"UCRL-10644

University of"California' '

Ernest O Lawrence
Radlatnon Laboratory

"VIBRATION-ROTATION INTER'ACT‘ION |

i FACTORS FOR DIATOMIC "MOLECULES =
o CALCULATED BY NUMERICAL METHODS:’

- TWO-WEEK LOAN COPY .

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



o m— ——— -~

Rept. submitted for publication

|
| oo
t in the Journal:.
| f
o

o ' UCRL-10644 .
Chemical Physics : ‘ :. R o
U

. UNIVERSITY. OF CALIFORNIA -
LaWrence Radiation Laboratory |
; Berkeley, California =
» Cofg_traci: No. W-7405-eng-48

. ; VIBRATION ROTATION INTERACTION FACTORS FOR DIATOMIC
PR MOLECULES CALCULATED BY NUMERICAL METHODS

J. K Cashmn _'1 .' _é LT T




J. K. Cashion

Department of Chemistry and Lawrence Radiation Latzoratory,
--v?Universityhof California; Berkeley, California'

July 196 '

w,Abstract'

:The influence of ribrationFrotation'interactionfon.
_transition probabilities for diatomic molecules has been
‘studied through numerical solution of the Schrodinger radial_
:equation."The numerical method described is readily applio

ble to any choice cf potential and dipole moment functions
for the molecule, its accuracy considerably exceeds the
iirequirements of practical applications, -and it is very
Lieconomical in terms .of computer—time requirements. Its use’
ifis demOnstratedhere—inftw0'applications. First, it has been
“used to check the accuracy of ‘the approximate formulae for
:the F- factors of a rotating Morse oscillator with a 1inear
: dipole moment function, derived by Herman, Rothery, and Rubin'
i;It was found that.their formulaelwerefvery.accurate for AV =

"transitions, but that the two formulae given by them for the
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classical turning pointa'of;th vib
polation a complete potential ol
these points and can be usedf"oAs'

the vibrational-rotational eigenfu

fmaleculeSa'gwaevera theque

eigenstates.' Such. approximate pote 18




fi*R; N..Zare, to be published, The author is grateful to M.
. Zare for'making the results of’his studies available to him
}prior'to their publication.“t e

potentials predict intensity‘distributiené“inegood,agreemeqt,Vf
_mith;experiment,forxall bandsfof'the 1odine.fluorescence'speo-’

trum which have'beénﬁmeasuredvtb date. On the other hand,_:e

J‘Nbrse eigenfunctions applied to the same problem glve quali—

ﬂ,tative agreement only over a limited.range;of transitions. The
3'prineipa1 reason for this difference is'the’following . In

oo vibration«rotation spectray where one 18 dealing with a singlei
potential curve, ‘an approximate potential generally will deviatef
“‘more and more . from reality with increasing vibrational quantum:

F‘number. This will be reflected Ain the eigenfunctions by an

v.increasing shift of the approximate'ones'relative to the true;,

oy

;}eigenfunotioﬂs. For‘states of high \£ the approximate eigen_?k,

" function may be cOmpletely cut of phase with the true . one,' ‘
QNeVertheless, two such approximateueigenfunctions-for“nearbyfs"

between ﬁhe cérresponding true eigenfunctionau. Since the produat




much the aama value t‘or the :Imegral ag mum the true eigen-
;functicma whan ¢omb1néd with same funotion M(r). On the otner
vhand. the aptenaity distribution in electronic spectra dependa
_on the aver;lap of elgenfunctions belonging to two aurerent‘
potential cuwea. Errors m approximating theaa two. potentiala
y oanael to aome extem but only rortuitously. They may Juat‘
aa eaas.iy add and produce a pattem of ovax-lap integrala uhioh
~ As entively spurioua. Zare's work gives a very striking -
- Allustration of the mensitivity of elestronic ,ﬁ.ntensitioq to
‘changea in the pctent.tal mxwtions. In this writer's view tt

