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1. Introduction . 

Alpha radioactivity has in recent years yielded much invaluable energy 

level information to the nuclear spectroscopist. The sharp, monoenergetic 

character of alpha radiation (like gamma radiation) and its charged-particle 

nature (like beta radiation) make possible precision spectroscopy by large 

magnetic spectrographs down to line widths of a few keV. Lower resolution 

spectroscopy, but with high geometry, is performed often with ionization 

chambers and solid-state semiconductor detectors. Scintillation-photomulti-

plier detectors also find use for alpha detection, though energy discrimination 

is not so good as with other methods. 

Alpha transitions, in sharp contrast to beta and gamma transitions, 

are only mildly inhibited. by angular momentum changes, and are thus more 

likely to populate in detectable intensity all the low-lying states of the 

daughter nucleus. As a spectroscopic tool, the alpha radiation suffers from 

two main restrictions. First, it is limited to certain regions of nuclei, 

the largest encompassing the trans-lead nuclei, another consisting of rare-

earth nuclei with 84 and. a few rriore neutrons. There are a few scattered 

cases found among the neutron-deficient nuclei between these two regions. 

The second main restriction is that alpha transition rates exhibit an extreme-

ly sensitive exponential energy dependence on decay energy, so that in 

practice only states up to a few hundred kilovolts excitation are excited in 

alpha decay. We may point out also a few cases where some alpha radiation 
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arises from excited nuclear states following beta decay (i.e. Li
8, B

8, B
12

, 

N 20 Al24 Cl32 ·B. 212 . ·d B. 214) .. a , , , l , an _l . 

In the trans-lead region, where alpha decay is so prevalent, the 

Q-values of alpha and beta decay have been used to calculate relative atomic 

masses within the four connected families whose mass numbers are of form 4n, 

4n+l, 4n+2, and 4n+J. When supplemented by three nuclear reaction Q values, 

the families are linked together to give atomic masses over the whole heavy 

1,2). region 

In addition to the above-mentioned interests deriving from energy 

measurements, the alpha decay rates and "fine-structure" intensity patterns 

are interesting in their own right. The predominant factor governing alpha 

decay rates, the Coulombic barrier penetration, has long been recognized3 '
4

), 

and there have been many attempts to derive nuclear size or shape information 

therefrom5). It is only recently that the more subtle connections with the 

powerful concepts of the nuclear shell models are becoming clear. In this 

introduction we will mention only the one shell-model rate concept for odd-

mass nuclei that has been recognized the longest and that has played such an 

important role in establishing the Nilsson orbital assignments_ to rotational 

bands of the spheroidal odd-A heavy nuclei. This concept is that the rota-,_ 

tional band of the daughter nucleus in which the orbital of the odd nucleon 

is the same as in the parent will be intrinsically "favored" by the alpha 

decay and will exhibit reduced transition rates (the word "reduced" signifying 

tbat the Goulombic barrier penetrability factor has been divided out) nearly 

as great as the neighboring even-even.nuclei. Decay to all other bands will 

show lower reduced rates. The even-even nuclei of the heavy region exhibit 

very uniform reduced transition rates to their ground states, except for a 

drop of an order of magnitude in going to nuclei with 126, or less, neutrons. 
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The problem of relative intensities to states in the same rotational band is 

strongly connected to the problem of alpha wave penetration through the 

anisotropic barrier surrounding the spheroidal nucleus. We will return in 

a later section to the problems of rate theory, trying to emphasize and 

develop simpler approximate methods and ideas, using as a guide and check the 

numerical calculations in the literature. 

We must apologize in advance that to conserve space our literature 

referencing will be minimal and not properly representative of the important 

contributions that have developed alpha decay experiment and theory to its 

present state. We shall attempt primarily to include concepts and theoretical 

formulas useful to present-day research in alpha decay. 

2. Alpha Decay Conservation Laws 

The alpha decay process for bare nuclei has the equation 

Conservation of mass-energy requires that at infinitely large 

separation distance of the products the effective kinetic energy Qf of the 

final system be given by the difference of rest masses of the nuclei times 

the square of the velocity of light 

(2.1) 

The Q values for nuclear alpha decay rarely exceed 0.25% of the reduced 

mass, 
~e + MA 

M ( ) Hence, non-relativistic treatments may be confidently 
a MHe + MA . 

employed. 

Conservation of linear momentum then requires that the total kinetic 

energy be divided between the two products in inverse proportion to their 

masses. 
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The quantity·Qf' is desired for careful theoretical treatment of 

alpha decay rates, but the Q·value actually directly measurable in the 

laboratory is somewhat different, since one actually deals.with atoms 

possessing a cloud of orbital electrons. The simple two-body break-up ex-

pressed by the equations above is an idealization to be inferred from:.a 

many-body problem with the electrons in the system. Because the electrons 

are so much lighter than the nuclear bodies, their presence does not usually 

make for difficulties in inferring properties of the decay process of the 

bare nuclei. A notable exception seems to be angular correlation experiments 

with alpha radiatibnj even when the daughter nucleus is in a vacuum the 

attenuation of the correlation is likely to be severe, indicating that the 

electrons of the daughter are left in configurations with unpaired electrons 

that produce magnetic fields or electric field gradients at the nucleus. Let 

us consider hypothetically that vre have an assembly of bare nuclei of a given 

alpha emitter. As we feed orbital electrons into the system we would note 

almost no change in decay rate (possibly a very slight increase by virtue of 

the slight fraction of an electron charge lying within the barrier region, 

which extends to 3-5 times the nuclear radius). We would note a decrease in 

the· alpha particle energy of 30·-40 keV for heavy elements. This energy may 

be thought of in either of two nearly equivalent ways, as the work the alpha 

particle must do against the attractive Coulomb force of the electrons, or as 

the loss in total electron bind.ing energy in going from a nucleus of charge 

Z+2 to one of charge Z. The exact amount of energy will be slightly lower 

in the sudden approximation, where the electron wave functions are assumed 

not to change, than in the adiabatic approximation, where the electron wave 

functions smoothly change to minimize the total energy as the alpha particle 

6) . moves out · . Forthe·three innermost shells the adiabatic approximation is 

'--'· 
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more appropriate and for the outermost two shells with binding energies well 

under l keV the sudden approximation is more appropriate, and a fair 

probability of ionization of valence electrons is expected. 

The appropriate quantity for atomic mass calculations we will designate 

as Q with no subscript, and it is defined by an equation identical to eq. (2.1) 

except that the masses of the neutral atoms replace the nuclear masses. What 

would we observe with infinitely thin sources in a very high resolution magnetic 

spectrograph? We should observe no alpha decay events at all with energy 

release within 80 ev of Q, since this is the binding energy of electrons in 

4 
He and the alpha must have been doubly ionized to have been measured in the 

magnetic spectrograph. On the average one expects to lose an additional 70 ev 

(estimate for 4.5 MeV alpha from thorium) of the adiabatic energy to excitation 

and .ionization. One should add about 150 ev to the apparent laboratory Q 

value to get the real Q value. The Qf value may be inferred from the measured 

Q value by adding the "screening correction" 

where Z. is the atomic number of the parent. 
l 

(2.2) 

In applying the laws of conservation of angular momentum and parity it 

is appropriate again to consider the two-body break-up of the bare nuclei and 

neglect the orbital electrons. As we have mentioned before, the electrons 

make their presence felt in attenuating angular correlations, essentially 

breaking down the conservation of the projection of nuclear angular momentum 

along a space-fixed axis. 

The parity and the total angular momentum and its projection along an 

axis should be the same for the final system as for the initial parent nucleus. 

Since tha alpha particle is spinless and has even parity, the selection rules 
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assume an especially simple form. Namely, the orbital angular momentum of 

alpha decay is restricted to values between the sum and difference of initial 

and final spins. 

If the parity of parent and daughter are the same, only even values 

of L.are permittedj if opposite, then only odd values of L are permitted~ 

The conservation of the projection of angular momentum may be expressed in 

terms of the magnetic quantum numbers. This conservation is relevant to 

angular correlation experiments·: 

If parent (or daughter) has spin zero, then certain spin and parity 

combinations of the daughter (or parent) states will be absolutely forbidden 

to the extent that parity is conserved in strong interactions. The orbital 

electrons could also mix in states causing violation of this selection rule, 

but their amplitudes would be of the order of the ratio of magnetic hyperfine 

energies to the separation energy of the admixed nuclear states. 

The approximate selection rules appropriate to alpha decay will be 

discussed in a later section after development of decay-rate theory. 

3. Decay Energies and Spectra of Alpha Emission 

The discrete energetic nature of the two-body break-up that is alpha 

decay has facilitated.accurate measurement of relative masses of nuclides 

throughout the whole trans-lead region. From knowledge of many alpha and 

some beta decay energies the relative masses within the four mass families 

(4n, 4n+l, 4n+2, 4n+3) are calculable. It follows also that many unmeasured 

beta decay energies can be calculated from the energy balance of the closed 

cycles of alpha and beta decay energies. Figures 3 .1 and 3. 2 give such 

closed cycles. The alpha decay energies exhibit such smooth dependence on 
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mass number that they have been extrapolated to many uriknown nuclei in the figs. 3.1 

ah~j.2. The general behavior of alpha-decay energies may be seen from a plot 

against mass number (fig, 3.3). The energies decrease for a series of isotopes 

with increasing mass number except for a large discontinuity at the major shell 

of 126 neutrons and a small discontinuity at a subshell of 152 neutrons. 

