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ABSTRACT 

. The .neutron tissue dose at large distances from a fission source was 
studied by using a water-filled phantom and four different detectors: a BF3 
counter, a polyethylene -lined ethylene -filled proportional counter, indium 
foils, and nuclear emulsions. The source of fission neutrons was the ORNL 
Health Physics Research Reactor which was attached to a hoist which was in 
turn"installed on a 1530-foot tower. The reactor could be operated at any 
elevation from 27 to 1500 ft. The phantom studies were made at horizontal 
distances from 250 to· 1500 yards from·the tower. Dose contributions from 
recoil protons, Hl (n, -y)D2 and Nl4 (n, p)cl4 reactions are considered. 
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INTRODUCTION 

The neutron dose at large distances from a source is of interest at 
··our laboratory because of the environmental neutron flux produced by the 

accelerators, especially the Bevatron. 

If the variation of the neutron tissue dose through the body can be 
determined, it will be possible to evaluate the total neutron dose more 
precisely. 

Our work is concerned with the neutron depth dose at large distances 
from an unshielded nuclear reactor. By using a variety of detectors we de­
rived information as to the physical nature of the fast and thermal flux in the 
phantom.andconverted this to absorbed dose. 

Other depth-dose studies have been done by Snyder and Neufeld;! 
Kogan, Petrov, Chudov, and Yampol 1skii;2 Smith and Boot;3 and Aceto and 
Churchill. 4 

APPARATUS. 

Phantom 

The phantom was an elliptical cyclinde r 60 em high, with a major 
axis of 36 em and. a minor. axis of 20 em. It was made of o. 65 -em polyeth­
ylene and was filled with water; it was supported by a 100-cm wooden 
pedestal (Fig. 1). (It was found that the flux in the water-filled phantom was 
nearly the same as the flux in the phantom when it was filled with tissue­
equivalent fluid. )4 

* Work done under the auspices of the U. S. Atomic Energy Commission. 

t Present address:University of Texas, Southwestern Medical School, 
Dallas, Texas. · 



Fig. 1. 
( C) 
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(A) Phantom; (B) BF3 and polyethylene detector holder; 
detector and cable to preamplifier. 
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Detectors 

Four .detectors were used in the experiment: a BF3 counter, a 
~ .. polyethylene -lined ethylene -filled proportional counter, indium foils, and 
1 .Ilford L-4 nuclear emulsions. 

The fast neutron flux was measured by using the Ilford L-4 nuclear 
emulsions and the polyethylene counter. 

The emulsions were scanned with a semiautomatic three-axis digi­
tized microscope. The data were analyzed with an electronic computer. 
These devices have partly overcome the large a.mount of time required to 
collect and analyze data from nuclear emulsions. Unfortunately the sensi­
tivity of the film changes rapidly5 at energies lower than 0. 5 MeV, and 

. becomes insensitive to protons of energies lower than 0. 4 MeV. Thus in a 
spectrum with an average energy of less than l MeV a large fraction of 
lower-energy neutrons will not be seen, thereby raising the z.pparent average 
energy to a value that we consider to be unrealistic. Due to this limitation 
the emulsions were not used to determine the average neutron energy. 

The polyethylene counter, (Fig. 2) was calibrated by using a Pu-Be 
source. This type of detector responds to gamma radiation as well as 
neutrons. Fortunately however, the gamma rays tend to produce smaller 
pulses and can be discriminated against by proper bias-level settings. The 
response of this proportional counter is proportional to the energy flux. 

The thermal flux was measured with a BF3 counter (Fig. 2) and 
:i.ndium ·foils. The foils were 0. 005 in. thick and weighed between 300 and 
500 mg. They were mounted in a 0. 007-in. depression in a thin lucite disk. 
After being activated by the thermal-neutron flux the foils· were counted with 

. a Geiger-Mueller tube. 6 Both the BF3 counter and the indium foils were 
calibrated by using a concrete cube into which a neutron source had been 
placed. The walls of the cube act as a source of thermal neutrons; also, the 
thermal-neutron flux in the cube is uniform. 7 The expression for the experi­
mentally derived thermal flux in the cube is 

- Q 
<l>th- 1. 26 s. 

where <i>th is the thermal flux.in the cavity in neutron per cm2jsec, 

Q is the source strength in neutrons/sec, 

S is the surface area of the cavity in em. 2 

The response of the indium foils and the BF3 counters to the thermal flux in 
the phanto~ was not significantly- different (see Fig. 8). 

