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I. INTRODUCTION

Peierls,l in 1933,-- developed a perturbation- theory_ fOL_Quar.t-um---

statistical mechanics. However, the general term in this theory

was hard to characterize; furthermore, spurious terms, which are

now known to cancel out, seemed to appear in the expression for

the total number of particles. In 1958, Montroll and Ward2 gave a

perturbation theory in which the spurious terms were absent and

the general term. was described, but their formalism, involving an

unnecessary expansion in powers of the fugacity, was exceedingly

complicated. In recent years any number of formalisms have been

proposed~3 These are all essentially eQuivalent, varying only in

details. The procedure of Glassgold, Heckrotte, and Watson

involves a contour integration, that of Bloch and de Dominicis

multiple temperature integrations, that of Luttinger and Ward

4infinite sums •. Thouless, however, has given a very convenient

expression for the logarithm of the partition function.

To propose still another formalism would appear to be both

inconsiderate and imprudent. Our motivation is that the rules we

describe here are considerably simpler than any other prescription

previously proposed. The rules are closely related to those given

4by Thouless, but we shall work with the self-energy operator in

terms of which one-can find not only the partition function but
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also the single-particle excitations. Furthermore, ·it should be observed

that the derivation of the rules is not restricted to the single-

particle self-energy operator but, rather, is quite general. Thus,

for example, one can easily use the method described here to obtain

explicit time-independent rules for the space-time correlation function

of any two physical observables.

The rules for calculating are given in Section II. These

rules were first obtainei intuitivel'; by the following reasoning: In

quantum statistical mechanics one computes the eqUilibrium properties

of a given system by constructing an ensemble of similar systems,

then computing quantum mechanically the properties of each system

in the ensemble and finally averaging over the ensemble. We know

from theworkof-Darwin-ahd-Fbwler that the average over the-ensemble

is strongly peaked in the neighborhood of the most probable system in

the ensemble. This suggests interc~nging the order of (i) the

averaging procedure and (ii) the quantum-mechanical calculation of

the properties of one system. Thus one is led to consider the quantum

mechanics of a system in a state that is the most probable in the

ensemble, and consequently one expects that the usual rules for ground

state perturbation theory6 w:lIL be modified only by replacing the step

functions associated with particle and hole lines with single-particle

statistical-distribution factors of the most probable state. In Sec.

III we derive thill result, starting from the time-dependent formalism

for perturbation theory.7

Dzyaloshinskii has recently published a set of rules eqUivalent

to those of Sec. II, but without an explicit derivation of the general

8
term.
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Formalism

"_ The thermcxlynarn~~__ properties of a system can all be deduced
~ . - - ---------_._---_ .._-~---- -_.--- --_...-

from the grand potential Q defined by

, (II-I)

where ~ = H - ~ with Hand N the Hamiltonian and number

operators. The pressure P, the number of particles N, and the

entropy S are given by

p = (~J ~,~

N = - (~)~, V ,

and
(II-2 )

One c.o.n:.compute n " in ,'additior'l ,to :calcUlating it directly froni..~its

definition (II-I), by an integration over tem~rature of }f (i3, Il)}

the ensemble"averi:l.ge of J:!:

An alternative and more common methcxl is to find Q in terms of an

integration of the potential energy over the coupling constant.

The quantity U(i3, I-l) we express in the form

00

J
-00

, (II-4)
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where

f(W) = r +f3w- ~-lLe + ]J (n-5 )

(The .~. refers to bosons and fermions, respectively.) The spectral

function A(p, w) isa function of f3 and Il" and is given in terms

of the Fourier transform of the single-particle Green·' s function

G(p, w) by

A(p, w) =
1- 2" 1m G (p, w + iE:) , (n-6)

where w is real. The Green's function G, as a function of a complex

, (U-7)
-- ----~ - ~---

-----~------ --- --~- . -----------._---...

where

2
() ( ~ 11)-1GO p, Z = Z _.: 2m + t'"

'"

All of the above is well known and can be found derived, for

example, in reference 7.

(n-8 )

The calculation of thermodynamic properties is.thus reduced to a calcu-

lationof the self-energy operator Z(p,z) The rules for calculating Z in
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perturbation theory follow. To find the nth-order contribution to ~(p, z):

1. Construct a graph by drawing n horizontal dashed lines at

different levels representing the potential and by joining their 2n ends

with solid lines representing particles or holes, and having arrows to indicate

direction, in such a way that one directed line enters and one leaves each end

of a dashed line (e.g., Fig. 1). Have one solid line leave the graph going up

.and one solid line enter the graph from the downward direction (the "external

lines") -- all other solid lines must connect ends of dashed lines. In

particular, it is acceptable ~o connect an end·of a dashed line to itself

(e.g., Fig. 2a), or one ert~ of a dashed line to its opposite end (e.g., Fig. 2b).