The zig-zag nature of the line for uranium isotopes, where the odd-mass 

isotopes have energies less than the average of even-even neighbors, shows that 

the neutron pairing energy is decreasing from thorium to uranium. The zig-zag 

is of an opposite sense for especially elements 85 and 86, showing a neutron-

pairing energy increase with increasing atomic number in this region. 

Although nuclear mass measurements indicate that most naturally occurring 

nuclei of mass above ""150 are energetically unstable toward alpha emission, the 

process has been detected for only a few such nuclei below lead. The decay 

energies available to alpha emission drop so sharply below doubly magic Pb208 

that the barrier penetrability factor pushes lifetimes into the region of > 1016 

years and beyond practical detectability. The exceptions that have been 

detected are listed in table 3.1. 

Table 3.1 

Naturally Occurring Alpha Emitters Below Lead7) 

Isotope Alpha Particle Energy (MeV) Half-Life Natural 
Isotopic Abundance 

Pt190 3.11±0.03 6.9Xl0
11 

y 0.012% 

Hfl74 2.50±0.03 2.0Xl015 y 0.18% 

Gdl52 2 .14±0.03 l.lXlo
14 

y 0.20% 

Sml47 2.23±0.02 l.l5Xl0ll y 14.97% 

Ndl44 1.83±0.03 2.4Xl015 y 23.85% 
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The systematic behavior of alpha decay energies for a series of 

isotopes is to increase as one moves from the beta-stable to the neutron-

deficient region. The systematic behavior is interrupted by a discontinuity 

at closed shell configurations. It might be expected that some of the 

artificial neutron-deficient species near the isotopes of table 3.1 might 

exhibit detectable alpha decay, and this is indeed observed. Figure 3.4 

plots the alpha decay energies of alpha emitters below lead vs. nuclear charge. 

Higher resolution alpha-spectroscopic measurements have revealed 

complex structure in most of the trans-lead alpha emitters. As yet the 

measurements on sub-lead emitters have not been sufficiently sensitive to 

reveal fine structure. 

211 211m The alpha decay of Po and Po populate the low shell-model 

neutron-hole states in Pb
20

7(p1/
2

' f
512

, p
312

, i
13

; 2). Likewise Bi
211 

populates the proton-hole states s1;
2 

and d
3

/
2 

in Tl
20

7. Nearby odd-odd 

nuclei populate the multiplet levels expected from coupling an odd proton and 

odd neutron in the spherical shell model. The odd-mass alpha emitters show 

mainly simple emission to ground for a few mass numbers above 211, then from 

~219 to 229 the spectra show a great complexity that has not appreciably 

yielded to analysis in terms of nuclear models. For still heavier emitters 

the spectra continue to show many groups, but these complex spectra have 

largely been interpretable in terms of rotational bands based on states of 

the odd nucleon in the Nilsson model. The alpha decay spectral information 

has been of the greatest importance in establishing Nilsson orbital assign­

ments8'9) to ground and excited bands of the odd-mass deformed nuclei. 

If we turn to the even-even nuclei, we find that the ground-state 

decay group is always the most intense. Decay to the first excited 2+ state 

is usually detectable, becoming more prominent as the energy of the state 
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drops in moving away from doubly-magic Pb208 . In contrast to the odd-mass 

nuclei, the excited energy levels, and consequently the alpha spectra, of 

even-even nuclei have smooth trends from nucleus to nucleus. Figure 3.5 

d.isplays the energy ratios and differences of excited states of even-even 

nuclei, most of which have been measured. by alpha spectroscopy. 

The usual alpha-emission data provide extensive information on decay 

rates from ground states of nuclei. In the light nuclei nuclear reaction 

data provide some alpha-emission widths from excited states. Also the 

(n,a) reaction has been detected10 ) with thermal neutrons for nuclei as. h~avy 

as Nd143 and Sm149, giving some information on emission from states of 

several MeV excitation. We would. be totally ignorant of alpha decay rates 

from lower excited states of heavy nuclei were it not for a curious 

occurrence observed following beta decay of Bi 212 and Bi 214
• Thei:r beta 

transitions populate a number of excited levels in their respective polonium 

daughter nuclei, and the alpha decay energies from these excited states are 

so high that there occurs weak but detectable alpha rad.iation of high energy in 

competition with gamma de-excitation. The relative intensity of the long-

range alpha groups can be used to fix the ratio of alpha to gamma widths of 

some of the excited. states. Some of the earliest estimates
11

) of excited-

state lifetimes were made from such data, together with alpha decay rate 

theory. The assumption was made that reduced alpha widths are the same for 

excited and. ground states. Recent theoretical calculations of reduced alpha 

widths of excited. states of Po212 show them to be substantially smaller than 

12) the reduced width from ground. . Thus, excited-state lifetimes calculated 

under the assumption of equal reduced widths must be lengthened. in all cases. 
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4. Treatment of Alpha Decay Data 

In this section we briefly summarize the ways in which alpha decay 

data may be treated. 

Alpha energy determinations are usually made by interpolation between 

standards, based ultimately nn a few alpha emitters measured in 180° uniform 

field magnetic spectrographs. 

Most of the alpha decay energies in the literature are based directly 

or indirectly on standards listed by Briggs13 ). More recent determinations of 

Po210 seem to indicate a small but significant discrepancy in the older 

standardization. C. P. Browne summarizes the matter
14

) by saying that the 

Po210 alpha energy appears to be about 0.1% higher than the older accepted 

value. If such is the case, most of the published alpha decay energies are 

subject to increases of this percentage. 

It is essential to use extremely thin sources in careful alpha 

spectroscopic work, since the rate of energy loss in matter is large. In 

studying weak groups in the presence of much stronger alpha groups it is 

important to minimize scattering from collimators, pole faces, backing, or 

support structures by careful design. 

In the best work with magnetic spectrographs pain:S are taken to 

provide the thinnest possible sources and backing. Small-angle scattering 

from pole faces may be minimized by lining with a light element material, 

such as, beryllium. Penetration through the edges of collimators may better 

be minimized by using a heavy metal, such as tantalum. A good discussion of 

such considerations has been given by Walen and Bastin-Scoffier15 ). 

When studying complex alpha spectra with ionization chambers or 

scintillation spectroscopic e~uipment, it may be well to bear in mind that 

distortions of the observed alpha spectra may occur at high source geometry 
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when coincident conversion electrons or photons can enter the detector and 

add ionization to that produced by the alpha particle. 

If al.pha particle ene:s-gies are to be used to relate nuclear masses 

or measure nuclear level energies, they must be converted to the Q-values of 

the process by addi.tion of the recoil energy) an increment equal to the alpha 

particle energy times the mass ratio of alpha particle and daughter atom. For 

the most careful rate treatments an additional small energy correction term 

( cf. eq. 2. 2) is added. to convert the. Q value to the theoretical value for 

decay of the bare nucleus without any orbital electrons. 

A plot for ground transitions of even-even nuclei of the logarithm of 

the alpha decay half-life vs. d.ecay energy reveals a very smooth behavior 

except for a break of an order of magnitude at the neutron closed shell of 

126. The points for a given element lie on a gently curved line with 

remarkably little scatter. Nearly straight lines are obtained if the abscissa 

of the plot is not the energy release Q itself} but the reciprocal square root} 
l 

Q-2 . (The use of Qf including electron screening instead of Q is more proper.) 

Such a plot is shown in fig. 4.L There is no d.efinite break in the curves 

to be associated with passage from nuclei of spherical shape into the region 

of spheroidal shape) which is thought to occur somewhere in the vicinity of 

1.38 neutrons. 

If the transitions to excited states of even nuclei or the transitions 

of od.d nuclei are placed on such plots} it is found that they will nearly 

always lie higher than the lines defined by the ground transitions. A few 

points will come on or near the lines and may be referired to as "favored" 

groups. The decay rates to states other than the ground states of even 

nuclei are often expressed by the "hindrance factor" J the ratio by which 

they depart from the line} or for odd atomic number} from a line interpolated 
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between even-Z neighbors. 

The hindrance factor may be estimated graphically using a plot like 

fig. 4.1. At the end of this section we give more precise definitions. The 

rate of a measured group may be compared to semi-empirical rate expressions 

adjusted to fit the even-even rate data in the regular region beyond the 

126-neutron closed shell. One such expression due to Taagepera and Nurmia16), 

(cf. eqs. 5·9 and 5.10) gives the theoretical alpha half life as a function 

of the daughter atomic number Z and the alpha particle energy Ea. 

2 
l 

l.6l(ZE~2 - z3 ) - 28.9 (4.1) 

An alternative formula below has constants adjusted for separate least 

squares fitting of the data of several elements 17). 

l 

log10 t!(sec) = AZ Q;2+ Bz (4.2) 

A 
where Qf is fhe effective alpha decay Q value for a bare nucleus ( ~ Ea(A_4 ) + 

6.5 X 10-5 z5 MeV). Table 4.2 lists constants that have been given. Alpha 

emitters below 128 neutrons were not included in obtaining the constants. 

