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Abstract 

An accurate and efficient numerical method of solving the 

radial Schroedinger equation for diatomic molecule has been 

employed in two tests relating to approximate potential functions. 

First, quantitative estimates have been made of the errors in the 

approximate eigenvalue equation derived by Pekeris for the rotating 

Morse oscillator. Secondly, as an example of testing a potential 

function for which no analytic solution is known, the eigenvalues 

of the Clinton potential have been compared with those of the 

Morse and with experiment. 
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Introduction 

The worth of a function used for representing the potential energy 

of a diatomic molecule must be judged principa.lly by the agreement 

between the eigenvalues it predicts and the spectroscopica.lly-observed 

term values. The profusion of such functions in the literature is due 

in part to the difficulty of making this comparison. Exact analytic 

solutions for the eigenvalues and ei~nfunctions have been obtained for 

rela.tively few potentia.l models. 

Va.rshni 
1 

ha.s used an a~proximate method to compare the class of 

three-parameter potential functions which can be specified by the dissocia-

tion energy, De' the fundamenta.l frequency, roe' and the equilibrium 

internuclear distance, r . It is based on two approximate formulae, 
e 

2 derived by Dunham, vrhich give the spectroscopic constants ro x and a e e e 

in terms of derivatives of the potential function evaluated at r • 
e 

2 
Dunham used a. W.K.B. method and a potential expressed as a power series 

in the internuclear displacement. Since the constants D , ro , B (or, 
e e e 

equivalently, r ), ro x and a give the most important contributions to e e e e . 

the eigenvalues, this method certainly gives a valid and useful comparison. 

Still, it is a~plicable to only a restricted class of functions, and the 

neglect of higher-order terms in the eigenvalue equation could in some cases 

alter the comparison significantly. 

Varshni1 noted another possible method for making the comparison 

with experiment, but it is less attractive. When sufficient experimental 

data are available the Rydberg-Klein-Rees method (see Jarmain3 for a 

recent formulation of this procedure) can be used to build up a potential 

curve by computing classical turning points for each vibrational eigenstate. 
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Such a curve could then 'be compared with any postulated potential function 

'but the information gained is less than satisfactory. One could safely 

assume that a potential function which disagreed considerably with the 

RKR curve over its whole range would give poorer results than a. function 

which agreed very well with the RKR curve. However, it would 'be difficult 

to choose between two functions whose departures from the RKR were 

approximately equal in magnitude but in different regions of the curves. 

In any case, no quantitative estimate of the difference between 

theoretical. and observed eigenvalues is obtained by this procedure. 

A direct and unambiguous comparison between theory and experiment 

is poss:i..ble for any assumed potential curve through the use of 

numerical methods. Such methods have been applied to central field 

problems for many years 'but the computational labor they entail is 

very considerable when high accuracy is desired. It is only through 

the recent advances in computer technology that the widespread use of 

these methods has become practicable. 

The present paper deals with tvro applications of numerical methods 

in problems relating to diatomic potential functions. Following some 

remarks on the method itself, it is shown how it can be used to give 

quantitative e,etimates to the accuracy of an approximate analytic 

solution. The example chosen is widely-used eigenvalue formula derived 

4 by Pekeris for a rotating Morse oscillator. The second application 

is one in which are found the properties of a potential for which no 

analytic solution has yet 'been given. This is a potential function 

recently proposed by Clinton,5 and it is compared with the Morse6 

potential and with experiment. 
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The Numerical Method 

Cooley7 has recently described a numerical method for solving the 

8 Schrodinger radial equation. It employs the Numerov method of integra-

tion together with an eigenvalue predictor-corrector formula which is 
9 

based on a second-order iteration-variation procedure due to L8wdin. 

The form in which the equation is solved is 

(l) 

where \jr is the radial equati,on multiplied by r~ and U(r) is the effective 

potential energy, 

(2) 

J and A are the quantum numbers for rotation and for the z-component 

of electronic angular momentum, the second term is the Coulomb repulsion 

energy of the nuclei, ind Ee1(r) is the electronic energy obtained by 

solving the electronic wave equation for each fixed internuclear 

distance r. 