IR ks

jA;n?eman‘!: naigher theax-y nor experzmsnt can provida one which is
) adequaté over the who:.e rangé ar mtemalm aeparacion. The
""app:‘oach mat cmonly uaea &n the; pant haa been to expand M(r) |







“7- L GCRL-10644

The main purpose‘of this paper is twofold. First, we wish
:”to outline a numerical method which is applicable to any

” combination of potential and dipole moment function. It will
éjattain Aits maximum utility only when good RKR potentials are'
fﬁavailable and especially when better dipole moment functions

" are found. At present it affords a more accurate and an easier

%amethod of - evaluating the Vibrational—rctational transition

fvprobabilities for models in current use than does ‘the approach

‘. of algebraic solution in closed form. Secondlys; we wish to
: /
1yindicate the extent to whioh reasonable variations in the dipole

fmoment function will affect the transition probabilities for a‘i

;pgiven,potential'model. For this 1atter‘purpose it 1is convenient

to choose Morse elgenfunctions combined with .two different

% dipole moment functions. One will be the linear-model already

; k‘mentionede The second will be a model proposed recently by the
13;author8 in\connection with the calculation of pure‘vibrational

A brief,description Of this'dip01ew;

"transition probabilities.

f?moment function will be followed by an outline of the numerical

_imethod and its application.tc the problems Just enumerated._

CA>an—linear,DipolevMomenthunction.vt
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In Eq.. (5) the symbol. 0” (1) a j (vv,wv/'ﬁo)vidr, where the ‘Jf'
. are Morae eigenfuncticns for the rotauonless atates. Expncit
formulae for the c'a occuring in Eq. (5) ave given in the
" ‘rererenoe oited, together with the detasled basis for the above ‘
-i}: postula.te. 'Since Bq. (5) gives a \mique aet; ‘of relative L
;f "vibrational transition probabil:.ties 1t implicitly definea the
dipole moment function o within a nmltiplioative constant
""’(the value of Rl’ C)) and an additive one (R , the pemanent
“dipole moment): If Eq. (5) is to ‘be applied t0 the' caloulation ;
-of vibmtiomrotation trans:&tion probabuities it iﬂ necessary

percent:. A plot: of the dipole moment funotion versua r can be

', where a ia thev @rdinal munber 01" the ‘highest ‘bound vibra.tional




_ﬁ‘fété.te_g “ﬁe 18 the éiaaooiatibn xéxiergy and a(E) 1s a function
which gives the probability of a radistive transition from the
f'ground vibmtional state to the éontinuum. Eq. (8) 1s 'deri*;éd:
_'_‘isimply by expanding the t‘unotion M(r)‘# in terms of the vibz:a-»f
“$1onal aigenﬁmotions, a technique fira suggested by 'rriachka
f_;and Salwen, 59; As explained in ret‘erence 8,-for most cases ox:
v’ph;mical 1nterest one can neglect oontributions to M(r) made 8
'by the contirmmn ntates and by the higher hound statem

. Pigure 1 shows a. plot of M(r) ‘versus v for the nthium
*'hyarme molecules, Contributions to Eq. (8) from all bound
‘states up to and inoluding the fifteenth sre included. The

f’ value used for R°'° was 5‘882 debyes. as meaaured by wharton,
'::.Gold and Klemperer.}fq 'l‘heae game authora reported a value of
.-;‘_Rl’l - 5.990 debyea.. From these two values and the x-atio L
RY%/R%0 61 can calculate the absolute value of nl‘° tm-ough |

‘;'f a' ralation discuaaed previously hy the author;a

L R}’l - R°' + R""f ('&2/'& )& ar + nz‘ g (wl/wo)vgdr- |
Thia leads ta a value of Rl‘ 0 « ~0, 254 debyea. m vibrationai
';;eigenf‘unotions usad in Eqs‘ (5) (7) were thoae ror a Morae
potential S NN -