Table 4.2 

Constants for eg. ~4.2~ 

z + 2 

Parent Atomic Bz 
Number 

84 129.35 -49.9229 

86 137.46 -52.4597 

88 139.17 -52.1476 

90 144.19 -53.2644 

92 147.49 -53.6565 

94 146.23 -52.0899 

96 152.44 -53.(:)t325 

98 152.86 -52.9506 

l; 

~~ 
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Decay rate data have been treated by Bethe's expression11) (our eq. 

5o24), or similar expressions
18

), where the effective nuclear radius is 

found which satisfies the datao 

A treatment of rate data with more fundamental significance, but 

using formulas simple enough for slide rule or desk calculator, is that of 

Winslm/7 ,l9) o The d.erived g_uantity is called the "surface probability" and 

is the normalized squared alpha wave amplitude (r rj;(r)) to be evaluated at 

some radius in the nuclear surface region. 

surface probability 

GL(R) is the irregular Coulomb function, to be evaluated from eq. (5.13), or 

for L=O from eqso (5ol2), (5.5), and (5.6)0 When substitution of numerical 

values for constants is made, we have 
l 
2 

log10 G
2

(R) = Oo64496 [~ ~ t J Y(x) - ~ log10 ( 1~x) 

wi.th X Oo34726 Qf R z-l 

(4o4) 

for Qf in MeV, ~in femtometers (l0-l3cm), ~and~ the atomic number and mass 

number of the daughter nucleuso Y(x) is given by eq. (5.6). Values of the 

surface probabilities have been evaluated at ~ = 9·3 fm for the heavy region 

and at R = 8oO fm for rare earthso 

Another fundamental measure of the reduced transition probability is 

the reduced derivative wid.th o~ introduced by Thomas6 ) o In view of the fact 

that o~ definitions differing from the original one have also come into use, 

it is to be recommended that future analyses express rate data as the reduced 

width ri,' generally used in nuclear react ion worko It is related to the alpha 

decay constant f.. ( = 1n 2 / tl ex) as follows: 
2 
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where k is the wave 

nt-.G2 (R) 
2 L 

y L 2 k R(A Q )! 
number (=0.43757 A +f4 X 

Optical model analyses
20

) of alpha elastic scattering have shown a 

sloping attractive nuclear potential subtracting from the Coulombic barrier such 

that the barrier maximum for S-waves is in the region of 11.0 fm. Clearly it is 

somewhat unrealistic to extend the unmodified Coulomb functions in to much small-

er distances. The WKB barrier penetrability integrals for a diffuse nuclear 

potential have been evaluated numerically by a computer and tabulated for most 

known alpha groups 21 ). For comparison with shell-model rate theories to be pre­

sented in sec. 5) it is desirable to calculate from rate data the widths r 2 at 

distances ;; 9 fm) actually inside the apparent alpha barrier.· The expression (5.32) 

is the WKB expression for r 2 suitable for computer numerical integration with an 

optical-model potential. The information on the optical model potential defining 

the alpha barrier is sufficiently uncertain that for a radius slightly smaller 

2 21) than where the barrier begins we may estimate y by dividing by 50 the tabulated 

o2 values based on the Igo potential. 

In terms of the reduced widths the hindrance factors conforming with 

general practice are to be calculated as follows: 

a) Groups to excited states of even-even nuclei. 

2 
The hindrance factor is the ratio of the reduced width y to 

0 

ground and reduced width r2 to the excited state. The r 2 
value eo eo 

is to be calculated as for an L = 0 alpha wave) regardless of the 

actual L value. (The term "reduced hindrance factor" was pro-

..... · 

posed for the more fundamental ratio using a y~ 1 calculated with ~ 

the Coulomb function for the permitted~ value.) 

b) ~roups,_in odd nuclei. ___ . 

There is some variation in usage) but more recent work 
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involves a ratio) as in (a)) where the reference width is an 

average of the ground widths of the two (or more)~/nearest 

even-even neighbors. 

5· Decay Rates of Spherical Nuclei 

Of primary importance in the rate dependence on energy and nuclear 

charge is the Coulombic potential barrier. The surface region of the nucleus 

may be thought of as giving rise to an outward flux of alpha particles) most 

of which flux is reflected by the barrier to form essentially a standing 

wave. A tiny fraction penetrates ~uantum mechanically and appears as'a 

purely outgoing spherical wave at large distance. For problems with spherical 

symmetry the wave e~uation through and beyond the barrier region is) of 

course, separabJ:e) allowing us to treat radial solutions of a one-dimensional 

ordinary differential e~uation. 

Simple decay theory would have the decay constant ~ (which e~uals 

ln 2 ) II given by the product of a penetration factor P and reduced transition 
tl 

2 
probability" f· 

fP 

Loosely speaking f is the number of collisions per second with the barrier 

(sometimes f is called the '~fre~uency factor") and E gives the fraction of 

collisions resulting in transmission. 

A first step in the analysis of beta decay rate data is to solve the 

exterior part of the problem--determining the energy and atomic number 

dependence arising from density of final states in phase space and values of 

electron and neutrino wave functions at the nuclear surface. The rate 

dependence from "external" considerations is expressed in the beta decay f 



-16- UCRL-10669 

value, which when multiplied by the half life constitutes the ft value. The 

ft value is then a real measure of the "internal" intrinsic rate, being pro-

portional to the reciprocal of the square of the nuclear matrix element. 

Just so in alpha decay the product of half life and penetration factor P 

also measures the reciprocal square of a nuclear matrix element for alpha 

decay. We see thus that the hindrance factor f of alpha decay is quite 

analogous to the ft value; the "super-allowed" transitions of alpha decay 

are the ground transitions of the even nuclei, taken as displaying unity 

hindrance factors. The near-absence of positron emission relative to 

electron capture for the higher ~ nuclei is well-known, and the tiny 

theoretical f values for positron emission are seen to arise from the small 

nuclear surface amplitude of the regular solution of the Dirac equation for 

positrons of modest energy in the repulsive Coulomb field of heavy nuclei. A 

barrier penetration is involved in high-Z positron emission. There are many 

treatments of alpha decay with greatly differing formal appearance and 

similar results, but we shall here reserve our main attention for a treatment 

bearing great formal resemblance to beta decay theory; this is the treatment 

22 
originated by Born ). In the final theoretical expressions for the alpha 

decay rate there is a direct proportionality to the square of an alpha wave 

amplitude at the nuclear surface, namely the regular solution of the alpha 

wave equation in the region beyond the nuclear surface. Examination of these 

solutions (regular Coulomb functions) will immediately give the answer to 

the external part of the problem. 

For the zero-angular-momentum (£-wave) problem the wave function 

~ (r,G,¢) of the alpha (with respect to the center of the daughter nucleus) 

is independent of angle. The function u(r) = ~(r) must satisfy the one-

dimensional wave equation 
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l12 

2m 
d

2
u 

dr2 + [V(r)-Qf]u 0 (5.2) 

where ~ is the reduced mass 
rra md 

( rra+md) and Qf is the total energy release for 

a bare nucleus " 

The simplest barrier approximation is to assume a pure Coulombic 

potential beyond up to a radius R ) somewhere in the outer fringe region of 
_Q 

the nucleus. 

V(r) 
r 

) r > R 
0 

(5.3) 

where Z is the atomic number of the daughter and ~ is the elemental charge 

in esu. We seek the solution that is exponentially increasing through the 

2Z 
2 

barrier region (r < ~) and goes over to an oscillatory solution at greater 
f 

distances with an oscillation amplitude tending to unity at very great 

distance. 

Solutions of the WKB type are quite good everywhere except in the 

2Ze
2 

innnediate vicinity of the classical turning point Rt = -- ) and there are 
Qf 

connection formulas for joining the solutions in the regions inside and 

outside the barrier" as follows: 

q(r
1
)drJ 

with q(r) 
2 1 

_ 1 [2m( 2Ze _ ~ ) f2 
l1 r f 

Bethe introduced11) a convenient parametrization for the analytical 

expression of the integral of eq" (5.4). He defined a dimensionless 

parameter ~ defined as the ratio of the energy Qf to the Coulombic potential 

at the inner barrier radius" He also defined a function g independent of Qf. 



-113- UCRL-10669 

2e 1 

g = li (mZr )2 ( 5. 5) 

The integral in the exponent of eq. (5.4) is equal to the product of g and 

a function Y(x). 

Y(x) 
1 

1 -2 = 2J(X 

1 1 

x-2 arc sin (x2 ) 
1 

(l-x)2 (5.6) 

The function Y(x) is singular at x=OJ approaching a limiting behavior of 

lim r(x) 
X --,)0 

1 
1 -2 
2J(X - 2 

Bethe has given a graph
11

) of the function y(x)J but for careful 

calculations in alpha decay applications greater accuracy is often needed. 

Tables·ofthe arc sin can be used with eq. (5.6) for more accurate work. The 

part of function Y(x) remaining after subtraction of the singular function of 

eq. (5.7) can be expanded about some x value) preferably in the vicinity of 
0 

1 
A Taylor series expansion about x of 4 takes a simple form 

_Q 
values to be used. 

and centers within the region of alpha decay E values. 

