l,+lHl/2, -1/2) -M o. o)(l/2. +1/2). < --'·) t... .'-

Putting the s
112 

and P l/
2 

parts together, we have 

Similarly, using the table, we get 

' 
Using the spherical harmonics of ~q. ( 1 ), we have 

= (S - P cos 8) t - P sin e e i<j> ~ , 

ljJ = S~+ P [cos 8 ~-sine e""i<j>~ J 

= (S + P cos 8) ~ - P sin fJ e -i<j> ~ • 

use the orthogonality of the spin functions, namely 

= (0, 1) (~) = 1, = 

= IS-P cos e 12 
+ 1-P sin e 12 

2 2 • = I s I + I p I - 2 Re s -·- p c 0 s e . 

'IYJ:..-1
2 

= 'IS+Pcosei
2

+1-PsinfJI
2 

-. lsl
2 

+ IPI2 + 2Re s':'p cos e. 

It is customary to define 

a= 
* 2Re S P 

Is 12+,1P 12 

>'r: 
2 Im S P 

-
= 0; so that 

IS 1
2 +I p 1

2 ' 

( 2a) 

(2b) 

We 

= 1, 

< 

( 3) 

(4) 
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i ( 5) 

(nw 2 2 2 
(note that a + (3 + y = 1. ) 

Thep., from the above, 

( 6) 

( 7) 

Now suppose a collection of A's is partially polarized, with a fraction 

f+ in the state tP+• and a fraction f _ in the state t\J _, with f+ + f _ = 1. Then 

the ·weighted decay anguliH distribution is given by 

I t~J 1
2 

= f + I t~J + 1
2 

+ f _ I t~J _ 1
2 

= [ .lsj2 + jPj2 ] {(f+ +f_)- a (f+ -f_) cos El}. 

The polarization p of the collection of A's is defined to be 

'' . with - 1 .:s:; p A .:s:; + 1 • so that •,: 

The decay distribution for N decays is thus given by 

dN= N[l-apcosEl] d(cosEl) 
2 

1 
Notice that! dN = N, and 

. -1 

3 
- ap = N 

cos 

1 

E 

e · dN = -Nap -3-

cos e dN =* 

, so that 

3~i cos (;li 

N 

( 8) 

(9) 

( 1 O) 

(11) 
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where the sum is over all the decays, and where the arrow means 

"corresponds, for large numbers, to". Equation ( 11) is often used by 
\ 

experimenters. An equivalent formula is -ap = 2 {up -down)/{up+down) • 

We see that measurement of 11up-down:asymmetry" does not give a, 

but gives ap. Since the sign and magnitude of p are generally unknown, a 

measurement of ap gives a lower limit to ja I· That is, Ia I= lap I/ IP I:;:::::. lap I· 

In order to measure a directly one can measure the longitudinal polari-

zation of the decay protons from an unpolarized collection of A's. This is 

easily seen as follows. First, consider only proton emission along the 

± z axis. From Eqs. ( 6) and ( 7), with cos e = ± 1 we obtain the relative 

probabilities shown in Fig. 7. Notice that because of angular momentum 

conservation the proton spin direction must be the same as that of the A, 

for emission along the z axis (quantization axis), because the n-p orbital 

angular momentum can have no component along the proton 1s linear momen-

tum, and therefore cannot flip the baryon spin. The definition of the longi-

tudinal polarization of the proton, along its velocity v with respect to the 

A rest frame, is given by an expression analogous to Eq,~ {8). Using Fig. 7, 

we get, for the longitudinal polarization, 

N +- N- _ ( 1 -a) +(l -a) - {l +a) - (l +a) 
p(long.) = N +N 

+ _ {1-a)+(l-a)+(l+a') + (l+a) 
= -a A, where N± refer 

to ± v, and where we have used equal weights for tjJ + and tjJ _. Since the A 

collection is unpolarized, all quantization directions are equivalent, so that 

we can always choose the z axis to be along the direction of emission of the 

proton and be assured that tjJ+ and tjJ_ have equal populations. The above result 

therefore is general. 

One still has the problem of measuring this longitudinal polarization of 

the daughter. In the case of 2: -+ A + n one can measure the decay asymmetry 
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_. _. 
of the daughter A with respect to the direction of v A - vt;:;t' and thus deter-

mine a. A p A (longitudinal), 

2 
measures a. A ~ • 

using Eq. ( 11 ). 

...... 

But p A (long.) = -a'=' Thus one 
...... 

In the case of A-+ p + 1T one can scatter the decay proton for instance 

2 from carbon to look for a scattering asymmetry, using a spark chamber. 

Notice that if the A ( unpo1arized. ·coHectio.n) decays at rest in the laboratory 

system, then the proton has a purely longitudinal polarization in the labora-

tory system (where the carbon scatterer is at rest). When this proton 

scatters from carbon (spin zero) there cannot be any 11left-right" scattering 

asymmetry, merely from the symmetry of the initial p-carbon configuration. 

There also cannot be any front-back ( 0° versus 180°) scattering asymmetry 

that depends on the proton 1 s longitudinal polarization. This follows from 

parity conservation in the strong p-carbon reaction. We can see this with 

our mirror. Suppose an incoming iispin-head-on11 (as opposed to "tail-on") 

proton likes to scatter "strongly" (i.e., through 180°) from carbon. If the 

tail-on collision _ does not like to occur, we have a means of determining 

the polarization. However, the image of a head-on collision in a,mirror 

held par.allel to the proton velocity is a tail-on collision. By P conserva-

tion the two processes have the same probability. Thus head-on and tail-on 

protons both scatter strongly (or weakly), and we cannot distinguish the two 

polarizations (since parity is conserved in the strong reactions). 

One gets around this by using fast Aus that decay in flight. Then the 

_. -decay protons, which have a polarization along v proton - vA, can have a 

component 1 to -;;proton - ; carbon. It is then possible to get azimuthal 

asymmetry in the scattering. This is illustrated in Fig. 8, which is our 

usual diagram in velocity space. We choose the carbon at rest. The A is 

- -shown without an arrow, since it is unpolarized. If v proton - v A is along 
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±~or ± ~ we see that the proton has a transverse polarization of approximately 

-!11- ...... _. ~ 

-a. A cos (), where () is as shown. If v proton-v A is along v A- v c, i.e., along 

±y, there is no transverse po~arization. Thus about 4/6 of the decays are 

useful. 

We turn now to the problem of me'asuring the decay parameter 13. It 

was already mentioned in the first lecture that 13 is a measure of T invariance, 

and also it was shown that the proton polarization shown in Fig. 4 {i) (for 

a polarized A) must average to zero if T invariance holds and the scattering 

is weak {as it is in A decay). We will calculate the slightly more general 

proton polarization component shown in Fig. 9. We choose the A state ljJ +, 

i.e., 100% polarized Aus along +z. (Our final answer can then be multiplied 

by p A if p A f. + 1 ). We choose the decay configuration with <1> = 0, as shown 

in Fig. 9. This simplifies the formulas and corresponds to an unessential 

rotation of the axes. We wish to calculate (ay) • We have, fOr the state 

lj;+' 
lJ.I: ay lJ; + . 

ljJ: ljJ + 
{ 12) 

The denominator is given by Eq. (6). To calculate the numerator we use 

ay=(~ -~). ~=(~). ~=(~) ;ayf=i~. ay~=-i~; 
ljJ + = (S -P cos 8) ~ - P sin() ~ , ay y; + = i [ (S- P cos ()) ~ + P sin () n ] ; 
1':·~ = r~~ = 1, n>:c$ = ~~~ = 0; lj;;' ay lj;+ . 

= [(S- P cos() )>:< ~ 'i' P >:< sin()~':'] i [(S- P cos ()) ~ + P sin () ~] 

= i {(s - P cos 8) * P sin () P *sin () (S- P cos (;))} 

* 2 2 = i {2i I m S P sin ()} = - ( IS I + I PI ) 13 sin () 

Finally. then, for <1> = 0, and p A = 1, 

< ay) = 
-@ sin () 
1-acose • 

( 13) 
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Clearly, for p A f 1 we have, for <1> = 0, 

( 14) 

It is clear that our choice of <1> = 0 was unessential, and Eq. ( 14) gives, more 

... 
generally, the azimuthal or <1> component of polarization. 

The case shown in Fig. 4 (i) has <1> = 0, () = 90°. p A = 1, so that 

= -(3. Since we had previously concluded that this polarization must 

vanish if T invariance holds, we see that f3 is a measure of lack of T 

invariance (for weak final-state interac:tion). If T -invariance holds, S and 
. . 

P are "relatively real," i.e., S/P is real. 

The problem of measurement of <a··) .. y (of the proton in Fig. 9) is 

illustrated in Fig. 10. We see that as far as transverse proton polarization 

is concerned, we coUld use Aus at rest in the laboratory system and have 

four out of six "usefUl directions." However, we need polarized A's,. and 

polarized A's are not produced at rest; furthermore, the proton would then 

have only a few MeV, and woUld not penetrate a scatterer of reasonable 

thickness. For fast A's we see that only 2/6 of the decays are useful-those 

_._.. ,., - -
with vp -v A along ±y in Fig. 10. Of course, in the decay ~ __,.A+ 1r • "all 

four" directions of A emission in t.he production plane are useful~ 

One may ask: How can one in a single experiment measure a, using 

an unpolarized sample of parent hyperons, and f3, using polarized parents? 

The answer·is that, since the parent polarization must be perpendicular to 

the production plane, one obtains "effectively" unpolarized parents if one 

throws away information as to the orientation of the production plane. Crucial 

to this argum~nt is the fact that, for a spin-1/2 parent, the decay distribution, 

Eq. (9), is linear in p A cos 6, and so the term containing p A averages to zero 

when we average over the distribution. 
.. 
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We turn now to the measurement of y. From Eq. ( 3) we see that a is 

unchanged by the intercha.nge of S and P. Thus if we know a we know the 

relative amounts of S and P, but don 1t know "which is which. " That is, 

Js I I IP I= 1011 and IS II IP I = 1110 are indistinguishable. From Eq. (5) 

we see that it is the sign of y that tells us the correct ratio. (The magnitude 

2 2 2 of y is already known once a and (3 are known, since y = 1 - a -(3 • ) 

To determine which is which (S or P) we consider first the limiting 

case of pure S-wave decay for a lOOo/o polarized A, ljJ +. For pure S-wave 

there is no orbital angular momentum to flip the spin, and the proton polari-

zation is the same as that of the A for all directions of emission. This also 

follows from Eq. ( 1) if we set P = 0 to get ljJ + = S ~. 
We next calculate (ax) and (az) for the general case. We still 

set <P = 0 for convenience. (Since we have already calculated ( ay.) in 

Eq. (13). we are at present interested only in (ax) and ( az) • ) We use 

ax=(~~) .. ax n=! ax!=~;a~~+'=ax[(S-Pcos8) f-Psin8~] 
= [(S - P cos 8) ~ - P sin 8 1] . 

·ljj:<·ax ljJ+ = [(S-P cos e)':'~>:<- p':< sin 8 ~"''"][(S-P cos 8) ! -P sin 8 ~] 
~;: ~::: 

= - (S- P cos 8) P sin 8 - P sin 8 (S- P cos 8) 

2 ~ 
= 2 I pI sin e cos e - 2 Re s'''p sin e 

= 1 P 1
2 

sin 2 e - < 1 s 1
2 

+ 1 P f) a sin e. < 1s) 

Similarly, az =(~_~). az ~ = ~. az J =- ~ 
azlj;+= az [(S-P cos8) ~ -P sine~] 

= [ (S- P cos 8) ~ + P sin e ~ ] 
lj;:<a ljJ+= ((S-P cos 8)* ~*- p* sin 8 ~*J[(S-P cos 8) ~+ Psin 8 ~] 

= Is- p cos e 12 
- IP 1

2 
sin

2 e 

= Is 12 + IP 12 (cos
2 e - sin

2 e) - 2 Re s*p cos e 

= ISI
2 

+ IPI
2 

cos 28 -( lsl
2

+ IP'j
2

) a cos e. (16) 
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We can combine (16) and (15) into a vector a in the xz pl'ane. (We are not 

concerned with ay at the moment; we are not assuming (ay) = · 0.) We find 

ljJ+ = ljJ:< [ az ~+ax x] ljJ+ 

= Jsl2 z + IPI2 
[(cos 2e) z +{sin 2e) x 

- (Is 12 
+ I p 12 ) a [cos e z + sine X] • ( 1 7) 

But cos f) z + sin e x = q (e), where q is the unit vector along the proton 

momentum (in the A rest frame). And {cos 2e) z +(sin2e)x = n{2e), where 

n(2fJ) is a unit vector in the z q plane, making an angle 2 e with z. 
Finally we obtain, from these definitions and Eqs. ( 16) and (6), 

(a)= Is 12 .z + I p 12 n < 2 e) - < Is 12 + I p 12) a q <e) 

<IS 12 
+ I P 1

2
) [1 - a cos f)] 

( 18) 

In addition there is a y component given by Eq. ( 13) or by ( 14). If we do 

no~ have p = + 1 (pure ljJ + state) we obtain, by a weighted average over ljJ + · 

and ljJ _, the final general result 

fi' .(O)o p[is1
2 z + IPI2 ii(28)- 2Ims*p sinO a] -2Res*pq(8) 0 (!9) 

· · <1 s 12 + 1 P 12 ) [ 1 - a p cos e J 

For a pure P wave, IS I = 0, a = 0, 13 = 0 and we obtain, for the proton 

polarization 

<a ) = P ~ < 2 e) • 
P-wave 

{20) 

Then the proton spin lies in the plane of the emission of the proton (and the 

A polarization z axis). Proton emission at angle e gives proton spin at 2 e. 