Draw only graphs in which there are no unlinked parts and only graphs that

cannot be disconnected into two pieces by cutting one solid line, but draw all

graphs consistent with these rules. In nth order, each topographically

distinct diagram for E will yield n! different diagrams corresponding to

the nl possible orderings of the vertices from top to bottom. Assign a

distinct momentum,

lines.

to each solid line and momentum p to the external

and

:2. To compute the contribution of the graph, associate with each
. r p.2 ]

line of momentum 1:i dir~cted upward afactoI'-- Ll-e-±£ C2~- - !J.) J and with

p.2
each line of momentum ~j directed downward a factor± f( ~ - !J.). Do not

assign such factors to the external lines. A line joining a dashed line to

itself is considered as directed downward. With each dashed line, -associate a

factor V(p., p., P'r' p n), where p. and p. are the momenta of the directed
'" l '"J -vn. ",k '" l '"J

lines leaving the vertex on the left and right, respectively, and ~k

are the momenta of the directed lines entering the vertex on the left and

right, respectively. The factor V(.Ei' .Ej' £k' £.e) is just the matrix element

of the two-body potential. Each of the (n - 1) intervals between vertices
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contributes a factor that is the inverse of the sum of

(a)

interval,

(0 )

interval;

'"'P.e/2m for each downward-going line of momentum p. crossing the
~ -~

2
-P j /2m for eachupward..goingline of momentum £j crossing the

(c) z if both external lines do not cross the interval,

(d)-z-ifoothexternallines cross the interval, or----···--
(e) 0 if only. one crosses.

Multiply all the above factors together along with an additional

(_1) '£ + 1, where ,£ is the number of closed loops formed by solid lines

representing fermions. Finally integrate over all p. with a factor(2~)-3
. -~

for each three-dimensional momentum integration.

The potential V(~i' ~j' ~' ~.t) is simply expressed in terms of the

Fourier transform of a local two-body spin-independent potential vCr) by

where

v(p) = ~-iP.r vCr) dr

, (11- 9)

(11-10)

For particles with spin, one must include the spin dependence of V

and also sum over spins of internal lines - - exactly as one does in ground-

state perturbation theory.

2. Example
I

As an illustration of the rules, we evaluate the contribution for

fermions of the two third-order diagrams of Fig. 1:
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E(a) (;:: z) ~J{r1-£1][1-£3]£5 [1-f2 J[1-f4](-1)\:\dE2~d'::4d.!jv(!i -,:: )v(E2-!i)v ('::-E2)

x (2rc )90 (P 1+P-.:-P-P
5

) '0 (P2+P4-P, -p.,).o (:PtP>::-P2 -P4)1 I(z -€1-€3+ €~) (w-€" -€\ + €~) (2rc )15
~""'/""'''' '" '" ",.J.",;) ",,,,;),,,...., j' ;) <= 4 ;)

and (II- 11 )

t

I
!
~

i
I
I
I
I
j
;

where f
i

represents f(~~2 _,~)
3. Generalization".

We can sum a large class of diagrams, namely those corresponding to the

replacement of GO by G in all internal lines, by rules that are essentially

the same as those given in Sec. II.l:

(a)

(b)

Construct only irreducible graphs.

Calculate the contribution of an upward directed line p~ by
",.1.

assigning the factor A(~i'Wi). [1 ± f(Wi )] and for a downward directed line

the factor ±A(p.,w.) f(w.). For the energy denominator the upward lines
"'~ ~ ~

contribute - (Wi + j..l.) and the downward _l~Il~S_c_CWi_!_~)'__~ocee~ as in

Sec. II.l, and finally also integrate over all Wi as well as p .•
"'~

These rules are greatly more complicated, since A must be obtained

self-consistently, but one diagram now includes an infinite class of the old

diagrams.



-8-

III. IROOF OF RULES

The starting point from which we shall demonstrate the rules given in

Sec. 11.1 is the time-dependent form of the perturbation expansion for ~.