Y(x) 
1 _l l 

=2nx 2 --n 
3 

_41) + ... (5.8) 

If one drops the last term of eq. (5.8)) uses eq. (5.5)) and then 

considers that the basic rate equation is a constant times the exponential 

part of eq. (5.6) squared) one gets the expression used by Taagepera and 

16 
Nurmia in correlating rate data ). They have eliminated any explicit 

dependence on the 
l 
3" that R R:i·2.04 Z 

_Q 

radius R in their second term by considering approximately 
0 

z 
---r + 
Q2 

f 

( 5. 9) 

where we have changed their coefficient 8 in the second term to 8.47) to 

correspond with our expansion about x t rather than the usual x 0. 
_Q 0 
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Converting to a form practical for approximate calculation of alpha decay 

rates of even nuclei) they give the form 

1 

with c
1 

= 1.70 (MeV)2 

1 

c
3 

= 1.13 (MeV)-2 being our theoretical values. 

(5.10) 

The R values from their expressi.on are about those needed by the 
0 

one-body models of alpha decay in which the alpha particle initially is 

considered confined in the lowest state in a flat potential well with w.alls 

lly at R
0

• From Bethe's one-body model ;)they get c
2 

= 28.0 fort! in years. 

They then set~ to unity) use the alpha particle energy instead of Qf) and 

determine empirical values cl, and c2, that fit especially the data of 

Rn
21

5) Ra
226

) u236 ) and Th232 ) namely c
1

, = 1.61 and c
2

, = 28.9. 

Many analyses of rate data have been made in earlier times) where 

one assumes the "one-body" model) or some other model) to give the pre­

exponential factor in an eq_uation like eq_. (5.1)) with F
2

(R
0

) ~) Qf) of eq_. 

(5.4) substituted for P. The parameter R is adjusted for each nucleus to give 
0 

agreement23). Such calculated "effective radii for alpha decay" are one way 

of displaying reduced transition probabilities for systematic studies) but 

results of shell-model alpha-decay calculations in recent times show some 

pronounced depend.ence of reduced transition probabilities on the particular 

shell model configurations) especially around 126 neutrons. Thus) it would 

be a mistake to associate fluctuations in the calculated R values with 
0 

actual changes in the mean sq_uare radius of the nuclear matter density 

distribution. The early analyses of alpha rate data to yield R values were 
0 

of great importance in providing nuclear physics with some of the first good 

estimates of nuclear sizes5). These estimates have been superseded by other 
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experimental measurements, giving radius values in less model-dependent and 

more accurate ways. For the nuclear charge distribution high energy electron 

scattering has played the essential role with mu-mesic X-ray energies supplying 

supplemental information24 ). The ;small rms radii from scattering were at 

first surprising in that they were so much smaller than the alpha decay and 

nuclear reaction cross section radius values. New degrees of sophistication 

on questions of nuclear sizes were required--firstly, the notion of a diffuse 

edge in nuclear density distributions and nuclear potentials,and secondly, 

the notion that nuclear reaction potentials extend generally to larger radii 

than the matter distribution. Our present best information about the effective 

nuclear potential for alpha particles in alpha decay comes from optical model 

analyses of alpha elastic differential scattering cross sections. The optical 

potentials come from experiments with more energetic alpha radiation than 

occurs in alpha decay, and the energy dependence of the potentials has not 

been well studied. The optical potentials give considerably weaker barriers 

than required by the one-body models of alpha decay. 

With these reservations in mind, let us develop a treatment of the 

one-body model preliminary to consideration of the modern shell-model alpha 

theory. 

First we should summarize the notation and review a few properties 

of the standard Coulomb functions. By substitution and rearrangement of the 

radial wave equation (5.2), generalized to include L > 0 and with the Coulombic 

potential of eq. (5.3) extending over all space, we get the form 

where p kr and TJ 

d
2 

u [ + l -d_/ 
_ffi_ 

p 
u 0 (5.11) 

0.6300 .J~ .fJ!fi. with k, the wave number 
f -

• 
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(= 13 -1) . 10 em . 

The two linearly independent solutions are designated F1(p,~), 

regular at the potential singularity at the origin, and G1(p,~), irregular at 

the origin. The functions go over at large distance to sine and cosine 

L:rr 
functions, respectively~ with argument. [p-~ ln 2p-2 + arg r ( ~rytL+l)]. 

For F0 (p,~) we may as well use eq_s. (5.4) through (5.6), since the 

Bethe parametrization
11), where the g parameter is independent of energy, is 

often more convenient than the standard Coulomb parametrization. 

give G in the earlier notation of eq_. 
0 

Also we 

(5.12) 

" 25 R Froberg gives the icatti approximation formulas for these functions out to 

many terms. A WKB expression for all~ is 

n-o 
exp [:rr~ - ~arc cos .J 2 _e2 - pK] 

~+ 
l 

g .e2 2 
with K = + [ + 

2 
- l ] 

p p 
l 

The ordi.nary WKB form substitutes (L(L + 1))2 for t, but the preferred Langer 

modifi.cation substitutes L + ~ for t. 

Our starting point for developing shell model alpha decay theory will 

be the basic quantum mechanical perturbation rate expression 

f.. = 2:rr I H. 12 dn 
n lf dE 

dn where Hif is the transition perturbation matrix element on dE is the density 
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of final states. We will first develop the theory for S-state decay by the 

one body-model, where the nuclear model consists merely of an alpha particle 

in its lowest Quasi-stationary state in a potential well. This method of 

22) formulation will be seen to have a close parallel to treatments by Born , 

C . . 26) d M 27) aslmlr , an ang . 

Figure 5.1 illustrates the potentials assumed for the initial and 

for the final states, and the perturbation Hamiltonian for the transition is 

the difference of these potentials beyond. the ·radius. where the two potentials 

agree. 00 

(V. -V":.Ju. dr 
'-::6.' .LA l 

00 

u* u dr 
f i 

The wave function u. is simply a finite SQUare-well solution, 
l 

normalized to probability of one. 

u. (r) 
l 

, r..:::; R 
0 

(5.16) 

with~ determined by matching inner and outer solutions at R . The final­
.....Q 

state wave function, which need be defined only beyond R , where the 
_Q. 

perturbation energy first takes on a non-zero value, is to be the regular 

Coulomb solution F
0
(kr), normalized to unity within a large box, the outer 

wall of which is adjusted to a node a distance ~ away with L >> R . 
0 

,r>R 
0 

From the energy eQuation for states of n nodes in a SQuare well of 

length~ we can evaluate the density of final states needed for eQ. (5.11). 
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rc2 n2 2 
E .. n 

n 2m L 2 

(5.18) 

dn mL 
dE :rr n 2 k 

where ~ is the reduced mass) and~ is the wave number at very large ~· 

To evaluate the matrix element simply we will make use of the fact 

that the initial and final wave functions are solutions of the wave eq_uation 

in their respective potentials. 

and a similar eq_uation for uf but with R
0 

replaced by r. Thus) substituting 

into eq_. ( 5 . 15) 
L 2 d2 * 

n2 J 
d u. uf 

(u; 
l u.) dr Hif 2m dr2 2 

dr l 

R 
(5.20) 0 

* L 
n2 d u. 

( l -
l d uf 

(d;~)) * l -u 
dr * 2m f dr R 

uf 0 

The contribution at the upper limit is seen to go to zero by the vanishing of 

ui at large ~· The replacement of the radial integration by a function 

evaluated at R is the one-body eq_uivalent of Mang's replacement27) of a 
0 

volume integral by a surface integral at R 
0 

A further simplification has 

been noted by Mang; if the potentials V. and V~ are eq_ual at R ) the 
-:~.-, - 2. ....2. 

logarithmic derivatives of u. and uf at R are eq_ual in magnitude and 
_2: - ....2. 

opposite in sign) so the two terms of eq_. (5.20) make eq_ual contributions. 

Hence) 

r=R 
0 

(5.21) 
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Substituting eqs. (5.21) arid (5.18) into eq. (5.14) we get the result 

2 h2 R d u. ( IFJ (5.22) A. 0 
drl r=R

0 

. 4 
fikR 2m 

0 

We wish to rearrange the solution so as to identify and extract the expression 

for the reduced derivative width introduced by R. G. Thomas by the defining 

equation6 ) 

A.L 

where the prime denotes differentiation with respect top· 

From first order WKB approximation we have that G1 F within the barrier is 

nearly equal to !. Thus, from our theory, 

1

2 
d u. I drl r=R 

0 

This result agrees with the one-body expression from Thomas 1 R-matrix theory 

(see eq. (24.5) of ref. 6)" From the expression (5.15), with substitution 

for k. of the lowest allowed value within a square well of 
~ 2 

determine the square of the derivative explicitly as 2~ . 
R 

(5.22) and the WKB approximation for F (kR ) the folloBing 
0 0 

-2gY(x
0

) 

e 

length R , we 
....£. 

Thus, from eq. 

expression results: 

(5.24) 

. 2Ze
2 

where B --
c R This result is identical to Bethe 1 s one-body model 

0 ll 
0 

expreSSlOn ) . With a 

Preston 1 s simultaneous 

few approximations the lowest (nodeless) solution of 

equations again gives the s~me result28 , 29). 

Our treatment of alpha decay above would pe even closer to Mang 1 s 

if we used delta-function normalization of our uf rather than normalization 

in a box with periodic boundary conditions. 
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00 

J u; (r)E) uf(r)E' )dr o(E-E' ) 

0 

With this form of normalization the ~ factor of eq, (5.14) is replaced by 

I 
unity, Henceforth) we shall in fact use this normalization and shall 

distinguish the matrix elements so determined by primeE. The primed matrix 

element Hif has the dimensions of the square root of energy. 

