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ABSTRACT 

We develop analytical methods for the prediction of the reactivity 

lifetime and burn up of nuclear fuels. 

The analysis applies to those nuclear fuels whose changes in com

position with time are due solely to neutron-absorption processes, so 

that the composition of any fuel species is a function only of the inte

grated flux time of its irradiation exposure. Reactivity lifetime can 

then be expressed as a function of the appropriate average flux time of 

the fuel at the end of the irradiation. We can then calculate local and 

average burnup of the irradiated fuel without necessarily specifying the 

magnitude of the irradiation flux or the power program of irradiation. 

A generalized perturbation method is developed which allows us 

to calculate the above results, and which takes into account the spatial 

variation in neutron flux within the reactor and changes in this spatial 

variation during irradiation resulting from changes in fuel composition. 

Tabulated functions allow hand computations for the batch irradiation of 

fixed fuel in cylindrical or spherical reactors that have a uniform initial 

fuel loading. Such functions also apply to radial mixing and graded irradi

ation. 

The perturbation method is most easily applied to the one-group 

diffusion model, but the method is extended to the multigroup model with 

only slight modification for reactors with energy-independent boundary 

conditions. 
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An exact analytical solution fdr the reactivity lifetime and fuel 

burnup has been developed for continuous fueling schemes, if the one

group model applies and if the characteristic excess neutron production 

of the fuel varies .as a quadratic function of the flux time of irradiation 

exposure. A comparative study of varioU:s continuous fueling schemes 

has beeh :made for a fuel with typical propetties (see Sec. III-6). 

The validity of the approximate solutions is determined by com

paring results of the second-order perturbation method with the exact 

solutions of the sarrte equations. Numerical computations on high-speed 
. . . 

digital computers have been used to obtain exact solutions of those equa-

tiorts which could not be solved analytiually by means of elliptic functions. 

The computational procedure here developed allows survey studies 

comparing the pe:t'formances of varibus fuels and various reactor designs. 

Also,. it predicts the magnitude of the error~ to be expected when we use 

various neutron behavior models (C>ne-group, two-group, continuous 

slowing down) in ±nore elaborate computations oh high-speed digital com

puters. 

Although attentlon has beerl focused mainly oh the properties re'

lated to the variations of the flux in the equivalent homogeneous fuel

moder·ator cell, corrections for lumped fuel have also beeen investigated. 



-1-

L INTRODUCTION 

1. Statement of the Problem 

The rapid development of power reactors during the last decade 

has focused considerable attention on the changes that occur in the prop

erties of nuclear fuel and nuclear reactors during long-term irradiation. 

The variation and the control of the excess reactivity of the reactor, 

and the burnup (quantity of power released per unit weight) of the fuel at 

end of life, have been given special consideration. The comprehensive 

study by Benedict and PigfordBl is a useful tool for qualitative and quan

titative estimates of these properties; they made a straight forward 

hand-computation method possible by using a simple model to describe 

the neutron behavior; such a model neglects the changes in the spatial 

. and energy distribution of the neutrons which occur during irradiation. 

The effects of these changes have been included in many numerical 

studies which the development of high-speed digital computers has made 

possible on a large scale. Such detailed analyses are of prime value for 

design studies of specific reactor systems. However, general investi

gations involve scores of parameters and require the use of computation 

techniques which represent a compromise between simplicity and accuracy. 

Our purpose in this thesis is to develop a method of fuel-cycle 

analysis that accounts for the changes of the spatial distribution of the 

neutron flux, yet remains simple enough to be hand computed. Thus, 

we make available a set of formulae for further studies of power density 

distribution, of heat exchange problems, and of optimization of fuel

cycle parameters. 
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20 Review of Previous Works 

Fuel-cycle computations rely on the reactor statics theory; i. eo, 

they rely on the solution of equations describing the equilibrium behavior 

of the neutrons in a reactor of given compositiono Knowing the eros£, 

sections of the various nuclides present in the reactor' we can compute 

changes in fuel composition, at least during a differential increment of 

the irradiation time. Thus, the refinement of a fuel-cycle computation 

depends on the adequacy of the model used to describe the spatial and 

energy distribution of the neutrons and on the accuracy of the extrapo

lation of the time-dependent propertieso 

While numerical studies can nowadays be performed on high

speed digital computers for extremely sophisticated models~ 1 
methods 

seeking an analytical approximation of the characteristics of fuel cycles 

have been developed for the simpler models which followo 

2.1 Zero-Dimensional Model 

Many of the fundamental characteristics of fuel cycles can be 

determined by calculation of the composition changes that occur in a 

local section of fuel as it is irradiated. This method, usually referred 

to as the constant-flux or zero-dimensional approximation, was used in 

basic papers presented at the First Geneva Conference on the Peaceful 

Uses of Atomic Energy by Dunworth, Dl Lewis, Ll Spinrad, Sl and 

Wei,nberg. Wl They have assumed that the flux energy spectrum does 

not vary with the irradiation and with the position in the reactor, in 

which case the zero=dimensional model would exactly describe the be

havior during irradiation of a well mixed fuel {e. g. , a solution of 

uo2so 4 in D 20). 

This model describes also the irradiation of a fuel in a uniform 

flux {L e. , a constant flux, or zero-dimensional flux with respect to 

spatial coordinate). Some useful results are developed below. 
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2.1.1. Changes of fuel composition during irradiation. Consider a local 

section of a fuel of given initial composition which is irradiated in a 

thermal flux <j>(t). By assuming that the radioactive decay of a nuclide 

either takes pla-ce without delay or is negligible, B 
1 

the atomic concen

trations N of the various nuclides are the solution of a set of linear 

first-order differential equations where the independent variable is the 

flux time 
t 

e - 1 <!>(t)dt . - 0 (l) 

This neglects the changes of the neutron-flux energy spectrum 

in the reactor and assumes that we have chosen suitable effective ther

mal cross sections; such eros s sections may be determined according 

to the method of Westcott W
2 

or according to the summaries of cross 

sections averaged over a Wigner- Wilkins spectrum;Al they can take 

into account epithermal absorptions that depend very much on concentra-

t . l'k th . . P 240 C1 . 10n, 1 e ose occurr1ng 1n u 

The most comprehensive studies of the fuel-composition changes 
235 238 235 . B1 

have been completed for U - U and U -thonum fuels; we 

refer to these studies for the detailed analytical solution of the cor

responding sets of linear first-order equations for nuclide concentrations 

as a function of flux time. As an example, the simpler fuel, pure u235
, 

would be treated as follows. 

2. 1. 2. Highly enriched uranium fuel. The 
235 

U undergoes the reaction 

U
235 1 

92 +on 

/fission products 

~ 

1 

U
236 

92 ' 
probability: 

Where - 0' (n, y) . th t t f' . t' . u 235 
a 25 - 0' (n, f) 1s e cap ure- o- 1ss1on ra 10 1n 

The reaction rate is the product of the concentration N, the 

microscopic absorption cross secti6n a, and the flux <j>(t). 
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235 
The concentration of U then obeys the equation 

dN25 
<It"= - N25 a 25 <I>' 

0 
The solution subject to N 25 = N 25 at t = 0 is 

0 
N25 = N25 

The cencentration of u
236 

is determined by the equation 

dN26 

dt 

The solution subject to N 
26 

= 0 at t = 0 is 

a25(125 ( -a268 -a258) 
(a25-a26)(l+a.z5> \e - e . , 

(2) 

(3) 

(4) 

{5) 

The neutron burnout of u236 is usually negligible, and Eq, (5) 

is replaced by 

1 - e , ·( -a 25
8

) (6) 

The fission products are classed into two groups: 

(a) Low cross-section fission products whose neutron burnout and 

decay are negligible: 

N F • N~5 1 +\25 ( 1 - e -<1259) . (7) 

(b) Hi h . f" . d ( X 135 g cross-sectlon 1ss1on pro ucts e, g., e and Sm 
149

) 

that build up rapidly to steady-state concentrations. Their macroscopic 

cross section is taken as equal to a constant fraction r of the macroscopic 

cross section of u
235

: 

(8} 
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In a reactor loaded with pure u 235
, and with no burnable poison 

present, the concentration of all nuclides but the above mentioned re

mains constant. The subscript P will refer to all permanent absorbers; 

their macroscopic cross section is Np (] p• 

2.1. 3. Complex fuels. For low-enrichment fuels containing fertile 

materials, Benedict and PigfordBl have shown that the variation of the 

concentration N. of each nuclide can be represented by a sum of ex-
1 

ponentials plus a linear function of the flux time: 

N. 
1 

= c. 0 + c. 1 8 + 
1, 1, L:c 

j i, j 
e 
-a. 8 

J 
(9) 

The above equation is clearly valid for highly enriched uranium 
. 235 238 235 

fuel. For reactors loaded w1th U - U or U -Th fuels, formulae 

giving the coefficients C. . have been derived. Bl 
1, J 

For our present purposes, it will be assumed that the variation 

of the nuclide concentrations are given functions of the flux time to which 

the fuel has been irradiated. In order to develop a hand computation 

procedure,· it is most convenient to use Eq. (9) directly. The function 

N. (8) could also be expanded in power series of the flux time. Ml Poly-
1 

nomial fits of the functions N. (8) are usually used for machine com-
1 

putations. 

2.1.4. Changes of the flux energy spectrum. The flux energy spectrum 

changes as the irradiation proceeds. These changes of the flux energy 

spectrum can be studied by evaluating the change of the neutron temper

ature (for a Maxwell-Boltzmann energy spectrum) or by solving the 

equations of Wilkins or of Wigner- Wilkins for various isotopic com

positions. A simple procedure for solving the nuclide-concentration 

equations is as follows: 

(a) Given an initial composition of the mixture, one computes the 

flux energy spectrum. One can then compute an effective cross section 

for each nuclide by taking the average of its energy-dependent cross 

section over the flux energy spectrum. 
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(b) One uses the just computed effective cross sections in the equations 

for the nuclide concentrations, and solves for the concentration changes 

during a small time increment. 

(c) One repeats steps 1 and 2, using the latest composition of the mix

ture for the determination of a new flux energy spectrum. 

The above procedure is used, for instance, in FUELCYC, a 

program for computations on high-speed digital computers. 
53 

The de

pression of the flux (see Appendix C) in cylindrical fuel elements has also 

been taken into account by KushneriukKl and Greebler. Gl 

2.2. One- Group Diffusion Equation 

P L4, Pl, G2 h d h apers t at were presente at t e Second Geneva Con-

ference on the Peaceful Uses of Atomic Energy used the one-group dif

fusion equation in order to describe the spatial dependence .of the neutron 

distribution. While Gotto G
2 

used high-speed digital computers to re

peatedly solve this equation while irradiation proceeds, most 

t d . L4, M2, Pl, Z 1 ht . · h 1 f · •t s u 1e s soug an approx1mahon to t e va ue s o reach v1 y 

lifetime and burnup by using first-order perturbation theory. In the 

following paragraphs we present the one-group diffusion equation and 

the first-order perturbation with the notations used in this thesis. 

Besides finite-differences methods, G
2 

synthesis methods have 

recently been used in numerical computations on high-speed digital 

computers;B
4 

another method, which represents the flux changes as a 

power series in the irradiation time, has been developed by Chambre. C
3 

However, prior to the present work, only first-order perturbation com

putations have been used in hand computations of reactivity lifetime and 

burn up. 

2. 2. 1. The modified one- group d~ffusion equation. The neutron balance 

in the reactor is described locally by the diffusion equation written in 

terms of the thermal flux: 

(1 O) 

where: 
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(l) D is the diffusion coefficient. It is assumed constant, for its 

value is determined mainly by the properties of the reactor that do not 

change on irradiation. 

(2) Z:E is the positive macroscopic cross section of the control ab

sorber adjusted in order to keep the reactor just critical. 

(3) v th is the average number of thermal neutrons produced per fis

sian. It takes into account the fast fission effect and the losses of neu

trons (by leakage and absorption) during the slowing-down process. 

When the Fermi age slowing-down model is used in order to obtain the 

expression of vth' Eq. (10) is known as the modified one-group age-

d .££ . . . W3 1 us1on equation. 

(4) E£ is the macroscopic thermal-fission cross section. 

(5) I,; a <1> is the thermal neutron-absorption rate per unit volume, ex

cluding the absorption in the control absorber. 

One defines 
2 

v th I:£ - I:a = DBm ' ( 11) 

where B 
2 

will be referred to as the material buckling W
3 

of the reactor 
m 

without control absorber, It is a function of the nuclide concentrations 

The irradiation to which the fuel has been exposed in the reactor', 

according to a given fuel scheduling scheme, is to be characterized by a 

parameter T, If the flux <j> were known, the concentrations N. could 
.1 -be determined as a function of the position x in the reactor and of this 

parameter T which describes the extent of the irradiation, 

The material buckling is then the result of an operation on the 

flux <j>; this operation will be described later for various fuel scheduling 

schemes. 

-2.2.2. Boundary conditions. The flux <j>, a function of the position x 

and of the irradiation parameter T, is the solution of Eq. (10). It is 

subject to either of the following boundary conditions: 
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( 1) <j> = 0 (12) 

at the extrapolated boundary of the reactor, 

(2) (13) 

at the physical boundary of the core, 

The linear extrapolation distance o1 is constant if the properties 

of the reflector are independent of the irradiation, The condition that 

o J, be much smaller than the physical dimension of the reactor core is 

prescribed in order to have a good representation of the diffusion of the 

neutron with a one-group {thermal flux) diffusion equation. Furthermore, 

flux changes are much smaller in a well-reflected reactor than in a bare 

reactor, since the reflector tends to flatten the distribution of the neutrons 

in the core and thus diminishes nonuniformity of the fuel composition. 

2, 2, 3, Unperturbed reactor equation, The unperturbed equation is the 

equation for the thermal flux in a reactor of uniform composition, be

cause its solutions are well known for various geometries;
54 

we have 

. 2 
.6.<j> t B <j> = 0. (18) 

With the linear homogeneous boundary conditions [ Eq. (12) or 

(13)}, Eq. (18) possesses a complete set of orthogonal eigenfunctions 

corresponding to eigenvalues B~ all positive (the operator (-.6.) is posi

tive-definite). The physical restriction that <j> should be positive over 

the volume of the reactor requires the choice of the smallest eigenvalue 
2 C2 . f B 0 ; B

0 
1s known as the geometrical buckling o the. reactor core .. 

The unperturbed equation then is 

( 19) 

(20) 

in order to distinguish between the perturbation term on the right side 

and the unperturbed expression on the left side, Equation (20) would be 
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exactly equivalent to the unperturbed equation, Eq. (19), if the control 

absorber were locally adjusted according to 

E = DB
2 

- DB
2 

(21) 
E m 0 

to compensate for the local excess reactivity of the fuel. 

One defines 

(22) 

which has the dimension of a macroscopic cross section and will be re-

f d h d 
. Bl, Pl 

ere to as t e excess neutron pro uctlon. 

The subscript <j> indicates that "V <I> is the result of an operation 

on the flux <j> in the sense that, if the flux were known, one could write 

explicitly -"V <j> = F(x, T) , (23) 

where T is a parameter characteristic of the extent of the irradiation 

of the fuel. 

Equations (20) and (22} finally yield 

(24) 

2, 2. 5. First-order perturbahon. As long as the perturbation term in 

the right side of Eq. (24) is small compared to DB~<j> in the left side, 

one would introduce a smaller error by replacing in the right side of 

Eq. (24) the actual flux <j> by its approximate value q,
0

. A better approxi

mation to the flux will then be the solution of the equation 

(25) 

The solution <j> of this equation is the first corrective term in 

the perturbation-theory series expansion of the solution of Eq. (24), as 

well as the first term of a suite of iterations (c£. Eq. (II- 22) ) . 

In general, Eq. (25) could be used to obtain approximate solutions 

for the thermal flux in a reactor with nonuniform fuel loading and control 

absorption, when this nonhomogeneity does not induce important varia

tions of the diffusion coefficient D, 
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However, Eq. (25) is mostly suitable for the study of the changes 

with irradiation of a flux which would satisfy exactly the unperturbed 

equation, at least at zero irradiation. 

2, 2.6. Criticality condition; reactivity lifetime. Equation (25) is a 

linear nonhomogeneous differential equation and the corresponding 

homogeneous equation has a nontrivial solution <)>
0

; Eq. (25) has a 

solution only if its right side is orthogonal to this nontrivial solution 

* <)>
0

. This yields the criticality condition 

(26) 

In the case of batch irradiation of the fuel, ~E is set equal to 

zero at the end of the reactivity lifetime. For steady-state fuel sched

uling schemes, ~E is always zero. The corresponding equation 

(27} 

which has been widely used after Pigford, Pl is the result of a first 

order perturbation theory (also called a statistical weighting procedure 

by LewisL
4

). In the present approximation, no assumption needs to be 

made concerning the distribution of the control absorber in the reactor. 

For a reactor with a uniformly distributed control absorber we have 

(cv <I> ) <l>o· <~>o) 
0 

I:E = (28) 

According to Eq. (9), the excess neutron production in a reactor 

cell irradiated to a uniform flux time e is the following function of this 

flux time: 

(29) 

When the extent of the irradiation of the fuel in the reactor, in 

accordance with a given fuel scheduling scheme, is characterized by a 

parameter T, Eq. (28) can be written 
:1,< 

See Appendix A for definition of the following scalar product notation. 
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\'. 

::EE = d 0 + dl f 2 T + ·~d. E 2 (a .T) 
. j J J 

(30) 

The coefficient f 2 and the function E
2

(w) have been tabulated 

for various fuel scheduling schemes in spherical,· cylindrical, ·and par-
. Bl S2 Ml allelop1ped reactors. ' ' 

The coefficients d
1

, d
0

, and dj are linear, functions of the initial 

nuclide concentrations; by setting l:E = 0 in Eq; (30),. a straightfor

ward hand computation determines the enrichment of the fuel which must 

be loaded in a given reactor in order to obtain an irradiation T. 

2. 2. 7. Burnup of the fuel. The burnup is defined here as that fraction 

of the original fuel which has been converted into fission products. It 

is a function of the nuclide concentrations and, like the excess neutron 

production 

of the fuel, 

irradiation 

V' <I>' 

13 <I>' 
T. 

ation T only. 

it is the result of an operation on the flux. The burnup 

is a function of the position x in the reactor and, of the 

The average burnup (1, 13 <I>) , is a function of the irradi-

According to Eq. (9), the burnup in a reactor cell, irradiated to 

a uniform flux time e' is a function of the flux time' and we have 
-a .e 

13(8) = bo + ble +rbj e J • (31) 
J 

A first approximation to the burnup is obtained by replacing in 

the expression for 13 <I> the actual value of the flux <j> by its approxi

mate value <l>o· In the fuel-cycle study of Benedict and PigfordB 1 this 

approximation is used in calculating local and average burnup of fuel 

irradiated according to a given fuel scheduling scheme in a reactor of 

simple geometrical shape; this average is 

(32) 

where T characterizes the. extent of the irradiation, and is usually the 

maximum flux time, and the coefficient f
0 

and the function E
0 

(w) have 

been tabulated. 
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The final burnup is evaluated when the fuelhas beenirradiated 

to such an extent that the reactor ._is just critical with all control ab

sorbers removed,. This burnup is determined by Eq. (32), where from 

Eq .. (30) one .takes for .T the-root of l;E(T) =' 0. 

The above results give only a fl.rst...:or.der approximation; inthe 

present. thesis, w_e seek .a better approximation by ~dding a second~ 

order term to correct for the flux changes that occur during irradiation. 

2. 3. MulhgroupDiffusion Equations 

It is only in a bare, uniformly loaded reactor that the spatial 

distribution of the neutron can be described separately from the energy 

dl.stribution~ However, in fuel-cyde analysis we are often concerned 

with reaCtors where nonurtiformity in composition arises because of the 

ho'nuniform burnup of the fueL The nonuniformity may ·also be caused 

by a reflector, by a breeding blanket, or· by control rods. The problems 

of the spatial variation of the flux-spectrum are then usually studied by 

breaking up the energy range from fission to thermal into several groups 

of equivalent monoenergetic neutrons. 

For example, the two-group diff.ision equations have be·en widely 

used to study the characteristics of fuel cycles. An approximate solution 

has been.derived by MurrayM
3 

and studies of the reactivity lifetime have 

peen performed by Wolfe W
4 

who compared the results of the first-order 

perturbation theory with those of exact computations. Wolfe points out 

. that the thermal flux shape does not change significantly if the effect of 

burnup on neutron balance in a small core region is small compared to 

. the neutron leak4ge from this region. The perturbation method is then 

appropriate for the study of highly enriched reactors which have a large 

leakage of neutrons. However, the analytical study of flux changes by 

the perturbation method is greatly complicated because the operator that 

acts on the two-dimensional vector flux (fast and thermal fluxes) is not 

self-adjoint. Thus, most numerical st~dies have used the finite-dif

ferences method in· order to solve the rhultigroup diffusion equations. 

A great improvement in speed of calculations has been achieved by the 
53 

pseudomultigroup treatment used by the FUELCYC computer program. 



2.4. Fuel Scheduling .Schemes 

In early studies, the irradiation of thoroughly mixed fuel (zero

dimensional model) was primarily considered. The incentive. to produce 

nuclear power at competitive costs· has since focus·ed considerable at

tention on various fuel and control management schemes. that might 

yield large burnups of the fuel. The following describes some of these 

fuel scheduling schemes, which have been intensively studied·since 

Lewis 1 early investigation on batch irradiation of fixed fue1L
2 

as well 

as on continuous refueling schemes. L
3 · 

2.4.1. Batch irradiation of the fuel. Fuel is initially loaded in the re~ 

actor and remains fixed in 'position throughout the operation of the re

actor. Control-poison is adjusted in order to keep the reactor just criti

cal at all times. The fuel is discharged batchwise when the reactivity 

of the fuel has decreased .to such an extent that the reactor becomes sub"· 

critical with all control poison removed. 

The results of the first-:order p~rturbation method do not take 

into account the distribution of the control absorber in the reactor. This 

distribution has been .assumed uniform in earlier studies~ Numerical 

analyses relating to specific reactor systems have shown that a better 

neutron economy can be achieved with nonuniform distribution of the 
SS Il . Jl 

.control, of the fuel, or of both. 

The burnup of the fuel can also be increased by interchanging 

the fuel rods throughout the irradiation in a cylindrical reactor with 

sufficient frequency to keep the composition uniform radially (radial 
. . Pl) m1x1ng ·. 

2.4.2. Steady=state fuel scheduling schemes. The fuel is continuously 

fed to and discharged from the reactor at the frequency at which the re= 

actor remains just critical without control poison. With a reactor shaped 

as a right cylinder of arbitrary 'cross section loaded with fuel contained 

in elements (rods or channels) parallel to the axis, one can consider 

graded irradiation or steady axial movements of the fuel. 
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{1) Graded irradiation. The fuel rods, fixed in place in the_ reactor, 

are discharged individually when burned up to a specified extent, and 

replac;ed .by fresh rods. 

(2) Unidirectional. The fuel is moved steadily· in channels through 

the reactor; it is. fe.d at one end of the reactor and discharged at the 

.other. 

(3) Bidirectional. The fuel is moved in opposite directions in ad

jacent channels, half of :the fuel being charged and half of it b.eing dis

charged at each end plane. 

(4) Out-in. The fuel is loaded at the outer surface of the reactor and 

moved steadily toward the center, where it is discharged. 

3. Method of Perturbation Analysis to be Used 

The first-order perturbation theory has been widely used to ob

taiii an approximation to the eigenvalue of various eigenvalue problems 

of the reactor theory, but very few studies have also attempted to ob

'tairi. ari approximation to the eigenfunction itself and to determine higher-

. order perturbation corrections. 

In general, perturbation theory can give a series expansion of 

all the quantities of interest, such as reactivity and neutron distribution. 

It has been pointed out (see Ref. W3, Chapter XVI) that the perturbation 

series may converge very poorly and that its first few terms may be 

misleading; however, for linear problems, modified perturbation 

meth6dsM
5 

have been developed with which the convergence of the suc

cessive ap-proximations can be realized in all cases. 

The application of these modified perturbation methods to non-

. linear problems is so complex analytically as to be unwieldy for the 

purposes of this thesis. Therefore, after a development of an approxi

mate calculational procedure with the help of conventional perturbation 

methods, it will be necessary W4 , Bl to check the validity of the results 

thus obtained by·.comparing them with those given by more accurate 

methods. 
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In the present thesis, a perturbation method of soluti.on of the 

irradiation-dependent one-group diffusion equation is developed. The 

solution (eigenfunction) of the first-order perturbation theory describes 

the flux changes throughout the irradiation .. -:r;he, .s~c:on_d-order pertur

bation yields then a corresponding correction.,~(),the _reactivity.:lifetime. 

The successive .terms of the perturbation series can be obtained accord

ing to the general scheme developed in Sec. II.2. The main character

istics of the method as applied to the study of the flux changes and of the 

corresponding correction of the reactivity life-time are .outlined below. 

3.1. Flux Changes 

The flux can .always be written as the product of a normalized -flux-shape u(x, t) by a magnitude f(t), where 

- -<j>(x, t) = f(t) u(x, t) . (33) 

The magnitude factor varies according to the time-dependent -power program of the reactor and is chosen so that u(x, t) satisfies 

some given normalization condition. 

In the present study, it is assumed that the nuclide concentrations 

are functions of the local flux time only; at a given time·, \1 <I> in Eq. (24) 

is a function only of the irradiation T to which the fuel has been pre

viously exposed and is independent of the magnitude of the flux at this 

given time. The magnitude of the flux q,(;i, t) l the solution of Eq. (24)} 

is not determined by this equation. 

The operation "<1> on <1> can thenbe replaced by a corresponding 

operation . V' u on u, with a suitable definition of the irradiation parameter 

T. Then Eq. (24) reads 

(34) 

Since we seek the departure of the flux-shape u from its un

perturbed value u
0

g the flux-shape change 

(35) 

is conveniently cho'sen to be orthogonal to the unperturbed flux shape u
0

. 
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This is equivalent to a normalization of the flux-shape 

< u, uo > = constant = (uo ~ uo) 

* The first approximation to the flux-shape change u
1

· is then 

defined as the· solution of Eq; (25) 

which satisfies the normalization condition 

(36) 

(3 7) 

(38) 

The left side of Eq .. (37) is a linear differential operator with con-

* stant coefficients acting on the unknown function u
1 

and the right side 

is a known function. The criticality condition, Eq. (26}, ensures that 

Eq. (37) has a solution and then,. the solution satisfying the normalization 

condition, Eq. (38), is unique. 

Although Eq. (37) is rather simple, its solution will not usually 

be expressible in a closed analytical form, but, in general, it could be 

easily expanded in ati infinite series of the eigenfunctions of the operator 

in the left side of Eq. (37). This operator is self-adjoint, positive-def

inite, and the equation 

(39) 

defines a complete set of orthogonal eigenfunctions vk corresponding to 

positive eigenvalues B~ - B~ These are well known in the usual ge-

ometries of cylinder, sphere, and parallelopiped, where one obtains 

Bessel functions or trigonometric functions. 

* Replacing u
1 

by its expansion 

* " -u 1 = b ak(T) vk(x), where k =F 0, 
k 

(40) 

and taking the scalar product of the both sides of Eq. (37} with an eigen-

function vk yields 

(41} 
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When the excess neutron production is represented by Eq. (29), 

we will show that the coefficients ak(T) are determined by 

D(B; - B~) ak(T) = d 1 £2 , k T + L dj E 2 , k(a j T) (42) 

j 

The coefficients £2 , k and the functions E 2 , k(w) will be tabu

latedfor various fuel scheduling schemes and reactors of different 

shapes. The hand computation of the flux changes is similar to that of 

the reactivity changes, Eq .. (30), and requires little additional effort, 

since only th~ first few coefficients ak are significant in most cases 

(least- squares approximation). 

The smaller the coefficient ak (T), the smaller the flux-changes. 

Thus, in Eq, (41), the magnitude of the change in the excess-neutron 

production Y'uo shall be compared to the term D(B; - B~) For bare 

reactors ... D(B~ - B~) is proportional to the initial leakage DB~; for 

reflected reactors, it can still be compared to the leakage from a bare 

reactor of the same dimension as the core. To illustrate the later state

ment, compare the following results for two reactor cores shaped as 

infinite slabs of thickness 2Z(see Sec. II.3.3): 

1 2 2 3 Tr 2 
(a) Bare: Bk = (k + 2) n/Z, D(B

1 
- B

0
) = 4 D (

2
) 

2 2 Tr 
2 

(b) Perfectly reflected: Bk = k njZ, D(B
1 

- B
0

) = D( 2 ) 

3.2. Reactivity Changes 

Consider the equation for the flux shape, Eq. (34), and the cor

responding unperturbed equation 
2 

.6.u0 + B 0u
0 

= o . (43) 

The scalar product of the left side of Eq. (34) with the solution 

u 0 of Eq. (43) vanishes because the Laplacian operator .6. is self-ad

joint. Thus the condition 

(44) 
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must be satisfied by any function u solution of Eq. (34). For a given 

u, the value of I:E is defined by Eq. (44) and this value is unique, since 

u
0 

is unique except for a multiplicative constant which does not modify 

Eq. (44). This property has been used z 1 in order to justify Eq. (26): 

assuming that the flux shape is very close to the initial flux shape, one 

replaces u by u
0 

in Eq. (44). 

When the initial flux shape u 
* 0 

is added to the flux- shape change ,, 
u 1 , Eq. (44) defines a corresponding approximation 

i 
I:E for the control 

absorber; Then :EE is determined by 

(<v *- :tE') (u
0 

+ u,.
1
''), u

0
) :0. 

uO + ul 
(45) 

3. 3. Normalization Condition 

The first approximation of the flux-shape changes has been defined 
. * in the preceeding section as the particular~ solution u

1 
of the first-order 

perturbation equation, Eq. (37). 

However, if a
0 

is an arbitrary constant, Eq. (37) has a general 

solution 

{46) 

where u
0 

is the solution of the homogeneous equation, Eq. (43). 

The function u
1 

is then defined uniquely only if an additional 

condition (normalization condition) uniquely determines the coefficient 

. a 0 . Equation (38) is such a normalization condition, which is widely 

used in quantum mechanics;56 it has been applied to fuel~cycle computations 

b Hi Hl y nman. 

When others were in need of a normalization condition, they made 

h · h . . G2 t e as sum phon t at the thermal power of the reactor is constant 1n tlme. 

With the present notations, this is 

(I;£' <i> ) = constant. 

The above equation is an additional condition on the flux equivalent 

to a normalization condition on the flux shape. 

For generality 1 s sake, Chambre C
2 

has considered subsequently 

that the thermal power is an arbitrary function of the time, defined by a 

given power program. 
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However, such a specification of the power program is not nec

essary for our present purposes. If the local nuclide concentrations are 

functions only of the flux time to which the fuel has been irradiated and 

are independent of the magnitude of the actual flux, then the. burnup of 

the fuel is a function only of the t0tal power which has been produced by 

a fuel element; this burnup is independent of the program according to 

which this power has been produced. 

Thus, the normalization condition is arbitrary, but the values 

of the control absorber and the flux shape are always related by Eq. (44). 

In the present thesis, the use of conveniently chosen normalization 

conditions (to be specified in Sec. II. 2. 2.) has greatly simplified the com

putations. 

4. Summary of Studies to be Made 

4.1. Batch Irradiation of Unmixed Fuel 

The perturbation theory is applied first to the study of the batch 

irradiation of unmixed fuel. · The spatial distribution of the neutron is 

described by the solution of the one-group diffusion equation. The 

changes of the properties of a local section of the fuel, given by the zero

dimensional model, are assumed to be a known function of the irradi= 

ation. 

The perturbation theory replaces the reactor equation by, an infi= 

nite set of simpler (linear) partial differential equations; the solution 

to each of these linear equations is obtained by using eigenfunction tech

niques and is properly normalized. 

The method is then applied specifically to the flux and reactivity 

changes in a reactor where the control absorber and the initial fuel are 

uniformly loaded. A calculation procedure is developed, which yields 

an.approximation of the flux changes and of the corresponding correction 

to the burnup of the fueL 

Calculations are made amenable to hand computations by tabu

lating sets of auxiliary functions. 
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A parametric study of the fuel-cycle characteristics in bare 

reactors loaded with highly enriched uranium is then performed accord"' 

ing to this computation procedure. The results are compared with those 

. obtained by solving the one-group diffusion equation by the finite-differ

ences method using high-speed digital computers. 

4. 2. Continuous F~eling 

The perturbation theory is also applied to the study of various 

fuel scheduling schemes which are described by an ordinary differential 

equation (one-dimensional.). The solution of the corresponding linear 

equations defined by perturbation theory can now be obtained by using 

(besides the eigenfunction expansion technique) the Fourier series or 

Green• s function techniques. 

The following fuel scheduling schemes are considered: 

(a) Radial mixing of the fuel, with uniformly distributed control or 

_yvith control absorber localized in the midplane ofthe reactor. 

(b) Graded iraddiation of the fuel. 

(c) _Steady axial movements of the fuel. 

The equations describing all these fuel scheduling schemes (except the 

first) can be put in the form of a differential equation which does not 

explicitly contain the variable. They can be solved by two quadratures, 

and have a solution in terms of known functions (elliptic functions) if the 

nuclide concentrations vary as a quadratic function of the flux time to

which a local section of fuel has been irradiated. 

Thus exact solutions of the one=group diffusion equation are ob

tained. They give a basis for a comparison of the various fuel scheduling 

schemes as well as a basis for a test of the accuracy of the calculation 

procedure developed by perturbation methods. 
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II. BATCH IRRADIATION 

1. . Description and Equations 

The fuel is initially loaded in the reactor, and the control ab

sorber is adjusted to make the reactor just critical. In general, the 

initial fuel and the control absorber are not uniformly distributed over 

the volume of the reactor, 

The fuel remains unmixed during its irradiation in. the reactor 

and, at a time t after startup, it has been irradiated to a flux-time 

e defined by 
t 

G(x, t) = i $ (x, t) dt, (1) 

Given the physical properties of an homogenized cell containing 

the fuel, the moderator, the coolant, and the structural materials, we 

find that the excess neutron production, 'V <I>' varies with. the irradiation 

as a known function 'V {e) of the flux time e. If the initial composition 

of the reactor is nonuniform, the excess neutron production is further

more an explicit function of the position 'V (x, e). 
The thermal flux <j>, a function of the position x and of the time 

t, is given at every instant by the solution of the one-group diffusion 

equation 

{2) 

The boundary conditionfor the thermal flux is 

61.~+<1>=0. {3) 

In the above equation, :: is the normal derivative of the flux 

and o1 is.the linear extrapolation distance. We evaluate <1> and :: 

at the physical boundary of the reactor core, 

The Laplacian operator l:l., acting on the linear manifold of the 

functions which satisfy such a linear homogeneous boundary condition, 

is self-adjoint with respect to the scalar product 

(£,g)= t lf(x)g(x)dV. (4) 
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The macroscopic cross section of the control absorber required 

to keep the reactor just critical is ~E. It varies with time, and is also 

a function of the position, ~E(x, t), in case of nonuniform distribution 

of the controi absorber. 

Let Vo be the solution of the equation 

2 
Av0 +B0 v

0
==o (5) 

The scalar product of the left side of Eq. (2) by v
0 

vanishes, since 

the Laplacian operator is self-adjoint. A condition for Eq. ·(2) to have 

a solution is then 

<v(9) ~ z;E <j>, v ~ " 0 . (6) 

Given.the function cp, the above equation determines the magnitude 

of the control .absorber required to keep the reactor just critical; the 

spatial distribution of the control absorber, however, must be specified 

by a given control manag~ment; procedure. 

If we kno:w the flux time 9(x, t) to which the fuel ha.s been irradiated, 

. at any given time, then Eq. (2) as well as the boundary condition, Eq. (3), 

is. linear and homogeneous with respect to the flux q,; any multiple of the 

flux is still a solution, L e. , . the magnitude of the flux is arbitrary. It will 

be convenient to select a normalized solution u(x, t). 

The normalization condition will be represented by the symbol 

(7) 

The flux time can still be represented by a simple integral of 

the flux shape u with a suitable definition of the variable which defines 

the ir.radiation. 

The flux can be written . · 

cp(x, t) = f(t) u(x, t) . (8) 

If f(t) is chosen at every instant so that u(x, t) .satisfies the normaliza

tion condition, the flux time is 

t 

9(x, t) ; 1 f(t) u(x, t) dt . (9) 



Now,, instead of characterizing the irradiation by the time . t 

after startup, a new variable T is .defined by 
t 

T=fof(t)dt, 

Thus, Eq. (9) becomes 

T 

B (x., T) = 1 u(x., T) dT. 

(l 0) 

(11) . 

For instance, if one wishes to normalize the flux shape to unity 

at the center of the reactor one uses 

N(u) =u(O,t) -1 = 0; (12) 

then Eq. (8) shows that f(t) is the magnitude of the flux at. the center of 

the reactor, since one can always write 

<j>(x, t) = <j>(O, t) u(x, t) . 

