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ABSTRACT 
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The interaction of K mesons on protons resulting in elastic and 

charge -exchange scattering and hyperon production are reported for a range 

of momenta from 250 to 513 MeV/c. About 10,000 events obtained in the 

Lawrence Radiation Laboratory's 15 -inch bubble chamber were analyzed. 

Differential and total cross sections for all channels are examined. For 

"+ -..w;r, 

able. 

L:: 0 ;r 0
, and .L\;r 0 production, polarization measurements are also avail-

A resonant state is identified with a mass 1519 MeV and a full width 

r = 16 MeV, decaying into KN, L::;r, and .L\;r;r in the branching ratio 30:55:15, 

respectively. The resonance is found to have isotopic spin 0 and spin 3/2, 

and its parity is that of the KN D
3

;
2 

state. By use of the polarization arising 

from the resonant D
3

/
2
-S-wave interference, a strong argument for negative 

KNL:: parity is obtained. All the data are fitted to a model based on a Breit-

Wigner resonant amplitude and nonresonant S, P,. and D amplitudes parame­

trized by constant scattering lengths. An extensive search for x2 
minima 

was done on an IBM 7090 computer under various assumptions for the spin 

'-.) f• and parity of the resonance. Only the D
3

/
2 

possibility in both K- p and L::;r 

states yields a satisfactory (43% probability) fit. A D
5

/
2 

K- p resonance 

(with L::1r in F
5

;
2

) is the nearest alternative possibility, with a likelihood df 

less than 1% of fitting the data. 
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Below 300 MeV I c the K- p interaction is strongly dominated by 

S waves. All channels have been found to be satisfactorily described by the 

S-wave zero-effective-range approximation\Y Above 300 MeV I c, higher partial 

waves begin to exhibit themselves in a spectacular fashion. Previous to this 

experiment an analysis of 140 interactions at 400 MeV I c in the 15 -in. liquid 

hydrogen bubble chamber indicated a large c:os
2 e term in the elastic angular 

···'distribution. 
2 

With this guidance, a much more detailed study of this region. 

was begun in 1960. Over 10, 000 events have been analyzed at K laboratory 

momenta of about 300, 350, 400, 440, and 510 MeV I c and from the source of 

the data presented here. Apart from the addition of 1000 more K- p elastic 

scatters and the inclusion of a "beam averaging" procedure, the data are es.- .: 

sentially the same as reported in preliminary form earlie~Computer fits 

to the final data presented here yield resonance parameters very similar to 

those found in the precomputer analysis. 

In Section II we discuss the K beam, and in Section III, the scan-

ning and measuring procedure. The results of the measurements and remarks 

on experimental biases appear in Section IV. A simplified discussion of the 

resonance is found in Sections V and VI, where we establish the properties of 

the resonance and develop the argument concerning the KN~ parity. The least-

squares computer analysis is formulated in Section VII, and the results of the 
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computer analysis under various assumptions for the quantum numbers of the 

resonance appear in Section VIII. In Section IX we discuss the approximations 

made in the computer analysis and the extent to which the 1: parity determina-

tion depends on these assumptions. 

II. BEAM 

The beam setup was designed and built by Murray and has been 

4 
reported elsewhere. Here we shall recall only its main features. 

The beam was designed to provide K mesons with momenta up to 

800 MeV I c. The momenta considered in this experiment were obtained by 

degrading the original beam. The K- mesons were produced by the maximum-:_~~~·:_ 

energy proton beam of the Bevatron striking a copper target. The beam was 

extracted from the target at 0 deg, where the 'IT- IK- ratio was approximately 

500 to l. Once the beam was outside the Bevatron magnet structure, two stages 

of electrostatic separation were employed to select a narrow momentum inter-

val while separating K from 'IT;;. Crossed electric and magnetic fields were 

adjusted so that the K me sons were undeflected, while the 'IT- were deflected 

vertically. The deflection of the 'IT- image at the first mass-resolving slit was 

about 112 in. from the K- image. At that point the K were directed through 

a 118-by-2"' 114-in. opening into the second stage, while the 'IT- were arrested 

in the lead walls of the slit. The success of this method depends critically on 

the separation of the 'IT- and K images, which is limited by the electric and 

magnetic fields obtainable in the separators. 

This experiment wa!) the first to utilize the heated-glass-cathode tech-
_ ........ 

5 
nique due to Murray. This enabled us to reach a 50% higher electric field 

gradient than was possible with previous separators. During normal operation 

450 kV applied across a 2-in. gap between parallel plates in both of the identical 

10-ft separators yielded a gradient of approximately 90 kV I em. 
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At the first slit the beam momentum was 800 MeV I c, with a spread of 

1 o/o, coherently focused across the slit in the horizontal plane. A beryllium 

wedge was placed in the beam so that the high-momentum side traversed the 

..,. thick end, while the low-momentum side was only slightly slowed by the pointed 

end. After wedging, the momentum spread was reduced to ±1/2%. The second 

stage was then essentially free of chromatic aberrations_. 

There were two main causes of K loss. The length of the beam was 

-7 5 ft, so that only :::::2. 1 o/o of the 800 MeV I c kaons produced at the target lived 

long enough to reach the absorber in front of the bubble chamber. The second 

cause of K loss was through absorption in the copper absorber, which served 

to degrade the incident momentum. This loss depended on the amount of ab-

sorber, varying in our case between a factor of 4 and 5. This degrading also 

increased the relative momentum spread as the central momentum decreased. 

At 800 MeV I c the K flux in the bubble chamber was 15 K 
11 

per 10 pro-

tons striking the target. At 400 MeVIc, there were about: three K~ entering the 

chamber on each picture. There were approximately 30 perce:nt background 

tracks, half of which were 'TT • The 'TT- contamination was determined from 

'TT- -p scatterings observed in the chamber. Since 'TT- are not slowed down at 

the same rate as K , the 'TT- had a systematically higher momentum. The dif-

ference between the mean momenta of the K and 'TT- ranged from 100 MeV I c 

at a K- momentum of 510 MeVIc to 200 MeVIc at 300 MeVIc. 

The median K momenta for the various exposures were 292, 350, 387, 

392, 434, and 513 MeV I c. The two exposures at 387 and 392 MeV I c are com-

bined on occasion, as they differed by a small amount, and referred to as 

the 390 MeV I c run. 
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III. SCANNING AND MEASURING 

The film was scanned for interactions and decays by a team of five 

technicians. When an event was found, it was classified according to the num­

ber of prongs leaving the production vertex. All V' s that could have been 

associated and all subsequent decays were recorded. There were eight pos­

sible topologies: 

1. zero prongs 0 

2. zero prongs plus a V o.v 

3. one prong 1 

4. two prongs 2 

5. two prongs with a positive decay 2+ 

6. two prongs with a negative decay 2-

7. two prongs plus a v 2V 

8. three prongs 3 

The efficiency for detection of an event varies, of course, with the 

type of event and its position in the chamber. To eliminate poorly illuminated 

areas in the chamber, a "fiducial volume" was chosen which provided a margin 

on all sides. 

The 0 ,-,prong and 1-prong events were not used in the analysis and will 

be neglected. 

In order to evaluate the scanning efficiency, about 25o/o of the film was 

scanned twice. Table I shows the results of the comparison. The efficiency 

for detecting the events studied appears to be very high, obviating corrections 

for scanning losses in computing cross sections. 
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Table I. Scanning efficiencies for the different topologies, 
obtained from a double scan of ;::::25o/o of the film. 

Topology ov 2 2± 2V 3 

Efficiency 
( o/o) 

98.3 97. 1 99.2 100 97.0 

A sketch was made for each event selected to be measured. This 

sketch served to specify to the measurer which two of the four pictures of 

each frame pre sen ted the best stereo pair. Once sketched, the event was 

db . ''F k t . 11 measure y us1ng a ranc ens e1n. This machine is essentially a projec-

tion microscope which digitizes in Cartesian coordinates several points along 

each track of the event in the photograph. The coordinates are punched on 

IBM cards along with appropriate reference points and event-identifying infor-

mation. The cards served as input to the event- reconstruction computer 

programs. 

Each event was reconstructed, track by track in space, from the dig­

itized input cards by the IBM 7090 program PACKAGE. 
6 

This is the standard 

program in use by the Alvarez Group for event reconstruction and kinematical 

analysis. The same program subjects the measured variables on each track 

to the constraints of momentum and energy conservation for the entire event. 

The measured quantities were adjusted to give the best fit satisfying the con­

straints, as measured by a x2 
calculated by the program. 

event was subjected to several different interpretations. 

value unambiguo-qsly selected one interpretation. 

In most cases each 

2 
Usually, the X 

In order to study the x2 
distribution a large group of elastic scatter-

ings was chosen randomly. Since usually all tracks are measurable i~ such 

' events, the constraints of momentum and energy conservation left the "fit" 

four times overdetermined. 2 
The X for such a case should have a mean of 4. 
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Figure 1 shows the observed x2 
distribution and a theoretical curve normal-

ized to the correct number of events for four degrees of freedom (solid curve). 

T.he observed distribution appears to be more spread out than expected. The 

dashed curve corresponds to the case in which the error assignments are 

about 20~o underestimated; this last fit is quite good, indicating that no serious 

distortions exist but only a misassignment of error magnitudes. 

As a measure of the contribution to the x2 
discrepancy by each meas-

ured variable, the "pull 11 quantities P. (x} were examined. The P. (x) are 
1 1 

defined by 

... . ,, 
where x. is the adjusted value of a variable corre spending to the measured 

1 

value x. me as 
1 

The pull quantities should have a mean value of zero and a 

standard deviation of one if no systematic errors are made and if the meas-

urement errors are correctly assigned. These quantities are discussed in 

6 
detail in connection with the predecessor program to PACKAGE called KICK. 

When these quantities are plotted for all the measured variables, the curves 

show normal distributions having in each case a mean value nonsignificantly 

shifted from zero and widths indicating an underestimate of the measurement 

errors by about 20o/.o. At no point in the experiment was a major dependence 

placed on the proper distribution of x2
, only on relative values. The errors 

introduced by deviations in the distribution of the x2 
function and the pull 

quantities were believed to be negligible: compared with the statistical uncer-

tainties inherent in the data. The output of PACKAGE was in the form of a 

binary magnetic tape which served as input to a series of short Fortran 

EXAMIN routines. These calculated and organized the pertinent physical 

quantities not directly measured. 

Finally, but not less important, there was the examination on the 
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Fig. 1. Distribution of the x 2. in the fit of 948 elastic scatterings, 
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scanning table of all events that gave 11bad fits. 11 These were events where 

unexpected strong distortions in the chamber or bad illumination were re spon-

sible for completely false measurements. Furthermore, unnoticed small 

scatterings or just wrong measurements also:went into this category. Through 

repeated measurements with special precautions (not excluding hand analysis 

of the events), we were eventually successful in as signing an iriterpre-

ta tion to all events. 

IV. RESULTS OF THE MEASUREMENTS 

A. T Decays and Path Length 

Events of the type K- -+rr + + rr- + rr- (T decay) have the advantage over 

the one -prong decays of being very easily identifiable in the chamber and of 

allowing an accurate measure of the incident K momentum. Therefore they 

provide a far better measurement of the incoming K flux than would the much 

more numerous one-prong decays. 

The inCident K momentum determined from these events had a typical 

uhcertainty of ±5 MeV I c. Figure 2 shows the K momentum spectra obtained 

from the T decays at each momentum setting. By use of a K lifetime of 

l.224X 10- 8 sec and a T-decay branching ratio of 5.77%,
7 

the flux of K- at 

each interval was determined by the number of T decays observed. The mo-

mentum spread of all incoming K' s is identical to the decay spectrum after 

correction for time dilation. This correction consists of weighing the number 

of 7'
1 s in each interval around Pk by a factor equal to Pk/Pk' where Pk 

denotes the median momentum for the whole run. 

As expected, the shape of the spectrum at. each momentum interval is 

approximately Gaussian, with a low-momentum tail. All interactions and 

T decays whose fitted incident momentum was l 00 MeV I c or more below the 



'·~ 

-9-

E c.m. (BeV) 

32 

28 

24 PK •513 :!:2MeV/c 

20 S PK •20 MeV/c 

IS 

12 

12 

0 

20 

IS 

12 

!! 
~ .. 
> .. 
':; 

24 
:;; ... 
e 20 
~ 

z 
16 

12 

16 

I 2 

16 

12 

OllU...Wu......~~.-...JLJ.U..~~~........J 

[ 00 200 300 400 500 600 

Mome_ntum, P K (MeV/c) 

Fig. 2. K- momentum spectra from fitted T decays at the six exposure 

settings. Here i'\ is the median momentum, and 6Pk the .standard 

deviation. There were 134 events at 293 MeV/ c, 97 at 350, 166 at 

387, 128 at 392, 81 at 434, and 59 at 513. 
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median Pk were discarded. Such events were usually not part of the low­

momentum tail, but resulted from "off-beam" particles mainly produced in 

large -angle scatterings in the absorber or final mass-resolving slit. 

The value of the median momentum Pk obtained from the T decays was ~ 

then used in fitting all other types of events. This was done by averaging the 

measured incident momentum of each event with Pk' the two momenta being 

weighted by the measurement error and by the variance o:Pk of the 'T -decay 

momentum spectrum, respectively. Each event was fitted both with and with-

out this "beam-averaging" procedure, in order to recognize and eliminate off-

beam events. The beam-averaging procedure allowed a more precise deter-

mination of the incident momentum than possible by direct measurement only. 

F.or example" when the incident track was very short or hidden by other tracks, 

direct measurement often gave unlikely values. 

Finally, all the 'T decays have also been merged to give a single mo-

mentum distribution over the whole explored region. This overall path length 

was then used to calculate values of the cross sections for momentum intervals 

smaller than those covered by the individual runs. 

Table II gives values of the total and partial cross sections for each 

rj.m; the values for smaller momentum intervals are displayed in Figs. 26 

through 29. 

B. Elastic Scattering 

Elastic scatterings represent roughly one-half of all interactions. 

Those chosen for analysis were found entirely in the "two-prong" events. 

dbviously, for small-angle scatterings in which the recoil protons carry off 

little momentum, there is some minimum angle beyond which the protons are 

nb longer visible. Such an event would be classified as a II II one-prong and 
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Table II. Cross sections for the different K- momenta settings (in MeV/c) forK-+ p reactions. 

Reaction products 

Total 

(.Err)I=O 

(En)I=l 

K- +p 

Ko + n 

E+ + 1T­

E- + ,+ 

Eo + ,o b 

11. + ,o 

11. + ,o + ,o c 

11. + "+ + ,­

Eo + "+ + "­

E+ + ,- + ,o 

E- + n + + ,o 

PK = 293±42 

48.2±4.2 

8.0±1.2 

13.6±1.4 

10.0±1.1 

5,2±0.9 

5.2±0.9 

0.3±0.2 

0.15±0.10 

0 ±0.08 

0 ±0.05 

0.05±0.05 

90. 7±4.9 

15.6±2.7 

13.2±2,5 

35.7 

Cross sections (mb) 

350±31 387±30 392±30 390a±30 

34.0±3,2 31.9±2.5 34.0±3,0 32. 7±1.8 

5.1±1.1 8.1±1.0 10.0±1.0 8.8±0.7 

10.6±1.4 11.4±1.0 14.0±1.4 12.5±0.8 

6.9±1.0 6.0±0.6 8.3±0.9 6.9±0.5 

6,3±1.4 6. 9±0. 9 6.4±1.0 6. 7±0,6 

4,5±1.0 2.9±0.5 3,3±0.6 3.1±0.3 

1.9±0.6 1.2±0.4 1.8±0.3 1.5~.2 

0.9±0.3 1.2±0.3 2.4±0.4 1.6±0.2 

434±26 

30.6±3,4 

6,0±1.2 

8.2±0.9 

6.1±0.7 

4.9±1.3 

3.2±0. 7 

0.8±0.4 

1.5±0.4 

513±20 

26.5±3,3 

3,6±0,6 

7,5±1.1 

4.9±0.8 

1. 7±0. 3 

1.6±0,4 

1.1±0. 3 

2,0±0.4 

0 ±0.09 0.08±0.05 0.06±0.06 0.07±1},06 0 ±0.08 0.3±0.1!> 

0.06±0.06 0.09±0.05 0.21 ±0.10 0.11±0.04 0.18±0.11 0.20±0.12 

0 ±0.06 0.03±0.03 0.17±0.09 0.12±0.05 0 ±0.06 0.14±0.10 

70.2±4.2 69.6±3.2 80.6±4,0 73.8±2.3 

18.9±4,2 20.7±2.7 19.2±3,0 20.1±1.8 

4.9±3.3 3.6±2.2 9.5±2,6 6.0±1.4 

25.6 21.4 20.8 20.9 

61.5±4.1 

14. 7±3. 9 

4.5±2.8 

17.3 

49.5±3. 7 

5.1±0.9 

9.0±1.5 

13.0 

a. Combined runs 387 and 392 Mev/c. 
1 + ' 

b. Derivedfrom a(E0 rr 0 )=a(E 0 rr 0 + 11. rr 0 rr0 )- -z a(JI.rr ,-). 

c. Derived from phase-space cons1derations; as they stand they violate charge independence when 

compared with A"+"-



-12- UCRL-10542 

lost among the thousands of K decays. Long before the recoil becomes com­

pletely invisible, the efficiency for observing the proton stub drops consider­

ably. Rather than attempt to evaluate the detection efficiency, which varies 

rapidly with scattering angle, we eliminated all events with cosines of the 

scattering angle greater than 0.9 in the center of mass. Figure 3 shows the 

average projected length of the recoil proton versus K momentum for center­

of-mass scattering cosines of Q. 9 and 0. 9 5. The 0. 9 cutoff should guarantee a 

high scanning efficiency. A uniform cutoff for all momentum intervals was 

desirable to 9implify merging the different runs. For the higher momentum 

intervals the 0. 9 cutoff may seem too stringent. However, the pion contamin-

ation in the beam leads to lT- -proton scatterings which at forward angles can,_ 

not be separated from K- -proton scatterings. For cosines less than 0.9 this 

ambiguity essentially disappears. Thus, 0. 9 was chosen both to eliminate 

short-recoil scanning losses and the lT- -p scattering contamination. 

