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ON THE NATURAL BOUNDARY OF TH.E SCATTEIUNG A11PLITUDE 

Jack Wong 

Lawrence Radiation Lab~ratory 
University of California 

Berkeley, California 

December 196.2 

ABSTRAC'r 

In some current theories of elementary particle interactions, 

the elastic two-particle scattering amplitude on the second Riemann 

sheet of Js-~m2 
, ~( 2 )(s, cos G), possesses singularities dense 

everywhere on the real negative s-axis for arbitrary complex cos Q. 

The real negative s-axis is therefore a natural b<oundary of ¢( 2
)(s,cosG-) 

for arb·i trary cos Q, whereas the partial-wave amplitude ¢_e ( 2 ) ( s) is 

known not to possess this natural boundary. Inspection of the inte

gral defining¢~ ( 2 )(s) in terms of ¢( 2
)(s, cos G) might lead one to 

expect¢') (
2
)(s) to possess the same singularities as ¢'(

2
)(s, cos9=±.1J:). 

In the present work the integral defining ¢~( 2 )(s) is examined care

fully, and it is demonstrated here why ¢~ ( 2 ) ( s) does not possess the 

"expected" singularities. 
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I. INTHO~>UC'fiON 

The two~particl~-into-two-particle ~cattering amplitude T(s,t) 

is generally written as a functiou .of the two Lorentz invariants 

s and t, which are formed from the two initial and the two final 

~-momentum vectors. 
. 1 . 

In 1958, ~andelstam proposed that the scatter-

ing amplitude T(s,t) should be consi9ered as tl~e boundary value of an 

analytic function of two complex variable~ simultaneously regular 

over specified domains. lie furthermore .conjectured a representatio~l 

for T(s,t) in the form of a double Cauchy integral over the so-called 

double spectral functions. A physical theory, when described in the 

s~matrix language, is detet·mined by tbe sp~cific choice of the double 

spectral functions. The failure ~f a proof of the Mandelstam conjec

ture within the framework of local field theory has led Chew
2 

and others 

to propose the adoption of the Mandelstam representation and the 

unitarity condition of the S Matrix as the theory of strong inter-

action physics. It should be remarked at this point that the Mandelstam 

representation is a conjectu;re of the analyticity properties of the 

scatt~ring amplitude on the so=caUed physical Hi emann sheet only; 

nothiug is expl.ic:itlr said .ah,(JU.t the complete structure of the scattfer-

ing amplitude. By analytically continying the unftarity condition 



of the partial-wave amplitude ¢_.e. (s) across the elastic cut, it has 

recently-become possible)-(} to define .a yartiar.:...\.;:a:v(! .Scat/tering ampli

tude on the second Riemann sheet of [s- hm
2 

as J-i} 2
)(s), which is 

expressible entirely :i.n terms .of.¢;_ (s). Further.Jhore, the unitarity 

condition of the full amplitude· .relates· the scattering amplitude 

p( 2 )(s, cos G) on the second sheet.·to ¢(s,cos g) on the first'through 

an integral equation. Zimmermann6'utilized tllis integral equation .to 
i 

demonstrate that ¢( 2
)(s, cos G) yossesses infinitely many more singu

\• la~itie~ fha~ ¢(s, co~ g) does. Freund and Kar~{u~ 7 investigated the 

:~{st~ibution of.thesc infinitely many singularities and showed that 

. ¢( 2
)(s; cos ~) has singularities that are dense everywhere along the 

~ I.< ."~ ' ~ 

r~al ne~aiive s~axi~ fo; arbi~~ar~ fixed cos ~ ; hence the rellil nega-

tive s-axis is a natural boun,daryof.¢( 2 )(s,cos G). It is-'known by the 

cr'ossing synimet~/'• 8 that the partial wave ¢~ (2)(.S) ~f ~( 2 Y(~,cos G) 
··: ·' :,.._,' ·. 

do~s not possess a na~ural boundary on the real negative axis, because 
. '' 

· ¢ ( s) d~es not; therefore. tt1e. logical conclusion to be drawn is that 
~ ' ' . : ,, ' ' ; .. .. ' 

the partial-wave integration somehow "erases" the natural boundary. 

The preseht ~tu~y is devot~d ~o th~ delineation of this phenomenon. It 

is 'demoristrated in: this study tl;at the reason :is simply the following: 

'the· ·p~rtia1-w·aVe · ampLitude ¢
1
' ( 2 ) ( s) does not posse's s those ~ndp oint 

singularities
9 

lsee eq~{2.23): bel~wJ that would otherwise constitute 

the natural boundary betause. a special inoperty of the kernel f~nction 
i 

II(~ •'7• :t) of the above-mentioned ·~ntegr;l ~<p1ation ~c.~· e~~. (2.16) and 

(2.17)}e'nables tlte partial-wave pr~je~'ti'on iutegrat'i~~n to integrate 

out· these singuiaritles·point by point. . ' 

In Section II, a rather 
~ ,,, :-

detailed' descrii)tion-'of the background 1~aterial is· provide.u for the 

sake of·. coittinuity 'and "for ·proper ·persp.ecti.;;e of this study. Section 

III is devoted to a careful demonstration of the reason why the 

2 



partial-wave amplitude ~).( 2 )(s) is not singular at the "expected" 

enclpoint singularities that would o~herwise constitute a natural 

b..oundary along -ro 6 s ~ 0. In Section IV the partial-wave iutegration 

of .¢( 2 )(s,z) on P.R. (z) is exactly carried out. Then some general 

remarks conclude this study. A few necessary mathematical formulae 

and identities are record~d in the Appendix A. 



II. BACIWROU.Nll MATERIAL l- 9 

This section, which closely follows Zimmer~ann's pape~, 6 Eden's 

and others, 9 is devoted to a recapitulation of the ·b,ackgrOUllCi materials 

necessary for the present study and at the same time serves to'. 

estab,Hsb._s·ome of the more important notation ar1d formulae 'that will 

be employed in the report. The background material~ fall ~6u~hly into 

five groups: (A) the definition of th·e scattering amplitude T, {B) 

the unitarity condition, {c)· the analyticity property, e:-1*1 (D) the 

combined results of (A), {B), and, (C), and (E) the notion of endpoint 

singularities of definite integrals. 

(A) The definition of the scatte~ing amplitude T. We choose 

to deal with a pair theory in which tw6 particle states are only 

coupled to states with an even-number of particles. The scattering 

amplitude which is a function of the two Lorentz invariants s and t 

is designated by T(s,t) and is defined. by 

in ) 

( 2 • l.L) 

where 
k 2 are the inciderit particle q-momenta, 

I 

k2 ar~ the outgoing particle q-momenta, 

and 

(2.2) 

4 



The symbol S is the Heisenberg S matrix. The scattering amplitude 

T(s,t), whicll will occasionally be written as T(s, cos G), is defined 

over the physical int~rval 

· •. m2 ~ s ' <:. 2 ~ 0 ~ -t - s-4m • 

(B) The unitarity condition.· The conservation of probability 

r.equires the Heisenberg S matrix to be unitary. Ileuce the scattering 

amplitude T (2.1), in the ela~tic scattering region, s~tisfies 

( 2. 3) 

By using the definition of T(k 1k2]kl k~) in (2.1), six of the eight 

integrations can be immediately carried out on account of the 

~-functions, and (2.3) simplifies to 

Iru T(s, cos G) 

where 

K ( L ? t z) ~ = ~2 + 

2~ LT(s; cos Q) - T*(s, cos G)] 

1 

8 

+ 
2 

z 

I I 

J J 
G(-K(t,~,cos G)) 

d~ d? T( s, ~ ), . " 
-· _, j-K ( ~' 1 t c 0 s Q) 

2 ' 2 4m ~ s ~ lbm 

5 



T(s, cos G) is said to be partial-wave decomposed into T_q(s) if 

I 

T1 (s) = -?r f T(s; z) P~ (z) dz. 
-I 

Partial-wave decomposition of the unitarity condition for the full 

amplitude T(s, cos Q) (2.4) results in a unitarity condition ~or 

the partial-wave amplitude T ~ ( s), which can be written, with the 

help of Lemma 2, of the Appendix A, 

Im T~ ( s) " =-
4 

~ 
~s-lim 

( 2. 5) 