For pure S wave we have 

<-> ~ a = p z. 
S-wave 

(21) 

The two extremes are illustrated in Fig. 11. 
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We can now put the proton polarization [Eqs. (19) and ( 14)] in a simpler 

form if we go to the unit vectors q, e, and$ corresponding to spherical coordi­

nates. See Fig. 12. Here q ( 8, cp) is a unit vector in the direction of emission 

of the proton, relative to A rest frame, and e and ~are unit vectors corres-

ponding to increases in() and <j>. By inspection of Fig. 12, we see 

~ = q cos () - e sin (), 

~(28) = q cos () + e sin e. 

Therefore for one part of the numerator of ( 19), we have 

Is 12; + IP 12 ~(28) =<Is 12 + IP 12) q cos () -<Is 12- IP 12) e sin() 

= <lsl2 + IPI2 )[q cos()- y e sine] 0 

Accordingly from Eq. ( 19) we find the general expression for the daughter 

polarization (a) . in terms of the daughter emission direction q, the parent 

A 

polarization pz. and the decay parameters a, (3, and y: 

q (p cos () -a) - p sin() (y {} + (3 ~) 

( 1 - a p cos ()) 
( 22) 

As checks, we see that for pure S wave we have a = (3 = 0, y = +1, and 

thus 

<a) = p [q cos () - e sine] = p ~ 0 

For pure P wave we have a = (3 = 0, y = -1, and find 

(a) = p [q cos()+ 8 sin 8] = pn(28). 

The lopgitudinal polarization of the daughter along its direction of emission 

is given by 

= p cos () - a 
1-apcosf)' 

which reduces to -a if the A polarization p is zero. 

(23) 

The expression (22) has the advantage that the usually used parameters 
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a, (3, andy appear explicitly, and the unit vectors are orthonormal. Expression 

( 19) has perhaps the advantage that it is easier to see the separate effects of 

Sand P wave. 

From Eq. ( 22), by squaring and adding the three orthonormal components 

(and by using a 2 + (3
2 + y2 = 1), we find the square of the magnitude of the 

proton v s polarization vector, 

(l-p2 )(1- a 2 ) 

(l-ap cos 0) 2 
(24) 

This means that if the A is 1 OOo/o polarized (p = ± 1 ), then for any given 

direction of emis sian of the proton, the proton polarization is 1 OOo/o, in some 

direction [given by (22)]. On the other. hand, if the A polarization is p f 1, 

the proton's polarization is not p but is given by Eq. (24). 

I 
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Lecture III. ~ T = l/2 RULE FOR NONLEPTONIC DECAY 

In this lecture we review the well-knowJ evidence that has led to the 

hypothesis of the ~I = l/2 rule, for nonleptonic decays. We consider the 

decays K _.. 2 n, A_.. N + n, E: - A + n, and~ _.. N + n, and will make calcu-

lations illustrating 1 spurion technique. 

1. The Decay K -+ 2n 

We consider thedecays 

+ + 0 K -+n +n, 

0 + -K -+n +n, 

and K o o + o 
-+n 1T • 

(25) 

( 26) 

( 2 7) 

Two pions can have total I = 0, 1, or 2. Let us use our Clebsch-Gordan 

Table V to construct the charge states for 2n with I = 0, 1, or 2. Reading 

from the table we get, using the notation lj; (I, I 3 ), 

lJ; ( 0, 0) = J1]} ( 1 , + 1 )( 1, -1 ) - J1]} ( 1, 0 )( 1, 0) + J1]} ( 1, -1 )( 1, 1), or 

lJ;(O,O) =~ {n+n- -1T0 1T0 + n-1T+}. 

Similarly we read, by inspection of the table, 

lJ; {1, 0) = ~ {n + n- - 1T- 1T +} , 

lJ;(l,+LY= ~ {1T+1TO- 1T01T+} • 

tJ;(2, O) = ~ {1T+1T- + 2nono + n-n+}. 

lJ;(2,+1)= ~ {n+no +'!Ton+}. 

( 28) 

(29) 

( 30) 

(31) 

(32) 

We do not need any other components in considering reactions ( 25 ), 

( 2 6), and ( 2 7). 

In this notation 1r + n- means that pion #1 is + 1T • # 2 is -1T 0 The expressions 

1T + 1T- and 1T-1T + do riot mean the same thing, since #1 and #2 may be distinguishable 

by position or by energy. 
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By inspection of Eqs. (28) through (32) we see that, upo'n interchanging 

the charge of #1 and #2, we have ljJ --+ ( -1/ ljJ, for I = 0, 1, or 2. 

Since the two pions are identical bosons, ~he total exchange of space 

(x), spin (a), and charge (Q) must leave ljJ unchanged. The pions have no spin, 

so we have 

(x)(Q) = +1, i.e., 

( - 1 )
1 

( - 1 ) I = + 1 , ( 3 3 ) 

where 1 is the relative angular momentum of the two pions. For K decay, 

the total spin J = 0, so 1 = 0, so (-l)I = +1, so I= 0 or 2 only. I= 0 is 

excluded for K+ by charge conservation, so K+ can go to 21T only in the state 

l)J(2, +1). However, K 0 can go either to l)J(2, 0) or l)J(Og 0). 

In discussing KO we must dist'inguish between K~ and K~, which are 

even and odd, respectively under GP. For 1T01T0 or 1r+1r-, CP has the same 

effect as interchanging the charge (when present) and 

two particles. Therefore CP = +1 (identical bosons). 

0 0 0 + -K
2 

cannot decay into 1T 1T and 1T 1T • 

space coordinates of the 

0 
Therefore K

1 
can and 

·~ ;>( ; Since K+ and KO have I = 1/2, the change of I in the decay of K+--+ 21T 

i~rd~rl = D.I = 2 ± 1/2 = 5/2 or 3/2. In K 1° _., 21r we have .D.I = 2± 1/2 = 5/2 or 3/2; 

or; 0 + 1/2 = 1/2. Thus .D.I = 1/2 is available for K~~ 21T, but not for 

K:+-+ 21T. The rate R(K+ _., 1T ++ 1r0 ) is only about 1/600 of R(K
1
° _., 21T). 1 The 

mpst natural explanation is that there is a selection rule that nearly forbids 

decays with .D.I = 3/2 or 5/2 but allows those with b.I = 1/2. This proposed 

selection ru~e is called the .D.I = 1/2 rule. If the b.I = 1/2 rule were strictly 

obeyed, K+ _., .1T + + 1TO would be forbidden. F rthermore K 0 --+ 21T would go only 

to ljJ ( 0, 0). By Eq. ( 28) we see that in that case the branching ratio 

0 0 0 R(K
1 

__,. 1T 1r ) 
----~--~~~------~--~----- -

( 0 00 ·0 +-R K
1 

_., 1r 1r) +R(K 1 -..1T + 1r) 

R(OO) (34) 
R(OO)+R(+-,) 
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would have the value B
1 

= 
1 

= T· This is close to what is 

. 1 
in fact observed • 

. Since K+-+ 1T + + 1TO does after all exist, we next calculate the effect on the 

prediction of B
1 

= 113, using spurion technique. 
1 

The spurion s (.6-I, L::.I
3

) is introduced in order to keep track of the 

change of I in the decay. One can think of the spurion as carrying off L::.i, 

so that one now has I conservation in the decay •. We illustrate by considering 

the K decay into 21T with I = 2. We assume that l::.I = 312 occurs, but that there 

is no L::.I = 512. We use Eqs. (31) and (32) to describe the 21T state. We hav~. 

using the notation (I, I3 ). 

K\112, +112}-+ tj;(2, +1} + s(3l2. -112}, 

Ko(ll2. -112> - tJ; ( 2, o) + s ( 312, -112 ). 

(35) 

(36) 

Here we have chosen the l::.I = 3/2 spurion, and have chosen L::.I 3 = -112 for 

the spurion in order to "conserve" I
3

• Notice also that because of the famous 

formula 

n S+B 
~ =I + 

e 3 2 • 
( 3 7) 

"conservation" of I
3 

implies strangeness (S) conservation. 

; · For convenience we now t-ranspose the K and the spurion to opposite 

sides of the equation •. To maintain conservation of I 3 we see, from Eq. (35). 

that we must reverse the sign of I
3 

when we transpose. From (37) this means 

that S also must reverse its sign. Eqs. (35} and (36} can be combined as 

·K(ll2}-+ tj;(2) + s(3l2. -112). 

After transposing we get 

s ( 3 I 2 ' + II 2 ) -+ lJ; ( 2 ) + K (l I i}. 

which means 

s(3l2, +l/2}-+ tj;(2, +1} + K-(112, -112}, 

and s ( 3 I 2, +l I 2} -+ lJ; ( 2, 0} + K 
0 

( 1 I 2, + 1 I 2) • 

( 38) 

(39} 

( 40) 

(41) 
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We now go to the Clebsch-Gordan Table III. According to Eq. (39) we 

want to compose 2Xl/2 so as to get (3/2, +1/2). We therefore look under the 

column (3/2, +1/2) to find 

(3/2, +1/2) = .J3/5 (2, +1)(1/2, -1/2) - .J2]5 (2, 0)(1/2, +1/2) 

= .J3/5 (2, +1) K- - .J2/5 (2, O) K 0 

= .J3J5 K - {.J 1/2 ( rr +iTO+ rr Orr+) } - .J2]5 K O {~ ( rr + rr- + 2rr O 1r O + rr -1T +) } • 

(42) 

Similarly we consider the .6.1 = 1/2 spurion. This cannot be obtained 

by composition of 2 X 1/2, but only by OX 1/2, so we have, analogous to ( 39), 

,. l 

s(l/2, +1/2)-+ K(l/2) + 4;(0), 

or (1/2, +1/2) = (1/2, +1/2)(0. 0) 

= Ko.Jl/3 {7T+1T--1To1To+1T-1T+} 

(43) 

(44) 

~uppose now that both .6.1 = 1/2 and 3/2 occur, with amplitudes a 1 .and 

a
3

, respectively. Then from (44) and (42), the total amplitude is 

4; = a 1 (1/2, +1/2) + a
3 

(3/2, 1/2), or , ;u; 

4; = K 0 [(7r+1T-+7r-1T+)(.JJ73 a
1

-.J2/30 a 3 ) + 1T01TO(-.J1/3. a
1 

-2.J2/30 a 3 )] 

+K-[(7r+1T0+1T01T+) 1\.)3/10 a
3
]. (45) 

-0 We now remark that the overall relative phase between the K and K 
. :_!_;.·,. 

p~rts of 4; has no physical meaning. This is because charge conservation 

prevents "interference" between K 0 and K-. We can only compare intensities. 

We next recall that it is K~ decay we are interested in, not KO or K 0 • 

In Eq. (45), that part of ljJ proportional to K 0 (1T+1T- + 1T-1T+), for example, 

represents (after transposing), the amplitude for KO __.. ( 1r + 1r- + 1r-1r +). Now, 

K 0 = KO +KO 
1 1\}2 

(46) 

We have chosen the final state of 21r so that it corresponds to K
1
° decay. 

Thus as far as decay into a state with CP = +1 (K~ decay) is concerned, the 

0 -0 K and K behave in exactly the same way. 

.• 
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That is, they interfere constructively in just such a way as to give. CP = + 1. 

:-0 . + -. + . 
Therefore the amplitude forK -.: (iT. iT +iT-iT ) is exactly the. same as that 

.' ; . 0 - + . .:. ._ + 
forK 0 -(iT+iT-+iT-iT+). FromEq. (46), theamphtude forK

1
-(iT iT +iT iT) 

isjust (1 + 1)/.fl = .fltimes that for K 0 - (iT+ iT-+ 1'1'-iT+). Therefore when we 

write rates,· we have 

0 .r:::-2 0 
R(K

1 
-+ ZiT) = ( "'2 ) R(K -+ ZiT). (4 7) 

[Note: This argument is rephrased .following. Eq. (l 09).] 

From Eq. (45) we now write the decay rates 

R(K+-+ iT+iTO) = R(+O) = [(.J3Jio)2 +(,__l3/10) 2 ],ja3 1
2 , i.e., 

R(+O) = 3/5 la
3
!2

• ~ (48) 

R(K~-iT+ir-)= R(+-) = 2 (1 2 +1 2)!~aJ-"-'1/15. a 3l. (49) 

R(K
1
°- iTO -rr0 ) = R( 00) = 2 1-~ a 1 - 2 "-' 1/15 a 3 12 • ' (50) 

Now choose units such that a
1 

= L Set a~ = I a 3 J exp i o. Expand 

(49) and(50), neglecting guadratic terms in ay to,get 

. R(+-) = 4/3- 8/3 l/"-'~la31 J coso, 

R( 00) = 2/3 + 8/3 1/~ I a
31

! cos 6, 

so that in these units 

R 1 = R(+-) + R(OO) = 2. 

. 2 . . 2 
R(+O) = 3/5 la3 j = 3/10 ja3 1 R 1 , 

so that 

I a3J = "-'1073 J R~+O) 
1 

Putting in numbers, l, 2 R
1 

= 550 R( +0), so 

Now 

B := R(OO) 
1 R 1 

(51) 

(52) 

(53) 

(54) 

(55) 
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or finally, 

B
1
_ = 0.333 + 0.047 coso. 

For -1 < cos o,< 1 we get 

0.29:::;; B 1 :::;; 0.38 , 

as the prediction of the .6-I = 1/2 rule. 

UCRL-10540 

(56) 

If there were no 1r-1r interaction at 200 MeV/c in the S state, a
3 

and a
1 

would be relatively real, by T -invariance. Then cos o = ± 1.' 