U(r)-D [i- ﬁ(r )]2 D

'_'meae ara based on the dinaociation enem reported by _'Velasoo*
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Figure 1 also-shows the linear-dipole moment. function

derived fromethe game experimental data. Using the same Mbrse

\
h

eigenfunctions the solid curve 1eads ‘to a ratio Rl’Q/RS’ hich.
is 30% higher than that given.by the broken 1ine.; For-both of

.rangefrx + 0.5 K that the only significant contributiOns to hei

integrals come from within this range, where the two M(r)
funotions differ by a maximum of 1% This provides a rather

waever, it is

‘evaluation of Rv  as defined by Eq,'(2)

instruotive to express each_matrix as a product of two faotors
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;-The F-factor is a funotion of the four quantum‘numbers v', v,-

I and J but for a given v', v band it shows the extent to which

gtthe interaction of vibration and rotations alters the intensity

?[of a given.line from that which the pure vibrational 1line would

fhave if it were allowed.- A number of formulae for F- factors

have been.derived using‘various potential models, usually coupled'

with a linear: dipole‘moment funotion. Besides the papers of

rHerman at al 4,17 referred to'previously one should note the work
13

~of Herman and wallis. This 1ast referenoe oontains a good

summary of the earlier literature on this subJect.

For purposes of comparison with earlier work, the results

of this investigation will be reported in terms of F—faotOrs

rather than in terms of the matrix elements RVJ The additional
Jﬁcomputatidnal labor which this entails 18 relatively*minor’sincev

Lthe F—faotors are’ given by

ERLi e \J,M(rwv Jdr/f -&v, om(r),,v r]z (11)_
\- ‘

’Replaoing M(r) in Eq. (11) by the expansion for it given in :
(3) leads to the~working equation\for the calculations

..........



{it is necessary to include in the summation all terms with

ei "Av. Each of. them will make a. first order contribution to

ithe sum.unless.its expansionvcoefficient Mi.is-extremely'smalla
.This generalization was made for’the case of pure vibrational

gtransitions but is valid also for . rotation-vibration lines with'

;moderate J values. As a specific example the integral
l Wl,o P V¥g,q dr for I4dH 18 thirteen.times larger'than the
'cOrresponding quadratic integral and twenty-one times larger

ithan the<cubic. As J increases these ratiOS decrease steadily}
" For the P(21) line the integral f ?1 20 p 70 21 dr exceeds its

:quadratic and cubic analogues by factors of four and eleven,

,respectively.; Hence for low values of J;and F- factor for



. forr Eq. (14) will ShOW’What errors are introduced by their
;algebraic approximations. Carrying Eq. (12) to the quadraticw

?and cubic terms will indicate the errors to be expected fromh

’the neglect of higherhorder terms in the dipole moment expansion

: The NUmerical Method'

The heart of the numerical method used in this work is

15

an efficient procedure developed bY Cooley for the solutionﬁﬁ~

“of the radial Schrodinger equation. His paper- should be con—

fsulted for a full description of” the method, tOgether with tests'";

“of itS'accuracy'whenmup to zoomintervals‘are used'in-the numerical?__f?

{1ntegration. Information on its use with up to 2000 intervals
fmay be found in a- recent paper by this writer.ls A Fortran ‘

* program -embodying his procedure has been made available by

It was written
A

detalled description of the necessary changes may be found in a

. Cooley to participants in the IBM SHARE prOgram.

"Hfor usé on an IBM 704 but can be adapted easily to the 7090.

f;recent report by Zare and the author.17 This report also

t;;contains a few modifications which the authors found useful in

rltheir applications of this program. The following description't

10fwcooley?svprocedure isvlimitedfto'thé'Workingfequationsﬂthrouéh‘

‘whioh the results presented in this paper were:derived.