It should b~ remarked here. that the unitarity condition for the full 

amplitude Tls, t) as in (2.4) is an integral equation relating T 

and T*, whereas for the partial-wave amplitude T~ ( s) as in (2. 5): it 

6 

is an algebraic relation between T..( (s) and 11 *(s) These two facts, 

in conjunction with the analyticity of T(s, t) and TR(s) in postu

late (CJ below, are of paramount importance. The latter permits the 

unique determination of the analytic structure of Tt ( s) at 

4m 
2 

to be F.2 ( s) ip G~(s), where F~ ( s) and G~ ( s) 8 = + are 

. 2 : 

analytic for ·' 0 t!s ~16m hence the possibility of analytic coutinu-; 

ation from the first sheet.into the second sheet, across the elastic 

region. The former permits the determination of the singularities 

of T(
2

) (s, cos Q) When suitably defined on the second Riemann 

sheet of [ s-4m
2 

(c) Analyticity. The· analyticity of the scattering amplitude 

T(s, t) is provided by· the Mandelstam conjecture, which asserts that 

T(si t) is the boundar~ value 



.• 

T(s,t) = lim 

of an analytic function of both complex variables s and t regular 

everywhere except for the cuts 
'· 

2 
s ~ 4m , 

2 
t ~ 4rn , 

2 2 
u = 4m - s - t ~ 4m • 

The full amplitude ¢(s, cos G) is even in cos Q because we ure dealing 

with a pair theory of one kind of particles only. In terms of the par-

tial wave %,t (s), Mandelstam's conjectu:re asserts that TR(s) is the 

b.oundary value 

TR ( s) · = lim ·. ¢.( ( s +'if) 

·E-+ o+ 

of an analytic function of tile complex variable s regular every-

where except for the cuts 

s ~ o, s > •. · 2 
.,. <tiD • 

,l 

The partial-wave ampli.tude ff,e (s) is a real analytic function, 

satisfying 

lim ¢-t (s + iE) = 
f-..o+ 

( 2. 6) 

Or in words, ¢~ ( s) is real on the segment 0 <. s ~ 4m2 of the real 

ax~s, and by Schwartz' feflection prin~iple tAkes on ~omp1ex c~njugate 

values at complex conjugate s ·points. ·:The disconti-nuity across any 
I 

7 



point on the real axis is given by twice the imaginary part of ¢~ (s) 

at that point. For a fixed complex s , not on the cut s ~ 0 

Jtf(s, cos G) ctln b.e represented by the Legendre series 

~ 

Jtf(s, cos G) = L (2 2 + 1) ~ (s) I~ (cos G)· 
.(=0 

which converges in the cosG;.:plane inside an ellipse through the points 

\) 

8m2 
s + 

-----...,-.---..) = + 
s .;... 4.m

2 
s -

and with foci at ± 1 • This is quite easily seen from the denomi-

nators in the following form of the Mandelstam representation, (the 

pair theory) 

where 

fi(s,z) =.! 
ii 

2 

2 
s-4.m 2t' 

(1+ 2 ) -z 
s-4m . 

( 2. 7) 

The last equality follows from the fact that the physical t-channel 

and the physical u-channel are equl·va.lent, A ( t) A ( ) -- 2 s, . = 3 s,t. 

~ ' : 

8 



(D) The combined results of (A), (!3), and (c). The con\hi::ed 

. resul,ts of (A), (B:), and (c) are the possibility of the analytic con-

tinuation of¢,_ (s) in s across the boundary of the physical sheet 

through the elastic interval 4m
2 

S s < 16m
2 

and the determinatiou tif 

thesin1~ularities of p(s, cos 0-) in the secood Hiemann sheet of ,.. .. 

~s-lun1!.-. We start out by arbitrarily defining a function 

~ (s) 
{2.tl) 

wh~~re 

f ( s) 
[~ -

ii = 4-----
{";" 

is defined by the following two cuts 1n the complex s plane: 

-oo~s~O, 

and 

p(s + iO) = real positive for 2 
s ~ 4m • 

Then o(s + iO)* = -p(s - iO) nd (2 6) · d irr( ) v (') u) 
1 a • requ1re :u,( s , Lq. ~.o ,. 

to satisfy the condition, 

lim 

Furthermore, by tho partial-wave unitarity condition (2.5), the 

9 



imaginary part of ~.f irr(s) in the elastic scattering re~ion vanishes 

identically, 

lm Jlf~irr(s) = 0, 

hence ~,.( irr(s) is regular at 

By solving Eq~ (2.8), ~,( (s) is found to be 

= ( ) · ( ) ( ) 4 
2 

16m
2 

• F~ s + 1 f s G~ s ; m ~ s <: 

where 
~..( i rr( 8 ) 

F~ ( s) = __ _..;..;. _____ _ 

1 + f'2(s) ~J. irr(s)2 

10 

G~ ( s) = ( 2 .11) 

Equation (2.9) exhibits clearly the fact that ~ (s) has only a 

rs-4m
2 

singularity at s = 4.m
2 

, th_at connects. the two Riemann sheets 

of ~~ (s) • The analytic continuation of the partial-wave ¢
1 

(s) 

across the elastic cut 4m
2 

' s ~ 16m
2 

onto the second Riemann sheet 

is designated by ~( 2 )(s), and is given by (2.9) as 
. ..( 



* ¢ ~ < s ) = }) < s ) - i r < s > G_g_ < s ) 

(2.12) 

Multiplying (2.12) by (2~+ 1) P_.e(cos 0) and summing over all ,e, 
we obtain 

* ¢ (s, cos o) = F(s, coso) - ir(s) G(s, cos G) 

= ¢(s, cos Q) - 2i~(s) G(s, cos 0), (1.13) 

where 

(X) 

G(s,cos 0) = z=. ( 2 ,( + 1 ) G J.( s ) P,( ( c o s 0 ) • 

). ==o 

The Legendre series of G(s, cos G) converges in general in a larger 

ellipse than that of ¢\s,cos 9) because it is the imaginary part of 

¢(s, cos 9). Hence the Legendre series cos 

the same ellipse of convergence in cos 0 as that of ¢(s, cos G) for 

arbitrary fixed s , provided that s does not assume any of the 

isolated points at which G.R. ( s) has a pole for some J... • 

of Eqs. '(2.12) and (2.13) lie in the fact that¢,( *(s) 

The importance 

* and¢ (s,cos 0) 

( 2 2 
l1m ~ s <: 16m , ..:t ~cos 0 ~ + 1) have been identified as the 

boundary values of ~..(( 2 )(8) and p-( 2 )(s, cos e) respectively as s 

approaches the real axis from above on the second Riemann sheet of 

( 2" 
~s-4m • When these identifi~ations are fed back into the unitarity 

condition (2.4) and (2.5), an integral equation and an algebraic 

equation relating ¢ and ¢( 2 ) emerge: 



12 

¢(s,cos G) - ¢( 2 )(s, cos Y) 

. J 1 =...;.p(s) 
II -1 

¢~ { 2) ( s) = ---'---'1"""". _( s_) _ ___. i 

1 + 2if(s) ~ (s) 

I. 2 / :: 6 2 <tm !:: s <. 1 m • (2.15) 

The analytic continuation of ¢{ 2 ){s,cos Q) and ¢~( 2 ){s) are obtained 

by the analytic continuation of ¢{s, cos G) and~ (s) away from the 

physical re~iori. For a given ¢(s; cos G)~ the integral eqriation (2.14) 

in principle yields ¢( 2 )(s, cos G). In summary, it i.s the analytic 

continuation of the unitarity condition that enables one to obtain 

information of the scattering amplitude on the second Riemann sheet 

of J s-4m
2 

Zimmermann
6 

recasts Eq. {2.14) into a slightly more convenient 

form for the investigation of the singuiarities of ¢( 2 ){s, cos 9) 9 

(2) ¢ (s,z) = ¢{s,z) -

where C is an ellipse encircling ± 1, and 

.• 



"' 

... 

13 

' r (}GK< t'. ~·· z )] 

J 

I eLf d~ 

u(~·7•z) :: 
r-~ ·-· 7'-? J-K(f,~',z ) 

, 
.... , -I 

-ii 
' 

z- ~ 7 + J K ( ~, 7 , z) 
~ n --!...----~~--l -1 ~ z 5 + 1' = 

z..-(7- jK(~ •7•z) 

with the condition 

U(£,?,z) = real positive at Z=1, ~·7 > 1. 

He deduces the following set of properties of ¢( 2 )(s, cos Q) 

-(
2
)(s, co~ Q) is analytic in s and cos Q except for 

(a) the normal cuts 

(2) cos Q ~ ± (1. 2t 

) ', 

for· .s lyin~ on the cut (1) the boundary values of 

¢( 2
)(s, cos 9) are still-analytic in cos Q except fbr the 

cuts (2) 

(b.) the cut 

(c) poles 

s == 0 

( 2. 1'7) 

(2.118) 



+ 
(d) the domains n-.. 