Recent values of B
1 

are 2 

0.260± 0.024, Anderson et al., 

0.294± 0.021, Chretien, et al., 

0.329± 0.013, Brown, et al. 

All are consistent with Eq. (56), although not completely with one another. 

2. The Decay A-.. N + 1T 

Since I = 0 for the A, we can have .6-I = 1/2 or 3/2. We write the 

spurion reactions 

s(l/2, -1/2)-.. A(O, 0) N(l/2)1T(l). (56) 

The A(O, 0) contributes only a factor of unity, so, from Table I we find 

Similarly for .6-I = 3/2 we have, by inspection Table I, 

The total amplitude is 

ljJ = a
1 

(l/2, -1/2) + a 3 (3/2, -1/2), or 

ljJ = (,JT{3 a 1 + ..J2l3 a 3 ) An1r0 +( -.J273 a
1 

+,.JT73 a 3 ) Ap 1T-. 

(59) 

The decay rates are therefore 

R(n1TO) = 1/3 Ja 1 +.J2 a 3 !
2

, ( 60) 

R(p1T'") = 1/3 !,J2al-a312. (61) 

We define the branching ratio 

(62) 
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and notice that if the .6-I = 1/2 rule holds, i.e., if a
3 

= 0, then B A = 2/3. 

( 6 ( 6 I I io 
If we expand 0) and 1 ), set ~l = 1, call _a 3 ~ . a 3 e , and neglect 

; 

R(n1r0 ) = 1/3 + 2 "[2 Ja3 J cos 6 , 

R ( p 1T-) = 2/3 -
2~ J a 3 I cos 6 

.R = R(n1ro) + R(p 1r-) = 1 
·A 

BA 
R(p1T-) = 2/3 

2~ 
I a 3 1 cos 6 = --3-R .. A 

BA = 0.660 - 0.95 .[a3 1 cos 6 • (63) 

Here we know that the N1r scatteringis weak, so we expect cos 6 = ± 1. Also, 

we have corrected 2/3 ._. 0.660, for phase space (n1r0 is lighter than p1r-). 

2 
A recent accurate value of B A by Anderson et al. gives 

B A= 0.685± 0.01 7. If we take cos 6 = ±. i then we see that we must choose 

cos 6 = -1 • and 

= 0.026 ± 0.018 (64) 

+ This result is of the. same order as Eq. (55), forK -+ 21T. Of course the 

val~e of .[a
3

1/ J:a 1 I for A decay need have. no re~ation to that for K ._. 21T. 

It is intere stingt~ observe 4 that B A = 2/3 is obtained not only for 

a
3 

= 0, but also fo:p a 3 ~ -2.J2 a
1

• This can be seen by inspection of ;Eqs. ( 60) 

and (61). Let us examine this possibility more closely. So far we have 

discussed only branching ratios, as predicted by the .6-I = 1/2 rule. That is, 

in terms of the decay amplitudes S and P we have been considering only 

I sf + I P f = R. The .6-I = 1/2 rule predicts much more. For instance, 

Eq. (57) holds for every decay configuration, for the .6-I = 1/2 decay, and 

. thus holds for the S-wave and P-wave parts separately. That is, from (57), 
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and using the subscript 1 to stand for the .6.I = 1/2 amplitude, 

Al (A-+plT-) = -ff Al (A- nTrO)' 

which means, for .6.I = 1/2, 

S
1

(A-+pTr-) = -.fl s
1

(A -+nTr0 ), and 

Pl(A-ptr-) = -ff Pl(A- nTro). 

{65) 

(66) 

( 6 7) 

Then for the decay parameters a., f3, and 'Y• defined in Eqs. (3), (4), (5), we 

see 

a.
1 

(A-+ p1r -) = a.
1
(A -+ ntr0 ) , 

f31 (A-+ plT-) = f31( A-+ nTr 0). 

'{l(A-+plT-) ='{l(A-+ nTr0)' 

R
1 

(A-+ p1r-) = 2R
1 

(A -n1rO) 0 

Similarly if we had a pure .6.I = 3/2 decay, then, from Eq. (58), 
·':'"' . 

A3 (A_.. p'IT -) = ( 1/.JT) A3 (A _.. nTr
0 ) 0 

{68) 

(69) 

(70) 

(71) 

This again leads to equality of a:3' 13
3

, and '{3' for A_.. p + 1r -,and A:-"' n+ 1r
0,· 

and a. br4n<;:hing ratio R
3 

(A -+pTr -) = 1/2 R
3 

(A-+ n1r
0Jo 

Suppose now that one has a mixture of .6.I = 3/2 and L::.I = 1/2. In general, 

the two decays (.6.I = 3/2 and 1/2) should have different S/P ratios. In that 

I . - 0 
case, the S P ratios for A -p1r and n1r will not be the same, in general. We 

can see this in detail as follqws. For .6.I = 1/2 (designated by subscript 1), 

if we use Tr- and lTO to denote A-+ p + 1r- and n + rr0, we have, from Eq. (65), 

for the S- and P-wave parts separately, 

and 

sl < 1T- ) = - .J2 s 1 < tr o) 

P 1 (1r-) = -ffP
1

(-rrO). 

( 72) 

(73) 
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For L::.I = 3/2 ,(subscript 3) we have 

and 

S
3

( 1r -) = ( l/.J2) s
3 

( 1rO) 

P3(1T-)= (l/.J2) P3(tr0). 

UCRL-10540 

(74) 

(75) 

Now suppose L::.I = 1/2 occurs with amplitude ~l, and L::.I = 3/2 with amplitude 

a
3

, then 

S(1r-) = a
1

s
1 

(1r -) + a
3

S
3

(1T-) 

= -,Jl a1s1.(1TO) +(a3/.J2) S3(1To)' 

P(1r -) = a
1

P
1 

(1r-) + a
3

P
3

(1T-) 

- . 0 . 0 - -..J?.: a
1
P

1
(1T) +(a

3
/.J2) P

3
(1T), 

0 - 0 0 S ( 1r. ) - a 
1 

S 
1 

( 1r ) +. a
3 

S 
3 

( 1T ) , 

0 - 0 . 0 . p ( 1T ) - al pl ( 1T ·) + a3 p 3 ( 1T ) • 

We see by. inspection of these equations that if a
3 

= 0 or if a
1 

= 0, then 

S(1r -)/P(lT-) = S(1rO)jP(1To). The same is true if s
1
jP

1 
= s

3
jP

3
• In both 

cases a., f3, and'( are the same for p1r- and n1r 0 • The choice a 3 = -2.J2 a
1 

gives B A= 2/3. In general, if s 1jP1 
I s3jP

3 
, then a value for a

3
ja

1 
that 

gives B = 2/3 leads to different values of a:, f3, and'( for p1r- and n1r0 • 

It is thus importc:mt to check a., f3, and '( for A-+ n1rO. Cork et al. 5 

"have measured the up-down asymmetries for A- p1r- and A-+ n1rO 

"simultaneously", i.e., from A 1 s. produced in the same way. Therefore 

there is a single A polarization p t\" The decay asymmetries yield a. ( 1T -)p A 

0 
and a:( 1t )pt\, and the ratio gi yes 

a.(n1T0 ) _ 
a.(plT-) -+1.10±0.27' 

in agreement with the L::.I = 1/2 rule. 

Block et al,. 
2 

have measured y(n1rO) by an indirect method. The branching 

ratio for 

He4 -+ ( 1T- modes) 
A 
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depends strongly on S ('ITO) I P( 'ITO). They find that S wave predominates. They 

find 
0 - +0.22 

y (n'IT ) - +0. 78 -0.4 2 • 

This is to be compared with, for instance, the value obtained by Cronin a,.nd 

2 Over seth, 

'( (p'IT -) = +0. 78± 0.04. 

Thus an "accidental" solution with a
3 

= -2 .[2 a
1

, must (within the errors) 

also have the same S/P ratio for AI = 312 and 112, to agree with experiment. 

Such a double accident seems unlikely. 

3. The De~ay E: -+ A + 'IT 

To find the prediction Jar AI = 112 we write 

s(1l2, +112)-+ .L\(0} 'E (112) 'IT (1), 

( 1 I 2' + 1 I 2 ) = A [ .J273 (l ' + 1 )( II 2' - 1 I 2) - .JT73 ( 1 ' 0 )( 1 I 2' 1 I 2 ) ] 

= A I .J273 'IT+ E:- -~ 'Jl'OE:O] • 
t (::•) ':. $t,f.,­

'C(;;o-)., '·7't I..()J-

-:::: 1.72.._;!. ,3 
which gives (transposing) 

( ...... - - < ..... o o) R~--At'IT)=2R~-+At'IT. ( 76} 

TheE:- lifetime is a,.bout 1.2X10-1° sec. 2 The E:O lifetime is not yet known 

' 
well enough to test Eq. ( 7 6 ). 

4. The Decay ~-+ N +'It· 

The final state N + 'IT. can have I = 1/2 or 312. The ~ has I = 1. There-

fore we can have .6.I = 1 X 112 = 312 or 112; or 1X3I2 "'512, 312, or 112. We 

assume, for simplicity, that AI = 512 is absent, but include AI = 312 as well 

as 112. 

We write ·~-+ N + 'IT + s. Transposing, we have s -+ ~ (N 'IT). From an 

example, say ~--+ n + 'IT- + s, we see that we have &
3 

= +112 for the spurion 

s. There are four possible transition amplitudes, corresponding to AI= 112 
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and- 312, and I(N-:rr) = 112 or 312. We write down the four charge states, 

using the notation 

ljJ(l, 1)= ljJ(~I = 112, I(NiT) = 112), 

ljJ{l, 3)= ljJ(~I = 112. I(N1T) = 312), 

ljJ(3, 1)= ljJ{~I = 312, I(N1T) = 112), 

and ljJ ( 3, 3) == ljJ (~I = 3 I 2, I ( N Tr ) = 3 I 2) . 

Correspondingly we define the four decay amplitudes A ( 1, 1), A ( 1, 3 ), A ( 3, 1) 

and A(3, 3), and have the superposition 

ljJ ( ~ Nlf) = A ( 1, 1 )ljJ ( 1, 1 ) + A ( 1 , 3 )ljJ ( 1, 3) + A ( 3, 1 ) ljJ ( 3, 1 ) + A ( 3, 3) ljJ ( 3, 3). ( 7 7) 

We now write down ljJ ( 1, 1 ), etc., using Tables I and II, and recalling that 

~I3 :::, + 112 in each case. To aid in reading the table we write an intermediate 

step, in a notation that is self -explanatory: 

- - 1 . 1 - _. 1 
ljJ(l;l) =( 2 (l(~)x 2 (Nn)]; + 2 ) 

.~ + 1 1 .r:;-r::} 0 1 1 
= '\J Df ~ -~ ( 2' - 2) - '\J 1; 3 ~ ( 2' + 2) 

= ,_JzJ3 ~ + < t.JT[3 no :p- .... ,_JzJ3 n _ n) _ .JT/3 ~o < ,_JzJ3 n +-p _ .JT73 n oil). 

(78) 
1 [ 3 --] 1 _ ljJ ( 1, 3) = ( 2. 1 (~) X 2 ( N n) ; + 2 ) 

. . ,---,--,-- - 3 3 . rTT2 0 3 1 . I17'L + 3 1 = ''I 1; 2 ~ ( 2' + 2) - ''11/ 3 ~ ( 2' + 2) + "' 1; 6 ~ ( 2. - 2) 

= t.JTfz ~- n + Ii - .JT73 ~o < t.JT73 n +p- + t.J2/3 non) 

+ .JT76 t/ ( ,_JzJ3 Tl' 
0p + .JT73 Tl'- n ) • ( 79) 

3[ 1-- 1 ljJ(3, 1) = (z- 1 (~)X 2 (Nn); + z-) 

= .JT73 ~ + ( ~ ' - ~ ) + .J273 ~0 ( t' + t) 
= t.JT73 ~ + ( .JT73 Tl' 0 p - ,_JzJ3 Tl'- n ) + ,_JzJ3 ~0 ( ,_JzJ3 Tl' +-p - tJT13 Tl' 0 n). 

( 80) 
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( 3 [ 3 -- 1 ljJ 3, 3) = ( 2 1 ( ~) X 2( N 1'r); + 2) 

= .J275 ~- (% , + ~ ) + .J 1/ 15 ~0 ( %, + ~ ) - .J87ls ~ + ( i, -~ ) 
= ~ ~- 1T +n + .JT7T5 ~o <.JT73 1T +P + ,f2J3 1To n) 

- .J8/15 ~+<,JZJ3 1r0 p + ~ 1r-n). (81) 

We could now write down the general superposition l)J(~N1T) given by 

Eq. (77). However, since we are interested in the charge states rather than 

the I-spin states, we rewrite Eq. ( 77) as 

l)J(~N1r) = A(~+1rop) ljJ (~+1rOp) + A(~+1T-n) ljJ (~+1T-n) 

+ A<~ 1T + P ) l\J < ~o 1T + P ) + A< ~o 1To n) lJ! < ~o 1To i1) 

+ A<~- 1T + n) lJ! < ~- 1T + r1) • 

From Eqs. (77) through (82) we obtain the amplitudes 

(82) 

+ o- . .JT 1 1 4 II · 
A(~ 1T p) = -

3
- A(l, 1) + 3 A(l, 3) + 3 A(3, 1) -} .J ~ A(3, 3), (83) 

+ -- 2 A./2 . .J2 2 f2 A ( ~ 1r n) = - 3 A ( 1, 1) + ""b A ( 1,3) - 3 A ( 3, 1) - 3 1\1 ~ A( 3, 3), ( 84) 

- +- ~ f2 A(~ 1r n) = T A(l, 3) + 1\/:g- A(3, 3), (85) 

0 + - .J2 1 2 1 ll 
A(~ 1r p) = --

3
- A(l, 1)- 3 A(l, 3)+ 3 A(3, 1) + 3 ..Jf; A(3, 3), (86) 

A ( ~O li"O n) = ~ A ( l, 1 ) - ·~ A (1, 3) - ~ A ( 3, 1 ) + ~ 4 A ( 3, 3). ( 8 7) 

.. 
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Unfortunately we cannot make use ofEqs. (86) and (87); since z: 0- N·+ 1T is 

unobservable because of the rapid death of the z:0 via the electromagnet'ic 

decay z: 0 --.A.+y. 