In using Eq. (l) it is nece~sary to employ dimensionless units 

of energy and length. When length is measured in -Bohr radii, 
0 2 2 

a
0 

= 0.529172 A, the unit of energy is equivalent to b.Nof'81T ca01-tA 

wave numbers, where N
0 

is Avagadro's number (physical scale) and I-tA 

is the reduced mass in Aston units. The numerical value of this factor 

is 60.2198/~-tA· Hence, to convert the eigenvalues and spectroscopic 

constants for HCl from the values tabulated below to the more familar 

units of cm-1, multiply by 61.4557· 
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* Cooley has made available a Fortran SHARE program embodying 

* A minor modification is required in order to make his 704 program 

compatible with the 7090; The author is indebted to Mr. R. N. Zare 

:f'or this information. It is anticipated that a detailed description 

o:f' this modifica,tion, together with other useful ones, will soon be 

a,vailable as a UCRL report by Mr. Zare and the author. 

his procedure and has reported tests of its accuracy when up to 200 

interval~ are used in the integration. In the present application 

higher accuracy wa,s obtained by increasing N, the number of intervals 

used. One cannot ensure a continuous improvement in accuracy by 

increasing N indefinitely, quite apart from storage and time considera-

tions. As N increases, the build-up of truncation error will eventually 

offset the simultaneous reduction in the error which arises from 

replacing the differential equation by a finite-difference equation. 

If the latter source of error is reduced to a virtual zero before the 

former becomes appreciable a plot of eigenvalue versus N should vary 

rapidly at low N values, approach a near-constant value and then 

break away from it gradually as truncation error builds with increasing 

N. This appears to be true of Cooley's program when it is used on an 

IBM 7090 (which carries just over 8 significant decimal figures). 

Figure 1 shows the variation "tvith N of the six lowest eigenvalues for 

HCl fitted to a Morse potential. It will be noted that the higher 

the eigenvalue (i.e., the more rapidly the eigenfunction varies with 

r), the greater is the value of .Nat whjch the nearly constant portion 

of the curve is reached. On the other hand the breaking ai<ay from this 
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0 

E4=-406.35113 

E1 =-534.75590 

I 1 c I I * I 

0 500 2000 
N 

MU-29799 

Fig. 1. Rate of convergence of numerical eigenvalues with N, the number of 
intervals used in the numerical integration. The theor.etical values of 
Ev are computed from Eq. (4), using the spectroscopic constants for 
HCl given by Rank et al. I3 
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region at higher N is much less a function of eigenvalue. Further, 

the somewhat erratic behavior in this portion of the curve is 

essentially the same for every eigenvalue. Both these observations 

are consistent with the interpretation that the errors above N=lOOO 

are p~incipally truncation errors. 

All the calculations reported in the following sections of this 

paper were made using 1000 intervals of 0.007 atomic units each. The 

criterion for choosing the range of integration is tha.t the values 

of the normalized eigenfunction should be essentially zero at both 

extremes. ,On the IBM 7090 numbers smaller in magnitude than 10-39 

produce a machine zero. For a Morse potential virtually all diatomic 

molecules will fulfill this condition at a lower bound of r -2 atomic 
e 

units and an upper bound of r +5. The higher the ratio of m /ro x i e e e e 

the more this range can be reduced. 

Numerical integrations of the eigenfunctions to obtain expectation 

-2 . 
values of r were made by repeated application of Simpson's rule, 

sometimes called the parabolic rule ( cf,, Hild(:::brana
10

). 

Values of the spectroscopic constants were obta.ined from the 

eigenvalues by the differencing procedures usually applied in the 

analysis of spectra. (Th:i.s whole procedure can be regarded as taking 

the spectrum of a molecular model with a computer.) In order to 

minimize the errors caused by the neglect of higher-order differences, 

the fourth differences ~4a2 and ~4B2 were set equal to 2~ z and . e e 
4 4. 

24e:e' respec_tively, the differences !:::. a
3 

and ~ B
3 

being used only as 

an indication of the validity of the assumption of constant fourth 

4 
differences. All lower-order differences contributing to !:::. f 2 were 
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the~ solved the remaining constants, and unweigbted averages of these 

were tabulated. The relevant difference equations may be found in 

Herzbers. 11 

The entire numerical procedure is very economical in terms of 

c.ollliPuter time • Cooley 's program- requires about 0. 4 se oonds to COIIIiPUte 

the eigenfunction at 1000 points and to correct the trial eisenvalue 

for the next iteration. Since the predictor-corrector formula is 

based on a second-order procedure relatively few iterations are 

necessary in order to obtain eight-figure constancy in the.eigen-

value, even for an initial trial value which is several percent in 

error. All the calculations reported below, including 12 eigenvalue 

determinations, required about one•hal:f' minute of computing time on the 

IBM 7090. 