Therefore, the irradiation is characterized by the central flux time 

t 

T = 1 <j>(O, t) dt 

instead of the time t. 

(13) 

(14) 

In fact, the time t is just a ''dummy variable 11 since, for the 

present purposes,. the extent of the irradiation in the reactor would be 

best defined by the amount of control absorber which is still required to 

make the reactor critical. The end-of-life condition is that the reactor 

be just critical when all the control absorber has been removed: that is, 

we have 

(15) 

or, according to Eq. ,(6), 

(16) 

The final burnup of the fuel, and the end-of-life properties must · 

be evaluated for the value T f of the v.ariable T for which Eq. (15) is 

satisfied. 
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For poorly reflected reactors (see the discussion at the end of 

Sec. I. 3. 3. ), the problem can be stated in dimensionless form by di-
2 

viding both sides of Eq. (2) by DB
0

; we have 

1 6-<j> + 
7 

0 
[

1 + 'V (e) ; ~E J <I> = 0 . 

DB 
0 

(17) 

In the perturbation method, as presented in the following section, 

we consider that the term ['V (()) - I;E J / DB~ is a perturbation term 

which is _small compared to 1. 

We define the following dimensionless quantities 

(18) 

and 

(19) 

The above quantities will still be referred to a:s the neutron-excess 

production and the control absorption, respectively. 

The problem is to find the function u(x, T) and the magnitude of 

the function c(x, T) that satisfy 

-l ~~ du(x, T) + u(x, T)J = fg U u(x, T) d~- c(x, T>} ;,(x, T), 

(20) 

where u is the function of position x and of irradiation T normalized 

by a condition, Eq. (7), and ·where·· u satisfies a linear homogeneous 

boundary condition. 
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2. Perturbation Theory 

2.1. Perturbation Method 

The purpose of the( perturbation method is to replace the equation 

of the problem, Eq. (20), by a set of simpler equations which determine 

the successive approximations to the function u and to the control c; 

these are expanded in a power series of a perturbation parameter e: 

c = c(x, T) 
2 

= c
0 

(x, T) + E c 
1 

(x, T) + e c 2 (x, T) + 

2 
u:: u(x, T) = uo(x, T) + EUl (x, T) + E u2(x, T) + 

=[ 
s=O 

s 
C E 

s 

The perturbation parameter is chosen in such a way-that the 

equation 

-(:~ 6u + u) ~ <[g(9)- c] u 

(21) 

(23) 

reproduces the given equation, Eq. {20), when e = l, and reduces, when 

E = 0, to the simple equation 

(24) 

The above "unperturbed equation 11 has a known nontrivial solution u
0 

(x), 

and the first approximation of the flux time is 

(25) 

The introduction of the perturbation parameter e is simply a 

device to trace the order of magnitude of the various terms. In Eqs. (21) 

and (22), it is assumed that the solution of Eq. {23) can be expanded in 

power series of e. The smaller e becomes, that is,~he smaller the 

magnitude of [ g(8) - c], the faster the convergence of the perturbation 

series, 
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We find that c can be a function of the position x, as well as of 

the irradiation T, and the function g($) can depend explicitly upon x; 

this is the general case, where the control absorption, the initial fuel 

loading, and/ or the diffusion coefficient D are functions of position; 

the initial flux itself is then expressed by means of~ perturbati'on series. 

However, the perturbation method is best suited to study the 

changes occurring in a reactor whose initial composition is uniform, 

since the initial flux is then the solution of the unperturbed equation, 

Eq. (24), and this ensures a fast convergence of the perturbation series, 

at least for small irradiations. 

Corresponding to the expansion for the flux, Eq. {22), the power

series expansion for the flux time is 

(26) 

where, according to the Eqs. (11) and (22), 

e = 8 (x, T) = 
:P :P 

(27) 

The expansion in power series of g($) is obtained by expanding 

g(B) in a Taylor series in the neighborhood of e
0

; thus, we have 

g(8) = g(BO) +(>~ 9p•P) g u (80) + + ~~(> 19p•P)n g(n)($0) + ... 
p=l p= 

{28) 

Replacing the various quantities in Eq. (23) by their expansions 

r in powers of e, one equates to zero the coefficients of the successive 
I 

powers of e, thus obtaining the following equations: 
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(29) 

(30) 

(31) 

etc. 

Defining the self-adjoint linear operator L by 

Lu" -(B~ Au.+ u} (33} 

the equation for the general term un of the perturbation series has the 

form 

The above equation is a nonhomogeneous linear differential 

equat~on for un; it has a solution· satisfying the boundary condition if 

and only if its right side F is orthogonal to the nontrivial solution of 
n 

the self-adjoint homogeneous equation 

Then, one chooses 

Lu
0 

= o . 

c 1. to satisfy the condition 
n-

(35) 

(36) 
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The procedure for solving the system of equations, Eqs. (29) through 

(32), is as follows: 

Having determined u and (} up to p == n-1, and c up to 
p p s 

s = n-2, then c 
1 

is determined uniquely by Eq. (36). The right side 
n-

o£ Eq. (34) is now a known function of x and T, and since Eq. (36) is 

satisfied, Eq. (34) has a solution that can be obtained by standard tech

niques for the Helmholtz equations. However, the solution u is not 
* n 

unique; if u is a particular solution of Eq. (34), any function u de-n n 
fined by 

* u = u + ao uo n n ,n 
(3 7) 

is still a solution for any arbitrary value of the coefficient ao, n' since 

u
0 

satisfies the homogeneous equation, Eq. (35). 

* In the following, the particular solution noted un is defined as 

the unique solution of Eq. (34) which is orthogonal to u
0

. Thus, by 

definition we have 

(38) 

>:< 
One notes that un is the particular solution which has the mini-

mum norm in a Hilbert space where the norm of a function is defined by 

I~ u II== )(u.u). (39) 

The solution u of Eq. (34) is determined uniquely if and only 
n 

if an additional equation allows a unique determination of the coefficient 

a 0 , n; tP.is is the purpose of the normalization condition. 

If one is given a normalization condition for the function u, 

Eq_. (7), the perturbation method then replaces u by its expansion, 

Eq. (22), and requires that the normalization condition be satisfied for 

every order of E. This yields a normalization condition for every func

tion u . 
n 

For ·instance, if one were to choose the normalization given by 

Eq. (12) and replace u by its expansion, then if one requires that the 

coefficient of every power of e vanish, Eq. (12) yields 
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uo (0) - 1 = 0 ' 

u (0, T) = 0, where n;::::. 1 , 
n 

and, in the present notation$; the unique solqtion un would be 

>:C >'.< 
u (x, T) = u (x, T) - u (0, T) u

0
(x) 

n n n 

2. 2. Normalization Cqndition 

(40) 

(41) 

(42) 

The perturbation method ensures that, for an arbitrarily chosen 

normalization condition on the function u, the magnitude of the corrections 

u and c are of the order En. However, an appropriate choice of 
n n 

the normalization condition can improve the accuracy of an approxi-

mation which uses only a few terms of the perturbation series. t 
The following investigates the effect of the normalization con

dition, that is, the dependence of the successive approximations of u 

and c upon the coefficients a
0 

. ,n 
An asterisk will denote that a function is orthogonal to u 0 ; a 

particular solution u with n asterisks denotes the nth-order correc-
n -

tion to the flux shape determined uniquely by the normalization condition 

(u0 ,u)=O; i.e., ao,j=O,j::::l,2,··",n. 

As long as a normaiizatibn condition has not been fixed, a O,n 
is an arb:i:trary function of T. Its ~ntegral is noted A

0 
, i. e. , ,n 

T 

A 0 (T) =lao (T)dT ,n ,n 
0 

(43) 

The first approximation to the flux shape and to the flux time are 

u 0 :: u
0 

(x) and 8 O ::::: u
0 

T, respectively. 

2. 2. 1. First-order perturbation. The fbllowing equation 

(44) 

* has a unique solution u
1 

if and only if c
0 

satisfies 

(F 1 (u0 , e
0

, c
0

), u 0) = 0. (45) 

--~------------------~----
The effect is similar to considering 1/(l+e) instead of 1-e. 
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The general solution of the first-order perturbation equation, 

Eq. (30), is then 

(46) 

The corresponding correction to the flux time is given, accord

ing to Eqs. (27) and (43), by 

(4 7) 

2. 2. 2. Second-order perturbation. Given c
0

, u
1 

and e 
1

, the follow

ing equation 

or, more explicitly, 

Lu; = [g(u
0
T)- c

0
] u

1 
+ [8

1
gu (u

0
T)- c

1
] u

0
, (48) 

has a unique solution u; if and only if c 
1 

satisfies 

( F 
2 

(u
0

, e 
0

, c 
0

, u 
1

, e 
1

, c 
1

), u
0 

) = o (49) 

Replacing, on the right side of Eq. (48), the functions u 1 and 
>!< * e

1 
by 

cular 

u
1 

and e
1

, there results the following equation whose parti-
>l<>:< 

solution orthogonal to u
0 

is denoted by u 2 

.... 
where c 

1 
satisfies 

>:< >';: 
Then a function u 

2 
exists, and it is unique and independent of a

0
, 1 

(and of A
0

, 
1

). 

(50) 

(51) 

The general solution u 2 of the second-order perturbation 

equation, Eq. (31), and the control absorption c can now be obtained 

** * 1 from u 2 and c 
1 

. Equation (52) is obtained below by substracting 

Eq. (50) from Eq. {48) and by using Eqs. (44) through (4 7): 
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* ** * a * * L(u2 - u 2 )::: a 0 , l Lu1 + AO, l 1jT [ Lu 1 + c 0u 0 ] - (c-c 1) u 0 , 

and finally 

L f;- u ~·- aaT l"'of~l} = - [ cl - <- Aa, I aac~ l uo . (52) 

Equation (52) has a solution if its right side is orthogonal to 

u
0

; that is, if c
1 

satisfies the condition 

(cl,uo,uo) =(c~,uo,uo)- Ao, 1( :~ uo,uo)· 

* ac 0 
When the expression (c 1 - c 1 - AO, l oT) is independent of 

(53) 

the spatial variable x, (for instance, when the control absorber is 

uniformly distributed), the condition that the right side of Eq. (52) be 

orthogonal to u
0 

requires that it vanish; then Eq. (53) becomes simply, 

* dc 0 
c 1 = c 1 + Ao. 1 crT (54) 

and the second-order perturbations of the flux shape and of the flux time 

are now given by Eq .. (52) as 

and 

2.2,3. Third-order perturbation. Given CO,ul, el, cl,u2' and $2, 

the following equation 

* Lu3 = F3(uo, eo, co, ul' el' cl' u2, $2' c2), 

or, more explicitly, 

(55) 

(57) 
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(58) 

Replacing, on the right side of Eq. {57), the functions u
1

, 8 1 , 

* * * ** ** c 1 ,u2 , and 8 2 by u
1

, 8
1

, c
1

, u
2

, and 8
2 

, one defines a function 

u;**, orthogonal to u
0

, as the solution of the equation 

*** * * * ** ** >:<>.'< Lu 3 = F 3 (u
0

,8
0
,c

0
,u

1
,8l'c

1
,u 2 ,8 2 ,c 2 ), {59) 

(60) 

*** Then a function u 
3 

exists, and it is unique and independent of 

a 0 , l and a 0 , 2 (and of AO, 1 and AO, 2 ) . 

. The general solution u 3 of the third-order perturbation equation, 
>:<>:<>:< 

Eq. {32), and the control absorption c 2 , can now be obtained from u 3 >:<>:< 
and c 2 .. Equation (61) is obtained below by subtracting Eq. (59) from 

Eq. (57) and by using Eqs. (54) through {56), as well as the equations 

which yielded Eq. (52). One has assumed the control absorber to be 

uniformly distributed. We have obtained 

2 * 
~ * •:<>:<>:< 8 >:<•:< AO, 1 au1 •:< } 

L Lu 3 - u 3 - a T l Ao , 1 u 2 + ---z- ""lf"'' + Ao , 2 u 1 ] 

* 2 2 {61) 

{
, ** a c 1 A0 1 a c 0 a c 0 } 

= - c 2 + c z + Ao, 1 8'1' + --t-~ + Ao, 2 aT uo 

By assuming the control absorber to be uniformly distributed, 

Eq. (61} has a solution if the right side is orthogonal to u
0

, L e., if it 

vanishe~; this yields 

{62) 

and the third-order perturbation of the flux shape and of the flux time are 

given by 



and 

In general, if ao ,n 
obtain equations for u ' e 

n n 
is of the order en. 

2 
AO,l 
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---z:-.. ' 
(64) 

n 
(and then A

0 
) is of the order e , one will ,n 

and en' such that each term of the equation 

In the above equations,, Eqs. (43) through (64), the symbol T 

represents a "dummy variable, n which would be defined uniquely, 

according to Eqs. (8) and (10), by choosing a normalization condition. 

In each of the two following paragraphs, the variable T is defined 

according to normalization conditions which are of interest for solving 

Eq. (20) by the perturbation method. 

2.2.4. Eigenfunction normalization. Given the first approximation to the 

flux-shape, uo' and the corresponding approximation to the flux-time, 

e
0 

= u
0 

T, one defines the variable T by the condition that u
0 

T is .the 

best approximation to the actual flux-time e. Defining the norm of a 

function according to Eq. (39), the best approximation can be defined 

by the condition that the norm of the corre~tion term (e - u
0 

T) be a mini

mum .. This requires that (e - u
0 

T) be orthogonal to u
0

, i.e. , that 

. The flux time e will then be 

and Eq. (65) becomes 

* e = Tu0 + e , 

(65) 

(66) 

{67) 

The variable T is the scalar quantity defined uniquely as a 

function of the irradiation (i. e. , of the flux time to which the fuel has 

been irradiated) by 
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(68} 

Replacing 8 by its expansion in the perturbation series given in 

Eq. (26), Eq. (65) yields 

(Bn,uo) 
AO,n = (uo,uo) = 0' n ;::.1. 

The successive terms of the perturbation series are then the 
* * * ** . ** ** *** functions whichhavebeennoted u
1
,e

1
,c

1
,u 2 ,8 2 ,c 2 ,u 3 

, etc. 

(69) 

2.2.5, Eigenvalue normalization. Given the first approximation to the 

control absorber, c
0

, one defines the variable T by the condition that 

c
0 

is the best approximation to the actual value of the control absorption 

c. Usually, it is even possible to define T so that c
0 

is the exact value 

of the control absorption. This means that one seeks the solution of the 

. reactor equation, Eq. (20), when the fuel has been irradiated to such an 

extent that the reactor is just critical with a given amount, c, of control 

absorber. Therefore, for a specified value of c, the auxiliary variable 

T is defined by 

c = c
0

(T}, 

where the function c
0

(T) is given by Eq. (45). 

Replacing c by its expansion, Eq. (21), Eq. (70) yields 

c = 0, where n ;::. l. 
n 

(70) 

(71) 

This determines, in general, a unique value for each of the co

efficients A
0 

. For instance, Eqs. (54) and (62) yield ,n 

>): I dc0 (7 2) 
Ao, 1 - - c 

l dT 
and * 2 dzco] 

Ao 2 G;• + Ao. I 
de 1 AO, 1 15_ ~ = dT +-2- ~ dT .. 

(73) 



-35-

However, the normalization con,dition, Eq. (71), cannot be used 

when the variable T takes a.value Tm for which the function c
0

(T) is 

stationary, L e. , when 

{74) 

One 
1

must then a~d to the first approximation, c 0 (Tm).' at least a 

first corrective term c 
1 

(T m). 

The next correction to the control absorption, c 2 (T m), is given 

by Eq. {62). If the discriminant of the quadratic equation for A
0

, 
1

, 

z d c. . 
. 0 0 --::-=y = • 

dT 
(7 5) 

is positive (case 1), there exist two real values of A
0

, 
1 

that satisfy the 

equation 

(76) 

If the discriminant is negative (case 2), it is impossible to satisfy 

the above equation, Eq. {76), but it is possible to minimize the absolute 

value of c 2 by choosing the follo;/ing v~lue for A 0 , 1 
dc

1 
d c

0 
A 0 1 = -· ~ -=-r. (77) 

• dT 

The physical meaning of the above results can be understood as 

follows: One assumes that the control absorption varies with the irradi

ation parameter as a function c{T) which has a maximum c , The cor-
m 

responding function c
0

(T), which has a maximum c
0

(Tm)' has been plotted 

in Fig. II- L If c
0 

{T m) > em, the reactor containing an amount of con

trol absorber corresponding to c
0

{Tm) could not be made critical at any 

* irradiation, When one adds the correc1tion. term c 
1 

(T ) to c
0

(T }, m m·· 
there exist either (a) two values of the irradiation T, each of which cor-

responds to a just critical reactor containing an amount of control ab-

* sorber c 0 (T m) + c 1 (T m), (case 1), or (b) no value of T for which 

criticality can be achieved (case 2). 
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c (T) 

MU-29363 

Fig. Il-l. Variation of the control absorber with irradiation. 
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2. 3, Eigenfunction Expansion 

The solution of the nonhomogeneous linear differential equation, 

Eq. (34), can be obtained by using the eigenfunction expansion technique. 

This technique is developed below and the expansion of the solution of the 

first-order perturbation to the flux shape is obtained. 

The first-order perturbation equation is given by Eqs. {25) and 

(30). It reads 

{78) 

This equationhas a solution u
1 

if, and only if, the right side is 

orthogonal to the solution u
0 

of the corresponding horp.ogeneous equation, 

Eq. {24). Accordingto Eq. {45), the magnitude of the first approxima

tion to the control term c
0 

is then determined by 

{79) 

or by 

{80) 

This ensures that Eq. {78) has a solution; however, it is only 

possible to obtain this solution in a closed analytical form for one-di

mensional problems with very simple expressions for the function g{ e). 
In general, the solution u

1 
can always be expanded in an infinite 

series of the eigenfunctions of the eigenvalue equation 

2 
6.v + B v = 0 , { 81) 

since this equation possesses a complete set of eigenfunctions satisfying 

the linear homogeneous boundary condition, Eq. (3). These eigenfunctions 

are the functions vk which satisfy 

2 
6.vk + Bk vk = 0 {82) 

Because the Laplacian operator 6. is self-adjoint {Green 1 s 

theorem), these eigenfunctions are orthogonal, i.e. , 
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The eigenvalues B~ are all positives; u
0

, the nonnegative so

lution of the unperturbed equation, Eq. (24), is a multiple of the eigen

function v 
0 

"Corresponding to the smallest eigenvalue B~ . 

For plane, cylindrical, and spherical geometries, the functions 

vk are trigonometric functions, Bessel functions, or products of these 

functions, They are then normalized to unity at the center of the volume, 

by the condition 

(84) 

The solution u
1 

of Eq, (78) is then sought as an expansion of 

the form 
QIC 

u 1 (x, T) =) ak, 1 (T) vk(x) , 

k=O 

(85) 

The property of orthogonality of the eigenfunctions vk yields a 

simple technique for evaluating the coefficients ak, 
1

. 

In Eq. (78), one replaces u
1 

by its expansion, Eq. (85); making 

use of Eq. (82), one obtains 

{86) 

The coefficient ak, 
1 

is then obtained by taking the scalar product 

of both sides of Eq. (86) by the eigenfunction vk; because of the ortho

gonality of the functions vk' Eq. (83), one is left with 

(87) 

The criticality condition, which determines c
0 

by Eq. (80), en

sures that Eq, (87) is satisfied for k = 0 . 

The coefficient a
0

, 
1 

is left undetermined, and the coefficients 

ak, 1 , where k =(=. 0, are the functions of the irradiation parameter T 



defined by Eq. (87) as 

ak, 1 (T) 
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( [ g(uo T) - co] UO' vk 

vk,vk ) 
(88) 

. * The particular solution u
1

, which is orthogonal to the unperturbed 

flux shape u
0

,. is then determined uniquely by the expansion 

* u
1 

(x, T) ~ =L 
k=l 

(89) 

The general solution u
1

, of the first-order perturbation equation, 

Eq. (78), is given by Eq. (46) where the coefficient a
0

, 
1 

must be de

fined by a normalization condition. For· instance, if one were to require 

that the flux shape be normalized to unity at the center of the reactor, 

i.e. , that according to Eq. (41) the function u be normalized to zero 

at the center, then the corresponding first-order perturbation of the flux 

shape would have the expansion 

(90) 

where the functions vk satisfy the condition expressed by Eq. (84). 

If we are given the analytic expression of the function g(8), and 
2 

once we know the eigenfqnctions vk and the eigenvalues Bk' then each 

coefficient ak, 1 (where 1< ::/= 0 ) can be evaluated as a function of the 

irradiation T if we perform the integrations indicated by the scalar 

products in Eq. (88). The numerical computations are developed in the 

following sections. One will note the important si:mpli"fic.ations resulting 

from the fact that the first-order perturbation of the flux shape, u 1 , is 

a linear function of g(8}. 

The first=order perturbation of the flux time is obtained by inte

gration of the first-order perturbation of the flux shape according to 

Eq. (27). Thus, the expansion of 8 l in the eigenfunctions vk is given by 
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Gil 

~ 
::: ) ~. 1 (T) vk(x}, 

~=d 
(91} 

with T 

'\o, I (T) " l ak, I (T) dt (92} 

The second-order perturbation equation, Eq" (48), has a solution 

* * if c 
1 

satisfies Eq. (49). Given u
1 

and 8
1 

by their eigenfunction ex-

pansions, c
1 

is determined according to Eq. (53}, where (c~u0 , u
0

) 

is obtained as follows: Eqs. (48) and (51) yield. 

Using Eq. (27), the above equation can be rewritten as 

Finally, using the eigenfunction expansions, Eqs. (89) and (91), one 

obtains 

cu 

(93) 

(94} 

(<u0 ,u0 )" ~ {:T l'\o, 1 (T) (vkg(u0 T),u0)J-ak, 1 (T) 

( c 0 vk' ua)}. (95) 

The second-order perturbation equation, Eq. (48), can now be 

solved by the eigenfunction expansion technique used to solve the first

order. perturbation equation. More generally, the nth-order correction 
* -to the flux shape, un' solution of the general Eq. (34), can be expanded 

in an infinite series of the eigenfunctions vk given by 

(96) 
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where the coefficients ak are definea by 
,n 

(97) 

The normalization condition given by Eqs. (70) and (71) will be 

used in the computations which are developed in the following sections. 

This best fits the problem of finding the properties of the reactor at the 

end of reactivity lifetime (end of life) since the final value T f of the ir

radiation parameter is then the root of 

(98) 

It has been shown in the preceding section that Eq. (71) is a valid 

normalization condition, except when the parameter T takes a value T 
m 

which satisfies Eq. (74). At T = T , the removal of control poison m . 
needed to continue the irradiation of the fuel in a critical reactor is 

stationary to a first approximation. lt is then very unlikely that 

T f = T m' since one would miss an extremely favorable opportunity to 

increase the life time of the reactor. 

3. Application: Uniform Fuel Loading, Uniform Control 

3.1, Calculation Procedure 

The following study is limited to the approximation afforded by 

a second-order perturbation method. 

The control absorber needed to keep the reactor just critical will 

be assumed uniformly distributed over the volume of the reactor through

out the irradiation. Since c is now a function of the irradiation variable 

T only, c can be taken out of the brackets that represent the scalar 

products in the preceding equations; when the brackets enclose only two 

different eigenfunctions, the result vanishes according to Eq. (83), Also, 

u
0 

will be replaced everywhere by v
0

, since u
0 

and v 
0 

are the solutions 

of the same equation, Eq. (5) or (2 9), and can be taken to be equal. 
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To simplify the notation, we have written: ak and ~ instead 

of ak, 1 and ~. 1 , since these are the only coefficients which are con

side red hereafter. 

Under these assumptions, one obtains the following resultso 

Equation (80) becomes 

and Eqo (88) becomes 

, where k:# Oo 

Besides using ~(T), defined by Eqo (92), one will also use the di

mensionless coefficient a.k(T) defined by 

T 

ak(T) ~ ~(T)/T - ~ 1 ak(T)dt 

Equation (95) becomes 

lllll> 

* \ d 
cl (T) = ~dT 

k=l 

(100) 

(1 01) 

(102) 

(1 03) 

The normalization condition, Eqo (72), then determines A
0

{T) 

uniquely; we have 

and 

a.
0 

(T) = A
0 

(T)/T 

dA
0

(T) 

dT 

(1 04) 

(105) 

One of the most important characteristics of the fuel irradiated 

in a reactor is its burnupo For the present purposes, we are given the 

variation of the local burnup of the fuel with the irradiation; Leo , we are 

given a function f3(8) which will be referred to as the local burnupo Its 
i 

derivative is noted f3 {B)o 
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The perturbation method expands the function {3(8) in an infinite 

series as it has been done for the function g(8), Eq. (28). 

To the present approximation, the variation of the burnup with 

position and ir.radiation is given by 

(106) 

The central burnup is {3(0, T), _obtained by evaluating the right 

side of the above equation for x == 0 . 

The average burnup will be noted ( {3) , since it is the scalar 

product of the function {3 by the function unity, according to the definition 

of the scalar product in Appendix A. 

The first approximation of the average burnup ( {3 )
0 

is given by 

{107) 

The correction term corresponding to the correction 8
1 

of the 

flux time is defined according to Eq. (106) by 

(108) 

The calculation proceeds as follows: 

To a reactor of given geometry, there corresponds a given set 

of eigenfunctions vk' of eigenvalues B~, and of coefficients hk defined 

by h -- (vk' vk 

k VO' vo) . (109) 

For a given fuel irradiated in such a reactor, i.e., for given 

functions g(8) and {3(8), one first computes the following dimensionless 

functions of the irradiation parameter T: 

( 110) 

(111) 
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( 112) 

and 

(113) 

where, as a first approximation, v 
0 

T has been set equal to 8. Then, 

the first approximation of the flux shape is u
0

(x) = v
0

(x), and Eqs. (100) 

and (110) give the first approximation of the control absorption as 

The first approximation of the flux shape change is 

and Eqs. (101) and (110) yield 

The corresponding correction of the control absorption is given by 

Eqs. (103), (109) and (110) as 

(114) 

(115) 

(116) 

(117) 

At end of life, the irradiation parameter is the root of the equation 

(118) 

The first approximation of the flu.x time is e
0

(x, T) = v
0

(x)T and 

the corrective term is 

( 119) 
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Equations (72} and (104) yield 

a0 (T) ~ - c~(T) ;< 
and Eqs. (91), (102), and (111) yield 

B2 

(120) 

0 
a.k(T) = 2 2 · Sk(T), where k i= 0 • (121) 

Bk-BO 

The first approximation of the average burnup is ( 13) 
0 

= ( l3(v 
0 
T)), and 

Eqs. (108) and (119) give the corrective term as 

GO 

(P\ ~ ~ ak(T)[ T(vk,p' (v0Tl)l (122) 

The summations over the countable infinite sequence of subscripts 

k will be restricted to a sum of the terms corresponding to the first 

few values of k. 

The functions givenby Eqs.(llO) through (113) must be evaluated 

for each fuel=cycle analysis. However, the next section defines some 

auxiliary functions which, once tabulated, will make this evaluation 

available to hand computations for any given fuel irradiated in reactors 

of simple geometrical shapes. 

For hand=computation purposes, it is convenient to evaluate the 

derivative of a function f(T) by the formula 

( 123) 

Accordingly, the computation of the right side of Eqs. (117) and 

(120) requires the determination of only the functions sk(T) and Sk(T). 

For instance, the coefficient a
0

(T), defined by Eqs. (120), (117), 

and (121), will be computed according to 

GO B2 

ao (T) ~ - ~ [ Bz - o B2 
k=l k 0 

(124) 
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Equation (124) is exactly satisfied when T 
1 

and T 2 tend simul

taneously toward T, if we assume that a
0

{T) is a continuous function of 

T and that the derivative of s
0

(T) is nonzero, 

3. 2. Definition of the Auxiliary Functions 

Bl 
The fuel=cycle analysis developed by Benedict and Pigford 

shows how the neutron excess production and the burnup of the fuel can 

be represented by a sum of exponential functions of the flux time and an 

additional linear term; L e,, 
=a .e 

g{B) = go + g l e + I: g.e J (125) 
j J 

and 
-a .e 

I3(B) ""b0 + b 1e + 1; b.e J (126) 
j J 

In the case of a uniform initial fuel loading, the case which will 

be considered here, the coefficients g and b are constants determined 

by the properties of the equivalent homogeneous mixture which is initially 

loaded in the reactor; they are given by standard formulae, B
1 

Auxiliary functions and coefficients are defined below and will 

be tabulated in the following sections, The functions defined by Eqs. (110} 

through (113) are then evaluated according to Eqs, (132), {133), (135), 

and (141), rep·pectively, 

Equations (110} and (125) yield the following representation of 

the functions sk(T) as linear functions of the coefficients g: 

T + :E g. 
j J 

-a. Tv
0 

<
. J 
e v 0 , vk 

( vk' vk 

Then we define a function of a variable w, E 2 , k(w), by 

-wv 

= ( e OvO,vk 

(127) 

(128) 
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and a coefficient f 2 , k by 

(129) 

Because of the orthogonality of the eigenfunctions, Eq. (83), one 

can write 

(vo,vk)_ 

(vk' vk)-
6

0, k ' 

where 6. . is the Kronecker symbol defined by the property 
l,J 

{

1' if i = j 

6i, j = o .f . .t . 
. '1 lf"J 

With these definitions,. Eq. (127) becomes 

sk(T) = gO 6o k + glf2 kT +I: g.E2 k(a. T) . 
' ' j J ' J 

(130) 

(131) 

(132) 

The function Sk(T) is then obtained by integration and division 

by T, according to Eq. {111), and one obtains 

f2, k 
--r- T + I: g.E 3 k(a. T), 

,;. j J ' J 

with the corresponding definition of a function E
3 , k(w) by 

-wv 
llw 1((1-e· o),vk)· 

E 3 k(w) = - E 2 k{w) dw = - ( ) • 
, w , w vk' vk 

0 . 

Equations (122) and (126) give the first approximation to the 

average burnup by 

(f3(v0 T)) = b 0 + b 1f0 T +~ bjE0 (ajT), 
J 

(133) 

( 134) 

(135) 
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where one has defined the coefficient f
0 

by 

fo = ( 1, v o), 

and the function E
0 

(w) by 

(
. -wv0) 

E
0

{w)= l,e " 

Tables of the coefficient f
0 

and of the function E
0 

(w) are 

by Benedict and Pigford" B 
1 

Using Eq" (126), the functions defined by Eq" ( 113) become 

One defines a coefficient f 1, k by 

fl,k = (1,vk)' 

and a function E l, k(w} by 

and obtains 

(136) 

(13 7) 

given 

(138) 

(139) 

(140) 

T (vk,l3
1 

(v0 T)) = b 1£1,kT- ~ bj El,k(ajT). (141) 
J 

The above defined auxiliary functions E 1 , k(w), E 2 , k(w), E 3 , k(w), 

and coefficients f
1

, k' and f 2 , k' will be tabulated for given sets of eigen

functions vk corresponding to bare and reflected reactors of simple 

geometrical shapes, The numerical study of the irradiation-dependent 

characteristics of a reactor which has been initially uniformly loaded 

with any fuel [ L e,, for any set of coefficients g and b in Eqs, (125) 

and (126)] will then become amenable to hand computations, 

The three following sections will be concerned with reactor cores 

shaped as slabs, spheres, or finite circular cylinders. 

The quantity flk denotes the coefficient defined as 

flk = ( vk' vk)' (142) 
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and Eq. (1 09) then yields 

hk == !J.k/!J.o · 

The functions El, k(w) from Eq. (140), and E 3 , k(w) from 

Eq. (134), are related by the equation 

The function E
0 

(w) and the coefficient f
0 

= f 
1

, 
0

, as well as 

the function E 2 , 
0

(w) and the coefficient f 2 , 0 [that Sola denotes by' 

E 2 (w) and f
2
], have already been computed. S2 

The following approximations hold for small w: 

E1,k(w) = f1,kw' 

E 2' k ( w) = o 0 ' ~ - f 2' k w 
and 

3. 3. The .Slab Reactor 

(143) 

(144) 

(145) 

The reactor core is a slab of thickness 2Z, and is symmetrical 

about its midplane xy. It i~ infinite, or perfectly reflected, along the 

directions x and y. The composition of the core, and then the flux, is 

a function of the time and of the axial coordinate z only. The eigen-

function equation, Eq. (82), becomes 

2 
d vk 2 

dz2 + Bk vk-

with the boundary condition 

0 ' 

dv 
v + o z dz = 0 at z = Z , 

and the symmetry condition 

dv dz ::o: 0 at z = 0 

Equation (146) has an infinite number of eigenfunctions 

vk(z) = cos Bkz . 

(146) 

(14 7) 

(148) 
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The corresponding eigenvalues, B;, are such that the boundary con

dition, Eq. (147), is satisfied; they are given by the positive roots of 

These results will be expressed in dimensionless form as follows: 

The change of variable, 

s = z/Z , 0 ~ s ~ 1 , 

yields 

with 

The ratio of the linear extrapolation distance c5 Z to the half 

thickness of the slab Z is noted as 

(149) 

(150) 

( 151) 

e
2

=o
2
jz. (153) 

The eigenvalue yk is then defined according to Eq. (149), as the 
th 

(k + 1) root of the equation 

(154) 

For a bare reactor with negligible extrapolation distance, where 

E z = 0, one obtains 

yk = (2k + 1)1T/2. (156) 

For a given positive value of e Z, the roots of Eq, (1954) can be 

obtained from tabulations or graphical representations of the function 
J2 

'( tan '(. There is an infinite number of roots which satisfy the in-

equality 

k1T <yk < (2k + 1) rr/2 , 

For very large values of k and for positive e Z' '(k tends 

toward krr . 

( 157) 

The scalar product of two functions f(s) and g(s), Eq. (4), is 

now: 

(158) 
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The auxiliary functions and coefficients can be evaluated as 

follows: 

and 

hk = ~ I f'o = ( I + si; ::k) I (I + si; :: o ) , 

l 

£1, k = 1 cos ~k!; d!; = 

l 

l l 2 f 2 k = -- cos "os cos "ks d ~; 
' p.k 

0 

= 

The latter result can be simplfied by using Eq. (154) to yield 

The functions 

2 
4 "o 

f2, k = 2 ""2 4 "o-"k 

(159) 

(160) 

(161) 

(162) 

(163} 

tively by Eqs. (140), 

E
1

, k(w), E 2 , k(w) and E 3 , k(w) defined respec

(128), and (134) become: 

1 -w cos "o I; 
El, k(w) = w 

0 

e cos ykl; dl; (164) 

. 1 
. 1 1 -wcosy0 t; 

E 2 ,k(w) = P.k 

0 

e cosy0 t;cosykl;dl; 
( 16 5) 

l 
~, 

1 1 
-wcosy

0
s 

E 3 k(w) = -- {1.-e ) cos ykt; ds 
' wp.k 

0 

(166) 
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In order to establish a table of these functions, one has to evalu

ate numerically the integrals on the right side of the above equations. 

This has been done for the case of a bare reactor with e Z = 0. The 

integrals on the right side of Eqs. (164) and (165) are evaluated by Gauss 

quadratures. The derivatives of the functions to be integrated increase 

with . yk' and if one uses a Gauss quadrature formula with a fixed num

ber of points, the accuracy decreases when k increases. The computa

tions have been performed on a high-speed digital computer according 

to a Fortran program which uses. a 4, 6, 8, or 10-point Gauss quadrature 

formula. The 10-point formula gives the values of the auxiliary functions 

up to k = 5, accurate to the fourth decimal place (Tables Il-l through 

II-3). 