' 
defined by 

n 

+ [Y' ( S 1 t 1) v- cos Q + cosh 
n 

+ ... + 

1 + 

Y(s 1 tn~; 

2t. 
1 

l 
. 2 

s '- 1m 

t.~ 4m 2 2.,.3. ·. ·. I n = 
1 

In this paper. we are only concerned with the cut (b.) s -s 0 

and the apexes of (i.e • evaluated at t. 
·1 

cos Q.. = + cosh [nf(s)] , n =1 1 2, 3, 

~(s) = cosh - 1 (1 + _s_m-.,
2
:----) . 

s-hm
2 

··' r: 

... · 

( 2 •. 1i9) 

l~or a fixed complex s 1 not on the cut s !;- 0 ,, (2.19) gives a 

nartial distribution of the siug;ularitics. of ¢(2..){s, cos G-) at the 

cos 0--plane. 

Freund and Karplus 7 invert•(2.19) and obtain, for an arbitrary 

b,ut fixed complex G , the singularities. in . s, ( or equiva~ently in 

8m
2 

o-a 1 + ): . 2 
s-ltm 

. I. 2 
s - '~m n,k 

=cos r~ + kE:].fn=l, ln n k=O, 

2, 31 

1, ..• , 2n-1 .• 

( ~. 20) 



Now it is quite obvious that the interval -1 ~ CJ !0: +· 1 ( or 

equivalently the interval - oo ~ s :=. 0 ) is dense with singularities 

everywhere; hence it is a natural boundary of ~( 2 )(s, cos 0). 

From crossing symmetry, it has been shown
8 ~ee formula (IV. 7) 

of Hef. s] that the imaginary part of ¢~(s), Im¢-R.(s), for 

2 
-32m 4 s <:. 0 canbe expressed in terms of Legendre polynomials 

" 
1). 's and Im ~..t (a) for s physical , 

lm ¢~ (v) := 

2 f ;-(m +~) 
0 

where J) is restricted by 

2 -9m < J} <:: 
2 

-m 

2 
m +y' 

dv' P.£. ( 1 + 2--"-) 

2 -
m + v ' j 

v' 

<) 

s =: 4( y + m ... ) • 

aJ z.. (2~' + 1).t 
i~o 

Since Im ¢1 (s) is analytic in 4m2 ~ 16m 
2 

(or 0 !f v <:. - 2) s "' )m 

[see Eq. (2.9)], ~hereftn•e- the above equation implies that Im ¢_.e ( s) 

2 2 is analytic in -12m ..:: s..:: 0 ( or -4m 
. ~ . 

Cauchy integral representation for ~ ( s), 

2 
-12m 

J 
0 

ds' 
Im 1 ( s') 

s '-s + R(s), 

~ 

where H(s) is analytic at 2 
-12m .c. s < 0 , 

2 
J/ 4 -m ) 

2 
-12m < 

. By writing 

8 ~ o, 

one easily deduces by 

a 

15 



analytically deforming tl1e contour of integration that y) (s) is 
~- . 

analytic in -12m
2

' s.::: 0 because . Im ~ (s) is analytic there. 

Deing a rational function of ¢ (s): ¢ (2 )(s) ~annot hav; ~ natural 
,(~ . ~ ' . . . : ., . . . 

c)· 

boundary at least along -12m'"~ s <: 0 (or -1 < <J< "k). Although 

it has not been demonstrated here that ¢ (~) doesnot have a natural . :.e .. 
boundary along t..:: U< 1. nut the indications are that it does'not; 

whether it does or not we already have a phenomenon to explain. So 

from now on, for simplicity, we talk as if doesnot possess 

a natural boundary along -1 ~- ~ ~ 1. .. Therefore, it is of interest 

to ascertain the reason for the abset.ice of·the natural boundary when 

on ~(cos 9). The presentation of this 

reason has to be temporarily postponed until after the notion of 

endpoint singularities 6f integral transform is int~oduced in the 

next paragraph. 

(E) The notion of endpoint singularities of definite. integrals? 

~his notion can be simply illustrated bi the following definite 

integral: 

w(c) = 

,. 
·rf(c,z)dz _ 

-· _, 
dz 

4 c-z 
= J c-1 ··Jc + 1 • 

. ; 

The integrand f(c,z) as a function of two complex variables is 

(2.21) 

singular at c = z for en arbitrary fixed z • Since the integra-

tion of z: is over the closed interval (-1, +1], it is conceivable 

that w(c) be sing~A/ar at every point. of the closed interval [-1, + 1]. 

But Eq. (2.·21) demonstrates that this .. is not the case, w(c) is singular 

only at c = + 1 • These two points of singularities in c coincide 

with the singularities of the in~egrand f(c, z = + 1) evaluated at 



the endpoints of integration. This phenomenon is SU1Umed up in Lemma 

lA of Tarski paper9 as follows 

Lemma lA. Let an arc A be given in the complex z 

plane as a coutour of integration, let N denote a 

neighborhood of t11e contour A, and let D be a domain 

in the complex c plane. Let f(z,c) be regular in either 

variable, except for a finite number of isolated singu-

larities or branch poiuts, for any value of the other 

variable, when z~N, c,D. (We have to include the possi-

bi li ty tha tlhe domains D and N extend over more than 

one Riemann sheet of f.) Then 

w ( c ) = J f ( z , c ) d z. 
A 

can be singular at c = c0ED only if one of the following 

two conditions holds: 

(1) f(z,c 0 ) as a function of z has a singularity at an 

endpoint of the contour, or 

(2) for c
1 

in a neighborhood of c
0

, f(z,c
1

) is singular at 

z z0 + ? 1 and at z = z
0 

-9
2 

, 

where z.0 + ' 1 ~nd z0 - 7 
2 

lie on opposite sides of the 

contour A. z0 is a point of the contour, and 7
1

,7
2 

----7 0 

as c 1 _,. c0 • 

Since the condition (2) of th~ Lemma 1A is not encountered in our 

study, we do not wish to discuss it here. 

Applying the notion of endpoint singularities of the preceding 

paragraph (E) to the singularities of ,0'( 2 )~6", cos Q-) as enumerated 

in Eq. (2.20}. we expect }11. ( 2 )(o-) 

17 



I 

yf,R ( 2) ( o-) = -} r 5/ 2 ) ( a-. z) p )_ ( 7,) d z 
-r 

to have endpoint singularities at (i.e~ the singularities of 

.¢( 2) ( 0", z,: = .±. 1l ) 

cr 1 (G-= o) = o- 1 (G =7r) n, < n, < 
c 0 9 ( k ~ ), { n= 1 ' 2 , 3 , ..•. 

k=0,1, ... ,2n~1. ' 

18 

(2.23) 

which is still dense everywhere in 0" , -1 ~ () ~ l (or -ro~ s ~ 0). 

Therefore fo5
1 

( 2 )(o-") is expected to have a natural boundary there. It 

is to be shown in the (next)Section III, that clue to special proper

ties of the function II(~'7'z), (2.17) the "expected" endpoint singu

larities of ( 2. 23) in tr along -1 ~ a- :f + 1 disappear during the 

partial-wave integration. Hence the partial amplitude ¢.-( ( 2 )(cr") does 

. not possess a natural b~und~ry there. 



III. TilE AUSE:\CE OF 'l'lfE N:\.TUIL\L BOUNVAHY OF ,0(2)(o) 
Q. 

We have seen that the partial-wave amplitude ¢f ( 2 )(0") does not. 

possess a natural boundary for -1 ~ rr~ +1; nevertheL~~,;s, its defining 

integral does seem to have sufficiently taany end1>oint singu1ari.ti es 

1<) 

(2.23) along -1 :=. o-:;; +1 so as to cohstitute a natural boundary there. 

The aim of this section is to wo~k out in detail the resolution of 

this seemingly incompatible situation. The explanation turns out to 

be as follows: the kernel furiction H(~•?•z) [see (3.9) and (2.16)], 

for suitable values of~ and 7 ,has certain special properties at 

z = ±1 such that when it is integrated in the neighborhoods of z = +1 

and the resulting integral is evaluated exactly at z = ±1, the 

resulting integral is an analytic function of ? aud ~ This remar-

kable property of H(E•?•z) enables us to demonstrate inductively how 

the "expected" endpoint singularities {2.23) except for ~ = ± 1, are 

integrated out point by point; hence the absence of the natural 

boundary for ):5,(( 2 )(()) along -1~ 0~+1 as concluded from crossing 

symmetry. Since we are going to treat the infinite set,_of singularities 

(2.23) point by point, it is cogent to introduce firs~ a classifica-

tiori scheme that pinpoints the origin of the singularities of the 

full amplitude ¢( 2 )(tr,z). Probably the most natural classification 

scheme for the singularities (2.19) and (2.20) of ¢( 2 )(r,z) is the 

Liouville series, and this scheme is introduced in Subsection (III.A). 