Tnis expansion is described in detail in the appendix to reference 7. Briefly}

to calculate any order of perturbation theory in the time-dependent formalism}

one writes down all topologically distinct connec~~~ diagrams of that order and

evaluates the diagrams by writing a GO for each line, and a V for each

vertex as in time-dependent ground-state perturbation theory. The time

integrations must be between t = 0 and t = -i~ in order to include

correctly the periodicity boundary condition obeyed by the thermodynamic

Green's functions. In listing all the distinct diagrams no attention is paid

to different time orderin~ The momentum parts and the numerical factors are

the same as in ground-state theory. One first calculates the Fourier coeffi-

cient of ~

dt
i· JllI

' (t - t')
-i~e

where v is an even integer for bosons} and an odd integer for fermions.

Then the Fourier coefficient is continued from the zv to all complex z •

Each ~th-order diagram in this perturbation theory corresponds to n;

of the "ordered" diagrams one writes down according to the rules of Sec. 11·1 .

In order to demonstrate the e~uivalence of those rules to the time-dependent

perturbation theory, we must show how the' contrib~tion of an ~th-Drder diagram

evaluated by the time-dependent theory splits into n~ distinct contributions}

each equal to the contribution from one ordered diagram evaluated by the rules

of Sec. 11·1.

Consider a diagram of ~th order in V. The n vertices are labeled

with n different times; to, evaluci.te the diagram} one of these times is set
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e~ual to zero} and the remaining n - 1 times are integrated from t = 0 to

t = -ip. Tnese n - 1 time integrations can be split into (n - 1); differe~t

integrations corresponding to different orde~ of the n - 1 times along t~e

line from 0 to -ip. There are only (n - 1); terms rather than n:. terms}

since one time has been arbitrarily chosen to be zero. We shall shmr that each

of the (n - 1); terms e~uals the contribution} evaluated by the rules of Sec.

II,.l} of n Bordered fl diagrams that differ only by a cyclic permutation of the

vertices.

Since in the (n - l)~ terms in the time-dependent perturbation theory

the integration times are ordered} one can always replace the

that occur in the:i,nteg.ral. by." ..

Go} )£} t
j

)
1 - ip2(t.-t.)/2m [l U(~ -~)Jt .} = _ e J.. J

}
J.. i

if t. > t.} or by
J.. J

GO «p}t.}t.)
1 _{p2(t,.~t.)/2m

f(~ - ~)= + -:-e "" J.."J

} 'V J.. J ..~ l

(III-l)

(III-2 )

or forward-going line) there corresponds

have

.t:'
1. •Go <) a factor :t

)

At each ,vertex (t.e)} one willan over-all factor of (_1)2n-l •

iO".et.e
e ) where

There is

a factor

if t i < t j • Tnus to each Go}>}

a factor 1 ~ f; and to each bac~ffird-gDing line) or

1 2 2 2 2= (p + Tl. - P - P )2m a ~b c d )

where and are the momenta of the lines leaVing the vertex)" and D
;:,c

and are the momenta of the lines entering the vertex. For the external

2;" "lines} the factor p 8m" is replaced by Zv One must therefore calculate

the integral
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f
t n it 1a., (t3 it

2
a
2n- n-.... _.

··C,n_1 e ••• j Qt2
e

0 ..·--.. '.. ---.----0 - ,. '._ ._ ..

(E2.-4)

~ie res'ults of the t
2

integral can be v~itten as

, {Il:- 5)

and it is clear that one can write I as

where

n

I = 'IT'
i=2

n
. . . -.,' . 131" . . " '. I; A

J
.

in-.L e 'n' (_1)0=2 .

r r ···r r2 3 n-1 n
(EI- 6)

r 1cr ..:.. A r". .... " (r< -'-," r< .L "'j\jk . --k-l- L-k-l .~. ''k-2 \ V k _2 ''k-3 u k _3 .. -.:
'TTT 1\\...i....l.._ - ; i

The sum nmr contains n-12 distinct terms, and we must rearrange it into n

different groups of terms so that all terms in each gr6up have a common value

of exp(l3r). This is done by rewriting the sum as
n

( TTT 8\
...........l- )

I

k=l
L

/-..=0,1
l

n

13i\ r .L,2i\ j J
~i_n_-l-:e=--_n_n---,,-(....;-1::..L.)J_=__

r r ···r r. 2 3 n-1 n
. (i\ =1, i\ =1, ••. J "-. =1, "- =0)

n n-1 KTl K
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where the k = 1 term corresponds to taking all ~. = 1.
~

. n

n

I = L
k=l

k+l k+l \

Call the sUITillBtion in the oraces 8
k

• Then

81 = 1,

82
-1

.0
2

,

A.