Let us now consider a simple problem that will be illustrative of 

the principles involved in Mang's shell-model theory of alpha decay. This 

problem considers two spin-less nucleons in a one-dimensional harmonic 

oscillator well, It is equivalent to visualize this problem as the barrier 

penetration problem of one particle in a two-dimensional harmonic oscillator 

potential) as schematically indicated in the contour diagram of fig. 5.2 .. 

There exist saddle points leading to valleys only along the line .:xy:=:x: 2)._.and 

the valleys may be reached by tunnelling through the Coulombic barrier) as 

indicated in the potential profile along xi=~2(fig, 5.2 ) , We assume that a 

section across the valley always gives a parabolic potential of constant 

width) hence a Gaussian wave function of internal motion of the quasi-

deuteron at large distance, 

How is one to evaluate the matrix element now? It is only necessary 

to generalize eq. (5,21) for the multi-particle) multi-dimensional problem 

by specifying that there be additionally an integration over all co-ordinates 

normal to the coordinate specifying the cluster's center-of-mass motion along 

the channel valley, evaluated at R . 
0 

For this simple example it is easy to write a shell-model-like 

product of two harmonic oscillator wave functions in x1 and x2. One then 

(lxl +x2) 
transforms to center of mass\ 

2 
and. relative (J:C

1
-.?C

2 
)coordinates and easily 

integrates over the relative coordinate, The matrix element so obtained bears 
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a resemblance to the following expressions applicable to the full four-particle) 

three-dimensional problem
27). 

'¥7:- m 0 (~k) Ji_ <1> I (space-spin co8rdinate5'1 
If f dr 0 imi \. of A+4 nucleons l~:=R 

0 

where!':! is the alpha reduced mass. The quantityxa:(~a:) is the internal wave 

function for the alpha particlej it involves ~ine relative position coordinates 

and four spin coordinates) designated as ~a:· The function ~(~k) is the shell-

model wave function for the daughter nucl€usJ involving space and spin 

coordinates ~k of~ nucleons: The position coordinates of the alpha center­

of-mass are r J 8 and cp) and <P is the initial parent wave function. There is 
- 0 

a Clebsh-Gordan summation over angular momentum projections in the final 

state) thus insuring that there is conservation of total angular momentum. 

The function ¢L(R
0

) is the regular solution of the radial equation for the 

alpha in the external potential (not necessarily pure Coulombic) beyond R J 
0 

with energy delta function normalization. For a Coulomb potential we have 

F (kR ) 
0 0 

R 
0 

It is better for using realistic numerical shell-model radial wave 

functions to cast eq. (5.25) into an equivalent form not involving a radial 

derivative of the initial function. We see by going back to eq. (5.20) that 

it is equivalent to throw the derivative onto the final wave function giving 

eq. (5.21) the new form 

H' 
if 

h2 
-u 
m i * ' 

duf 

dr r==R 
0 
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and eq. (5.25) is similarly modified by a sign change and movement of the 

rad.ial derivative from the function <P over .to ¢~. 

Mang's procedure 27 ) for evaluating the matrix element of eq. (5.25) 

is as follows: the parent wave function <P is to be expanded using fractional 
0 

parentage coefficients (or their second.-quantization equivalents) into 

products of functions of two protons and two neutrons times a core function 

of the remaining f:::. nucleons. The integration over d~k projects out one (or 

if there is configuration mixture in the daughter state) more than one) term 

having the same "core function" as the daughter wave function. The remaining 

function of two protons and two neutrons must be re-expressed or expanded 

(at least near R ) in terms of functions of the relative-motion coordinates 
0 

~ and. the center-of-mass coord.inates. Then the integrations may all be 

carried out. 

This procedure is not as formidable as it appears) for Mang is able 

to effect considerable simplification) using special properties of harmonic 

oscillator wave functions; allowing expansion of the shell-model product 

functions of nucleon coord.inates into harmonic oscillator functions of the 

relative and center-of-mass coordinates. After the integration over d~ he is 

able to collect the resulting series of terms into Laguerre polynomials. 

We note at this point that Mang~s definition (his eq. 1.20 of ref. 30) 

of the reduced wid.th 6 
2 d.iffers from the original one of Thomas 6 ) by about a 

factor of s:i.x. 

02 
Thomas 

R q1 (R ) 
0 0 

2 
(5.26) 

v.1here q1 is as defined by eq. (5 .4). The change does not affect the practical 

appli.cations that have been made 30;.3l), since it is relative transition 

probabilities that are compared with experiment. Mang made his particular 

definition to facilitate comparison with o2 values tabulated by Rasmussen for 
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barrier penetrabilities with a sloping nuclear potential
21

). Rasmussen's 

o2 values are somewhat differently defined from those of either Thomas or 

Mang, and this matter is discussed further in a later section. The confusion 

2 
over o definitions does not alter the essential results of shell model 

theory, which claims only good relative decay calculations in its present 

form. 

Since there has been a little confusion in definition of the reduced 

derivative width o~ originated by Thomas, it would seem desirable henceforth 

to express alpha decay rate information in terms of the ordinary reduced 

width ~~ commonly used in nuclear reactions. 
2 The o value had a special 

usefulness for comparison with one-body theory, but r 2 is as convenient 

for many-body theory. 

The reduced width is related to the matrix element H~f in the 

following way: 

where p
0 

and G1(~,p0 ) are the values of kr and of the irregular Coulomb 

function at the connection distance R . 
0 

Simpler formulas than Mang's have been derived by evaluation of eq. 

(5.25) in the limit of a delta-function alpha particle32 ,33 ). Comparisons 

against the more sophisticated finite alpha calculations suggest that the 

simple formulas can be quite good for relative decay rate calculations when 

a correction factor is introduced12 ). 

2 
We summarize here some expressions for relative values of Ya from 

the delta-function approximation (cf. ref. 12): 

Spherical even-even (to or from closed shells or subshells) 

(Favored Decay) 
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core ~ core 

or 

(5.28) 

1 1 

const. (2j + 1)2 R2 · (2j + 1)2 R2 B B 
n n p p n p 

The g_uantities R ) R ) etc. are the values of the nucleon radial 
__Q __:p_ 

wave functions) evaluated at the chosen connection radius R The constant 
0 

depends on the alpha size and nuclear size and has been given in ref. 33) 

but the formulas are only reliable for relative transition probabilities. 

The delta-function model tends to overestimate the contributions of 

high-j_ orbitals. An approximate correction factor B 
n 

exp [-0 • 013 £ ( £ + l)] · n n 

brings the above formula into good agreement with the finite-sized-alpha 

formulas. B is of like form. For decay not at closed shells the expressions 
....12. 

are to be multiplied by appropriate fractional parentage coefficients. The 

contribution of components with non-zero seniority in decay from or to 

excited states is as follows: 

1 l ' 1 
const.(2j + 1)2 [(2£ + 1) 2 (2£ + 1)2 (£ .t'. 00/LO) W(£ J . .en' jn' j -2

1 L)] 
p n n n n n n 

R~ R R B B' 
n n p n 

where for the cases allowed by alpha decay selection rules the whole g_uantity 

in brackets can be greatly simplified12 ) 

£ 1 1 

YL const.(-) n(2J. + 1)2 (2J. + 1)2 (L J. o-lj·.t _l)R2 R R
1 

B B' 
p n n 2 Jn 2 p n n p n 
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£ + 
const.(-) n 

jn-~[ (2j + l)(2j + l)(2j
1

+ 1)] ~ p n n 
2 L + l 

R
1 

B B
1 

n p n 

(j.' j ~ -~~ LO) 
n n 

(5.29) 

Equation (5.29) clearly reduces to eq_. (5.28) for L=O and j'=j .·'The correction 
· n n 

factor B' is a function 
n 

of the relative momentum and may be written B' = 
n 

..., .., For ~(clvalues 
ex-{ -0 ~ 013 [.e ( £ + 1)+~~(£' + l) -
~ n n ·- n 

L(~l) J }·~We may use three-dimensional 

harmonic oscillator functions33), or better,use the numerical wave functions 

of Blomq_vist and Wahlborn3 4 ), calculated for a diffuse potential well at 

Table 5.1 gives their radial functions at radial distances of 

8 fm and 9 fm,typical distances used as connection radii in the literature. 

The tabulated values are 1000 times the normalized values, where the distances 

are in fermis. They are to be divided by~ to give our BiEl functions for 

eq_. (5.28). 

Table 5.1 

Radial Nucleon Wave ~~ctions of Blomq_vist and Wahlborn 

Protons· Neutrons 
r 

lil3/2 2f7/2 lh9/2 3sl/2 2d3/2 lill/2 2g9/2 3Pl/2 2f5/2 3P3/2 lil3/2 d5/2 

8 frr 316 361 195 304 252 289 461 428 369 432 347 454 

9 f:rt 127 172 74 136 104 142 299 272 202 272 159 392 

The effect of configuration mixing on alpha decay rates is profound, as 
6 . 

calculations of Harada35), Mang and Rasmussen3 ), and Soloviev37) have shown. 

The mixing smooths and averages out the rapid rate fluctuations from nucleus to 

nucleus that are otherwise predicted. Furthermore, the configuration mixing of 

the type induced by attractive residual forces produces a large over-all enhance-

ment in the theoretical decay rates. 