We are left with Eqs. (83), (84), and (.85). These equations hold for 

either the S-wave or the P-wave parts of the decay amplitude. If we wished 

we could write the equations twice, once with new subscripts for S and once 

for P. In general the separate terms are complex numbers. However, if 

the final N -1T interaction is small, then T invarinace demands that the separate 

terms all be real, except for an unimportant phase factor common to all terms. 

1 The N -1T interaction is indeed negligible at the decay momentum. We there-

fore take all the terms to be real. We now imagine Eq. ( 83) (for instance) 

written twice (once with subscripts for S wave, and once for P wave). We 

can imagine a two-dimensional S-P space, and think of the two equations 

(i.e., Sand P) as equations involving the Sand P components of vectors. We 

combine the components and write, for instance, 

( 88) 
A A 

with Sand Pas unit vectors, and with similar expressions for A(l, 3), A(3, 1), 

and A(3, 3). Since Eqs. (83), (84), and (85) hold for both the Sand P compo-

nents, they hold for the vectors. We can therefore imagine these equations 

rewritten, with the substitution of A(l, 1) for A(l, 1), etc. 

At first glance the right-hand sides of Eqs. (83), (84), and (85) seem 

"' to involve the four independent vectors A(L 1), A(l, 3), A {3, 1), and ~(3, 3). 

However, we observe that ~(1, 1) ·and ~(3, 1) occur only in the combination 

~(1 , 1 ; 3, 1) = A (1, 1 ) + ~ A ( 3, 1 ) , (89) 
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so that we may rewrite Eqs. (83), (84), and (85) as follows: 

A+ = A (:~:::+ Tr- n ) = - ~ A{l, 1 ; 3, 1 ) + ~ A ( 1 , 3) - J.J; ~ (3, 3 ) , { 9 1 ) 

A-- A(L:-Tr+n)- 4 ~{1,3) + Jf A(3,3). (92) 

From Eqs. (90). (91), and (92) we form the linear combination 

.J2 A (L:+Trop) + A(L:+Tr-ll)- A (L:-1r+ n) = -J 1: A (3, 3). (93) 

Using Eq. (93), we can make the following observations. {a) Suppose the 

D..I = l/2 rule holds. Then A(3, 1) = 0 and A (3, 3) = 0. Since A(3, 3) = 0, 

Eq. (93) corresponds to a closed triangle in the S-P plane. This is the well­

known triangle of Gell-Mann and Rosenfeld. 1 {b) Suppose we have 

A (3, 1) I 0, but A (3, 3) = 0. Since A(3, 1) I 0, the D..I = 1/2 rule does not 

hold. Nevertheless, according to Eq. (93) we obtain a closed triangle in the 

· S-P plane. Thus if we find a closed triangle (experimentally) we cannot rule 

out D..I = 3/2. The linear combination of D..I = 1/2 and 3/2 given by Eq. (89) 

cannot be resolved. (c) Suppose we have A (3, 3) 'fo. Then Eq. (93) corres-

ponds to a closed quadrangle instead of a triangle. Equation ( 93) can be used 

to determine A ( 3, 3 ). Of course then the D.. I = 1/2 rule does not hold exactly. 

(We already know this, from the decay K+ .... Tr+Tro.) 

We turn now to our experimental knowledge of ~(L:+Tr0 p), ~{L:+Tr_n), 

and A(L:- Tr + n). 
. 1 6 
From the partial decay rates we know ' that 

{94) 

Therefore, if A(3, 3) = 0, we see from Eq. (93) that the resulting triangle 

will be an isosceles right triangle with equal legs IA(L:+Tr-n)l and 

,. 
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I A(~ -1T + n) I' and hypotenuse rz I A ( :27 1To p) I? The decay parameter :no' 

corr.e sponding to ~ { ~+ 1TO p) ~ -i, e. , to ~+ _.,. p + 1r0 - -has been dete rrnined by 

Beall, et al. 7 by measuring the scattering asymmetry of the decay proton. 

+0.08 
Their result is a 0 = +0. 78-0.0

9
• The other decay parameters, f3o and Yo , 

are not known.· We .assume f3o = 0 ( T invariance and small N -1r interaction). 

The decayparametera+, correspondingtoA(~+lT-iil}, --i.e., to~+--n+1r+ 

has been measured by Cork et al. ;5 they measured in a single experiment the 

up·~down asymmetry for~+_.. n + 1r +, to obtain a+p +, and for~+~ p +. 1r0 , 
~ 

to obtain a 0p +" The ratio 
~ 

They find a+ = +0.03± 0.08. 

gives a+/a.o, and the known value of ao gives a.+. 

In our present notation, a = 2A8 Ap /{Ai + A-i), 

so that a+ ~-0 means that ~(~+1r-n) is oriented along either the Saxis or 
A 

the P axis. Until"~+ is measured we cannot choose between these alternative 

possibilities. The decay parameter n_, corresponding to A(~.-n+n)--L e., 

to~-_.... n + 1r---has been measured by Tripp, Watson, and Ferro-Luzzi~ 8 

who obtain a_= +0.!6±0.21, and by Nussbaum et aL, 2 who obtain a_ =+0.04±0.23. 

Therefore A(~ -1T + n) is oriented {approximately} either along· S or along P. 

There is as yet no knowledge of y c•, so that either alternative is possible. 

If A(3, 3) = 0, then according to Eqs. {93) and (94) and the results a+::::: 0 

and a_:::: 0, we have the two possibilities 

A(~+ n--rr)::::: -S 

A(~-1T+n):::: 

A(~+'l!'op}::::: 

or, instead, 

A (~-11'+ n)::::: S 
A A 

A < ~+ 1To P ) ::::: P + s 
,J2 

(95a} 

(95b) 

· (95c) 

(96a} 

(96b) 

(96c) 
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We have chosen units such that ~~ (L.:- 1r+n) I= 1. Either solution could of 

course be multiplied by -1, or by exp ia., with no physical consequences. 

Solutions (95) and (96) demand a.
0 
~ +l. This ,is in disagreement with 

th d 1 
7 = + 78+· 08 I F' 13 d th d" e measure va ue, a.

0 
• -.

09
• n 1g. we repro uce e 1.agram 

from Tripp et al. 8 (Their notation !:it• ·N _, and !:io corresponds to our 

+ - - +- + 0 A (L.: 1T- n). A{L.: 1T n ), and ~ (L.: 1T p ). Their sign convention for a is oppo-

site to ours.) The_ two possibilities for N
0

correspond to the two possibilities 

'Yo> 0, and Yo< 0, i.e., Js I/ I P! > l and< l. From the diagram and Eq. (93) 

we find 

~ 0.23±0.09, or 0.30±0.10, 
I ~< L.: - 1T + n) I 

(9 7) 

where the e~!"ors are only estimated from the diagram, and where the first 

possibility corre-sponds to y 0 /y+ > 0 and the second to y 0/y+ < 0. Inthe dia­

gram it is implicitly assumed that y +/y -· < 0; i.e., that if L.: +--+ n + 1T + goes 

by S wave, then L.:---+ n + 1T- goes by P wave, and vice versa. In other words 

it is assumed that the violation of the 6.I = 1/2 rule is small. Of course, if 

the 6.1 = 1/2 rule does not hold, one can have '~+/y _ > 0; that is, both decays 

can go by S wave or both by P wave. We must have some reservations until 

y +' y ~' and y 0 are measured. 

It is perhaps worth remarking that even if experiments finally tell us 

that, for example, L.:+ ____,. n + 1T + is pure P wave, L.:---+ n + 1T- is pure S wave, 

and a.
0 

= +1.0 (instead of 0.78). then we still will not be able to rule out a 

large violation of the 6.I = l/2 rule. For instance if in the example of Eq. ( 95a) 

we repl;;tced --Sby S, but left (95b) and (95c) as they are, we would obtain 

,j 18/5 ~(3, 3) = 2S, instead of zero, as is seen from Eq. (93). This type of 

ambiguity, and also the ambiguity corresponding to Eq. (89), is not vvinherentn 

b,ut, as we see from Eqs. (86) and (87), could be resolved if it were possible 

to measure the rates for L.:0 ..... p + 1T- and L.:0 __.., n + 0 
1T • 
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Fig. 13 
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Lecture IV. K --. 3Tr AND THE .6.I = 1/2 RULE 

In this lecture we cons.ider the decays 

and 

+ + + -K -+Tr +Tr +Tr = (++-), 

+ + 0 0 
K - 1r + 1T + 1r = { +00) 

0 + - 0 
K -+ 1r + 1r + 1T = (+-0), 

2 
0 0 0 0 

K __,. 1T + 1r + 1r = ( 000) • 
2 

UCRL-10540 

The final (3Tr) state can have I = 0, 1, 2 or 3. + ForK decay we have Q = +1, 

so r
3 

= +1; therefore I = 0 is excluded. Thus forK+-+ 3Tr one has the possi­

bilities .6.! = l± l/2 = 3/2 or 1/2, 2± 1/2 = 5/2 or 3/2, and 3± l/2 = 7/2 or 5/2. 

For K 0 -+ 3Tr we shall see that K~ goes to I = 0 or 2, and K~ goes to I = 1 or 3. 

We consider only K~ decay. Thus forK~__., 3Tr one has the po~sibilities 

.6.I = l± 1/2 = 3/2 or 1/2, and 3± 1/2 = 7/2 or 5/2. 

Consider now the states Tr + Tr- 1r
0 a~d Tr 0 Tr 0 Tr0• Let :!:::- be the angular 

momentum of pion #1 relative to the c. m. of #.2 and #3, and let 1. be the 

. angular momentum of #2 and #3 in their c. m. Then J = L + l . But J = 0, 

since the spin of the K is zero. Therefore 1.!: I= I~ I· Therefore 

3 L f. 0 
P={-1) {-1) {-1) = -1. ThusforK

1 
-+3Tr, forwhichCP=+1, wehave 

0 C = -1, and for K
2 

-+3Tr, we have CP = -1, and C = +1. {Here we are assuming 

CP invariance in the decay.) Since 3Tr0 obviously has C = +1, we see that 

K
2
°-+ 3Tr0 is allowed, and K2-+ 3Tr

0 
is forbidden. 

We next wish to show that for 3Tr, I = 0 and 2 have C = -1, and I = 1 and 

3 have C = +1. There are several ways to show this. The easiest is to 

assume the theorem proven by Professor Rosenfeld in his accompanying 

lectures, namely 

I 
. C = G{ -1) • 

1+1 For 3Tr we have G = -1, so we have C = (-1) • 
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Another way is to use the Clebsch-Gordan table_s. by brute force,,;:as:·,,-

follows. The notation is (I, I
3

). 

I = 0 

We have from :Table V, 

(0,0) 3 'TT = l(TI)Xl(2'TT) 

=~'IT+ (1, -l)Zr. -~ 1TO (1, O}ZTI + ..J173 'IT- (1, +l)Z'TT 

~+--,-;;-o - o = "J J.f J Ti {..,J 1;2 -IT 'IT- - I\) l/2 1T- 1T ) 

-~ 1T 0 ( tJTT2- 1T +'IT- - ~ 1/2 'IT-,,.+) 

+ ~ rr- (tJT72 'IT+ 1To.- ..JTTi 'ITO 'IT+) • 
. 1 

{ 98) 

Under C, we.have rrO_.,. rrO, rr+- rr-, and 1T- .- rr+, and by inspectio~ ofEq. (98} 

we see that ( 0, 0)
3 

,..., - ( 0, 0)
3 

• That is, C =: -L 
- 1T . 1T 

I = l 

Here there are three possibilities. We have, 

first, (l. 0)
3

'TT == 1 (rr) X 0(2rr} {99a) 

= rro(O, O)Zrr = rt0(~3 rr+n- - •JT73 1TO'TTO +~ ,-1T+L 

second, 

(l,0)
3

7T = l(7r)Xl(2rr) . {99b} 

=.JTTZrr+(l -l) -~'TT-(1,+1) . • 2'TT . 2'TT 

= .JTT2 n + ( 1\}172 'IT 0 n - - .JTT2 'IT- 'IT 0) 

_ ..JTT2 'TT-(.Jl{i 'IT+ 'ITO_~ 1T0n+) • 

and lastly, 

(1, 0)
3

'TT = l (TI)X2(21T) (99c) 

= I\) 3 7 1 o 'IT+ < 2 , -n 
2 

1T - .JZ75 'IT 
0 

( z. o > 
2 

1T + ..,;-3/ 1 o ~ 'IT - ( z • + n 
2 

·n 

=.J37f0 1T+(Jijz ·rrOn- +~ 'TT-'TTO) 

- .J275 'ITO ("-./T/6 1T +'IT- + ..J zj3- rr0 rr0 + "-./I/6- 'IT -rr +) 

+ I\) 3/1 o 'IT- (,_fTTz 'IT+ no + ..JT{2: 'ITO 'IT+) • 
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We see that in all three cases, C = +l. 