If the plane of an elastic scattering were vertical, the camera might 

see only the edge of the plane. Thus, we might expect a scanning bias against 

detecting events in which the plane of scattering is nearly vertical. There are 

two factors tending to reduce the effect of this bias. The bubble chamber has 

four cameras. Whereas one camera might view only the edge of the plane, the 

event should be clearly seen in one of the other three views. Also, the mag­

netic field in the chamber deflects the scattered K mesons and protons in 

opposite directions. Therefore, even an edge -on view usually appears V-

shaped. 

by the K 

Small-angle scatterings with short recoils and little momentum loss 

meson would most likely be missed. Figure 4 shows the distribu-

tion of events for various orientations of the plane of scattering. This distri­

bution should be and is isotropic. The co:s e = 0. 9 cutoff is stringent enough to 

eliminate this source of trouble. 
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Fig. 3. Length of the recoil proton in elastic scatters for fixed c. m. 

scattering angles (II c. m. ) as a function of the incident K- laboratory 

momentum. The cos II = 0. 90 cutoff was adopted. c. rn. 
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Fig. 4. Distribution of elastic scatterings versus the angle cj>, where 

cos <I>= 
(KinxRout)' (KinX 2axis) .. 

Here K. and K t are vectors in the incident and outgoing K 
1n ou 

directions, and the z axis is vertical; <1> is 0 deg for a vertical 

scattering plane. The distributions are folded about 90, 180, 

and 270 deg. 
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Figure 5 shows the distribution of errors for the incident K- -meson 

momentum resulting from the fit. The double peaks can be explained as fol-. 

lows. For small angles the recoil-proton momenta are well defined, since 

the protons stop in the chamber. For very large angles the scattered K 

mesons stop. Since a momentum derived from range measurement is much 

more accurate than momentum obtained via curvature, both very forward and 

very backward scatterings yield better fits. In fact, an exact correspondence 

between stopping tracks and the first peak was found. 

In order to calculate cross sections for elastic scattering, the number 

of events with cos e ~ 0. 9 must be corrected to include all angles. This was 

done by fitting a power series in cos e to each angular distribution; the total 

number of events was then obtained by integrating the best-fit curve. 

Figure 6 shows the differential cross sections for each of the momen-

tum settings individually. These distributions were fitted by a least-squares 

procedure to a polynomial of the form 

dO' 2 n 
dn = C 0 + c 1 case+ c2 cos e +----+ Cncos e 

where 8 is the c. m. angle between the incident and scattered K mesons. 

The results of these fits for orders n = 0 through 4 are displayed in 

I 

Table III, together with the values obtained for the elastic- scattering eros s 

sections. 

The optical theorem relates the imaginary part of the forward-scatter-

ing amplitude to the total cross section. The square of the imaginary part 

gives a lower limit to the differential cross section in the forward direction. 

The square of this imaginary part is shown for each distribution in Fig. 6. 

Notice that in all cases the real part is consistent with zero. 
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Fig. 5. lncident-K- fitted momentum error for elastic scatterings. The 

double peaks are due to the different accuracies attainable in the 

momentum determinations of the scattered particles for stopping 

and leaving tracks. 
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Table Ill. Least- squares fits to the angular distributions for K p. 

Expansion coefficients (mb/ sr) 

PK a Order Expected Confidence 

(MeV/c) (mb) 
of fit co c1 c2 c3 c4 2 2 level 

X X ( '7o) 

293 48.2±4.2 0 3.78±0.13 11.8 18 84.7 

3.79±0.13 0.08±0.23 11.7 17 80.0 

2 3.81±0. 19 0.07±0.24 -0.10±0.46 11.6 16 74.4 

3 3.78±0.19 -0. 50±0. 57 0.09±0.49 1.06±0.98 10.5 15 75.3 

4 3.62±0.24 -0.32±0.59 1.93±1.67 0.56±1.07 -2. 43±2.10 9.1 14 83.1 

350 34.0±3.2 0 2. 36±0. 11 18.8 9 2.5 

2.40±0.11 0.41±0.22 15.3 8 5.9 

2 2.10±0.16 0.60±0.23 1.15±0.45 8.7 7 27.5 

3 2.05±0.17 0.02±0.52 1.43±0. 50 1.20±0.95 7.1 6 31.2 

4 2.12±0.20 -0. 12±0.56 0.50±1.53 1.58±1.12 l. 35±2. 09 6.7 5 24.4 
....... 

< 10- 5 00 
390 32. 7±1.8 0 2.16±0.06 214.4 18 

2.19±0.06 0 36±0.12 205.4 17 < 10-5 

2 1.53±0.07 0.87±0.13 3.12±0.23 25.2 16 7.0 

3 l. 50±0.08 0.31±0.26 3.35±0.25 1.19±0.49 19.2 15 21.4 

4 1.41±0.09 0.48±0.28 4.61±0.76 0. 7 5±0. 55 -1.83±1.04 16. 1 14 31.3 

434 30.6±3.4 0 2.12±0.10 21.7 9 0.9 

2.14±0.10 0.23±0.19 20.4 8 l.O 

2 1.82±0.14 0.37±0.20 1.23±0.41 11.3 7 13.9 

3 1.84±0.15 0. 63±0.46 1.14±0.43 -0. 55±0.85 10.8 6 8.8 

4 1.95±0.19 0.46±0.48 -0.31±1.38 -0.09±0.95 2.06±1.87 9.6 5 8.7 

513 26.5±3.3 0 l. 7 5±0.1 0 49.8 18 0.008 c:: 
2.01±0.11 1.17±0.19 12.7 17 73.6 0 

2 1.82±0.15 1.33±0.21 0.72±0.40 9.5 16 86.7 
~ 
L' 

3 1.84±0.16 l. 52±0.45 0.63±0.46 -0.40±0.81 9.2 15 87.8 I 
....... 

4 2.00±0.19 1.14±0.51 -l. 20±1. 33 0.42±0.98 2.54±1. 73 7. 1 14 93.5 0 
\.11 

*'" N 
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C. Sigma Production 

M f h f h II · h d II ost o t ese events were ound among t e two-prongs w1t a ecay 

topology, but severe biases would have occurred if the analysis had been 

restricted to only this topology. 

Examination of the kinematics of sigma production for this range of 

K momenta reveals a disturbing fact. Sigmas of both signs produced back-

wards in the center of mass have such low laboratory momenta that they stop, 

and hence decay or interact, before making a visible track. Such an event 

would be recorded as a two-prong event or possibly even as one-prongplus V 

- - + -i. e.,K + p ~ :2: + 'IT' , :2: + p - L\ + n, L\ -+ p + 'IT' - • 

+ The protonic decay mode of the :2: hyperon may appear to be an elastic 

scattering if the production-pion ionization is not examined carefully or if the 

track is dipping steeply. In the examination of two- prong events during the 

analysis of the elastic scatterings, a group of events was found in which ioni-

zation and curvature indicated the outgoing tracks were a 'IT'- meson and a 

proton. Furthermore, events in which the outgoing tracks appeared to be 'IT' 

+ and 'IT' were also found. Neither of these groups satisfied the elastic-scatter-

ing requirement that the incident and outgoing tracks be coplanar. These events 

may be interpreted as production of charged sigmas in which the :2: went back-

wards in the center of mass and had insufficient energy to leave a visible track, 

or else decayed so quickly after production that no track was visible. This 

hypothesis was tested by the computer programs for all two-prong events. In 

each case the incoming K and one of the outgoing tracks was used in fitting 

to the :2:-production hypothesis. Energy and momentum conservation require 

four constraints to be satisfied in the fit. Since the :2: is not seen, three of 

the constraining equations were used to calculate the :2:-production character-

istics (its vector momentum, for example). This left the production fit with 
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only one constraint. The '2:: momentum so determined and the third observed 

track were fitted to the '2::-decay hypothesis. This fit is also once overdeter-

mined, and was usually sufficient to identify the event. As a result, the invis-

ible '2::' s usually satisfied the following criteria. First, they would fail to fit 

either K- p or ;r-p elastic scattering; second, both the L: production and sub-

sequent '2::-decay hypotheses gave consistent fits with the data. 

For those two-prong events where two final-state pions were observed, 

there were other possible interpretations. In addition to invisible '2::± hyperons 

these events could also be charge-exchange reactions with very short K 0 or 

.1\..;r +iT- production with a neutral decay of the .1\... Of the several hundred events 

initially in this ;r + ;r- group, most proved to be resoluble kinematically into 

their four possible interpretations; the remainder were kinematically ambigu-. 

ous. However, subsequent reexamination of the event on the scanning-table 

frequently disclosed unmeasurably short but visible :L:± hyperons, or gaps 

corresponding to K 0 mesons and in the proper direction to satisfy the kine-

matic fit obtained from the zero-length assumption. Those that did not yield 

to this reexamination were as signed to various categories according to their 

most probable interpretation. Fewer than l% of them fell into this truly am-

biguous class. 

+ 0 Another two-prong possibility arose from L: -+p;r with a very small 

+ decay angle between the L: and proton. These generally came from energetic 

s+ produced in the forward direction. Initially they were classified as two-

prong events, but kinematic anaiysis and sub sequent reexamination of these 

events showed them to be :L:+. 

One further effect should be mentioned. Any L: hyperon may interact 

with a proton according to 
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or 

L:- + p-+1\.tn 

The A would be visible only two-thirds of the time, when it would decay via 

its charged mode. 

In order to estimate the number of L: absorptions, the percentage of 

I: hyperons that would stop and interact was calculated. The possibility of 

in-flight absorption was neglected. On the basis of the number of decays 

observed in any angular region, the corresponding number of absorptions may 

be estimated. Since the number of events considered is so small, large statis-

tical fluctuations are not surprising. Table IV shows the comparison of ob-

served and estimated absorptions. Although large fluctuations occur for the 

individual intervals, for the combination of all intervals agreement is quite 

satisfactory. Both the total number of absorptions and the division into visible 

and invisible A decay modes agree with the estimates extremely well. 

Several checks can be made to verify that the effects of the biases seen 

above have been actually eliminated from our s·ample: (a) Figure 7 shows the 

distribution of observed times from production to decay compared with the 

known lifetimes. Agreement is very good. (b) The comparison of the pionic 

and protonic decay rates for the L:+ is shown in Table V. The overall ratio 

1 
of 0.51 agrees with the expected value of 0.51±0.02. (c) No significant depop-

ulation or overpopulation near cos eK = l can be found in the I: angular dis-
lT . 

tributions (see Figs. 9 and 10) at any of the momentum intervals considered. 

This confirms the identification of the 11 zero-length 11 sigmas and justifies the 

confidence that no loss of such events has occurred. 

Figure 8 shows t'he distribution of errors on the incident -K momen­

± 
tum for I: . Although there is a slight variation with production angle, the 

resolution seems sufficient to warrant division into 10 -MeV/ c intervals. 
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Table IV. Observed and predicted ~ absorptions 

for backward-produced ~ hyperons . 

Momentum . ·. Interval .· · Ob se.:rved Expected Observed number 
PK of number of number of of absorptions 

(MeV/ c) coseK-'TT+ decays absorptions (visible A + invisible A) 

293 1. 0 to 0.9 4 5 3(3 + 0) 

0.9 to 0.8 11 2 0(0 + O) 

0.8 to 0.7 14 0 2(2 + 0) 

350 1.0 to 0.9 1 1 4(3 + 1) 

0.9to0.8 6 0 0(0 + 0) 

390 1. 0 to 0. 9 17 10 8(3 + 5) 

0.9to0.8 24 0 3(3 + 0) 

434 1. 0 to 0. 9 14 5 2(1 + 1) 

0. 9 to 0.8 9 0 0(0 + O) 

513 1. 0 to 0. 9 9 1 2(1 + 1) 

0. 9 to 0.8 6 0 0(0 + 0) 

Totals 24(16+8) 24(16+8) 
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prong events identified as I: hyperons. 
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Table V. Number of ey~nts and decay branching ratios 
+ of L: hyperons. The last two rows give the number of L: 

+I -and the L: L: p reduction ratios. 

Momentum (MeV I c) 

293 350 387 392 434 513 Total 

L:+ + 0 146 78 188 158 68 67 705 
0 

(L: -+pt1T) 

'+ + + 126 86 190 169 66 44 681 L: (L: -+nt1T ) 
+ 

!:+ + L:+ 
0 + 

272 164 378 327 134 111 1386 

L:+ I (L:+ + L:+) 
0 + 0 

0.54 0.48 0.50 0.48 0.51 0.60 0.508 

L: (all kinds) 199 106 219 194 99 72 889 

(L:+ + L:+)IL:- l. 37 l. 55 l. 7 3 l. 69 l. 35 l. 54 l. 56 
0 + 

The angular distributions for each momentum setting are shown in Figs. 

9 and 10. Again, a least-squares fit to powers of cos e was made to various 

orders. Tables VI and VII display the results of these fits. The curves drawn 

on Figs. 9 and 10 are the fits of order n = 2. Since no corrections were 

± 
needed, the observed numbers of events were used to calculate the 2: -produc-

tion cross sections for each momentum exposure. These cross sections are 

shown in Tables VI and VII. 

+ The polarization of the L: hyperon was observed through the up-down 

+ 0 asymmetry of the protons in the decay L:
0

-+ p1T . The normal to the L: produc-

tion plane was defined by the unit vector n = KKXK1TI IK.KxK.1TI' where KK 
.... 

and K are unit vectors in the K and 1T- directions. The angle f3 is the 1T 

angle between n and the proton direction q ; 
p 

The distribution of events vs e (whe:re 

cos i3 = q_ . n.. 
' p 

sine =R"KXK1T) and f3 becomes 

d
2a 

~d-c_o_s_e=--d_c_o_s_f3_ = 1T I ( e ) [ l +a 0 p ( e ) c 0 s f3 t, · '' ( 1) 
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Table VI Least-squares fits to the angular distributions for :E+ 1T-. 