• 
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Zeh3~ tabulates absolute o2 values with Mang theory for several 

h 0 f t f th d t 0 t 0 0 p 211 c olces o parame ers or e groun ransl lon lll o Multiplying his 

values by the correction factor of about 6) according to our eq. (5.26)) his 

o2 values range from 8.4 · 10-7 MeV for R of 9 fm to 3.6 · 10-4 MeV for R 
0 0 

of 7·5 fm. Using again the optical-model barrier penetrability these 

calculations represent theoretical decay rates smaller than experimental 

4 
by factors from 2 · 10 to 5· 

When we see this sort of drastic variation with R ) it is evident 
0 

that the present form of shell-model alpha theory does not yield very 

meaningful absolute rate calculations. Wilkinson38)has questioned the theory) 

taking shell-model calculations by Harada35)to show that shell-model theory 

gives values too low by factors of 102 to 104 ) depending on the detailed 

assumptions made. The conclusions are critically dependent on the barrier 

thi.ckness) and it is thus appropriate that we examine the basis for the 

optical model potential used to define the barrier in recent discussions of 

the absolute rate theory. 

Various alpha particle reaction cross sections yield some information 

on how far the nuclear potential for alpha particles extend~. Rather large 

radii are generally indicated5). It is alpha elastic scattering differential 

cross sections) mostly at 40 MeV) that have provid.ed the best information on 

range and diffuseness of the nuclear potential for alpha particles. It is an 

appealing idea to try to derive reduced transition probabilities without the 

introduction of an arbitrary nuclear radius R or of arbitrary a:s3Umptions 
0 

about potentials. With such motivation Rasmussen carried through numerical 

analysis
21

)of experimental energy and rate data using the real part of the 

optical model potential derived. by Igo20) from scattering data. 
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Igo's potential is 

with his qualification that the formula is valid only for the potential less 

than about 10 MeV. By using the formula somewhat beyond this expressed 

validity range we can define a potential barrier for alpha decay beginning 

at the inner turning point given by Coulombic plus nuclear potential. (We 

must regard this potential a.s uncertain for our barrier purposes. Not only 

are alpha decay energies far below the scattering experimental energies but 

the Woods-Saxon potentials used to fit scattering data and on which Igo's 

exponential potential is based give thicker barriers for alpha decay.) The 

simple WKB barrier integral was evaluated by a computer for all known alpha 

groups) and the tabulation of the penetrability exponentials is a useful 

reference for making theoretical comparisons. We note again (cf. sec. 4) 

that this work introduces a definition of 62 , the reduced derivative width, 

6 which differs from the original definition of Thomas ). The exponential 
~) 

penetrabilities tabulated by Rasmussen sbould very closely represent the 

fraction of incident probability current transmitted through the barrier, 

but the reduced width y 2 (or 62) depends not only on probability current, 

but also on the characteristic kinetic energy of the alpha at the arbitrarily 

specified R . 
0 

2 2 If R is chosen within the barrier region, the y (or 6 ) 
0 

calculated from data is very sensitive to the value of R . Also, as is 
0 

apparent from the preceding discussion on absolute rate calculations from 

shell-model theory, this theory does not seem presently capable of giving 

reasonable theoretical reduced widths as far out a.s the barrier region. 

From the standpoint of validity of WKB wave functions, R is best 
0 

chosen not too close to the inner turning point, R., of the diffuse barrier. 
l 



-33- UCRL-10669 

The connection distance R may be chosen far enough out that the attractive 
0 

nuclear potential can be neglected compared to the Coulombic. Then one can 

use eq. (5.23) and. eqs. (5.13)) or (5.12)) (5.5)) and (5.6) to relate the 

experimental decay rate to the reduced width r 2 . 

(5.30) 

The use of this equation with G1 the irregular Coulomb function would 

correspond to the usual alpha decay rate analysis) but the large R places a 
0 

severe strain on shell-model theory for alpha width~ 

It is also possible to use a connection distance R closer in. If 
0 

it is chosen close to the inner turning point of the barrier) some numerical 

continuation of the irregular Coulomb functions needs to be made for 

substitution into eq. (5.30). If R is chosen sufficiently smaller than the 
0 

inner turning point for the first-order WKB approximation to be valid:, their 

with WKB connection formulas we .. can write the .expression for:;the ;irregular 

function suitable for substitution into eq. (6.4). 

k(R )2 
0 

0 

Rt 

dr - fr) exp (J q1 (r )dr) 

R. 
l 

(5.31) 

where the G1 function is now not a Coulomb function but the continuation of 

the irregular Coulomb function into the classically allowed region inside the 

inner turning point. Substituting eq. (5.31) into eq. (5.30) we have an 

2 equation suitable for calculation of Y from data. 

R. R 
l t 

cos
2

( j k(r)dr-fr)exp(2 r q1 (r)dr) 

R R~ 
0 l 

R k(R ) 2 
0 0 

(5.32) 

Since this definition is in accord with nuclear reaction usage) this expression 

is a better one to be applied to rate data than the following expression 
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independent of R and the potential inside the turning point, which Rasmussen 
0 

21) used : 

o2 = 2~ exp (2 J barrier) 

Withe~. (5.32) we see it is clearly impossible to avoid specifica-

tion of an arbitrary R and of the potential everywhere beyond R if 
0 0 

2 rate data. However; the choice of R in the would calculate y1 from 
0 

classically allowed region not too far from the barrier yield Y 
2 

can 

much less sensitive to choice of R than a choice within the barrier. 
0 

one 

values 

2 We note that we can use the calculated o values of Rasmussen 

subject to some ~ualification. If we are fairly close to the barrier onset 

(~ 9·3 fm) or if we assume the nuclear potential to level off inside the 

inner turning point so that the integral in the argQffient of the cosine 

function in e~. (5.31) is small, then the factor 2 cos
2

( J kdr - ~ ) 

may be approximately replaced by unity. Experimental y
2 values may be 

obtained. by dividing the tabulated o2 values by 2rc R k(R ) . We must specify 
0 0 

a kinetic energy, hence k(R ); at R . If the kinetic energy at R were as 
0 0 0 

high as ,.,_, 25 MeV the tabulated o2 values ar.e to be divided by ,.,_, 100 to get 

y
2

, if the energy were,.,_, 6 MeV at R, the division is by,.,_, 50. 
0 

Figure 6.1 from ref. 2la graphs the o2 values calculated from data 

for ground transitions of even nuclei. 

We see now the uncertainties associated with testing of absolute 

rate theory, but there are clearly 1~answered questions regarding absolute 

rates and shell-model rate theory. 

To gain some for the insight into the problem of absolute rate 

theory let us go back to the basic assumptions of the shell-model alpha 

theory; as can be visualized from fig.5.1. If we had regions of overlapping 

validity ofour internal Hamiltonian (for the initial state) and our external 
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Hamiltonian, it would not matter where within the region of simultaneous 

validity that we chose R j the answer would be the same. The perturbation 
0 

energy integrand takes on non-zero values only beyond the distance where the 

internal Hamiltonian begins to be in error. We agree with Wilkinson38) that the 

pure shell-model wave function fails badly in representing the amount of nucleon 

clustering in the vicinity of 9 fermis, the tail of the matter distribution, but 

it may, with addition of some configuration mixture, fairly well represent the 

alpha clustering at distances less than ~ 8 fm. 

The addition of reasonable amounts of configuration mixture in the 

wave functions results in an order of magnitude increase for the even polonium 

. t H d 35) d p 210 d p 212 d z h37) 1so opes. ara a obtaine factors of 10 for o an 5 for o , an e 

f . d h t f 12 f p 210 . . . f f t' lll s an en ancemen o or o us1ng a pa1r1ng- orce wave unc 10n. The 

pairing-force model treats neutrons and protons completely independently, hence 

is not capable of representing n-p clustering tendencies. The approximation for 

most purposes is rather good for heavy nuclei, where neutrons and protons are 

filling orbitals in different major shells. To exploit the attractive n-p force, 

the ordinary pairing-force wave function must necessarily break pairs at the cost 

of pairing energy of like nucleons. Calculations for Po212 indicate less than an 

order of magnitude additional enhancement arising from mixing due to n-p forces33). 

As we add configuration mixture in the shell-model representation, we 

can, in principle, extend the validity of the initial state wave function as far 

out as we please and represent whatever amount of clustering occurs. Actually 

it becomes impractical in the shell model to mix configurations beyond the 

adjacent major shells, such as would be necessary to describe clustering in the 

surface. 

Thus, it may not be practicable to extend the region of validity 

of the inner wave function by configuration mixture as far out as the barrier 
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region. What) then)· can be done to the final wave function to bring its 

region bf validity in closer? The answer is similar to that concerning 

improvement of the inner wave function. A one-term product wave function of 

daughter internal ground state function) alpha ground state internal function) 

and the wave function of the alpha position coordinates is only a first 

approximation. A many-term final wave function including excited states of 

the daughter nucleus can bring the external region of validity inward. We 

can learn from nuclear reactions which excited states are most important 

to include in the description. Probably of most importance are those states 

strongly excited by inelastic scattering of alpha particles; these states 

are usually char~cterized by having strong) collectively-enhanced) electric 

multipole matrix elements connecting them to ground. Where we are dealing 

with daughter nuclei which have states strongly excited by Coulomb excitation) 

we may need to include such states in the alpha decay wave function even at 

distances well out into the barrier and away from short-ranged nuclear forces. 