I = 2 

There are two possibilities, 

first, 

( 2, 0) 
3

TI = l ( TI) X l ( 2rr) ( l 0 Oa) 

= ~ TI + (l' -1) 2rr + ".}2,73 TIO (1, 0) 2rr + "-'176 TI- (1, + 1) 2rr 

= ._JTJ6 1T + ( ,JlTz 1T0 TI- - ,[1{2 TI-TIO) 

+ .J2T3 TIO ( .JT72 1T + 1T- - .JT72 1T- 1T +) 

+ ~ 1T- <"-'172 1T + TIO - ".}T[2 1T01T+) ' 

and second, 

(2, 0)
3

TI = 1 ( rr) X 2 (2rr) 

= .JT{2 TI-(2, +l)
2

1T- ..flTi 1T+(2, -1)
2

1T 

= tJT72 1T- <.JT72 1T+1T0 + "-'172 TIO 1T +) 

- .JT72 1T + ( "-'112 rr0 1T- + .JT72 1T -TIO ) • 

In both (100a) and (100b) we have C = -1. 

I = 3 

We have 

(lOOb) 

(3,0)
3

TI = l (-rr) X 2(2ir) (101) 

. /~ + . ~-~ 0 . 1---,---r,:-= '\J J.f ':J 1T (2, -1)
2

1T + '\J 3 5 1T (2, 0)
2

1T + '\J 1/5 TI- (2, +1)
2

1T 

= tJT75 1T + ( .Jl72 1T 0 1T- + .JT72 1T- 1T 0 ) 

+ .J375 rro <~ 1T + rr- + .J2T3 1To1To + "-'1!6 rr-rr +) 

+ ~ TI- <.Jlli 1T + rr 0 + .JT72 rr 0 rr +). 

for which C = +1. 
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In Eqs. (98) through (101) we have exhibited the seven: .. possibl.e:.ccharge 

states for lT + lT -lTO and lTOlTOlTO and seen by inspection that we have C = {:;,; 1,/+1. 

We notice as a check that 3TI0 occurs on!-y for _I = 1 or 3, i.e ••. for G = +1. 

We consider at first only the predictions of. the ~I = 1/2 rule. Then 

+ 0 
forK -+ 3TI and K

2 
-+ 3TI we can have only the 3TI states (I. t

3
) = {1, +1). and 

(1, 0), respectively. There are three independent 3TI states with I= l, as 

we saw from the combinations 1 (3TI) = 1 ( TI) X 0 (ZTI), 1 ( TI) X l (2TI). or 

1 (TI)X 2 (2TI). We could use the Clebsch-Gordan table to construct these 

states, as was done for the (1, 0) states.in Eqs. (99a, b, c). However, it is 

more convenient to use another approach. (The functions we obtain for ( 1, 0) 

are linear combinations of those found in Eqs. (99).) 

We have the three individual pion wave amplitudes 2!.t• 2!:.
2

, and 1r
3

, 

each of which transforms like a vector {I= 1) in I-spin space. We want to 

form a probability amplitude for 3TI. This must be trilinear in lT 
1

, 2!:.2• and 

2!:.3" We want that combination that transforms like a vector in I-spin space. 

There are three such combinations, which are, most simply, 

general vector is then 

V=AA +BB +CC, (1 02) 

where A, B, and C are complex numbers. 

The .meaning of, for instance, ~ 2 ~ lT 
3 

, can be expressed in two ways 

{which unfortunately differ by a factor of -1 ). We can use the Clebsch-Gordan 

table to find that combination of lT 
2 

and ~ 3 that transforms: like a ·scalar. That 

lS 

(103) 
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Or, instead, we can use the spherical harmonics in · Eq •. 1 • (with the addition 

of a normalization factor) and write 

_ (1Tx + i1ry) (1Tx-i1ry) + (1Tx-i1Ty) (1Tx+i1Ty) 

- .JZ 2 rz3 ,[2 2 .JZ 3 

= - y 11 ( 2 ) y 1- 1 ( 3 ) y 1- 1 ( 2 ) y 11 ( 3 ) + y ~ ( 2 ) y ~ ( 3 ) 

which is the same as (1 03) except for a common factor. We use Eq. ( 103 ). 

We. can take x, y; and z components of the vectors ~, ~. and S2; or 

we can take +, -, and 0 "components, 11 sir·ce these are just linear combina-

tions of the x, y, and z components. Thus 

+ - + 0 0 

A+ + (1T2 1T3 + 1T 2 1T3 - 1T2 1T 3 ) + 
= *1 (1r2• .'!:.3) = 1Tl 

.J3 
( 1 04) 

+ - + 0 0 
0 0 (1T2 1T3 + 1T 2 1T3 - 1T2 1T 3 ) 

Ao = 1T 1 (.;::_2 1T3)=1Tl 
.[3 

(105) 

Instead of A, B, and C we could take as our independent states the 

linear combinations 

~=A+B+C =1Tl(1T2.~3)+~2(1T3. ~1)+~3(11"1"~2)' 

M l = B - C = ~ l X ( 1r 2: X :!:_ 3 ) 

and M = 
-2 

( l 06) 
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The combination Sis. completely symmetric wi:th respe.ct to interch'ange of 

any two pions. The functions ¥-
1 

and M 
2 

have mixed symmetrle's. · · (Foi" 

instance M
1 

is antisymmetric under interchange of #2 and #3 but has no 

other symmetry •. ) 

We return tothe general expression, Eq. 002). We first write out the 

expression completely. Then we rearrange the terms so that n
1

, n
2

, n
3 

always occur in order.. We can then drop.the subsc.ripts 1, 2, and 3 .• 

+ -.0 - + 0 +0 For. instance, 1r
2 

n
1 

n
3 

= n
1 

n
2 

n
3 

;;::: n·"n n .· = ( -+0). Thus we have 

Y= AA+BB+CC 

Airl (n2. n3) + B2!_z{E_3 • nl) + Cn3(nl• n2) 

= _A_ n ('11'+ 11 - + 1i-1T+ _nona) 
..[3- ' 

= 

+ B 

tJ3 
I t - - t Q 0) 
\ 1T 1T 1T + 1T 1T 1T - .-1T 1T 1T 

+ ...£.. (1T+1T-1T + 1T-1T+1T _ no-rro.!.) • 
~ 

. Ti:t.king components, we find 

(1, +1) 3n = v+ = ~T73 {A[(++-)+ (+-+)-(+00)] 

+B [{++.,.) + ( -++) - ( 0+0)] 

+C [(+-+) + (-++) -{OO+)J} 

'= ~T73 {(A+ B)(++-)+ (B +C) (-+t) + (C +A)(+-+) 

- A(+OO) - B{O+O) - G(OO+)}, 

(1, 0} 3 n = v0 = ~{A Ho+-) + (0-+) - (OOO)] 

+ B [(+O-) +( -O+) - (ooo)J 

+ C [(+-0) + ( -+0) - (OOQ)]} 

{ 107) 

= ~173 {A((O+-) +(0-+)J + B [(+0-) + (~0+] + C [(+-0) + (-+0)] 

- (A + B + C) ( 0 0 0) } • (108) 
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We now turn to the predic;:tions of the 6.I = 112 rule. We have, using 

our usual notation (I, I
3

),_ and the spurion s (6.I, 6.13 ), 

+ K --+< ( 3n) + s , 

i.e., 012,+112)- (1,+1) + s(ll2, -112) 

and K 0 __,. ( 3 n) + s , 

i.e., (112, -112) - {!, 0) + s (112, -112). 

Or, transposing both s and K, we have, from Table I, 

s ( 1 I 2. + 1/2) = 1 I 2 ('K) X l ( 3 Tr) 

= .J273 (112. -112){1, +1)-~0/2, +112)(1, 0) 

= .J273 K- v+ - .Jl]3 R 0 v0 , 

(109) 

where v+ and yO are given by (107) and (108). 

In the term K 0v0 we have contributions like K 0 (0+-). This represents, 

0 0 + -after transposing, K __,.. n
1 

+ n
2 

+ n
3

• We are actually interested in 

K~,... 3n, rather than in KO __,.. 3n. Because of the relation KO = (K2 + K
2
°)1 .[2, 

0 0 0 
a pure K beam is, in terms of intensities, half K

1 
and half K

2
• Only the 

0 . 0 
K

2 
half of the beam contributes to K __,.. 3n in the I = 1 state. Therefore a 

pure K~ beam would give twice the decay rate of a pure K 0 beam, into I = 1. 

In terms of amplitudes we should therefore multiply the KO decay amplitude 

by ±,J2to get theK~ decay amplitude. (The choice of sign is arbitrary, 

since charge conservation prevents i~terference between K
2
° and K+ decay; 

the relative phase of K~ and K+ has no physical consequence. ) 

Finally we can write the decay rates, remembering that, for instance, 

( ++-) and (-++)are distinguishable and do not interfere. After including a 

factor of 2 forK~ decay, as discussed above, we have, from Eqs. ( 109), 

_(1 07), and ( 1 08), 

R { K + __,.. ++-) = 2 I 3 ° 1 I 3 ° { I A + B 12 +I B+ G 12 
+ I c +A 1_2 } ( 11 0) 
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R{Kt ..... too)= 2/3. I/3. {jAj
2 

t jBI2 
t 1c1

2
}. 

= 2 • 1/3 1/3 {2jAj
2 

t 2!BI
2 

t 21c1
2

} 
0 R{K _.... t-O) 2 . 

R(K~ ..... 000) = 2 • 1/3 ° 1/3 {I A t B t c 12 
} 0 

UCRL-10540 

( lll) 

( 112) 

( 113) 

These equations contain the predictions of the .6.I = 1/2 rule. We can 

think of A, B, and C as functions of the momenta in the decay. Then the . . 

equations refer to a given configuJ.~atibn. (We consider only the .rates and 

not the spectra. See Rosenfeld 1s notes for spectral considerations.) 

From Eqs. (llO) through (113) we find 

and 

R(K O .- t-0) = 2 R{Kt ..... +00) , 
2 
t + 0 R(K _.... tt-) - R(K .... tOO} = R(K

2 
_.... 000). 

( 114) 

(115) 

Equations (114) and (ll5) hold for any choice of A, B, and C; in other words 

for any admixture of the symmetric I = l state_§, given by A = B = C, and 

the mixed symmetry states M 
1 

and ~2 • These two equations give the 

best tests for the ..6.1 = l/2 rule. 9 

The symmetric I = 1 state~ plays a dominant role, empirically, as we 

shall see. We therefore write down the predictions for this state. Taking 

.A= B = C in Eqs. (110) and {Ill), and then in Eqs. (112) and (113), we 

obtain 

t t 
R(K - tt-) = 4 R(K --..,tOO} , 

R(K2° ..... ooo) = 3/2 R{K
2
° __... t-O) • 

( 116) 

(11 7) 

Notice that if the ..6-I = 1/2 rule holds then I = l is the only allowed 31T state. 

However, I = l can be reached through either ..6-I = l/2 or .6.1 = 3/2. 

Equations (116) and (117) hold only for the symmetric I= 1 state. We will 

find they are well satisfied experimentally; but of course this has not much 

bearing on the .6.1 = 1/2 rule, since ..6.1 = 3/2 can reach t~is state. On the 
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other hand, Eqs. ( 114) and ( 115 ), which relate the charged and neutral decays, 

depend directly on the .6.1 = I/2 rule through the spurion equation (I 09), and 

do not hold when .6.1 = 3/2 is present. 

Before giving the predictions when .6.1 = 3/2 is included, we turn to the 

experiments. We include phase-space factors and will indicate their ins-ertion 

by a double-stemmed arrow, ~. From (116) we have, for the state ~, 

- + 
R(K __.,.. +OO) = 0.25 ~0.311 
R(K+- ++-) 

{ ll8) 

Recent experimental values are summarized in Ref. 10, and average to 

0.298± 0.025. The agreement with ( 118) is excellent. We conclude that the 

symmetric I = I state (S) is important. 

From (II 7) we expect, for e_, 

R(K2°- 000) 

R(K O- +-0) 
2 

( 119) 

Results from Dubnya presented at Geneva ( 1962) by Anikina et al. 2 give 

0 0 
R(K

2 
--+ OOO)/R(K

2 
--+all charged) = 0.38± 0.07. Luers et al. II have obtained 

0 0 
R(K

2 
--+ +-O)/R(K

2 
__..all charged)= 0.134±0.018. ( 120) 

Combining these two results, we obtain R(K
2
°--+ OOO)/R{K

2
°--+ +-0)= 2.83± 0.52. 

This result is in only fair agreement with Eq. ( 119). On the otherhand, the 

disagreement amounts to only two standard deviations, and does not shake 

our faith in the dominance of the state S • 

We now turn to the prediction (114) of the .6.1 = I/2 rule. Alexander 

10 0 ± -+ et aL have measured an absolute decay rate for K
2 

____,.. rr + L + v. When 

this is combined with the branching ratio ( 120) of Luers et al., they find 

(121) 
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This is to be compared withl 2 

2R(K+-+ +00) = (2o78±0o22); 106 sec- 1
0 (122) 

The agreement with (114) is very pooro Alexander et aL quote 100/l 

statistical odds against agreemento 

We are thus motivated to look at the more complicated formulas that 

result when the .6.I = 1/2 rule does not holdo We must also ask whether it is 

reasonable to expect that the presence of .6.I = 3/2 could preserve the beautiful 

agreement of ( 116) with experiment and still give the expected disagreement 

with { 114)o The point here of course is that once we allow .6.I = 3/2 then we 

must allow I= 2 (for 3n) inK+-+ 3n, as well as I = 1, and ( 116) should pre-

sumably not holdo 

We now give up the .6.I = 1/2 rule and allow .6.I = 3/2o We still omit 

.6.I = 5/2 and 7/2o (They will be included later!) 