;instance U(r) is the Mbrse potential, given by.Eq. (8) for

grotationless states. For non-zero. values of the rotationalf

~quantum number J, a term J(J+1L/r must be. added. . Eq. (15)
femploys dimensionless units of energy and 1ength. When len§th

s measured in Bohr radii, ao = 0”529172 K, the unit of ener

;number (physical scale) and “A 1s thecreduced mass in Aston

Eunitsw .The numerical. value-of’this factor is 60.219q/uA.;,~f

fa trial eigenvalue and

S

= [1 ~ (h?/lz)(U1~E)]¢1;

The inward integration is begun by'assigning a small

\
,jarbitrary value to ¥ L and letting

vn;=-vn+1-exptrn+l.<-va >1/2 oY <18>,:

;5The inward integration is continued until ﬁi ceases to increasea

}fwith decreasing 1 at some‘value of b o rm.' Then the outward

'iintegration 1s begun starting with the boundary condition wo
- and the assignment of a smali arbitrary value to Vl (the value

Eof ro need not be zero) It is continued until the value of




T - T

'E}Next & correotion.to E is determined from the slopes of the Z(
4two curves at the orossingupoint.r 5 using the relation BEe

bf<E> SN -t Gy o <19>

;fimhe first trial eigenvalue E 1s replaced.by E' = E + D(E) and .
the process is repeated until the oorrectiOn term is effeotively
%5zero. When this has been achieved the final values of wi are J’

f{normalizedrto the usual oondition

-f ¥ drn=u_zl.¢i,= Lo - (29)‘1

 When both upper and 1ower'state’eigenfunctions have been’;y”"”'

”:;vobtained by thls procedure, one hag only to generate Values of
.&fgm(r) at the same r-values in order to calculate RVJ ' erom e
| . (2). The evaluation of the integral can be carried out <3<>n--7:°‘-t:9.;.-"j
?Lﬁfveniently by repeated applica‘cions of SimP9°n s rule’ sometines 3
fiknown.as the\parabolio rule,”¢_ | R

fa £(x)dx =3 [f + Af, + 2fa+ahf+ °~~-{.?fb on it 4fb nt fb]
| ' (21)

" The foregoing description oovers the computational steps e

f:which would be necessary for the caloulation of rotational-

sfvibrational'matriX‘elements for’ any specified Ufr) and M(r)

fgfunetions. As noted above, the present application oombines & "
f’Mbrse potential with two different dipole moment functions,;;»'
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- To employ the non-linear-dipole moment desoribed above

_one couldgcarry out point by—point evaluation of M(r) from Eq.
'(6) ag was done for Fig. 1. An-alternative procedure 18 @ _
: available and is useful in the present context. The non—lineari
V‘ZM(r) function can also be expressed in the form of a Taylorls
~expansion. It has been demonstrated that, for pure vibational
transitions the retention of the terms through Mi in suoh an>'

: the complete expansion. .As'noted above, this result can be ’
extended to vibration-rotation transitions for moderate‘values -
}of J' Hence, if one has ‘the Taylor. coefficients My for any'& .
'j'dipole model a very good approximation‘to the F-faotors for

wt
1

&vthe 2- O band can be obtained from ‘the relation';;;

[f Vz J'WO J-dr'*'ﬁ—fVZ Jl PV’O J.dI' +ﬁ'o"f'¢2 J’ P 'WO Jdr]

Mz — (22)
[\Mof‘l’zop“"oo En f”'zo‘f"’o,odr] -
:;'and similarly, for the 3-0 band, o . e |
'513 Cow T w Ll
rx[f‘”s J"V"o,;'.rdr*ﬁ‘“’s,,a'Wo,'Jd*'*“nTxg_f‘*s,;r"’ Yo,59 45 V3,51 'V’O,J#]..-

[MI T, 2
Mo f“’s,op“’o odI’*"M"Ws op 7’0,0 +MO fV’s op Vc,odr]

The final cOmputational~equation applied in this work is‘

fgthat for deriving‘the Taylor'coefficients Mi which correspond to

3”the dipole’moment'functionqimplicit”inquaz'