Expansion coefficients (mb/ s r) 

PK a Order Expected Confidence 

(MeV/c) (mb) 
of fit co c1 c2 c3 c4 2 2 level 

X X (o/o) 

293 13. 6±1.4 0 1.07±0.06 3.8 7 80.3 

1.07±0.06 -0.06±0.11 3.1 6 79.6 

2 1.11±0.10 -0.06±0.11 -0.13±0.22 3.1 5 68.5 

3 1.11±0.10 -0.06±0.31 -0.13±0.22 0.00±0.49 3. 1 4 54.1 

4 l. 06±0.12 -0.08±0.31 0.50±0.90 0.02±0.49 -0.78±1.10 2.6 3 45.7 

350 1 0.6±1.4 0 0.80±0.07 7.9 7 34.1 

0.82±0.07 -0.19±0.12 5.5 6 48.1 

2 0. 70±0.09 -0. 20±0.12 0.40±0.23 2.6 5 76.1 

3 0. 71±0.10 -0.47±0.30 0.39±0.23 0.49±0.50 1.6 4 80.9 

4 0.66±0.12 -0. 50±0. 31 1.04±0.89 0. 53±0. 50 -0.84±1.11 
I 

1.0 3 80.1 N 
00 

390 12.5±0.8 0 0. 75±0.03 173.9 7 < 10-5 

0. 76±0.03 -0.21±0.07 165.5 6 < 10-5 

2 0.43±0.04 -0. 35±0. 07 1.70±0.14 6.6 5 25.2 

3 0.42±0.04 -0.22±0.16 l. 71±0.14 -0.27±0.28 5.7 4 22.3 

4 0.40±0.05 -0.24±0.16 2.05±0.46 -0.24±0.29 -0.47±0.62 5.1 3 16.5 

434 8.2±0.9 0 0. 54±0.05 23.9 7 0.1 

0. 54±0.05 -0. 02±0.11 23.8 6 0.05 

2 0.35±0.07 -0. 07±0.11 0. 78±0.20 8.5 5 13. 1 

3 0.36±0.07 0.13±0.23 0.78±0.20 -0.41±0.40 7.5 4 11.2 

4 0.33±0.09 0.12±0. 23 1.21±0.77 -0.37±0.41 -0.57±0.97 7.2 3 6.6 

513 7. 5±1.1 0 0.47±0.05 23.3 7 0.2 c:: 
() 

0. 50±0.05 -0.22±0.10 18.6 6 0.4 ~ 
2 0.37±0.07 -0.31±0.11 0.53±0.18 9.8 5 8.1 [-< 

I 

3 0.36±0.07 -0.03±0.27 0.59±0.18 -0. 49±0.43 8.4 4 7.8 ...... 
0 

4 0.27±0.08 -0.09±0.27 2.16±0. 72 -0.36±0.43 -2.10±0.93 3.3 3 34.8 U1 
oj:>. 
N 

f 



Table VII. Least-squares fits to the anguiar distributions for :6- n+. 

Expansion coefficients (mb/sr) 

PK a Order Expected Confidence 

(MeV/c) (mb) 
of fit co c1 c2 c3 c4 2 2 level 

X X (o/o) 

293 10.0±1.1 0 0. 73±0.05 17. 1 7 1.7 

0. 76±0.05 0.25±0.09 8.8 6 18.5 

2 0. 92±0. 09 0. 22±0. 09 -0.43±0.18 3.4 5 63.9 

3 0.92±0.09 0.28±0.27 -0.43±0. 18 -0. 11±0.40 3.3 4 50.9 

4 0.88±0.12 0.32±0.27 0. 03±0. 79 -0.15±0.41 -0. 56±0. 94 2.9 3 40.7 

350 6.9±1.0 0 0.48±0.05 11.4 • 7 13.9 

0.52±0.05 0.23±0.08 3.6 6 73. 1 

2 0.62±0.08 0.20±0.09 -0.24±0.17 1.6 5 90. 1 

3 0.61±0.08 0.18±0.24 -0.24±0.17 0.04±0.37 1.6 4 80.9 

4 0. 58±0. 11 0.20±0.25 0.11±0.76 0. 00±0. 38 -0.42±0.90 1.4 3 70.6 
I 

N 
-.() 

390 6. 9±0. 5 0 0. 52±0. 03 15.7 7 2.5 

0.53±0.03 0.06±0.05 13.9 6 3.0 

2 0.52±0.04 0.07±0.05 0.02±0.10 13.9 5 1.6 

3 0.52±0.04 -0.22±0.12 0.06±0.10 0.51±0.20 7.2 4 12.6 

4 0. 51±0.05 -0.22±0.12 0.12±0.39 0.51±0.20 -0.07±0.47 7.2 3 6.6 

434 6. 1±0. 7 0 0.33±0.04 31.8 7 0.004 

0.34±0.04 0.10±0.09 30.5 6 0. 003 

2 0.18±0.05 0.23±0.09 0. 78±0.17 9.3 5 9.8 

3 0.18±0.05 -0.08±0.20 0. 82±0. 17 0.63±0.37 6.4 4 17. 1 

4 0.20±0.06 -0.10±0.21 0.61±0.56 0.67±0.38 0.29±0.76 6.2 3 10.2 

513 4.9±0.8 0 0.24±0.03 28. 1 7 0.02 c::: 
() 

0.25±0.03 0.10±0.09 26.7 6 0. 01 ::0 
2 0.12±0.04 0.15±0.09 0.80±0.16 1.6 5 90. 1 l' 

I 
3 0. 11±0. 04 0.10±0.18 0.81±0.16 0.11±0.34 1.6 4 80.9 ...... 

0 
4 0.10±0.05 0.11±0.18 1.10±0. 55 0.09±0.34 -0.36±0.74 1.3 3 72.9 1.}1 

*"" N 
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where I(EI) and P(EI) are the usual angular distribution and polarization func-

tions of the production angle (:1' and ao is the decay-asymmetry parameter 

(helicity) in ~~ decay@ At an angle e, the average value of cos 13 is given by 

fcos l3 [1 + a0 P(EI) cos 13] d cos l3 

j[l+a
0

P(8)cosl3] dcosl3 
= ( 2) 

The experimental quantity a
0 

P((:l) and its uncertainty is then given for N 

events by 

3 N [3-:(aP)2]1/2 
= - \ cos 13- ± . ·. 0 

N L 1 N 
i= 1 . 

(3) 

D. Zero-Prong-Plus- V Events 

Several interactions lead to the zero-prong-plus- V topology. Listed 

below are those energetically allowed at our momenta: 

(a) 

(b) 

(c) 

(d) 

(e) 

The L:: 0
TT

0
TT

0 cross sections are so small at the energies considered that these 1 

reactions were completely neglected. 

Although each of these interactions leads to the same topological appear-

ance, the K 0 n events.may be easily identified at the scanning table. 
+ The TT 

produced in the decay can be distinguished from the proton of a L\ decay be-

cause of its lighter ionization. In addition, the kinematical fit to the produc.,. 

tion and decay sequence de scribed by (a) was also sufficient to identify the 

event unampiguously. ', (Very short K 0 me sons, initially classified as two­

prongs, were subsequently identified by ionization and kinematics.) The K
0 
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± -
direction and iT momenta result in accurate values for the fitted incident K 

momentum. The average fitted K- momentum error was 4 MeV I c. In order 

to obtain detailed cross sections, events from all runs were merged together 

to construct an ideogram of events versus K momentum. A computer pro-

gram was employed which assigned to each event a unit area under a Gaussian 

curve centered at the fitted momentum and whose width was the fitted error. 

By this procedure the cross sections to be shown later were calculated in 10-

and 20 -MeV I c intervals over the resonance region. No finer division was 

made, since only a limited number of events was available. The average 

cross section for each of the beam-momentum exposures is displayed in 

Table II. To account for the invisible decay modes of K 0
, the number of events 

was multiplied by 3 when eros s sections were computed. Differential eros s 

sections are given for each momentum run in Fig. 11. The 390-MeVIc data are 

2 
shown fitted satisfactorily through cos e. 

Although the charge-exchange reactions discusse-d above were not dif-

ficult to identify, analysis of the reactions involving a A was less straightfor-

ward because, after identification of the L\ decay, no production fit is possible 

except for reaction (b). Even in the latter case, a fit would not help much in 

disentangling the direct lambdas of reaction (b) from the decay products of 

reaction (d). 

Th h d f 11 d b d h I I · · II d · · b • e met o o owe was ase on t e - m1s s1ng -mass 1str1 utlon. 

First, only those events were chosen in which the incident K momentum as 

measured by curvature was not different from the known beam momentum (as 

measured from 7" decays) by more than 1. 5 standard deviations. Those ac-

cepted were then averaged with their appropriate central beam momentum to 

obtain a better measure of the K mo~entum at the interaction point. This 

averaged momentum was then used to transform the A momentum into the 
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center mass of the K- p system and to compute the total missing mass, f.!., 

required to conserve four -momentum:. 

fJ. 2 = ( E - EL\.) 2 c. m. 
( 5) 

where E is the total center -of-mass energy and E L\. and PL\. are the L\. 
c. m. 

total energy and momentum in the c. in. Once the selected events were 

separated, the entire sample was divided in the same relative fraction. 

Figure 12 shows the distribution of fJ-
2 

at each momentum interval, 

along with the allowed limits for each type of interaction. Because of meas­

urement errors, occasionally one finds 1-1
2 < 0. Events giving 1-1

2 < 0 are not 

shown on the graphs, but were added to the A;r 0 portion when the relative 

fractions were determined. The graphs shown are ideograms. This is a 

convenient form for subdividing the events among the various possibilities; 

2 
events with the same p: value may have very different errors depending on 

their particular configuration. The effect of severe statistical fluctuations 

is also reduced. 

For the A;r 0 channel, 1-1
2 

is uniquely the square of the ;r 0 mass. 

These events produce a peak centered around (m o )2 
with a roughly Gaussian 

. iT 

distribution due to measurement errors. For the A;r 0 ;r 0 events 1-1
2 

is a dis-

tribution which begins at (2m o)
2

, where the pions are at rest relative to 
iT 

each other, and extends up to a maximum value determined by the total energy 

available. 
2 

events, 1-1 also has a continuous distribution. The 

measured V is the A resulting from the decay of the L:: 0 (L:: 0 -.A+)'). Here 

1-1
2 

varies because the A has different momentum and energy depending on 

the angle of its decay relative to the L:: 0 directi_or1. The shape .of the A;r 0 ;r 0 

spectrum might be expected to follow phase-space predictions. The L:: 0 ;r 0 

spectrum can bre shown to be rectangular, the uniform density being guar­

anteed by the isotropy of the L:: 0 decay angular distribution. 



\., 

"' 
c:: ., 
> ., 

0 

... ., 
.c 
E 
:::s 
z 

-34-

Missing mass, fL (BeV) 

O.l 0.2 0.3 0.4 

12 Aw0 

30 

0 

12 

1 

.,. 
I 

390 M eV/c 433 eve1111 
0 • 

3~ MeV/c 60r.~enla 

t/2ATr•.,-

Z93 MIV/c 97tvlnls 
D•levenl 

16 2.0 

Missing mass squared./ (10
5

MeV2
) 

MUB·I4tt 

UCRL-10542 

Fig. 12.. Ideograms of the square of the mis!ting mass, .,.z., from the reaction 

K- + p- A + neutrals (fL) at the variol!s momentum exposures, 

Phase-space limits are drawn for the possible reactions. 

.'1 
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The .L\.1r 0 peak may be reconstructed on the high side by requiring sym-

metry with the low side. The dashed curve drawn over the peaks indicates the 

right side of the area as signed to the A1r 0 fraction. At this stage the spectra 

have been separated into a pure 1=1 
. 0 

part (.L\.1r ) and pure I= 0 part 

c~::: 0 1T 0 and A1T 0 1T 0
). The values of the A1T 0 cross sections obtained at each 

momentum interval are shown in Table II. No subdivision into finer intervals 

is possible in this case because of the large uncertainty associated with the 

unfitted K momentum. 

Further separation of the two I= 0 reactions is more uncertain, 

since the spectra overlap considerably. The A1r 0 1T 0 distribution exfends be-

yond the ~ 0 rr 0 distribution, which provides a means for this division. If the 

.L\.1r 0 1T 0 events are distributed according to phase-space predictions, such a 

curve may be normalized to those events beyond the ~ 0 1r 0 .limit. All remain-

ing events are then attributed to the ~ 0 1r 0 channel. 

At each momentum interval the A1r 0 1r 0 cross sections obtained in this 

way appeared to violate charge independence when compared with the A1r + 1T-

cross sections. For A1r1T production from the I= 0 state, the ratio of the 

A1r 0 1r 0 to A1r + 1T- is 1/2. From the I= 1 state, only A1r + lT- can be made. Thus, 

the maximum allowable eros s section for A1r 0 1r 0 is one -half the A1r + lT- cross 

section. This limit is represented on the spectra of Fig. 12 by the dashed 

curves labeled 1/2 A1r + 1T-. The ~::;_lues obtained for the A1r 0 1r 0 cross sections 

are shown in Table II where also the A1r + 1T- eros's sections can be seen. This 

violation can probably be attributed to a relatively few poorly measured ~ 0 1T 0 

events which fall beybnd the ~ 0 1r 0 limit and are thus misidentified as A1r 0 1r 0
. 

Nevertheless, the persistence of the violation at all momenta indicates that 

the A1T1T channel proceeds predominantly thro~gh the I= 0 state. In order to 

better estimate the ~ 0 1r 0 cross section, the A1r 0 1r 0 cross section subtracted 
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was assumed in all cases to be 112 a (L\1T + 1T- ). The values are shown in Table II. 

Here, again, no. finer momentum subdivision. is pas sible. 

Since neither the :L;
0 nor the 1r 0 are seen directly or indirectly in the 

L;
0

1T
0 channel, angular distribution and polarization are considerably less re-

liable than in the other channels. The Z0 has a typical momentum o£ 265 

MeV /c in the K- p center of mass. Hence the L\ resulting from the decay 

may be expected to deviate from the :L;
0 direction by at most 15 deg. In all 

the angular distributions and polarizations recorded for :L;
0 1r 0

, we assume 

that the :L;
0 and A directions are identical. However, unless we are dealing 

with a very complicated angular distribution involving many partial waves, 

the smearing effect is small relative to the statistical uncertainty. The polar­

ization of the :L;
0 is deduced from the A polarization. The relationship is 

in Fig. 13. 

E. Two-Prong-Plus- V Events 

- + For these events (K +p-A+1T +1r-; A-+p+1T-), all tracks are meas-

urable directly-- such as the 1T + and 1T-- -or indirectly- -like the A; thus the 

computer fit for each event is subject to four constraints. The average error 

on the K- fitted momentum is 7 MeV I c. The first line of Table VIll shows the 

average cross section for each of the beam momentum settings. To obtain the 

cross sections in 10 -MeV I c intervals, all events were fed into the Gaussian 

error ideogram routine also used for the K 0 n events. A factor of 312 was 

used to account for the neutral decay mode of the A. 

For each two A1T + 1T- events observed, there should be one event in 

which the A decays via the neutral mode and is not seen. Such events are 

two-prongs. All two-prongs were subjected to this hypothesis during the fit-

ting procedure. Since both final-state tracks are pions, candidates for these 
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events may easily be separated from K- p and rr-p scatterings. Table VIII 

also shows the eros s sections obtained from those events in which the A decay 

was not seen. The consistency of the two cross sections is quite good. 

Momentum 
(MeV /c) 

293 

350 

390 

434 

513 

Table VIII. Cross sections for Arr +TT_ from visible 

and invisible A-decay events. 

Cross section (mb) 

3 [a(Arr+rr-, A-+ prr- )] 
2 

0.15±0.10 

0.9 ±0.3 

1. 6 ±0.2 

1.5 ±0.4 

2.0 ±0.4 

0.9±0.3 

L3±0.2 

0.7±0.3 

1.9±0.5 

Figure 14 shows the angular distributio11 of the !\. in the K- p center 

of mass. The data are consistent with 1 + 3 cos
2e expected from a J = 3/2 

angular distribution if the dipion is assumed to be in the S state. 

Figure 15 is a Dalitz plot of events in the 390-MeV / c runs. The other 

intervals have too few events to show any effect that might be present. If the 

distribution of pion energies were to follow phase-space, this plot would be 

isotropic. The points are certainly consistent with this hypothesis. In addi-

tion to the Dalitz plot, the projections of the events on the two axes are shown 

in the same figure; the c. m. kinetic energy of each pion is divided by the total 

energy available, Q, to eliminate the effects of the incident-momentum spread. 

·'· 
The threshold for Y~-(138 5) + TT production is 405 MeV/ c. Because of the width 

(r::::: 50 MeV) of Y~<, this threshold is diffuse and extends over more than 100 
... 

MeV/ c. Production of Y~ would appear as broad bands parallel to the axes 
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Fig. 14, Differential cross section for the reaction K- + p .. A + 1T + + "­

at 390 MeV/c. The angle is that between the incident .K- and the A. 