The nth term of the Liouville series ¢( 2 )(s,z) is singular on_ly at 

the 2n (a finite number) poirits of (2.20) corresponding to the integer 

n. Consequently, the partial-wave projection of the nth term of the 

Liouville series contributes to the partial-wave ¢~ 2 )(0"') (2.22) 

a fini~e number of the "expected" endpoint singularities of (2.23) 
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corresponding to the integer n. Also discussed in Sub•section(III.A), 

are some detailed properties of the kerucl function 11(t,7,z). In 

subsection (III.D), we employ the ;nateri~l of (III.A) to show that the 

partial-wa-ve projection of the second Liouville term is not singular 

at two of the four "expected" endpoint singularities. In (III.C) the 

argument of (III.B) is-repeated on the third term of the Liouville 

series to bring out 
. . tl ' 

its generalization to the arbitrary n 
1 

term • 

In (III.D), we demori~trate that the partial-wave projection of the 

. th t f h . 1' t · n erm o t e Liouville series is singular only at rr = ±), uu 

·regular at the ."expected" endpoint singularities of (2.23) correspond-

ing to the integer n, If= cos{ .l!:k)., k /= O,n. Hence the partial-wave 
n 

amplitude yJR..(
2 )(tr) (2.22) does ~ot possess the "expected" natural 

boundary in -1~ tr~ +1. ·[~.t (2 )(0"") is sing':llar at 0""= ±11 
/ 

III. A. The "Expected" Endpoint Singularities of ¢~ 
(2) ( o) 

and. the Kernel Function II( ~,?, z) 

A classification scheme for the singularities of the amplitudes 

¢( 2 )(~,z) ~ill be give~ presently. As remarked before this report is 

onl~ concerned with the following set of singularities of yJ( 2
)is,z): 

[see (2.19) and (2.208 

for a fixed <f(s)=1+ 

for a fixed (complex) 0 

z ;:; cos G = -1 
+cos n cos Cf, 

n = 1,2, ... or 

. .fg . ji l 
cos Lii + ii ~~ 

n = 1,2., ... 

k = 0,1, ... 2n-1. 

( 3. 1) 



Zimmermann derives 6 this set (3.1) of si11gularities by nn iterative 

procedure, therefore it is most naturul to classify this .same set by 

the Liouville series of ¢( 2 )(1J, z) which is obtained by it.qrating the 

integral equation (2.16): 

!3( 2 l(a-,z) ib(~.z) + p
0
(s) fdtld1 ib(ql uu. 7.zl ji(cr,7). ···· 

c, t, ' 
s f; ~0( sf1 

11p·, z), ~1 1 ( ~. z)s¢( 11", z), fo( s )= ;::;;) j 

=ib( a-' z)+ •.. +( fo) n j di i d?,li( ~. !)H( t' 7' z)Mn-1 (a-, 7)+ ... 

~ 7 ' 

The nth term of the Liouville series (3.2) is singular only at the 

·.finite set of singular points of (3.1) corresponding to the·iriteger 

21 

n. The validity of this statement is simply illustrated by the second 

term M2 (o-,z) of the Liouville series. For a fixed Cf , ¢(Cf',$) and 

y5( rs;7) are sin-gular at ~ = ± cr and 7 = ± lT respectively, therefore 

the contours of integration C~ and c
7 

can not be analytic~lly 

deformed about these points respectively. Next the kerne1 furictf6n 

II(~ •7•z) [see detailed properties of H(~ '/'z) below] corJ.bines these 

four pairs of points, (~,7) = (.±,(f, .±,o-) into two distinct points in 

z = .:t. cos (2 cos-
1cr-) which is (3.1) for n = 2. The singularities of 

all other terms of the Liouville series (3.2) tan be similarlY built 

up. At this point it is advisable to make a momentary detour uhd 

enumerci.te some relevant properties of the kernel·. function 11(<" '7' z.) 



so that their rcpeate(i usc frum now on may be wade ea;;ier. 

For computations carried out in this study, we ~·ecast tllc func

tioa u(t,,,z) (2.17) into a more suitable form, who~~ multi~valued

ness is enumerated by the arbitrary negative as well as positive 

integer n, 

where 

{

a.t = I\ -+ 

R:: 
. -

2Ti JK+ +~ 

IR+ ~fK_ 

z - [t 7 - [t - ~ l /t - 't. J 

Z - [t, +{17~ .. Jt -7L J 

CO$ 0( 

+ 21f i(n)] ; 
(n .. o branch for (2.16)) 

= z - cos(« +p) 
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{~: cos (3 ' 
~,p may be complex (3.3) 

The choice of ~osine instead of the hyperbolic-cosine for the variables 

t .·and ? is motivated by t:le fact_ that we are later mainly concerned 

· with ~- or ? -values in neigh~orhoo?s of the real lin~ segment [-1, + 1] 

because the natural boundary -OJ~·s:~. 0 -is mapped onto -1 :E tr(s) ~ +1. 

All branches (except one) of·~~~e f.u~~tion H(~•?•z) (3.3) associated 

with all arbitrary integer~~ (exce~{ n·= 0 )• possess double-valued 

(square-root type) branch po'~nts · at· z · = cos( tX + ~), cos( Ol "- ~), and 

an infinitely many-valued ( 1 ogari thnii c type) branch point at z = oo. 

The aJlpropriate br.anch.·of the function II(t•?•z) (3.3) for the 

unitarity relatiou or the integral equation (2.16) is the one corres--



ponding to n = 0 , which is regular at z = cos ( o<- ~ ). 

One important property of the Kernel function HU ,7,z) to be 

recorded here is that the kernel function II(~'7'z) is singular at 

z = cos(o~ +fo) for a given pair of values,~= coso(, and ?:::cos (3 

(this is called the "addition" property}. Or stated differently, if 

we designate an ellipse of semi-major axis cosh b,, b > 1, by E'(b), 

then for fixed values of ~ and 7 such that 

cos c( 

cos~ 

is on or outside of 

is.on or outside of 

E(a) 

E(u} 

a = I Im o< I > 1 

b = /rm ~ [ > 1, 

then the function H(coso<, cos~, z) of (3.3) is regular in z where 

z. is inside of E(a + b), ( 3. 4) 

b~cause k+ ~f (3.3) cannot vanish. This "addition" property of 

li(,,J,z) is of great importance to (this) Section III. 

We record another important property of the function n(t;,,z) 

in this paragr~ph. Let a ~eighborhood Nz(z0 ) of a point z0 be 

d~fined as the following open set; 

I z - z 0 I< E,' a small positive number}· ( 3. 5) 

Then if the variables z, t and ? are restricted to the following 

s·e t of neighborhoods; 

23 



z =. cos Q in N (cos ( o(o+pJ. ) 
:·,~:... . z . 

~· - cos o( in· N~(coso<0 ). 

' 
C'OS p .... in N? (cos ~o) J -

such that 

.;. .. : --

{

cos( o<o + (lP. ) z 1 

, cos( (:<
0 

- (3
0

, ) /: 1 '(3.6) 

the kernel function H(~'/'z) of (3.3) can be approximated as, 

1 

.~ z -cos(O( +(3) ( 3. 7). 

Iri p11rti_cular , if 0{0 + {Jo = 2 'ii and 0(.0 ;_Po /: 0 or 2r,,. then the ' 

indefinit~ integr~l of the approximation (3.7), evaluated at z = 1, 

is a remarkab,l e function of the variabl~s ~ and 7 ; 

rrdz !!(~.,J "'f--dz-\ ~j~·. ---,-u J 1 1 - cos(!:>( +(3) 
Z=\ i z- co~(ol +~) Z.=l 

Z sin( 
oc + ~ 
-~2-) 

Or in terms of the variables 

an entire function of 0{ and~ •. (3o8) 

t and 7 G is analytic in ~ and 7 



( 
-1 

o<::cos ~, 

G( 0( 'f ) 

-1 ) ~S'COS 7 t 

$ , 7 ) '{analytic in 

except for 

$ and 1 
~ = .:t 1 + 1, 

25 

( 3. 9) 

and this is the other crucial property of the function II(~, 7• z) 

~sed in explaining the ab~ence of ~he natural boundary of the par

tial-wave amplitude ¢~ (2 )(crJ ·~2.22) and (2.23)].. We have recorded 

the two important properties of. the kernel function II(t,ry,z), hereby 

end our little detour, and return to the continuation of the main 

text. 

The partial-wave projection {2.22) Qf the full amplitude ¢( 2 )(<r
1
z) 

on P~ ( z) [or in brief, the partial wave or the partial amplitude of 

¢( 2 )(~,zD in terms of the Liouville series (3.2) results in the 

partial wave Mn,!(~) of the individual term af the series; 

1 . 