For this case {where E Z = 0) the various coeffici:nts required 

for the computation of the flux shape, flux time and burnup have the fol

lowing expressions: 

yk = (2k + l)n/2 , ( 16 7) 

1 (168) 
{2k + 1) - 1 

and for any k, {169) 

f = (-1 )k 2 
1, k ( Zk + 1) n ' 

(170} 

and 

f ·(-1 )k+l 8 
2, k = -;-:{ Z,...k--.-1""<"") -r{""<"'2k,--+--l'""'")-{'""'2..-k-+--.,-3 ),---n ( 1 71) 



I 

'W 

0.10 
0.20 
0.30 
0.40 
0.50. 
0.60 
0.70 
o.8o 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1~80 

1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.60 
3.70 
3.80 
3.90 
4.00 
4.10. 
4.20 
4.30 
4.40 
4.50 
4.60 
4.70 
4.80 
4.90 
s.oo 
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Table II-1. Bare slab reactor: functions El,k(w). 

k=O k=l 

0.0589 -O.C212 
0.1089 -C.C421 
0.1512 -0.0627 
0.1868 -0.0826 
0.21{:3 -0.1019 
0.241.7 -0.1204 
0.2605 -C.13iH 
0.2764 -0.1549 
0.2888 -0.1707 
0.2982 -0.1856 
0.3051 -0.1996 
0.30S7 -,0.2126 
0.3124 -0.224l 
0.3135 -0.2359 
0.3132 -0.2462 
0.3117 -0.2556 
0.::1093 -0.2642 
0.3060 -0.2l20 
0_.3020 -0.2791 
0.2975 -0.2854 
0.29.25 ~c.2911 
0.2872 -0.2960 
0.2816 -0.3004 
0.2758 -0.3042 
0.2698 -0.3074 
0.2638 -0.3102 
0.2577 -0.3124 
0.2516 -0.3143 
0.2456 -0.3157 
0.2396 --:0.3167 
0.2337 -C.:H73 
0.2278 -0.3177 
0.2221 -0.3177 
0.2165 -0.31"14 
0.2110 -0.3169 
0.2057 -0.3161 
0.2005 -0.3152 
0.1954 -0.3140 
0.1905 -0.3127 
0.1857 -0.3112 
0.1811 -0.3095 
0.1767 -0.3077 
0.1723 -0.3058 
0.1682 -0.3038 
0.1641 -0.3017 
o.l6C2 ~o.2995 
c.1':l65 -c.2n2 
0.1528 -0.2949 
0.1493 -0.2925 
0.1460 -0.2901 

k=2 k=3 k=4 k=5 

c.o121 ~o~oo91 o.oiH1 -o.oo~rs 
C.0254 -0.01€2 0.0141 -0.0116 
C.C380 -0.0272 0.0212 -0.0173 
C.C5C5 -C.G362 C.0282 -0.0231 
c • c 6 2 9 -a-~ 04 52 ----o-~-o-35Y-=-a:c;ra9 
C.C751 -0.0541 0.0422 -0.0346 
0.0871 -0.0630 0.0492 -0.0403 
C.0989 -0.0717 0.0561 -O.C460 
C.11d5 -0.0804 0.0630 -0.0517 
C.1217 -0.0890 0.0698 -0.0574 
c .1327 -o ;c974 ---o~-o--76-b·--=a·:·c63o 

C.1434 -0.1058 0.0833 -0.0686 
(.1538 -0.1140 0.0900 -0.0742 
0.1638 -0.1221 0.0966 -0.0797 
C.l735 -0.1300 0.1031 -0.0852 
c • 182 8 - c • 13 7 a _____ G ._l_Q_'?.2._::-__ Q ~ .. QJP 6 
C.1919 -0.1454 0.1159 -0.0960 
0.2005 -0.1529 0.1222 -0.1014 
(.2088 -0.1602 0.1284 -0.1067 
C.2167 -0.1674 0.1345 -0.1119 
(.2243 -0.1743 0.1406 -0.1171 
0.2315 -0~1811 0.1465 -0.1223 
c. 2 384 -a. 1811-- o·:T5i3-- -o .TZ-74-
0.2450 -0.1942 0.1581 -0.1324 
0.2512 -0.2004 0.1637 -0.1374 
0.2570 -0.2065 0.1692 -0.1423 
0.2625 -0.2124 0.1747 -0.1471 
C.2677 -0.2180 0.1800 -0.1519 
c. 2126 -o. 2236 -·a :ras·z-·-=o~-156-'i 
C.2772 -0.2289 0.1903 -0.1613 
(.2815 -0.2340 0.1953 -0~1659 
C.2855 -C.23SO 0.2002 ~0.1704 
(.2892 -0.2438 0.2050 -0.1749 
0.2926 -0.2484 0.2096 -0.1792 

. c .2958 -0.2528 i:f~'?'I4·2--::·cf~Hi35 
(.2987 -0.2570 0.2186 -0.1878 
0.3014 -0.2611 0.2229 -0.1919 
C.3039 -0.2650 0.2271 -0.1960 
(.3061 -0.2687 0.2312 -0.2000 
C.308l -0.2723 0.2352 -0.2039 
c. 3099 -o. z7'5-r-e:r:·239c·-=·a-.·--2--o'l'if 
C.31i5 -0.2789 0.2429 -0.2116 
C.3129 -0.2820 0.2465 -0.2153 
0.3141 -0.2849 0.2501 -0.2189 
(.3151 -0.2877 0.2535 -0.2225 
c.31co -0.2903 o.2568 -0.2259 
c.3l67 -c.292s· cr~-z6ocr::..:·a~z2-93 
(.3173 -0.2951 0.2631 -0.2327 
0.3177 -0.2973 0.2661 -0.2359 
(.3180 -0.2994 0.2690 -0.239~ 
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Table II-2. Bare slab reactor: functions Ez,k(w). 

w k=O k=l k=Z k=3 k=4 k=5 

o • ro -----o:-9-f e 8 o. Cl51> c. 0024 c-~ coc-a o. 0(1(·4 --o.coo2 
0.20 0.8444 -c.c2.:n c. c 04 8 -C.C016 o.ono7 -0.0004 
0.30 0.77(:;2 -C.0409 c. c 071 -O.C024 O.U<)ll -O.C006 
0.40 0.7138 -O.C507 C.CG94 -C.C032 0.(;015 -O.COC8 
0.50 0.65(:;7 -C.C590 C.Cll6 -C.COt,O 0.'~'0U:l -O.COlO 
0.60 0.6043 -O.C65G 0.0137 -C.C047 0.0022 -O.C012 
0.70 0.5563 -O.C71S C.Cl56 -0.0055 0.0025 -C.C014 
0.80 0.5122 -O.C761 (.0175 -G.COc2 0.()029 -0.::016 
0.90 0.471-J -0.(797 C.Cl92 -O.C069 0.0032 -0.0018 
1.00 0.4349 -0.0825 C.C209 -0.0076 C.UCJ36 -0.0019 
1.10 0.4009 -0.0846 0. C224 -C.C083 0~0039 -0. C02l 
1.20 0.3697 -0.(;861 C.C237 -C.COc9 0.0042 -0. C023 
1.30 0.3411 -O.CR70 C.C250 -C.C096 0.0045 -O.C025 
1.40 0.3148 -O.C874 C.C261 -C.ClC2 o.c·049 -O.C027 
1.50 0.29C/ -C.Ci:l74 (.0272 -O.Cl07 0.005? -O.C028 
1.60 0.2685 -o.c8-to C.C281 -o. o 113 O.UQ55 -O.C030 
1.70 0.2482 -0.0864 c.c2e·9 -C.Olltl O.IJ(J57 -0.0032 
1.80 0.2295 -C.C854 0.2296 -Q.0123 0.()()60 -O.L034 
1.90 0.2123 -0.(843 C.03C2 -0.0127 0.(:063 -0.(035 
2.00 o.t9c4 -C.C.H30 C.C3C8 -C.Cl31 G.OC6~ -C.C037 
2.10 0.1819 -C.C815 C.C312 -C.Ol3~ 0.0068 -C.C038 
2.20 O.l6E5 -0.0799 C.C3l6 -C.Gl39 0.0070 -O.C040 
2.30 0. 15tl -C.C7b1 (.0318 -C.Cl43 0.(1073 -0.(041 
2.40 O.l4t,8 -0.(763 C.C321 -0.0146 0.0075 -C.C043 
2.50 O.l3t,3 -C.C74:. c. <J 32 2 -C.Clt,'! o.oc;77 -0.0044 
2.60 0.1247 -C.C726 C.C323 -C.Cl51 o.c·o-r9 -O.C046 
2.70 O.ll5i:l -O.C707 c .c3n -C.Ol54 0.:)(;81 -0.(047 
2.80 0.1076 -O.C6fH C.CJ23 -0.0156 0.0083 -O.L.048 
2.90 O.lOCO -C.C66H C.C322 -0.0158 O.OC8~ -0.0049 
3.00 O.C930 -C.C648 0.0321 -C.Cl60 0.00136 -0.0.:051 
3.10 0.08(;6 -O.C629 C.C319 -C.ClCl 0.()088 -0.0052 
3.20 0.0807 -o.o61o C .C3U -o J 1 (;3 0.0089 -0.0053 
3.30 0.0752 -O.C591 C.C314 -0.0164 C.OO'Jl -O.C054 
3.40 0.0701 -C.c.~72 C.C312 -0.•:165 (;.0(;92 -o.cos5 - ··- -·-· ··--·. 
3.50 0.0654 -c. c 55 1t C.C3C9 -C.Cl65 (). •) (•9 3 -O.C056 
3.60 C.0610 -G.C536 c. C305 -0.0166 (;.(;()94 -O.C057 
3.70 0.0570 -G.C518 (.0302 -O.Clc6 C.00'J5 -C.C058 
3.80 C.J53J -C.C501 c.C298 -O.Cl66 0. ·]096 -(1.(059 
3.90 o.o4sa -C.C4b4 C.C294 -C.ClC7 C.GC97 -0.0059 
4.00 0.04(;6 -C.C468 c. 0290 -0.(;166 C.O•J9U -O.COoO 
4. 10 r:. •J" 3 7 -0.(452 C.C286 -O.G166 -t~-ci ~~f9 8 --O~C061 
4.20 0.04C9 -O.C437 (.0282 -0.0166 0.0099 -C.C062 
4.30 0.03!14 -O.C422 c.C278 -C.Olc5 0.009'~ -0.0062 
4.40 O.U3c0 -C.C4US C.C273 -O.Olc5 0.0100 -O.C063 
4.50 0.0338 -C.c:l94 (.0269 -C.Ol64 0 • !) 1 ') () -O.C063 
4.60 0.0318 -C.C380 C.C264 -C.Jlc3 O.IHOl -O.C064 
4.70 c.a2g9 -0.(367 o. c 26 o· -0.0162 0.6101 --O.C064 
4.80 0.02~1 -0.03~4 0.0255 -O.Cltl <.:.0101 -0.0.:065 
4.90 0.0265 -c.•:::342 c.czso -C.Cl6J 0 • . ) 1lH -0.0.:065 
s.oo 0.')2t,9 -O.C330 C.CJ246 -G.Ol5=J 0.(;101 -O.C066 



w 
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0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1. 1·0. 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.6.0 
3.70 
3.80 
3.90 
4.00 
4.10 
4.20 
4.30 
4.40 
4.50 
4.60 
4.70 
4.80 
4.90 
s.oo 
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Table II-3. Bare slab reactor: functions E 3 , k(w), 

k=O 

0.9588 
0.9199 
0.8832 
0.8485 
0.8158 
0.7849 
0.7556 
0.7279 
0.7016 
0.6768 
0.6532 
0.6309 
0.60'17 
0.58'15 
0.5704 
0.5522. 
0.5349 
0.5185 
0.5028 
0.4879 
0. 4 736 
0.4601 
0.4471 
0.4348 
0.4229 
0.4117 
0.4009 
0.3905 
0.3806 
0.3712 
0.3621 
0.3534 
0.3450 
0.3370 
0.3293 
0.3219 
0.3148 
0.3080 
0.3014 
0.2951 
0.2890 
0.2831 
0.2775 
0.2720 
0.2667 
0.2616 
0.2567 
0.2520 
0.2474 
0.2430 

k=l 

o.coa1 
~0.0"154 

-0.0220 
-O.G280 
-0.0334 
-0. C382 
-O.C426 
-0.0465 
-0.0500 
-O.C5Jl 
-0.0559 
-0.0584 
-0.0605 
-0.0624 
-0.0641 
.-0.0656 
-0.0668 
-0.0679 
-0.0688 
-0.0695 
-0.0701 
-:-O.C706 
-0.0710 
-O.C712 
-0.0714 
-0.0115 
-0.0115 
-0.0714 
-0.0713 
-0.0711 
-C.C709 
-0.0706 
-O.C7Ci3 
-0.0699 
-0.0695 
-0.0691 
-0.0687 
-0.(;682 
-0.0677 
~0.0672 
-0.0667 
-0.0662 
-0.0656 
-0.0651 
-O.C645 
-0.(;640 
-0.0634 
-0.0628 
-0.0622 
-0.0617 

k=2 k=3 k=4 k=5 

0.0012 C.OOC4 0.0002 :.:..o.cool 
C.0024 -'-0.0001:! 0.0004 --0.0002 
C.C036 -0.0012 0.0006 -0.0003 
c.oo4B -o.co16 o.ooo1 -o.coo4 
C. G0 59 -C~ oo2o ___ 0_~0009--=0:oo65 
C.C070 -0.0024 -0.0011 -0.0006 
C.C081 -O.G02_8 __ 0.0013 -0.0007 
c.C092 -c.oo32 o.oo15 -o.ooo8 
C.01C2 -0.0036 0.0016 -0.0009 
C.Ol12 -0.0039 0.0018 ~0.0010 
c .0121 -o.o64j ___ o.oo2o -_o.co11 
c~cl31 -o.oo47 o.oo22 -o.co12 
C.0139 -0.0050 0.0023 -O.G013 
(.0148 -0.0054 0.0025 -0.0014 
C.Gl56 -0.0057 0.0027 -0.0015 
C.0163 -G.O_()l:_Q__ 0.0028 -0.0015 
C.017Q -C.C063 0.0030 -0.0016 
0.0177 -0.0067 0.0032 -0.0017 
C.C183 -0.0070 0.0033 -0 .• 0018 
C.C190 -0.0073 0.0035 -O.C019 
C.0195 -0.0076 0.0036 -0.0020 
C.G201 -0~0078 0.0038 -0.0021 
c.c2c6 -o~c-os-c··--,;.(f6T9 -o.oo22 
C.02ld -0.0084 J.0041 -0.0023 
C.C215 -0.0086 0.0042 -0.0023 
c.c219 -o.ooB9 o.oo43 -0.0024 
C.0223 -0.0091 0.0045 -0.0025 
£.0226 -0.0093 0.0046 -0.0026 
o. o23o -o .cos6 ____ c~oo4 1~o:oo21 
(.0233 -0.0098 0.0049 -0.0027 
c.G236 -0.0100 o.oo~o -o.o028 
C.0238 -0.0102 O.D051 -0.0029 
(.0241 -0.0104 0.0052 -0.0030 
C.C243 -0~0105 0.0053 -0.0030 
o. o24 s ...:a. o fct--o:-oos5 ~o. oo3·1 
C.0246 -0.0109 0~0056 -0.0032 
C.C248 -0.0110 0.0057 ~o.0032 
c.o249 -0.0112 o.oo5a ...:o.co33 
C~0250 -0.0113 0.0059 -0.0034 
(.0252 -0.0114 d.0060 -0.~034 
c.o252 .:..o-~oiT6 o.oo6I -o.oo35 
o.o2s3 -0.0111 o.oo61 -o.oo36 
(.0254 -0.0118 O.OU62 -0.0036 
0.0254 -0.0119 0.0063 -0.0037 
C~C255 -0.0120 0.0064 -0.0038 
0.0255 -0.0121 0.0065 -0.0038 
c .o255 ..:.o.ol22 -c.f:-01166---o~1i39-
c.o255 -c.o123 o.oo66 -o.co39 
(.0255 -0.0124 0.0067 -0.0040 
C.0255 -C.C124 0.0068 -0.0040 
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. 3.4. The Spherical Reactor 

The reactor core is a sphere of radius R. The flux and the 

composition o£ the fuel are symmetrical about the center of the sphere. 

They are functions of the time and of the radial coordinate r only. 

The eigenfunction equation, Eq. (82), becomes 

2 
d vk 2 dvk . 2 
----:-7 + r err+ Bk vk ::: 0 • 
dr 

(17 2) 

Each eigenfunction must be spherically symmetric and satisfy 

the following boundary condition on the external surface 

dvk 
vk + oR err= 0, at r = R. (173) 

The spherically symmetric solution normalized to l.at the center, 

is 

{.174) 

and the eigenvalue B; must be such that the boundary condition, Eq. (173), 

is satisfied; Bk is then a root of 

sin BkR 
sin BkR +oR Bk(~os BkR- BkR ) = 0. (175) 

The results are expressed in dimensionless form. as follows: 

The change of variable 

yields 

with 

p = r/R, where 0 ~ p -~ 1 , 

sinwkp 
vk(p) = w · p 

- k 

2 2 2 
Bk = ~/R . 

(176) 

. (177) 

(1 78) 

The ratio of the linear extrapolation .distance oR to the radius 

of the sphere R is 

(179) 
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The eigenvalue wk is defined, according to Eqo (175), as the 
th 

(k + 1) root of 

(1 - E a> sin wk + E R ~ cos wk = 0 0 
(180) 

For any positive value of E R' this equation has an infinite num

ber of roots, which can be obtained from tabulations or graphical repre

sentations of the function w cot w. J
2 

For very large k, these roots 

tend toward (k + ~) n, which are the roots of the equation cos wk"" 0 . 

now 

and 

For E R = 0, the eigenvalues are simply 

wk = (k + l ) n 0 ( 1 8 1 ) 

The scalar product of two functions f(p} and g(p), Eq. (4), is 

l 

(£,g)= !a f(p) g(p) 
2 

3p dp. (182) 

The auxiliary coefficients can be evaluated as follows: 

ll (sin wk~ 2 
2 _ 3 ( sin 2 wk) 

f.L "" 3 P ~ -2- 1 - 2 w ' 
k 0 ~p 2wk k 

( 183) 

fl,k = 1 5~k:kp 3/dp = ~ (- coswk + 
5~"\} 

10. )2 . f : _!_1 Sln w0 p SlnWkp 
3

p2 dp 
2,k f.Lk w0 p Wkp 

0 \ 

(184) 

(185) 

Letting the symbol Si denote the sine integral function which is 

tabulated by Jahnke and Emde, J
2 

the above equation becomes 

sin 2~ 
l -__,.,..--

2 wk 

( 186) 
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The functions E
1

, k(w), E 2 , k(w) and E 3 , k(w) defined respectively 

by Eqs .. (140), (128), and (134) become: •' 

and 

1
1 

-w sin w
0

pjw
0

p sin ~P 2 
E

1 
k(w) = w (e ) 3p dp, 087) 

' . ~p 
0 

1 . I 
l i -W Sln w0 p w0 p 

E (w) =-· (e ) 
2.,k . fl.k 

0 

l 

E3 .k(w) = _1_. 1. 
' Wfl.k 

0 

(188) 

(189) 

These integrals have been evaluated by numerical computations 

using a 10-point Gauss quadrature formula, as in the case of the slab 

reactor. The results for e R = 0 are given in Tables II.4 through II.6. 

For this case, where e R = 0, the various coefficients required 

for the computations of the flux shape, flux time and burnup have the 

following expressions: 

(190) 

1 1 
--___,2--= 
(k + 1) - 1 k(k + 2) 

(19!) 

(192) 

1 
hk = 2' 

(k + 1} 
{19~) 

k 3 
f1,k=(-l) 22' 

(k + 1) 'TT 

(194} 



-59-

Table II-4. Bare spherical reactor: functiona E 1 k(w). 

w k=O k=1 k=2 k=3 k=4 

o.io 0.0289 -O.Co/6 c.oo34 -0.0019 0.0012 
0.20 0.055.1 -0.0151 C.G068 -C.C038 0.0024 
0.30 0.0787 -0.0226 C.Ol01 -C.C051 C.OG36 
0.40 0.10_00 -0.0300 c.ol35 -O.C076 0.0049, 
O.'iiO 0 .11<;2 -0.0372 (.0168 -c.cos5 0.0061 
0.60 0.1365 -O.C442 0.0201 -O.Cll4 0.0073 
0.70 0 ·1521 -0.0511 (.0234 -O.Cl32 c.oo85 
o.8o 0.1661 -C.C577 C.C267 -C.Cl51 0.0097 
0.90 0.1786 -0.0642 (.0299 -0.0170 0.0109 
1.00 0.1898 -0.0704 c.o331 -O.Ole8 0.0121 
1.10 0.1998 -0.0764 C.C363 -o. C2C7 0.0133 
1.20 0.2087 -O.C822 (.0394 -0.0225 0.0145 
1.30 0.2167 -0.0878 (.0425 -0.0243 0.0157 
1.40 0.2237 -0.0931 0.0455 -0.0262 0.0169 
1.50 0.2299 -0.0982 C.0485 -O.C2EO 0.0180 

.. 1.60 0.2353 -0.1031 (.0514 -:::0.0297 . 0.0192 
1.70 0.2401 -0.1078 c. 0 54 3 -o. o 315 0.0204 
1.80 0.2442 -0.1122 0.0571 -0.0333 0.0215 
1.90 0.2478 -0.1164 (.0598 -C.0350 0.0227 
2.00 0.2508 -0.1205 (.0625 -0.0367 0.0238 
2.10 0.2534 -0.1243 (.0651 -0.0384 0.0250 
2.20 0.2556 -0.1279 c .0671. -,._0. 04Cl 0.0261 
2.30 0.2574 -0.1313 C.07C2 -0.0417 0.0272 
2.40 0.2588 -0'.1345 C.0726 -0.0434 0.0284 
2.50 0.25'39 -0.1375 C.C750 -O.C450 0.0295 
2.60 0.2607 -0.1404 c. 0 773 -0.0466 0.0306 
2.70 0.2613 -0.1431 c.o79~ -O.C481 0.0317 
2.80 0.2617 -0.1456 c.ca11.. -.0 •. C4S1 0.0321 
2.90· 0.2618 -0.1480 C.C839 -0.0512 0.0338 
3.00 0. 2617 -0.1502 C.G859 -c. C527 0.0349 
3.10 0.2615 -0.1523 c.C879 -C.C54l 0.0359 
3.20 0. 2611 -0.1542 c.0898 -0.0556 0.0370 
3.30 0.2605 -0.1560 (.0917 -0.0570 0.0380 
3.40 0.2599 -0.1577 C.C935 -c .c5e't .. 0.0390 
3.50 0.25<i1 -0.1593 (.0952 -o.c5s8 0.0400 
3.60 0.2582 -0.1601 (.0969 -0.0611 0.0410 
3.70 0.2573 -0.1620 (.0985 -0.0624 0.0420 
3.80 0.2562 -0.1632 C.1001 -0.0637 0.0430 
3.90 0.2551 -0.1644 (.1016 -0.0650 0.0439 
4.00 0.2539 -C.1654 C.1030. -Q.06~.?. 0.0449 
4.10 0.2527 -0.1663 (.1044 -0.0674 0.0458 
4.20 0 •. 2514 -0.1672 (.1058 -0.06E6 0.0467 
4.30 0.2501 -0.1679 c. 1070 -0.06<i7 0.0476 
4.40 0.2487 -0.1686 (.1083 -0.0709 0.0485 
4.50 0. 24 73 -0.1692 C.1094 -0.0720 0.0494 
4~60 0.2459 -0.1697 ~ .• 1 l._Qp ___ ~_o_,._C,VQ __ .. c .0503 
4.70 C.2445 -0.1702 (.1117 -C.C741 0.0511 
4.80 0.2430 -0.1706 (.1127 -0.0751 0.0520 
4.90 0.2415 -0.1 '109 C.1137 -C.C7tl 0.0528 
5.00 0.2400 -0.1712 (.1146 -C.C77l 0.0536, 
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Table II-5. Bare spherical reactor: functions E 2 k(w). 

w k=O k=1 k=Z k=3 k=4 

0.10 C.S40 ...:c·-.t4 1J3 -c5~Cet8 -C.CC31 C.0018 
0.20 C.8846 -C.C760 C.Cl42 -C.COH 0.0037 
0.30 O.tl326 -C.1075 (.0219 -c.coc;~ 0.00?6 
o.~o 0.7840 -C.135:l O.C2S9 -0.(.129 o.OC./5 
0.50 0.7386 -0.1~95 (.(380 -C.Clc3 O.OC94 
0.60 (!.69(:2 -C.1flC7 .C.04c.2 -C.ClS1 0.0113 
0.70 (.6565 -0.1991 c. c 54 3 -C.C?32 C.Cl33 
O.!:lO 0.61S4 -c • .2149 C.0623 -O.C2c8 0.0153 
0.90 0.5846 -C.2285 C.C702 -c. uc4 o.c1n 
1.00 0.5521 -0.2400 C.C179 -O.C34CJ (.0193 
1.10 0.5216 -0.24'16 C.O!:l53 -O.C376 0.0213 
1.20 0.4931 -C.2575 (.0'125 -C..C412 0.0233 
1.30 o.4cc3 -0.;<640 C.09S4 -C.C448 0.0254 
1.40 0.4412 -0.2691 (.10(:0 -O.C4133 0.0274 
1.50 0.4177 -0.2730 (.1122 -C.C519 0.0294 
1.60 0.3956 -c. 27':>8 C.1lel -C.Q?54 o.OJ15 
1.70 0.3749 -C.2777 C.1237 -C.C5E8 c.0335 
1.80 0.3554 -C.27b7 C.12E9 -O.C622 0.0355 
1.90 0.3372 -0.2789 (.1338 -O.C655 C.G376 
2.00 0.3200 -0.2785 (.1384 -C.C6E8 O.C3':l6 
2.10 C.3C38 -0.2774 (.1426 -C.C720 0.0416 
2.20 0.2886 -0.<:759 (.14(:5 -C.C751 0.0435 
2.30 0.2743 -0.2738 C.JSGO -C.C7El C.J455 
2.40 0.26(8 -0.2714 (.1533 -O.C811 o.0474 
2.50 0.2481 -0.2686 (.15£:2 -C.C83"'J 0.0493 
2.60 0.2Jf:l -0.2655 C.l5!:l9 -C.C8C6 0.0512 
2.70 0.224'-J -0.2622 (.1613 -C.Cf:l<J3 O.OS31 
2.80 o.n42 -0.2586 (.1634 -[.0918 0.0549 
2.90 C.2C42 -C.2548 (.1652 -c. c94 3 0.0567 
3.00 0.1947 -0.2509 C.16t:8 -C.C9c6 0.0585 
3.10 0.1858 -0.2468 C.16E2 -C.C9t8 0.0603 
3.20 0. 1774 -C.£426 C.16S3 -0.1009 0.0620 
3.30 0.16<;4 -0.2:184 (.1702 -0.1030 0.0636 
3.40 0.1618 -C.2341 (.1709 -0.1049 C.0653 
3.50 0. 1':> 4 7 -0.2297 (.1714 -c. 1ou 0.0668 
3.60 0.1479 -0.2254 (.1718 -0.1084 0.0684 
3.70 0.1415 -0.2?10 C.l71<.J -O.llCO (;.06':19 
3.eo O.l:J5':> -0.2166 (.1719 -0.1115 0.0714 
3.90 0. 12<; 7 -c. 2122 (.1718 -C.ll29 0.0728 
4.00 0.11'43 -0.?078 (.1715 -0.1142 0.0742 
4.10 0.1191 -0.2035 c. 1710 -0.1154 0.0755 
4.20 0.1142 -C.1<J92 (.1705 -0.11(:5 0.0768 
4.30 C.lGS6 -0.1Y49 0.1698 -0.1176 0.0181 
4.40 0.1052 -C.1Y07 C.16<JO -C.11E5 c.o793 
4.50 C.lJ10 -C.1866 0.1682 -0.11'13 0.0804 
4.60 C.0970 -0.182? C.l672 -C.12C1 0.0815 
4.70 0.0932 -C.1785 (.16(:1 -C.l2C8 O.OB26 
4.80 C.C8S6 -C.174,5 (.1650 -0.1214 0.01:'36 
4.90 0.0862 -o. 1706 c. 16 38 -0.1219 0.0846 
5.00 0.0829 -0.1668 (.1625 -C.l22~ c.oss6 
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Table II-6. Bare spherical reactor: functions E 3 k(w). 

w k=O k=l k=2 k=3 k=4 

o.ro o.9698 -o.o2o6 c.oo34 o.oo15 o.ooo9 
0.20 0.9410 -0.0396 C.G069 -0.0031 0.0018 
0.30 0.9134 -0.0571 C.C106 -0.0047 0.0028 
0.40 0.8871-0.0732 C.CH4 ... 7'"0-A.G.063 .. 0.003.7 ... 
o~5o o.8619 -o.o8a1 c.o1a3 -o.oo~o o.o046 
0.60 0.8377 -0.1018 (.0223 -C.OOS7 0.0056 
0.70 0.8147 -0.1144 0.0263 -0.0113 0.0066 
o.8o o.7925 -0.1260 c.o3o3 -c.o130 o.oo75 
0.90 0.7713 -0.1367 0.0343 -0.0148 0.0085 

. 1. 00 0. 7 510 -0. 1465 .... C •. C.lB..L::.C... C 165 .. _ _o..._oll2.5 ... 
1.10 0.7315 -0.1554 (.0422 -0.0183 0.0105 
1.20 0.7128 -0.1636 (.0461 -0.0200 0.0114 
1.3o o.6949 -0.1111 c.0499 -o.o218 o.ol24 
1.40 0.6777 -0.1779 (.0537 -0.0236 0.0134 
1.50 0.6611 -0.1841 0.0574 -0.0253 0.0144 

... l. 60 o. 6 4 52 - o o. 1898 ____ c._, 0.<2.l.Q_-::O..a..021..L._..Q_,.Q154 ... 
1.70 0.6299 -0.1949 0.0645 -0.0289. 0.0164 
1.80 0.6152 -0.1995 C.0680 -0.0306 0.0174 
1.90 o.6o1o -o.2o31 c.o113 -o.o324 o.p184. 
2.00 0.5874 -0.2075 (.0745 -Oo0341 0.0195 
2.10 0.5743 -0.2108 C.0777 -0.0358 0.0205 

-2. •. 20 0. 5 616 -0. 2 13 8. ___ Q_,_QJ3J:..1_:::.Q_&J]5 __ Q •.. Q21.5. .. 
2.3o o.5495 -0.2165 c.o837 -c.o392 0.0225 
2.40 0.5377 -0.2188 C.0865 -0.0409 0.0235 
2.50 0.5264 -0.2209 0.0892 -0.0426 0.0245 
2.60 0.5154 -0.2226 (.0919 -0.0442 0.0255 
2.70 0.5049 -0.2242 0.0944 -0.0459 0.0264 

_2_Jt0.. a .• 494 7 -o. 2.25.5 ___ C....0..9.b..!L..=.C ... Jl.':t.H._..Q_.._Q2H ___ _ 
2.90 o.4848 -0.2265 c.~991 -o.o490 o.o284 
3.00 0.4753 -0.2274 C.l014 -0.0506 0.0294 
3.10 0.4661 -0.2281 (.1035 -0.0521 0.0304 
3.20 0.4572 -0.2286 (.1055 -0.0536 0.0313 
3.30 0.4486 -0.2290 C.1075 -0.0550 0.0323 

..J .. !.!t.O .. _c. 440 3 -o !. 2 2.92 ___ ( ~..l.Qll~::O. o 5~2__.Q.~.Q.3_3,2 
3.50 0.4323 -0.2293 C.1111 -0.0579 0.0342 
3.60 0.4244 -0.2292 C.1128 -0.0593 0.0351 
3.70 0.4169 -0.2291 0.1144 -0.0606 0.0360 
3.80 0.4096 -0.2288 (.1159 -0.0619 0.0369 
3.90 0.4025 -0.2284 0.1173 -0.0632 0.0378 

....!u.OO • 0 ~ 3.9 5.6 - o. 2 2 80 .... .t ..... llJii.. • .=-0 • 0 6~ !i . .0.......0-.JJU __ 
4.10 0.3889 -0.2274 C.l200 -0.0657 0.0396 
4~20 0.3824 -0.2268 (.1212 -0.0669 0.0405 
4.30 0.3761 -0~2261 0.1223 -0.0681 0.0413 
4.40 0.3700 -0.2253 (.1234 -0.0692 0.0422 
4.50 0.3641 -0.2245 C.1244 -0.0703 0.0430 
4.60 ___ 0_.3583 -:-o •. 223L-... C....lZ53 -o. 0714 0.043~. 
4.70 0.3527 -0.2227 ~.1262 -0.0724 0.0446 
4.80 0.3473 -0.2218 (.1270 -0.0735 0.0454 
4.90 0.3420 -0.2208 0.1278 -0.0744 0.0462 
5.00 0.3368 -0.2197 (.1285 -0.0754 0.0470 
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and 

£ 2 .k = (k ~ ll {s; (k + J).r- }lsi (k+ 3).r+ s; (k- J).rJ} (195) 

3; 5. The Cylindrical R~actor 

The reactor core is a cylin~er of radius R and of height 2Z. It 

is symmetrical about the axis and about the midplane of the cylinder. 

The corresponding Helmholtz equation is 

(201) 

The origin of the coordinate system is taken at the center of the 

cylinder. By usingthe technique of separation .of the variables, the gen

eral solution ofEq. (201), which satisfies the symmetry condition, is 

obtained as the following product of a Bessel function of the first kind 

and of zero order by a cosihe .function: 

(202) 

with 
2 2 . 2 

B = BR + Bz. (203) 

Letting the linear extrapolation distance be a constant oR on the outer 

radius of the cyli11-der and a constant cSz on the end plane, the boundary 

condition,, Eq. (3),. becomes 

av 
v + 5 z a z = 0 at z = z ' 

and 
av 

v + oR lrF-= 0 at r = R . 

The function v satisfi_es the boundary condition at the outer 

radius of the core if BR is a root of 

(204) 

(205) 

(206) 
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v also satisfies the boundary condition at the end plane if. B
2 

is a 

. root of Eq. (149). 

The change of variables, 

11 = r /R where 0 ~ 11 ~ 1 , 

and 

~ = z/Z where 0 ~ ~ ~ 1 , 

yields 

with 

. (207) 

(208) 

(209) 

(210) 

The ratio of the linear extrapolation distance to the corresponding 

dimension of the reactor core will be noted e, thus obtaining 

·and 
E R = &R/R' 

E z = &2 /Z . 

(211) 

(212) 

According to Eq. (206), j.t is now defined as the (1 + l)th posi

tive root of 

JO{j~)- ER jJ, J l(jJ.) := O' (213) 

and y is the (m + l)th positive root of 
m 

cos y - e 2 sin y = 0 . 
m m 

(214) 

The above equations, Eqs. (213) and (214), have an infinite number of 

solutions, which are studied, for instance, in reference (C5). 

In the following, the subscript k stands for the pair of non

negative integers ~ and m. 

The scalar product of two functions f('YJ,~) and g( 11, ~), Eq .. (4), 

is now 

(215) 

This is, in general, a double integral, but becomes the product 

of two simple integrals if the function fg can be expressed as the prod

uct of a function of 11 only by a function of ~ only. For instance, the 
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coefficients 1l,k' Eq. {139), and f.Lk' Eq. {143), are giveriby 

(216) 

and 

(217) 

The above integrations are readily performed, thus obtaining 

{218) 

and 

(219) 

Given the set of the functions vk corresponding to given values 

of ER and c: 2 , the auxiliary functions E 1 ,k(w), E 2 ,k(w), and E 3 ,k(w) 

can be computed according to the following procedure: 

First, one defines the functions 

-wv -

S 2' k (w) = ( e 0 v 0' v k) ' {220} 

and 
w 

sl, k(w) = ((I - e -wv 
0

), vk > . l s2, k(w) dw . (221) 

Then, using Eqs. (139), (142), (220), and {221), the auxiliary 

functions, defined by Eqs. (140), (128), and (134) respectively, are given 

by 
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(222) 

(223) 

and 

(224) 

To evaluate s 1 , k (w) and s 2 , k (w), one must evaluate numerically 

the double integ.rals represented by the bracketing operations in Eqs. {220) 

and (221); s1, k(w) could also be evaluated simply by integ;rating s2, k(w) 

with respect to w, once having set up a table of the latter function. 

However, the direct computation of s 2 , k(w) requires the evalua

tion of a double integral for each value of w. We have therefore pre

ferred to expand the function s2, k(w) in powers of w, because the com

putation of the coefficients of the power series requires only the evalua

tion of simple integrals. 
-wvo 

The function e is represented as follows by the uniformly 

convergent series 

ac 
-wv0 \ 

e = ~ 
n=O 

(-w)n 
n! 

and the functions s1,k(w) and s2,k(w) are represented by 

co 

~ (-w)n-1 ( 
s2, k(w) = L (n-1)! v~, vk)' 

n=l 

and ac 

sl, k(w) = -L <-:;>n (v~, vk)· 

n=1 

(225) 

(226) 

(227) 

The coefficients which appear. in the above equations are defined 

as 

1 1 

Dk, n • ( v~, vk)= { J~(jo ~)J 0 (j i ~) Z~di cosny0\, cos ym \, d\, 

Jo . o 
(228) 
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The first integral in the right side of the above equation is 

1 

B 1 , n = [ J~ (j 0 T))J 0 {j .('1) 2 T) d TJ , 

..JO 

and it will be evaluated by using a p-point Gauss quadrature formula 

(p = 4, 6, 8, or 10). 