With.6.I = 1/2 and 3/2 we can reach I = l and 2 inK+,... 3n, and I = l 

forK~....., 3no (CP invariahce rules out I = 2 forK~-+ 3no) The relation 

+ 0 
between K and K

2 
decay for .6.I = 3/2 going to I = l is given by a spurion 

equation similar to Eqo ( 109), namely, from Table I, 

(123) 

In the arbitrary constants A, B, and C in v+ and v 0 we use subscript l for 

.6.I = 1/2 and subscript 3 for .6.I = 3/2o We have, then, 

(124) 

(125) 

Thus for the I = l part of the wave function we have, using (!09) with (124). 

and ( 123) with {125), 
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ljJ(I = 1) = s(l/2, 1/2) + s (3/2, 1/2) 

= K- [.J2]3v; + ,JTf3 v;] 
+Ko [-.JT,73 v2 + .J273 v2J 

UCRL-10540 

= .JT,T3K- {(.J2A
1
+A

3
) A+ +(,.JZ"""B

1
+B

3
) B+ + (.JzC

1
+C

3
) c+} 

.T1T2 -0 _,-:;- 0 -~ 0 .r-: 0 +"" ~/J K {(-A1+"'2 A
3

) A +(-B 1+'\/2 B
3

)B +(-C
1
+N2C

3
)C }. 

A+= tJT73 [(1r+) rr+rr- + (rr+) rr-rr+- (rr+) 1To1ro] , 

B+ = .JT73 [ rr+(rr+) rr- + rr-(rr+) rr+- rr 0 (rr+) rrO] , 

c+ = .JT73 [rr+1T- (rr+) + 1T_1T+(rr+)- 1To1To (rr+)]. 

Ao = tJT73[(rro) rr+1T- + (rro) rr-rr+- (rro) rrorro] ' 

Bo = tJT73 [rr+(rro) rr- + rr- (rro) rr+ -rro(rro) rrO] , 

co= .JT73 [rr+rr-h:ro) + rr-rr+ (rro)- rrorro(1To)]. 

Combining these, we find 

ljJ(I = 1) = 1/3 K- {(.J2A
1 

+ A
3 

+ .J2:B
1 

+ B
3

)(++-) 

+ (,.JZ"""B1 + B3 + .[ZC1 + C3)( -++) 

+(.J2Cl +C3 +.J2A1 +A3)(+-+) 

- (,.JZ""" A
1 

+ A
3

)( +00) 

-(,.JZ"""B
1 

+ B
3

)(0+0) 

-(.J2c
1 

+C
3

)(00+)} 

+ 1/3 K
0 

{{-A1 +.J2A3)[(0+-)+(0-+)] 

+ (-B
1 

+ ,.,f2B
3

)[(+0-) + (-0+)] 

+ (-C
1 

+,.J2"""C
3

)[(+-0)+(-+0)] 

+(A
1
-.J2 A

3 
+ B

1 
- .J2B

3 
+ c

1 
- tJ2 C

3
)(000)}. (126) 
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We still need the I = 2 wave function for 3iT, for K+ ...... 3iT. There are 

two possibilities, which we label with subscripts D and E. We have, from 

Table V, 

lj.JD (2, +1) = 1( rr)X 1 (ZiT) 

= .Jl(2 n+ (1, O)Zn + .JT(2 iTO (1, +l)Zn 

= .Jl(2 iT+ {,JTfi 1T+1T- - .,j 1/2 1T-1T+) 

+ .,jTTz 1T 0 ( .JTTi 1T + 1T 0 ~ .Jl72 1T 0 iT+ ) 

= 1/2 [(++-)- (+-+) + (0+0)- (00+)] ' (127) 

and from Table VI {and Table V) 

lj.JE ( 2, + 1) = 1 (iT) X 2 { 2n) 

= t{l73 n- (z, +z)
2

1T + .JT76 n° (z, +1
2

n -.Jl!2 n + (z, o)
2

n 

= .JT73 1T- 1T + 1T + + .JT76 iT 0 [ .Jl72 1T + 1T 0 + .Jl(2 1T 0 iT+] 

-.Jl72 1T + [ .fl76 1T + 1T- + .J273 1T 0 iT 0 + .JT76 1T- 1T +] 

= ,fT]3 {( -++) -1/2 [{ ++-) + ( +-+)] + 1/2 [( 0+0)+( 00+)]- { +00} }. 

(128) 
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For the general case (for I = 2) we have the superposition 

(129) 

where D and E are complex numbers, and lJ;
0 

and lj.JE are given by ( 127) 

and(l28). 

The corresponding spurion equation is not really needed, since we have 

only K+ decay into I = 2, and thus no coefficients relating K+ and K~ decay. 

However, for uniformity of notation we include the spurion. We have, from 

Table III, 

s(3/2, +1/2) = 1/2 (K)X2(3rr) 

= >[3JSK- (2, +1)
3

rr- .J2]5R0 
(2, 0)

3
1T. ( 13 0) 

The term involving K: 0 corresponds to K
1
° decay and is of no interest to us 

here. Omitting this term, and using (129), (127), and (128), we have 

ljJ (I = 2) = >[375 K- {D lj.JD + E lj.JE} 

= .J3l5K- {1/2 D- ~ 1/12 E)[++-) -(00+)] 

- ( 1/2 D + tJT7l2 E) [ +-+)- ( 0+0)] 

+.JT73E [(-++)- (+00)]}. 

Finally we combine (131) and (126) to write 

ljJ = lj.J(I = 1) + lj.J{I = 2). 

{131) 

We can now pick out the coefficients for ( ++- ), etc., and write the intensities. 

From (131 ), ( 126 ), and the above equation, and including the usual factor of 

0 
2 for K

2 
decay, we have 

R ( K + -+ + + -) = I~ [ ~2( A 1 + B 1 ) + ( A3 + B 3)] + i- .J175 ( rJ3 D "-E) 1
2 

+ I ; [ .J2( B 1 + c 1) + ( B 3 + c 3)] + .JT75 E I 2 

+I; [.J2(Cl+Al) + (C3+A3)]- ~.JT75(rJ3D+E)I 2,(132) 
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R(K+- +00) = It [- tJ2 Al - A3 ;.. ~ E 12 

+ l}[-tJZB1 - B 3 +}~h/3D+E)!
2 

+It [- ,.fzcl- c3 - }"./TlS <tJ3 D-E) 12. 

R(K20-+ +-0) = 2 {I i ( -Al + ,[2 A3) 12 ( 12 + 12) 

+ 1..!_ ( -B + .[2 B ) 12 ( 12 + 12) 
3 1 3 

+ I t < ~c 1 + .J2 c 3) 12 ( 12 + l 2)} • 

(133) 

(134) 

(135) 

Equations ( 132) through ( 135) are completely general for .6.1 = l/2 and 

3/2o As a check we see that if we turn off the .6.1 = 3/2 decay, Leo, set 

0 = A
3 

= B
3 

= c
3 

= D = E, we then get back our original equations (11 0) 

through { 113 )o 

In order to simplify the equations, we now make two assumptionso (We 

will later be able to verify that these were good assumptionso) 

Assumption I. Assume that .6.1 = 1/2 dominateso That is, neglect quadratic 

terms in A3' B3' c
3

, D, and E, but keep linear terms in these quantities. 
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Assumption II. Assume that the dominant terms -that is .D.I = l/2 ,-go completely 

to the symmetric I = 1 state, but that .D.I = 3/2 is completely free in this respect. 

Assumption II is motivated by the good agreement ci ( 116) with experiment. 

According to assumption II we have 

( 136) 

We choose units so that 

A
1 

= l • 

Next, expand Eqs. {132) through ( 135) , dropping the quadratic terms accord-

ing to assumption I. It is easy to see by inspection of (132) and (133). that if 

A
1 

= B 
1 

= C 
1 

= 1, then the linear terms in D and E cancel identically; and in 

addition the linear terms in A
3

, B
3

, and c
3 

occur only in the combination 

We thus find (neglecting quadratic terms), 

and 

R(K+ _, ++-) = 1/9 [24 + 24.[2 Re a
3

) 

R(K+ __.. +00) = 1/9 [ 6 + 6 ..[2 Re a
3

] 

R(K
2
°-- +-0)= l/9 [12- 24 ..[2 Re a

3
], 

( 13 7) 

( 138) 

(139) 

( 140) 

0 
R ( K 

2 
~ 0 0 0) = 1/9 [ 18 - 3 6 ..J2 Re a 

3
] • ( 14 1 ) 

+ . + We see that we have R(K _.. ++_,) = 4R(K .- +00), and 

R(K~-+ 000) = 3/2 R(K~.....,. +-0); i.e., Eqs. ( 116} and ( 117} still hold! 

However, Eq. (1L4) does not hold. We thus see that there is no incompatibility 

between the good agreement of experiment with (116), and the poor agreement 

of the experimental results (121) and (122) with (114), provided .D.I = 3/2 is 

present. 
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We .must still verify that the b.I = 3/2 terms are small, to justify our 

neglect of quadratic terms. From Eqs. (139) and (140) we have 

2R(K+ ....... +00) -

4 R(K+ __..,. +00) + 

0 
R(K -+ +-0) 

2 
0 R(K -+ +-0) 
2 

2 R(K+ -· +00) - 0.97 R(K~ .-.. +-0) 

4 R(K+-+ +00) + 0.97 R(K2° ....... +-0) • 

Putting in the experimental values from (121) and (122) we find 

This is to be compared with A
1 
= 1 • 

( 142) 

(143) 

We conclude from (143 ) that the neglect of quadratic terms is justified. 

Furthermore, we see that the amount of b.I = 3/2 needed to satisfy the experi-

ments is small. In fact, by comparision of Eq. ( 143) with Eq. (55) we see 

that the ratio of the amplitude for b.I = 3/2 to that for l/2 that is required in 

K-+ 3rr is about the "same 11 as that required inK ....... 2rr to explain the existence 

+ + 0 of K -+ TT + TT • Thus the ratio of the experimental results {121) and (122) is 

not actually in disagreement with the b.I = l/2 rule, but rather is nexpected, 11 

from the well-known inexactness of the rule. 

We now turn to the question of the possible presence of b.I = 5/2 and 7/2. 

The b.I = 5/2 decay can lead to 3rr states with I= 2 or I= 3. The I =2 state 

0 0 cannot be reached by K
2 

but only by K
1

• Therefore the b.I = 5/2 spurion 

equation relating. K+ and K 0 [analogous to the b.I = 3/2 equation ( 130)] is of 

no interest for I = 2. We need only the K+ amplitude. Aside from normaliza-

tion, we get the same answer as when we considered I = 2 inK+__..,. 3rr via 

b.I = 3/2. There we found that if the I= 2 amplitude is small {compared to 

the I = 1 amplitude from .6.1 = 1/2), so that quadratic terms are negligible, 
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and if the .0-I = 112 amplitude goes to the symmetric I = 1 state, then the 

counting rates are not affected. ·This conclusion still holds. (This means 

that I = 2 final states are difficult to detect. ) 

The .0-I = 712 decay can lead only to the 31T state with I = 3. Thus we 

need consider only I= 3, from .0-I = 512 and 712 transitions. Both K~ and K+ 

can go to I = 3, so that the spurion relations are important. These are given 

by Table IV. We find 

s(5l2, +112) = 112 (K) X 3 (31r) 

= rJ4l7 K- ( 3, l )
3

1T - .J 317 R0 
( 3, 0)

3
1T, (144) 

and 

s( 7 I 2, + 1 I 2) = 1 I 2 ( K) X 3 ( 31T) 

--- -·-- 0 
= .J3I7 K- (3, I)

3
1T + .J417 K (3, 0)

3
1T. (145) 

We find the 37r states in the usual way. There is only one state with 

I = 3, given by 1 ( 1r) X 2 (21T). From Table VI (and Table V), 

. ~ - + + . ~ 0 f. r---;--r-, + 0 . {17-::; 0 +' ="' A.f A.:J 1T 1T 1T + "'8; 15 1T 1:" 1; 2 1T 1T + "'1; 2 1T 1T } 

= .JI/15 {{-++) + (+-+) + (++-)} 

+ .J4/15 {(+00) + (0+0) + (00+)} ( 146) 
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(3, 0)3TI = ~ TI+ (2, -1)2TI + "../375 TIO (2, 0)2TI + ,.,JTf5 TI- (2, 1)2TI 

= ,.,JTf5 1T + { -JT12 1T 0 1T- + -Jl72 1T - ir 0 } 

+.f375 1To {.JTT6 1T + 1T- + ..J476 1To1To + .JTT6 ir- 1T +} 

+ -J3!5 1T- { ..Jl]Z 1T + 1T 0 + ..Jl]Z ~ 0 1T + } 

= ..Jl/10 {(+0-) + {+-0)+(0+-) + (0-+) + (-+0) + (-0+)} 

+ ..J4/10 (000). ( 14 7) 

We now associate the complex numbers F
5 

and G
7 

with s(5/2, 1/2) and 

s ( 7/2, 1/2), and write, for lf!, (omitting .6.1 = 3/2), 

lf! = s(l/2, 1/2) + F
5 

s(5/2, 1/2) + G 7 s(?/2, 1/2) 

= -J273K- v+- -J173 K. 0 v 0 
1 1 

+ F 
5 

{ .Jffl7 K- ( 3, I) 3 1T - .J377 K.0 
( 3, o) 31T} 

+ G7 {.J377 K- ( 3, 1 )3TI + tJ477 ~ ( 3, 0)3TI} • 

+ 0 For v
1 

and v
1 

we use Eqs. (107} and (108L with A= B = C = 1 (assumption 

that symmetric I = 1 dominates for .6.1 = l/2). Using Eqs. ( 146) and ( 14 7) 

and collecting common terms, we have 

- 2.J2 ~. 13 lfJ = K {(-3- + "-'lifs F 5 + "-'f65 G7) [( ++-) + ( +-+) + ( -++)] 

rz f4 r-:s-
+ (- - 3- + 2 "'Tis F

5 
+ 2 "-'Ws G 7 ) [{+00) + (0+0) + (00+)]} 

-K.0 {(}+J 7~ F
5 

-J:t;; G
7
)[{0+-)+(0-+)+(+0-)+(-0+)+(+-0)+(-+0)] 

+ (-1 + 2 J/
0 

F
5 

- 2 J:f; G
7

) (000)}. (148) 
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Finally we can write down the counting rates, keeping only linear terms 

in F5 and G5. We now include the terms due to .C:.l = 3/2, as appearing in 

Eqs. ( 138) through ( 141 ). We thus obtain from ( 148) the relative counting 

rates 

+ R(K _,. ++-) ::: (149) 

R(K+ ->- +00) ::: (150) 

R(KZO ->-+-0) ::: (151) 

and 

(152) 

By inspection of (149) and (150) we see that for the ratio R(K+-+ ++-)/ 

+ R (K __,. +00) to equal 4, in agreement with experiment [following Eq. ( 118)]. 

we need, within rather small experimental errors, 

(15 3) 

The most reasonable conclusion is that 

F 
5 

::: 0, and G
7 

= 0. (154) 

The unlikely possibility that the result (153) is due to an accidental cancelation, 

(155) 

can be checked by measurement of the ratio R(K~ -ooo)/ R(K~ -+ +-0). 