11 . ( CT) s t [ M ( IS, z ) Pn ( z ) d z == 
n,~ . n A 

I 

f itn(<r,z) P.R.(Z) dz , ( 3. 10) 
-I 

where Mn(a-,z) and Pt (z) are both 

th 
this study. Since the n term 

" 

even in z in the "pair" theory of 

M (cr,z) 
n 

of the Liouville series is 

singular only at the singular points of (3.1) corresponding to the 

integer n the partial wave M 0 (~) of (3.10) is "expected" to be n,-,.. 

singular only at the endpoint singularities of (2.23) also correspond-

ing to the integer n It is the aim of this section to show that 

M n(o) of (3.10) is regular at the ,;expected" endpoint singularities n,,... 

of (3.23) ( except for O= .:t 1), 
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tr = . Ti ) cos \ k ' n 
l' j_ 0 . ' 'n • (3.11) 

Now we ~roceed to examine the functional behavior of the partial wave 

11 (ff) of (3.10) in neighborhoods of the cr-points of (3.11).' For 
ll • 9. . 

the variable 0" restricted to any of the neighborhoods of the 

points of (3.11), 

0" in N (cos k If) a n ,kfO,n, 

the integrand M (~,z) of the integral (3.10) has two singular 
n 

z-points in the neighborhoods of z = .±. 1, 

z = .±. c o s n c o s -
1 

( c o s }( : ) = + c o s k il = .:t. 1 • 

(3.12) 

(3.13) 

Hence for ~ as restricted in (3.12), the integral (3.10) can be 

conveniently split up into two ,~:uts, 

hl ( <r) 
n,~ 

1- €: I 

[ J +.LJ M
0

(o-,z) P~(z) dz, {E small) (3.14) 

such that the first integral is regular ~t ~ Since the E is 

quite arbitrary, the function that really determines whetllcr or riOt 
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.M (o-) is singular at ~ of (3.12) is precisely the followiug 
n,g_ 

integral, 

1 . 

Furthermore, the polynomial P-t. (z) can be dropp-ed in so far as the 

ascertainment of whether or not M n ( 0") is singular at ~of ( ).12) is n,.,_ 

concerned, 

(3.16) 

In the integral (3.16) the z-dcpendence Qf 11 (o-,z) resides entirely 
n 

in the kernel functionH(~ 1 ~ 1 z) which was discussed between Eqs.(3.5) 

to (3.9). 

The expression (3.16) and the two important properties of the 

kernel function ll(~,,,z) will be used repeatedly ih the remainder of 

this section to demonstrate the absence of the "expecteu" natural 

boundary (2.23) of the partial wave ¢.R.( 2 )(o-J along -l~ fJ~ 1. 

III. B. M2 ,~ (0") is Hegular at a-= cos ~ k, k l 0, 2 

We are going to demonstrate in this subsection that the partial-

wave projection of the second Liouville term M2 (~,z) doesnot contri~ 

bute two of the four endpoint singularities to ¢.!( 2 )(6"). We start by 

rewriting from Eq. (3.2) the second term of the Liouville series, 

M2(o-,z) = pdtfd7' ¢(1i,~) 11(~, 7 ,z) p(rs, 7). 
c~ c

1 
· 

( 3. 1 7) 
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Its associated singularities are 

-1 z = + cos 2 cos 0 or", f for a fixed cr 

lfor a fixed Q , /('" ('') --.. (.- G IT k)._·,· 
v~ k a '=COS ~ + ~ k;:o;1,2,3. (3.18). 

, ' 

The. conto~r c .. 
t {and similarly.the contour is an ellipse 

·, '· 

::encircl~ng the closed interval [..:.1, + 1] with two indentations at 

·~ :: ±. (J" , 

·-Figure 1. 

little loops et1circling ~ 

I 
I 

= 

,. ,.. ---
~ -· 

c~o) / 

... 
- :---~C' 

±. cr are designated as 

.. i 

·{the 
the dotted Eortions of c~ are designated as 

c( £o'),anj 
c·•. · (3.1-9) 

Now if the ~ontour c~'(and c
7
) is divided into' th~ee ~~ris accdrding 

to {3.19), or"symboljically, 

= c( a-) + C(-0'") .C'} ., 

, (C' consists of two disjoint arcs), 
= c( ()) + c(-cr) + c•· '' {:; 

(3~20) 

the expression M
2
(a-,z). of (;.-l7) can be written as a sum of nine 

... j • ,' · •. 

integrals associated with the nine combinatio~s in (f,7) contours 

of (3.20). The nine combinations of .integration in (~ 1 ?) can be 

compactly written- with ·the symbol{c inultipli'c·ati:on· st'gn (x); 
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, .. t 

c ( x c 
7 

"" c ( cr) x c ( cr) + c ( G") x c (- Cij + c ( tr) x c • + •••. (3.21) 

Furthermore, for ease of reference, the associated nine integrals of 

~l 2 (c-,z) ar:; llcsignated by the following rather self-explanatoi~Y 

notation : 

M
2
(o,z) = u

2
[cr,zlc(o-) xc(cr)] + ••• 

:: M [c( cr) x c( 0'") J + ••••• 

where for example . •·. 

M~(o-)x c(tr)J:=: r d~ Jdl ¢(tr,dH(~,'~,z) (J(rr,,7). 
C(cr) CCif) . 

I~- 2'>) \). '~ 

d •. . li(+) or¢(-) ~-ccordintr to 
The 'P' s in Eq. ( 3. 22) can be replaced by Y' b 

whether the assocated contour of integration is C(~) or C(-~) _because 
t ' ~ ·. 

the 11andelstam representation can be written as a sum of two terms 

(2.7).. For example, if the integration is carried over C(cr) then. 

~/-) is int,:!grated to zero. Hence (3~22) can be re\'{ritten as 

- M(+,+]: f dl;f <l7ti(+)(<r,<)H(~,'l'z)ti(+)(<r,7). 
ceo-) C(cr) .. . ( 3. ~n) 

The singularities as enumerated in (3.18) can not arise from any 

one of the five integrals of (3.22) where at least one of the 

integration iu either tor. 7 is carried o'ver C' because of the 

"addition" property of H(~'/'z), as discussed in the para~raph 



)0 

containing (3.h). Also due to a sy:auu~try property of the function 

.. IJ· (· C' 7 . ~ \ 
t 7 '· t :£I 

( ·-· ') i ) ) • ~ l 

\. 

Of fhe remaining four integrals of (3.22), only two are distinct, 

= ~~ [-,-] 

= hl [ - '+] 

lienee f~r a fixed ~ , 

r [ +, +) gives rise 

M [ + ,-] gives rise 

to the 

to the 

(3.25) 

singularity 2 
-1 

z - +COS cos () 

singularity z -cos 2 
-1 cos Ci- (3.2t}) 

Now the origin of the sin~uLtritie~;. of ~i 2 (o--,z) is isolat,.!d and 

identified in (3.26). We proceed to examine the expressions (3.26) 

in terms of the partial-wave integration ().16). It is the :.;oa] of 

this subsection to slum that two of the four ''expected" er!(1poir!t. 

singularities 

{ C5' cos k 
;r 

k .L 0,2 = 2 ' r or 

(J= ±. iO i "7' <\ -: '\ 
\ _! •· ~- I} 

are ahscnt in the partia'l-wave awplitauc ~,12 (()'). Tl~'~:~::!i:o:.c, 1..e .:ill 
. •"-

work in Sl:tall neighl>orl!ood~~ (:3.5) oi t:!c::2 poiuts (\.~;·?). For '-~::.:\:(• .. 
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J z in N (1) 
z 

l 0"" in ( 3:. 28) 

the expression M [+,-) of (3.26) is the appropriate one to use in 

the partial wave projection, 

r2 (<r) = J dzM [+,-] 
Z=l 

= r d t f d? ¢ ( +) ( (J' ~ ) ~ ~- \ 0"", ? ) f d zii ( ~ '? ' z) • 

c(o-) c(-a-) z==l 

( IJ~ +iO). (3.29) 

It should be pointed out here that the order of integrations between 

dz. and d~d? has been interchant?ed ; and this interchange needs 

justification. We emphasize here that as long as o- = +if , f >0, 

the integrand of Eq. (3.29) is analytic in the product region in 

the variables (z,~'7') 

so that the interchange of the order of integration in (3.29) is 

justified. The function r 2(a) at ~= iO is defined by the analytic 

continuaticin o.f r
2
(oj at cr- iE as calculated from (3.29). And 

this is the only meaningful definition of 1 2 (~) at ~= iO (or equi

valently the only meaningful definition of the partial-wave~ (s) 

on the negative s-axis) since the integ~al defining 1 2 (~) of Eq. 