The integrals 

1 

C =1cosn(y0 t;,) cos (y t;,) dt;, m,n m 
0 

are given by standard formulae, G
3 

(229) 

(230) 

Since the functions J
0

(j,eTJ) [or cos (ymt;,)] are eigenfunctions of 

a self-adjoint one-dimensional Helmholtz equation (Sturm-Liouville 

equation), the corresponding orthogon.ality property reads 

B1 , 1 = 0, where .1, =/= 0 (231) 

and 

C = 0, where m ¥= 0 , 
m, 1 

(232) 

With the above notations, the coefficients f 2 , k defined by Eq, (129) 

become 

B C f _ .t, 2 m, 2 
2,.k- I-lk 

(233) 

The computations outlined above,. Eqs, (220) through (233), have 

been performed on a high- speed digital computer for the case of a bare 

reactor with negligible extrapolation distances, L e, , where 

(234) 

th Equation (213) then defines j.l, as the (1 + 1) root of the Bessel 

function of the first kind and zeroth order; the corresponding numerical 

values are given to ten decimal places by Watson. WS The following table 

gives j.l, for the first few values of .t: 
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0 1 2 3 4 5 

2.405 5.520 8.654 11.692 14.931 18.071 

In general, j I, can be represented by the following series :J
2 

= 'IT [(1 1)+0.051 0.053 +''' 
- 4 41 - 1 - { 41 - 1) 3 

(235) 

Equation {214), where e z = 0 , yields 

y . = (2m + 1 ) n /2 . m . 
(236) 

The eigenvalues B~ are given by Eq. (210), the subscript k 

corresponding to a given pair of values of the integers J, and m, and 

the value k = 0 corresponding to I, = 0 and rn = 0 . One obtains: 

This is a function of the· ratio R/Z only; one sets 

R/Z = ~ 

and obtains 

Equations (219), (143), and (218), respectively, now yield 

(237) 

(238) 

(239) 

~k ., ~ J~ (j J.) for any m, (240) 

(241) 
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fl, k f~; (j£~ (2~ 1l~)1r/Z' 
The coefficients C , Eq. (230), are now defined by 

m,n 

TI/2 

cm,n = ; !o cos 
n 

(2m+ l)x cos xdx . 

The standard formulaD
2 

yields first 

l c =-
O,n F 

r(-T+ l) 

r (n + 3 
2 

where the symbol r denotes the factorial function. 

(242) 

(243) 

(244) 

All the coefficients C can then be easily evaluated by the 
m,n 

recurrence formula, Eq. (245), which is derived as follows: 

TI/2 

2 m,n m,n+l 
~ (C + C ) =~· 2 cos (2m+ 2) x cosn+lx dx, 

and 

1T (C C ) 
2 m, n- m, n+l 

2 sin (2m+ 2) x sin x cosn x dx. 

After integrating by parts, the later integral yields 

c m,n 
2mt2 

- em, n+l = n + l (Cm, n + Cmtl, n]• 

and then we get the recurrence formula 

C = n + l - 2 (m + l ) C 
m + l , n n + l + 2 (m + l) m, n 

(245) 

The coefficients B ~ , Eq. (229), have been computed by evalua
.!!;,n 

ting numerically the corresponding integrals by means of a 10-point Gauss 

quadrature formula. 
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The power series,. Eqs. (226) and (227), then give the values of 

the functions sl' k (w) and. s2, k(w) for any value of w'' and the tables of 

the functions E 1 k(w), E 2 k(w) anq. E 3 k(w) have been set up accord-
• ' I •· 

ing to Eqs. (222), (223), and. (224).: Besides Tables II-7 through II-9, 

the following values of the coefficients hk' f 1, k .and £2 , khave been 

obtained for bare cylindrical reactors. 

k hk fl,k f2, k 

J. = 0, m = 0 1.0000 0.2749 0.6139 

J. = 0, m= 1 1.0000 -0.0916 0.1228 

J. = 0, m = 2 1.0000 0.0550 -0.0175 

J. = 1' m = 0 0.4296 -0.0785 0.2646 

J. = 1, m.= 1 0.4296 0.0262 0.0529 

J. = 1' m.= 2 0.4296 -0.0157 -0.0076 

J. = 2, m = 0 0.2734 0. 0399 -0.0405 

J. = 2, m= 1 0.2734 -0.0133 -0.0081 

J. = 2, m = 2 0.2734 0.0080 0.0012 

4 .. Parametric .Study of u23
s, Fueled Reactor 

The calculation procedure developed in the preceding sections 

is now applied to the study of the flux changes which take place in a bare 

reactor where fuel consisting of substantially pure u235 
is irradiated 

batchwise. 

The local excess neutron production and the burnup of the fuel 

. (fraction of initial u235 
atoms destroyed) are represented by the fol

lowing dimensionless functions of the local flux time 8: 

and 

-(] 258 
g,(8), = go + g25 e ' 

-a 25 8 
= 1 - e 

'(250) 

(251) 
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Table 11-7. Bare cylindrical_ reacto,r: functions E 
1 k(w). 

w 1=0, m=O. l=O,m=l 1=0, m=2 l=l,m=O l=l,m=2 £=2,_m=O 

0.10 0.02618 0.00915 0.00550 -0.00784 0.00262 '0;,00399--
0.20 0.04-990 -0.01826 0.01099 -0.01564 0.00524 0.00798 
0.30 0.07137 -0.02729 0.01646 -0.02336 0.00788 0.0119.6' 
0.40 0.09080 -0.03619 0.02191 -0.03097 0.01054 0.01593 
0.50 0.10837 -0.04495 0.02734 -0.03845 0.01322 Oo"Ot987 
0.60 0.12423 -0.05354 0.03273 -0.04577 0.01592 0.02380 
o.-7o 0.13854 -0.06195 0.03809 -0.05292 0.01864 0.02769 
o.8o 0.15144 -0.07015 0.04339 -0.05988 0.02139 0.03155 
0.90. 0. 16304 -0.07813 0.04865 -0.06665 0.02416 0.03538 
1.00 0.17347 -0.08589 0.05385 -0.07321 0.02695 0.03916 
1.10 0.18283 -0.09341 0.05899 -0.07955 0.02976 0.04290 
1.20 0.19120 -0.10070 0.06407 -0.08568 0.03258 0.04659 
1.30 0.19869 -0.10774 0.06908 -0.09159 0.03542 0.05024 
1.40 0.20536 -0.11455 0.07401 -0.09728 0.03826 0.05382 
1 •. 50 0.21130 -0.12111 o. 0788 7 -0.10275 0.04112 0.05735 
1.60 0.21656 -0.12743 0.08366 -0.10800 0.04398 0.06083 
1.70 0.22120 -0.13351 0.08836 -0.11303 0.04684 0.06424 
1.80 0.22528 -0.1393.5 0.09298 -O.ll186 0.04970 0.06759 
1.90 0.22886 -0.14496 0.09751 -0.12247 0.05255 0.07087 
2.00 0.23197 ~0.15034 0.10196 -0.12687 0.05540 0.07409 
2.10 0.23465 -0.15550 0.10633 -0.13108 0.05824 0.07724 
2.20 0.23696 -0.16044 0.11060 -0.13509 0.06106 0.08032 
2.30 0.23891 -0.16517 0.11478 -0.13891 0.06387 0.08333 
2 •. 40 0.24.055 -0.16969 0.11888 -0.14254 0.06666 0.08628 
2.50 0.24190 0.17.401 0.12289 -0.14600 0.06943 0.08915 
2.60 0.24298 -0.17813 0.12680 --0.14928 0.07217 0.09196 
2.70 0.24383 -0.18206 0.13063 -0.15239 0.07490 0.09469 
2.80 0.24446 -0.18581 0.13436 -0.15535 0.07759 0.09736 
2.90 0.24489 -0.18939 0.13801 -0.15814 0.08026 0.09995 
3.00 0.24515 :-0.19279 0.14156 -0.;16078 0.08290 0.10248 
3.10 Q..21t5.2-4 -0.19602 0.14503 -0.16328 0.08550 0.10493 
3.20 0.24519 -0.19910 0.14841 -0.16564 0.08808 0.10732 
3.30 0.24501 -0.20202 0.15171 -0.16787 0.09062 0.10964 
3.40 o. 244 71 -0.20480 0.15491 -0.16996 0.09312 o. 11189 
3.50 0.24431 -0.20743 0.15804 -0.17194 0.09559 0.11408 
3.60 0.24380 -0.20992 0.16108 -0.17379 0.09802 0.11620 
3.70 0.24322 0.21229 0.16403 0.17553 0.10041 0.11826 
3.80 0.24255 -0.21453 0.16691 -0.17717 0.10277 0.12025 
3.90 0.24181 -0.21665 0.16970 -0.17870 0.10508 0.12218 
4.00 0.24101 -0.21865 0.17242 -0.18012 0.10736 0.12405 
4.10 0.24016 -0.22054 0.17506 -0.18146 0.10960 0.12586 
4.20 0.23925 -0.22233 o. 17762 -0.18270 0.11179' 0.12761 
4.30 0.2383.1 o.22401 0.18011 .0.18386 0.11395 0.12930 
4.40 0.23732 -0.22559 0.18252 -0.18493 0.11607 0.13093 
4.50 0. 236 30 -0.22708 0.18486 -0.18593 0.11814 0.13251 
4.60 0.23525 -0.22849 . o. 18714 -0.18685 0.12018 0.13403 
4~70 0.23417 -0.22980 0.18934 -0.18770 0.12217 0.13550 
4.80 0.23307 -0.23103 0.19148 -0.18848 0.12413 0.13692 
~-90 0.23196 0.23219 0.19355 -0.18919 0.12604 0.13829 
,5.00 0.23082 -0.233'27 0.19555 ~0.18984 0.12792 0.13961 
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Table II-8. Bare cylindrical reactor: functions E 2 , k(w). 

w l=O,m=O l=O,m=l l=O,m=Z l=l,m=O l=l,m=l £=2,m=O 

0.20 0.88530 0.02190 0.00349 0.04711 0.00868 0.00837 
0.30 0.83358 -0.03104 0.00520 ~0.06671 -0.01176 0.01267 
0.40 0.78526 -0.03912 0.00688 -0.08399 -0.01414 0.01700 
0.50 0.74010 -0.04624 0.00851 -0.09917 -0.01590 0.02131 
0.60 0.69~7~8~7~-~0~-~0~5~2~4~8~~0~·~0~1~0~1~0 __ -~0~·~1~1=2~4~5 __ -~0~·~0~1~7~1~3--~0~·~0~2~5~5~6 
o~~o--o:65838 -0.05794 0.01163 -0.12402 -0.01788 0.02973 
o.8o 0.62143 -0.06268 0.01110 -0.13403 -o.01823, o.o3380 
0.90 0.58684 -0.06677 0.01451 -0.14263 -0.01823 0.03775 
1.00 0.55445 -0.07027 0.01585 -0.14996 -0.01793 0.04155 
1.10 0.52411 ~0.07325 0.01713 -0.15615 -0.01738 0.04521 
1.20 0.49568~-~0~-~0~7~5~7~5~~0~-~0~1~8~3~4~-~0~-~1~6~1~3~1 __ -~0~-~0~1~6~6~2--~0~-~0~4~8~7~1 
I.·3a-· o.469o2 -o.o7781 o.o1949 -o.t6554 -o.o1567 o.o52o5 
1.40 0.44402 -0.07949 0.02056 -0.16894 -0.01458; 0.05521 
1.50 0.42056 -0.08082 0.02158 -0.17158 -0.01336 0.05820 
1.60 0.39855 -0.08184 0.02252 -0.17356 -0.01205 0.96102 
1.70 0.37787 -0.08258 0.02340 -0.17493 -0.01067 0.06367 
1.80 0.35845 -0.08306 0.02422 -0.17577 -0.00923. 0.06614 
1.90 0.34019 -0.08332 0.02498 -0.17612 -0.00775 0.06844 
2.00 0.32303 -0.08338 0.02568 -0.17606 -0.00624. 0.07057 
2.10 0.30689 -0.08326 0.02632 -0.17561 -0.00473; 0.07254 
2.20 o. 29170 -0.08298 o. 02690 -0.17483 -0.00321! 0.07436 
2.30 0.27740 -0.08256 0.02743 -0.17376 -0.00170! 0.07601 
2.40 0~-~2~6~3~9~3~-~0~-~0~8~2~0~2--~0~-~0~2~7~9~1 __ -~0~-~1~7~2~4~2 __ -~0~-~0~0~0~20~_0~.0~77~5~2 
;(~ .. 5o o.25124 -o·.o8136 o.02835 -0.17086 o.oo1n· o.o7888 
2.60 0.23928 -0.08062 0~02873 -0.16910 0.00272 0.08010 
2.70 0.22800 -0.07979 0.02907 -0.16718 0.00413 0.08119 
2.80 0.21736 -0.07889 0.02937 -0.16510 0.00550 0.08215 
2.90 0.20732 -0.07792 0.02962 -0.16290 0.00684 0.08299 
3.00 0.19783 -0.07691 0.02984 -0.16059 0.00813 0.08371 
J.10 0.18888 -0.07585 0.03002 -0.15820 0.00938 0.08432 
3.20 0.18041 -0.07475 0.03017 -0.15573 0.01058 0.08482 
3.30 0.17241 -0.07362 0.03028 -0.15321 0.01173 0.08522 
3.40 0.16484 -0.07247 0.03036 -0.15064 0.01283 0.08553 
3.50 0.15767 -0.07130 0.03042 -0.14803 0.01~89. 0.08575 
3.60 0.15089 -0.07011 0.03044 -0.14540 0.01490· 0.08589 
3.70 0.14447 -0.06892 0.03044 -0.14276 0.01585 0.08595 
3.80 0.13838 -0.06771 0.03042 -0.14011 0.01677 0.08593 
3.90 0.13261 -0.06651 0.03037 -0.13746 0.01763 0.08584 
4.00 0.12714 -0.06531 0.03030 -0.13481 0.01845 0.08568 
4.10 0.12195 -0.06411 ~.03022 -0.13218 0.01922 0.08547 
4.20 0.11702 -0.06291 0.03011 -0.12957 0.01994 0.08519 
4.3o o.11235 -o.o6172 o.o2999 -o.12698 o.o2o63 o.o8487 
4.40 0.10790 -0.06055 0.02985 -0.12441 0.02127: 0.08449 
4.50 0.10368 -0.05938 0.02970 -0.12187 0~02187 0.08407 
4.60 0.09966 -0.05823 0.02953 -0.11936 0.02242 0.08360 
4.70 0.09584 -0.05709 0.02935 -0.11689 0.02294 0.08310 
4.80 0.09221 -0.05596 0.02916 -0.11446 0.02343 0.08256 
4.90 0.08875 0.05485 0.02896 -0.11206 0.0238/ 0.08198 
'5.00 0.08545 -0.05376 0.02875 -0.10970 0.02429 0.08138 
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Table II-9. Bare cylindrical reactor: functions E 3 , k(w). 

w .f=O,m=O .f=O,m=1 .f=O,m=Z .f=l,m=O .f=1,rn=1 .f=Z,m=O 

~- 0.97000 -0.00591 0.00088 -0.01273 0.00248 0.00205 
0.20 0.~4134 -0.01138 0.00175 -0.0244q -0.00464 0.00414 
0.30 0.91394 -0.01644 0.00262 -0.03537 -0.00653 0.00627 
0.40 0.88774 -0.02112 0.00347 -0.04541 -0.00815 0.00841 
0.50 0.86268 -0.02~45 0.00432 -0.05467 -0.00953 0.01056 
0.60 0.83869 -0.02944 0.00515 -0.06322 -0.01070 0.01271 
o.1o o~'s1siz-.::::o:o-33TT·-·-o:cfo597 -o.o1uo --o-.o1168 o.o1484 
0.80 0.79372 -0.03654 0.00677 -0.07836 -0.01248 0.01696 
0.90 0.77263 -0.03968 0.00755 -0.08503 -0.01312 0.01905 
1.00 0.75241 -0.04256 0.00831 -0.0~117 -0.01362 0.02111 
1.10 0.73302 -0.04522 0.00906 -0.09680 -0.01399 0.02314 
1.20 0.71442 -0.04766 0.00978 -0.10197 -0.01424 0.02512 
1 .3 0 0 • b9-6 S s:a:·a 4 9 9 1 0 • 0 1 0 4~8--~0_: • ..;.1-;:0,.:;:6-,;7~0:----:'0:-:.-;0:-;1;.-;4;-o3~9,;--:0:;-.=-:0:;-2~7;;.,0~7 
1.40 0.67940 -0.05196 0.01117 -0.11103 -0.01444 0.02897 
1.50 0.66292 -0.05384 0.01183 -0.11498 -0.01441 0.03082 
1.60 0.64707 -0.05556 0.01247 -0.11859 -0.01431 0.03262 
1.70 0.63184 -0.05713 0.01308 -0.12186 -0.01413 0.03437 
1.80 0.61719 -0.05856 0.01368 -0.12484 -0.01390 0.03606 
··--- ----------··----------- ·----
1.90 0.60308 -0.05986 0.01425 -0.12753 -0.01362 0.03771 
2.00 0.58951 -0.06103 0.01481 -0.12996 -0.01328 0.03930 
2.10 0.57643 -0.06209 0.01534 -0.13215 -0.01291 0.04084 
2.20 0.56383 -0.06305 0.01585 -0.13410 -0.01251 0.04232 
2.30 0.55168 -0.06391 0.01635 -0.13585 -0.01207 0.04375 
2.40 0.53997 -0.06467 0.01682 -0.13740 -0.01161 0.04512 
2.5-o· o.s2867 o.o6536 o.o1121 o.13878 o.o1112 o.o4645 
2.60 0.51777 -0.06596 0.01770 -0.13998 -0.01062 0.04772 
2.70 0.50724 -0.06649 0.01812 -0.14(02 -0.01010 0.04894 
2.80 0.49708 -0.06694 0.01852 -0.14192 -0.00956 0.05011 
2.90 0.48726 -0.06734 0.01889 -0.14268 -0.00902 0.05123 
3.00 0.47777 -0.06768 0.0192~ -0.14331 -0.00847 0.05230 
3. 1 o o • 4 6 a 5·9 --=o:OK796--o. o 1 9 6 o ---0,---• .,..14~3~8~3--""'o-.""o""o""'7'""9,..,1-""o,-.""o'""5'""3'""3'""2' 
3.20 0.45972 -0.06819 0.01993 -0.14424 -0.00735 0.05430 
3.30 0.45113 -0.06837 0.02024 -0.14455 -0.00679 0.05523 
3.40 0.44282 -0.06851 0.02054 -0.14477 -0.00623 0.05612 
3.50 0.43478 -0.06860 0.02082 -0.14490 -0.00567 0.05696 
3.60 0.42698 -0.06866 0.02109 -0.14495 -0.00512 0.05776 
3. to o. 4 i9-43··..:.-o~ cf6 868-- ·o. 02134 o. 144"9"'3-"o-."o"o74"5"6-"o•."o"'5""8"5~2.-
3.8o o.41212 -o.o6867 o.o2t58 -0.14484 -o.oo4o1 o.o5924 
3.90 0.40502 -0.06863 0.02180 -0.14468 -0.00347 0.05993 
4.00 0.39814 -0.06857 0.02202 -0.14447 -0.00293 0.06057 
4.10 0.39147 -0.06847 0.02222 -0.14420 -0.00240 0.06118 
4.20 0.38499 -0.06835 0.02241 -0.14388 -0.00188 0.06176 
4 • 3 o ·- ·o -;: n-aTr---=-o • o 6 8 2 1 ··o".~o"'2"'2"'5"9,.--,.;-o -. '1 '4"3,..5-..z-"'o-."o"'o"'1~3"6-"o'.-.o'""'6~2.-.3'"'o.-
4.40 0.37260 -0.06805 0.02275 -0.14311 -0.00085 0.06281 
4.50 0.36667 -0.06787 0.02291 -0.14267 -0.00036 0.06329 
4.60 0.36091 -0.06767 0.02305 -0.14219 0.00013 0.06373 
4.70 0.35531 -0.06746 0.02319 -0.14168 0.00061 0.~6415 
4.80 0.34987 ~0.06723 0.02332 -0.14114 0.00108 0.06454 
4.9o· o~3-4lt5T-=o-.-oo69':1-----u.-o2343 0.14057 o.oo1"57> o.o6490 
5.00 0.33942 -0.06674 0.02354 -0 •. 13997 0.00200 0.06524 
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Bare reactors of the same initial (uniform) composition .and the 

same geometrical buckling correspond to the same parameters g
0 

and 

g 25 , .whatever the shape of the reactor. The excess neutron production 

is a monotonically decreasing function of the irradiation, i.e. , 

g 25> 0 , and g
0 

< 0 . 

4.1. . Zero-Dimensional Model 

If the fuel were thoroughly mixed throughout the irradiation, or 

if it were fixed in position and irradiated in a spatially uniform flux, the 

local flux time fJ would be independent of the position. 

The flux time at the end of life is then determined by use of the 

vanishing control condition to be the root of the equation g(fJ) = O;,i. e., 

(252) 

The corresponding (average and also maximum) burnup 13 is the 
-a 258 

value of the function j3(fJ); eliminating e between Eqs. (251) and 

{252) yields 

(253) 

In the following sections, the burnup obtainable at the end of 

batch irradiation of the unmixed fuel is studied as a function of the two 

parameters (g
0 

+ g 25)j g 25 and g 25 ; by rewriting Eq. (250) as 

[

go + g25 -a 258 l 
g(fJ) = ~25 . g25 -(1- e ~ , 

the parameter (g
0 

+ g 25)/ g 25 is the value of the burnup obtained by 

using the zero-dimensional model, and the parameter g 25 characterizes 

the magnitude of the function g(fJ), which is proportional to the initial 

excess reactivity and inversely proportional to the initial leakage. 

The first-order perturbation neglects the changes of the flux shape 

throughout the irradiation. It yields an approximati-on of the final burnup 

which is a function of the parameter (g
0 

+ g 25)jg 2~ only. The computation 

method is that developed in Benedict and Pigford. 1 
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The second-order perturbation gives a first approximation of the 

flux-changes and a corresponding correction to the final burnup, which 

are computed according to the method developed in the preceding sections. 

The parameter g
25 

determines the magnitude of the flux change. 

The results thus obtained apply quantitatively to any fuel, the 

properties of which vary with the irradiation according to Eqs. (250) and 

(251); the results apply qualitatively to any fuel for whichthe excess 

neutron production is a monotonically decreasing function of the .irradi

ation. 

1=· 2. First Order Perturbation 

For the more realistic model of an unmixed fuel irradiated in a 

spatially varying flux, the first approximation of the control absorption 

is given by Eqs. (114) and {132) as 

(254) 

Instead of T, it is here convenient to define a dimensionless 

irradiation variable w by 

w =a 25 T • {255) 

where T is the first approximation of the flux time at the center of the 

reactor. 

The value of the irradiation variable at end of life satisfies the 

vanishing control condition. Setting c
0 

= 0 in Eq. {254), one obtains 

(256) 

Since the flux shape is assumed equal to v 
0 

{x) throughout the 

irradiation, the flux time to which the fuel has been irradiated at end of 

life is 

(257) 

The average burnup of the fuel is then given by Eqs. (107) and (135) as 

(258) 



-75-

and the central (maximum) burnup is simply 

-w 
l3(w) = 1 - e ; (259) 

( 13) 
0 

and l3(w} are then the functions of (g
0 

+ g 25)/ g 25 determined by 

Eqs. (256), (258) and (259); they are shown in Fig. II-2 for reactors 

of various geometries. Tabulated values of the functions E 2 , 
0

(w) and 

E
0

(w) have been use.d which can be found in various sources with the fol

lowing notations: 

Geometry Reference E
0

(w) E2, o(w) 

(Bl) 
G E
0 

(w) 
Slab 

Table II-2 E2, O(w) 

(S2) E~)(w, 0) E~l)(w,O) 
Sphere Table II-5 E2, O(w) 

{S2) E\f>(w, 0) E~) (w, 0) 

Cylinder (Bl) B EB (w, 0) E
0 

(w, O) 2 

Table II-8 E2, o(w) 

Parallelopi ped (S2) E63) (w, 0) E(i) (w, 0) 

Figure II-2 shows that the maximum and average burnup are 

respectively larger and smaller than the corresponding value for mixed 

fuel (zero-dimensional model). The flatter the initial flux, i.e. , the 

smaller the ratio of the maximum to the average flux, the better the 

zero-dimensional approximation. 

The average burnup is smaller for unmixed fuel since the fuel is 

more depleted at the center where it has a larger importance. 



-76-

Maximum burnup 

Average burnup 

40 

30 

* ~ 
Q. 
::I 
c .... 20 ::I 

CD 

10 

0.20 0.30 

MU-29364 

Fig. II- 2. Burnup as ~redicted by first-order perturbation 
. method for u2. 5 fueled reactors. 
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4. 3. Second-Order Perturbation 

UsingEqs. (250), (251), and (255), we find that Eqs. (132), (133}, 

and (141) become 

sk(w) = g 25 E 2 k(w), where k ~ 1, (260) 
' 

and 

as 

Sk(w) =' g 25 E 3 , k(w), where k ~ 1, 

T(vk,f3
1 

(v0 T))= El,k(w), where k ~0 
The flux changes are then given by Eqs. (115) and (116) 

u~(x, w) ~ g25 t ( ~~ 2 )E2, k(w) ' 
k=l Bk BO 

where a value of w corresponds to an amount of control absorber 

* . c
0 

+ c
1

; c
0 

1s given by Eq. (254); and Eqs. (121) and {117) yield 

liC 2 

(261) 

(262) 

(263) 

* 2 ~ Bo d . 
cl (w) = g25 B2-B2 hk dw { w Ez, k(w) E3, k(w)} · 

:=T k 0 (264) 

Tables II-2, II-5 and II-8 giving the functions E 2 , k(w) show that, 

for g 25 > 0, the coefficients of the lowest eigenfunctions (k = 1, or ~ = 1, 

m = 0 and l = 0, m = 1) in Eq. (263) are negative; this is easily seen 

* to correspond to a flattening of the flux; on the other hand, c 
1 

(w) is 

positive. 

Thus, since the fuel is more depleted at the center, the flux flat

tens. However, this flattening of the flux has let the fuel be slightly less 

depleted at the center than if it had been irradiated in a.flux of constant 

shape. The importance of the fuel is then slightly increased, and this 

results in a higher overall reactivity than predicted by the first-order 

perturbation, that is, more control absorber is needed to keep the reactor 

* critical (c
1 

>0). 

At end of life, using the value of the parameter w determined 

by Eq. (255), the first approximation of the flux time, Eq. (257), shall 

be added to the correction given by Eqs. (119) through (121). The cor

rective term for the average burnup can then be written 



-78-

(265) 

The functions Nk(w) are defined, according to Eqs. (120) through (122) 

and Eqs. (260) through (264), by 

(266) 

As expected, the result of the second-order perturbation theory 

is a linear function of g 2 ~, i.e. , a linear function of the magnitude of 

the perturbation g(fl). 

The following sections give the numerical results for slab, 

spherical and cylindrical reactors. One finds that the burnup is larger 

than predicted by the first-order perturbation theory. This effect has 

been explainedBl by noting that since the flux is flatter, the burnup is 

more uniform. More precisely, one notes that for the same average 

burnup, the fuel is comparatively less depleted at the center where its 

importance is larger. 

4.4. One-Dimensional Problems: Slab and Sphere 

Although reactors shaped as slabs or spheres are not commonly 

used, the theory of slab reactors is of importance for its application to 

some continuous fueling schemes (cf. Sec. III), and spherical reactors 

can be used as a first approximation in the study of cylindrical reactors. 

Fo:t a bare slab reactor, the eigenfunction expansion is an ordinary 

Fourier series. According to Eqs. (168) and (263), the approximation 

of the flux shape is given by 

TI 
cos 2 s+g25 . 

/k_''• =1 (270) 
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and the average and central values of the flux are proportional to 

< 
u) = 2 [1 +. g ~ . ( ~ 1 )k . E (wJ) (271) 

n 25 ~=i Zk(Zk + 1) (Zk + Z) 2,k J' · 
and CIC 

\ E2,k(w) 
u(O) = 1 + g25 L 2k(2k + 2) · 

k=1 

(272) 

Table II- 2 shows the rapid convergence of the series in the 

right side of the above equations; using the results of Sec. III.4. 1, one 

can prove that, for large k, E 2 , k(w) is of an order of magnitude l/k
3

. 

For w = LO, .Table II-2 yields the following results: 

y 1T [ 1T 'lT uh., w) = cos 2 I; + g 25 -0.0103 cos 32 I;+ 0 .. 0009 cos 5 2 I; 

. 1T 
'"'0.0002 cos 72 I; + 0 0 0

] ' 
(273) 

(u)::::! (1 + 0.0037 g 25}, (274) 

and 

u{O) :::: 1 - 0. 0096 g 25 . (275) 

The flux shape flattens more and more as irradiation increases, 

and this can be shown to result in an increase of the burnup at end of life 

over the value predicted by the first-order perturbation theory. 

4. 5. Cylindrical Reactor 

The flux changes are given by Eq. (263) with the functions 

E 2 , k(w) tabulated in. Table II-8. Unlike the reactors considered above, 

the cylindrica.l reactor corresponds to a flux shape which is a function 

not only of w and g 25 , but also of the ratio of the radialto axial di

mensions; that is, according to -Eq. (239). the coefficients B~/(B~ -B~) 
are now functions of a parameter .}\. = R/Z. If either one of the radial 

or axial dimensions tends toward an infinite value while the buckling 

remains constant, the flux changes become larger and larger .. For in

stance, if the radius becomes very large, the coefficients of all the 
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eigenfunctions J 
0 

(j .t TJ) cos ~ ~ tend to become infinite; this is not in con

tradiction with the results obtained for a slab or cylindrical but perfectly 

reflected reactor, since the boundary conditions now yield J 
0 

(j
0 

TJ) as the 

initial radial flux shape instead of the radially uniform flux in an infinite 

slab reactor. 

The dependence of the flux changes upon the shape factor of the 

cylindrical reactor shows clearly the nonseparability of the flux; that is, 

only for the uniform reactor is the flux-shape the product of a function 

of the radial coordinate by a function of the axial coordinate z. 

When the radius becomes infinitely large, i.e. , when the buckling 

in the r direction (see Reference W3, p. 204) becomes infinitely small, 

the radial-flux changes become extremely large as irradiation proceeds 

since the diffusion of neutrons along the radial coordinate r is too 

small to balance the loss of reactivity of the fuel. 

For all practical purposes, the ratio X. of radial to axial di

mensions {physical dimensions of the bare reactor core) is close to 

unity. The following table gives some typical values of the coefficients 
2 2 2 

Bo/(Bk -BO): 

~ =0, ~ =0, i.. = 1' ~ = 1' i..= 1' ..€ ::::2, i..=2, i.. =2, 
m=1 m=2 m=O m=1 m=2 m""O ill"' 1 mo=:2 

R/Z=l 0.4180 0.1393 0. 3342 0.1857 0,0983 0.1194 0. 0929 0.0643 

R/Z=2 0.1983 0.0661 0.6340 0.1510 0.0598 0. 2265 0.1057 0.0517 

Inspection of Table II-8 giving E 2 , k(w) shows that the coefficients 

of the eigenfunctions 

rapidly become negligible when the value of ( ~ + m) increases. The 

most important correction to the flux shape and to the flux time arises 

from the eigenfunctions 

(277) 



and· 

(278) 

The coefficients of these .eigenfunctions are proportional to the cor res

ponding auxiliary functions E 2 , k(w). in Eq. (263), an.d they are negative 

when g
25 

is positive. This corresponds to a flattening of the flux shape 

in the axial and radial directions. 

To a given value of (g
0 

+ g 25 )jg25 , there corresponds a value w 

of the irradiation parameter at end of life, in Eq. (256), .and a first approx

imation of the average burnup (13 )
0

, in Eq. (258). The flattening of the 

flux then yields a positive correction (13) 
1 

proportional to the parameter 

g 25 . In the following paragraphs, we study the variation of(13)
1
/g25 as 

a function of w and .>.. • 

4. 5.1. Variation of( 13 )
1

/ g 25 with the irradiation parameter w. This 
c-· 

variation is determined by the functions Nk(w). For small w, Eqs. (145) 

and (26:::)1:[3 ;1. o hkf2 k- fl k] \ k. wz o ~2 f2N~) . (279) 

2, 0 ' ' \ dw w=O 

(d
2N) 

The values of ~ ~ · are given in the following table: 
dw w=O 

~ =0, 
m=l 

0.01576 

l =0, 
m=2 

0.00069 

1 =l' 
m=O 

0.03059 

1 =l, 
rn=l 

0.000 ll 

.e = 1 .• 
m=2 

.e =2, 
m=O 

.e =2' 
m=l 

-0.00004 

The .above numerical values indicate clearly that, for typical 

values of the coefficients B~/ (B; -B~), the correction terms due to the 

various eigenfunctions decrease rapdily as the value of (~ +m) increases. 

The following computations will be performed by taking into account only 

the first eigenfunctions corresponding to l=O,m=l and .t=l,m=O. 
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The functions Nk (w) have been evaluated, from the tabulations 

of the functions E 1 ,k(w), E 2 ,k(w) and E 3 ,k(w), by hand computations 

of the derivatives appearing in Eq. (266), using three or five-point 

f 1 
H2 

ormu ae. 

The following table gives the functions corresponding to P. =0, m= 1 

and to P.=l,m=O, which have been denoted by N 2 (w) and N4 (w), respec

tively. 

0.1 0.3 0.4 0.5 

0.00015 0.00054 0.00111 0,00182 0.00262 

0.00028 0.00102 0.00213 0.00350 0.00502 

0.6 0.7 0.8 1.0 

0.00349 0.00439 0. 00532 0.00623 0.00714 

N 4 (w) 0.00666 0.00836 0.01346 

Using the above table of the functions N
2

(w) and N4 (w), the 

value of ( f3)
1
/g 25 as a function of w has been plotted on Fig. II-3. 

4. 5. 2. Variation of( (3 \I g 25 with the shape factor X.=R/Z. Since the 

effects of the higher-order eigenfunctions are very small, this study will 

be performed by assuming that the flux changes can be represented by 

only the two eigenfunctions corresponding to 1 =0, m= l and .R. = 1, m=O. 

Equations (239) and (265) then give 

.2 2 2 
Jo + x. "o 

+ .2 .z 
J 1 -Jo 

(280) 

For simplicity 1 s sake, a new shape factor y is defined by the 

following equation 

(281) 
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Then Eq. (280) becomes 

(282) 

For positive values of y, the above function of y has a unique 

minimum which is the root of 

.2 
Jo 

N 2 (w) + :-z-:y 
J 1 -Jo 

Thus, y M is the following function of w: 

N
2

(w) 

N 4 (w) 

(283) 

(284) 

and the corresponding minimum value of the correction to the burnup is 

(285) 

For small values of the irradiation variable w, Eq. (279) and 

the numerical values of the corresponding table give: 

and R/ Z = L 11. 
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This is just slightly larger than the value of the shape factor correspond

ing to the minimum leakage in a bare cylindrical reactor (:minimum vol

ume for the uniformly loaded reactor), which is given by 

y = 0"5 and R/Z = L0855 , (287) 

Between w = 0 and w = 1, the value of y M(w), Eq, (284), in

creases sl:lghtly, but does not differ more than 5% from its initial value, 

The correction to the burnup varies with the factor shape y; its 

variation can be studied as follows: First, Eqs, (282) and (285) yield 

Then, Eq, (284} yields 

2 
[yM(w)-y] 

N2(w)--~-
Y yM(w} 

(288) 

(289) 

Thus, for each value of the irradiation parameter w, i, e, , for 

each value of (g
0

+g 25 )jg
25

, there are two values for y which yield the 

same value of the final burnup; they are related by the equation 

2 
Y1Y2 = yM(w) 

The curves representing the variation of the second~order cor

rection to the burnup, Fig, II-3, have been labeled with the two values 

of the ratio R/Z which correspond to the above equation when the small 

variations of yM(w} are neglected, i, e,, when yM(w) = yM(O) = 0,524, 

4,6, Discu.ssion of the Results 

The foregoing sections show the flattening of the flux predicted 

by one-group theory and the resulting increase of the average burnup 

over its value predicted by first-order perturbation theory when a reactor 

is loaded with highly enriched fuel; for cylindrical reactors, the average 

burhup is a function of the shape of the reactor core, and, in the present 

case, is minimum for reactors whose radius is about L l times the height. 
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Fig. II- 3. Second-order perturbation correction to the 
average burnup in u235 fueled cylindrical reactors. 
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The values of the average burnup at the end of batch irradiation 

of fixed fuel in a bare cylindrical reactor whose height and diameter are 

equal are shown in Fig, II-4, The fuel is pure u 235
, and its excess 

neutron production varies according to Eq. (250). Thus, (g0 +g 25>/ g 25 
is the value of the burnup corresponding to completely mixed fuel, and 

g 25 then characterizes the magnitude of the perturbation of the flux 

shape; the evaluation of the parameters from the physical properties 

of the uniformly loaded (initial) reactor is detailed in Sec. IV. L 

According to the second-order perturbation method, the flux 

changes are proportional to g
25

, The curve labeled g 25 = 0 corre

sponds to the first-order perturbation theory (unperturbed flux shape); 

the second-order perturbation results are obtained by adding to it the 

product of g 25 and the correction(l3\/g25 computed in the preceding 

section (cL Fig, II-3); the correspondence between the irradiation 

variable w and the parameter (g
0

+g
25

)jg
25 

is given by Eq, (256). 