1 for J¢=‘0v‘;17._:v
a(a+l)--'(a+3—1) fbr J > O

N

f}zé._(a)d g

k = 4De/a)

.and the remaining symbols have been defined previously. In the?f
present calculations the first summation in Eq. (24) was carried
through sixteen termsi ‘This gives six-figure aocuracy for 7

ifor Mé and Mz o ff_ IR "

It should be noted that the procedure Just desoribed for
-calculation,of F- factors proper to the. non—linear dipole model
;may lead to errors of a few percent for higher J values."i‘ :
rHowever, this is of secondary importance. .Eq (24) yields Mi”f5
;values which are physically reasonable., Therefore, when these

fare used in.Eqs. (14), (22), and (23) we will obtain a good

”fﬂin the use of the linear dipole model. | |
; To complete this section a few wordsvare necessary on the
macCuracy"and time-reQuirements”of thermethods used. Regarding
“Fthe solution of the radial equation using Cooley's program,
the references cited earlier show that whenr 1000 points aré




this : machine carried Just over 8 significant decimal digits,

tthe»eigenfunctions shOuld have 7 figure aoouracy.' All the ;ﬁ-
_integrals involving these functions are oscillatory in character
‘and hence there is the possibility of losing significant figyres‘
:fthrough.cancellation of Oppositely»signed contributions. One"
iprocedure for ascertaining whether or not this is a seriousf
[source of uncertainty 1s to evaluate a given integral in twé
9»parts.j At the same time this checks -the adequacy of". the ' |
>Simpson‘s rule integration formula, Eq. (21) fForﬁthe<linearj’

5integra1s we have the relation

[ ¥'p yar = fv rwar - r, fv vdr" o (25)

:ihere it was _found that the two sides of Eq. (25) differed by
lless than one'part in 10 . The simplest and most significant'
irtest_of the'procedure,asva.whole.is.obtained_by‘ascertaining,_“
iithevsensitimity of thehfinal ansWers,tovvariationspinnthe,-v

'];computational parameters. In the present case the number of

~ffintervals used for the integration was varied between 400 and 1000”'3

f;The F-factors most ‘sensitive to these changes (those for'J'=20)
};showed a maximum variation.of less than one part in 10 ¥y and v

flgenerally much 1ess than.thiscu In addition, the range of




ivariations in the F factors were again 1ess than a part in
;ten thousand. Hence we conclude that a11 results given below

iare accurate to within the limits imposed by their graphica

“The time’required_£0'computerFefactors,for a band of

wforty-one rotational lines, using IOOO intervals in the
éintegration, was slightly over one minute. “This included'the
‘computation of a set of Fis for ‘each of Eqs. (14), (22), and
:(23) as well as certain.other calculations for check purposes
;A program omitting all but essential calculations and output‘
'and using only 400 intervals for the intggration would give a
;set of 41 F's in about one-half‘minute, accurate to at least

The Accuracy of the HRH Formulae

_ The exact F factors for‘the rotating Morse oscillator-i
llinear dipole model are given by’Eq. (14) ‘ Herman, Rotheryy
i'and Rubin4 have given an approximate general expression for Ar
,-this [their Eq.:(50)] and have reduced it to a form morev}.‘ﬂ
ffsuitable for computation for the four vibrational bands 1- 0,
,>2 -0, 3- 0, and- 2 1 [their'Eqs._(lA) through (4A),‘respectively]
'It should be noted that typographical errorsvin their original
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lUsing.the-same'Nbrse parametersvfor”HFsas‘wereuemployed/;
by HRH, the linear'dipole F- factors for the four'bands mentioned
“above were calculated numerically<and compared with the HRH
;approximations given 4in their figure 2 For'both the 1-0 and
32-1 bands the two results were. identical to within about 1$L
the accuracy to which the graphs could be read. This holds for
;all 1ines up to and including m = i12, the highest m values for
which the HRH results were given. - For'the 2-0 and 3- 0 bands ;
significant differences were found, as shown in figure‘z.’ For j
the 3 0 band, only the R-branch lines are: shown since differences