Accuracy of the Pekeris Eigenvalue Equation for 

the Rotating Morse Oscillator 

4 Pekeris 1 approximate solution to the radial equation for a 
6 ·. 

Morse potential is inexact for two reasons. First, the rotational 

contribution to the potential is approximated using an expansion for 

l/r2 in which only the first three terms are retained. By treating 

the terms neglected as a perturbation Pekeris showed that their effect 

on the e:l:genva.iues should be very slight. In view of the widespread 

use of his approximate solution, a more quantitative estimate of the 

error is useful. Secondly, in his development the lower limit of 

an integration over r is taken as -~ instead of zero. This has been 

12 discussed by ter Haar, who concluded that the error should have 



-9- UCRL-10643 

negligible effects for systems involving nuclear or larger masses 0 

Again, it is of interest to set an upper bound to this error through 

an exact numerical solution. 

6 The Morse potential for a rotationless state is given -by 

f3(r-r ) 2 U(r) = D [1- e e ) - D 
e e (3) 

where D is the dissociation energy, r the equilibrium internuclear 
e e 

distance and 13 a disposable parameter, the energy being measured from 

a zero at the dissociation limit. In the following calculations the 

values assigned to D and r were 605.559 and 2.40873, corresponding e e 

very closely to the experimental values13 for HCl, and 13 vras set equal 

to 0.988879. If the Pekeris solution were exact, this value of 13 would 

imply a value of ro matching that for HCl [see Eq. (4a) belovrl. 
e 

where 

The eigenvalue equation derived by Pekeris may be >·Tritten 

E J = -D + ro (v + ~)- (.l) x (v + ~)2 v, · e e e e 

+ J(J+l)[B - a ( v + ~)+ r ( v + ~)2 + . . . . J e e e . 

2 2 
+ D J (J+l) + ••••• e 

ro = 213 -fn e e 
. 2 

o:l X = f3 e e 

-2 
B = r e e 

3 a = --':---
e f3e3 -fn 

e e 

1 [13- - ] r e 

(4) 

( 4a) 

( 4b) 

( 4c) 

( 4d) 
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( 4e) 

(4f) 

Note that the rotationless sta.tes do not involve terms in 

(v + ~) higher than the second power, Thereforej non-zero third 

differences in the eigenvalues for these states w:i.ll indicate an 

error due to the second cause cited above, 

The calculated and numerical eigenvalues for the J=O states of 

the first six vibrational levels of HCl are given in Table I, to-

gether with first~ second and third d.;ifferences ·for the latter. 

Within machine limits the third. differences are zero and. the values 

of m and. m x derived. from the first and. second. differences agree 
e e e 

exactly with Eqs, ( 4a) and. ( 4b).. Hence.~ the incorrect limit of 

integration introduces an error of less than one part in 107 in 

ill a 

e 

Two procedures are available for testingEqs, (4c,d, and e), 

The values of B can be obtained. either from the relation v 

B = [1_] = J 1jr r-2
\j! d.r v 2 v v 

r 
(5) 

or by obtaining a series of rotational eigenvalues for each vibrational 

state. Standard differenceing procedures can then be used to solve 

for the constants in the equation 

(6) 

Both methods were used but only the set of B ij s obtained from Eq, ( 5) v 
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Table I. Eigenvalues G( v )( =E 0 ) f'o'r the rotationless states of HCl, v, 
3 . 2 

assuming a Morse potential. Since ~ G=O, 6 G 
1
= -2ro x 

v+ e e 

1 
and 6 G 11 = ill + 2vill X • 

v+12 e e e 

v G(v),Eq. (4) G(v),Numl. L::.lG t::.
2G .c:.3G 

0 -581.46902 -581.46913 

46.71311 

1 -534.75590 -534·75602 -1.95577 

44.75734 +.00001 

2 -489.99855 -489.99868 -1.95576 

42.80158 .00000 

3 -447.19696 -447.19710 -1.95576 

4o.84582 - .. 00001 

4 -406.35113 -406.3512 -1.95577 

38.89005 

5 -367.46107 -367.46123 
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I 

was used to obtain the constants o: , e:tc. The value of B given by e v 

Eq. (5) is unambiguous whereas forcing the eigenvalues to fit the 

equation 

E J- E o= B J(J'+l) - D i2(J+l)
2 

v,. v, . v v (7) 