In thus contemplating the direction from which future improvements in alpha 

rate theory may come) we are led to consider the work on alpha wave 

propagation through the anisotropic barrier of spheroidal nuclei. The work 

is necessary to any fundamental analysis of decay of spheroidal nuclei) and 

it is also of interest as an example of the manner in which future 

theoretical work could. bring into the description more of the inelastic 

scattering states. 
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6. Decay Rate Theory Including Non-Central Interactions 

The work of M. A. Preston first treated carefully the barrier effects 

of coupling between the alpha particle and the internal degrees of freedom via 

the electromagnetic radiation field39). He showed that in the presence of 

non-central fields the alpha wave function is to be found as a solution of a 

set of coupled radial differential e~uations" Other later work took more 

40 careful account of conservation of angular momentum ) and established 

~uantitative relations between coupling terms in the e~uations and measurable 

nuclear parameters such as electromagnetic reduced transition probabilities 

B(E~) (or the derived intrinsic ~uadrupole moment Q )
17). 

0 

Let us consider the extension of ground alpha decay of even nuclei 

by inclusion of the first excited state of the daughter (usually 2+). The 

final-state wave function appropriate for our earlier matrix element formulas 

of sec. 5 will now be expressed as 

'ff : [u
0
(r) '1f!

00
(xi) Y

00
(e,_cp) + u2(r) ~ (22-mml 00) 

m 

'1/12-m Y2m (e,cp) ] 

(6.1) 

where the '1firm ( Xi) are the wave functions of the daughter nucleus; ,Xo is the 

alpha internal function, The radial wave function is now characterized by 

a two-component vector function of r, (~~) This vector satisfies the 

following coupled e~uations in the region beyond short-ranged nuclear forces: 

d
2

u 
0 

dr2 

/ 2 
_ 2m (2Ze _ 

~2 r n 
Q ) u = 

f 0 

u 
0 

(6.2) 
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where E
2 

is the energy of 
2 

6112 
the excited state and ----2 is the centrifugal 

2mr 
11 . ) energy term ----

2 
£(£+1 . 

2mr 
The coupling coefficient K~2 (r) ha~ been shown to 

be uni~uely related to the reduced electric transition probability B(E~) 

between the coupled final states. This relation is given by e~. (29.14) of 

ref. 17, and we call attention to an error in this e~uation. The factor 

of A,! in the denominator should be replaced by urii ty. Thus, quite generally 

I' -I 2e[(2£+1)(2£'+1)4:n:(2If'+l)BI,-7I (E/1.)]
1

/
2 

( _) f 2m -----------"'-f-""'"f __ _ 
112 r/1.+1(2/1.+1) 

For the E2 transition in the example there are 
1
3 

coupling terms on tne 
r 

(6.3) 

right-hand side of e~. (6.2). However, the coupling terms are likely to be 

stronger in the nuclear surface region where short-range nuclear forces are 

effective, but we do not know their form or strength nearly as well as we 

know the electric terms. The refinement of treating coupled e~uations in 
has 

the region of spherical nuclei~not yet been seriously attempted. When we 

go on into the spheroidal nuclear region, we have a better defined model, 

and the non-central coupling strengths are larger. For the coupling within 

a rotational band, perturbation solutions are not useful for the systems of 

coupled radial equations. Considerable theoretical attention has been given 

to this problem 40 , 41 ' 42 , 43 , 44). 

In the region (~ 12 fm) beyond the range of nuclear forces the 

problem of decay to a band of a spheroidal nucleus can be rather precisely 

formulated in terms of a set of coupled e~uations of the general form of 

e~. (6.2). If an intrab:and E2 transition rate or Coulomb excitation cross 

section is known, the intrinsic ~uadrupole moment Q
0 

is calculable. In terms 

of Q
0 

e~. (6.3) for the coupling matrix elements may be re~ritten 
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I +I' -K-I 
(-) f f i 

2 2mQ e 
0 

~ ~ 

2 
K£I £'I' I (r) 

f f i 
l(2If+l)(2I~+l)(2£+1)(2£'+l)J 

(6.4) 

I 
where the initial spin is IiJ the c.oupled final states have If, £, and If' 

£' and~ is the usual projection of total angular momentum on the symmetry 

axis in the daughter states, This expression for the electric quadrupole 

coupling term in alpha dec.ay simplifies for ground. band decay of even nuclei, 

Algebraic expressions for the diagonal and off-d.iagonal elements of eq. (6.5) 

are given on p. 166 of ref, 40, (See also ref, 43,) 

The basic problem to be considered here first is that we are given 

by some internal model the radial wave function amplitudes on a spherical 

surface Rx near the nucleus as a vec.tor (y~) in the notation of eq. (6,2). 
-- uL 

The first derivatives of the vec.tor components are fixed. by specifying 

behavior like irregular Coulomb functions (in practice, by taking the 

dec.reasing exponential WKB solution). With these boundary conditions we 

seek to integrate the coupled equations to very large distance Rd to obtain 

predictions of alpha dec.ay intensities to various members of the rotational 

band. The intensities are given by the velocity of the partial wave times 

the square of its amplitude of oscillation near Rd times the surface area of 

2 
the sphere 4:rrRd, Where the initial boundary conditions are on a sphere near 

the nucleus we indicate the argument with a subscript or Bq. 

A most convenient approximation to the solution of the coupled 

equations is the matrix method of Fr~man41 ) (similar expressions have also 

l/2 
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been given by Nosov)42 ). The basis of the approximation is the consideration 

that the non-central coupling terms are mainly effective near the nucleus 

and that the differences in effective barrier energy for the different 

partial waves make themselves felt mainly at larger distances. Fr8man 

essentially solves the barrier penetration problem twice, once with non-

central coupling terms included but diagonal energy differences (nuclear 

rotational energy and the centrifugal energy) ignored and again with 

coupling terms absent and diagonal energy differences included. His final 

solution is a product of the matrices representing solutions of the two 

idealized problems. Numerical integration studies45 } have showed the 

approximation to be rather good except in cases of rather weak partial 

waves coupled to relatively strong partial waves. 

To apply the Fr8man method we simply multiply the vector u.(R ) by 
J X 

a square matrix and treat the resultant vector w.(R ) as for barrier 
J X 

penetration with no coupling terms. 

W. 
J 

where, for even nuclei, 

~ 
j I 

k, • I 

JJ 
(B) u. 1 

J 

J 
* BP 2 (cos 8 ) 

k .. , (B) ;:= Y. (m) e Y. i (m) dd5 
JJ JO J 0 

(6.6) 

' I' 

(6.7) 

The argument B is given by the difference of the WKB path integrals 

alorg e =arc cos l l/2 
(-) ·. 

3 
0 

~ 55 and along e = 0) where e is the polar angle of 

the nuclear body-fixed coordinate system with polar axis the cylindrical 

symmetry axis of the nucleus. 

The appropriate argument B is found by evaluating the equation 
__s 
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(6.8) 

By expanding the second term in powers of the g_uadrupole potential (as does 

Frl::lman) and. retaining only the first term in Q we readily get the formula 
0 

below 

l/2 
"2TJ ) / T)' B~-_g_(_o_l (l+-0 ) 

g_ 6 2 \k R \ k R 
T) ox ox 

0 

where we have used the notation of Mang and· Rasmussen' s36 ) eg_. ( V. 7), k and 
0 

TJo being the standard Coulomb parameters, applied to the ground. group, and 

.9. is a dimensionless g_uadrupole coupling constant 

g_ 

2 2mk Q e 
0 0 (6.10) 

C ~242 Substituting parameters k
0 

and TJo appropriate to m · · into these equations we 

gcla simpler approximate formula (R = 11.1 fm, the top of the barrier with 
X 

(6.11) 

where Q
0 

is to be in units of lo-24 cm2 (barns). 

242 The numerical integration stud.ies on Cm by Rasmussen and Hansen45) 

deal.t vi th the relation between relative intensities and the wave function on 

a spherical surface near the nucleus. Their work makes a direct comparisbn 

with the Frl::lman matrices. From the numeri.cal integration the eg_uivalent 

matrices are not completely symmetric, as is the Frl::lman matrix from eg_. (6.7). 

(See also Frl::lman's numerical tabulation of matrix elements
41

). The asymmetry 

is not sufficient to affect seriously the intensity predictions for the more 

intense partial waves, but weak groups may be more seriously affected. 
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Furthermore, the matrix elements from the numerical work showed 

small imaginary components, representing the need to include some regular 

Coulomb function admixture with the dominant irregular at infinity. 
42 

Nosov ) 

treated the problem analogously to Fr8man. However, Nosov's formula called 

for a small imaginary component in the argument ~· Jacobsohn and Miller 

pointed out
46

) that the imaginary components are due to Coulomb excitation 

(non-resonant) processes occuring beyond the classical turning point Rt. 