The curve shows a least-squares fit. 
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Fig. 15. Dalitz plot and projections for 87 reactions K- +p-1\.trr+ trr-, 

from the combined 387- and 392-MeV/c runs. Here Q is the total 

available kinetic energy in the K p center of mass. The curves on 

the plots represent phase space. Points A and C mark the vicinity 

where Y~ (1385) production would occur, with the dashed lines 

* . corresponding to Y 
1 

of mass a half-w1dth below 1385. At points D 

and B the II. c. m. kinetic energy is maximum and minimum, 

respectively. 
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and centered outside of the phase-space curve, extending into the plot in the 

''C 

regions A and C. The lines indicate a mass r /2 below the Y~ mass. An 

enhancement is suggested at A, but the data neither prohibit nor demand Y~~~ 

production. 

A diagonal projection of the Dalitz plot on a 45-deg line, or equivalently 

a plot of the c. m. kinetic energy of the 1\., would display any 'TT'TT correlations. 

This is shown in Fig. 16. Although it is tempting to dismiss this distribution 

as being in accord with phase space, the situation is perhaps somewhat more 

involved. As discussed later, the 1\.'!T'TT channel proceeds largely from the 

K-p, .I= 0, D
3

/
2 

state. Since the I= 0 state is symmetric, Bose statistics 

require the 'TT'TT system to be in an S or D state. Energetics favor the S state 

since the maximum dipion relative momentum is 150 MeV/ c. In either case, 

for negative KN 1\. parity, the 1\. must be in a P orbital state relative to the 

dipion. Consequently, a P-wave centrifugal barrier should suppress low en-

ergy 1\.. This is not observed. On the other hand, recent evidence from other 

experiments suggest a strong dipion effect in I= 0 in the vicinity of M = 400 
'TT'TT 

9 MeV. This would tend to populate the region of low-kinetic-energy A hyperons 

and obscure the centrifugal-barrier effect. The net result experimentally is 

.a phase-space-like distribution. This justifies the use of a phase-space curve 

. h "o o A o o . 1n t e £...J 'TT - 'TT 'TT separation. 
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Fig. 16. Distribution of the fl. c. m. kinetic energy for 87 K- + p- fl.+ "++"-reactions, 

from the combined 387 and 392 MeV/c runs. Various distribution shapes 

are drawn. 
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V. IDENTIFICATION OF THE RESONANCE 

A. The 390-MeV I c Anomaly 

It is clear from the data contained in the graphs of the previous sections 

and from Tahle. II that there is a marked deviation in the behavior of the K p 

interaction in the vicinity of 390 MeV I c which disappears· rapidly below and 

above this momentum. Significant enhancements are found in the K 0 n, A,.+ 1T-, 

.._,+ -
"'-' Tr ' 

- + 
and ~ Tr. cross sections. Even more striking variations are seen 1n 

the angular distributions in most channels. 
2 

The presence of a large cos () 

term in the K- p channel at 400 MeV I c was observed in earlier experiments 

and reported by Alvarez and by Nordin. 
2 

Capps has conjectured that this arises 

f K - . . . h D l 0 rom a p 1nteract1on 1n t e I state. 
3 2 . 

Using the large amount of data around this anomalous region, we have 

been able to explain the phenomena in terms of a resonance of the Breit-

Wigner forni occurring in a pure state of isotopic Bpin, angular momentum, 

and parity; in what follows we shall describe how this resonance, interfering 

with well-behaved nonresonant backgrounds, gives a very satisfactory fit to 

all the data. Confirmatory evidence for the existence of a resonance of this 

mass, width, and isotopic spin has been found in recent experiments involving 

three-body processes at higher K- p and ,.-p energies.
11 

These experiments 

also agree roughly with our branching ratios, but yield no information on the 

phase of the resonant amplitude nor on the spin and parity of the resonant state. 

In this Section and in Section VI we shall discuss the identification of 

the quantum numbers and other characteristic properties of this state in a 

simplified way, leaving to Section VII a discussion of the least-squares com-

puter. fit to the data. This discussion will parallel closely .the preliminary 

account published earlier, 
3 

with occasional differences in notation. 
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B. Resonance Theory-Elernenta;ry Remarks 

There are several simple properties of a resonance which follow di-

rectly from the assumption that they are of the Breit- Wigner form and which 

are of great value in fixing the characteristic parameters of the resonance 

without recourse to an elaborate computer fit. 

The resonant cross sections for elastic scattering and reactions are 

. 12 
wr1tten as 

f' 2 
de = rr~2 (J +-21) ___ e ___ _ 

2 r2 
(ER-E}. +4 

(J 
r 

(6) 

(7) 

where J is the total angular momentum of the resonant state; I'e, I'r' and I' 

are the elastic, reaction, and total decay rates of the resonant state; 

f' ~ f'e + f'r; E is the center-of-mass total energy, and ER is the resonant 

energy. Clebsch-Gordan coefficients appropriate to the isotopic spin state 

will be introduced later. If there are several reaction channels, rr may be 

further subdivided among these various channels. The I' are not constants, 

but have an energy dependence that varies slowly over the region of the res-

onance and which, for the moment, we shall disregard. 

Equations (6) and (7), expressing a resonant cross section behavior, 

are those appropriate to describe the phenomenological properties of an ex-

~::: 

cited hyperon (Y ). We may visualize the process of Y 
-·­.,, 

formation and decay 

as illustrated in Fig. 17. The K- p system comes together to produce a meta-

stable state which then decays either back into K-p or into any of the other 

-·-
pas sible final states. The probability of formation of y''' is proportional to 
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Channel a. 

MU-29069 

Fig. 17. Formation and decay of the y*. 
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its coupling to the incident K- p channel. The probability of Y~:c decay into 

any channel is proportional to that channel width. Hence the eros s section in 

any channel a will be proportional to the product rera, leading to ae p;:f';, 

ara:f'e ~' as in Eqs. (6) and (7). For convenience, let us introduce the nota-

tion e =-(2/f')(ER- E) and x =~/I', where e is the number of half widths 

removed from the resonant energy, and x, which we shall call the elasticity 

of the resonance, is the branching fraction into the elastic channel which plays 

an important role in its identification. With I' /I' = 1 - x, the equations may 
r 

be written 

2 1 2 
X 

ae = 411"}\. (J +-) 
2 2 + 1 E 

( 6 I) 

and 

ar = 47r}t2 (J .+..!.) x(l- x) 
2 €2 + 1 

( 7 I) 

2 1 X 
The total cross section is aT = 4TI}t (J +-

2
) 

E 2 + 1. 
Notice that the ratio of the 

elastic cross section to the reaction cross section is independent of energy as 

long as ~ and f'r have the same energy dependence, and is simply 

For re = r' a is maximum, so X= 1/2. represents in a r r 

sense the condition for impedance match between the incident and the reaction 

channels. 

For a simple two-channel resonance, the complex scattering amplitudes 

called the T matrix elements are given by 

( (x( I -:)]1/2 
T = 

1 [x(l- x)] l/
2

) 

1 -X 

(8) 
E -1 

Wl.th a --4.,.:... 2 (J+ l/2)jTj2 . 13 F 1 h d" 1 1 t .,I\ or examp e t e 1agona e emen s may repre-

sent Kp and Z::1r elastic scattering while the off-diagonal elements represent 

, .. 

the processes Kp ~ Z::1r, All elements of T have the same energy dependence, 

-1 
T cc (e - i) . It is easily seen that this energy dependence requires that the 
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T vector describe a circle in the complex plane, as illustrated in Fig. 18. 

Thus all resonant scattering amplitudes pass through cp = rr/2 at resonance. 

These properties of the Breit-Wigner resonance formula are not limited to a 

linear dependence of e upon energy. 

Let us consider now the general behavior of the elastic and reaction 

cross section in terms of the partial-wave amplitudes and connect them with 

the behavior of the Breit-Wigner amplitudes. An incident plane wave may be 

decomposed into incoming and outgoing spherical waves summed over all 

angular momenta. The nuclear interaction in a given partial wave alters only 

the outgoing wave, shifting it in phase and, if there is absor.ption, reducing it 

in amplitude. This is represented by a coefficient T}e
2
io, where 6 is a real 

phase shift and T] ~ 1. In terms of these parameters the elastic eros s section 

f h . 1 . . b 12 or eac partla wave 1s g1ven y 

2io 2 
ae = 4rr}t2 (J +.!_) IT]e -1 I 

2 2i 
(9) 

while the reaction cross section, obtained from conservation of probability 

(unitarity), is 

(l 0) 

The relationships between TJ, 6 and the elastic and reaction cross 

sections are illustrated in Fig. 19. The unitarity limits on re and rr are 

given by the ordinate and the curves labeled 6 = 0 and 90 de g. 

Since for a resonance the ratio ae/ar is independent of energy, a res­

onance is depicted as a straight line of slope x/(1 - x). As a function of e, one 

moves up the line, reaching the maximum at resonance where e = 0 and then, 

beyond resonance, returns down the line. Notice that for an elasticity 

x greater than 1/2 the elastic phase shift 6 at resonance is rr/2, while for 

x< 1/2 at resonance we have 6 = 0. The latter condition exists for our 
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E=O 

MU -29067 

Fig. 18. The resonant T matrix amplitudes describe circles in the complex 

-1 -1 
plane. Here we have T a: (< - i) and tan<j> = < • The Wigner 

condition (Section VI B) requires that the circle be traversed counter-

clockwise as the energy increases. 



N 
ll< 

t:: 

N 
....... 

+ 
J -....... 
bQ) 

2.0 

1.5 

1.0 

0.5 

0.0 

-49-

0.2 0.4 0.6 0.8 1.0 
ur I ( J + 1/2 ) rr ~ 2 

1.2 

MU-28740 

Fig. 19, Relationship between the elastic and reaction cross sections for 
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resonance where x= 0.3, which is shown as a dashed line in Fig. 19. One can 

understand this somewhat peculiar behavior of 6 for x< 112 by reference to 

Fig. 20. 

It is important for the experimental identification of resonances by 

means of scattering processes such as the one considered here that the elas-

ticity be not too small. If so the resonant effects may appear rather small, 

particularly in the elastic channel, since we have a ex: x
2 

and a cx:x. This is e r 

especially true for strongly exothermic K p reactions at low energies, where 

a small bump may be obscured by a rapid llv falloff of the total cross section. 

However, although the elastic bump (ex: x
2

) may be small and statistically not 

significant for small x, the elastic amplitudes will display interference effects 

in angular distributions which will be proportional to x and will therefore be 

more easily observed. This is the situation which prevails for the resonance 

discussed here. 
14 

C. Resonance Parameters 

Further on, in Section VIII, we as semble the entire graphic account of 

the data as viewed by the computer. Figures 26, 27, 28, and 29 in that section 

show the cr'os s sections for the various channel"s divided into finer momentum 

intervals to enable better study of the resonance. Several features of the res-

onance are immediately apparent from the behavior of the cross ~ections. 

The mass of the resonance, taken as the c. m. energy corresponding 

to the momentum where the enhancements reach their maxima, is approxi-

mately 1520 MeV (394-MeV I c K- laboratory momentum). 

The resonance width r lies between 15 and 20 MeV (40 to 50 MeV I c). 

No enhancement is noticeable in the A1r 0 cross section (pure I= 1); 

furthermore, roughly equal enhancements occur in the I:+ 1T-, I:- 1T +, and 

L: 0 1r 0 cross sections. This is precisely what one would expect if the isotopic 
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Fig. 20. Resonant scattering amplitude circles given by T = x (e - i) for 

x = 1 and x = O. 3, The amplitude T can also be expressed as T = (TJ e 2i 6 -1 )/2i, 

where 11 and 6 are as shown. When the resonance is purely elastic (x' =· ll, 

we have 11 = 1, otherwise 11 depends one, For x = 1 (or for any x > 1/2), 

we have 6 = TT/2 at resonance while for x < 1/2, 11 reaches a maximum 

angle and then returns to zero at resonance, For x = 1/2, 11 goes to zero 

at resonance, so the outgoing wave is completely absorbed and 6 becomes 

meaningless. In terms of the eigenstate of the resonance (that linear 

combination of elastic and reaction states which is preserved through the 

interaction), one has by definition x = 1, and the eigenstate phase shift 

always pa·sses through TT/2 at resonance. But in terms of the physical 

states this is not necessarily so. The resonant T-matrix amplitude for 

all cases passes through TT/2. There is no intrinsic difference in a 

resonance with an elasticity x less than or greater than 1/2; notice that 

if the resonance were produced via the reaction channel, then x and 1 - x 

would be interchanged. 
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spin of the resonance were equal to zero. [We assume charge independence; 

the Clebsch-Gordan coefficients for the various channels are given subse-

quently in Eq. (a6).] Furthermore,. experimental data show that we have 

A'11' 0
1T

0 I A 'II'+ '11'- ~ 112 at resonance. Thi's again supports a I= 0 assignment since 

for I= 1 (0) the ratio should be 0 ( 112). One should note that in the. reactions 

K-p-i\.'11' 0 , :E 0 '11' 0 , or 1\.'11' 0 '11' 0 which are topologically identical, a division of 

the reaction cross section into I= 1 and I= 0 can be achieved by separation of 

A'11' 0 (I= 1) from :E 0
Tr

0 and 1\.'11' 0 '11' 0 (both I= 0) without further subdivision of 

the latter two. 

The spin of the resonant state can be deduced by inspection of the an­

gular distribution at each momentum setting for the various channels by refer­

ring back to Figs.6, 9, 10, 11, 13, and 14. A strong cos
2e term appears in all 

channels coupled to the resonance. This anisotropy is generally strongest at 

390 MeV I c and usually disappears below and above the resonance. (The excep­

tion, 'E- '11' +, follows 'from the analysis, as will be seen later. ) One is there­

fore led to the conclusion that the resonant state has a spin J >112. Further­

more, since analysis through cos 2e is generally sufficient to obtain a good 

fit, we conclude that the spin is most likely 312. A value of J = 512 would 

give rise to terms in the angular distribution up to cos 
4 e. A further argument, 

based upon unitarity and discussed later, also favors J = 312. A more quanti,-

tative evaluation of the resonance spin, containing both the angular distribution 

and unitarity requirements, is made in Section VII, where computer fits are 

discussed. 

The assignment of J = 312 .allows two possibilities for the incident 

orbital angular momentum of the resonance: P
3
l

2 
or n

312
. The following 

argument strongly favors the latter case. Below 250 MeVIc, the K-p inter-

action has been· carefully studied in the S-wave zero-effective-range approxi­

.zrtation.1 It is found to within the accuracy of the experiments, that all cross 

.. 
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sections and angular distributions agree very weli with this approximation. 

The data at 293 MeV I c also agree with nearly pure S-wave interaction, while 

the 390-MeV I c angular distributions display a large amount of co:s
2e with very 

little cos 8. The angular-distribution coefficients An, expressed in terms of 

the partial wave amplitudes S, P
1

, P
3

, D
3

, D
5 

are found in Eq. (18). Inspec­

tion of 'these equations reveals that a p3l2 resonance interfering with a 

dominantS-wave n~nresonant interaction would result in large amounts of 

cos e appearing in the angular distribution; also the amount of cos
2e predicted 

in such channels as K-p where the resonant component is fractionally small 

would be quite insignificant. On the other ha~d, a n
312 

resonance leads 

naturally to the observed behavior. (We discuss· this point more quantitatively 

in Section VD.) No cos 8 term results, since it requires interference between 

even- and odd-parity states. 

The final resonance parameter to be fixed is x, the elasticity of the 

resonance given by x= ~'ell'. The resonating part of the i('1in ch~nnel appears 

to be about 5 mb on a 5-mb gackground. The K- p channel also shows about a 

5-mb enhancement on a 30- to 35-mb background. (With such a large nonres-

onant background, however, the statistical significance of the enhancement 1s 

largely obscured.) Introducing the appropriate Clebsch-Gordan coefficient 

for a I= 0 resonance into Eq. (6 1
), and taking J = 3/2, one finds for the res­

onant state in the elastic channel a K- p = <J-Kon = 21T)t
2

x
2

. Since 'IT)t
2 

equals 

20.8mb at res-onance, a 5-mb resonant cros-s section yields x= 0.35. By 

inpection of Fig; 19 we see that for a value of x in this region, the elastic 

channel, compared to the reaction channel, is a very sensitive function of x 

(note that in the figure the ordinate and abscissa are to different scales). Thus 

the elastic channel cross section, and in particular K 0 n where the nonresonant 

background is small, gives ari immediate and sensitive measure of x. The 
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best computer fit to the data in all channels, including angular distributions, 

reduces this estimate to x = 0. 29±. 03 for a J = 3/2 resonance. 