-· 

results in a B value that depends upon which eigenvalues are used. v 

The values given in Table II are the results of a least-squares fit of 

the four eigenvalues for states J=7 through 10.9 the lowest four for 

which the left-hand side of Eq. (7) retains six significant figures, 

The same states were used to determine the constants D i which v 

could be expressed by the relation 

D=D +~(v+~). v e e 
(8) 

Table II gives the results for B . The good agreement between v 

columns three and four attests to the consistency of the eigenfunctions 

and eigenvalues obtai'!led in this procedure. The very small differences 

between columns two and four at low v increasing markedly as v increases 

indicates again that the principal error in Eq, ( 4) i.s the neglect of _ -:. 

higher-order terms, To better illustrate the magnitude of the error, 

Figo 2 sho-vts the differences between calculated and numerical eigen-

values for levels J=O to 20 of v=O, Note that the first several states 

are all low by the same amount. Hence the rotational spacing predicted 

by Eq. (4) for these states is exact to within the limits of this calcu-

l.ation. 



Table II. Rotational constants B v from the Pekeris solution, from the numerical 

eigenvalues and from the numerical eigenfunctions. 

B ' calc. B , numl., B , numl., b.~ 6~ D.\ e:.\ v v v v 
Eqs. ( 4c,d,e) from E vJ from Eq. (5) 

0 0.16981808 0~169812 0.16981818 

-.00511297 

1 0.16470616 0.164698 0.16470521 -.00005383 

-.00516680 -.00000223 
I 

1-' 

2 0.15954333 0.159532 0.15953840 -.00005606 -.00000032 lN 
I 

-.00522286 -.00000255 

3 0.15432959 0.154309 0.15431554 -.00005861 -.00000052 

-.00528147 -.00000307 

4 0.14906495 0.149029 0.14903407 -.00006168 

-.00534315 

5 0.14374940 0.143687 0.14369093 
c: 
@ 
1:-i 
I 

1-' 
0 
0\ 
+="'" 
lN 
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r-----r------,----r-1'-----,..----, X 104 

160 

140 

100 

40 

20 

0 0 

-20 

0 
MU-29796 

Fig. 2. Comparison of numerically-obtained rotational eigenvalues with those 
calculated from the Pekeris equation, Eq. (4). Triangles with solid guide 
lines indicate &Ej = calculated-numerical; circles with broken guide line 
show %& = ( 1 - caic/numl.) X 100. 
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The final results of this comparison are summarized in Table III. 

Table III. Spectroscopic parameters for HCl fitted to a Morse 

curve. Values calculated from Pekeris' solution 

compared with numerically obtained values. 

Parameter Calculated Numerical 
from E qs . ( 4) Solution 

(1) 48.66888 48.66888 e 

(.1) X 0.977882 0.977882 e e 

B 0.17235495 0.17235457 e 

ae 5.0610xl0-3 5.06038x10-3 

ye 4 -5 -2.5 5xl0 6 -5 -2.5 5xl0 

5 -2.66xl0-7 e 
-8 

€ -l.3xl0 e 

D (rot) 8.646xlo-6 6 -6 8. xlO e 

~e -3x.O -8 

--·---

The excellent agreement gives grounds for considerable confidence in 

the accuracy of the numerical procedure. Also, the calculation shov:s 

that Eq. (2), without higher terms in J(J+l), represents the Morse 

eigenvalues to an accuracy that is sufficient for most purposes. The 

neglect of the higher terms introduced an error of one part in 60,000 

for the separation of level J=20 from J=O. The error introduce.d by the 

false integration limit is too small to be evident in eight-figure 

calculations (safely, less than one part in 107 ). 
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The Clinton Potential ComRared with the Morse 

and with Experiment 

Clinton5 recently has suggested a potential function 

UCRL-10643 

(9) 

where the dimensionless quantity cr can be expressed ih terms of the 

same three parameters used to specify the Morse potential. They are 

related by the equation 

(10) 

No analytic solutions for the eigenfunctions or eigenvalues of 

the Clinton potential ha.ve been derived as yet. The chief merit of 

this potential function is that it predicts more accurately than does 

the Morse the finite value of r at which the potential is zero, r • c 

This has been established experimentally only for the case of H; but 

Clinton5 has shown that this can be expected to hold in general. 