According to (151 ) and (15 2) this ratio should be 3/2 {plus phase -space 

corrections) if (154) holds, but not if (155) holds. The present experimental 

results are consistent with (154) but are not accurate enough to rule out (155). 

[See the discussion following Eq. (119 ). ] 

In summary, the evidence from K _,. 31T branching ratios indicates 

(a) Dominance of .b. I ::: 1/2. 
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(b) Dominance of the symmetric I = 1 state. 

(c) Roughly that amount of ~I = 3/2 going to I = 1 expected from 

K + + 0 
-+7f7f. 

(d) Negligible amounts of .:0.I = 5/2 and 7/2 going to I = 3. 

(e) Possibly small amounts of I= 2 inK+ decay from .:0.I = 3/2 and 5/2. 

These could be present to, say, 30o/o in the amplitude {relative to 

.:0.I = 1/2) and still be undetectable via K+ branching ratios, since 

they give no effect in linear approximation, and the quadratic terms 

should give effects of< 1 Oo/o. (If I = 2 is present, the .:0.I = 3/2 and 

5/2 contributions can be sep·arated only by comparing !:(~-+ 3TI 

with K+ --.. 3TI.) 
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Lecture V. THE .6..I = l/2 RULE FOR LEPTONIC K-DECAYS 

We begin with a summary of the decays we have studied so far, and 

also the strangeness-conserving decays, by means of a Puppi diagram, which 

is constructed as follows. A decay, for instance n-+ p e -v-, is written in 

transposed form, pn __,. e + v. Then pn and e + v are called svvertices. vu Similarly, 

+ +-fl -+ e vv 
+ + ~ 

becomes fl v-+ e v, fl + p....., n + v becomes pn....., fl + v, A....., pe- v 

becomes p A -+ e + v. (We do not need to distinguish between v and v • ) A 
e fl 

given vertex is characterized by its quantum numbers for the strongly inter-

acting particles. - + Thus the pn vertex has the same quantum numbers as n , 

+ + + 
and p A the same as K • We therefore call these the n and K vertices. 

Transitions are assumed to occur between any pair of vertices. (With each 

vertex we may associate a "current. n Then transitions between two vertices 

are due t,o interaction between the two currents.) 

Until recently the four vertices e + v, fl + v, + 
'IT ' 

and K+ seemed sufficient 

to summarize all known decays. One had a Puppi tetrahedron. [in addition 

one has the charge -conjugate diagram. ] In our discussion we will need two 

additional vertices. Since a Puppi hexagon may become unwieldy, we use a 

"Puppi Table. 11 For each vertex we give the total charge Q, strangeness S, 

isotopic spin I, 

particles only. 

and its third component r3. for the strongly interacting 

+ Thus Q = 0 for the e v vertex (and so are S and I) since there 

are no strongly interacting particles. By this convention, Q is not conserved 

in n + -.. fl + v, although of course the total charge is conserved. For each 

vertex the baryon number is zero, and Q, r
3

, and S are related through the 

famous formula 

s 
Q = 13 + 2 (156) 
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The two additional vertices, needed in our later discussion, will be named 

the (3/2, 1/2) and (3/2, 3/2) vertices, after their (I, I
3

) values. The table 

follows. 

Vertex 

+· e v 

+ 1-1 v 

+ 
1T 

K+ 

3 1 <z:· +2) 

3 3 <z-· +2) 

Q 

0 

0 

1 

1 

1 

1 

s 

0 

0 

0 

+1 

+1 

-1 

I 

0 

0 

1 

1 
2 
3 
2 

3 
2 

0 

0 

+1 

+_!_ 
2 

+.!_ 
2 

+l 
2 

Particles 

+ e v 

+ 1-1 v 

+ - +- fT + 0 0 + 
1T , pn, k A, ..J I" ( 1T 1T _ 1T 1T ), ••• 

K+, pA,Jfn~--4 pfR Jf.KoTI+-[fK+Tio, 

4 n ~- + 4 p k 0, 4 K 0 1T + + 4 K + 1TO' ••• 

- + -0 + nk ,K TI, ••• 

Puppi Table 

The first three vertices take care of ~eutron f3 decay, 1T decay, 1-1 decay, 

and 1-1 capture, and (for example) predict k+-+ Ae + v. (An example of this decay 

2 
has recently been reported by Block et al. ) 

The K+ vertex is certainly present, since K+ _,.1-1+ v occurs. Transitions 

between the K+ and 1T + vertices can give only AI = 1/2 and 3/2. (We have seen 

that both AI= 1/2 and 3/2 are present but that AI= 1/2 dominates, in non-

leptonic decays of strange particles.) If either of the two I= 3/2 vertices is 

present, transitions to the 1T + vertex can occur with AI = 1/2, 3/2, or 5/2. 

Transitions between the (3/2, 3/2) vertex, which has S =-1, and the K+ 

vertex (S = +1) can lead to decays with AS= 2. For instance E--+ n1r can 

take place via 

K+ = E:- A-+ R 0 1r+ = (3/2, 3/2), 

or. transposing, 

-= n 1T • ( 15 7) 
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(Here the "equals 11 sign represents a strong reaction that conserves the 

quantum numbers of the vertex, and the arrow represents the weak reaction.) 

Since the decay ~ -+ n rr has not yet been observed, there has been good 

reason to assume the ( 3/2, 3/2) vertex to be absent. 

Another argument (by Okun) against the existence of the 0/2, 3/2) 

vertex is provided by the smallness of the observed K2- K~ mass difference. 

The transition {3/2, 3/2)-... (l/2, l/2) allows K
0

rr+ = (3/2, 3/2) -4>(1/2, l/2) = K
0

rr+ 

in first order; L e., KO ,.__._, R0 
"rapidly. 11 Since we have KO = Jz (K~+K~) 

and K
0

= -
1
-(K2 - K~), rapid transitions K

0 
,...._.. K. 0 

would correspond to rapid 

.J2 0 0 
change of the relative phase of K

1 
and K

2
, i.e. to rapid time variation in 

exp i(E
1

- E
2
)t/1l, and thus to a large mass difference m

1
- m

2
• If the 

0 -0 
(3/2, 3/2) vertex is absent, K ..,..__.. K can only proceed in second order, via 

K 0 + - K 0 leading to a "small'' K 0 - K 0 mass difference, as seems '<-+1T1T ~. 1 2 

to be observed. 

The "6.S/6.Q = +1n rule, for leptonic decays of strange particles follows 

from the exclusion of the (3/2, 3/2) vertex. We see from the Puppi table 

that 6.S/6.Q = -1/-1 =+!for the leptonic decays (l/2, l/2) --· L+ v (L+ means 

e+ or 1-l+), and for (3/2, 1/2) _,. L+ v, but we have 6.S/6.Q = +1/-1 = -1 for 

(3/2, 3/2) _... L + v. 

We now turn to the three -body 1eptonic decays K _..,. rr L v. We have the 

three possibilities 

K+ 0 + ...... rr L v 
' 

( 15 8) 

Ko - + __,., rr L v (159) 

Ko + --_,. rr L v (160) 

and the three reactions obtained from these by charge conjugation. The only 

possibilities are 6.I = 1/2 or 3/2 (for the strongly interacting particles, always). 
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We can transpose all particles to t4e left side' of the equat:i'ons, ·And 

add a spurion s to the right side, to conserve I and r
3 

(as well as ~Q and S). 

Reactions (158) and (159) have r
3 

= +1/2 for the spurion, so that the spurion 

can have I = 1/2 or 3/2. Using Table I we find the amplitudes 

(161) 

and 

( 162) 

(These correspond to the K+ and ( 3/2, 1/2) vertices in the Puppi table.) 

Reaction ( 160} has r
3 

= +3/2 for the spurion, so that the spurion must have 

I = 3/2, We then have 

s(3/2,+3/2) =L''"v K
0

rr-. (163) 

corresponding to the (3/2, 3/2) vertex in the Puppi table. We define the com-

plex numbers all' a
31

, and a
33 

corresponding to s(l/2, l/2), s(3/2, 1/2), 

and s (3/2, 3/2), and write 

~ = all s ( l/2, l/2) + a 31 s ( 3/2, 3/Z) + a
33 

s ( 3/2, 3/2) 

= r,+v [ .f2l3 all + .Jl73 a 3 l ] K 0 rr + 

+ y;+ v [- .J173 all + .J273 a31] K+ 'ITO 

+ L-v 0 -
a

33 
K rr • 

Thus we have the transition amplitudes 

+ 0 + -.JT73 a 11 + .f2l3 a(K ....,. rr L v) = a31 - a+' 

a(K 0 - + 
.f2J3 all + .JT73 a31 -+ rr L v) = a ' 

and a(K 0 + -
--rr L v)= a33 = a. 

(164) 

(165) 

(166) 

(167) 

(The amplitude a
33 

corresponds to .6-S = -.6.0. ) Under the assumption of CP 

invariance we have 

__:0 + - 0 - + 
a(K -.. rr L v) = a(K .- rr L v) = a 

and a(K. 0 ~ rr-L+v)= a(K0 --rr+ L-v)= a. 

( 168) 

(169.) 
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[Equations ( 168) and ( 169) are not completely obvious. See remarks following 

~q. (176)] Q Th f f K 0 d K 0 . K 0 ere or,e or 1 an .2 , s1nce l, 2 = 

have 

( 0 - + a K
1 

-. rr L v) = 1 [ 0 - + -0 - + ] - a{K -+.TTL v)+a(K -+rr L v) .J2 . 

0 + -a(K
1

-+rr L v) 

1 . -
= - (a+ a) 

.J2 

= -1 [a(K>- rr+L-v) + a(K0 ->-.rr+L- v)] 
.J2 

=-1- [- ] a+ a , 
..[2 

and similarly 

0 - + a(K
2 

-+ rr L v) = 

0 + - l a(K -+ rr L v) = - (a - a) • 
2 ,.[2 

Thus we have the rates 

( 1 70) 

( 171) 

( l 72) 

( 173) 

( .. 0 - + 0 +-
1/2 14 + 4 a31 + a3 3 12 • ( l 7 4 ) R K --» rr L v) = R(K -+ rr L v) = all 1 . l 

0 - + 0 + -
l/2 14 + Jf a3l - a3 312 • (l 75) R(K -+ TT L v) = R(K _.. TT L v) = all 2 2 

and 
+ o + 

1 
. fT rz 

1
2 

R(K _,. rr L v) = .,.,"-fj- a
11 

+ 1<J~ a
31 

• ( 1 76) 

Before examining the predictions of Eqs. (174 ), ( 175). and ( l 76) 

we make some parenthetical remarks. First, time -reversal invariance 

requires that a
11

, a
31

, and a
33 

be all real, except for a common phase 

factor. (Final-state interactions are negligible here.) 

Second, in Eqs. ( 168) and ( 169) we wish to invoke CP invariance, 

not C invariance. In order to have interfering amplitudes we must have 

exactly the same configuration of charges, momenta, and spins. In the K 

rest frame the configuration can be specified by giving the linear momenta, 
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p. (i = TI, L, v) and spins a. (i = L, v). Under P the spin is'\inchanged, but 
1 -1 

the p. are reversed. Then we should write that from CP invariance, 
1 

and 

Then 

0 - + --+ - -0 + - --+ --+ a = a ( K -. 1T L v; p. ; a . ) = a ( K ~ 1T L v; -p. ; a . ) , 
1 1 1 1 

-0 - + --+ --+ 0 + -- __... ,....,. 
a = a { K ..,. 1T L v ; p . ; a. ) = a { K --... 1T L v; -p. ; a. ) • 

. 1 1 1 1 

0 - + ....... ~ 
a (K

1 
_, 1T L v ; p.; a.) -· 

1 1 

1 

,_[2 

1 I -
=..[2\a-a), 

o_ +- .-.- 1 a(K
1 

1T L v,-p.,a.) =-(a+a), 
1 1 .[2 

.0 + - --+ --+ l 
a(K

2
--+ 1T L v;-p.; a.) --·-(a - a) . 