The reaction channels available to ani= 0 resonance are L::1r and ATITI. 

The ATI+ iT- enhancement is about 2. 5 mb, leading to an enhancement of about 

A + - A o o 4 mb for 1T 1T + 1T 1T • The various L::1r channels yield an enhancement of 

5+3+4 --l2mbfor ...,+TI-+""-TI++"" 0 TI 0
. Th h ld llb l"fth · £.J £.J £.J e se s ou a e equa 1 ere 1s 

no I= l background in the n
3

/
2 

state. The experiment thus suggests that 

there is present some nonresonant n
3

/
2 

I= l background. Another possibility 

is that charge independence is violateu to some extent, due perhaps to mass 

differences in the various L::rr charge states {this is discussed in Section IX). 

Using the overall computer fit, the branching ratios for the resonant state 

become KN: L::1r: ATITI = 30: 55: 15, where the symbols signify the sum of the 

rates into all charge states. The uncertainty on each number is about 5. 

The value of x = 0.35 obtained from the enhancement in the cross 

section predicts, through unitarity, a definite enhancement in the reaction 

cross section. With the inclusion of the Clebsch-Gordan coefficient, a J = 3/2 

resonance gives a = 2TI:1t
2

(J+l/2)x{l-x) =19mb. The J=5/2 possibility 
r 

would require, for the same size of the elastic bump, an enhancement of 25.4 

mb. Since the enhancement appears experimentally to be approximately 

16 ± 3 mb this can be considered as a fairly strong argument favoring J = 3/2. 

D . .Kp and KOn Differential Cross Sections 

In Section VC above we have seen how nearly all the properties of the 

resonant state can be inferred from an inspection of the behavior of the various 

partial cross sections plus the observation that only even powers of cos e 

appear strongly in the K- p and K 0 n angular distributions at resonance. Let 

us now investigate these angular distributions more quantitatively within the 

framework of a simple model. 
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Assume that the S-wave interaction is given by a constant scattering 

length A. The phase shift o is then written K cot o = 1/ A where K = 1/)t. 

Absorptive processes lead to a complex A=a+ib. The elastic-scattering 

amplitude for complex o is Te = (e 2io- 1 )/2i, which can be written as 

Te = KA/(1- iKA). For low-energy K-p interactions, b is found to be large, 

and because of this a becomes difficult to determine. This is especially 

true for the strongly absorptive I= 0 state where a for both Humphrey-Ross 

solutions is consistent with zero. Although an oversimplification, it is instruc-

tive to set a= 0. Then we have T = iKb/(1 +Kb); thus T is always imaginary. 
e e 

For Kb ~ 1 we have T ~ i/2. From Fig. 20 this corresponds to the real phase 
e 

shift o = 0 or rr/2. Accordingly, the elastic and reaction eros s sections as 

a function of momentum, follow the right-hand boundary of the region ill us­

trated in Fig. 19.
15 

A predominantly imaginary scattering amplitude is also inferred from 

the optical theorem Imf(O) = (K/4rr)O'T" Here f(O) and O'T are respectively 

the forward K-p scattering amplitude and the total eros s section. These are 

displayed on the right side of Fig. 6. To a fairly good approximation we may 

then take the S-wave amplitudes to be purely imaginary. 

We can calculate the S-wave KN magnitudes from the experimental 

cross section data. From Eqs. (16) and (18) one obtains through J = 3/2, 

0' = fr dQ = 4rr)\.
2 [I sl2 

+ I pl 1
2 

+ 21 p3 1
2 

+ 21 n31
2 1. Since the squares of the small 

P waves contribute negligibly to the cross section, we may disregard them 

in this approximate treatment. Subtracting the 5-mb enhancement coming 

from the resonant n
3 

state we then obtain, using 30 mb and 5 mb for the 

nonresonant K-p and K 0 n cross sections respectively, SK-p = 0.60i, 

SKon = 0.25i. 
16 

The momentum dependence of these amplitudes in the vicinity 

of the resonance is described quite satisfactorily by a constant complex 
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The angular distribution resulting from S and D
3 

waves is 

1 ( 
1
. 

1
2 2 I 

1
2 . 2 ) I = K 2 ~ + 2D 3 cos e + S - n 3 sm e ( 11) 

Both S and D
3 

amplitudes have already been fixed from the cross sections so 

the K- p and K 0 n angular distributions can be calculated and compared with 

the data. One can obtain the coefficients of cos 
2e and sin

2
e most simply by 

the graphical construction shown in Fig. 21. The circles represent the ampli-

tudes 2D3 and -D3' and the amplitudes SK-p and SKon are vectors from the 

points labeled K-p and KOn to the pointS. Since the resonance is narrow, 

let us for convenience fix the S amplitudes to be constant in the momentum 

range where the resonance is appreciable. One immediately sees that at res-

2 
onance the S and n

3 
waves interfere constructively to produce a large cos e 

and destructively to reduce the sin
2

e. Thus a small enhancement in the cross 

section can alter the angular distribution in the striking way observed. Ex­

pressing the angular distribution in terms of the number of polar ( 1 cos e l>o.s), 

equatorial (lcosei<O.S), front(costl>O), andback (costl<O) events--abbre-

via ted P, E, F, and B--one can write 

and 

A 
p - E = A I 4 {A + ~) 
P+E 2 0 3 

F-B=A/2(A +A2) 
F+B 1 0 3 

( 12) 

( 13) 

where A are coefficients of cosntl in the differential cross section. Figure 22 
n 

shows the K- p and K 0 n data compared with this simple calculation for a D
3 

and also a P
3 

resonance. The data clearly prefer a n
3 

resonant K-p state. 

The rising F- B ratio can be attributed to the gradual appearance of nonres-

onant P waves, neglected in this calculation. 
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Fig. 21. The S and D
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amplitudes for K- p and K 0 n in the vicinity of the 

resonance. The resonance is taken centered at 1520 MeV with a 

constant width 1" = 16 MeV. Momenta (in MeV/ c) are indicated on 

the periphery of the 2D3 circle. The imaginary axis is vertic~l 
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VI. KNL: PARITY 

In this section we shall discuss the arguments that lead to the estab-

lishment of the L: parity. Approximations to the experimental situation will 

occasionally be made so as not to obscure the simplicity of the reasoning 

with nonessential details. A more elaborate treatment of the problem will 

be found in Section VII dealing with the computer analysis. 

In Section IV we have shown that the experimental data strongly favor 

an incident K-p resonant D state, with the most likely angular momentum 

being J = 3/2. With the parity of the incoming angular-momentum state iden-

tified, the determination of the L: parity becomes a matter of measuring the 

orbital angular momentum of the L:1r state; D
3

/
2 

for negative KNL: parity, 

P 
3

; 2 for positive KNL: parity. 

We shall now consider the various ambiguities that may be present in 

the problem and how they can be resolved. 

A. The Minami Ambiguity 

The simplest and least elegant way of seeing the Minami ambiguity 

17 
is by direct inspection of Eqs. (18) and (19). Restricting consideration to 

J = l/2 and J = 3/2, we see that under an interchange of parity of each state, 

i.e. S~P1 , D3~P3 , the coefficients An m I remain the same, while the 

coefficients Bn in IP change sign. Thus all angular distributions remain 

invariant while polarizations change sign. This is a general statement valid 

for the parity interchange of all amplitudes through whatever J. Where new 

particles are produced in the final state, the Minami transformation can be 

carried out on the initial or the final state or both, leading to a four-fold am-· 

biguity if only angular distributions are measured. The two -fold ambiguity 

involving the incoming KN state is, as we have seen, resolved by continuation 



-60- UCRL-10542 

of the f<N amplitudes from the low-energy region, where they are known to 

be purely S wave, to the 400 -MeV I c region. Thus the S ~· FJ. ambiguity is not 

pre sent for the incoming state. 

Since the Kp-+ L:TI reaction is exothermic (for K- p at rest we have 

PL: = 180 MeV I c), no argument analogous to the one for the incoming state can 

be constructed for the L:TI state. Within the K-matrix formalism, differences 

do exist between S and P outgoing states, but the effects are not large and, 

furthermpre, are subject to the assumption of constancy of the K-matrix ele-

ments. 

The polarization in certain channels can, however, be measured, and 

this provides the means of resolving the remaining ambiguity. 
8 

Beall et al, 

+ 0 have measured the helicity a.
0 

of protons in the decay mode 2:
0 
~ plT , and 

find it to be a.
0 

= -0.7 8 ~~: ~~ . Alpha is related to the asymmetry of the decay p·rO;:-. 

tons from polarized L: hyperons. by I= l + a.q · f2: where q is the direction of the decay 

prbton in the L: center of mass and ~L: is the L: polarization. The decays 

+ + ~ L:+ -+nTI and L:- -+nTI- are known to have small asymmetry parameters, so 

these events cannot be utilized as analysers of L: polarization. If one assumes 

18 
the validity of the .6-T = 112 rule in 2: decays, then a.

0 
= -l; we shall assume 

a.
0 

= -l in our calculations. The A resulting from 2: 0 have a polarization 

given by ~A= -1/3~2:' and the subsequent decay A -plT- has an asymmetry 

+0.24 19 
parameter a./\.=+ 0.67 _

0
_
18 

, which is used in our calculations. The 

factor of 3 loss in polarization in 2: 0 decay coupled with previously mentioned 

problems associated with these events allows little more than a consistency 

check from the 2: 0 data. The crucial measurement is then the L:+ polariza­

tion from that half of the 1300 2:+ events which decay through the 2:~ mode. 
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B. Complex-Conjugation Ambiguity: The Wigner Condition 

Let us refer again to Eqs. (18) and (19) for the coefficients An, Bn 

and observe that if one takes the complex conjugate of each partial-wave am-

plitude, then the cross section is again invariant, while the polarization 

changes sign. This is an additional ambiguity; thus it is not sufficient to 

measure the polarization in order to establish the parity. A further condition 

is needed in order to resolve the problem. 

For the nonresonant amplitudes, there is no way of deciding whether 

an amplitude or its complex conjugate is to be chosen. However, for the res-

onant state, causality in the form of the Wigner condition prescribes the appro­

priate energy dependence of the resonant amplitude. Wigner
20 

has shown that 

the amplitude of a narrow elastic resonance must as a function of energy, 

traverse the complex plane in a counter-clockwise direction (see Fig. 18). 

His causality argument can be summarized as follows. Consider a wave 

packet resolved into its incoming and outgoing spherical waves and incident on 

a scattering center of radius R. The group velocity is given by dw/ dK, where 

K is the wave number and w is the frequency. The radial dependence of the 

incoming wave 1s then ri = -(dw/dK)t. After scattering, the wave suffers a 

phase shift 2 o, and the outgoing radial dependence is given by 

r
0 

= +(dw/dK)t- 2 do/dK. If the outgoing wave is not to leave the scattering 

region before the arrival of the incoming wave on the surface R, then for 

ri = R we must have r 
0 

< R. This yields the inequality do/ dK>- R. Hence the 

phase shift cannot decrease with arbitrary rapidity as a function of energy. 

The width of the 1520 resonance gives a value of do/dK::::: 6 )tn· The radius of 

interaction R would have to be larger than 6 )t1T in order to have the resonant 

amplitude describing a clockwise circle and still satisfy the Wigner condition.
21 

This result can be generalized for inelastic processes as well, and if we are 
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dealing with a simple isolated resonance, as appears to be the case, then the 

result must still hold. 
22 

The ambiguity associated with complex conjugation 

is thereby removed. 

C. Diagrammatic Analysis of the ~TT Data 

For the sake of fixing the notation during the subsequent discussion we 

shall here assume that, as the data will show later, the KN~ parity is negative. 

The incident K-p S state then feeds the ~TT S state, etc. The discussion would 

follow similarly for the other parity assumption except for the final polariza-

tion argument. 

The ~TT partial cross- section qata indicate a monotonic decrease with 

momentum characteristic of an exothermic reaction proceeding through the 

incident S wave. Superposed on this behavior there appears a sizeable en­

hancement in all three channels at the momentum corresponding to the 

1520-MeV resonance. Thus as in the incident channel, S waves appear to 

dominate the behavior, apart from the resonance. However, P waves are 

clearly evident through their interference with even parity states. This is 

seen in the significant cos e terms in the angular distributions and sine term 

in polarization. Nevertheless, as the computer fits show, the S waves still 

play the dominant role. To fix them in the framework of charge independence 

one must determine the T = 0 and T = l magnitudes, s
0 

and S 1 , and their 

relative phase, <Ps = <Pso - <Psl· These can be extracted from the charge -inde­

pendence relationships: 

~± · lsl
2 =! ls 0 1 2 +~ls 1 12 :r ~ls0 lls 1 lcos<Ps 

~a Is 12 = i I s0 1
2 
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Here s
0 

is fixed by the nonresonant ~ 0 1T 0 cross section. Then s1 can be 

+ - 0 obtained from the ~ + ~ -2 ~ nonresonant cross section and finally <Ps 
+ -from the ~ - ~ nonresonant cross section. At low energy this phase angle 

is well determined from K-p captures at rest to be <Ps = ± 60 deg and has been 

found to increase to about 90 deg at 250 MeV/ c (with a discontinuity in the 

energy derivative theoretically predicted at the i(lln threshold}. Our experi-

+ -
ment indicates, from the behavior of the nonresonant ~ and ~ cross sec-

tions, that this phase angle continues to increase with momentum, reaching 

about 105 deg at the resonance. Beyond this momentum, P waves become 

sufficiently large that its behavior from there on is uncertain. The best com-

puter fit to the data yields, between 250 MeV/c and 513 MeV/c, an average 

angle <Ps = -104deg (the sign is discussed below). The S-wave ~1T magnitudes 

at the resonance are givenbythecomputeranalysistobe ls0I=0.405 and ls 1I=0.405. 

The S-wave parameters are now £ixed by the nonresonant cross sections 

with the exception of the overallS-wave phase angle of the ~1T channels. This 

can be determined by a study of the interference between the S amplitude and 

the resonant D
3 

amplitude whose phase is fixed by its resonant form. The 

interference results in a cos
2e term in the angular distribution [(see Eq. ( 11~:. 

+ 2 
The ~ reveals a large cos e at resonance falling rapidly on both sides 

(Fig. 9). This implies that the S and n
3 

amplitudes must be approximately 

in phase at resonance for the ~+1T- channel, as illustrated in Fig. 23. The 

- + 
S-wave amplitude for ~ 1T is fixed in magnitude and has now two possible 

orientations consistent with our previous considerations. These are shown 

in the figure and correspond to <Ps = ±104 deg. 
- + Inspection of the ~ 1T angular 

distribution allows a choice between these two alternatives: <Ps = -104deg 

requires a sin
2e below resonance changing rapidly to a cos

2e above resonance; 

<Ps = +104 deg demands the opposite behavior. The experimental data in Fig. 10 
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Fig. 23. Diagram showing the nonresonant S wave :E11 amplitudes and the resonant 

20
3 

amplitude. The data demand that S;E+ and 0
3 

be in phase at 

resonance as shown in order to yield a large cos 
2

8 in the angular 

distribution. This leaves two possible S:E_ directions as shown, 

differing in cp8 -S = ± 104 deg. Since the :E angular distribution goes 
2 0 I 2 

from sin 8 below resonance to cos () above resonance, the right-hand 

orientation is correct. The angle cp
8 

-D = 124 deg. Momenta are 
I 

indicated on the periphery of the 20
3 

circle. 
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clearly require the negative sign. 
23 

The ~ 0 
'IT

0 angular distribution is also 

predictable. A complete vector diagram of all amplitudes obtained in the 

computer fit appear later (Fig. 39), as well as these fits to the data (Figs. 26 

through 38 ). 