Figure 3 shows a plot of the Clinton potential for HCl. Included 

in the figure are a. plot of the corresponding Morse potential and the 

RKR turning points for the first eleven vibrational levels. The latter 

are derived from Jarmain's3 fo~ulation of the RKR method. For levels 

v=6 through 10 the eigenva.lues are obtained from spectroscopic constants13 

based upon experimental values for levels v=O through 5· Since such an 

extrapolation can lead to serious errors the higher turning points must 

be accepted with some reserve. 

The Morse potential lies below the RKR throughout the whole range 

plotted here, but t~e Clinton lies below the RKR for r > r , and above e 
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5 

MU-29797 

Fig. 3. The Clinton potential for HCl. The Morse potential and the classical 
turning points obtained from the Rydberg-Klein-Rees procedure are 
included for comparison. 
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for r < r e. On both sides-of .. + e the Clinton curve deviates from the 

RKR points much more than does the Morse. While it is quite possible 

that a reliable extension of the RKR points to the dissociation limit 

would come closer to the Clinton value for r than to the Morse value, c 

it is by no means apparent that it will do so from the points plotted 

here. 

Turning now to the more direct and quantitative comparisons, 

Fig. 4 shows the eigenvalue separation, or ~ curve, for the Clinton, 

the Morse and experiment. The Morse points lie on a straight line 

since all terms in powers of (v + ~) beyond the second are zero. This 

is not the case for the Clinton potential or for experiment. The 

vibrational term values for the Clinton potential are well-represented 

by the equation 

G(v) = 48.68621 (v + ~) - 1.56656 (v + ~)2 

+ 2. 4649xl0-2 ( v + ~)3- 1. 76xlo-4 ( v + ~)4 . (11) 

It was noted earlier that in certain cases the value of ro x might not e e 

provide an adequate approximation to the eigenvalues of the potential. 

The Clinton potential affords an example of this. The value of roeye' 

which is almost an order of magnitude above experiment, contributes 

significantly to the energy for higher v {e.g., about lo% of the 

contribution of the second term for v=5). 

Since the rotational constant D is very small in comparison to 
v ' 

B for all the values of v investigated here, the comparispn between .v 

calculated and experimental rotational eigenvalues can be made most 
-

simply through the corresponding B values. These are shown in Fig. 5· ' v 
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t::. OBSERVED 
D MORSE 
o CLINTON 

MU-29798 

Fig. 4. Vibrational eigenvalue separations for HCl computed from the Morse 
and Clinton potentials compared with experiment. 
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Fig. 5. Rotational constants Bv predicted by the Morse and Clinton poten­
tials compared with experiment. The two calculated sets extrapolate 
to the experimental value of Be ( = 1/r~) at v = 1/2 since the experimen­
tal value of re was used in defining both. 
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As for the rotationless states, the Morse is much superior to the 

Clinton in the prediction of eigenvalues. 

In order to be sure that this test of the Clinton potential wa,s 

not being made on an atypical molecule, the same comparisons were made 

for the LiH, CO, and HF molecules. In every case the results were 

entirely analogous to those obtained with HCl. 

Conclusion 

The numerical integration of Schroedinger's radial equation by 
. 7 

Cooley's procedure provides a method of testing potential functions 

which is direct, rapid and applicable to any function. Besides 

furnishing accurate eigenvalues it gives the eigenfunctions, from which 

all other properties implicit in the potential model may be calculated, 

e.g., the expectation values of powers of r. The usefulness of the 

numerical procedure is not restricted to the testing ofpotentia:J.,,functions. 

It also provides a convenient method of generating eigenfunctions for 

use in calculating properties of a molecule which depend only in part 

upon the potential curve. The vibration-rotation interaction is. such 

a property, and a subsequent publication will deal \vi th its evaluation 

by numerical methods. 
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