1 1 .[2 

Finally, then, Eqs. (174)and(l75) should read 

and 

0 - + .............. \ R(K
1 

_,. 1T L v; p.;a., 
1 1 

0 - + --+ 
R(K

2 
~ 1T L v; p.; a.) 

1 1 

o + _ - ...... 1 I 
1
z = R ( K 

1 
_.,. 1T L v ; -p. ; a. ) = · a + a , 

1 1 2 

These equations should actually be modified once more. 
....... _,. --+ 

Since p· + pL + p - 0, 
1T v 

--+ -+ --+ 
p , pL, and p cannot form a pseudoscalar, and the entire configuration 

1T v 
~ ....... ~ --.· . -;a--+-~ 

-p , -pL ,''-P can be rota,ted until it. coinddes with p , pL·' 'p • (This is 
1T v ·. ' ,1T v 

allowed since the K spin is zero.) In this rotation the spins are also reversed. 

0 - + -+ --+ 0 + -·- ....... --+ •• Thus we have R(K
1 
~ 1T L v; p.; a.) = R(K

1 
_,. 1T L v; p.; -a.) and s1n-11larly 

1 1 1 1 

0 0 - + 0 + --for K
2 

decay. Thus the spectra for K
2 

_,. 1T L v and K
2 

-+ 1T L v are the 

same, and our use of ( 168) and ( 169) is justified, as long as we do not measure 

spins. 

Next we consider the predictions of Eqs. (174), (175), and (176). We 

first sum over both signs of charge and let 

0 - + 0 + -R(K
1 

....... 1T L v) + R(K
1 

.-v L v)= r
1

, 

0 - + 0 + -R{K
2 

....... 1T L v) + R(K
2 

....... 1T L v) = r
2

, 

and R{K+ __.. 1r0L + v) r+ . 

( 1 77) 

(178) 

( 1 79) 
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The predictions become 

r2 = I.J273 all + .JTT3 a3l - a331
2 

== Ia- a 1
2 

• 

r = + I - .JTT3 a 11 + ,.,f2J3 a3l 12 == I a+ 12 . 

The predictions for some special cases follow: 

L Pure .t:.I = l/2 Rule. (Includes .t:.S = +.60 rule.) 

We have a
11 

l 0, a
31 

= a
33 

= 0. Then 

r 1 = r 2 = 2r+ • 

2. .t:.S = t&Q Rule. (Without .t:.I = l/2 rule.) 

We have a
33 

= 0, a
11 

l 0, a
31 

l 0. Then 

r 1 = r 2 f. 2r+. 

3. No .t:.I = 1/2 Rule. (For three-body decay.) 

UCRL-10540 

( 180) 

(182) 

( 183) 

(184) 

By this w_e mean a
11 

= 0; a
31 

l 0, a
33 

f 0. At first sight we might expect 

that the existence of K+ ..... l.L + v would guarantee a
11 

f 0, since we can write 

(K+ 1T
0 )I=l/

2 
= K+ _,. l.L + v, where the uBequals" sign corresponds to a strong 

reaction. But conservation of angular momentum and parity forbids the 

strong reaction in this case. (Of course there are other possibilities.) Thus 

. we should not assume, a priori, that a
11 

l 0, for three -body decay. 

The No .t:.I = 1/2 rule is easily seen to lead to a quadratic relation 

between the counting rates, namely 

If we let 

and 

then ( 185) becomes 

x - rl I r2 

y - r+/T2 

x = 1 +2y ± ,) l +8y • 

(185) 

( 186) 

( 187) 

( 188) 
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4. No ( 3/2. 1/2) Rule. 

We mean a
31 

= 0, a
11 

f 0, a
33 

f 0. Then we have the quadratic relation 

(189) 

which is equivalent to 

X = i +By± 2 .J8Y 0 ( 190) 

5. Takeda· Rule. 

The intermediate-boson scheme of Takedal2 allows all of a
11

• a
31

, 

and a
33 

to be nonzero, but imposes the constraint 

(191) 

[Eq, (191) is equivalent to Eq. (48) of Takeda 1 s paper. However, Takedaus 

Eq. (48) has a typographical error- -the factor (1/3) -l/2 should be replaced 

by (l/3)+l/2 . {Private communication from G. Takeda.)]. If we insert 

formula (191) into Eq. (181) and compare the result with Eqs. (182) and (180) 

we find the predictions 

Remarkably, one of the predictions--namely r
2 

= 2r+ --coincides with a pre~ 

diction of the pure .6.I = 1/2 rule. [See Eq. (183).] 

We now turn to the experiments. + The K rates are obtained by 

combining branching ratios from emulsions and bubble chambers, and the 

K+ lifetime from counter experiments. 13 The combined rates for 

K+-... e + 1rO v and f.L + 1r0 v give 

-1 sec (193) 

The rates forK~ and Ki are obtained as follows. Suppose one has 

a number N of K 0 produced at time t = 0, by means of a reaction like 

or 

K++n--K 0 +p 

0 
1r +p_,.K +A. 

(194) 

(195) 
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At t = 0 we have, for ljJ ( t), the wave function in the rest system of the neutral 

K-meson, 

IK~) + IK~) 
t.[2 

For t > 0 we must include the oscillating time -dependent factor 

exp ( -iE
1 

t/1i) = exp( -im
1 

t), and the decay factor exp{ ->-.
1 
t/2). in the K

1
° 

amplitude, and a $imilar factor forK~. to get 

I"· ( ) - 1 IK 0 't't -.JZ ·1 

We now calculate the time-dependent amplitude for decay into n-L+ v and 

+ -
TI L v, using Eqs. ( 1 70) to ( l 73 ), to obtain 

a(n-L+v) = (K
1
°!tJ;(t)) a(K~-+L+) + (K~IlJJ(t)) 0 + a (K __,. L ) 

2 

=exp(-imlt- A.lt/2) (a+ a) + exp(-:im2t-A.2t/2) (a-~) 

.J2 ,.,[2 ,[2 ,J2 

Similarly, 

The decay rate is given by the absolute square, so that the two decay rates 

(corresponding to a single K 0 at t = 0) are 

R ( L ± ) = 1 /4 {I a + a 12 
exp ( -A. 

1 
t) + I a - a j 2 

exp ( -A. 
2 

t) 

±2(.!al
2

- lal 2
) exp [-{A.

1
+A.

2
)t/2] cos6.mt}. (196) 

where the + and - signs in the cross term go with L +and L -. respectively. 

In the cross term we have set equal to zero a term proportional to 

sin(6..mt) I m a>:< a. Time -reversal invariance requires a· and~ a to have a 

common phase factor, so that a>:< a is real, and [ m a ':<a vanishes. 

We see from Eq. ( 196) that at t = 0, 

R ( L ± ) = 1/4 { J a + a 1
2 

+ I a - a 1
2 

± 2 ( J a 1
2 

- .1 a 1
2 

)_ ·} , ( 197) 

+ I 12 - 1-12 R(L ) = a , R(L ) = a • 
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Thus the ratio R{L -)IR{L +) at t = 0 gives the ratio !'iil 2/l a !2 • 

If one adds the rates for L+ and L-. the cross term in Eq. (194) 

cancels. and one obtains 

R ( L +) + R { L-) = 1 I 2 I a + a 1
2 

exp ( - A 1 t) + 1 I 2 I a - a 1
2 

exp ( -A 2 t) 

=112 rl exp(-Alt) + 112 r2 exp(-A2t). (198) 

Thus one can obtain r
1 

and r 2 by studying the time dependence of R(L +)+ R(L-), 

without anyknowledge of m 1 - m 2 = ~m. In this case. however, the result is 

u~changed under the interchange of a and a, as is evident from Eq. ( 198). 

14 . 0 . + Ely et al., us1ng K produced by K in propane through reaction 

(191), have studied the time dependence of decays_into 'IT-e+v 

using both Eqs. (196) and (198). They find. in disagreement with Eqs. (183) 

or (184), 

= 11.9 ~~:~ (199) 

This is. in bad agreement with the prediction of the ~S = +~Q rule. (They 

are not able to fi'nd the absolute rate for rl or r2. since their sample is 

highly selected, so no comparison can be made with r+.) 

Alexander et al.. 
10 

using K 0 produced via reaction (195) in the 72-inch 
- -

hydrogen chamber have studied the time dependence of { ,/ e + v) + ( ,/ 1-1. + v). 

No separation of charges was made, so that Eq. ( 198) was used. Combining 

the decays into e± and 1-1.±, they find 

± ± 
rl(e ,1-J.) 

± ± 
r2(e ·1-l. ) 

= 6 6+6.0 
• -4.0 

0 They also measure the absolute K
2 

rates, and find 

± ± 6 -1 
r

2
(e ,1-J.) ={9.31±2.49)Xl0 sec 

(200) 

( 201) 



-80- UCRL-10540 

This is accomplished by using decays with sufficiently long K 0 flight time to 

. . 0 -10 0 
msure that the K 

1 
have complete~y decayed ( T 1 :::: 0.9 X 10 sec-) but the K

2 

have not('-7·
2 
~ 7XI0-·8 sec.). Comparing(201) with(l93) we see that the 

prediction, r
2 

:;= 2 r+,. of the .6.1 = 1/2 rule, or of the Takeda rule, is not 

satisfied. 

15 0 
Crawford .et al. used K produced via reaction ( 195) in the l 0 -inch 

hydrogen ch~mber. They found 

± ± 
rl ( e • 1-1 ) 

± ± 
r2(e ·1-1) 

= 3 5+3.9 
0 -2 0 7 

(202) 

The chamber was too. small to get rid of K2 by attenuation in time, so that 

± ± 
to meas;ure r

2 
(e , 1-1 ) they had to assume a val1.1-e for r 1jr2

• They assumed 

rl = r2 [this is not in disagreement with (202)] and found 

± ± +7.2 6 -1 
r

2
(e ,!J. ) = 20.4_

5
•
6 

X 10 sec , ( 203) 

~f r
1 

= r
2

. If instea.d one assumes r 1/r2 
= 9, [this is taken as a compromise 

between (199) and (200)] one obtains from the same experiment 

± ± 6 -1 
r

2
{e ,!J. ) = (8.5±2.8) XlO sec • (204) 

This agrees well with the result {201) of Alexander et al. (whose result does 

not depend on r
1 
jr

2
), and poorly with the prediction of the .6.I = l/2 rule, or 

the Takeda rule. 

Let us next see whether the "No .6.I = l/2 rule 11 can be ruled out. ·we 

want to test Eq. (188). The K
2
° experiment .of Alexander et a1.,l

0 
combined 

with the K+ results of other experiments, 13 gives, from (201) and (193). 

+ + I ± ± 
y = r+ ( e ' 1-1 ) r2 ( e • 1-1 ) 

= (8.25±0.59)/(9.3±2.49) = 0.89±0.24. 

We insert this into (188) to predict (if all = 0), 

X= l + 2(.89) ± i.Jl +8(.89) 

=2.78±2.85 

= (5.63± 0.83) or (0± 0.15). 

( 205) . 

( 206) 
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where we have included the statistical errors in the last step. The prediction 

(206) of the "No .6.1 = 1/2 rule 11 is to be compared wlth Eq. {200)', the -value 

obtained by Alexander et al., namely x = 6.6± 5. We see that the No .6.I. =· l/2 

rule (for three -body leptonic decays) cannot be ruled out by the present 

experimental data~ 

We next test the "No (3/2, l/2) rul.e, 11 through its prediction {190). 

which becomes, according to (205). 

X= 1 + 8(0.89) ± 2~8{0.89) 

= 8.1±5.3 

= (13A±2.7) or (2.8± 1.2), (207) 

where experimental errors are only included in the final step. Neither of 

these predictions can be said to be in strong disagreement with the experi­

mental result (200). 

It is clear that more data are needed, to find the relative amounts of 

a
11

, a
31

, and a
33

, and to see whether universality holds between e and f-1· 

Lastly, we must remark ,that part of our discussion has been over­

simplified. Equations ( 180), (181 ), and (182) should be interpreted as giving 

the counting rates for a specified configuration of all the momenta and spins. 

Then a
11

, a
31

, and a
33 

are not constants, but are complicated functions of the 

configuration variables, the function depending on the dynamics of the decay. 

The comparisons of experiment with the predictions of the 11pure .6.1 = 1/2 

rulen [Eq. (183)]. the 11.6.S = .6.Q rule 11 [Eq. (184)]. and the "Takeda rule" 

[Eq. (192)] are not affected by the fact that we have suppressed information 

on the spectra, since these predictions are such that they refer both to a 

given configuration, and to the total decay rates, and in fact to the sum over 

e and J.1 decays. However, predictions ( 188) and (19 0), of the nNo .6.1 = 1/2 

rule" -and the 11No (3/2, 1/2) rule 11
, while they do hold for a given configuration, 
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are not applicable to the total decay rates, nor to a sum of e and fl. modes. 

The reason is that ~hese (quadratic) predictions do not involve simple ratios. 

Therefore the 11predictions 11 (206) and(207), and subsequent comparison 

with the experimental result (200), would make sense only if the form factors 

involved in a 11 , a
31

, and a
33 

were all the same function of the configuration 

and furthermore were the same fore and fl. decay. Thus, only to the extent 

that the spectra correspond to phase space alone -and to the extent that we 

neglect the fl.-e mass difference!-can the comparison of {206) and {207) with 

(200) be justified. 
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This repor~ was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his ~mployment with such contractor • 
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