Source 

The Health Physics Research Reactor used in BREN (Bare Reactor 
Experiment Nevada) was used as the source of neutrons. The reactor was 
fixed to a hoist mounted on a tower so that the reactor could be raised to 
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heights from 27 f to 1500 feet, . The reactor VJaS operated at power levels up 
to more than 1450 W. ', 

METHOD 

The data were collected under varying conditions of reactor height, 
distance, and power levels on a noninterference basis with the Program 1 
experiment of Operation BREN. 

The BF 3 counter and the proportional counter were placed in a 
lucite holder (Fig. 1) and immersed in the water in the phantom. (The lucite 
holder was found to have a negligible effect on counter response.) The sur­
face measurements were taken with the counters held to the outside surface 
of the phantom. The position of the counters could be varied in a horizontal 
plane, but :the vertical position was such that the center of the sensitive 
volume of the counter was 30 em from the bottom of the phantom. 

Indium foils were affixed to small lucite holders and exposed in the· 
phantom in sets of 32, consisting of·3 rows at 10 distances into the phantom, 
one foil on the ·front outside surface, and one foil. on the back outside surface 
of the phantom. A flux-depression factor of 1. 15 was used to correct for the 
"sink" effect of a foil on itself. 8 Also a correction of approximately 5o/o was 
made for the sink effect of one foil on another. 

The Ilford L-4 emulsions were exposed in sets of seven: three were 
exposed in the phantom, two on the outside surface (one in front, one in back), 
and one was exposed at a distance of 50 em to the side of the phantom.as a 
control. The remaining ernul sion of each set was used to check the back­
ground. The presence of the emulsions is not expected to perturb the fast­
neutron spectra because the total macroscopic cross section of tissue and the 
emulsions are nearly the same. 5 

RESULTS 

Dose from Nl4 (n, p)C 14 Reactions 

The depth dos~ from Nl4 (n, p)cl4 reactions can be calculated by 
me rely using the collision density of thermal neutrons at the point in que s­
tion. This is possible because the recoil proton expends its energy over a 
path only a few microns in length. Thus,· for all practical purposes the 
energy is expended at the point of capture. The calculation is 

where: 

D(z) = cpth QaN(l. 6 x Io-8) , . 

D(z) is the dose rate at a point in rads/sec; 
cl>th is the thermal flux in neutrons per cm2/sec 
obtained by the BF3 counter or indium foils at 
the point; 
Q is the energy of the proton, taken a~ 0. 63 MeV; 
cr is the cross section for the reaction, taken as 
1. 75 b; 
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· ... ;. 

N is· the nitrogen• density in .tissue,, taken:~as 3o;to . · 
'or L 29 X ro2I (ltOms/cm3. . ' ... ·. ... : ' . ' 

"." 

. The results from .these cah:::ulations are shown in. Figs. ·3,. 6, and 8. . ) ~·· ~ 

1. ' 2 ' .. 
Dose from H (n, u)D . Reactions .. 

The gamma dose due to hydrogen. capture presents a greater prob• · 
· lem· in .that the energy is not necessarily deposited near the site of the reac­

tion. Using the formula by Taylor9. we can arrive.at an. approximate dose in· 
the phantom: 

D(z) = fd(Eo/t [~1 ~1 [( l+a1 >~oz]- E1{( l+all~oz[l+( ~ h 
1
/

2
}) 

· .. where: 

' ., 

\ ., 

+ ( 1 CA1) ( E 1 [( l+a2 )~0z] - E 1 {(l+a2 )~0z[l+( ~)2 ] 11
\ )} ' ... ~ 

D( z) is 'the gamma dose rate at: z. along the perpendicu­
·lar axis of;a plane circclar~isotropic monoenergetic 
. source unifor'mly distributed over a Circle of radius R 
in a homogeneous medium, · 
SA is the specific source strength (gammas per cm2/· . 
sec) put equal' in turn to S(z) for z = 0. 5, z = 1. .5, etc., 

~ -~ . . . . '• 

E
1
(x) is J T d~, the first-order:exponential inte.:. 