{for the P- branch lines -were 1ess ‘than 1%

The same . comparisons were made for HCl (HRH, Filg. 1) The
“fabsolute values of the. deviations ‘wWere less but their pattern
gwas,entirely‘similarito~theqHF results.“ Reasons,for‘relyinS'
7on ‘the high accuracy of the numerical results have been given
pabove1 In addition 1t might be noted that the eigenfunctions
used to calculate F's for the 2 0. band are employed also for f
“the 1-0 and 2-1 band. If either were in error one. would expect
>'that the results for: either 1~ 0 or 2-1 wouldlalso be erroneous'
‘This degree of internal consistency is not necessary in the‘;,

_HRHrresults since the.F-faotors for each band are calculated

jfrom a different formula. Each is'aireduoed form of their

;Eq (so), appropriate to one band'only{since‘the»indices of the
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fresultant formula increases very rapidly with each increase in_;_
fv_or Av.) Hence we conclude that the HRH formulae for the 1 0.‘
“and 2- 1 transitions are vitually exact at least up to |m| = 123
while their 2-0 and 3- 0 formulae can introduce errors of several
}percent in this range. As will be shown below, these errors
are léss- than the uncertainties which arise from the. neglect
;?of higher terms in the dipole moment expansion. Nevertheless_
: they are undesirable and can\be avoided easily by using the :

;fnumerical procedure.

”F factors for Quadratic and cubic Dipole Moment Functions

The dipole moment function.for'LiH plotted in Fig. 1 can
"be‘represented by a‘Taylor~series in Ps the'first four expansionﬁ
Tbcoeffioients of which have the values Mb = 5, 830 debyes; M1 ‘

‘»jf’ 2.148 debyes/k, M, = 0.162. debyes/A s and Ms = -o 0475 debyes/Ks
"Using these to evaluate the Mi/Mb ratios in Eqs. (14), (22) ;
:fand (23) ong can calculate F—factors for a 1inear, a quadratic.
f,and & cubilce approximation to Eq. (12) This ‘has been done fo
ieach of the l 05 2;0, and 3-0 bands bf LiH ‘The results are

Ashown in Fig. 3.

) As part 8 of the figure indicates it is only for the few
highest |m| values that differences in the three approximations
_‘for the 1- O band can be shown,on the scale'used. In part b'i'
is seen that the 1inear and quadratic}approximations for'the
2-0. band are significantly different,'uhile the oubic is ’
ﬁgraphically indistinguishabl‘;fromwphe quadratio. F1




c-2g= T o UCRL-106

- part ¢ shows ‘that the F—factors for the 3-0 band are affected
?significantly both by the retention of quadratic and of cubic

ﬁterms. All these results are in accord with the generalization»-

fdiscussed earlier, that a Av = i transition probability willx

ffydepend significantly on terms through M in the Taylor‘expansionﬂ
| 'for M(r) _The F- factor will be affected much less by the : »
‘neglect of higher’ terms that will the ‘element RVJ ' since there
8.8 cons1derablef°an°ellati°n'°fferror in the terms neglected;,f
lin.both,nunerator'and denominator5of Eq. (12)." For the rangeff”ﬁ
;of J and 1 values studied here the integrals f wv Jtl p Wv J.a#i

. - e L

wl-.,j.._}_".}_are.aIWays of the s ame sign as the integral J Vv! 0 p Wv o dr.sf
xlmﬁquurther, thelir relative magnitudes indicate ‘that a reversal of

© sign would not . occur until considerably higher J values werel'”

;?;hemployed. Nevertheless, the differences between the linear and
r;‘higher approximations for'bands with Av > 1 can.be considerable
E?ﬂThis is illustrated more clearly by Fig. 4awhere the ratio of
" the cubic F %Q the linear'for the 3- 0 band of IiH 1is plotted