All S and resonant n
3 

amplitudes have now been fixed by the cross­

section and angular-distribution data. The sinB cos 8 polarization coefficient 

given by B l = 6 Im S~:~ D
3 

is then predicted. From Fig. 23, a
0 

B l for ~+ must 

be positive below resonance, passing through zero and becoming negative 

above resonance. Referring ahead to Fig. 36, we have plotted the experi-

mentally measured quantity representing the average value of the sine cos e 

term times a
0 

= -1. The behavior of this term is just as predicted from the 

angular distribution for S-D
3 

interference. If the parity assignment had 

been KNL: even, then the dominant L;1T states would have been P
1 

and P
3 

rather than S and D
3

. This would have led to the opposite sign for the inter­

ference term. The solid curve in the figure is obtained from the computer 

fit for the assumption of negative KN~ parity and contains in addition to the 

dominant S-D3 amplitudes, small amounts of P
1 

and P
3 

amplitudes required 

by the least-squares fit. 2 
This yields a very satisfactory X = 14.6, when 

2 
about 13 is expected. The dashed curve for positive parity has a X value 

of 65, or a probability of less than 10-
6 

of being correct. This leads to the 

conclusion of negative KN~ parity. 

A further argument involving P 
3

- n
3 

interfere~ce and leading to the 

same parity conclusion is pre sen ted in Section VIII. The degree to which 

these conclusions depend on the assumptions made in the analysis is discussed 

in Section IX. 
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VII. COMPUTER ANALYSIS 

A. Partial-Wave Equations 

The differential cross section I and the product IP of the differential 

eros s section and polarization can be written as I= If 1
2+ I g 1

2 
and 

IP = 2Re/<gn, where n = K.XKf/IK.XKfl is the normal to the scattering 
"'*'A -1 - -1 -

plane, and f and g, expanded in partial waves, becoml
4 

(14) 

and 

0 r-.['4; sin e = .1 ( 15) 
K 

± 
Here T 1 represents the partial-wave amplitude for an orbital angular momen-

tum J = P.. ± 1/2. In the elastic channel this is TP.. = (:tlp_ e 
2

iop_ -1 )/2i while for 

± 
a reaction channel TP.. represents the complex amplitude for that P.. and J. 

The normalization chosen here (different from our previous letters
3

) is such 

that the maximum value of T P.. is 1 for the elastic channel and 0. 5 for a 

reaction channel. The incident c. m. wave number is K = 1/k = P /ii. We may 

express I and II' by a power series in cos 8: 

I = 
1 00 n L An cos e 

K 2 n=O 

nsine 00 

IP = ----=~ L Bn cos n e 
K2 n:=O 

Expanding Eqs. (14) and (15) through S, P
1

, P
3

, n
3

, and n
5 

amplitudes, 

P 3 = T1, D 3 = T;, D 5 = T~ yields the coefficients: 

( 16) 

(17) 

where 



-67- UCRL-10542 

(18) 

>!< 45 2 
A

4 
= 45Re D

3 
D

5 
t 4 jD

5
j 

B
0 

= 2 Im (S- D
3

)>:< (P l - P 
3
)- 31m D

5
,:' (P

1
- P

3
) 

B 
2 

= 18 Im P 
3 

>:< D 
3 

- 1 5 Im P 
1 

>!< D 
5 

- 3 Im P 
3 

>:< D 
5 

(19) 

-·-B 
3 

= - 4 5 Im D 
3 

-,- D 
5 

Generally, the analysis 1s extended only through the D
3 

amplitude, 

except for the case where a D
5 

resonance is investigated. This is justified, 

since the K- p c. m. momentum at resonance is only 245 MeV/ c. 

B. Resonant Amplitudes 

We express the I= 0, J- 3/2 resonant amplitudes in the Breit-Wigner 

form: 

(20) 

[I'K(l' - l'K- I' )jr2Jl/2 
DL\. TTTT = .:;....__ ____ ~2:: _ __,_-=.__ 

03 E -i 

where e=(2/I')(ER :..E). The various partial widths have an energy dependence 
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which nonrelativistically is given b/
2 

K(KR)
4 

r a: ----=----'-----
9 + 3 (KR) 2 + (KR)4 

( 21) 

where R corresponds to the channel radius. One power of K in the numerator 

arises from phase space, while the remaining momentum dependence is due to 

the D-wave centrifugal barrier. For the first pion-nucleon resonance, 

N~:\ 1238), the corresponding formula for a P-wave resonance yields remark­

ably good agreement with experiment for a radius R = 0.88 )I.TT· 
25 

Compared to 

N~:·, the Y~ (1520) data are sparser, background effects are large, and multi­

channel complications are present. Thus we cannot hope to extract the several 

channel radii from the experimental data. We have instead considered two 

extreme cases: T' a: K 5 and r a: K. Both extremes give adequate fits to the 

data, although the first case is significantly better. Therefore we have used 

r a: K
5 

in all subsequent fits for a D
3 

resonance. For investigating the possi­

bility of a P
3 

resonance in the KN system, we have taken r a: K
3

. Since in 

the vicinity of the resonance the c. m. momenta in the various channels are 

quite comparable, we have 1n all cases taken K as the K- p c. m. wave number. 

Dalitz and 

C. Nonresonant Amplitudes 

26 
Tuan have developed the K-matrix formalism to be applied 

to low-energy K- p interactions. They show that, to the extent that K-matrix 

elements are constant and to the approximation that one can neglect the energy 

dependence of phase- space factors and centrifugal barriers in the exothermic 

reaction channels, the complex scattering length A= a+ i b is a constant in the 

. 21+1 I express1on K cot 6 = 1 A. This corresponds to the zero-effective-range 

approximation. The scattering amplitude in the KN channel then becomes 

= 
KU+lA 

I,.P. 

1 - i K 2l + l A
1

, .£ 
(22) 
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The square of the absorption amplitude for a two-channel process is given by 

(23) 

In general, however, there are several absorption channels, !;lT, A1r, 

and AlTlT. To accomodate these we introduce branching fractions_£ into each 

channel. In the A1r channel, terms through cos(:) are necessary and perhaps 

sufficient to describe the angular distribution. For simplicity we limit this 

channel to S and P 
1 

amplitudes, both with I = l. 

In the ~lT channels nonresonant amplitudes are introduced into all 

partial waves through n
3 

with the exception of the I = 0, n
3 

state. This is 

excluded because the superposition of a nonresonant amplitude in the same 

spin, parity, and isotopic spin as a resonant amplitude presents certain addi-

tional problems. They are not merely additive, since this would violate uni-

tarity. Consider first a one-channel process. The S matrix element maybe 

ott 27 s 2io( .)/( 0) wr1 en = e Et1 E-1 , where now 5 is a real nonresonant phase shift 

and clearly /S j
2 = l. With S = 1 + 2 iT, the scattering amplitude becomes 

T i 5 0 s: 2i 0/( . ) 0 0 f l = e s1n u + e E-1 , cons1shng o a nonresonant term pus a resonant 

term that is shifted in phase by 25. If now we extend this to a multichannel 

resonance, but with the nonresonant term still elastic (real scattering length), 

the elastic and reaction elements of the T matrix become 

and 

T io = e sin 5 + a a 

T = af3 E - 1 

x e 
a 

2io 

E - i 

(24) 

where X = r /r. The s matrix satisfies unitarity, st s = l. We have employed 
a a 
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this procedure for introducing a nonresonant D-wave amplitude into the I= 0 

state where the resonance appears. Extending this to a more general case 

with a three -channel (KN, L:TI, L\:TITI) complex nonresonant scattering length 

superposed on a three- channel resonance complicates the formulation 

·f · h · · 28 s· h 1 one w1s es to preserve un1tanty. 1nce t e nonresonant D waves have 

been found to be small, we feel justified in simplifying the situation. We thus 

take the I= O,D
3 

scattering length to be real. For the I= l state this problem 

does not arise, so the scattering length is allowed to be complex. 

The expressions for the squares of the nonresonant amplitudes in the 

L:TI, ATI, and ATITI channels are then: 

(25) 

I 
ATII2 I ATII2 p l 3 = 0 ; Dl 3 = 0; 
' ' 

for I=O, l; 
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The phase angles associated with these various nonresonan1t amplitudes are 

not calculable theoretically in any elementary way. They have been introduced 

> 

as free parameters to be determined by the experimental data. In the spirit 

of the constant- scattering -length approximation they are assumed to be con-

stant over the 250- through 513-MeV/c momentum region. Figure 24 shows 

how these phase angles are defined relative to the resonant D amplitude. 

D. Isotopic-Spin Composition 

Having calculated the isotopic spin amplitudes in the various channels, 

we may combine these with the proper Clebsch-Gordan coefficients to form 

the complete amplitude for each charge state. For a partial-wave amplitude T, 

these are written: 

T - = l_ (T KN + T KN) 
K p 2 0 1 

(26) 
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are defined relative to" the real axis. 
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E. Representation of the Data 

In this section we discuss the manner in which the experimental data 

were introduced into the computer programo 

The cross section data for each channel were generally divided into 

20-MeV I c intervalso The Arr 0 and 2:: 0 rr 0 channels could not be so divided for 

reasons discussed in Section IlL In the K 0 n and Arr+rr- channels, the incident 

momentum was more precisely determined so that, in the resonance region 

where sufficient data were obtained, finer intervals could be usedo Since path 

lengths were_e stablished by the number of T decays per momentum interval, in 

channels with large cross sections the statistics on T decays were the domi-

nant uncertainty (the T ~''cross section" at 390 MeVIc is 5.6 mb for a hydrogen 

bubble chamber). 

Because of the narrowness of the resonance, the angular distributions 

were divided into 10-MeV I c intervals so as not to lo1:1e information on the rapid 

momentum dependence of the resonant amplitudes. For example, Figo 33 

shows that the 2::- rr + angular distribution changes strikingly from mainly 

s~n 2e to cos 
2e within 40 MeV I c. Typical measurement uncertainties on th~ 

momentum of each event are about± 10 MeVIc, so we are justified in subdivid-

irtg to this extent. 

However, divided in such fine momentum intervals, the data in many 

channels becomes rather sparse, and it is difficult to analyse in a power series 

e¥-pansion through cos
3e In our initial efforts, therefore, we analysed only 

through cos
2e with some success, but the P

3
- n

3 
interference is sufficiently 

lct.rge as to yield significant distortions of the cos e term in certain cases. 
! 

T:o overcome this difficulty one could either take larger momentum intervals 
I 

ahd lose momentum information, or analyse the angular distribution in terms 

of polar-equatorial and front-back ratios, the front-back ratio being a combi-

nation of A 
1 

and A
3

. The latter course was chosen, although it resulted in 
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the appearance of a number of ambiguities involving even-odd angular momen-

tum interference terms. The e~pressions for these ratios in terms of the 

angular-distribution expansion cqefficiertt through A
4 

are 

and 

A A 
A+~+~ 

0 3 5 

(2 7) 

(28) 

Notice that in Eqs. ( 18) the P 
3 

- D
3 

interference is opposite in sign for A i and 

A
3

, and that it nearly cancels when the data are expressed in terms of front­

back ratios. Thus we have in effect suppressed most of this interference in 

the fitting procedure. To restore this information we introduced into the pro­

gram the coefficient A
3 

for K-p, ::E+,r-, and 2::-1T+, and B
2 

for 2::+1T- obtained 

from data averaged over considerably wider momentum intervals. This suf-

£iced to resolve many of the ambiguities among the small P
1 

and P
3 

ampli-

tudes. There is a redundancy in utilizing this P
3

- D
3 

interference data twice, 

but it is felt that a more realistic evaluation of the various amplitudes entering 

into the problem is thereby obtained. Fits were also made without this addi-

tiona! data, with very similar results. 

The polarization data were handled in the following manner. Limiting 

the maximum complexity in f) to that obtainable from J = 3/2, one has 

I (fJ) P (fJ) = sin f) [B
0 

+ B 
1 

cos f)+ B
2 

cos
2

fJ] 

Figure 25 shows these three angular dependences. Integrating over all 
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0.8 

-0.6 

MU-28936 

Fig. 25. Sin8, sin8 cos8 and sin8 cos 28 plotted vs cos8. The shaded 

area between 0. 95 ~ I cos e 1 ~ 0. 30 is the angular interval where 

sin 8 cos 8 is large and is the region used to obtain the average value 

of this polarization term. 
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production angles, one obtains a measure of B
0 

and B
2 

only since the average 

value of sine cos e vanishes. If we average over all e, we have 

s~ne=n/4 and sinecos
2

e=TI/16. The computer calculates the ~verage vcrlue 

of the polarization from 

(29) 

This is then compared with the expetimental data obtained from Eq. (3) 

summed over all production angles e. A measure of B 
1 

was obtained by 

summing Eq. (3) over the angular interval 0.95~ cos e~0.30 and subtracting 

from it the sum over the interval - 0.95~ ens e~ - 0.30. The interval from 

0. 95 to 0. 30 was chosen to eliminate regions where the sine cos e polarization 

is small. Over this interval we have· sine cos e = OA29. The computer then 

calculated the average value of this polarization term from: 

( 30) 

In order to investigate the J = 5/2 resonance possibility, the experimental 

data were handled in the same way with the computer calculations extended 

in the obvious manner. 

F. The x2 
Minimization 

The computer program calculated each measured quantity for a given 

set of parameters. The calculated quantities C. and observed quantities 0. 
1 1 

were compared and the X 
2 

obtained from X 
2 

= :r: (C. - 0. )
2 
/60.

2
, where 60. 

i 1 1 1 1 

is the statistical uncertainty. The x2 
function was minimized by the "method 

of ravines, 11 using a program written by W. E. Humphrey. Briefly, this pro-

cedure involves the following steps. From a point A compute the gradient. 

Move along the gradient direction a predetermined distance to point B. At 

B compute the gradient and determine the projection of this gradient on the 
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hyperplane perpendicular to the line AB. Move in the direction of this pro-

jection a predetermined distance to point C. Using the value at point B, 

the derivatives at B, and the value at point C, calculate the distance to a 

minimum, assuming a parabolic dependence of x2 
as a function of distance 

along this new direction. Move to this minimum and begin the process again. 

Each complete step takes approximately 30 sec when the IBM 7090 is used. 

The method tends to move along ravines toward minima rather than 

oscillating between the ravine walls. Even so, typically several hours of 

computation are required in order to arrive at a minimum in this 30-dimen-

2 
sional X space starting from reasonable initial values. 

VIII. COMPUTER RESULTS 

A. Negative KN2:: Parity 

The search for solutions compatible with the experimental data pro-

ceeded in the following way. The nonresonant S and resonan.t D
3 

amplitudes 

obtained by the pre computer analysis were introduced as starting conditions 

along with zero initial nonresonant P
1

, P
3

, and D
3 

amplitudes. With all 

2 
parameters varying, a satisfactory solution was found with X = 221. 5. This 

fit contained 257 data points, including the coefficients A
3 

and B
2

. With 

30 parameters the expected x2 
is 257 - 30 = 227, which is in good agreement 

with the value obtained. Because of the slight redundancy associated with the 

introduction of A
3 

and B
2 

coefficients, we also minimized x2
, eliminating 

2 
these data points. With 235 data points we obtained a X of 208 when 205 was 

expected. The probability of a fit with x2 
this' large or larger is 43%. The 

parameters for these two fits appear as solutions I and II of Table IX. The 

contributions to x2
. for the various measured quantities in each channel are 

shown in Table X. Apart from the ~ 0 1r 0 polar-equatorial ratios, each line 
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Table IX. Parameters at the minima obtained by the computer for various assumptions. 

Parameterb 

~50-Sl 

~POl 
~Pll 
ER 
r 

rK 
r~ 

~51-D 

~i;l 
a03 

b03 

al3 

bl3 

~P03 
~Pl3 
aDD3 

bD13 

aD13 

bD13 

~D03 
~Dl3 

Meaning 

s scattering length 

s scattering length 

s scattering length 

s scattering length 

[ a(Arr) ] lir (Arr) +a (:1:rr) 
51 

s
0

-S
1 

2'::-TI angle 

p 
1 

scattering length 

p
1 

scattering length 

p 1 scattering length 

p
1 

scattering length 

f a(Arr) 1 
l a (Arr) t a {t rr),p 

11 

P
01 

phase angle 

P 
11 

phase angle 

Resonant energy 

Full width 

K-N partial width 

2::-TI partial width 

s
1

-D relative phase 

S -P 
1 

phase Arr channel 

p
3 

scattering length 

p
3 

scattering length 

p
3 

scattering length 

p
3 

scattering length 

P 
03 

phase angle 

P
13 

phase angle 

d
3 

scattering length 

d
3 

scattering length 

d
3 

scattering length 

d
3 

scattering length 

o
03 

phase angle 

D 
13 

phase angle 

[ 
a(~rr) ] 

cr(Err)+cr(A;rrr) D
13 

a Solution I: Negative KN~ parity 

Solution II: Negative KN~ parity. 