As stated in Sec, L3, the results of the second-order pertur

bation method shall be compared with those obtained by more accurate 

computations, Thus, the reactor equations, Eq. (20), has been solved 

by numerical methods on a high-speed digital computer. The program 

used for these computations is a modified version of the FUELCYC 
S3 

code developed at MIT. Equation (20) is solved repeatedly for suc-

cessive values of the time L It is written in matrix form by use of the 

finite difference method and, at each time step, is solved by the Crout 

reduction technique. 

Results of the finite differences computations are shown in 

Fig, II-4, A sufficient number of time steps has been chosen to make 

the error negligible; the results are then functions of the number of 

mesh points used in the finite differences representation of the Laplacian 

operator, This number of mesh points is limited by the capacity of the 

memory of digital computers. Computations have been performed with 

49 and 100 mesh points. If the error were exactly proportional to the 

square of the mesh size, or inversely proportional to the numb~r of mesh 

points, the exact results would differ from the curve corresponding to 

100 mesh points by the same amount the latter curve differs from the 

curve corresponding to 49 mesh points, 
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Fig. II-4. Average burnup at end of life as a function of 
the parameters- go and g25 in u235 fueled 
cyclindrical reactors. 
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The second-order perturbation is seen, in Fig. II-4, to be very 

accurate for small values of the average burnup and for small values 

of the perturbation parameter g 25 . It is as accurate as finite-differences 

computations with 49 mesh points for average burnups up to 20% when 

g 25 = 5, or up to 10% when g 25 = 15. Application to a specific reactor 

is given in Sec. IV. 1.2.3. 
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III. CONTINUOUS FUELING 

In this section, we consider a .reactor core shaped as a right 

cylinder of arbitrary cross section. The fuel can be irradiated according 

to the fuel management procedures described in the introduction: these 

procedures are radial mixing, graded irradiation, and various steady 

axial movements of the fuel. These fuel management procedures, as 

defined in.this sect'ion, have in common the characteristic that the average 

composition of the fuel at a given position in the reactor is independent 

of the radial coordinates. 

1. Equations and Methods 

1.1. Equation for the· Axial Flux-Shape 

If the average composition of the fuel is independent of the radial 

coordinates x and y, so is the local production of excess neutrons repre

sented by the symbol V' <I> in Eq. (I-24). One assumes .that the control 

absorber I:E' if needed, is also independent of the radial coordinates. 

One uses then the method of separation of variables, writing the flux as 

the following product: 

cp(x, y, z, t) = f(x, y, t} h{z, t) . (l) 

The basic reactor equation, Eq. (I-24), can be written as the 

. sum of the two following equations: 

and 

with 

-D (~) + B~h) = ('><I>- :EE) h, 

2 
- D (~f + B R f) = 0 , 

(2) 

(3) 

(4} 

If the boundary condition on the curved surface of the cylinder 

is independent of the axial coordinate z and of the irradiation, Eq. (3} 

can be solved to yield an axial flux shape f(x, y) as well as a radial buckling 
2 . 

BR constant throughout the irradiation. 
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2 
Dividing Eq. (2) by DB

2
, one obtains the following equation for 

the axial flux shape: 

-(~ 8
2

~ +h)= 
Bz az 

h. (5) 

Let the reactor core be of height 2Z and choose the origin of 

the coordinate system in the midplane xy. The function h(z, t) shall 

satisfy the boundary condition 

h ± &,( dh 0 
dz c:: for z ·= ± z. (6) 

We use the following notations: 

2 _ B2 jz2 
"~o - z (7) 

I; = z/Z , (8) 

h(z,t) = u(l;,t), (9) 
and 

Ez = &J./Z. (10) 

The axial flux- shape is then the solution u(t;, t) of the equation 

u, 0 1) 

with boundary conditions 

au 
u :i: E Z 8"S = 0 for t; = ± 1 . (12) 

For a reactor symmetrical about its midplane, one considers 

only the interval 0 ~ s ~ 1, and the boundary conditions become 

au 
and u + E z ~ = 0, s = l . (13) 

The symbol 'V in the right side of Eq. (11) represents the re
u 

sult of an operation on the function u, an operation which will be made 

explicit for each fuel scheduling scheme. 
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The perturbation method seeks the solution of Eq. {11) as the 

sum of an infinite series of functions, each of which is the solution of a 

linear differential equation, Some general methods for solving such a 

linear differential equation .are given in the following sections; they could 

also be used for solving Eq, (11) by the perturbation-iteration technique. N.l5 

Finally, elliptic functions are introduced; they yield the exact 

solution of Eq. (ll) when the variation of the excess neutron production 

. V (8) is a quadratic function of the flux time to which the fuel has been 

irradiated. 

1. 2. The Linearized Equations 

The left side of Eq. (11) can be considered as a linear operation 

on the function u; it will be written Lu, where L is a linear operator. 

Likewise, the right side of Eq, (11) can be considered as a nonlinear 

operation on the function u. 

There could have been many other ways to write Eq. (11) as an 

equality between the results of the operation of a linear operator on the 

left side, and of a nonlinear operator onthe right side; however, the 

perturbation method, as applied to the present problem, requires. that 

the right side of Eq. {11) vanish for the just critical homogeneous reactor. 

Thus, L is defined by 

in such a way that the equation 

Lu = 0 
0 

( 14) 

(15) 

has a nontrivial solution u
0 

satisfying the boundary condition in Eq. (12). 

This solution is 

u 0 = cos -v0 ~, {16) 

where 'Yo is the smallest positive root of the equation, 

( 1 7) 
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According to the perturbation method, the solution of Eq, (11) 

will be sought as the infinite series 

( 18) 

where each term is the solution of a linear differential equation 

Lu (l;,t) = F (l;,t), 
n n 

(19) 

The following presents sonie general methods which will be considered 

for solving such an equation. 

1. 3, Green 1 s Function 

The following results are the application to the present problem 

of a theorem stated by Friedman (see ReL Fl, p, 1 70). 

The self-adjoint homogeneous differential equation 

Lu(l;) = F(t;), where 0~ s ~ l , (20) 

with linear homogeneous boundary conditions, has a solution if and only 

if F(s) is orthogonal to the nontrivial solution u
0 

(s) of the correspond

ing homogeneous equation; L e, , if, 

1 
j
0 

F(x)u
0 

(x)dx = 0 (21) 

Let V(s) be a function satisfying the equation LV(s) = 0 (with 

arbitrary boundary conditions) and let V(t;) be independent of u 0 (s) . 

Then, a particular solution of Eq. (20) is the function U(s) de

fined by 

s s 
uo(s) r V(~) ( 

U(s) = - 3 - Jo V(x)F(x)dx - - 3-)o u 0 (x)F(x)dx, (22) 

where J is a constant which is easily determined from Eq. (20) in which 

one replaces u(s) by U(s) (J can also be determined from its definition 

as the "conjunct" of the two functions u
0 

and V). 

., 
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Letting L be defined by Eq. (14), with the boundary conditions 

for symmetrical reactor, Eq. (13), one can then take V(~) = sin y
0

t;.; 

the particular solution U(~), Eq. (22), is given by 

U(!',) = Yo Cos Yo!', r sin YoxF(x) dx - sin Yo!', r cos YoX F(x) dx l. 
[ )o )o · J 

We see that U(s) vanishes as well as its first derivative at s = 0, 

and the general solution u(s) of Eq. (20) is the sum of this particular 

solution and of an arbitrary multiple of the solution cos y
0

s of the 

homogeneous equation, Eq. (15). Thus, 

~ 

u((,) = u(O) cos y 0r, - Yolo sin y
0

(!',-x)F(x)dx . (23) 

An additional condition (normalization condition) is required in 

order to define uniquely the arbitrary constant u(O), which is here the 

value of the function u(l;,) at ~ = 0 . 

The above result could be used in order to obtain the solution to 

the linear equation, Eq. {19), when the function F (s, t) is simple enough 
n 

for the above integrals to be evaluated analytically. 

This result could also be used in order to determine the solution 

of the nonlinear equation, Eq. (11), by an iteration procedure, since 

Eqs. (ll) and (23) are equivalent to 

and 

s 
u(!',, t) - u(O, t) cos y

0
r, = - y1a 

1 

" - E u E 
sin y

0
(s-x) -~2..-- u(x, t) dx 

DBz 

r cos YoX u(x, t)dx=.O. 

Jo 

(24) 

(25} 
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Assume that one has obtained an approximate solution u (n) g, t) 

and the corresponding explicit expressions for 

...,u(n) and ~<En) · 1 h. h. · f 

"i1 and 
u I:E' noted by 

v ~ respectlve y, w 1c satls y 

"i1 (n) _ I:(n) 
u E (n) 

u (x,t)dx=O, (26) 

then the iteration method yields the next approximation u (n+ 1) (S,, t) as 

s 
~ - Yo~ sin y0 (C-x) 

"i1 (n) _ I:(n) 

u E u(n)(x,t)dx. 

The values of u{n+l)(O,t) and 

equation: 

DB
2 
z 

(27) 

I:~+l) are related by the following 

(n+l) u (x, t)dx = 0. (28) 

For instance, if one seeks the solution of Eq. (11) for which the 

reactor is just critical without control absorber, L e., if one lets 

l:E = 0, then Eq. (28) is just a normalization condition which determines 

the value of u{n+l)(O,t). 

In section III.4. 3, the solution of the first-order perturbation 

equation is obtained in closed form by use of the Green 1 s function. 

Equations (191) and (192) compare the results thus obtained with those of 

an eigenfunction expansion. 

1.4. Eigenfunction Expansion 

In general, the function F(s) on the right side of Eq. (20) is not 

simple enough for the integral in Eq. (23) to be evaluated analytically; 

one then seeks the solution u by using the eigenfunction method. 

.• 
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We developed this method during the study of the batch irradiation 

of unmixed fuel. In Sec. II, the case of a slab reactor corresponds just 

to Eq. (20) where the operator L is defined by Eq. (14) together with the 

boundary conditions for symmetrical reactor, Eq. (13). With the present 

notations, the result is 
1 
j
0 

F(x) cos ykxdx 

1 2 . j
0 

cos ykxdx 

(30) 

where afh is an arbitrary constant, F(x) satisfies Eq. (21), arid yk is 

the (k+l) root of the equation 

( 31) 

An iteration procedure for solving the nonlinear equation,. Eq. (11), 

could be derived with the help of Eq. (30), just as had been done with the 

help of Eq. (23). 

1.5. Fourier Expansion 

The foregoing eigenfunction expansion has the disadvantage of 

requiring one to first solve a transcendental equation, Eq. (31), in order 

to obtain the eigenvalq.es yk and the corresponding eigenfunctions 

cos ykl;, . 

This section shows how to obtain the solution of Eq. (20) as a 

Fourier series of trigonometric functions over a correctly enlarged 

interval. Only the case of a symmetrical boundary condition, Eq. (13), 

~ill be developed below. 
I 

First, one defines 1;, i as the first positive root of the equation 

u 0 <s> = o . 
The function u0 (~) can then be defined as the nontrivial solution 

of Eq. (15) which satisfies, 

( 1) 
du 

0 ' at 1;, = 0 • (32) ~= 
and 

[ either u + du 1 , (33) E z ~::: 0 , at ~ = 
(2) 

I 

or u(~ 1 )=0. (34) 
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1 
Given a positive value of e Z' 'Yo is determined uniquely by Eq. (17) 

and ~ 1 is then given by 

(35) 

The above equivalent boundary conditions, Eqs. (33) .or (34), are 

defined in reactor theory W
3 

as follows: 

(1) The linear extrapolation distance, IS J , is the distance beyond Z 

(the physical boundary of the reactor core) at which the tangent to the 

neutron flux goes to zero, To fix the value of IS~ Lor E Z' Eq. (10)] 

implies the use of the boundary condition given by Eq. · (33). 

(2) The reflector saving IS is the distance beyond Z at which the 

analytic continuation of the flux goes to zero. The degree of truncation 

of the initial flux will be defined by the coeffiCient E, where 

E = 
I 

IS 
-z--;-' - = z +IS 
z - z (36) 

and the change of variable, Eq. (8}, yields 

(37) 

For a homogeneous reactor, E and e Z are related by Eq. (35) 
i 

in which one replaces ~l and y
0 

by their values obtained from Eq. (17) 

and (3 7). 

with 

ie,, 

The above definitions are represented in Fig. III-1. 

Consider now the solution w(~) of the following equation: 

( 
2 ) l d w . . i 

- - 2 - 2- + w = F(~) H{l--~>. o ~~ ~ ~ 1 , 

Yo d~ 

dw as= o, ~ = o 

(38) 

(39) 

The symbol H, in Eq. (38) represents the Heaviside step function; 

H(l _ ~) = { 0 if ·~ > 1 , (4 0) 

1 if ~ < 1 0 
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Fig. III-1. Reflector saving and linear extrapolation 
distance. 
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Seeking the function w(s) by Green 1 s function technique, one 

first requires that the orthogonality condition be satisifed; i.e. , 
I s1 1 

1 F(x) H(l-x)u
0

(x)dx • I F(x)u
0

(x)dx • 0 (41) 

0 0 

which is the same as Eq. (21). 

A particular solution w(s) can now be constructed with the same 

functions u (s) and V(s) as in Eq. (22). 
0 

The function w(s) is then, when inside the interval 0 ~ s < 1, 

identical with the function u(s), Eq. (23). Since the right side of Eq. (38) 

is a piecewise continuous function, w(s), as well as its first derivative, 

is continuous on the entire interval 0 ~ s ~ s ~ . Fl Thus, at s = 1, it also 

satisfies Eq. (13 ). 

Then, in the interval 0 ~ s ~ 1, the solution w(s) of Eq. (38), 

with boundary condition Eq. (39), is exactly the solution u(s) of Eq. (20) 

with boundary condition, Eq. (13'). 

However, at s = i, the higher derivatives of the function w(s) 

are not continuous; if one replaces the reactor equations, Eqs. (11) 

and (13) by 

i 

u H{l-s), where 0 ~s ~s 1 , (42) 

and 

au 
~ = 0 at s = 0, 

I 

and u ( s 
1 

, t) = 0 , (43) 

then the linear extrapolation distance is assumed constant throughout the 

irradiation, but not the reflector saving. This corresponds to a reflec

tor the composition of which does not change with irradiation. 

One can now use the eigenfunction technique .to solve Eq. (38). 

The eigenfunctions are cos i3ks' and the eigenvalue equation is simply 
I 

cos 13ks 1 = o . (44) 

Equations (35) and (44) yield 

(45) 
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The solution u(~) has then the following expansion 
1 

cc 
I 

u(s) = ao cos 
\ 

Yos + L 1 
2 

(2k+1) -1 

1 F(x)cos(2k+ih0x dx 

cos(2k+1)y
0

t;; --.-,-------
s1 -k=-1 !a cos

2
(2k+l)y0x dx 

(46) 

where 

o~s~1. 

Clearly Eqs. (30) and (46) are identical when E z = 0 (and con

sequently, when E = 0 ). 

Section III.4. 2 describes the application of the Fourier expansion 

technique to the solving of the first-order perturbation equation. 

1.6. Elliptic Functions 

The reactor equation, Eq. {11), can often be transformed into 

the following equation which determines the flux time to which the fuel 

has been irradiated: 

-(-1- d
2
8 2 2 

y
0 

dx 
(50} 

Here, G(8) is a given function of. 8, and 1
1 

is a constant of integration 

which is determined by the fuel scheduling scheme. 

Equation (50) can be solved directly by two integrations; by 

multiplying both its sides by ~ and integrating we obtain 

(~ 2 

= 2 y~ ~O + ! 19- ~ -1G(9) d9] = £(9), (51) 

where 1
0 

is a constant of integration. After requiring tl~atthe function f(8), 

defined by the above equality, be non-negative, one obtains 

' ±X = J L £(9) r {- d9 + Iz • (52) 

In general, the above integral cannot be evaluated in terms of 

tabulated functions, but the following case (see Ref. W6, p. 454) is an 

exception. 
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If f(t) is a quartic polynomial with no repeated factors, 

4 . 3 2 
f(t) :: aot + 4al t + 6a2t + 4a3t + a4 ' (53) 

the integral 
() 1 

X= r[f(t)]- 2 dt 

/a is equivalent to 

I li r, 1 II] 1 IIi 
yl'"f(i)y (x)+zf (a)Ly(x)- 24 f (a) + 2.4 f(a) f (a) 

() = a + r. 1 II 2 1 IV ' 
2 L}'(x) - 24 f (a) J '- 48 f(a)f (a) 

(54) 

where y(x) = y(x; G
2

, G
3

) is the Weierstrassi~m elliptic function formed 

with the invariants of the quartic f(t), and 

(55) 

and 

(56) 

Whenever possible, the solution will be expressed in terms of 

the Jacobian elliptic functions which are readily amenable to computations, 

although that requires that the quartic f(t) be first resolved into factors 

(see Ref. B3, p. 307). 

For most fuel scheduling schemes, the function G(8) is the inte

gral of the excess neutron production g(8), Eqs. (62) and (67). Then, 

Eq. (50) has a solution in terms of elliptic functions whenever the excess 

neutron production, (or the nuclide concentrations) can be fitted to a 

quadratic polynomial; we have 

and 

2 
g(e) = go + gl 8 + g28 • 

gl 2 g2 3 
G(e) = goe + 7 8 +3 8 

(57) 

(58) 

(59) 

When 1
1 

= 0 (radial mixing with central control, graded irradiation, 

bidirectional, in-out), Eq. (51) is in Jacobian normal form if g 
1 

= 0. 
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Otherwise, one has to find the roots of the polynomial f(8); this could 

be done easily for any steady state fuel scheduling scheme when g 2=0; 

and one would then use the formulae given by ByrdB
3 

in order to solve 

the integral in Eq. (52). 

Sections III.4.5, UI.5.2, III.5.3 and III.5.4 treat some simple 

applications of the above discussion. Standard notationsDZ are used 

consistently to denote the Jacobian elliptic functions sn, en, and dn, 

their modulus k; complementary modulus k 1 , and reduced period K. 

2. Radial Mixing 

2. 1 .. Description and Equations 

The fuel is irradiated batchwise while being thoroughly mixed 

radially; its composition is then a function of the time and of the axial 

coordinate only. The reactor is kept just critical throughout the irradi

ation by means of a control absorber the composition of which is also 

independent of the radial coordinates. The flux is then separable as 

shown in Eq. (l). 

In a plane z = constant, the flux time to which the fuel has been 

uniformly irradiated is the time integral of the radial average of the flux 

t 

0 (z, t) " ( h(z, t>[~ lf(x, y, t) dS] dt, 

Jo s 
(60) 

where S is the surface of a normal section of the cylindrical core. 

One defines a normalized flux shape u(~, T) and the corresponding 

irradiation parameter T by 
T 

0 (!;., T) " l u((,, T)dT (61) 

The excess -neutron production denoted by \7 in Eq. ( 11) is now 
u 

the function 'V[ 8( t;,, T)] . The following dimensionless functions 

2 
g(8) = .\7 (8)/DBz (62) 

(63} 
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will still be referred to as the neutron excess production and the control 

absorption, respectively. With the above definitions Eq. {11) becomes 

-(~ 
Yo 

(64) 

The above equation is exactly that which has. been found to describe 

the batch irradiation of unmixed fuel in a slab reactor, Eq. (II- 20); an 

approximate solution can be obtained by the perturbation method developed 

in Sec, II. The results shall be compared as follows: 

Assume that the same fuel is irradiated batchwise in reactors 
2 

of the same geometrical buckling, B
0

, according to the following pro-

cedures: 

Case 1, the fuel is mixed radially throughout its irradiation in 

a cylindrical reactor. 

Case 2, the fuel is fixed in position throughout its irradiation in 

a slab (or cylindrical but perfectly reflected on its 

curved surface) reactor core. 

The dimensions of the two reactors are not the same, sirtce the 

height of the first reactor must be B0j JB;-B~ (L e., B0/Bz) times 

the height of the second; furthermore, the term in the right side of 

Eq. (64) is ,for Case 1, B;/Bi times what it is for .Case 2, 

For both ~ases, the first-order perturbation theory determines 

the control absorption by the equation 

(65) 

This yields the same value of the flux time at end of life (c = O) 

and the same value for the final burnup of the fuel. 

However, the flux changes as given by the solution of the first

order perturbation equation are,in Case 1, B;/Bi times the flux changes 

in Case 2, and so are the corrective terms to be added to the flux time 

and to the burnup of the fueL 
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In the following sections we consider nonuniform distributions 

of the control absorber, and develop a technique for solving exactly the 

equation corresponding to a control absorber localized at the midplane 

of the reactor. 

2"2. Equation for the Flux-Time. Uniform Control Absorber 

Equation (64) 'can be transformed into an equation which determines 

the flux-time; integrating it with respect to the irradiation parameter T 

and using Eq. (61) yields 

( 
1 a 2 e ~ . lT ae - -y --=-::-2 + 8 = G(8) - c(t;, T) aT dT 

Yo at; o 
(66) 

The function G(8), which represents the total number of excess 

neutrons which have been produced at a time t after startup, is defined 

by e 
G(8) = r g(8)d8 . 

Jo 
(67) 

The boundary conditions, Eq. (12), which applied to the function 

u(t;, T) also apply to the function 8 (t;, T); thus, the right side of Eq. (66) 

must be orthgonal to the function u
0

(t;) in Eq. (16); that is 

T 

( ). r ae 
G(8), u 0 . ,= Jo ( c fi' u 0 ) dT. (68) 

Since the function u
0 

(I;) is also the 'limportance uW
3 of a neutron 

in the initial (homogeneous) reactor, the above equation states that the 

total importance of the excess neutrons produced during the irradiation 

is equal to the total importance of the neutrons absorbed by the control 

absorber. This is not in contradiction withthe existence of a neutron 

. balance which should take into account that fact that the leakage from the 

reactor did vary during the irradiation and is not exactly balanced by the 

term DB~ in the definition of the excess neutron production. 

Equation (68) shows also that the end of life (c = 0) is reached 

when the total importance of the excess neutron produced during the 

irradiation attains its maximum value. 
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The perturbation method could be applied to Eq. (66) instead of 

Eq. (64) and would clearly yield the same results. The first approxi

mation of the flux time is e
0 

= T u
0 

(I;), solution of the equation 

LB 0 = 0 . The first-order perturbation equation is then 

T 

Le l = G(u0 T) - u 0 (!;) 1 c 0 (!;, T)dT, (69) 

which has a solution if and only if T and c
0 

are related by 

T 

( G(u0 T), u 0 ) = r < c 0 u 0 , u 0) dT. 

Jo 
(70) 

When the control absorber is 'll;niformly distributed, c
0 

can be 

taken out of the bracket, which represents a spatial integral, and Eq. (69) 

will take the form 

(71) 

The above equation will be helpful in the study of the graded irradi

ation of the fuel. An approximate solution of this equation is obtained by 

the calculation procedure developed for the batch irradiation of unmixed 

fuel in a slab reactor with uniform control absorber [see Eqs" (II-109) 

through (II-171)] . 

2. 3. Central Control 

Equation (66) can be reduced to a simpler equation, Eq. (50), by 

letting the control absorber be concentrated at a single axial position, for 

instance, in the midplane of the reactor. Using the symbol 6 to repre

sent the Dirac a-function, Eq. (66) becomes 

' -(+~+e)= G(el 
v0 a<; 

- C(T)o(s) , (72) 

where T 

G(T) = 1 c (T) 
dB(O, T) 

dT dT. (7 3) 

,. 
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The above equation reduces to 

T 

C(T) = 1 c (T) dT (74) 

when one defines the irradiation parameter T as the central flux time 

(which is a monotonically increasing function of time) 

T=tl(O,t). (75) 

According to Eq. (61), this corresponds to normalizing the flux shape 

by u(O, t) = L The function C(T), the. total number of neutrons which 

have been absorbed in the control absorber during the irradiation, is 

also a monotonically increasing function of t, and could be used as a 

new variable. instead of T. The end of life is determined by the condition 

dC 
c(T) =""dT'" = 0. (76) 

2.3. L Exact solution. Equation (72) is the symbolic representationFl 

of 

-(+ ~ + e\ = G(tl), (77) 
"o a~ J 

with a nonhomogeneous boundary condition at t;, = 0. In the present case, 

this boundary condition can be obtained simply by integrating Eq. (12) 

over a small interval - E < t;, < E and letting e tend toward zero; this 

yields 

1 tae - 7 --ar;-
y . 

. 0 

_.) = - C(T) . (78) 

The function tl( t;,, T), the solution of Eq. (72), is continuous at 

t;, = 0, but its derivative has a jump of magnitude y~C(T). Thus, if the 

reactor is symmetrical about t;, = 0, the boundary condition is 

ae 1 2 
a~ = z yO C ( T), at ~ = 0 . (79) 
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The problem can now be stated as follows: 

The flux time is the solution 8(s, X.) of Eq. (77) which satisfies 

the boundary conditions 

a8 a8 81: = >.. at s = 0, and 8 + E Z .B't = 0 at !; = 1 .. (80) 

An example of such a solution 8(!;, >..) is given in Sec. III.4. 5. The central 

flux time T and the parameter >.. are related by 

T = e (O, X.) . ( 81) 

The flux shape, normalized to 1 at the center, is 

( r T) = a8(s,·>..> 1 d8(o, >..> 
u ~· a X ax · (82) 

Equations (79) and (80) give the total number of neutrons, which have 

been absorbed by the control absorber throughout the irradiation, as 

2 
C ( T) = 2 >../ '( O , (83) 

and the macroscopic eros s section of the control absorber required to 

keep the reactor critical is 

(T) = ~ dX. = [_!_ 2 d8 (0, X.)J-l 
c 2 dT 2 "o ax. ' 

"o 
(84) 

and at end of life, c(T) = 0 determines >... 

In general, however, the analytical representation of the func

tion 8( t;, X.) . cannot be obtained exactly. An approximate solution of . 

Eq. (7 2) can then be obtained by the calculation procedure developed 

below. 

2.3.2. Perturbation method. Rewrite Eq. (72) as 

L8 =' E[ G( 8) - C(T) o(x)] , (85) 

and seek the solution 8(1;, T) bythe following power series: 
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2 
C(T) = C

0
(T) + e c

1 
(T)+e C 2 (T) + · · · , (87) 

and 

(88) 

Equating the coefficients of each power of E in both sides of 

. Eq. (85) yields the successive equations, 

L8
0 

= 0 , 

L8
1 

:: G(8
0

) - C
0

(T) 6(x). 

i 
L8 2 = G (8

0
) e1 = C

1
(T) 6(x), 

etc. 

The above equations are solved as follows: 

{1) The first approximation to the flux time is 8 O (s, T) = T u 0 (s). 

(89) 

(90) 

(91) 

(2) The value of T is determined by the condition that Eq. (90) have 

a solution; i. e. , that its right side be orthogonal to u0 (~): 

(c
0

(T) o(s),u
0

) ;= i c
0

(T)u
0

(o) =(G(u
0

T),u
0

)- 1 (92) 

The 6-function, which is generally normalized byl O(x)dx = 1, 

-1 

has been normalized, for the ~ymmetrical case here considered, by 

1 1 
Jo(x)dx = 2 . According to Eqs. (92), (73), and (67), the amount of 
0 

control absorber needed to keep the reactor just critical at an irradiation 

T is given by 

(93) 

(3) The ~eneral solution of Eq. (90) can then be obtained by Green 1.s 

function technique, Eq. (23), the eigenfunction expansion, Eq. (30), or 

by the Fourier series, Eq. (46). For instance, the eigenfunction expan-

sion is 

- 2 l~ ) 1 J '{ G(u T), v - - C (T)v (0) 
e <r.. T) = A (T)u <r.> + \ k o k 2 o k v <s> 

1 0 0 L~2 (vk,vk) k 
k=l Yk Yo 

(94) 
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(4) The coefficient A
0 

(T) in the above expansion is arbitrary. It is re

lated to C 
1 

(T) by the condition that Eq. (91) has a solution, that is, 

( C 1 (T) &(~),u0 )= i C
1

(T) u
0

(0) =( G
1 
(8

0
)8

1
,u

0
). (95) 

According to Eqs" (95), (73), and (67), the corresponding correction to 

the control absorber is 

* Let 8 1 (~,T) = A
0

(T) u0(~} +8 1 (~,T); if s
0

(T) is defined by Eq, (93) and 

a
0 

(T) = dA
0 

(T)jd T, one obtains 

_ z(u0 ,u0){ d f(g(u0 T)8~,u0~ ds 0 } 
cl (T) ,...uo(O)u(O, T) dT L ( uo, uo) J+ ao(T)so(T)+Ao(T) dT 

(96) 

(5) The general solution of Eq, ( 91) can then be obtained as in (3) above, 

and one could repeat the foregoing procedure in order to obtain higher 

terms of the perturbation series in Eq, (86), 

A calculation procedure using eigenfunction expansions in (3) 

and (4) above is as follows: 

Let hk' sk(T), and Sk(T) be defined by Eqs, (II-109) through 

(II-111), and note the definition of G(8), Eq, (67), By letting 

u
0 
(~) = v 

0 
(~), one obtains 

41(), 

8 l { ~. T) = T ~ ak(T) vk(~), and vk(~) = cos 'Yk~' (97) 

k=O 

where, according to Eqs, (92) and (94), 

2 
'Yo 
2 2 [ Sk{T) - hk s0 (T) ] , where k f. 0, 

Yk-'Yo 

(98} 

and a
0 

(T) = A
0 

(T)/T is related to c 
1 

(T) by Eq, (96 ), At end of life, 

one has s
0

(T) = 0 from Eq, {93), and one shall set c
1 

(T) = 0, Equation 

(96) then yields 
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1 = - ---.---dso 
Tcrr 

(99) 

Note that if one drops the term hk s
0 

(T) on the right side of 

Eq. (98), Eqs. · (97) through (99) give the function 8 
1

(1;, T) correspond

ing to a uniformly distributed control absorber" 

The flux shape is now the derivative of the flux-time, Eq. (61). 

The burnup of the fuel is given by the same formulae as in Sec. II. 3. 

The auxiliary functions defined and tabulated there make the problem 

amenable to hand computation when the properties of the fuel vary as 

a sum of exponential functions of the local flux time; another case 

(polynomial representations) is developed in Sec. III.4o 

3. Graded Irradiation of the Fuel 

3. L Description and Equations 

The fuel rods are replaced individually whenburned up to a specific 

extent. The fuel replacement is so scheduled that each small region of 

the reactor contains fuel rods in all stages of irradiation between zero 

and maximum, with average local composition independent of the radial 

position. 

The flux is then separable in spatial coordinates and the axial 

flux shape is the solution of Eq. (11 ). 

The flux time to which the most exposed fuel element, ready to 

discharge, has been irradiated is denoted by 8(~, T). It is proportional 

to the flux shape; let T be the proportionality factor, then 

8 (s, T) = T u(~, T) . (1 01) 

For instance, T would be the maximum irradiation at the mid

dle of the fuel element ready to discharge if the axial flux shape, 

u( ~. T), were normalized to unity at the midplane of the reactor; i.e., 

if 

u(O, T) = 1 . (102) 
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The average local concentration N of a nuclide, the concentra

tion of which varies with the flux time B, as a function N(B) is, 

B 

N = ~ 1 N(8)d8 . 

In Eq. {11), the average excess neutron production 
e 

"u = ~ J " <e l de, 

V' 
u 

and, since the reactor is just critical without control absorber, 

The equation for the flux shape, Eq. (11), becomes 

l 7J G(B)u 

where 

( 103) 

is then 

(104) 

(1 05) 

(106) 

Multiplying both sides of the above equation by T and using 

Eq. (101), one obtains 

G(B) , (107) 

with 
dB 
ds = 0 at s = 0, and 

dB 
8 + E Z <:It"" = 0 at S = l (108) 

This is a second-order nonlinear differential equation, 8 is a 

function B(s) of the only variable s, and the irradiation parameter T 

is only an auxiliary variable describing the relation between the flux 

shape and the flux time. For instance, when the flu.x shape is normalized 

by Eq. (102), one has 

T =B(O). (109) 

Taking the scalar product of both sides of Eq. (107) with 

u
0 

(I;.) yields 
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Thus, a fuel rod is discharged when the total ''importance 11W
3 

of all excess neutrons it has produced during its irradiation history has 

decreased to zero. This illustrates the advantage of "graded irradiation" 

over "radial mixing" where, according to Eq. (68), the total importance 

of the excess neutrons produced by the end of life is its maximum value. 

3. 2. Perturbation Method 

The perturbation method can be applied to Eq. (107) as has been 

done for Eq. (64), if we assume that the function G(e) is a small per

turbation term compared to e. 
Defining L by Eq. (14) together with the boundary condition, 

Eq. (13), ·we write 

( 110} 

and seek the expansion of the solution e in power series of the pertur

bation parameter e; we set 

2 e = e0 + e e1 + e e 2 + · · ·, ( 111) 

and a Taylor expansion of the function G(e} yields 

2 ! l 2 2 11 = G(eo) + (eel + E e2 + ... }G (eo}+ z(eel+ E e2 + ... ) G (eo)+· .. 

( 112) 

Equating the coefficients of each power of e in both. sides of 

Eq. (110) yields the following set of equations: 

L e
0 

= o , 

Le
1 

= G(e
0
), 

i 
Le 2 = G ( e 

0
) e 

1 
, 

I 1 2 II 
Le 3 = G ( e 

0 
> e 2 + 2 e 1 G ( e 0 > , 

etc. 

( 113) 

( 114) 

( 115) 

(116) 

Each of the above equations has a solution if and only if its right 

side is orthogonal to the nontrivial solution of Eq. (113); this yields the 

following set of conditions : 
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etc. 

The method of solution is as follows: 

The first equation, Eq. (113), has a solution e
0 

which is 

u
0 

( ~), except for a constant factor; let then 

( 117) 

( 118) 

(119) 

(120) 

The second equation, Eq. (114), has a solution if Eq~ (117) is 

satisfied; this determines the value of T. The solution is then the sum 

* of a particular solution 8
1 

and of an arbitrary multiple of the nontrivial 

solution of the corresponding homogeneous equation, Eq. (113); i.e., 

(121) 

The third equation, Eq. (115) then has a solution if A
0 

is so 

chosen as to satisfy Eq. (118), 

This is, 

{122) 

or, by using Eq. (120), 

{123) 

* One could thenfind a particular solution e
2 

of Eq. (115), and 

repeat the preceding procedure. 

The foregoing method of solution is just the same as that developed 

in Sec. II for the study of batch irradiation of unmixed fuel when the suc

cessive correction terms to the fl,ux shape are there so normalized that 

the control absorption is exactly equal to its first approximation, i.e. , 

when all successive corrections to the control absorption are zero. 

Accordingly, ,the calculation procedures are very similar, and use the 

same results which have been obtained in the case of a uniformly distri

buted absorber. 
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· (G(u0 T), u 0) 
The right side of Eq. (114) can be written G(e

0
) - l \ u

0 \ uo, uo J 
because the last term vanishes accordingto Eqs. (117) and (120); it is 

identical with the right side of Eq. {71 ), Thus, both equations have the 

same particular solution, orthogonal tb u
0

, which has the following 

eigenfunction e:x;pansion: 

om 

* ' ~ e l ( t;, , T) = T ~l a.k ( T )v k ( t;.) (124) 

However, the coefficient of v 
0 

(t;,) is different, According to 

Eqs. :(67), (117), and (120) T 

(u0 , G(u0 Tl) = 1 (g(U0 T)u0 , u 0)= o , (125) 

and since T must be positive, it is the root of the equation 

(126} 

i ' I 

By replacing G (e) by g(e), Eqs, (123) and {124) yield 

. • (vkg(u0 T}, u 0) 
a.k(T)(. (. T) \' 

uog uo 'uo; 
(12.7) 

The flux time to which the fuel of an element ready to di~charge 

has been irradiated ahd the corresponding average burnup are then cal

culated as follows: 

The functions sk (T), Sk(T), ( 13)
0 

, and T (~J.e ~~ (v0 T)) ·are de

fined by Eqs. (II-110) through (II-113). · They can be computed by Eqs. 

(II-132), (ll-133); (II-135) and (II=l4i), with the help of the Tables of 

auxiliary furi.ctions and cbeffici€mts corresponding to tlie slab reactorp 

Tables Il-l through II-3. 

Then, the first approximation to the flux time is 

e0( t;., T) :::: T cos y
0

t;. 

where t is the root of the ~quation 

so ('if)= b. 

(128) 

(129) 
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The corrective term is 

with 

and 

IIIC 

e 1 (s, T) = T [ ak(T)cos -yks , 

k=O 

ao 

ao(T) = - Lak(T) 

k=1 

2 
"'o 
2 2 Sk(T), where k:;::. L 

Yk-Yo 

(130) 

(131) 

(132} 

The corresponding flux shape is easily obtained from Eq. (101). 