(3.29) is meaningless at ~= iO. We illustrate the aboveseemingly 
A 

~ 
obspre but important remarks by the following integral

1 

OJ 

¢(s)- Jdzse-zs 

0 

He s > 0. 
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The integral Jf(s) is meaningless for Jlc s = 0. (for that matter 

Re s ~ 0) llut Jf(s)s 1 identically, hence ~(s) is defined for s, 

H.e s 6 0 by the analytic continuation of ¢(s) at s, He s :::-0. Now 

we return to the subject matter proper.' For z as restricted in 

(3.28), and for~ and 7 restricted to following neighborhoods 

(bec~use of, the contours C( ()) and C(-lf) ) : 

~ in Ns(+iO) t 
IT 

::: coso(, t\-:::" 0 
c.. l \ N?(-iO) Ti 3 (3.30) ? in 

J 

or ? = C0Sf3 1 ~ Z2' 

J z in N ( 1 ) z cosG,G::2if 
z 

the function H(t,ry,z) in (3.29) satisfies tile conditions of (3.6). 
I 

Hence all the results of that paragraph arc applicable here. Thus 

Eq.(3.29) can be rewritten as; 

(3.31) 

where G2 (~,7) is defined in (3.9) and is analytic in ~ and 7 
res,tri c ted to ·the neighborhoods of ( 3. 30). 'fhe analytic property of 

I 

G2(t,7) in ~ and 7 implies that rJ(IJ) is regular at CJ= +iO 

because the integration contours c(cr) and c(-(}) can now be analytically 

deformed to av.oid the advancing ~ingularities s = +iO and 7 "' -iO 

respectively as ~ a~proachcs +iO. 

, " ily entirely analogous argument, one can show that r
2

(cr) is also 

regular at o = -iO. , Hence the partial-wave projection M ( cr) of 
2,~ 

the second Liouville term M
2

(o-,z) is regular at 15= cos [ k 



In summary~ the "expected" endpoint singularity of M2 ,t(~) at 

~- +iO is absent because of the analytic form of the kernel func

tion H(t,J,z:,). In particular, the factor [z.- cos(o< +(3 >l -t of 

H(~•?•z), wb~n integ~ated and evaltiated at z • ~ 1 P becomes an 

entire function in« and p ,[see Eq.(3~8~ 

o(+~ . 0( ·e 
J1- cos(O(+~) · .. [2 sin -2..:.--~ Jt + cos(b(+~) •J2',cos -

2
----

0 

Or in terms of ~ and 1 9 it is an analytic function of ( J; 0 7 ) 
except for ~ ... ± 1 21: ? .. .:!:. .1. Consequently the two contours of 

integration C(.:t~) can be analytically deformed to a~oid the two 

advan~ing singular points in ~ ~ and ? as o- ·approaches +iO~ 

This property persists as a characteristic feature for all M01 ~(~) 
terms to be discussed later. We now go on to treat the M3(.~,z) 
term in analo~ous fashion, so as to arrive at the generalizat~on for 

the arbitrary th 
n term M ( cr~z). of the Liouville series. 

n 

k 1- .0' 3 

The treatment of the term M
3

( tr, ~) follows closely that of 

· M2( cr, z). We start out by writing ~3 ( ~, z) in full; 

1 dljl(cr,t1 )H(~ 1 .?·•) §cl!2 J dl, 3jl(cr.~2 ), c, c,, . ~. 

:n 

•H(t2• t 3 ,/)~(cr,~). (3.32) 

The singularities of the ~erm u
3

( v,z) are: 



-1 z.; .. ±. co 8 3 co 8 a- o r ( for a fixed (f, 

\ l for a fixed 9, 

( 3. 33) 

o-3 ,k(9).., cos(3 +; ~] k .. 0,1, ••• 5. 

A«ain the contours C~. :(i a 1,2,3) are chosen as in (3.19) and 
t; \: .. 1 

(3.20), 

c~i. c(o-) + c(-<r) + c• ( 3. 34) 

The expression (3.32) for M
3

( ~,z) can now be written as a sum of 27 

integrals correspomding to the 27 combinations of integration in 

... c( tr) ~ c( cr) S\ c( tr) + ••• ( 3. 35) 

However, any integral involving an integration in ani of the three 

·Variables ~i(i ... 1,2,3) over C'.is analytic at the points (C1,z) of 

( 3. 33) again because of the "addi tionlli· property of H(~, ') 1 z) [see the 

discussion that leads to (3.~)] Theiefore, as far as the study of 

the singularities of M
3

((1,z} (3.33) ,is concerned, it B'!lffices to 

discuss only 8 
, I , 

of the total 27 integrals, 

M3(tT,z) = M3(a-,z I c(~) ,c c(cr)" c(a-)j 

+~-M3 [cr,zlc(u) ~ c(cr) )\1c(-cr)] + 

••• 

Furthe'more~ due to :.the ·symmetry of the 'function H(~,?,z) (3.24L. 

only four~f the eight integrals are distinct, 

( ) .. 36) 
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= u3 [ + ,- • -] 

= M3 [+,-,+) 

.. M3 [- ,- ,-] 

(3.37) 

"' M3 (- ,-' + J 

In any of the M
3 

-integrals of (3.37), the integration over 1 is 

still over a closed contour c'?[see (3.32)] . For a fixed pair of 

(( 2 , ~ 
3

) -values of (say) C(D"'))(C(o-); 

on c( <T) 

on c(cr),-
( 3. 38) 

then the closed contour c 7 can be broken up into two pieces, [see 

definition (3.19)] 

( 3 •. 39) 

Again by the "addition" property of the function H(t2 , t 3 ,~) (3.4) 

only the integral involving the integration in ~ over the contour 

C(cos (c(
2 

+ o<
3
]) contributes to the singularity of (3.33) .. Hence 

keeping this in mind and remembering the .replacement of - b~ -(+) 

or-(-) as done in (3.22) to (3.23), we write a typical integral of 

(3.37) in detail as : 

d~ 
3 
r d' 11< + l <a;~ 1 l 11< + l <cr. £ ... > lj6 1't.,.,~,>. 

c( c.o,r..,~ .. «~J) 

" H ( t 1 •f ' z) H ( ~ 2 '~ 3 '7) 



According to the expressions (2.23) and (3.33), we wish to show that 

the partial-wave amplitude M3 ,~ (~) of the third Liouville term is 

regular at, 

. For definiteness, we choose to approach the point 

~ "'If 3, 2 • cos ( -j" 2) · ... - t +iO 

in the expression (3.10), then both M
3

(+,+,+] and M
3
(-,+,-] of (3.37) 

contribute to the integral (3.16) because of the "addition" property 

of the function H(~,,,z). 

working out the consequence 

For ti (i - 1,2,3)., 

neighborhoods: 

~i cos o(.. in - 1 

z, =. cos 9 in 

7 s: cos~ in 

But we ,i 11 

due to the 

z and 7 

N~.(-t +iO) 
1 . 

N ( 1) z 

N,(-t ;-iQ) 

illustrate the procedure by 

integral M [+,+,+]only. 

restricted to the following 

«..~ 
"l't' or 3 .2 1 

,.__, 

ot Q ~ 2ii" ( )."43) 

Tr' or (3Z 3• .4 ,, 

the following approximations for the two H's in (3.40) are ~alid; 

1 
H(.t1 ,~,z) ~ 

{ z - cos («1 + ·~ ) 

1 ': 
( 3.4Z.) 

H( ~ 2, t 3 ,, ). -- ,,_ 
cos(o<2+ c<. 

3
) .. 



Again the discussion from (3.5) to (3.9) is applicable, the integral 

13(0"') of (3.16) with ld3 (+,+,+] of (3.40) substituted can be 

rewritten as 
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:: fd(l fdf2 J dt3~(+)(G",{1)p(+)(O",t2)p(+)(CTp~3)G)(~1J2pt;), 
c( o-) c( cr) c( CJ) 

where 

c( cos [o< 2 + o< 31) 

• r dx G2(~1, cos( o( 2 +o( 3) + lC. ), 

C(o) tx 
( 3. 45) 

The interchange of the order of integration,is again justified by 

entirely analogous arguments that justifies Eq. (3.29) previously. 