Solution III: Negative KN:E parity. 

Solution IV: Negative KN~ parity. 

Solution V: Positive KN~ parity. 

Solution VI: Positive KN~ parity. 

Solution VII: Positive KN~ parity. 

Solution VIII: Positive KN:E parity. 

0.081 

3.133 

0.017 

0.459 

0. 287 

-1.808 

0.0350 

0. 0042 

-0.0420 

0.0092 

0.501 

3.897 

1. 521 

1519.41 

16.426 

4.806 

8.967 

-2. 158 

0.154 

0. 0996 

0.0062 

0. 0409 

0.0041 

1.026 

2.859 

0. 0168 

0. 0016 

0. 0021 

-1.092 

0.089 

II 

0. 043 

3. 351 

0.037 

0.47 3 

0. 289 

-1.784 

0.0471 

0. 0056 

-0.0373 

0.0106 

0.425 

4.104 

1.496 

1518.85 

16.829 

4.840 

9.349 

-2.090 

0.150 

0. 0833 

0.0079 

0.0296 

0.0039 

1.271 

3. 093 

0.0142 

-0.0041 

0. 0023 

-1.472 

0. 138 

Ill 

-1.700 

1.722 

-0.124 

0.432 

0. 303 

-1.856 

0.1431 

0.0045 

0.0412 

0.0117 

0.392 

4.243 

1.810 

1519.34 

15.522 

4. 596 

8.988 

-1.911 

0.151 

0.0565 

0.0132 

0.0030 

0.0063 

1. 504 

2.991 

0.0154 

0.0078 

0. 0031 

-1.046 

0 258 

IV 

0. 561 

3.210 

0. 016 

0.460 

0. 290 

-1.846 

0.0180 

0.0038 

-0.0283 

0.0090 

0.489 

4.105 

1. 701 

1518.50 

17.297 

4. 910 

9. 755 

-2.024 

0.150 

0.0926 

0.0073 

0.0309 

0.0048 

1.190 

2.963 

0. 0020 

Minimized including A
3

, B
2 

coefficients. 

Minimized without A
3

, B
2 

coefficients. 

Width lo:K. 

Without nonresonant D3 amplitudes. 

Minimized including A
3

, B
2 

coefficients. 

Minimized without A
3

, B
2 

coefficients. 

Quasi minimum 

Resonance in P
3

, K-p state. 

Solution IX: Positive KN:E parity. Resonance in D
5

, K- p state. 

Solutions a 

v 

-0.4 50 

3. 000 

0. 030 

0.469 

0. 268 

-1.814 

0.0478 

0.0065 

-0.0376 

0.0083 

0.673 

4.616 

2.468 

1518.46 

16.955 

4. 430 

9. 304 

-2.152 

0.179 

0. 1021 

0.0068 

0. 0424 

0.0011 

2.417 

0.361 

0.0139 

-0.0007 

0.0022 

-2.552 

0.239 

VI 

-1.749 

1.429 

-0. 130 

0.428 

0.296 

-1.627 

0.1655 

0. 0132 

0.0476 

0.0121 

0.413 

4. 583 

1.810 

1517.53 

17.936 

5. 139 

10.059 

-2. 17 5 

0. 161 

0. 0408 

0. 0067 

-0.0002 

0. 0079 

2.611 

-0.857 

0. 0224 

0 

0.0060 

0.0028 

-1.973 

0. 343 

b Scattering lengths are expressed in (fermis)Z.f+l energies and widths in MeV. and phase angles in radians. 

VII 

-1.717 

0.669 

-0.217 

0.377 

0.318 

+1. 545 

0. 1591 

0. 0494 

0. 0360 

0.0261 

0.201 

3. 961 

1.167 

1516.45 

10.358 

3.292 

5.332 

+3.254 

0. 163 

0.0658 

0. 0115 

0.0135 

0. 0113 

3.602 

1.487 

0.0124 

0. 0038 

0.0026 

-1.935 

0.035 

Vlll 

-0.226 

0. 278 

-1.320 

0.899 

0.426 

- 1.939 

0. 0866 

0.0624 

0.2186 

0.0654 

0.103 

2. 161 

3.720 

1519. 17 

20.338 

1.411 

9.691 

-0.739 

0. 137 

0.0273 

0. 1133 

0.0106 

4.441 

0.0016 

0. 0001 

-0.0044 

0. 0034 

-0.972 

-0.046 

0.100 

Diagonal 
IX error 

-0. 162 

3.443 

0. 039 

0.456 

0.291 

-1.857 

0. 0333 

0.0214 

0. 0050 

0.0139 

0.332 

1. 196 

3. 151 

1518.45 

18.385 

2.850 

12.001 

-2.064 

0. !52 

0. 098 5 

0. 0004 

0. 0266 

0. 0036 

3. 585 

1. 961 

-0.0008 

0. 0003 

-0.0015 

0. 0018 

-1. 106 

-2.886 

0. 0001 

0. 5 

0.8 

0. 08 

0. 03 

0. 03 

0. 12 

0. 06 

0. 004 

0. 023 

0.004 

0. 22 

0. 28 

0.41 

0.87 

1. 20 

0.43 

1.05 

0. 12 

0. 31 

0. 10 

0. 003 

0. 007 

0. 003 

0.26 

0. 66 

0. 01 

0. 01 

0.001 

1. 12 

0. 18 
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Measured 
quantity 

a 

F-B 
F+B 

P-E 

PtE 

(uP/sine, 
2 

sine cos e 

Sum 

Sum 
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Table X. Chi- square contributions for each solution according to 

various channels and measurements. The solutions are explained 

in the footnote of Table IX. 

Reaction Data 

K-p 

R 0
n 

L:+rr-

L:-rr+ 

L:orro 

Arr 0 

Arrrr 

K-p 

R 0
n 

L:trr_ 

L:-rr+ 

L:orro 

Arr 0 

K-p 

R 0
n 

L:trr_ 

L:-rr+ 

L:orro 

points 

12 

10 

12 

12 

5 

5 

11 

15 

9 

15 

15 

5 

5 

15 

9 

15 

15 

5 

15 

5 

5 

15 

5 

12.53 

12.82 

7.38 

12.80 

9.27 

4.20 

8. 76 

13.00 

2.80 

15.09 

6.88 

2.30 

3.35 

16.59 

2.08 

17.22 

12.03 

16.67 

II 

12.27 

13. 18 

6.12 

11. 51 

11.00 

4.06 

9.00 

12.73 

2.68 

13.77 

6. 93 

2.36 

3.45 

16.39 

2.16 

16.31 

12.56 

15.99 

11.66 12.08 

4.54 4.54 

2.19 2.20 

14.57 14.83 

1.73 1.79 

III 

12.08 

12.43 

7.52 

10.88 

7. 54 

4.28 

17.00 

11.38 

2.53 

14.87 

7.56 

2.64 

3.41 

Solutions a 

IV 

12.61 

15. 13 

7. 26 

13.89 

10.01 

4.14 

9. 18 

13.18 

3.57 

14.42 

6.64 

2.26 

3.47 

v 

12.67 

15. 17 

8. 58 

12.29 

9.42 

4.81 

11.26 

12.35 

2. 74 

18.48 

5. 93 

2. 79 

3.03 

VI 

12.56 

11.3 1 

4.39 

10. 19 

12.00 

4.38 

11.80 

10.89 

2.92 

15.82 

7.33 

3. 75 

3.19 

VII 

12.57 

13. 18 

6. 24 

8. 29 

16.46 

4. 39 

14.77 

11.68 

4.41 

16.94 

7.57 

7.51 

3. 11 

VIII 

23.40 

33.80 

7. 99 

16.30 

33.47 

1. 7 1 

10.55 

17.32 

10.08 

32.36 

11.64 

7.08 

3.03 

18.31 16.37 18.90 17.05 24.03 75.61 

3.14 2.34 1.86 2.48 2.84 31.41 

16.18 17.08 16.75 14.53 \113.53\ 30.31 

13.34 

13.08 

11.09 

4.09 

2.19 

18.80 

1. 66 

11. 18 

17.06 

12.35 

18.01 

12. 11 

17.28 

19.16 32.05 

16.28 14.89 

10.67 10.23 9.55 7.64 21.89 

4.50 5.78 5.62 4.26 4.86 

2.20 2.16 2.18 2.17 2.18 

15.00 \65.17\ \60.14\ 14.54 22.34 

1.78 2.81 2.67 1.42 1.86 

IX 

13. 11 

\TITI]a 

7.22 

13.43 

11.42 

4. 18 

10.26 

13.90 

2.92 

14.24 

7. 96 

1.83 

3.40 

23.27 

1. 51 

21.03 

13.06 

17.54 

11.7 5 

4. 63 

2.19 

15.01 

1. 7 1 

235 211.82 207.89 216.00 213.97 273.54 254.11 332.98 446.09 236.69 

7 

5 

5 

5 

257 

6. 18 

2. 57 

0.96 

1. 37 

221.52 226.87 

1. 17 

11.33 

116.93\ 

2. 71 

2.29 

231.77 300.11 349.23 366.24 

a Boxes indicate values where solutions V, VI, VII, and IX are in serious disagreement with the data. 
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2 
yields a satisfactory X , so that to within the precision of the experiment the 

parametrization by constant scattering lengths over this momentum region is 

adequate. In Figs. 26 through 38, we display the momentum dependence of 

all data; the -solid lines are obtained from solution I. The fits extend over the 

interval 250 to 513 MeV/c. The points at 620 MeV/c were kindly supplied by 

P. Bastien before publication and are shown only to indicate the continued 

trend of the data. 

Figure 39 shows the vectors representing the magnitudes and phases 

of the various amplitudes of solution I at the resonant energy as they appea~ 

in the ~N and l::'!T channels. The S and resonant D
3 

amplitudes are clearly 

dominant. The real and imaginary parts of the K- p forward scattering ampli-

tude as obtained from solution I appear in Figure 40. 

Twp extreme assumptions were made for the energy dependence of the 

resonance widths rex: K
5 

and rex: K corresponding to a small (R < rm/2) and 

to a very large (R>2 ~'TT) radius .of interaction. The solutions discussed above 

5 
used rex: K . The widths appearing in Table IX are the widths at resonance, 

i.e. they correspond to r
0 

in T' = r
0 

(K/K
0

)
5

, where K
0 

is the wave number 

at resonance. The fit using T'cx: K appears as solution III in Tables IX and X. 

It is somewhat poorer than for rex: K
5

, having a x2 
of 216 rather than 208, 

the major difference occurring in the Amr channel. Accordingly, we have 

2£ +1 . . 
employed rcx:K for all other solutwns. 

Apart from the S wave, no single nonresonant amplitude was suffi­

ciently large to be significant in itself. We also minimized x2 
by setting all 

nonresonant D 3 waves to zero (except for the nonresonant Amr). With four 

2 
fewer parameters, X increased by six, indicating that although nonresonant 

D waves do improve the fit, they are not necessary. This is solution IV in 

Tables IX and X. 
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MUB-1467 

Fig. 26. Cross sections for K-p charge exchange and elastic scattering as 

a function of momentum. The solid line corresponds to solution I 

for negative KNI: parity; the dashed line corresponds to solution V for 

positive KNI: parity. These two solutions are shown in Figs. 26 through 

38. The only significant difference between them appears in connection 

with the polarization effects. 
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1r0 as a function of momentum. 
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Fig. 28. Cross sections for li.Tr + Tf- and ll.1r 0 as a function of momentum, 

UCRL-10542 



1.46 

-.0 

E -b 

-84-

Ec.m.( BeV) 

1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 

K-p total cross 
section 

300 400 500 
Momentum, PK (MeV/c) 

MU-28741 

Fig. 29. The K- p total cross section plotted as a function of momentum, 
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Fig. 36. The sine cos e and (sine, sine coszll) polarization terms for ~+"-, 

~~ - p1r0 as a function of momentum. The solid curves correspond to 

negative KN~ parity (solution I) and yield a satisfactory fit. The 

dashed curves correspond to positive KN~ parity (solution V) and for 

the sine cos e term are approximately a reflection of solution I, resulting 

in x 2. = 65 when about 13 is expected (probability< 10-
6

), 
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preceding figures. The dashed curve (positive KN~ parity) for ~+,.- fits 
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This is the second experimental result favoring negative ~ parity. 
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Fig. 38, Least-squares fit to the :r:~ polarization yields for the sin II cos 28 

term, the coefficient B2 coming from P 3 -D 3 interference. We plot 

a
0

B 2, where a
0 

equals -1 as a function of momentum. Both parity cases 

fit well, but because of the correlation with the :r;+ angular distribution 

(Fig. 37), the A 3 term is of necessity fit poorly. 
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1

, P3' and D
3 

amplitudes for 

the K-p, Kon, ~+"-• ~-"+• and ~0 "0 channels at resonance as given 

by solution I. The scale for the amplitudes (dimensionless) appears to 

the left. The maximum possible value of the amplitudes is one for the 

K-p channel, 
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When the coefficients A
3 

are not retained, a number of ambiguities 

arise among the small P-wave amplitudes. For example, interchanging P 1 

and P3 amplitudes in the KN channels and reminimizing yields a result almost 

as good as that of solution II. However, since P
3 

was initially considerably 

~:( 

larger than P
1

, the coefficient A
3 

= 18 Re P
3 

D
3 

in the K- p channel then 

becomes much smaller than the observed value. Similar ambiguities exist 

in the Z::TT channels. By making various interchanges of the Z::TT phase angles 

1n the P states followed by a reminimization, one can obtain solutions with 

2 
somewhat higher although acceptable X . However, these new solutions yield 

a momentum dependence for the A
3 

coefficients opposite to that observed 

+ - - + for 2:: TT , 2:: TT , or both. Accordingly, by use of the A
3 

and B
2 

coefficients, 

we have found what appears to be a definitely best solution. On the other hand, 

some of the ambiguities associated with these small P waves do not differ 

sufficiently from the data so as to be completely excluded statistically. For 

brevity we do not include these ambiguities in the tables, but list only the best 

solution under various assumptions. 

B. Positive KNZ:: Parity 

The equations used in the computer fit were written for negative KNZ:: 

parity. Since a change of parity changes only the sign of the polarization 

terms, the positive-parity assumption was explored by changing the sign of 

the helicity, a, for 2:: decays. Starting from solution I with the polarization 

2 
terms reversed, X was again minimized. Because of the variety of ambigu-

ities associated with the P amplitudes, an equally satisfactory fit was quickly 

obtained for the sine' sine cos
2

e term in polarization by a reorientation of 

these amplitudes. However, as discus sed previously, no such reorientation 

is possible for the z::+ S amplitude, the relative S-D
3 

angle being fixed by 

the strong appearance of cos
2e in the z::+ angular distribution at resonance. 
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As a result, the lowest X 
2 

fit yields a sin 8 cos 8 term in 1::6 polarization 

not differing markedly from a mere reflection of the negative KN:I:: parity 

curve as seen in Fig, 36, 

Solutions V and VI of the Tables IX and X list the best fits for positive 

KNI: parity including and excluding the A3' B 2 data, respectively, With the 

exception of the sin 8 cos 8 term in z:+ {and I:c) polarization and the A 3 coef­

ficient in the z:+ angular distribution, aU data can be equally well fitted to 

positive KNE parity; this can be seen from Table X or from Figs. 26 through 

. 38, where the dashed lines are obtained from solution V. All additional X 
2 

comes from the polarization data and from A 3 , Within the framework of the 

analysis, the positive KNZ: parity assumption clearly disagrees with the data, 

The sin 8 cos 8 polarization term has been discussed already. Let us 

* look at the A 3 and B 2 coefficients given by A
3 

= 18 Re P 3D 3 and 

* B 2 = 18 Im P 3n 3. Because of their simplicity, they are free of the ambigu-

ities associated with analysis in terms of F-B and P-E ratios. The behavior 

of the A 3 data demands that the P 3 amplitude vector appear to the right of 

the n 3 amplitude at resonance, whereas for positive KNE parity, the B 2 

polarization term demands the opposite behavior. Minimization of the over­

all x 2 
has resulted in a good fit to the B 2 polarization term and a poor fit 

to A 3 , Since one is dealinghere with a smaU P
3 

interference term, the argu­

ment is not as strong as that involving S-D3 interference. None the less, it 

is very encouraging to find that the P
3

-D
3 

interference fits negative KNE 

parity nicely and confirms the argument based on the S-D
3 

interference. 