The average burnup of the fuel discharge fuel is 
IIIII> 

(~) o{~k + i:"k(T){T (vk.~· (vaT~} (133) 

4. Polynomial Representations 

In the following we are concerned with the study of flux shape, 

flux time, and burnup; we assume that the variations of the properties 

of the fuel with the local flux time 8 are functions of 8 which have 

been fitted to polynomials; i. e. , 

and 
q 

~(8) = ~ bn8n" 

h-=':'0 

( 150) 

( 151) 

The coefficients g thus defined in the present section should 
n 

not be confused with those already defined for the exponential representa-

tion of the functions g(8) and ~(8); for instance, g
0 

is now equal to 

g(O) and b
0 

:o:: ~(0} = 0 . 
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The perturbation method, which has been developed in the preced

ing sections, now yields equations the solutions of which can be obtained 

in closed form by using Green 1 s function, The following gives the solution 

of the first-order perturbation equation, Eq, (71), (90), or {114), as ob

tained by eigenfunction expansions • Fourier series, or Green 1 s function 

technique, The case where g(8) is a quadratic function of 8 will be 

given special consideration, since the approximate solution obtained by 

the perturbation method can be compared with the exact solution given 

by elliptic functions, 

4. 1, Eigenfunction Expansion 

The general method of calculation wftich has been developed by 

solving the first-order perturbation equation can always be applied, It 

requires the computation of the following functions: 
p 

\' 
= L gn 

n=O 

(152) 

(153} 

q 

(13)0 =(13<v0T~= L bn1'n(v0n.r). 
n=O 

(154) 

and 

(155) 

All the coefficients defined by the bracketed terms in the above 

equations are integrals which could be evaluated analytically; they are 

denoted as 
1 

ck, n •( vk' v 0 n)o l cos ykx cosny0x dx , (156) 
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For a bare reactor with negligible extrapolated distance, the 

coefficients c
0 

are given by a single formula and the coefficients ,n 
C are calculated by a recurrence formula [ Eqs.(II- 244) and (II-245)]. 

k,n 1 n-
For n odd, only the first terms up to k = -z- are nonzero. 

For n even, one obtains formulae of the following type: 

( 
2 ) k+l 2 2! 

vO,vk = (-l) 'IT (2k-1)(2k+l)(2k+3)' (157) 

and 
4! 

(158) 
{2k- 3) (2k-l) (2k+ 1) (2k+3) (2k+5) 

The eigenfunction expansion ofthe solution of the first-order per

turbation equation could then be obtained easily by the formulae previ

ously derived, for instance, Eqs. (97) through (99). or Eqs. {130) 

through (133), 

The above formulae, Eqs. (157) and (158), show the rapid de

crease of the coefficients of the successive eigenfunctions when k in~ 

creases. Table III-1 gives the values of the first few coefficients Ck 
,n 

corresponding to a bare reactor. 
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Table Ill-1. 
( n )a 

vk,vO 
Table of coefficients 2 Ck = ( ) 

, n vk' vk 

~ 1 2 3 4 5 

,; 

4 2 3 4 8 10 
0 1 -· 3 4 

~. 

3:5 Tb rr 1T 

4 2 1 4 8 5 
1 0 -· 3. 5· 4 -- 0 5.1• Tb 1T 1T 

4 -2 b 4 8 1 
2 0 -- 3· 5· 7 

.;..;...;. 0 

5· 7· 9 Tb 1T 1T 

4 2 
0 

4 -8 0 3 0 ~· 5· 7· 9 -· 5· 7• 9' 11 1T 1T 

4 -2 0 
4 2·3·4 

0 4 0 -. -· 5· 7• 9· 11•15 1T 7· 9· 11 1T 

t 
a 1T 

vk = cos (2k + l) 2 t; 
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4. 2. Fourier Expansion 

A particular solution of the first-order perturbation equations, 

Eq. (69), (90), or (114}, can be obtained by applying Eq. (46). Changing 

the ~ariable s to x = y
0
s, the limits of integration in Eq. (46) become 

y
0
s

1 
= Tr/2 and y

0 
= (1- e)Tr/2 according to Eqs. (35) and .(37), Thus, 

if F(x) is then the right side of either Eq. (69), (90), or (114), a particu

lar solution is given by 

I 

e
1 

(x, T) - A
0

(T) cos x = 

Ql) 

b
~ cos (2k + l)x 

2 
(2k + 1) -1 

[

(1- E )Tr/2 

F(x) cos (2k + 1 )x dx 
0 

Tr 

cos (2k + l)x dx 
;;.

2 2 

The integral in the denominators in the above equation is equal 

to Tr/4. The integrals in the numerators can all be evaluated in terms 

of the following integral: 

I 2 
ck = -, n Tr 

{l-e)Tr/2 

1 n 
cos (2k + l)x cos x dx . 

One would then determine the solution of the first=order pertur
B 

bation equation [ L e., A
0

(T)] in order to obtain a solution for the second-

order perturbation equation. The integrations which arise then can also 
I 

be performed with the help of the integrals ck . 
r ,n 

For a bare reactor, Ck is identical with Ck in Eq. (156), ,n ,n 
because e = 

1
0 and yk = (2k + 1) Tr/2. In general, the above defined co-

efficients Ck could easily be obtained as a power series of e. Re-,n 
actors, whose reflector saving is small compared with their core di-

mensions, could then be easily compared with bare reactors by consid

ering the coefficients of the first few powers of e. 
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4. 3. Green's Func:tion 

4. 3.1. Radial mixing with uniform control. The radial mixing of the 

fuel with uniform control described by Eq. (71), as well as the graded 

irradiation described by Eqs. (114) and (117), yield the same equation 

for the first-order perturbation of the flux time, 

(159) 

where each coefficient K is defined by the condition that the right side 
n 

of the above equation be orthogonal to cos y0 ~; i, e. , 
1 l cosn+2Yo~ d~ 

K = 0 . i. 

n 1 2 . 

Jo cos v0t; ds 

= 
c O,n+1 

cb, 1 · 

bet H . (~) be a p'articuiar solution of the equation, 
n 

Hn (~) is now given by Eq. (23) as follows: 
t; 

I I 

Hn (~) = - Yo j sin y0 (~-~') [cosny0 ~' -Kn] cos 

0 

Yo~; dt; 

With the change of variable, 

one obtains 

H (x) 
n 

X 

=COS X 1 n+l ... d. 
COS X SlnX. X = 

X 

:: r n+2 
Sin X)o COS X dx 

(160) 

(161) 

(162) 

( 163) 
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or 

H (x) = cos x 
n 

n+2 1-cos x 
n+Z 

- sin x Q 2 (x) + ~ K x sin x , 
n+ c. n 

where the integrals X 

( n+2 =) 
0 

cos x dx 

are given by the following formulae: G
3 

n=2p-2, 

n=2p-l, 
P . 2r+l 

Q (x)=\(-l)r(p~ln x, 
2p+l !__ r r+l 

r=O 

w he r e ( P) = --:---,-=-p_! .....,...... 
r r! (p-r)! 

Then, a particular solution of Eq. (159) is 

8
1 

(x, T) -

p 

8 1 (0, T)cos x = ~ 
n=O 

(164) 

(165) 

(166) 

(167) 

(168) 

One notes that the coefficient K , Eq. (160), is defined equivalently 
n 

as follows: 

(169) 

TI 
When we have y 0 = 7 , the coefficient of the term x sin x in 

Hn(x) of Eq. (164) vanishes, and one verifies that H 2p(x) can be obtained 

as a finite sum of eigenfunctions cos (2k+ 1 )x . 

The first functions H (x) are: 
n 

( 1 70) ... 
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n = l, 

-1 . 2 3 = 3 (sm x + 1 - cos x - t: K 1 x sin x), 

= sin y
0

( 1 -

~ Yo ( 1 + 

. 2 ) sm3 Yo 

sin2y0 ) ' 

2yo 

n = 2, 

l 
H 2 (x) = 12 (cos 3x - cos x - 12x sin x + 16K

2 
x sin x), 

3'{
0 

sin 2y
0 

sin 4y
0 

-a+ 4 + 32 

.( sin2-y0 ) 
_i'Yo 1 + zy

0 

( 1 71) 

(17 2) 

Thus, Eq. (159), corresponding to radial mixing with uniform 

control and to graded irradiation of the fuel, has a particular solution 

given by Eqs. (168) and _ {164). 

4. 3. 2. Radial mixing with central control. In the case of radial mixing 

of the fuel with central control, the first-order perturbation Eq. (90) 

becomes 

L8 l ( s, T) = G{u0 T) - c
0 

(T) cS{s) 

p ' 
\ Tn+l [ +l 1 J 

= L gn n+l Losn 'Yos-Kn cS{s)J { 17 3) 

n=O 
i 

where each coefficient K is defined by the condition that the right side 
n 

of the above equation is orthogbnal to cos y
0

s. By normalizing the cS-

function by s~ cS(x) dx = ~ and by using Eqs. (156) and (165), one obtains 
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2 c 
O,n+l 

(174) 

Changing the variable ~ to x, Eq. (163), a particular solution 

of Eq. (173) is given by 

p 
r- Tn+l 

e 1 (x, T) - e 1 (0' T)cos X = ~=0 gn n+ 1 
i 

H (x), 
n 

i 

where H (x) is a particular solution of the equation 
n 

n+l 1 

cos x-K o(x) 
n 

(175) 

(176) 

Just as with Eq. (116), the above equation is solved by Green's function 

technique; one obtains 
' 

I 

H (x) = cos x 
n 

or, according to Eq. (164); 

{l 77) 

(17 8) 

The solution of the first-order perturbation equation, Eq. (173), 

is then normalized by the condition that the second-order perturbation 

equation, Eq. (91), has a solution. 

4.4. Examples - Perturbation Method 

In the following we develop simple examples that illustrate the 

use of the techniques of solution developed in the preceding sections, 

and which yield a parametric study of the effects of the burnup of the fueL 

We consider a bare reactor with negligible extrapolation distance, 

i. e. , with 

1T 

"o = 2 · (179) 
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Then the eigenfunction expansion and the Fourier expansion become 

identical. The various integrals which arise l.n computations using the 

perturbation method are readily performed with the help of Table Ill-1; 

they are: 

1 

l 
1 

1 

(2k + 1) ; s cosn 7 s dt;, 

• TT y n TT y dY 
Sln 2 ';:> COS 2 ';:> '::i.- TT 

2 

s sin .Zs 

1 
n+l ' 

c 
O,n 

n+l ' 

In the following we assume that the neutron .excess production, 

g( 8), is represented simply by 

(180) 

The results are to be compared with those obtained if the fuel 

were irradiated batchwise, but thoroughly mixed throughout the irradia

tion. The flux time 8 f to which the fuel has been irradiated uniformly 

at end of life would then be the root of the equation g(8f) = 0; i.e., 

( 181) 

Rewriting Eq. (181) as 

(182) 

a parametric study is performed by varying the two parameters g
0 

and 

8f. The parameter g
0 

is the ratio of the initial excess neutron production 

to the leakage, and is related to the initial reactivity of the reactor. 
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The flux time to which the fuel has been irradiated is repre

sentative of its burnup. Average and maximum flux time will be derived; 

they correspond exactly to the average and maximum burnup when the 

function {3(8) is linear. 

The chosen form of the function g(B) will also allow a simple 

comparison of the results of the second-order perturbation method with 

those obtained by exactly solving the nonlinear equation. 

The solution of the first order-perturbation equation will be ob

tained either by eigenfunction expansion or by Green 1 s function technique 

using the following results: 

(a) Green's function. Equations (160) and (174) and Table III-1 yield 

i 

K- K = - 0 1 ' 
3 

2 co, 3 = 4; 

l 1T 1T 
Then, Eq. (1 7 2) gives H

0 
(t;) = 0, H 2 (t;) = 32 (cos 3 2 t; - cos 2 t;) , 

and Eq. (178) gives H~(t;) = i (l- t;) sin; t;, 

i 31T . 1T l 1T 1T 
and H 2 (t;) = TI (l - t;) sm 2 s+ 32 (cos 3 2 ~; = cos 2 t;). 

(b) Eigenfunctions. Equations (152), (153) and Table III-1 yield: 

s l (T) 
l 2 

= 4 g2 T /3 

4.4, l, Example l: . Radial mixing with uniform control. In this case, the 

solution of the first-order perturbation equation is given in closed form 

by its eigenfunction expansion which contains only the two first eigen

functions, One applies the formulae which have been derived in Sec. II: 
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3 
. - · 1 1 T 

Eq, (II-121) .g1ves. a.
1 

(T) = B s 1 {T) = 3'2 g 2 3"", and a.k(T) = 0 for k ~ 2; 

,,. d d 1 T 3 1 2 
Eq, (II-117) gives c 1 (T) "'dT[ T a. 1 (T)s 1 (T)] =aT [ "ITgz j 4g2T] 

= 5 g· 2 T4 
12X32 2 

Eq. (11-120) gives a 0 (T) = - c; (T)/T(:~ )= - 18~32 g 2 T2 

Then9 for a value T of the irradiation, to which corresponds 

an amount of control absorber c
0

(T) = s
0

(T), the flux time as given by 

Eq, (II-119) is 

and the flux shape is its derivative with respect to T; i, e, , 

5 2 iT 1 · 2 TI 
u(l;, T)::::: (l-6x32 g 2 T ) cos 2 I; + "IT g 2 T cos 3z: I; , 

At end oflife, s
0

(T) = 0 yields 

T 
2 

= ! { ~ ) , and 
3 -gz . 

(183) 

The final flux time, and its central and average values, are then 

5 TI 1 iT 
e( z;, T) = T [ o + ox=rz g

0
) cos 2 z;- 72 g 0 cos 3 2 z; ] , (184) 

and the final flux shape, and its central and average values, are 

5 'TT 1 'TT 
u( z;, T} = (1 + bX24 g

0
) cos 2 I; - y 4 g 0 cos 3 z: I; 

(185) 

(0 T) 1 1 d I ) _2 ( l 7 ) u ' = - tiX24 go an \_ u = iT +t>X24 go 
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4.4.2. Example 2: Radial mixing with central control. The eigenfunction 

of the solution of the first-order perturbation equation is first obtained 

as follows: 
7T 

Equation (98) gives the solution orthogonal to u
0 

= cos 2 s as 

coo 7T 1 3n \ cos(2k+1) 2 s 
[ s

1 
(T) - s

0
(T)] cos 2 s - s

0
(T) 1 2 . 

k=2 (2k+1) -1 

( 186) 

The corresponding term for the flux shape is obtained by derivation with 

respect to T 

con 7T 

u~( ~. T) = ~ [ s 1 (T) - s 0 (T)] cos 
3 ~ ~ - s 0(T)) 

k=2 

cos (2kt1) 2 s 
2 

(2k+1) -1 

When the approximations of the flux time and the flux shape are 

7T >): 7T >:< 
8( s, T)::::: T cos z ~ + e1 ( s, T) and u(~, T) :::::cos 2 s + u

1 
(~, T) , 

the control absorption corresponding to the value T of the irradiation 

is 

\ 
Equations (93) and (96) yield: 

and 

* c 
1 

(T)u(O, T) d {'11 2 7T >:< 7T 1 = 2dT . 

0 

(g0 + g 2 T cos 2 s > e1 (~. T) cos 2 ~ ds 

because the coefficients ck, 3 all vanish for k ~ 2. Finally, 

* -1 2 5 2 
c l ( T )u ( 0, T) "' 3Z g 2 T ( 3 gO + 0 g 2 T ) , 
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At end of life, however, one can normalize the flux time in order 

for the irradiation parameter to be the solution of the simpler equation, 

Eq. (183). The normalization coefficient,. A
0

{T) in Eq. (94), is then 

given by Eq. (96) where s
0

(T) = 0, i.e., 

2 4 go 
Since T = - - - , one also has 

3 g1 

(187) 

and Eq s. ( 94) and (186) yield the flux time at end of life as 

~-cos(2k+1); sl· 
b (2k+1) -1 

( 188) 

The above results will now be obtained in closed form by using 

Green 1 s function technique. Equation (175) yields 

and Eq" (95) gives the corresponding correction to the total control ab

sorption 
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finally, 

and the correction to the control absorption is the derivative of C (T). 
1 

At end of life, s
0

(T) [the derivative of T S
0

(T)] vanishes. 

Equation (7 3) then yields the correction to the control absorption, 

This corrective term vanishes if 8
1 

(0, T) is given by 

and Eqs. (183) and (187) then yield the value of the correction to the final 

flux time at the center of the reactor as 

Thus, the final flux time is 

e (\,, T)~T[(l- 6~~ 2 go)cos ; \, - i 2 go cos 3 ; \, + go E ( 1- \,)sin; cJ ( 190) 

The above equation and Eq, (188) represent the same function, 

The following equations give the central and average flux time at end of 

life; the exact values from Eq. {190) are compared with the series from 

Eq, (188): 

'IT ( 8\ 7 2n - 1 9 7 TT z 1 + 6x7z go = 1 + o.o676go , (191) 

-rrfe) (31 3 -7f'z 1 +go 6X72- 2 
( -1 )k \ 

2k(2k+ 1) (2kt2}) 

= l+g
0

(0,0718 - o.oo55 + o.oo2o + ,, ), 
8(0, T) 61 . . 4 2 d 8(0, T) _ ( 25 l ~ 1 ) 

T :::::l-6X72gO=l-O.l l gO' an T -l-gO 6'X7T + o L k(k+l) 
k=2 

=I-g
0

(o.o58+0,028+0,0l4+0,008 + , , . , ) , 
(192) 
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A rather large number of terms shall be'kept in the eigenfunction ex

pansion in order to attain high degree of accuracy. This is due to the 

discontinuity of the derivative of 'the flux time at ~ = 0 . 

One notes that the initial {bare) reaCtor is homogeneous except 

for the central absorber. This yields 

and the flux is everywhere positive if g
0 

< 3. The above perturbation 

method then gives the initial flux, normalized •to 1 at the center, as 

cos; ~ + i g0 (l = ~) sin;·~ and the initial control absorber as 

c
0 

+ c 1 = g
0 
(l + g

0
j 4), while the exact value of the initial control is 

c.=; .j 1 +go tg ~ (,j 1 +go.- 1) = go(l+go/4) +tJ(g~). 

4.4.3, Example 3: Graded i:tra,diation. As for radial mixing with uniform 

control, the eigenfunction expansion gives the solution in closed form. 

The computations are straightforward: the flux shape is just proportional 

to the flux time. 

The value of the irradiation parameter at steady state is given by 

Eq. (129) as 

T2 = 4( go ) 
-g2 

and T = 2 8£. (193) 

Equations ( 131) and {13 2) yield 

and Eqs. (128} and (130) then yield 

The average and maximum flux time are 

(194) 
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Central and average flux time to which the discharged fuel has 

been irradiated are plotted in Fig. III- 2, They are given in units of the 

uniform flux time () f [ Eq. (182)] to which thoroughly mixed fuel could be 

irradiated in reactors of the same geometrical buckling. 

The first-order perturbationBl gives the points corresponding to 

g
0 

= 0. The second-order perturbation method gives the lines through 

these points. 

4. 5. Elliptic Functions Solution Example 

Equation {77) or (107) corresponds to Eq. (50) where 1
1 

= 0. 

Then by setting g 
1 
= 0 according to Eq. (180), Eq. (59) becomes 

Setting 2 1 + go 
r = , where g

0
> 0 and g 2 < 0, we have 

-g2 

For graded irradiation, as well as for radial mixing with central 

control, the flux time shall be maximum somewhere in the volume of the 

reactor. Let T be the absolute maximum; then, f(T ) = 0 , and 
m m 

£(8) shall be positive when () increases toward Tm; the condition 

(1 + g0 ) > 0 yields 

or ~ 1. 
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--(8)18,} 
for the discharged fuel 

-·- 8(0)18t 

Radial mixing- uniform control 

·-----------~----------·---·_.__ ______ _ 

7 

MU-29368 

Fig. III-2. Average and central flux time for radial 
mixing and graded irradiation (perturbation 
method). 
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Thus Eq. (51) can then be written as follows: 

and 
T 2 

m ~ 1 . 

(195) 

(196) 

The general solution of the above equation is the Jacobian elliptic 

function represented by the symbol sn: 

8(~) = T sn (a + b~), 
m 

where T and a are determined by the following boundary conditions: 
m 

(1) At ~=0; 
I 

For graded irradiation, 8 (0) = 0 readily gives a = K. 

For radial mixing with central control, Eq. (79) yields 
I 1 2 

8 (0) = T m b cna dna = 2 y
0 

C. The foregoing equation is a relation be-

tween a, T , 
m 

and C, the total number of neutrons which have been 

absorbed by the control absorber. The end of life is determined by 

dC/dT = 0, where T is any monotonic function of the time (Tm for 

instance) 

(2) At ~ = 1, Eq. (13) yields 

sn(a + b) + e2 b cn(a +b) dn(a + b) = 0. 

This is the second relation between a and T . 
m 

If e z = 0, one obtains simply a+ b = 2K. 

For radial mixing with central control, the flux shape is the 

derivative of 8(~) with respect to T (or T ) which involves derivatives 
m 

of the elliptic sine with respect to the modulus k as well as with respect 

to the argument. 
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Example: Graded irradiation of th.e fuel in, a reactor with negligible 

extrapolation distance. The boundary conditions are now satisfied if 

a = b = K; the flux time is 8(1;.) = T snK(l + !;,), and Eqs. (195) and (196) 
m 

yield 

t 2 
m 

2 2 ' 6-r -T 
m 

and 
iT 

2 ' . 2 
= < z > 0 + go>! 0 + k > 

The quarter period K is the complete elliptic integral of the 

first kind, a function of the modulus k, Given g0, one can determine 

k 
2 

(o:t· K) by the last of the above equations, which .is written as 

[2 2] 2 2 :rr K (k > ( 1 + k ) = 1 + g0 , ( 197) 

The central (and maximum) flux tirrie is then given by 

2 2 k
2 

T = 6 'T ----or' = 6 
m l+k"' 

(198) 

The ratio of average to maxinium flux time (or flux) is 

(!})/Tm = 1 snK(J + ')d' = ~ l•U x dx = ~ Jog(dnKJ--\cn K} 

and finally . 

<e >I l (l + k) 1 - l . . T m =zKk ·log r::K = Kk tanh k , (199) 

Figure III-3 represents the variation of the central and average 

flux time as a function of the parameters g
0 

and e f in Eq, (182). 
. . . , 2 B3 

We have used tabulated values of the function K(k ) and com-

puted first the values of g
0 

corresponding to a set of values 

Eq, (197); then, Eqs. (i98) and (181) yield 

for k
2 

in 
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------------------- -----------
1 +k

2 

Average !lux time (e)/Bf 

Ratio of ma . 
Xlmum to av 

erage flux u(O)/(u) 

I.00~---~2-------L4 ___ ____J61...._ ___ 8L_ __ ___JIO 

MU-29369 

Fig. III -3. Graded irradiation (elliptic -function solutions). 
K = modulus of the elliptic functions. 
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8(0) = T =8 6 ·X I l +g. 0 
m f, go. 

The flux shape snK(l+ t,) is completely defined by the value of k
2

; 

drawings are given by Jahnke and Ende. J
2 

The ratio ofcentral (maximum) 
~ ··- ,.. 

to average flux, Eq.· (199), is represe~tative of the flattening of the flux 

due to the less reactive ·fuel at the center. 
. . . . . . . . · ... \ 

In the following paragraph, we verify that for g
0 

= 0 ~he first-

order perturbation is exact and the second-order describes, exactly, 

small deviations about g
0 

= 0 . · 
. . 2 

When g
0 

tends toward zero, Eq, (197) shows that k - 0 and 
2 

K - TT/2. Using the series expansion of the function K(k ), we obtain 

~K~ 1+~+'10~r+,·· .. 
and ' . . . . '2 

(; Ky (1 +k
2

) ~ 1 + i k
2 

+54 (;i} + • • · , 

. 3 2 9 2 . 
(197)ylelds g 0 ::::: 'Z k (1 + Tbk) and Eq. 

Then,. Eq. (198) gives Tm::::: 2 ef y 1 = g
0

j24::::: 28f(l - g
0
j48) , and 

Eq. (199) gives ~(e)::::: Tm(l + g0/18)::::: 28f(l +~.g0 ) .. 
These are the results already obtained in Eq. (194), 

5, Steady Axial Mo·venients 

5. L Description and Equations 

The fuel is moved steadily lengthwise through the reactor so that 

the fuel at position z from the entry plane in each channel has been 

burned up to the same extent. The composition is uniform radially, and 

the flux is separable. 

The increase in flux time to which the fuel is irradiated when the 

fuel moves from z to z + dz is the product of the magnitude of the flux 

at z. by the time taken to travel the, .distance dx, L. e. , by the ratio of 

the distance dz to the velocity. This is independent of the rel:dial co

ordinate whe:r: the fuel moves in each channel ~ith a velocity proportional 

to the radial flux shape. The flux time e is then a function of z only, 

which is related to the axial flux shape u by 
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(200) 

where T here denotes a parameter which is a:function of the velocity 

at which the fuel is moved. For instance, if the flux- shape were to be 

normalized by the condition that its integral from the entry face to the 
. . . 

discharge face is -equal to unity, T would be the flux time to which the 

discharge fuel has been irradiated .. 

Various movements of the fuel will be considered. 

(l) Unid~rectional:. the fuel enters the reactor at ~ = - l and leaves at 

~ = l. 
(2) Bidirectional: part qf the' fuel enters the reactor at ~ = - 1 and 

leaves at ~ = + l .~ and the remaining part enters the reactor at ~ = 1 

and leaves at ~ = - l. 

(3) In-Out: the fuel enters at t = 0 and leaves at ~ = ± 1. 

(4) Out-In: the fuel enters at ~ = ± 1 and leaves at ~ = 0. 

· . .In the reactor equation, Eq. (11), one sets· I;E = 0 for the 

steady state,and one sets 'il = 'il( 8), where 8 is the function defined 
. u 

by Eq. ·(ZOO) with ~O = - 1, ~O = 0, t 0 = ± l for unidirectional, in-out 

and out-in movements respectively. 

For bidirectional movement (symmetrical), one has 

l l + ... ] 
'il u = "Z 'il ( 8 ) + 'il ( 8 ) ' with 

~ 

8+ = T ( u{~, T)d~ ,_ l 
.I 

1 

e- = T 1 u(!;, T)d!; 

(20 1) 

The function u{~, T) is symmetrical about ~ = 0; then, by de~ 

fining 1 

T = 1 u{~, T)dT 

0 . 

·~ . 

_8+ +8- ll - Tl (Y T)dT - 8+ -8~· 
--2- ' 0 - u '::>• - 2 

0 

(202) 
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- ; . 

one obtains, 

'V u = ~ [ 'V (T+8)+iz7 (T-8)] (203) 

The reactor equation, Eq. (11 L · can then be written 

(:

. . 2 ' . ) 1 a u(l;, T) 
-7. . z +u(I;,T) =gA(8)u(I;,T), 

"o at; 

(204) 

and each of the four fuel movements considered here is specified by the 

following definitions: 

Movement (1 )Unidirectional (2)Bidire~tionai. (3)In-Out (4)0ut-In 

gA( 8) g(8) 
l . .· .. . 
z[ g(T+8)+g(T-8)] g(8) g(8) 

Boundary Eq. (12) Eq. (13) Eq.(l3) Eq. (205) 
conditions 

fo u(l;, T)dS, 
. . I; 

8(s, T)/T 1 u(l;,, T)dl; Jo u(l;, T)dl; fo. u(l;, T)dl; 
-l 

The function g(8) is defined by Eq. (62) and the last boundary 

condition is 

~- E Z u = 0, where I; = 0; and ii = 0 , where I; = 1. (205) 

We can then develop the perturbation method, as in the case of 

batch irradiation of unmixed fuel, writing Eq. (204) as 

Lu = e gA(8) u, 

and seeking the solution u as a power s.eries in e, where 

(206) 

n 
E U 

n 
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The functions u are then the solution of the following e.quations: 
n 

Lu
0 

= o , 

Lul = gA(8o)uo ' 
I 

Lu2 = gA(80)ul + gA(80)8luO 

etc., 

(207) 

(208) 

(209) 

where 8 is obtained from u by the integrations indicated above; 
n . n . 

each -function u could be normalized, for instance, by the condition 
n 

that the equation for un+l has a solution. 

However, Eq .. (204) is in fact a third-order nonlinear differential 

equation for the function 8' where 

(21 0) 

with three linear homogeneous boundary conditions given by the following 

table: 

1 2 and 3 4 

8(-1)=0 8(0)=0 8(0)=0 

I II n I II 

8 (-1)-E 
2

8 ( -1 )=0 8 (0)=0 8 (O)-e 
2

8 (0) = 0 

I II I n It 

8 (1)+e
2

8 ( 1 )=0 8 (l)+e 
2

8 (1 )=0 8 (1)=0 

An integration of Eq. (21 0) with respect to s yields Eq. (50) 
;. 

which can be solved by two integrations; the integration constants 1
0

, 

1
1

, and 12 are determined by the three .boundary conditions. One notes 

that in cases (2) and (3), 1
1 

= 0. 

However, the boundary conditions on the function 8, the solution 

of Eq. (50), are not generally linear and homogeneous. The application 

of the perturbation method directly to Eq. (50) instead of to Eq. (206) 

would then become unnecessarily intricate. C
4 
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The following sections give examples where the solution of 

Eq. (50) is exactly given by elliptic functions. These examples have 

been chosen because they yield solutions simple enough to allow para

metric study. 

5. 2, Bidirectional Fuel Movement 

In this case, elliptic functions yield the solution of the equation 

for the flux time e = 4 (e+ -e-) even when the excess neutron production, 

g(e), is a cubic polynomial in e. Let 

(211) 

then 
1 11 2 

gA(e) = g(T+e} + g(T-e) = g(T) + z g {T)e (212) 

n 
We note that the sign of g(T) and of g (T) is not known, while 

2 
in, preceding examples with g(e) = g + g 2 e we had set g 0 > 0 and 
' 0 

g
2 

< 0. There, however, the case g
0 

< 0, g
2 

> 0 would correspond to 

a reactor used as a breeder; anyste,ady-statefuel scheduling scheme 

could be used for this purpose, 

Integrating Eq. (21 0} with respect to s and using the boundary 

condition at I; = 0 yields 

d2e 2{ 1 n 31 
dl; 2 = - Yo [1 + g(T)] e + t) g (T)e J 

Multiplying by dB/ dl; and integrating again yields 

(
de )

2 
2 { 1 2 1 " 4} dC_ =2y0 r 0 - 2 [l+g{T)]8 -Mg (T)e . 

(213) 

The boundary condition is now e(O) = 0, and r
0 

is determined 
i II 

by e (1) + e
2

e {1); with e(l) = T, this yields 

T2 T4 II 

Io= - 2-[l + g{T)] + Z4 g (T) 

II 

2 
E Z u 2 

+ ~[e (l)] , 
Zy 

0 

(214) 

where e (l) shall be replaced by its expression as a function of T. 
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In the following we consider bare reactors only, Eq. (179). Then 

we have 

2 2 2 1 II 2 2 
'~o (T - e H 1 + g(T)+ 12g (T) (T +e )]. (215) 

This equation has for a solution either T sn K t;, or T en K(l.., t;,), ac-
II 

cording to the signs of [ 1 + g(T)] and g (T) . 

II 

(1) When we have g (T) < 0, then 

f) (t;,) = T sn Kt;, , r (216) 

since this function satisfies 

(
de)

2 
K

2 
2 ere = ~ <T 

T 

and one can find the positive quantities, K
2 

and k
2

, such that Eq. (215) 

is identical with the above equation. That is 

2 2 [ T
2 

" J K = 'Yo 1 + g(T) + 1T g (T) , (217) 

and 
2 T2 " [ T2 n l 

k = - 12 g (T) I 1 + g(T) + 12 g (T~J . (218) 

We know K
2 

and k
2 

are positive because the last factor in Eq. (215) 

shall be positive when e = 0. Since this factor shall also be positive 

when f) increases toward T, k
2 

is smaller than 1, The complete 

elliptic integral of the first kind, K, is a function of the modulus k only, 

i.e., K(k
2

) which is tabulated by Byrd. B
3 

Thus, Eq. (217) with ki. given 

as a function of T by Eq. (218) is the equation which determines T. 
II 

(2) When we have g (T) > 0, then 

f) = T en K(1- t;,) , 

since this function satisfies 

(
dfJ )

2 
K

2 
2 <fS = ~(T 

T 

(219) 

2 
1-k ' 
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and Eq. (215) is identical to the above equation with 

and 

2 i 
2 . 2 [ T 2 

II l . 
K k . = yO 1 + g ( T) + T2 g { T )j , . 

1 2 2 .[ T 2. n J /T 2 rt . 

k /k = 1 + g(T) +IT g (TJ 17 g (T) 

The above quantities are positive, as is the right side of Eq. (215). Both 

the above equations are an equality between a function of k on the left 

side and a function of T on the right side. Given the function g(T), they 
2 2 

determine T, k and K . For instance, by forming first 

2 2 2 T
2 11 

K k = Yo TI g (T) , (220) 

the following equations, similar to Eqs. (217) and (218), are obtained: 

2 2 [ T
2 

ri J K = Yo . 1 + g(T) +t;-g (T) , (221) 

and 
2 T2 n [ T2 " J 

k = Ttg (T) I . 1 + g(T) +t;- g (TJ (222) 

II 

5.2.1. Example 1; Linear case: g(G) = g
0

_±_g
1
e, where g (T) = 0. 

Equation (218) or (222) yields k = 0, and then K::: y
0 

:::: ~ . Equation 

(217) or (221) yields simply g(T) = 0 or, 

(223) 

The flux time to which the fuel has been irradiated when .discharged 

is e+(l) = 2T, according to Eqs. (201) and (202). This is twice the final 

value of the flux time which would be attained if the fuel were irradiated 

batchwise while being thoroughly mixed. 
1T . 1T 

Equation (216) or (219) yields B = T sin z s = T cos -z (1- ~), and 

the flux shape, u(s, T) is proportional to th~ derivative of e with respect 

to s, i.e. , 
1T 

u(s) = cos 2 ~ 

as expected, because the composition of the reactor is uniform. 

(224) 
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The above results are a function of -g
0
jg

1
, only. If g

0
> 0 

and g 
1 

< 0, the reactivity of the fuel decreases during the irradiation; 

this is the usual case. However, one could use the reactor as a breeder 

by feeding a,fuel the reactivity of which increases with irradiation 

(g
0 

< 0 and g
1 

> 0); the operational qualities of the reactor are then 

reversed; if the velocity of the fuel were decreased, the reactor would 

become supercritical. 

5.2~2. 

and 

Example: Quadratic case: g(8) 

(1) When we have g
2 

< 0, Eqs; (217) and (218) b~come 

Kz " Y~ [I + go + f gz T~ , 
.Z 2 2 T

2 

K k = - "o g2 r 
The elimination of T

2 
yields the following relation between g 0 and 

2 1T 
k (where 2 = y

0
): 

. K
2

(l + 7k
2

) == 
2 2 l+go 

y
0

(l + g
0

), and T = 6 -
-g2 

k2 

l+7kz· 
(225) 

TJ:ie. flux shape is proportional to the derivative of the f)u.."'C time, Eq. (216), 

with respect to s; that is, 

u(s, T) = en Ks dn Ks (226) 

The fl'ux shape is peaked at the center, because the fuel is more reactive 

ther~~ .. The average flux is given by 

(227) 

(2) When we have g
2 

> 0, Eqs. (220) and (21 i) become 

2 2 2 T
2 

K k = "o g2 6 ' 
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and 

2 2 . 4 . 2 
K = Yo [1 + gO + 5 g2 T ] 

The elimination of T
2 

gives 

2 2 2 · 2 , l+go 
K ( 1 - Bk ) = y 0 ( 1 + g0 ) and T = 6 ----gz- k2 

l-8k
2 (228) 

The flux shape is proportional to the. derivative of the flux time, 

Eq. (219). with respect to s. Normalizing u(s, T) to unity at the cen:ter, 

one obtains 

u(s, T) = sin K(l,.. s) dn K
1
{l-s) 

k 

which can be transformed (see Ref. B3, ·formulae 122) into, 

2 
u(s, T) = en Ks/dn Ks 

The average flux is 

1 

(u) = r en Ks ds = .!_. sd K = _1 
ltfot)o dnzK~ K Kk• 

The maximum flux is given by 

this yields 

d
2e 
~ 

=0. 

or 

(229) 

{230) 

By using Eq. (213), 

Then, if k
2 < 1/2, the maximum flux is the central flux; if k

2 > l/2, 

there is a maximum flux given by the above equation, and the flux has 

a relative minimum at the center. 
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3 " 5. 2. 3. Example 3: Cubic case: g(8) = g
0 

+ g 3 8 , g (T) = 6g3 !.._: 
This example is treated exactly as was the preceding. 

(l) When we have g
3 

< 0, Eqs. (217) and (218) yield 

Kz = y ~ rl + gO + i g 3 T ~ ' Kzk z = - y ~ ~ . 
Thus we· have 

2 2 2 . 3 l+go k 2 
K (1 + 3k ) = y

0
(1 + g

0
) and T = 2 -·-. 

-g3 I+3k2 ' 
and 

(ll) 1 
u(r,, T) "' en Kr, dn Kr, and ~ = K . 

(2) When we have g 3 > 0, Eqs. (220) and (221) yield 

Kz = y~ ~+gO+ Zg3T3]. Kzkz = y~ g3T3/Z. 