“;against‘m.ﬁ

Since initial state population is . directly proportional t?‘
', Fig 4 may be taken as a rough index of the uncertainty
:introduced in-relative'rotational'popultation calculations-by
the. use of a linear dipole model for a. AV'= 3 transition.f{In]
favorable cases the- Iine intensities may be measured %o within
;10% or-so. From thevfigure it is seen that the cubic to linear

4fratio exceeds this everywhere in the ranse '6 > m.> 4 In faCt’

. f;l.for the highest R-branch 1ines shown hﬁ'two”fﬁ
'“”@h_differ-by a factOr_of,moré than




. It might be noted that LiH exhibits a greater sensitivity}
fin this respect. than do the other molecules Investigated in
’:_;this study, namely HF, HC1 and co. This is related to the
tgreater strength of its vibration-rotation;interaction, a gpod
acriterion for which is given by the magnitude of the paraméter
‘g = Mb/Mi o+ From the_data given eerlier,,egfor,LiH has a
:value-of 1.71. For:the other”molecules theva'values are; :
'€respectively, 1. 18, 0 99 and 0 036 (see ref. 4 for original |
Qreferences). On the other hand, ‘the dipole moment model being
‘used here departs‘relatively little>from,linearity. The M(r)
“.curve for LiH calculated by James, Norris, and Klempererls'
ﬁishows much greater curvature»over'the range plotted in Fig. l.ff
It is quite possible that the true M, and Mz coefficlents would‘ﬂ
have greater magnitudes than those used here, thereby accentu—w
ating the differences ‘between the 1linear; quadratic and cubic
‘fapprOximations. Hence it is not unreasonable to regard Fig. '
4 as giving\a fair'indication of‘the sensitivity of F-factorsi;
;for a AW = 3 band to variations in the . dipole moment function.
“That this sensitivity is so great for higher J values impliesj
:that a very accurate knowledge of the dipole moment function
;would be required in order to derive reliable populations from

;the line intensities of such a band' fConversely, it may be a,

functionfrom the same data
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ipronclusions»

The numerical method proposed in this paper for the calcu-s
-lation of vibration—rotation ‘transition probabilities offers i

~fmany advantages over the approach of seeking algebraic formulae

1:for these quantities. First, the method 1is extremely flexible

;'and can make use of every improvement in potential and dipole_i
;imoment function models with no essential increase in comput;~fi
}rtational labor. Secondlys it:gives highly accurate-results 'fﬁ
1;f0r'whatever'models are chosen._'lt has been shown that" | ‘
jiapproximate solutions, such as the HRH formulae for the Mbrse-‘
;ﬂ;linear dipole model, can introduce appreciable errors over and.
- above those inherent in the choice of approximate models. ;“
foilThirdly, the method can be applied_easily and is very economicel
* 1in terms of computer;time,requirements.p,ApproXimate formulaeje
txlcan'involve;very tedious-algebraicvreduotions, especially'in'ih
55vthe,case of higher quantum numbers, and the possibility Of‘frfw
-?jerrors arising in this procedure cannot be discounted lightly.yi
tifon the other hand, the numericsl.method 18 no moreJdiffioult?¥§_
xv*for'high~quantum numbers than for low, and the same simple'fffiﬁ
*3i:procedures are avallable for checking the accuracy of the results;
1;€The foregoing remarks are not intended to deny the value of

;Léapproximate algebraic solutions for problems vhich can be f:'ﬂi
ihandled numerically.' NUmerical solutions are generally devoid
:of heuristic value for approaching more complex problems‘r}v
nHowever, for purposes of practical computation, such as deriving

rotational pOpulationspfrom line’intensity data; . thé use of
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;fs-ens.itive’ to variations ,{in -the}f ..d1p01-e-' inoment functibn vt;o«
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this

- report, or that the use of any information, appa-

ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, '"person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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