Attempts were made to find other unrelated solutions which would be 

compatible with the observed behavior. An exhaustive search of a 30-dimen-

sional space was deemed out of the question. However, the dominant S-D
3 
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terms are the only ones that can seriously affect the P -E and sinG cos G 

polarization data We have reoriented the amplitudes in various possible ways, 

always returning to minima in the vicinity of that discussed above. For 

example, by reversing the S-D
3 

phase angle for L:+ one can obtain a rather 

good fit to the sine cos e polarization term, to the detriment of the well-

+ measured L: angular distribution. This can be seen from Fig. 23. If one 

performs this reversal by a reflecti.on of the S-wave triangle in the figure 

through the horizontal axis, then to a first approximation the trend of the L: 

angular distribution remains the same. In terms of the computer parameters 

this corresponds to a reversal of sign of <Pso-Sl' and <Psl-D' But reversal 

of the L:+ S amplitude yields a negative P-E ratio at resonance rather than 

the strong positive term observed. This can be partially compensated by 

enlarged nonresonant D waves and more nonresonant P
1

- P
3 

interference. 

2 
However, since the angular distributions are well.measured, the X always 

remains poor. The computer has found a quasi-minim.um with the above prop-

2 
erties but with a large X = 366. This is listed in the tables as solution VII. 

This solution yields an approximately stationary X 
2

, the good polarization 

fit being balanced by the poor angular distribution, but eventually the computer 

2 
returned this solution to the lower X of solution, V. 

C. The P
3 

Resonance Possibility 

In order to investigate quantitatively the strength of our arguments 

concerning the identification of the incident K- p resonant state as a D wave, 

we modified the computer program to introduce the resonant amplitude in the 

P 3 state. The resonance widths were correspondingly taken to be proportional 

3 
to K for a P-wave resonance. Very poor fits to the data were obtained for 

both parity assumptions. The better of the two (positive KNl: parity) is 

solution VIII. A x2 
value of 446 was obtained where 205 was expected. 
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D. The J = 5/2 -Resonance Possibility 

Referring to Eqs. (14) and ( 15 ), notice that under the interchange 

T;~T1 -, g(8) changes in sign only, while f(8) remains approximately the 

same. Let us focus our attention on the dominant S state (which does not 

appear in g) and the resonant D state. Perform this interchange on the res-

onant amplitude only, i.e., n
3 
-n

5
; the angular distribution remains the 

same, to a first approximation, and the sign oLIP changes. Thus one is lead 

to suspect that if the resonance were to have a spin of 5/2 rather than 3/2, 

the parity arguments would be reserved. To quantitatively investigate this 

important possibility we have modified the computer program to include the 

D
5 

amplitude as a resonant term. All nonresonant amplitudes through D
3 

were included. Additional terms containing the coefficients A
4 

and B
3 

were 

introduced into the P-E, F-B, and polarization terms, and a fit was made to 

positive KNL: parity. The L:'TT resonant state is thus assumed to be F
5

. The 

results are shown as solution IX in Tables IX and X. 
2 

A X value of 237 1s 

obtained with 203 expected, which has a confidence level of 5o/o. All data fit 

well (including the unfitted A
3

, B
2 

terms), with the sole exception of the 

K 0 n cross section channel shown in Fig. 41. Because the n
5 

resonance 1s 

considerably more effective in producing strong P-E effects, the fit has 

greatly reduced the magnitude of the resonance (x= 0.15 compared to x= 0.29 

for a D
3 

resonance). The result is a 1-mb enhancement in the KOn channel, 

where experiment suggests about 5 mb. The probability of this curve fitting 

the data is about l o/o. 

A further consideration is the magnitude of the A
4 

coefficient gener­

ated by the D
5 

resonance. This does not appear explicitly in the program 

but is mixed with A
0 

and A
2 

terms in the P-E ratio. However, no significant 

A
4 

terms are found in the experimental data. To improve statistics we have 
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taken wider momentum intervals in the Kp, J.<l5n, L:+ 'IT-, and L:- 'IT+ channels 

in the vicinity of the resonance and found the A
4 

coefficients shown in Table 

XI with their uncertaintieso Also listed is the computed A
4 

fit over the same 

momentum intervals from the computer analysis. The calculated value of 

A 4 is positive, since it comes mainly from the resonant term, the nonreso-

nant D 3 amplitudes being smalL Most experimental points are negative but 

with large uncertaintyo The probability of there being this much or more 

cos 
4 e in the data is lOo/o. It is also clear that a relaxation of the constant-

scattering-length assumption would not significantly improve the agreement 

of the D 5/ 2 possibility, since if this. led to an enlarged Pn bump, it would 

necessarily result in larger predicted values of A
4 

in all channels, further 

conflicting with experimenL We conclude that the overall probability that the 

resonance spin is 5/2 is less than l %. 

Table XI. Experimental and computed A
4 

coefficients. 

Reaction Momentum interval A 4 (experimental) A
4 

(Solution IX) 
(MeV/ c) 

K-p 380 to 420 -0.169±.219 +0. 07 0 

K 0 n 370 to 410 +0.172±.136 +0. 050 

L:+ 'IT- 380 to 410 -0.117±.117 +0. 115 

L: 'IT 380 to 410 -0.026 ±. 106 +0. 115 
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E. Parameter·Uncertainties 

The uncertainty associated with each parameter may be obtained by 

inverting the second-derivative matrix of the x
2 

function. Let G be the 

complete error matrix. At the minimum, we have 

2 
X = x2 . +-21 L (~2 x: ) oa. oaJ.+ m1n . . a. a. 1 

1, J 1 1 min 

higher derivative terms. Then with M .. = (l/2)(B
2

x 
2 ja a. 8 a.) we have 

1J 1 J 
-1 2 

G .. = (M ). . . If the X space is strictly quadratic, this procedure for deter-
1J 1J 

mining the error matrix can be shown to be equivalent to displacing one param-

eter by an amount which increases x
2 

by one after readjusting all other 

parameters. The displacement is then equal to the diagonal element of the 

error matrix, while the change in all other parameters yields the off-diagonal 

elements. Since our X~ space is far from quadratic in all directions over a 

2 
region sufficiently large for X to change by one, these two methods are not 

equivalent. The first procedure of inverting the second-derivative matrix is 

clearly easier, but for several parameters yielded unreasonably small diagonal 

elements. For these, we employed the second procedure to obtain more mean-

ingful errors. Our estimates for the diagonal errors of solution II are listed 

in the last column of Table IX. It is to be understood that because correlations 

2 
are large and the X space deviates considerably from a quadratic in the 

region of the minimum, these diagonal errors are to be regarded with caution 

and should be used only as rough guides. The differences between solutions I 

to IV which involve different assumptions in the parametrization also give an 

. indication as to the parameter uncertainties. Furthermore, as stated previously, 

2 
ambiguities exist among the smaller amplitudes which yield X values higher 

than those reported but yet not so high as to be unacceptable. More precise 

experiments in this region may well show a preference for another of these 

solutions. 
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Lastly, there are uncertainties not contained in the computer analysis 

arising from the momentum resolution of the experiment. Since only the res­

ohance parameters are rapidly varying, only they should be affected signifi­

cantly. Different channels have different resolution widths, so that the overall 

resolution is difficult to determine quantitatively. Furthermore, much of the 

information concerning the resonance comes from interference terms involving 

resonant and nonresonant amplitudes. These effects extend over a broader 

momentum range than the cross-section enhancements which come from the 

squared resonance amplitude. There is also an arbitrariness of 5 MeV/ c in 

1he choice of momentum intervals and an uncertainty of less than that in the 

incoming central momentum. Overall, we estimate the uncertainty due to 

experimental resolution to be less than 2 MeV, both for the resonant energy 

and for the width. 

IX. DISCUSSION AND CONCLUSION 

In this section we discuss the assumptions that enter into the analysis, 

and the degree to which our conclusion of negative KNL:: parity is dependent 

upon these assumptions. 

In parametrizing the computer analysis, we have assumed strict validity 

of charge independence. This has been found to agree with K- -D experiments 

to a precision of about 5%.29 • 
13 

Furthermore no inconsistencies with charge 

independence have occurred in the considerable body of experimental data on 

strange particles. The agreement of this experiment with charge independence 

further strengthens the assumption?
0 

On the other hand, mass differences 

am-ong the various charge multiplets are quite large and comparable to the 

half-width of the resonance. Deviations from charge independence sufficiently 

large as to be evident in this experiment may therefore be expected due to 
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these mass differences. A naive but perhaps not completely meaningless 

calculation of mass -difference effects might proceed as follows. Assume that 

all three L:TI states are equally coupled to the resonance. The only difference 

in the decay rate of the resonance into each L:TI channel would be due to the 

centrifugal barrier and phase-space factor given for aD-wave resonance by 

Eq. (21 ). At resonance we have PL: = 265 MeV/ c, so that KR :S 1 for a rea-

sonable radius of interaction, R<}l.· /2. 
- 'lT 

The momentum dependence of r is 

then closely approximated by T' o: K
5 

(which also agrees best with the computer 

fit). The momentum differences between the various L:rr states then lead to 

a branching ratio L:+: L: 0
: L:- = 1.12: 1.12: l. This is in the right direction to 

account for the experimental resonance branching ratio, although the observed 

differences are somewhat larger. (Of course, different L: ratios can also be 

obtained by introduction of a nonresonant D
3 

amplitude in I= l.) One may 

further remark that the momentum difference between L:'!T and KN channels 

would lead to a branching ratio L:rr/Kn = 1.66 if they had equal coupling. 

Experimentally, we find 1.86 ± 0.2. It would thus appear that all two-body 

channels are equally coupled to the resonance. 

A second assumption concerns the number of partial waves that con-

tribute significantly in the region of the resonance. Note that at resonance 

the K-p c.m. momentum is 245 MeV/c. Even for a radius of interaction as 

large as }l.rr this gives KR= 1.7 at resonance. Thus it is highly unlikely that 

amplitudes beyond D waves contribute appreciably. The data reflect this m 

that satisfactory fits are obtainable with nonresonant S and P waves only. 

In this connection it is instructive to consider the other known bo·.son-nucleon 

interactions. 
~:c 

The firstrr-N resonance, N (1238), occurs at a c.m. momentum 

of 233 MeV/c, 5% lower than Y~ (1520). Careful investigation of this interac-

tion in the resonance region leads to a satisfactory description in terms of 
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Sand P amplitudes only, Similarly, the K+- p interaction appears to be 

purely S wave below 600 MeV/ c, while the available K+- n data is in satis-

factory agreement with S and P waves, Furthermore the nonresonant ampli-

tudes at these momenta can be reasonably well described by constant scattering 

lengths, It is thus plausible to generalize that boson-nucleon interactions are 

not pathologicaL 

We have found that the various interference effects associated with the 

resonant amplitude are well described by a Breit-·Wigner form with a momen­

tum dependence of the partial widths given by T' ex: K
5 

Since the resonance 

is narrow, the precise momentum dependence of I' is not cruciaL A more 

elaborate analysis involving the introduction of different momentum dependences 

of the partial widths in each channel could perhaps improve the positive KNL:: 

parity fit somewhat. However, the parity conclusion is based on a very gross 

measurement of the sign of an interference between two large amplitudes which 

dominate the reaction; it is in no way a subtle effecL Hence such embellish-

ments of the channel widths cannot weaken the conclusion significantly. 

Let us consider now the parametrization of the nonresonant amplitudes 

in terms of constant scattering lengths, This is assumed primarily in order 

to provide a n10mentum continuity for the amplitudes. The precision of the 

experiment is not such as to warrant introduction of effective-range param-

eters, as is apparent from the fact that constant scattering lengths fit quite 

well over the momentum region investigated, This is not to be construed as 

meaning that effective-range effects are absenL Table XII compares our 

S-wave parameters to those obtained by Humphrey and Ross at lower energy. 
1 

Our phase angle ¢so-Sl agrees with thei.r solution 2, while the scattering 

lengths in general are in closer ·agreement with solution L 
23 

Akiba and Capps 

have shown that this situation could arise from the presence of reasonable 

effective-range terms. When both experiments are done with greater precision 
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Table XII. Comparison of the S-wave parameters. 

for our solution I with the Humphrey-Ross solutions l and 2. 

Humphrey-Ross solutions 400 MeV I c region values 

Solution l Solution 2 Symbols Solution I 

-0.22±1.07 -0.59±.46 ao -0.08±0.5 

2.74± . 31 0.96 ± .17 bo 3.13±0.8 

0.02 ± .33 1.20±.06 al 0.02±0.08 

0.38 ± .08 0.56±.15 bl 0.46 ± 0. 04 

0.40 ± .03 0.39±.02 
i\1T 

0. 29 ± 0. 03 rSl 

··- -·-
<Pso-Sl (deg) ::::: 90 

. ,, 
:::::-90 

., . 
-104 ± 7 

This angle was not actually used as the sixth parameter by Humphrey and 

Ross. The values shown are rough predicted extrapolations for this phase 

based on their solutions. 

and the properties of Y~ (1405) are better established, perhaps meaningful 

effective-range parameters can be extracted from a comparison of the two 

experiments. 

The general method we use is similar to that originally discussed
10 

dl . d17 b c an ater 1mprove y apps. We have, however, formulated the problem 

in such a way as to permit an analysis of the overall K- p interaction utilizing 

all measurable data. Treating this broader problem has necessitated the 

introduction of dynamical assumptions. On the other hand, the parity argu-

ments are to a large extent independent of these assumptions. This has been 

17 2 
emphasized by Capps. To demonstrate this we have minimized X , using 

only the ~+ 1T- data and only over a momentum interval ± 60 MeV I c surround-

ing the resonance. This removes the assumption of charge independence and 

considerably relaxes those of constant scattering lengths and energy dependence 
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of partial widths. Again the data strongly favor aD-wave L:n. resonant state, 

2 
the X being 44.9 and 72.3 for negative and positive KN"L: respectively, when 

2 
X = 42 is expected. The probability of positive KNL: parity satisfying even 

this limited data is 0.25%. The purpose of the computer analysis, however, 

has been not only to establish the L; parity, but also to correlate with a min-

imum number of parameters a large body of data undergoing rapid and spec-

tacular momentum variations. That the analysis can survive these many 

experimental hurdles gives us much more. confidence in the parity conclusion 

than one might have by only fitting one channel. 

The D-wave assignment for the incoming K-p resonant state is very 

strongly favored by the computer fiL Here the assumption of constant scatter-

ing lengths enters into the analysis considerably more forcefully than in the 

L:n orbital- state identification. Relaxing this assumption would significantly 

lower x2 
for solution VIII for the P

3 
resonance possibility. However, it is 

clear from previous arguments that the data cannot be fitted with a P
3 

reso-

nance unless some very unlikely behavior is assumed for the nonresonant 

S and P
1 

amplitudes. 

A much more likely possibility is that Y~ (1520) may be a J = 5/2 

resonance. Computer fits indicate that this has a probability of somewhat 

less than 1 o/o of fitting the data, the only serious disagreements being {a) the 

inability of an incident D
5 

resonance to reproduce the various angular distri­

butions and simultaneously yield the resonant enhancement in the i("Un eros s 

section and (b) the absence of cos 
4 e in the angular distributions. A J = 5/2 

resonance would lead most naturally to the opposite conclusion concerning 

the L; parity. 

We should note that this experiment contains two nearly independent 

measurements, both clearly indicating negative KNL: parity. The stronger 
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of the two involves S-D
3 

interference and correlates cos
2e in the angular 

distribution with the sine cos e polarization term. The other involves P
3 

-D3 

interference correlating cos
3e terms in the angular distribution with the 

sine and sine cos
2 e polarization terms. Both of these experiments neces­

sitate a knowledge of the helicity in 2::~ decay previously measured.
8 

A reversal of this sign would reverse the parity conclusion, apart from a 

very weak indication from 2:: 0 polarization that would still favor negative 

KN2:: parity. 

Finally, the KNA parity has been rather convincingly shown to be 

. h h . . 1 . K- . h 1· 3 l ' l 9 Th negatlve t roug exper1ments 1nvo v1ng capture 1n e 1um. e 

relative 2::- A parity is thus found to be even. Theoretical schemes for 

strange particles have generally been based on the assumption of even 2::- A 

parity. 
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