[a
3

(a
3

+ (
2

)J :-.~8
3

= L (-1) 2
=( a

3
+A. a

2
) a

2
,

~=0,1

and in general

~=o

(Ilr-9)

(III- 10)

This latter result follows from a simple induction argument. Assuming the

result to oe true for any aroitrary set, of r i for i=2,3, • •• ,k~l, we can

write

(.III- 11)

l~-l' .

(-,~.)~ ['-1
.L: ~j :,

]8 = L 11' L
: (_1)J=3,

(ill - 12)-'---'- .k (J rkrk_l"' .r3
~=O}l

2
i=3 A.. =0,1

~
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:But the term inbr?-c:kets is_sucll a sum of "order"k-l_involvifl.g
---- -. - - .-

03 == C1
3

+ 1.2,°2 : and hence; by the inductive hypothesis "re have

1
(II1-13 )

Computation of the 1.
2

sUITill0tion then produces the general formula (111-11)

The integral I has thus been reduced to

n

I == E
k==l

r3 (0 + •. ·+o )
i n- l (-1) n-k e n k+2 (111-14

(° +° + •.•+° )(0 + •••+0 ) ••• 0 0 ( 0 + 0 ) ••• ( 0 + ...+° ).
n n-l k+l n-l k+l k+l k k k-l k 2

These n terms correspond to just n cyclic permutations of a given diagram.

Let k == n. Then the summand is

.n-l
l

. u (0 +0 ) ... (u + •• ·+0 ) (On+On_l+·· '+(2)n n n-l n 3
(IIl-15 )

When z is replaced by z) the denominators clearly are the energy denominatorsv

one writes down by folloWing the rules in Sec. II for the original diagra:,l.

The k == n-l term

differs from the

n-l
i

130'
n

e

k

[
(0 1)(0 1+° 2) •.• (0. 1+ '.•.+(

2
) (-0 ~

~ n- n- n- {l- n .J

13 On
n term by a factor e and furthermore the

(II1-16)

o has
n

k == n - 1 term corresponds to the

-0 and each factor has been reduced "by 0
n n

is just ~ 1. Thus the

Note that

time-ordered diagram formed "by moving the latest vertex n
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to the earliest time (a cyclic permutation). All cner3Y denominators

change sign when it becomes the first denominator; the

l1ill,·rill clearly be reduced. by and the last denominato~ (an)
pUll

e 'ili:l

change the particles into holes and vice versa at the nth vertex)

1 ~ f(W). Thus. 1 corresponds to the sum of

all Q~agrams of nth order that are just cyclic permutations of a

single diagram of ~th order. Thus we have exhibited the correspondence

between the time-dependent perturbation diagrams and the ordered

diagrams as well as d~rived the rules of Sec. 11.1. We leave it to

the reader to check that the detailed numerical factors are eQuivalent

as well as to generalize the derivation to cover the situation of

Sec. II.3.



-14-

REFERENCES

1. :: .:\. ?eierls) ZeUs. fUr Phys. ~ 763 (1933).

2. E. W. Mont~oll and J. C. Ward) Pnys. Fluids b 55 (19}8).

). C. Bloch and C. de Dominicis) Nucl. Pnys. L 459 (1958 )j A. E. Glassgolc.)

Har~en lieckrotte) and Kenneth M. Hats on) Pnys. Rev. l:i.5) 1374 (1959);

J. H. Luttinger and J. C. Hard) Pnys. Rev. 118) 1417 (1960)j

A. A. Abrikosov) L. P. Gor'kov) and I. E. Dzyaloshinskii) Soviet

Phys. JET? Engli~h Translo ~ 636 (1959)j P. C. V~rtin and

J. Schl'Tinger) Pnys. Rev. 115) 1342 (1959)j T. Matsubara) Progr.

Theoret. Pnys 0 (Kyoto) ~ 351 (1955) j T. D. Lee and C. N. Yang)

Pnys . Rev. 117) 22(1960).

4.D. J. Thouless) The Quantu~ Mechanics of V~ny-Body Systems (Academic

5. A. M. Sessler) "Theory of LiQuid Helium-Three)" Varrena Summer

School on LiQuid Helium (1961). To be published as a Suppl. to

Nuovo C~cento (1963).

6. J 0 Goldstone) Proc. Roy. Soc. (London) .4239) 267 (1957).

7. L. P. KadanofI~ and G. Baym) Quantum Statistical l<l8chanics (Benjamin)

New York) 1962).

8. 1. E. Dzyaloshinskii) Soviet R.1.ys. JETP English Transl. Q, 778 (1962).



Fie- 1.

-15-

operator.

Tnc lo,\·r8st order diasrams 1·rhicI1 contribute tG \~ne scl:""-cr...orc:r

operator.
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