B~cause of the analytic property of G2 (~1 ,?) (3 •. 9), the integral 

of (3.45) integrates to an analytic functi~n G3(t 1 ,t 2 ,~ 3 ), 

G3(t1 ,~ 2 .~ 3 ) is analytic in ~i(i .. 1,2,3) 

provided { 3o 46) 

~i ~ z 1 t (i m 1,2,3), or cos( o( 2 + o( 
3

) ~ z1 

since the loop contour C(O) can be made arbitrarily small. For 



ti (i. 1,2,3) as restricted in the neighborhoods of (3.43), the 

conditions of (3.46,) are satisfied; hence I3(cr) ·Of (3.45) is regular 

at ~a- f + iO (3.42) because the contours C(~) can now be 

analytically deformed to avoid the advancing singularities 

t. •- i + iO (iN 1,2,3) as ~ approaches(- t +,iO). 
1 

1The other three points of (3.41) can be similarly treated so that M
3

, _e(c:T) 

is regular at cr =cos ~ k, k f 0, 3. 
3 

Now the essential element for the generalization to the arbitrary nth 

term. of the Liouville series is present in the function G3 (~ i) (i= 1, 2, 3) of 

th (3.46) or (3.45). For the general n term Mn (cr-, z), analogous treatment 

will lead to an analytic function G ( ~ . ) (i = 1, 2, .... , n), instead of n ~ 1 

G 3 (~ i) (i = 1, 2, 3) as here. The function will be analytic in ~ i(i = 1, ... , n) 

provided that ~. f ± 1 or cos ( o<
2 

+ ... + o( ) f ± 1, etc. 
1 n 

I II.. D. M 
6
(o-) is Regular at 6" = cos E k k ;f. 0 n n ,,... n ' - ' 

The general nth term of the Liouville series of f3'( 2 )(a-;z) is 

given as : . (3.2) 
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( 3. 4 7) 

The singularities of M ·(a-,z) are, 
n 



{

for a fiXe~ er 1 

for .a fixed G , 

-1 
~ .. ±. cos n cos rs-

If"" () (G iii] u k G • cos - + - < , n, n n 
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or 

k,.. o,.· .• ,2n-1. 

(3.48) 

We want to show as before that the partial-wave M (0"') of M (~,z) 
n,~ n 

is regular at 

k ~ 0, n. 

Therefore the steps taken from (3.3Z.) to (3.45) for the ).L(cr,z) case 
) 

can be exactly repeated here for the M ( (f", z-) case except for the 
. n 

complication in retaining the appropriate portions of the contours 

c1• For illustration, we examine the sec4:!nd H factor of the expres'l"·· 

sion (3.47), H{.f2 ,'7 2 ,~ 1 ). For fixed .t 2 :: cos0( 2 and ?2 : cosp2 , 

only the contours C(±. cos [ o< 2 + ~ 2J) [see ( 3.19) for defini tio~ 

contribute to the singularities ( 3. 48) •. Furthermore, for a chosen 

pair of (o-,z) values, only~ of the two contours C(±, cos [oe 
2 

+ (3 2 j ) 

contributes. Hence by repeating the steps from (3.3q) to (3.45), we 

start from the expression (3.47) forM {cr,z), and arrive at the follow-
n . 

ing expression for the determination of whether or not the partial 

wave Mn,~ (G"). is singular at the p~ints of {3.49) : 

In(O"') • f Mn[+,+, •••• ,+] dz + ••• ,{()~cos(~ k], k ~ O,n) 

Za1 

f dti +) ( .-, (1). • .jl( +) ( <r, ~n) G (t1 , ••• ,t )+ ••• 
n n 

C(a-) 

().50) 



where 

f d?n-20 0 0 fd,1G2U1,'11) f 
1 

G ( ~1 ••• I~ ) ;; n 1 n 
?t-cos(o<2+,12) 

c( cos[ocn-1 +ocn'}) c( cos [c(2+~2]) 

1 1 ,.. .... 
J 7 2-cos( « 3+ ~ 3) ~~ 2-cos(oc 1+o() n- n- n 

The integral in (3.51) involving only the integration in YJ 
1 

is 

just the functioh G3 (~11 ( 21 ~2 ) of (3.45) and (3.46) 1 whereas the 

integral involving the i~;tegrations i~ ? 
1 

and ? 2 
would be 

of ?l up to ?j-2 inclusively will be a function G. such that, 
J 

G.( ~ 1 ~ 2 ···~~·- 1 n ._ 1 ) is analytic in all the variables 
J • ~, ... :,1 '/J 

except for 

·{~i""±.l, (i .,. 1 1 2, ••• 1 j-1.) and 7. 
J-1 

cos( o( 2 + ••• + «j_
1 

.. cos 0\. 
1 

.. cos ~j 

+A. 1 -+1, 
t'J- . -

"" ±. 1 

40 

Jl. 

• 

( 3 ... 511) 

( 3. 52) 

By such inductive arguments, the analytic property of G Eq •. (3.51) 
n, 

is the following : 



" 
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G(~1 ••• ,~) is analytic in 
n , n 

all ~i ( i .. 1, •••. ,n) 

except for 

~· ... + 1, (i • 1, ••• , n) and 
1 -{ cos( o( 

2 
+ +~ ) .. + 1 

( 3. 53) 
••• n -

.But for all the G""- points of .(3.49), the conditions (3.53) is 

satisfied by the integration domains of the integral I ( tr) of ( 3. 50) 
n 

k ~ o,n ~ 1 ~i = cos ( ~ k ) 

lcos( o( 2+ ••• +-en) • cos(n-1) ~k, 
n-1 

k"O,n~cos(-·k)li f±1 n 

( 3. 54) 

Therefore, I (<r) of (3.50) is again regular at 0""• cos ( li k ),. 
n n 

k ~ O,n. Since the integer n is arbitrary, we have demonstrated 

that the partial-wave projection of all terms of the Liouville series 

~( 2 ) (IT', z) is regular at the "expected" endpoint singularities of ( 2:. 2)) 

except for the two points 6"" .. + 1 • Hence formally (or rigorously 
- I 

if the Liouvil.le series converges) the partial-wave. ~~~(2:)(cr) of. 

~( 2 ) ( (f, z) does not possess the "expected" natur.al boundary in 

-1 ~ ~~ + 1 because the "expected" endpoint singulari~ies are inte-

grated out point b.Y. point as demonstrated .in thi.s section. 



IV. The Partial-wave Projection ~f the Liouville Series of 

-( 2 )(~~z) and b~ncl~sion 

The explanation for the absence of the natural bound~ry of ¢( 2 )(~) 
R. 

in Section III is very explicitly given. There the singularities of 

f5( 2 )(o-,z) are isolated and then it is shown that the "expected" end

point singularities are integrated out point by point except for the 

points a-= ;t 1 •. 

the arbitrary th n 

Actually,t~e ~artial-wave projection Mn,l(a) of 
·., 

term M (~,z) of the Liouville seiies can be carried 
n 

o_ut exactly with .the help of the Lemmas in the Appendix A, 

-II 

Mn,~(G") =! f dz Mn(!r,z)1 (z) --~ C_¢;_ (o-B n 

Then it is 

¢~ ( <r) is • 

•I • 

obvious that· M , 
11 

( lr) is singular only at (J .. ±. 1 
n," 

-lhe 
Th~s is in agreement with~resultsof Section III as 

mentioned above iri this paragraph. 

( 4. 11) 

because 

briefly 

The z - dependence of the individual term of the Liouville series 

for ¢( 2
)(C),z) (3.2) resides entirely _in the kernel function H(~,~,z). 

The .partial..:wave projection of H(~,~,z) is a product of two Legendre 

function's [see Lemma 3 of the Appendix A] 

I 

H.((<e,7} = t ( dzU(t,1,z)P.t (z) ;.;. 21\C~J. (t) ~J.(~) 
-I 

( 4. 2) 

which agrees with the analytic· ptoperti'es of the funct'ion G
2
(t,1) of 

(3.9). By the repeated use of Len~n 1. and Lemma 3 of the 

Appendix A ,M2 ( 6") , M"%'. (~) and M (<r) are integrated to; 
·~ .. _,,( . n,,; 



' J 

(4.3) 

.. 

~hich is the assertion. of Eq. (4.1). 

By putting the e~pressions (4.3)b~ck into (3.2), the partial

wave ~.{( 2 )(cr) of the full amplitude 1f( 2 )(«r,z) formally sums back to 

the parti~l-wave unitarity ,relation (2.15); 

CIO 

• {; [p.(sf.Jn-1(-)n-1 [1 (cr)]" (2-w>)n-1 

-jlx(.-) { t [-2irl•) jl.t(a)]n} 

fi£. ( o;) - (4.4) 

1 + 2 i r < s ) fi-t < 6") 

which is the starting point of our study. Hence our study comes to 

an end. 