Thus we have 

2 2 2 3 l+go 
K (1 - 4k ) = y

0 
[1 + g 0 ] and T = ? g

3 

and 

or by 

I 
2 w_ 1 

u(t, T) = en Kr, dn Kr, and u(O) - Kk' · 

The maximum flux is off center when k
2 

> ~ ; . it is given by 

1 II 2 3 2 
1 + g(T) + b g (T)8 = 1 + g 0 + g 3 T + g 3 T8 = 0 , 

1 = 
k

2 1 
- "2" 

The ratio of central to average flux is plotted in Fig. III-4 for 

the three examples treated above; it is a function of g
0 

only. Also 

plotted is the value of k, the modulus of the corresponding elliptic 

functions. 
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g(9)/go 

-6 -4 

MU-29370 

Fig. III-4. Flux changes resulting from bidirectional fuel 
movement (elliptic-function solutions). 

u(O)/ ( u) = ratio of central to average flux. 
k = modulus of the elliptic functions. 
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The value of T, which is half the flux time to which the fuel is 

irradiated when discharged, is compared with the flux time 8 f to which 

thoroughly mixed fuel could be irradiated in reactors of the same geo

metrical buckling; in the following tabulation we give some typical values 

of (T /8 f), which is a· mon.otonically decreasing function of g
0

. 

go= - ac go= o go = CIO 

Linear: 1 1 1 

1 1 1 

(~) 
2 (#)z (!f Quadratic: = 0. 925 = 0.894 = 0.866 

Cubic: (ztz 3 =0.873 (4t3 7 =0.830 ( r~· ~ =0;"794 

One notes that, although the changes in the flux can.be very 

large (cf. Fig. III-4), the value of T does not vary more than 5o/o from 

the value it has when g
0 

= 0. 

5. 2.4. Perturbation method. An approximate solution could be obtained by 

applying the perturbation method to Eq. (206 ). The following gives the 

results of the first-order perturbation. 

Equation (207) has a solution u 0 proportional to cos '(
0
s, which 

is normalized in order for the average flux to be unity, i.e. , 

"o u 0 (s) = -.- cos "os 
- sm Yo 

and the corresponding flux time, Eq. (200), is 

sin y
0

s 
e

0
(s, T) = T ---

sin "Yo 

The first-order perturbation determines T by the condition 

that Eq. (208) have a solution; i.e. , ( g A (8 
0

)u
0

, u
0
) = 0. With g A (8) 

given by Eq. (212), one obtains 
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1 II 
g(T) + 2 g (T) 

The corresponding integrals are evaluated as follows: 

(1) 

(2) 

(3) 

For the three examples treated above, 
'TT 

y
0 

= 2 gives 

T2 II 

g(T) + B g (T) = p 
II 

Linear case: g (T) = 0; g + g T = 0 
• II 0 1 5 2 

Quadratlc case: g (T) = 2g 2; g 0 + 4 g 2 T = 0 

Cubic case: g
11

(T) = 6g 3 ; g
0 

+ tg3T 3 = 0. 

which correspond to the exact value of T when g
0 

tends toward zero. 

5.3. Unidirectional 

After two integrations, Eq. (210) becomes Eq. (51), where the 

two constants of integration, r0 and 11 , must be determined by the 

boundary conditions. One will consider the case of a bare reactor with 

E z = 0 and y
0 

= ; ; the boundary conditions at ~ = - 1 then yield 

r
0 

= 0; when the function G(B) is quadratic, Eqs. (59) and (51) become 

(~~ r = 2 y~ 6(11 - ~ 6 - -i- 6
2 

- ri 6
3

) . 

The flux time T = 8(1) is a root of the last factor on the right side of the 

above equation because of the boundary condition at ~ = 1. 
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In the above equation, one can then use T instead of 11 as a 

constant of integration; it becomes 

(
d8)

2 
2 (l+go gl g2 2 (gl g2 ~ g2 2\ d:"S = 2 y 08(T-8) ----z- + T T + 12 T + r+ 12 T} 8+12 8 t 

(231) 
This equation. can be solved by finding first the roots of the 

quadratic polynomial in the last factor and then by using standard formulae 

as in the following examples. 

5.3.1. Example 1: Linear case: g(8) = g0~1~ Let 

l+go 
g 

0 
> 0, g 2 < 0 , and r = 

-g2 

then Eq. (231) becomes 

2 l+go 
Yo -y;:- 8 (T-8) (3r-T-8) where 3r-T~ T ~ 8 ~ 0 . 

Using the condition 8(-1)::: 0, one obtains 

and the inversion formulae (see Ref. B3, Eq. 233) give 

2 2 2 l+go 3r-T 
8( I;) = T sn b(l+l;). with b = Yo ----yr ---:r- , 

T 
3r-T ' or 

(232) 

(233) 

The condition that 8(1;) be an increasing function of I; and the 
I 

boundary condition e (1) = 0 yields 

8{1;) 
2 1 

== T sn -zKO+s) (234) 

and 
2 2 2 

K (l+k > = y
0 

(l+g
0

). (235) 
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The last equation determines K and k
2 

as a function of 

and Eq. (233) determines T, the flux time at discharge. 

Using Eq. (200), one obtains the flux u( ~. T) as 

l l l 
u(~, T) = K sn 2 K(l+~) en 2 K(l+~)dn 2 K(l+s) 

and the corresponding average flux is l/2. Thus, we have 
I 

u(O) = K~ (236) 
~ l+k

1
• 

actor. 

5.3.2. 

The flux shape, normalized to l at the center, can be written 

i 

l+k 2 4 l 
u(~. T) = --, [1-k sn 2 K(l+s)] snK(l+s). 

2k 
(237) 

This shows the asymmetry of the flux about the center of the re-

2 
Example 2: Quadratic case: g(8) = g

0 
+ g 2 !!..___: 

2 l+go 
g 1 < 0 , and T = ------z- ; 

-g 

Let 

(238) 

then Eq. ~231) becomes 

(
d8 ) 2 2 l+go 2 2 2 
CIS = 'to 6T 8(T-8) (6r - T - T8-8 } . 

2 2 
The last factor is positive if T < 27' . Let its roots be 8 + and 

8 , then: 

Using the condition 8{-l) = 0, one obtains 

d8 

,J (8 -8) (T-8) 8 (8-8 ) + -
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and inversion formulae [see ReL B3, Eq, (254)] give 

with 

and 

2 T 2 
B(t,) = T sn b(l+s)/[1- 7J en b(l+s)] 

2 2 1+g0 e +(T-e _) 

b = "o (;:;T 4 

k 2 = T(B+-8_) 

fJ+(T-fJ_) 

1 
The boundary conditions yield b = 2 K. We will then eliminate 

T between the equations 

and 

2 2 B+(T-·BJ 
K = "o (1+go) z ' 

6T 

By noting that e and e , Eq. (239), satisfy 
+ 

e +B ' + -
2 2 

T, and e+e =- (6T -T ), 

equations containing only T
2

, k
2 

and X.=K2/[y~(l+g0 )] are obtained as follows: 

2 
(B +B ) - 48 e + - + -

6T
2 

-2
1 

< e +e )T - e e T2 
1 2 + - + -

X. {1- 2 k ) = ----.------- = 1 - --:--2: ' 
6T 4T 

and 
2 1 2 

2 
T

2 
T

2 
X. (1 - 2 k ) = 1 - -=-z {4 - --:----2 ) . 

8T 2T 

2 ' 
Elimination of T between the first and the last of the above three 

equations yields 

(240) 

and 

(241) 
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The flux time is then 

2 l T 2 1 
8( s, T) = T sn 2 K(l+s)/ [1-e- en 2 K(l+s)], (242) 

and the flux given by Eq" (200) is 

K(l-~sn-~K(l+I;)Cn; K(l+l;)dn; K(l+(,) 

u ( ~, T) = T 2 l 2 ( 24 3) 
[l-8 en z-KO+s)] 

The ratio of average to central flux is then obtained from Eq. (200) as 

u(O) 
\liT= 

K(l- T )2k'' e_ l+k 
(244) 

where T/8_ is obtained from Eqs. ,(239) and (241). 

The flux time at discharge T and the ratio u(O)/ ( u )of central 

to average flux are plotted in Fig. III-5. For finl.te g
0

, the flux is not 

maximum at the center of the reactor" Therefore, the ratio u(O)/( u) , 

which decreases very rapidly with g
0

, is not the ratio of maximum to 

average flux. 

The perturbation method can be applied to obtain an.approxi

mation to the flux changes .. The first-order perturbation is as follows: 

Equation (207) gives the first approximation to the flux shape, 

cos y0 ~. Then Eq. (200) with r,
0 

= - 1 gives 

sin y0 r, + sin Yo 
cos 'Y 0 I; ' 8 0 (I; ' T) = T-· ~2..----s .,....in_y_O __ 

The first-order perturbation determines T by the condition 

that Eq. (208) have a solution; i.e., ( g(8 
0

)u
0

, u
0

) = 0. Let 

(246) 
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-----------------~mptotefo_r ______ ~ 

1.00 2 4 6 8 

Fig. III-5. Irradiation resulting from unidirectional fuel 
movement (elliptic-function solutions). 

10 

MU-29371 
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and 

then 

where the coefficients f
1 

and f 2 can be evaluated as follows: 1
1

sin y 0 t cos
2

y 0 t dt 

fl = 1 = 0 , 

and 

I sin Yo fl cos2 Yos d~ 

i
1

sin
2 

y0 t cos
2

y0 t dt 

f2 = --2---.-1 ___ 2 ____ = 
sin YoJ cos y0t, dt, 

-1 

sin 4y
0 1- --,.-~ 

4y 
0 

2 ( sin 2 y 0 ) 
4 .sin Yo 1- 2yo 

1T 
When y

0 
= 2 , Eq, (247) becomes 

T l["TJT 
2 

g( 2) + 8 g (y J (z-) = 0 

The two examples treated above give 

(1) Linear case: g 2 = 0 , g
0 

+ g
1 

i;- = 0 

5 T 2 
{2) Quadratic case: g

1 
= 0, g 0 + 4 g 2 4 = 0 

{247) 

The above equations give the exact value of T for g
0 

= 0 . 

The first-order pert~rbation method has been applied by Sola
52 

to this unidirectional fuel movement. Functions giving the first approxi

mation to the value of T have been tabulated in the case where the excess 
Bl 

neutron productionis represented by a sum of expohentials. The sec-

ond-order perturbation method would then yield an eigenfunction expansion 



of the correction to the flux, the coefficients of which are also given for 

a bare reactor by modified Bessel functions of the first kind. 

SA, In-Out 

A first integration of Eq" {210) yields Eq, (50) with 1 1 = 0; this 

is the equation for graded irradiation, and it has the same gen~ral so-
v II 

lution. The boundary conditions are now 8(0) = 0 and e (l) + E ze (1) = 0. 
I 

If E z = 0, the boundary condition is 8(0) = 0 and 8 (l) = 0 while 
i 

it was e (0) = 0, e {1) :.: 0 for graded irradiation, The solution is then 

exactly the same except for a change of the variable ~ to 1- ~. 

2 
Example: ~Z = 0 and g( 8) = g

0
_±_g 2 ~ This case has been 

treated for graded irradiation, One obtains the same values of K, k, 

and T , with 
m 

where T = 
m 

e ( ~) = T s n Ks , 
m 

eo) is the flux time of the fuel ready to discharge; the fuel 

is now irradiated to the maximum flux time which is attained only at the 

center of a rod for graded irradiation, 

The flux shape is proportional to the derivative of the flux-time, 

u( s) = en Kt; dn Ks , 

The flux is much more peaked at the center due to the effect of 

the more reactive flux at the center, The average flux is now 

(u) =fol en 
u(O) 

0 

1 2 
Ks dn Ks dt:, = K < ;r 

The perturbation method can be applied to Eq, (206), giving the 

first approximation to the flux shape and to the flux time as 

uo(s)= 
"o 

cos v
0

r. and e
0

(t;,T) = T 
sin v

0
s 

sin y
0 

sin y
0 

The condition for Eq, (208} to have a solution is (g( e o>uo, uo) = 0 0 

When g(8) is a quadratic function of e, this yields 

=0, 
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where f
1 

and f
2 

are evaluated as 

1 2 fo sin y 0 s cos y 0 s ds 

fl. = -z 1 --
sin Yo ]ocos

2
y 0sds 

and 

1T 
When y 0 = -z , one obtains simply 

follows: 

3 
2(1- cos y

0
) 

3 sin Y. ~ sin Z y 0 ) 
Yo O,l + ~z....-y--

o 

sin 4 y
0 1- __,_4 __ _ 

Yo = --------~r-~r-~~ 
2 ( sin 2 :yo) . 

4 sin Yo 1+ z Yo 

One recognizes the function s0 (T)~_Eq. (153). 

For a bare reactor where y
0 

:= ~ , one could obtain an approxi

mation of the flux time by using the same formulae which apply to the 

graded irradiation of the fuel; however, the flux shape is now the deriv

ative of the flux time with respect to s ~ 

6. Discussion of the Results 

The average flux time (e) to which the discharged fuel can be 

irradiated according to various fuel scheduling schemes is plotted in 

Fig. III~6 as a function of the parameter g
0

. It has been assumed that 

the excess neutron, production is represented by the following function 

of the irradiation flux time 8: 

where 8 f is the uniform flux time to which completely mixed fuel could 

be irradiated batchwise, and g 0 is the ratio of (a) the excess neutron 

production corresponding to the fresh fuel to (b) the axial leakage of 

neutrons in the uniformly loaded reactor. The burnup of the fuel is a 

monotonically (here linearly) increasing function of the flux time 8. 
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1.5 

----__ ------ __ Asymptote~~> 

Completely mixed fuel 1.0 J--______ ___;,._,;..._ _____ _ 

5 
9o 

10 

M,U -29 3A 2-A 

Fig. III-6. Comparison of average irradiation of the fuel 
at discharge for various fueling schemes. 
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The results are interpreted as follows: 

(1) The average burnup of the discharged fuel is largest for 

steady-state fuel scheduling schemes because the reactor always contains 

some fresh fuel with reactivity greater than average, while only the most 

irradiated fuel, with reactivity less than average, is discharged. Steady 

axial movements usually yield better results than graded irradiation where 

the most irradiated fuel rod still contains some nearly fresh fuel. 

(2) According to first-order perturbation theory (i.e., for a 

given flux shape), the greater the average importance of the fuel, the 

larger the reactivity of the reactor. The importance function is pro

portional to the unperturbed flux shape, and thus, larger burnup is ob

tained with the in-out technique where the fuel at the center of the re

actor is relatively more reactive than iri. the bidirectional or unidirectional 

fueling schemes. Similarly, radial mixing, in which the less reactive 

fuel is at the center', yields smaller burnups than completely mixed fuel. 

(3) The second-order perturbation theory takes into account the 

flux-shape changes; the flux shape tends to flatten when the less reactive 

fuel is at the center, according to the one-group diffusion model. The 

flattening of the flux, which here occurs for radial mixing and graded 

irradiation, results in an increase of the average burnup of the fuel; 

this has been explained in Sec. II.4. 3. Thus, as shown on Fig. III-6, the 

average burnup increases with the parameter g
0 

to which the flattening 

of the flux shape is proportionaL On the other hand, for in-out and bi

directional movements, the fuel at the midplane of the reactor is the most 

reactive; the flux shape peaks, and, on Fig .. III-6, the average burnup is 

seen to decrease with g
0

. For unidirectional movement, the flux shape 

is not symmetrical about the midplane of the reactor, and this skewing 

of the flux decreases strongly the attainable burnup. 

On Fig. III-6, ex.act results have been obtained by means of ellip

tic functions for the steady- state fuel scheduling schemes. The accuracy 

of the perturbation methods is then easily determined, since first-order 

perturbation approximates the average flux time by a value that corres

ponds to the unperturbed flux shape (g = 0), and since second-order per-
0 

turbation theory approximates the curves plotted on Fig. III-6 by their 

tangent at g
0 

= 0. 
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The first-order perturbation results are accurate within 5% 

for bidirectional movement and can be in error of as much as 25% for 

unidirectional movement. 

The exact results here lie between the first-order and the sec

and-order perturbation approximations. The second-order perturbation 

method emphasizes the effects resulting from the flux-shape changes; it 

always agrees qualitatively with the exact results, but gives clo.se agree

ment only for small values of g
0

; quantitative agreement decreases as 

g
0 

increases. For graded irradiation when g
0 

reaches the value 10, 

second-order perturbation results are 13o/o larger and first-order per

turbation are 13% smaller than the exact results; at larger values of 

g
0

, first-order perturbation is better than second-order perturbation 

method. However, only the latter can describe the flux changes .. 

Elliptic function solutions of the one- group reactor equation 

. should be useful for survey studies of steady-state fuel scheduling schemes:. 

The general method requires that we first approximate the excess neutron 

production g(B) by a second-degree polynomial. However, the uncer

tainties in the basic nuclear data, discussed by McLeod, M
4 

as well as 

the corrections for lumped fuel (see Appendix C), indicate that a more 

refined representation of the function g(8) may sometimes not be justified. 

Furthermore, the one group model is shown in the next section to be 

adequate to describe the diffusion of the neutrons in large thermal re

actors (with energy independent boundary conditions) loaded withlow en

richment fuels" 

Such exact solutions are not available for batch irradiation. How

ever, since the burnup of the fuel is smaller there, the flux changes are, 

in general, also smaller. Therefore, perturbation methods are more 

accurate for the same initial reactivity of the fuel. 
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IV. APPLICATION TO SPECIFIC REACTOR SYSTEMS 

Specific reactor systems will be defined by a corresponding re

actor which is considered to be at operating temperature with equilibrium 

xenon and samarium. Such nreference designs 11 have been developed for 
Bl Pl 

large thermal reactors. ' In the present section, we present a ref-

erence design for a small high-leakage u235 
light-water reactor. The 

flux change throughout the irradiation and the average. burnup of the fuel 

at end of life are .. then determined easily by using the perturbation calcu

lations developed in the preceding sections, according to a one- group 

modeL 

The validity of the one-group diffusion model is then investigated, 

For reactors whose reflectors can be represented by a reflector saving, 

two-group diffusion calculations can be performed with only a slight modi

fication of the calculation procedure developed inSec. IL 

1 235 . h W R . U L1g .t- ater eactor 

L L Reference Design 

The reference design reactor is defined as the reactor whose core 

is uniformly loaded with a charge of fresh fuel; high cross-section fission 

products (xenon and samarium groups) are present at their equilibrium 

concentration, 

1.1.1, Initial cornposition.. The homogenized composition of the clean 

reactor core is that of the mixture with which experiments have been per

formed at Bettis Laboratories: G
4 

Uranium (U 
3
o

8
, 93, 37o/o enriched 

u 235
), Zirconium_, and water, The number densities, in units of 10

24 

atoms/cc, are as follows: 

N 25 :o.: 0,0001717, 

N
28 

~ 0,000012, 

NH = 0.03368, 

and Nzr= 0.02132. 

L 1,2, Effective thermal cross-sections, 

the tables of eros s 'sections averaged over 

ponding to a neutron temperature of 500°K 

ratio of 0.005. 

These have been obtained from 

a Wilkins spectrum A
1 

corres-
235 

and a U to hydrogen-atom 
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For 1/v absorbers, the absorption cross sections are given by 

the formula a = AK a 

A= 0.6087 K 26 = 6.0 barns, 

K
28 

= 2. 73 barns, and 

Kzr = 0.180 barns, 

KH = 0.332 barns. 

For non 1/v absorbers, one obtains directly: 

a a, 25 = 386.6 barns, a f, 25 = 328.7 barns, and axe= L979Xl0
6
barns. 

The average number of neutrons produced per fission and the 

capture to fission ratio in u235 
are 

v 
2 5 = 2 A 7 , and a 2 5 

= 0. 1 7 6 1 . 

The transfer cross section of hydrogen is a H = 24.34 barns. 
tr, 

For the other materials, transfer cross .,sections are computed according 

to the formula a = a + (1- j:i:)a . 
tr a s 

Zirconium Oxygen 

9.972 6.155 4.025 

The diffusion coefficient is then computed from th_y total macro

scopic transfer cross section I;tr by the formula 

D = 1/3 I;tr = 0. 3054 em. 

L 1.3. High cross-sectionfission products. The samarium group contains 

the stable fis sian products. If Y Sm is the yield per fission of such fis

sion products, then at secular equilibrium 

Ysm l:f<i>;:: NSmasm<l> · 

The xenon group contains the fission products with a large dis

integration constant ~. If the total yield of xenon per fission is Y X' 

then at secular equilibrium 
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The total poisoning ratio, defined by 

is thus given by the formula 

l 
r = -:----

1-+ a25 

The fission yields which have been used in computations per

formed by Shanstrom are 

Y Sm = 2, 1 o/o and Y X = 6. 1 o/o. 

The Reactor HandbookEl gives 

-5 -1 
X.X = 2.1Xl0 sec 

The average flux has been chosen 

13 2 
<j> = 3Xl 0 neutrons/ em sec 

corresponding to an average power density of 52 kW/liter of core. Then 

we have 

r = 5.62o/o. 

1.1.4. Neutron balance. The neutron balance is written o:r;1 the basis of 

one thermal neutron absorbed in u 235
. The corresponding production of 

fast neutrons is 

l::f, 25 v 25 
llzs = v25 """ - -l--

~a,25 +azs 
(1) 

Because the amount of u238 
present is very small, the fast fis-

sion effect and the resonance absorption are negligible; thus, the fast 

fission factor is € = l, and the resonance escape probability is p = l. 

The nonleakage probability during .moderation is computed accord-

ing to the Fermi equation 2 
-B

0
r 

pth = e 

(2) 
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For the considered mixture with equal volumes of metal and 

t th F . h 1 d b W"lk" W 7 · wa er, e erm1 age to t erma , as compute . y 1 1ns, 1s 

'T = 61 em 
2 

. 

The neutron balance is computed for a reactor of geometrical 

buckling, B~, corresponding to a bare cylindrical reactor of equivalent 

height and diameter equal to 70 em where B~ = 0.006735. 

The fast nonleakage probability is then Pth = 0.6632. 

The absorption by the permanent absorbers is proportional to the 

sum of the macroscopic eros s .. sections of Zr, H, and u
238 

If the mix

ture were not homogeneous, equivalent homogeneous cross sections could 

be determined by weighting the cross' section of each nuclide by the cor-
. Gl Bl 

responding thermal d1sadvantage factor. ' 

Neutron Balance 

Production of fast neutrons: 1125 = 2.1002 

Leakage during moderation: {l-Pth> 1125 = 0. 7073 

Net production of thermal neutrons: Pth 1125 = 1. 3929 

Consum:etion of thermal neutrons by: 

u235 r . lSSlOnS; l/(l+a25) = 0. 8503 

235 
U c~pture: a25/ (l+ a25) = 0.1497 

Absorption by Xe and Sm: r = 0.0562 

Absorption by permanent 

absorbers: NPa p/N25a 25 = 0.1381 

Thermal leakage: DB5/N25a 25 = 0.0310 

Total: = 1.2253 

Absorption by control poison: EE/N25a 25 - 0.1676 

Total consumption of thermal 

neutrons: - 10 3929 
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The reactivity p for the reference design, defined as the ratio 

of the absorption of the thermal neutrons by control absorbers to the 

production of thermal neutrons. is 

0,1676 
p = 1..3929 = 0.12 0 

The effective multiplication factor of the reference design without 

control absorbers is 
1..3929 

kef£ = L 2253 = L 14· 

LL5. Effective thermal cross-sections aF and a 26 ._ The low cross

section fission products can be considered as 1/v absorbers, with a 
. 2200 . 

reference cross sect10n a F = 65 barns (see Ref. E 1, Sec, 2-11 ). The 

corresponding crosse; section averaged over a Wigner- Wilkins spectrum is 

a F = 0.6087· 65 = 39.6 barns. 

The resonance absorption in u236 
is taken into account by adding 

a resonance contribution to a purely thermal cross ... section. The rate of 

b . . u236 . a sorptlon 1n 1S 

(3) 

where v P 1 I:fcj> is the number of neutrons slowed down to resonance 

energies, per second., and P
1 

is the nonleakage probability from fis-

. Th 1 b . . u236 s1on to resonance, e argest resonance a sorptlon 1n occurs 

at 2,6 eV, and the leakage from this resonance energy to thermal is 

negligible; one .then lets P
1 

= Pth' The quantity p is the resonance 

escape probability. Assuming that resonance absorptions occur only in 

u
236 

' 1-p is the probability for a neutron to be absorbed in u
236 

resonances, The u
236 

is very dilute in hydrogen and the resonance 

escape probability p is a linear function of the resonance integral 
26 

Iefi that is, 

N 126 
l-p = 26 eff 

NHaS, H 
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The scattering cross section aS H of hydrogen at resonance 
. ' H4 26 

energies is constant and equal to 
H3 

Halperin as 400 barns. 

20,4 barns; ref£ is given by 

Finally, dividing Eq. (3) by N
26

<t> and replacing (1-p) by its above 

expression, and replacing P 1 by Pth and replacing v I;£ by 

v 
yields 

The above data yield 

1.2. Composition Changes During Irradiation 

l. 2.1. Equations. The nuclide concentrations, excess neutron reactivity, 

and burnup of the fuel, are expressed as functions of the flux-time e to 

which a local section of the fuel has been uniformly irradiated. The cor

responding assumptions are stated in Sec. L2. L l. 

The nuclide concentrations vary with the flux time e to which 

the fuel has been irradiated, according to Eqs. (I-3) through (I-8); i.e., 

o -a 258 
N25 = N25 e 

NXe aXe+ NSm aSm = r N25 a25' 

and 

0 l -a e 
N26 = N25 (l-e 25 ), 

l+az5 

0 a25 -a e 
N = (l-e 25 ) 

F N25 l+a25 

The burnup f3(8) is defined here as the fraction of u 235 
atoms 

destroyed; it is simply 

(5) 

The macroscopic cross section for production of thermal neutrons 

is 
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and the macroscopic cross section for removal of the thermal neutrons 

is 

The excess neutron production \1 is then the function of 8 de~ 

fined by 

According to Eq. (II-18), the dimensionless excess neutron pro

* duction is 
2 

g( 8) = \1 (8)/DB
0 

= g (8) ~ g (8) , 
p r 

{6) 

with 

{7) 

+ r 

(8) 

::(; 
For use in Sec. III, one should multiply the right side of Eqs, (6) 

through (8) by B~/B~ , according to Eq, (III-62). 
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1.2.2. Fuel- cycle parameters. The burnup and excess neutron pro

duction are now functions represented by the sum of a constant and of an 

exponential function of the flux time. The numerical values of the cor

responding parameters g 0 and g
25 

are computed by Eqs. (6) through 

(8). 

and 

The above reference design corresponds to the following values: 

- (J e 
g (8) = 44.95 e 25 

p 

g (8) 
r 

-(] 258 
= 8.98 + 30.56 e 

-(] 258 
g(8) = - 8.98 + 14.39 e 

(9) 

These functions represent the neutron production, the neutron re

moval, and the excess neutron production in a reactor loaded with the 

same amount of u235 
as is the reference design reactor. 

In order to reduce the variation of the excess neutron production 

of the fuel, it is customary to add in the reactor a ''burnable poison" 

which burns out more quickly than u 235 
Figure IV -1 shows the vari

ation of the neutron production, the neutron removal and the excess neu

tron production with and without burnable poison. Analytically, one adds 
-(]Be 

to gr (8) [and subtracts from g(8)] a term gB . In Fig. IV -1, one 

has chosen for gB the value which cancels the initial excess neutron 

production. 

1. 2. 3, Application. The results of the parametric study performed in 

Sec. II.4 can readily be applied to the above reactors, with 

(go+g25)/g25 = 0.376, and g25 = 14.39 . 

The following values of the average burnup of the fuel at end of 

life correspond to the bare cylindrical reactor of equal height and dia

meter with no burnable poison. 
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--- Without burnable poison 

----With burnable poison 

0.58 
o-25 

MU-29372 

Fig. IV -1. Variation of neutron production, neutron removal, 
and excess -neutron production with irradiation. 
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Average burnup at end of batch irradiation of fixed fuel. 

Perturbation method Finite differences 

Zero-dimensional 
st 

1 order 
nd 2 · · order 35a 49a 100a 

0.376 0.182 0.254 0.250 0.244 0.241 

Finite differences computations predict an exact value of 0. 238. 

The first-order perturbation, although more accurate than the zero

dimensional approximation, is still in error by 24%. The second-order 

perturbation yields as accurate a result as does finite differences com

putations using less than 35 mesh points, and thus should be useful for 

survey studies. 

The above results illustrate the use of the perturbation method. 

However, they correspond to a one- group analysis which is not adequate 

in the present case, as will be shown in the next section. 

2. Two-Group Diffusion Equations 

2.1, Assumptions and Equations 

The neutron distribution is now described by a fast flux q, 1 and 

a thermal flux <j>. 

The fast flux is caused by neutrons of all energies above a thermal 

cutoff energy. These neutrons are produced at a rate E v I:f<j>' and the 

properties of the fast neutrons can be characterized (see Ref. W3,p. 

502) by a diffusion coefficient 0
1 

and a removal (slowing-down) cross

section approximated by: D
1
jT, where 'T is the age of the neutron from 

fission energies to the thermal cutoff energy. Thus, the fast flux satis

fies the equation 

By assuming that all resonance absorptions take place at the 

thermal cut-off energy, the production rate of thermal neutron is 

Dl 
P-,=- <1> 1 , and the thermal flux satisfies the equation 

aNumber of spatial mesh points; 12 time steps hil.Ve been used. 

(10) 
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It is assumed that the diffusion coefficients D and D 
1 

are con

stant in the volume of the reactor; otherwise, one should have written 

div(D grad <!>) instead of D ~<I> , 

The following applies to bare reactors and to reactors whose 
>:< 

reflector can be represented by a reflector saving. Thermal and fast 

fluxes are assumed to satisfy the same linear homogeneous boundary 

condition, Eq. (I-13), on the outer surface of the reactor core. Since 

both functions <1> and <1>
1 

satisfy this boundary condition, they can be 

easily expanded in the eigenfunctions vk of the corresponding eigen

value equation, Eq. (I- 39). 

Consider first the following linear operator 

(12) 

The operator L
1 

is such that the self-adjoint homogeneous 

equation L
1 

<1>
1 

= 0 does not have any nontrivial solution; therefore, it 
-1 

has an inverse L 
1 

, and Eq" (10) becomes 

(13) 

For instance, using the eigenfunction technique yields 

( 14) 

An equation for the thermal flux is now obtained from Eqs. (11) 

and (13); it can be written 

2 -1 2 
-D(~<I> + Bo<l>) = p L l ( E v l::f<j>) - (I;a + DB0 + I:E) <I> , 

v1hile the one-group diffusion equation reads 
(15) 

* M4 Such reactors are considered by the FUELMOVE Computer Code. 
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- DB
2 
0 

-l 
one-group model thus replaces the operator L

1 
by a 

( 16) 

scalar, the probability Pth that a fast neutron escapes leakage during 

the slowing down process. For the uniformly loaded reactor, the two

group model defines the .fast non-leakage probability by Pth= l/ (l +B~ 7). 

The definition of vth' Eq. (I-10), is now 

e v p 
v =evP p=----=..c,.-
th th l+B~T 

(17) 

The two-group diffusion equation, Eq. (15), is now set in di

mensionless form. As an example, the equation corresponding to batch 

irradiation of unmixed fuel is derived below by extending the definitions 

of Sec. II.l.l. 

A thermal flux shape u(x, t) and an irradiation variable T are 

defined as follows by their relation to the thermal flux-time e(x, t): 

t T 

O(x, t) i <j>(x, T)dt = 1 u(x, T)dT (18) 

The macroscopic cross sections I:f and I:a are assumed to be 

known functions of the thermal flux time to which the fuel has been 

irradiated; one defines then two dimensionless functions 

g (e) = 
p 

vth I:f 

DBZ 
0 

and g (e) = 
r 

(19) 

which represent respectively the production and the removal of thermal 

neutrons, in units of the initial thermal leakage. The corresponding 

definition of the dimensionless excess neutron production g(e) and con

trol absorption c is 

g(e) = g (e) - g (e) and c 
p r 

(20) 
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With the above notations, and under the assumption .that the 

resonance absorption p be uniform in the volume of the reactor core, 

Eqs, (15) and (17) yield 

Finally, dimensionless coefficients pk are defined by 

2 
l + B 0r 

2 ' 
1 + BkT 

(21) 

(22) 

and the eigenfunction expansion of the right side of Eq, (21) is obtained 

from Eqs .. (13) and (14). Thus, the thermal flux shape u(x, T) is the 

solution of the equation 

(23) 

The above equation can also be written: 

ac 

=(+ D..u + u) "" [ g{O)-c] u = L wk 
Bo k=l 

(24) 

where one has made use of Eq. (20) and defined coefficients wk by 

(B~ =B~) r ( l+B~r ) 
-----.2.------ = 1 I 1 + 2 2 · 

l+Bk r (Bk =B0)r 
(25) 

The one-group diffusion equation, Eq, (II-20), would be obtained 

by setting wk= 0 •. The infinite sum on the right side ofEq. (24). repre

sents the net deficit in the production of thermal neutrons resu~ting from 

their diffusion during slowing down; it is orthogonal to the unperturbed 

flux v 0 , ·and thus it does affect the flux- shape changes, However, . the 

criticality condition is always 

(lg(O)- c] u,v
0
)= 0. 
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Mu:ltigroup diffusion equations, with energy independent boundary 

conditions, as well as the continuous slowing down model, still yield 

Eq. (24). Only the definition of the coefficients wk need be modified 

(see Appendix B). 

2. 2. Computation Procedure. 

The perturbation method can now be used to yield an approximate 

solution of Eqo (24) with only slight modifications of the procedure de

veloped in the preceding sections. 

The flux shape is expanded in the eigenfunctions vk (x), and its 

first-order perturbation u
1 

(x, T) is the solution of Eq. (24) where u 

and 8 are replaced by v 
0

(x) and Tv 
0

(x). 

2. 2.1. Batch irradiation of unmixed fuel with uniform control absorber. 

In the calculation procedure, we use Eqs. (Il-l 09) through (II-122) ex

cept for the following modifications: Eq. (II-116) is replaced by 

andEq. (II-12l)is 

= 
B2 

0 

B2-B2 
k 0 

replaced by 

B2 

= 2 O 2 [ Sk(T) - wk Sp, k(T)], where k ~ l. 
B -B k 0 

(26) 

(2 7) 

The function s k(T), which can be computed exactly like the function 
p, 

sk (T), is defined by 

(28) 

2. 2. 2. Continuous fueling. When the composition of a cylindrical reactor 

core varies only with the axial coordinate z, the radial shape of both the 

fast and the thermal flux is the same and it does not vary during the ir

radiation; this requires energy independent boundary conditions on the 

curved surface of the cylindrical core. The flux is then separable in the 

axial and radial coordinates. 
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Thus, considering for instance the graded irradiation of the fuel, 
\ 

only the last of Eqs. (III-128) through (III-133) is modified as follows: 
2 . 

Yo 
a.k(T) = 2 2 1 Sk(T)- wksp, k(T)] (29) 

yk-yO 

2. 3. Example 1: u 235 Light- Water Reactor 

Computations have been performed for graded irradiation of the 

fuel in the u235 
light-water reactor previously described. According 

to the note below Eq. {6), the right side of Eq. (9) is multiplied by 

B 
2
jB 

2 
= 3, 34 and one obtains 0 z 

g(8) - -
- (J 258 

30 + 48e , .and 
-a 8 

g (8) = 150e 
25 

p 

2.3.1. One-group analysis. The one-group analysis is performed accord

ing to Eqs. (III-128) through {III-132). The first-order approximation of 

the flux time at steady state is 

-
Tr 

(]2580(~)= 1.228 cosz: ~ 

and the corresponding value of the average flux time is a 
25 

(8 
0
) = 0. 7 82. 

The second-order perturbation correction to the flux time is 

Tr Tr 
+0.0266 cos 5z: ~ - 0.0047 cos 7z:~ 

'TT 
_+0.0013 cos 9z:~ + 0 0

• ] • 

The average value of the flux time is then 

a 25 ( 8 0 + 8 1) = 1. 22s ! o + o. 242) = o. 971 

This is 24. 2o/o larger than predicted by the first order perturbation 

theory (the average burnup of the fuel is about 20o/o larger). 
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2.3.2. Two-group analysis. The two-group diffusion model results in a 

modification of the second-order perturbation of the flux-time. The use 

of Eq. (29) instead of Eq. (III-132) yields 

Tr Tr 
a 

25 
e

1 
< s) = 1.228 [-o.o358 cos 2 s + o.1ooo cos 3-zs 

Tr Tr 
-o.o296 cos 5 2 s + o.oo11 cos 7 2 s 

Tr 
- 0.0023cos9 7 s + ···], 

and 

a 25 (e0 + e1 ) = 1.228 ~ (1 - o.o76) = o. 122 . 

The average flux time is now 7.6o/o smaller than predicted by the 

first-order perturbation theory. 