X 

gral, Ar,. ar, and a2 .are Taylor's energy-absorption. 
buildup factors taken.as 7. 3, -0.065, and 0. 0488, 
u·o = narrow-beam.attenuation coefficient taken.as 
0. 04 6 c m -1 , · · . 
fa(Eo) is the conversion from flux to dose, taken as 
2. 226 X 0. 025 X 1. 6X 1 o-8, where 2. 226 is the gamma 
energy in MeV and 0. 025 cm-1 is the mass energy ab­
sorption coefficient. 

· '· Thus the ga.mma-ray dose at points through the phantom is calculated 
" by numerically integrating ·the dose deposited by a series of slabs 1 em thick 

by use of Taylor's formula. 3, 9 . · . · . 

The results of these calculations are plotted in Figs. 4, 6~ and 8. 

Recoil-Proton Dose 

The dose from the recoil protons was determined by using the 
ethylene-filled polyethylene -lined proportional counter to m.easure the energy' 

, flux passing through a point. iri the pJlantom~ The energy flux multiplied by 
the macroscop1!= cross section for an inter~ction gives the maximum energy 

., 

.. 
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deposition at the point, The average energy transfer in the n-p collision is 
considered to be E/2. .This leads to the following relationship for the recoil­
proton dose: 

where: 

D(z) =KNRu(8Xl0-9), 

D( z) is the dose rate at point z in rad/min, . 
K is the calibration of the detector in MeV/cm2, 
N is the hydrogen density in tissue, taken as 
6. 02X 1022 atoms/cm3, 
R is the count rate of the P-Eth counter in counts per 
min, 
u is the cross section for an interaction at the average 
impinging neutron energy, 

The factor 8X 10-9 comes from the consideration that the average 
proton recoil energy is just half the average neutron energy. The average 
neutron energy was obtained by using the ratio of the counts from a 
polyethylene -lined proportional counter and a paraffin-moderated BF3 · 
counter, 10 For the results from this calculation see Figs. 5, 6, and 8. 

DISCUSSION 

The shape of the dose curves suggest that the neutron field is nearly 
isotropic. This is especially true for the thermal neutrons. The fact that 
the minimum of the curve for the recoil-proton dose is skewed toward the 
back of the phantom suggests that there is a fast-neutron component in the 
spectrum that is not entirely isotropic. This is to be expected, since these 
fast neutrons have not suffered as many scattering events, and they are not 
as· randomly directed as the slow neutrons. The fact that the neutron field is 
nearly isotropic would mean that any given organ of the body will receive ap­
proximately the same dose regardless of the orientation of the body at the 
time of exposure. 

Dose from N (n, p)C Reactions 

The dose from the Nl4 (n, p)cl4 reactions is a maximum very near 
the front of the phantom (see Fig. 3). The dose is a minimum very near the 
center of the phantom. Another fact th,at reinforces our belief in the isotropy 
of the neutron field is shown in Fig. 7: The dose in the center of the phantom 
shows only a slight variation as the major axis through the phantom is rotated 
from 90° to oo to the reactor. 

Dose from Hl (n~ y)D2 Reactions 

The dose from Hl (n, '{)D2 reactions are approximately a factor of 
10 above the N ( n, p )C dose and about the same amount below the recoil­
.proton dose (see Fig. 8). Also the gamma dose is much more homogeneous 
than the other two doses considered, due to the fact that the energy is not 
generally deposited at the site of the reaction, 
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. The.dos'e· from:fecoU"protons is subje<;:tto the assumption that the 
. average ene1'gy of the.'·neutrons .does not change as they,penetrate the phan-' 
·tom. Nuclear emulsions ·were to. be used .to test this assumption but they 
gave questionable results. Even though the average neutron energy may 
change in the phantom .it will n'ot affect the reaction crciss··Section as much aEJ' 

:· m.ay be expected. ' If the ·energy· varies by a .factor of two',: the cross section 

. ,'· 

will change by about 25o/o. Still, our results should be considered as only 
. app,roximations to the recoil-proton dose • 

There are of course other recoils, especially with nitrogen, oxygen,· 
and carbon atoms, but these collisions represent a smail portion of the recoil 
dose and were. neglected. 

SUMMARY 

The .thermal-neutroil.fiux can be considered as .nearly· isotropic at 
distances of 250 yards or more •. 

The fast-neutron flux. can be considered as semiisotropic at distances 
greater than 250 yards. 

The depth dose is. shown in Figs. 3 through 8. i 
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