We have· carried the present study through a complete cycle: we. 

start out with the Mandelstam representation and the partial-wave 

unitarity relation (2.15) between~~ ( 2 )(s) and f.JA(s),then go on to 



define the full amplitude -( 2 )(s,z). From the integ~al equation (2.16) 

[the unitarity relation between ¢( 2 )(s,z) and¢ (s,ztl, aninfinite set 

(3.1) of singular points of ¢( 2 ) (s~z) is determined. This infinite. 

set of singular points is'shown to constitute a natural boundary along 

the real negative s - axis for arbitrary complex z In an attempt 

to understand the absence of the "expected" natural boundary for the 

partial-wave amplitude¢; (
2
)(s) 9 the set (3.1) of singularities. is 

classified by~;Liouville series whose nth term is designated by 

Mn(s,z). It is then shown that the partial-w·ave projection Mn,Jl(s) 

of Mn(s,z) on PR (z.) is singu,lar only at s .. 0, oo ( 0"'= ± 1) ~hereas 

all other ~~xpe~ted" endpoi~t ~ing~larities (2.23) are integrated ou~ 

poin~ by poin~ due to a remarkable pr6perty of the kernel function 

II(e,n,z.:). Since each term M (s) in the infinite Liouville series 
( n,~ 

is singular only at .. s ... O,oo, the formal sum ¢~ 2 )(s) is then singula.r 

only at. s = 0, e>o ; henc.e the absence of the "'expected" ·na.tural boundary 

along -():)~ s ~ 0 for the partial-wave amplitude ¢l 2 \ s) is understood·. 

Furthermore, the partial-wav:e projection of the Liouville series of 

~~(2?.)(s) sums exac.tly back to the partial-wave unitarity relation (2.15), 

which is the starting point of the cycle. 

We conclude by making a few general ~emarks 

(1) Thcz demonstr~t~on that·the "expected" endpoint !)ingularities 

of ¢-t (
2
)(s) is i~t~g;~~ed·out point by point ,is carried out via the 

Liouville series .of'¢(
2
)(s,z). If the series converges, the demons-

tration is rigorous; if ~he aerie~ diverges, the demonstration is 

then formal. Even in the latter case, we still believe that the 

proposed explanation in this study for th~ absence of the "expected" 

natural boundary of ¢( 2 )(s) is correct. 
~ 
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(2) d . t' 6 A careful study of Zimmermann's er1va 1on of this infinite 

set (3.1) of singularities shows that it has its origin in tile kernel 

Our pro·posed explanation is also based on a 

remarkable property of 11(~,?,z) at z .,. ± 1 i namely, the factor 
1 

[z - cos(ci+~)] +2 which when evaluated at the endpoints of integration 

z • .:t 1 , {i .:1:. cos (Ot+~)' , is an entire fuuc tion of o( and ~ or 

an analytic function of ~ and "1 except :£or ~ .. .±.. 1 ..Q.! 7 r:::! .:t_l. 

It should be noticed that the endpoint singularities s = 0, -oo 

(or () •.·:tJ} for Mn,~ (cr) are not integrated .out by our proposed mechanism 

because now the function H(~,,,z) (3.3) ~an no longer be appr~ximated 

b,y [z.. - cos ( ~ + ~ U -t at z z. 1 · because K _ ~ 0 also • 

(3) 6 
Zimmermann's work can be carried out within the frame-work 

of the rigorously proved analyticity properties of the physical 

amplitude -(s,•) [i.e. his work does not rieed all the analyticity 

properties of the Mandelstam conjecture]. Since this study is based 

on Zimmermann's ~ork, therefore~ the result of this study. bas greater 

validity than tha"t,_implied by tne MaridelstamsJ conjecture. 

(4) One possible implication of the result of this study is the 

following : the amplitude.·¢ii? (s,z) given by the unitarity condition 

10 . 
in Freund. and Karplus' . pape·r,. formula ( 6.), 

(2) 
¢ AB' ( s ,,z) 

2ip(s} r~x f1 
9(-K(x,y,z)) 

. 21T j ) dy fJ AD·( s ' X);:=:====:-
-I .t.~(~~Y• z. ) 

_, 

dAA(2) 
P (s,y) 

is ~ expected to have a natural boundary because 
(2) 

¢AA (s,y) does; 



there the angular integrations do not have the simplifying properties 

that cause the singularities to disappear. 
I 

(5) It is mathematically interesting to continue the individual 

partial-wave amplitude ¢~ ( 2 )(s) across the real negative s - axis 

and then to write a Legendre series, 

CD 

~;:!udo (s~z) .. ·~ ¢-R (2)(s) p.( (z) • 

We call this series a "pseudo - continuation" of ¢( 2 )(s,~) if it 

converges. How is the "pseudo - continuation" ¢( 2 ) d (s,z) related 
pseu o 

to ¢( 2
)(s,z) across the natural boundary.? 

(6) Lemma 5 of the Appendix. A is an interesting ide1;1tity 

among the same Legendre function Q 's of different arguments. 
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APPENDIX A MATHEMATICAL FORMULAS AND IDENTITIES 11 

Lemma 1. Let f(z) be an analytic function of z in E, where E i~ a . 
~ 

neighborhood of the interv:al· -l~ z·~+l. Further, let P.( (z) and Q~(z) 

denote the legendre functions of the first and secorid kind. Then 

J.. 
2 

I 

f f(z) ~ (z) 

-· 
1 

dz ... 
21ii f f(z) Q ~ ( z) dz 

c 

where C is wholly inside E ·and encircles the interval -1 ~ z ~ +1. 

Proof. By ''IUbsti tuting the Neumann formula 

dz' 

(A.l) 

into the right-hand side and interchanging the order of integration, 

an identity results •. 

Lemma 2. 

where 

9 ( -K( X, y, Z)) 

J -K(x,y,z) 
.. 

d) 

) 
1iL_ 

j,:::o 

( 2 2 2 K x,~,z) a X + y + z -2xyz- 1. 

Proof. The proof"of this identity starts with the addition formula 

of Legendre polynomials, 

48 ' 



p..t ( c 0 8 oc ) = p..i. ( c 0 8 G) p.{ ( c 0 s G I ) + 

~ 
<) (X-m)! 

2 L U +1:1)! 
m=l 

where cos~ • cos 0 cos 0' + sin G sin 0' cos P 

We integrate in the variable ~ from 0 to r., and get 

:rr 

r p,{ ~y + f 1 - %
2 !1 - l Cos )I ) djl ~ li Pt_ ( X) ~ ( y) • 

0 

. (2-t+ 1) 
Now we multiply {A. 2) by ~ ( z) 2 

and sum, we get 

) 
d( cos ~) 

- x
2 [t - y~ cos ~-z sin ¢ = 

-& 

The left-hand side of (A.3) simplifies to 

0(-K(x,y,z)) 

4 -K(x, y, z) 

• 

Lemma 3. Lemma 2 leads immediately to another identity, 

2iiQ.l(x) Ql(y) • ! (PR.(z) H(x,y,z) dz 
_, 

(A. 2) 

(A. 3) 



Proof. From Neumann's formula 

... 
I 

t r p.l ( z.) 
dz:' 

Q~ (z) z - z' _, 

1 1 
We are led to multiply (A.q) by L ----~ 2 x - x' ------ P (z) dx' dy' dz 

y - y' .( 

and integrate from -1 to +1. This siep results in the following 

expressio.n 

II . [J'dx' I'. dy' Q(-K(x',y:z))j 
P., (z) dz ---. --, . 
~ x-x y-y J rr( , , ) 

I 
, -n. x,y,z - -· _, . 

But the expression inside the bracket is nothing other than the 

. function H(x,y,z) 6 
(ref. (2.17)),hence . 

I 

2ii Q,q_(x) Q.l(y) ""i f P.l (z) dz. H(x,y,z). .. , 
Lemma q. 12 

Proof. By substituti~g6 

dz' 1 

<D 

· H(x,y,z) • 2-rr f 
xy +Jx

2
-1Jy

2
-1 

z'-z J K(x, y, z') 

into (~.6) of Lemma 3, we get 

(A. 5) 

(A. 6) 

50 



I 

2iiQ.t (x)Ql(y) .. l. r p.t (z)dz z'-z 

dz 1 

_, 

- 2Ti (" . 

xy+ [ x2 -1J y2 -1 

dz I Q~ ( Z I) 

~ K(x,y,z'). 

By the following change of variable, 

z e "" xy + w [ x2 - 1 r y2 - 1 

(A.?) is transform0d into the desired result. 

Lemma 59 

n 

... 

where x 1 is defined by a recursion relation, 
n 

x 1 "'x x 1 
_1 + w Jx 

2
-1 n n n- n n 

[ x' 2 - 1, n-1 

1 

J K(x,y,z•) 

• 

X I - X 
0 = 0 • 

Proof. Hepeated application of Lemma 4. yields Lemma 5. 
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(A. 7) 
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