2.3.3. Discussion of the results. The flux time at steady state (propor

tional to the flux shape) is plotted in Fig. IV- 2. The very large dif

ference between one-group and two-group results can be explained as 

follows: 

Consider for instance the central region of the reactor, where 

U
235 

. 1 d 1 d d d 1 h 1 1s strong y . ep ete . Accor ing to the one-group mo e , t erma 

neutrons are produced in this region proportionally to v th l:f and ab

sorbed proportionally to l:a . During the irradiation of the fuel, v th £;£ 

has decreased more· c than I; did: there is a net deficit of neutrons, . a 

v th Z:f - l:a' resulting in a minimum in the flux. 

According to the two- group model, some fast neutrons, produced 

at higher rate by fissions in the adjoining regions of the reactor, thermal

ize in !he central: region; this increases the net production of thermal 

neutrons in this region, above the value predicted by one-group theory. 

This increase can be more than large enough to compensate for a deficit 

of neutrons proportional to vth I:£- ~a' thus resulting inan increase in 

the flux in the central region. 

The continuous slowing down model, Appendix B, yields results 

which differ even more from those obtained by the one-group analysis, 

because it increases the fast leakage probability, i.e. , the diffusion 

of the fast neutrons. 
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Fig. IV- 2. Spatial variation of the flux time for graded 
irradiation of u235 fuel. Dashed curve represents 
zeta first-order perturbation values; solid curves 
represent second-order perturbation values. 



-176-

Addition of burnable poison to the fuel tends to decrease the 

flux where it is already smaller; i, e. , where this poison has been 

burned up to a lesser extenL Thus, in Fig. IV-2, the flux shape cor

responding to the one-group diffusion model would be closer to the un

perturbed flux shape and that corresponding to the two-group diffusion 

model would be more peaked at the center. 

2.4 .. Example 2: Natural Uranium Heavy- Water Reactor 

Consider the graded irradiation of natural uranium fuel in the 

Candu Reactor. The reference design is to be found in Nuclear Chemical 

together with the formulae for computing the variation E 
. . Bl 

ng1neenng 

of the nuclide concentrations on irradiation .. Computations leading to 

the determination of functions such as the above defined g(B), gp(B), 

and 13(8) are iilustrated by Davidson~ 03 
We have obtained the following 

results for the Candu Reactor with the reference design loading of natural 

uranium:: 

) 

and 

-a e 
6.1417e 

40 
- 0. 9599 

-a e a e 
= 1.9064 + 7.1509 e 25 + 18.4351 e- 4 9 

-23.2431 e 
-a 4o 8 -a e 

2.1847 e 
41 

236 
The neutron burnout of U has been neglected and the symbol 

a 49 here represents the exponent denoted as y a 
49 

by .Benedict and 

Pigford;B
1 

when the flux time e is expressed in neutrons per kilobarns, 

the. various exponents in the above equation are 

a 25 = 0.5670, a
49 

= 0.8811, a
40 

= 0.7711, and a 41 = 1.3387. 

The functions g(B) and g (B) are then obtained according to . p 
2 2 

g(B) = Y'(B)/DB
0 

and gp(B) = vthl::/DB0 , (30) 
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with the following values (see ReL Bl): 

2 * 2 DB0 jN25a 25 = 0,0392, B 0 r = Oa0156, and vth/v = ePthp,::Q,8968. 

According to Eq. (III-62), for the following second-order per

turbation computations performed for graded irradiation of.the fuel, one 

multiplies the right sides of Eq, (30) by B~/Bi = 2. 7885. 

2.4.L One-group analysis. We use Eqs. (III-1.28) through (III-132) to 

obtain the approximate value of the flux time at steady stq"te; the first

order perturbation result is 

and the corresponding value of the average flux time is (e 
0

) ~ 0.1951. 

The second-order perturbation correction to the flux time is 

1T 1T + o.ol24 cos 5 2 t; - o.ooo4 cos 1 2 ~;, + · · · ), 

and the average value of the flux time at steady state is now 

Thus, it is 21 o/o larger than the value predicted by the first-order per

turbation theory. 

2.4. 2. Two- group analysis. WhenEq. (III-132) is replaced by Eq. (29)p 

the second-order perturbation correction of the flux time becomes 

1T 1T e 1 (I;) = 3.065 (0. 1134 cos 2 t; - 0 . .2827cos 3 2 t; 

1T 1T 1T + 0.0136 cos 52 t; - 0.0015 cos 7 2 t; - 0,0004 cos 9 2 t; + 0 

•• ) 

The average value of the flux time is now 

(eo tel)= 3.065.; (1 + 0"2105) = 0.2362 neutrons/kilobarns,, 

It is again 2lo/o larger than the value predicted by the first-order per

turbation theory. 
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2A.3. Discussion of the results. One-group and two-group analyses 

yield results which agree to the third decimal; the agreement is well 

within the accuracy required in the above fuel cycle computations. This 

is of importance because one-group analyses are simpler; it suggests 

the usefulness of the analytical solutions which could be obtained in 

terms of elliptic functions (cf. Sec. IIL6). The agreement of one-group 

and two-group results (for energy-independent boundary conditions) is 

due to the following: 

(1) 'The fast-leakage probability is small; thus, the coefficients 

wk in Eq. (24) or (26) are small. 

(2) The variation of the total fission cross section on irradiation 

is small because of the production of fissile isotopes of plutonium; a 

constant fission cross section [ g ( 8) = constant] would correspond to 
p 

s k(T) = 0 in Eq. (26). p, 
The second-order perturbation method yields here a correction 

of 21 o/o of the average flux time predicted by the first-order perturbation 

theory. A similar correction has been obtained by Shanstroni, S
3 

(p. 205) 

in the case of graded irradiation of low enrichment uranium fuel in the 

Yankee Atomic Electric Reactor. 
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V. CONCLUSIONS 

l. Perturbation Method 

The· first-order perturbation theory had previously been developed 

as an important tool for fuel-cycle analysis, becaus'e it yields results m 

ah analytical form which can be easily used for parametric studies. 

·It is improve'd as follows by the present use of a generalized 

perturbation theory: 

(a) The flux changes can now be described and their effects on 

reactivity lifetime and burnup of the fuel taken into account. 

(b~ A successive approximations scheme is obtained; since the 

equation giving each approximation canbe chosen ih the simplest possible 

form, computations are relatively easy. The accuracy obtained by using 

first- and second-order approximatio~s has been determined for a wide 

variation ·.of the physical parameters, The second-order approximation 

gives more ac·curately the average quantities, like the reactivity life

time and the average burnup of the fuel, than the local quantities, like 

the flux shape (see Sec. II.4. 7) . 

. (c) The effect of a variation of any physical parameter can be 

studied analytically. Many practical cases are now amenable to hand 

computations by the perturbation method. This should be of particular 

importance in survey studies of various fuel:-cycli~g scheme~. This 

method also suggests a simple approach towards programing such 

studies on digital computers. Functions have been tabulated which allow 

the study of fuel burnup and reactivity lifetime for one-. and two-dimen

sional reactors to the second-order approximation. 

2, Fuel- Cycle Results 

Application of the one-group and two-group perturbation methods 

to typical reactor problems has illustrated the importance of an accurate 

description of neutron transport with respect to energy and space for 

small thermal reactors with large fast leakage. In such case, the one

group model may result in large errors in the predicted flux shape at 
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the end of irradiation. However, the one-group model yields useful and 

reasonable results for large thermal reactors with relatively little leak

age. 

Parametric. studies emphasize the importance of the neutron leak

age in keeping small the variations of the spatial distribution of the neu

trons during the irradiation. Large leakage favors the use of first-order 

perturbation methods. The first-order perturbation predicts a smaller 

or a larger burnup according to the reactor type and the fuel scheduling 

scheme considered; its results are not always on the conservative side. 

Our study has indicated that there could exist an optimum ratio 

of radius to height of a cylindrical reactor core such that maximum re

activity lifetime and fuel burnup takes place for a given initial fuel 

loading. 

An exact analytical solution for the reactivity lifetime and fuel 

burnup has been developed for continuous fueling schemes, provided 

the one-group model applies and provided the characteristic excess neu

tron production of the fuel varies as a quadratic function of the flux time 

of irradiation exposure. A comparative study of various continuous fuel

ing schemes has been made for fuel with typical properties (see Sec. 

III-6). 
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NOMENCLATURE 

Coefficients of the eigenfunction expansion of u, Eq" (I-40) 

Coefficients of the eigenfunction expansion of e, Eq. (II-92) 

Coefficients in the function representing the burnup, Eq" (I-31) 
. ' 

Eigenvalue of Helmholtz Equation, Eq" (I- 39) 

Geometrical buckling, . Eq .. (I~ 19) 

Dimensionless control absorption, Eq. (II-19) or (III-63) 

Time integral of the dimensionless control absorption, 
Eq. (III-13) 

Coefficients defined by Eq. (II- 243) 

Diffusion coefficient,. Eq. (I-1 0) 

Auxiliary functions defined by the following equations in 
Sec. II: E

0
(w), Eq. (137); El, k(w), Eq. (140); 

E 2 .k(w), Eq. (128); E 3 ,k(w), Eq. (134) 

Auxiliary coefficients defined by the following equations in 
Sec. II: f 0 , Eq" {138); fl, k' Eq. (139); f 2 , k' Eq. (129) 

Flux magnitude factor, Eq. (I-33) 

Right side of Eq. (II- 34) or (III-19) 

Dimensionless excess neutron production, Eq. (II-18) or 
(IV -62) 

Coefficient in the function g(e), Eq. (II-.125) or Eq. (III-150) 

Integral excess neutron production, Eq. (III-67) 

Dimensionless coefficients,. Eq. (II-109) 

Eigenvalue, (.f+l)th root of Eq. (II-213) 
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Modulus and comp~ementary modulus of Jacobi elliptic 
functions · 

Complete elliptic integral of first kind 

Linear operator, Eq. (II-33) 

Nuclide concentration 

Functions defined by Eq. (II- 266) 

Resonance escape probability 

Nonleakage probability for fast neutrons 

Poisoning ratio in Sees. I and IV; Eq. (I-8)" 

Radical coordinate, in Sec. ~I 

Radius of the reactor core 

Function defined by Eq. (II-110) 

Function defined by Eq. (II-111) 

Time after startup of the reactor 

Irradiation parameter 

Flux shape, Eq. (I- 33) 

Eigenfunction of Helmholtz Equation, Eq. (I- 39) 

Dimensionless irradiation variable, Eq. (II-255) 

Spatial coordinates 

Half thickness of a slab or half height of a cylindrical reactor 
core 
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Greek Letters 

C t f . .. .. . U235 E . (I 4) apture o 1ss1on ratlo 1n . , . q~ -

Coefficients in the eigenfunction expansion of the flux time 
Eq. (I-102) 

Burnup,. Eq. (I- 31) 

Eigenvalue, (k+ 1 )th root of Eq. (II-152) 

Dirac function, Eq. (IV-72) 

o1 , oR, o2 Linear extrapolation distance, Eq. (I-13) 

o .. 
l,J 

E 

E 

e 

!J.k 

v 

p 

Kronecker symbol, Eq. (II-131) 

Laplacian operator 

Excess neutron production, Eq. (I-22) 

Perturbation parameter in Sees. II and Ill, Eq. (II-23) 

Fast fission factor in Sec. IV 

Ratio of linear extrapolation dl.stance to core dimensions 

Reduced axial coordinate, Eq. (II-150) 

Reduced radial coordinate, Eq. (II-207) 

Flux time, Eq. (I-1) 

Flux time to which completely mixed fuel could be irradiated 
batchwise 

Coefficients defined by Eq. (II-142) 

Average number of neutrons produced per fission 

Average number of thermal neutrons produced per fission, 
Eq. {I-10) 

Radial coordinate (Il-l 76) 

CoeffiCients for multi group analysis, Eq. (IV- 22) 
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Microscopic cross section 

l;a' l:E' l;f Macrosqopic cross sections, Eq. (I-10) 

Fermi age, in Se:c. IV 

Neutron flux, Eq. (I-1) 

Coefficients for multi group analysis, in Sec. IV, Eq. (IV- 24) 

Subscripts 

i,j,k,1,m, 
n, p have been us~d as integer subscripts; k always' refers to the 

(k+1)t solution of the Helmholtz equation, Eq. (I-39) 

R Radial 

Z Axial 

Note: Symbols which are used only in the section where they are de

fined are not listed in this nomenclature. 

Equations have been numbered consecutively with arabic numbers 

startin-g with one at the beginning of each chapter. Roman numerals 

always refer to sectioh numbers. Equations referenced out of their 

proper section are preceded· by their correct section number[ e. g., 

Eq. (II-1~21) would be so referenced in Section III] . 
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APPENDIX 

A. Scalar Product of Functions; Adjoint Operators 

The scalar product of two functions f and g defined in a volume 

V is defined and denoted as 

(£,g)~ ~ 1 f(x) g(x)dV 

According to this notation, the average value of a function f in 

the volume V is 

Two functions are said to be orthogonal if their scalar product 

is equal to zero. 

A linear operator L acting on functions defined in a volume V 

and satisfying some given boundary conditions on the surface S of V 

is self-adjoint if, for any two such functions u and v, one has 

(u, Lv)= (Lu,v). 

The Laplacian operator .6., acting on functions which satisfy 

linear homogeneous boundary conditions, is self-adjoint with respect 

to the above defined scalar product. This property is a consequence 

of Green's formula 

[ (u Llv)dV ~ ( (v Ll u)dV + ((u~: - v ~~ ) -lS, 

-- v )v Js 
since the last integrand on the right side vanishes. 

Non-self-adjoint operators arise, for instance, in the matrix 
. W3 ~~ 

representation of the multigroup equat10ns. An adjoint operator L 

is then definedFZ by the equation 

( u, L * v) = ( Lu, v) . 
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B. Continuous Slowing Down; Fermi Age Equation 

Wl Let T be the "age 11 of a neutron and q(x, T) the number of neu-

trons per unit volume slowing down past the energy corresponding to the 

age T in unit time. Then, if the slowing down properties of the reactor 

do not vary with .the position, the function q(:x;, T) satisfies the age 

equation 

(1) 

The function. o(T) is the fission energy spectrum; when all the 

fissions are assumed to yield neutrons of the same energy (corresponding 

then to 'T = 0), o(r) is the Dirac c5 function, and the above equation can 

be replaced by 

~q(x, 'T) - 8q~:; 7) = 0 ' (2) 

with 

(3) 

By assuming that the slowing down density q(x, T) satisfies a 

boundary condition which is indep.end'ent of the age 'T, we can expand 

q(x, 'T) in the eigenfunctions vk of the corresponding eigenvalue equation, 

Eq. (I-39). Letting 

q (x, 'T} (4) 

Eqs. (2) and (3) yield 

(5) 

with 

(6) 

(7) 
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The :rate of production of thermal neutrons is now pg(x,Tth), 

where Tth is the age from fission to thermal cutoff energy and p is 

the resonance escape probability. (assumed uniform), Then, Eqs. (4) 

and (7) yield 

GO 2 2 ( .\ -(Bk -B0)r vthEf'l>• v k/ 
pq(x, Tth) = e ( ) vk(x), (8) 

vk,vk 
= 2 

-BO Tth 
where v th is defined by Eq. (IV -17) and one sets Pth = e 

which is the fast nonleakage probability corresponding to the Fermi

age model in the uniformly loaded reactor, 
Dl 

The term pq(x, Tth) corresponds now to the term ~ q,1 in the 

equation for the thermal flux, Eq. (IV -11 ), Thus, the coefficients wk 

in Eq, (IV -24) shall now be replaced by the coefficients w~ defined by 
2 2 

F -(Bk- BO)T 
wk = 1 - e (9) 

Numerical applications~ 

235 
U Reactor. We consider graded irradiation of the fuel in the 

reactor of Sec, IV. 2,3, Thus, 
2 2 2 2 

-Bz r{yk- Yo>lvo 
F 

wk = 1 - e , and 4k(k+l) ' 

F 
Values of wk are compared below with the values of wk given 

by Eq. ( IV-25): 

k 1 2 3 4 

wk 0.4105 0,6761 0.8071 0.8741 

F 
0.6256 0.9475 0.9972 0, 9999 wk 
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The difference between two-group and Fermi - age results is 
F . 

( wk -wk)/wk times that between one-group and two-group re~ults; As 

an example, the following table gives the results for the value of the 

second-order perturbation of the average flux time to which the fuel 

can be irradiated; the results are in units of the average flux time given 

by first-order perturbation_method. 

One-group Two-group Fermi- age 

(e)l;(e)o 0.242 -0.076 -0.241 

This illustrates how important it is to describe as accurately 

as possible the diffusion of the fast neutrons before any attempt can be 

made to determine the flux-changes resulting from the nonuniform burn-
" 

up of the fuel in a nuclear reactor where fast leakage is large: The 

correction taking into account the departure of the flux shape from its 

unperturbed value results in an over or underestimation of the average 

flux time as large as 25%. 

Large thermal reactor. The reference design of the Candu Re~ 
B 2 6 - 2 6 actor corresponds to B

0
r = 0.015 and B

2
r = 0.005 . 

The fast leakage probability is very small, and so are the co

efficients wk corresponding to the first (and most important) eigen

functions. For instance, for graded irradiation, Eqs. (9) and (IV-25) 

yield values of w~ and w
1 

slightly smaller than 0.05, and 
F 

(w 1 -w1 )/w1 = 0.037. Thus, the correction brought about by using the 

·two-group diffusion equation instead of the one-group is likely to be small; 

furthermore, this correction is accurate within a few percent (here about 

3. 7%) whatever the model (two-groups or Fermi - age) used to describe 

the diffusion of the neutrons during slowing down. 
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C. Lumped Fuels 

Most fuel-cycle computations have taken into account the effects 

due to the lumping of the fuel by means of the following homogenization 

procedure: 

Consider, for instance, a cell consisting of a fuel element and 

of the adjacent moderator; the cross sections of the nuclides in each 

region are weighted by the relative value of the average flux in this 

region. An extremely detailed computational model has been developed 
Gl by Greebler according to such an homogenization procedure. The 

underlying assumption is that the nuclides are uniformly distributed 

in the volume of the fuel lump. 

Here, we investigate the effect of the nonuniform distribution 

of the nuclides in the fuel lump. The nuclide concentrations and the flux 

are functions of the position in the fuel lump as well as of the irradiation; 

thus, when computing the reaction rate of the neutrons with a given nu~ 

elide, the average value of the product of the nuclide concentration by 

the flux differs from the product of the average concentration by the 

average flux in the fuel lump .. This has been taken into account by 

Ioffe, 
12 

who introduced a corrective coefficient, here called "effective 

concentration coefficient;n its variation with irradiation is investigated. 

It is shown that the effects of the nonuniform distribution of the 

nuclides in a fuel lump can be just as important as the effects of the 

variation of the flux ene)J;gy spectrum during irradiation. The chosen 

example is the natural uranium metal NRX rod, whose behavior on 

irradiation has been studied in much detail by AERE, Harwell, and 

AECL. WB The effective concentration coefficients cqmputed according 

to a very simplified procedure here developed allow an accurate evaluation 

of the effects of the nonuniform distribution of u235 
and Pu

239
. 

l. Reaction Rates in Fuel Elements: General Considerations, 

Let t be the time after the beginning of the irradiation, x be 

the spatial coordinate, and E be the energy of a neutron. The neutron 

flux per unit energy interval is denoted by <P(x, E, t); let N(x, t ) be the 

concentration of a given nuclide and a (E) its eros s section for reaction 

with neutrons of incident energy E. The local reaction rate is 
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ac 

A(x, t) = N(x, t) 1 a (E) ~ (x, E, t)dE , (1) 

The average value of a function f(x) in the volume V of a fuel 

element is defined and noted as 

( r) = ~ 1 f(x)dV; 

v 
(2) 

then, the average reaction rate in the fuel element is 

GO 

(A)= (N(x, t) 1 <7 (E) ~(x, E, t)dE )· (3) 

To study the effects of the nonuniform distribution of a nuclide 

in the fuel element, we define an "effective concentration coefficient" 

1;, by 

(;(t) = (A)/ (NJfo (7 (E) ~(x, E, t)dE), (4) 

where l;,(t) is the coefficient by which the reaction rate computed accord

ing to the homogenization procedure (L e. , letting N(x, t) be approximated 

by (N)) shall be multiplied in order to yield the effective reaction rate 

which takes into account the nonuniform distribution of the nuclide. 

For each nuclide, the cross sections a (E) are usually known 

functions of the energy E. 

The nuclide concentrations N(x, t) are the solutions of a set of 

first-order differential equations; these equations are generally non

linear because of the dependence of the neutron flux per unit energy in

terval, IP(x, E, t), upon the concentrations N(x, t). 

Kushneriuk, Kl who has determined an approximation of the neu

tron flux in a cylindrical fuel rod of uniform (average) composition, and 

Westcott, W9 who considered a slab of purely absorbing mate~ial, have 

investigated the ''hardening" of the neutron energy spectrum within a 

fuel element and determined the spatial dependence of the quantity 
GO fo a (E) Cl? (E, x, t)dE in Eq. ( 1 ). 
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It is suggested here that an accurate determination of the neu

tron flux by unit energy interval, <Ii(x, E, t), in fuel elements of arbitrary 

shape, be performed on high-speed digital computers with the help of 

multigrouping multi region transport codes. Thus, the function <Ii(x, E, t) 

would be represented in each energy group Ei < E < Ei+l by a function 

<P. (x, E, t) which is separable in space and energy according to the follow-
1 

ing equation; 

<li. (x, E, t) = <j>. (t)h. (x, t)f. (E, t); 
1 1 1 1 

(5) 

hi (x, t) is the "flux shape" for the group i; it is conveniently normalized 

to an average value equal to unity, i.e., 

<j>. (t) is the magnitude of the corresponding average flux in the fuel ele-
1 

ment when the function f. (E, t) is normalized by 
1 

E.·· r 
( 

1

+ fi (E, t)dE = 
)E. 

1 0 

1 

We can now define an effective cross section associated with the 

group i as 

Ei+l 
a.(t) =i a(E)f.(E,t)dE. 

1 1 

E. 
1 

The effective cross section a. (t) is that corresponding to the 
1 

average energy spectrum of the flu:X <P. (x, E, t) in the fuel element; 
1 

(6) 

a. (t) can be obtained by computations performed according to the usual 
1 

h . . d Gl . omogen1zat1on proce ure, 

Equations ( 1), (5) a~d (6) now yield 

A(x, t) = N(x, t)h. (x, t)O'. (t)<j>, (t) . (7) 
1 1 1 

Thus, assuming that the flux shapes h. (x, t) have been obtained 
1 . 

from multigroup computations, functions s. (t) are defined by 
1 
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and the effective concentration coefficient defined by Eq. (4) is 

i i 

2. Simplified Model for Evaluation of the Effective Concentration 

Coefficients 

( 8) 

(9) 

Estimates of the effective concentration coefficients wiU here be 

obtained by a one-group analysis. The single group will be referred to 

as the therm~l group, and the subscript i used in the above equations 

is no longer needed. Equations (7), (8) and (9) now read 

A(x, t) = N{x, t) h(x, t) (] (t)<!>{t), 

and 

Furthermore, the variation of the flux shape with irradiation 
I 

is neglected, i.e. , h{x, t) is replaced by h(x). 

With these simplifications, the neutron absorption rates in the 

u
235 

and -the Pu239 of a uranium fuel element,:< can be studied analytically. 

The subscripts 26 and 49 which will be used hereafter refer respectively 
235 . 239 

to U ·· and Pu . Initially, t'he composition of the fuel element is 

uniform and it does not contain any plutonium. 

Rate of Absorption in u 23 5. 

'The rate of neutron absorption in u
235 

is now 

(10) 

where a 25 (t) is the effective thermal _eros s section for absorption in 

u
234

; it could be determined according to the homogenization procedure. 

Th 0 f u235 h 0 £0 h 0 e concentratlon o t en s_atls 1es t e equahon 

(11) 

':'Similar studies could be performed for a clust;er of small fuel elements. 
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By setting . a 
25 

= a 
25 

(0), a new irradiation (time) variable, the flux time 

e is defined by t 

"2581 "25 (t).p(t)dt • 

and the solution of Eq. ( 11) subject to N 25 (x, 0) = N~5 is 

The effective 

given by 

N(x, 8) 
o -a25Bh(x) 

= N25 e 

concentration coefficient t; 25 , Eq. (4), 

-(] Bh(x) 
(h(x) e 

25 
) 

1;,25(8) = (e-a258h.(xXh). 

Note that for small irradiations 

and .for very large irradiations 

( 12) 

(13) 

is now 

(14) 

(15) 

where h(O) denotes the minimum of the flux shape. The minimum 

usually occurs at the center of the fuel element , and then, t; 25 (8) de

creases monotonically with irradiation;. this decrease is clearly due 

to th~ largest depletion of u235 
at the periphery of the fuel element, 

where the flux is largest. 

The absorption rate in u236 
and in the fission products could 

be studied in a very similar way. 

Ab . R . ·Pu239 sorphon ate 1n , 

238 
Because of the important role played by the U resonance ab-

sorptions in the production of Pti
239

, they should be distinguished from 

the thermal absorptions. 
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The thermal absorptions in u
238 

are due to the thermal flux 

<j>(t) h(x) to which corresponds an effective thermal cross section a 28 (t): 

( 1 7) 

Theoretical determinations of the distribution of the resonance 

absorptions have bee~ per~ormed by Kushneriuk. K
2 

For our present 

purposes, it is convenient to make the following additional simplications 

which yield a simple expression:for the coefficient s
49

(B), Eq. (22): 

(a) The depletion of u 238 
is neglected, i.e., N 28 (x, t) = N~8 . 

(b) The changes in the flux-energy spectrum are neglected, 

i.e., a28(t)=a28' 

(c) The resonance absorptions in u
238 

take place with a given 

distribution g(x); resonance and thermal neutron capture in the u 238 

present in the fuel element are in a constant ratio R. 

Th h b . . u238. us, t e a sorptlon rate 1n 1s 

(18) 

Let a 
49 

be the effective thermal cross section of Pu
239

, which 

is then destroyed at a rate 

A
49

(x, t} ::: N
49

(x, t) a 
49

q,(t)h(x). (19) 

Th . f Pu239 . h 1 . f h . e concentrahon o 1s t e so uhon o t e equatlon 

(20) 

t 

with N
49

(x, 0) = 0 . Letting e i .p(t) dt, one obtains 

h(x)+Rg(x) -a 498h(x) 
h(x} [1-e . ] (21) 

The effective concentration coefficient s
49

(t), Eq. (4), is now 

given by 

( 
-a 498 h(x) ) 

s (8 ) =[ h(x) + Rg(x)] (1-e ) (22) 
49 ( -a tJ h(x) ) 

[ l + Rg(x)/h(x)] (1-e 
49 

) 
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The function ~;, 49 (8) has the following particular values: 

(23) 

The flux shapes g(x) and h(x) usually decrease from a maximum 

value at the surface of the fuel lump to a minimum value about the center 

f h f 1 1 h P 2 3 9 d . . .• th . h o t e ue e ement; t e u pro uctlon rate 1s greatest at e penp ery 

of the fuel element where the flux is the largest, and ~;, 49 (0) > 1; similarly, 

its destruction rate is greatest at the periphery and. ~;, 49 ( 8) decreases on 

irradiation. 

Simple estimates 

The determination of the above defined functions I; 
25 

(8) and 

~;, 49 { 8) require first the determination of the flux shapes g{x) and 

h(x); only the spatial averages of the first few powers of the flux shape 

are required to obtain the first few terms of an expansion of s(8) ln 

power series of the flux time. 

For instance, let the thermal flux shape in a cylindrical fuel 

element of radius a be known as h{x) = C I
0

{K.x); then, Eq. {15) yields 

4 
1;,25(8) ~ 1 - <~;~ (]258, (24) 

and Eq. {23), with R = 0, yields 

(K a)
4 

I; 4 9 
( 0) ~ 1 + 

1 9 2 for R = 0 . (25) 

Similarly, a thermal flux shape h(x) = C cosh Kx in a fuel ele

ment shaped as an infinite slab of half thickness a yields 

for R = 0. (26) 
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Thus, the correction due to the nonuniform distribution of the 

nuclides in the fuel element is proportional to the fou'rth power of the 

. dimension of this element. If the thermal flux in the fuel were to be 

represented by the elementary (diffusion) approximation, Ka would be 

proportional to the dimension of the fuel element in units of the diffusion 

length in the fuel; Eqs. (24) through (26) then yield crude but extremely 

simple estimates of the coefficients ~. 

3. Application to Natural Uranium Rod 

Computation of the coefficients s25 ( 8) and s49 (~ 

Radial distributions of the thermal neutrons and of the resonance 

absorptions in a natural uranium fuel rod have been measured by 

Niemuth. N
2 

The rod had a radius a = 1.689 em and the ratio R of 
238 

resonance to thermal captures in U was reported as 0.575. The re-

ported flux shapes, renormalized to an average value equal to unity, are 

h(x) = 0. 79 !
0

(1.4 x), 

and 4 
g(x) 

X = 2.133 I
0

(x)- 1.374 I0 ~L4x) + 0.7477 6 
1.3662-x 

where x = r/a, and 0 ~ x ~ 1. 

Numerical integration of the integrals in Eqs. (13) and (22} yield 

the following results: 

For irradiations up to a 
25 

8 = 2, the function a 
25 

{8) is accurately 

represented by the equation 

For similar irradiations, s
49

(8) should be represented by a 

polyno~ial of at least second degree. The function s,
49

(8) - 1 is tabu

lated below for various values of the irradiation. and for values of the 

ratio R, which is the ratio of the resonance to thermal captures in u 238 
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{Table C. l. ). It has been assumed that the flux shapes h{x) and g(x) 

do not change with R. 

The resonance absorptions in u238 
strongly increase the non

uniformity of the Pu 
239 

distribution and the effective concentration co

efficient s 
49 

. 

0.0 0.5 1.0 1.5 2.0 

R=O 0.0160 0. 0124 0.0094 0. 0070 0.0051 0.0000 

R=0.3 0.0213 0.0175 0.0144 0.0119 0.0100 0.0048 

R=0.5 0. 0236 0.0198 0.0167 0.0142 0.0122 0.0070 

R=oo 0.0389 0.0349 0.0315 0.02,88 0.0268 0.0211 

Application to NRX rod 

The effects of the irradiation on a natural maximum rod of radius 

a= l. 727 em have been extensively studied experimentally and theoreti-

11 W 8 ' M 4 R 1 b · d d. . . l d 1 ca · y. esu ts o ta1ne accor 1ng to var1ous computatlona mo e s 

are compared below, with the following notations: 

(a) a {8) is the effective thermal cross section defined by Eq. {6). 

The values of a {8)/ a {0) listed below were computed by McLeod (see 

Ref. M4, Table 5.3) according to the homogenization procedure. 

a (8)/a {0) represents the effect due to the changes of the thermal flux 

energy spectrum upon the reaction rates. 

{b) The coefficients ~;. 25 (8) and ~;, 49 { 8) are those computed in 

Sec. 3. The following numerical valuesM
4 

are used: 

a
25

=519. 9b, a
49

,l041.3b, and a
28

=2.142b, 

and the initial conversion ratio ICR = 0. 77 yields R = 0. 35. 

.. 
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The functions r,
25 

{G) and r,
49

(G) are then represented by the 

following polynomials in G {neutrons/kilobarn) = 

r. 25 <G> = 1 - o.oo83 G, 

and . 2 r. 
49

<G> = 1.0219- o.oo83 G + o.oon G (26) 

(c) C1 (t) is an average effective cross section defined by 

(27) 

A one-group (thermal) analysis would then yield 

(28) 

The values of C1 (t)/0: (0) listed below have been computed by Ward 

(see Ref. W8, Table A-2) according to a model which takes into account 

the details of the space-energy dependence of the neutron flux and of the 

nuclide concentrations. Kl The correspondence between t and the ther

mal flux time G has been approximated by t = 15 G when G is the the;r

mal flux time in neutrons/kilobarns and t is the irradiation variable 
W8 used by Ward; 

Tables C.2 and C.3 give the values of C1 (G)/a (0), r,(G)/ r,(O) 

and C1 (t)/a (0) thus determined for u
235 

and Pu
23

9 . 

Table C. 2. Effective absorptions in u235 

G ~ ~~~ - 1 
~(G) 1 

a{G)r,(G) C1 (t) uor- a{O) ~{OJ 
C1 (0) 

0.1 -0.0000 -0.000f3 0.9992 0.9985 

0.3 -0.0017 -0.0025 0,9958 0. 9953 

0.5 -0.0029 -0.0041 0. 9939 0. 9920 

0.7 -0.0035 -0.0058 0.9907 0.9886 
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T bl C 3 Eff . b . . Pu239 . a e . . e~tlve a sorptlons 1n . 

() a (8) 
1 

~($) 
1 

a($) ~(O) a (t) 
a (O) - nor- a (O)s (0) a <o> 

0.1 0.0000 -0.0008 0.999 2 0.9895 

0.3 0.0021 ,;:0".0023 0. 9998 0.9748 

0.5 0.0036 -0.0038 0. 9998 0.9652 

0.7 0.0047 -0.0051 0. 9996 0.9578 

4, Discussion of the Results 

A.b . R . 235 sorptlon ate 1n U 

Table C. 2 shows that the correction introduced by s 
25 

(8) is 

larger than that introduced by a 
25 

(8)/a 
25 

(0). Furthermore, Eq. (28) 

is nearly satisfied. The results are to be interpreted as follows: 

(a) Both the hardening of the average flux-energy spectrum and 

the nonuniform depletion of u
235 

result in a decrease of the absorption 
. u235 . d. . d rate 1n as 1rra 1ahon procee s. 

\ 
(b) The nonuniform depletion of u

235 
in<!uces larger corrections 

than does the hardening of the average flux-energy spectrum. 

(c) A one-group analysis, where the variations of the flux shape 

during the irradiation are furthermore neglected, gives a quite accurate 

description of the relative decreases of the average effective cross 

section a 25 (t). The usefulness of such a simplified analysis was ex

pected because resonance absorptions in u
235 

are small and because 

the macroscopic absorption cross section of natural uranium varies 

11ttle during the irradiation (I: varies less thari ;lOo/o when the flux . . a 
time increases from 0 up to l. 7 n/kb. ). 
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Absorption Rate in Pu 
23 9 

The initial increase of the reaction rate in Pu 
239 

due to its non-
1 

·f d · b · u238 · h · t d un1 orm pro uchon y neutron captures 1n lS ere approx1ma e 

by t;
49

(0) - 1:::: '2.2% ; it is larger than any subsequent increase resulting 

solely from the hardening of the average flux-energy spectrum. The 

results given in Table C. 3 are interpreted as follows: 

(a) The hardening of the average flux spectrum results in an in

crease of the absorption rate in Pu 
239 because of the non 1/v behavior 

f . b . . h "f . f Pu239 
o 1ts a sorphon cross sectlon. T e nonun1 orm consumptlon o , 

on the other hand, results in a decrease of the reaction rate as irradiation 

proceeds. 

(b) The effects of the hardening of the average flux spectrum are 

overcompensated by the effects of the nonuniform distribution of Pu
239 

A simple approximation neglecting both those effects would be better 

than the usual homogenization procedure. 

(c) The product a 49 (e) t;
49

( e), corresponding to a one-group 

(thermal) analysis, decreases upon irradiation; however, this decrease 

is by far not as large as the one predicted by a multigroup analysis. The 

discrepancy is too large to be explained solely by the possibility of in·· 

accuracies in the determination of the flux shapes g(x) and h(x) (see 

Sec. 3); this discrepancy was expected because of the large absorption 

in the Pu 
239 

resonance at 0, 3 eV, which invalidates the use reduction 

of the thermal flux to a single group of constant flux shape. 

A two-group analysis, performed by subdividing the thermal 

spectrum into a low-energy group and a Pu239 -resonance group, would 

take into account a Pu
239 

-resonance flux shape which varies with irradi

ation much more than does the overall thermal flux shape. An accurate 

description of the distribution of the resonance absorptions would then . 

be required in further studies of the effects of the nonuniform distributions 

of the plutonium isotopes. 
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5, Conclusion 

The reaction rates computed according to an homogenization 

procedure that takes into account solely the variations of the average 

flux energy spectrum in a fuel lump are corrected by an effective con

centration coefficient which accounts for the nonuniform distribution of 

the nuclides in fuel lump. When fuel elements have dimensions com

parable to, or larger than the neutron diffusion length, any refinement 

in the determination of the variation of the flux-energy spectrum with 

irradiation is not justified unless the effects of the nonuniform distri

bution of the nuclides are also taken into account. 

The correction introduced by the effective concentration co

efficient has been evaluated according to a simplified method which 

easily yields accurate results for the reaction rates in the u 235 
-of 

a natural uranium fuel element. More detailed studies are required 

for an accurate determination of the reaction rates in plutonium isotopes, 

and the variation of the flux shapes inside the fuel element should also 

be taken into account in case of highly enriched uranium fuel whose ab

sorption cross section varies strongly during the irradiation. 
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