Mang and Rasmussen have reconsidered the problem36 ), giving practical--

formulas for applying the correction. It is better not to make the 

corrections by a complex argument in the main Fr8man matrix but to calculate 

a correction matrix~££,' ,to multiply the originally predicted wave amplitude 

vector beyond the barrier. A simple approximate formula, bearing close 

relation to Nosov's result, is as follows: 

(6.12) 

with~ as defined by eq. (6.10),and m = 0 for decay of even nuclei to 

ground. The correction is only of significance for weak groups. Mang and 

Rasmussen noted that Coulomb excitation establishes a rigorous restriction on 

the minimum intensity of weak groups relative to stronger groups to which 

-24 2 
they are coupled. Using an assumed Q of 11 X 10 em and other parameters 

0 

having their values for Cm242 , the inequality below was derived: 

Intensity (L=4) 
Intensity (L=2) ~ 

The experimental ratio in Cm242 is 11.4 X 10-4 , obeying the limit, but the 

t . . c 244 . 7 10-4 ra 10 1n m 1s .3 X , slightly violating the limit but within the 

uncertainties attached to the intensity ratio and the quadrupole moment. 
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The Coulomb excitation corrections also introduce a phase shift 

away from normal Coulomb phase for the partial waves, The phase shift is not 

a physically measurable quantity in the decay of spin-zero nuclei) but in 

od.d-mass cases) where alpha groups may have mixed angular momenta) the phase 

shift affects the interference term in alpha angular distribution experiments, 

It is of more fundamental interest to carry the alpha wave function 

vector on into the region of the attractive nuclear force) perhaps to a 

d.istorted surface at constant nuclear d.ensity or constant potential for the 

alpha, Here we must necessarily suffer some loss of rigor, Frequently the 

vector specifying the alpha wave function is redefined to specify a spherical 

harmonic expansion on a spheroidal, rather than spherical) surface, One may 

obtain coupled equations of the form of eq, (6,2) in a spheroidal coordinate 

system, but the nuclear rotational energy is then not enti.rely diagonal) 

though it is always approximated. as diagonal, The numerical integrations of 

40 44 
Rasmussen and. Segall ) and. of Pennington and Preston ) considered the 

electric potential of a uniformly-charged spheroid to carry exactly in to a 

spheroidal cut-off surface, Frl::\man's and Nosov's approximate matrix solutions 

also are based on the sharp cut-off picture) but they lend themselves to easy 

modification through changing the argument of the matrix, Mang and Rasmussen36) 

attempted to refine the analysis by assuming a d.iffuse nuclear potential rising 

linearly at any angle e as a function only of the distance from the effective 

surface of a uniformly charged spheroid. with the proper size and quadrupole 

moment, The nuclear potential abruptly ends and the potential is assumed 

pure Coulombic beyond a point of intersection, They give prescriptions for 

arguments of Frl::\man matrices appropriate to transmission through such a 

barrier. 

They have gone on to apply shell-model alpha theory using Nilsson 
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orbitals to the calculation of relative intensities to the ground rotational 

band members in even-even spheroidal nuclei. The theoretical alpha wave 

function varies over the spheroidal nuclear surface in the same sense as 

an average of the wave functions of the most lightly bound neutrons and 

protons. 

Another approach to the theory of relative alpha intensities in 

spheroidal nuclei begins with the assumption that the alpha wave function 

should be constant over the nuclear surface. Then the data are used to 

4 
calculate the quadrupole, 2 -pole, and occasionally other deformation 

parameters of the nuclear surface. The quadrupole deformations calculated 

from this approach usually gently decrease. throughout the whole actinide 

region
41 , 42 ' 43), whereas the experimental and theoretical values (of. 

Szymanski47 ) generaliy increase .. These treatments also yield negative 

P ( D) t · th d f t" · th · · ·t of Pu238 , but the 4 cos Q erms ln e e orma lon ln e vlclnl y 

Kjgllqvist theoretical ~4 values are everywhere positive
48). 

The existence of a unique relationship between alpha relative 

intensities and nuclear shape parameters is not necessarily antitheti~cal. 

to shell-model theory, which predicts non-uniform alpha boundary conditions 

over the nuclear surface. E~uilibrium deformations and the shell-model 

alpha surface wave functions both depend on the occupied Nilsson orbitals 

beyond closed shells. The change in equilibrium deformation upon addition 

of nucleons will depend mainly on properties of orbitals near the Fermi 

energy (with distance less than or Cif. the order of the "energy gap" 2 6). 

Early in the filling of a major shell where the Fermi energy is in the 

neighborhood of strongly down-sloping orbitals in the Nilsson diagram 
I 

(cf, figs. 5 and 6 of ref, 49 or figs. land 2 of ref, 50) the addition of 

nucleons brings an increasing ~uadrupole distortion. Likewise, in this 
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region the shell-model alpha theory will yield an alpha wave function on 

the surface that is concentrated near the poles of the nucleus .. and manifests 

itself in a large relative intensity of decay to the first excited state. 

It seems reasonable that one might develop a simple modified theory relating 

alpha intensities to shape parameters; this theory must make the L=2 

"partial wave" amplitude on the spheroidal surface proportional to the 

change in quadrupole deformation from daughter to parent, Likewise, the 

L=4 surface amplitude should be proportional to the change in ~4 which 

change seems to be negative throughout the region of 90 to 100 calculated 

by Kj~llqvist48 ), 

One finds the following approximat~ relation between the quadrupole 

deformation oa of the surface over which the alpha wave function is constant 

. 51 
as calculated by Nosov ), and the o for the surface of constant matter 

density from Szymanski47): 

where the o values apply to the daughter except for the one with the subscript 

parent, 

With much more uncertainty one can find a similar relation for 

the coefficients of P4 deformation. Taking the a 4 values for the surface 

of constant alpha wave function calculated by Goldin, Novikova, and Ter­

Martirosyan52) for four even-even nuclei and comparing with the Kj~llqvist 

theoretical deformations we have the following: 

The coefficients of the shape-change terms are empirical and have not yet been 

derived theoretically, The relationships not involving nucleonic wave functions 

deserve further study and refinement, since they offer hope of measuring the P4 
term in the nuclear shape, a quantity apparently not measurable pyother ex-

perimental techniques, 
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7. D'ecay Rates of Odd-Mass and Odd-Odd Nuclei 

It was early noted that the alpha groups of odd-A nuclear types 

exhibited reduced widths ranging from those of even nuclei down to much 

smaller values. It was logical that some sort of selection rules be sought 

to explain this behavior. 

For beta and gamma transition rates a natural scheme of 

classification is according to multipolarity) that is) the angular momentum 

associated with the radiation. For the energies encountered in radioactivity) 

angular momentum strongly affects beta and gamma transition rates. In the 

case of the emission of the massive alpha particle the centrifugal barrier 

inhibiting emission associated with angular momentum changes plays only a 

subordinate role in determining rates) and for alpha emission with parent 

and daughter spins exceeding l/2 angular momentum mixtures are nearly always 

found when angular correlation experiments are performed on alpha radiation. 

The centrifugal barrier effect on penetration can be approximated for low L 

values by the factor 

exp [ -
L(L+ l) 

T) ( .ill -
Po (7.1) 

where T) is the standard argument of the Coulomb functions and p is the 
0 

value of the dimensionless distance parameter p(=kr) at the nuclear surface. 

For higher~ values it is better to use eQ. (5.13). The centrifugal 

factors become very small for very high L) but they change much too slowly 

to produce a distinct separation of decay rates according to multipolarity) 

and they are generally not small enough ~o explain alone the large hindrance 

factors known in many cases of 6.I =,0) l.or 2. 
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Instead of multipolarity Perlman) Ghiorso) and Seaborg proposed53) 

the guiding rule in alpha decay that alpha formation involving unpaired nucleons 

proceeds more slowly than that involving pairs. If the difference between 

parent and. daughter wave functions is just the paired. nucleon configuration 

and. the odd-nucleon wave function remains unchanged) the decay may proceed at 

a rate approaching that of even nuclei. The alpha group for which this is the 

case usually goes to an excited state (exceptions: U 233 and Es .253 and several 

spherical nuclei)) and. the group is usually referred to as "favored". All 

other groups in a given nucleus will be hindered to some degree. A useful 

"rule-of-thumb" is that the strength of a given partial wave of angular 

momentum~ to a state other than the favored. will g_ualitatively vary as the 

L 
electric 2 -pole transition probability connecting the particular daughter 

state with the favored state. For example) there is only small hindrance for 

L=2 decay to those excited. members of the favored rotational band which have 

very strong rotational E2 transition probabilities to the favored state. In 

hindered. decay of Cm243 to the ground band we have an interesting example: the 

parent spin and parity are 5/2+ and the daughter Pu 239 has l/2+. Decay must 

be pure L=2 to the ground. state and it is highly hindered ('"'-'5000). Decay to 

the 3/2+ first excited state may proceed by L=2 and L=4) and it is a factor of 

5 less hindered.. Experimentally) the E2 transitions from the favored. state at 

286-keV down to the ground band. are much weaker than single particle strength. 

The asymptotic g_uantum number selection rules49) explain the retardation~of the 

E2 transitions as arising from a change in intrinsic spin projection (.6I: = l ) 

for the d.omi.nant parts of the odd-nucleon wave fu_nction. As analysis of the 

intensity pattern of alpha decay to six states of the Pu 239 ground band shows) 

the .L=4 wave i.s indeed. stronger than L=2. Although E4 transition rates are not 

experimentally measurable) the asymptotic selection rules allow E4 to connect 
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with the favored state. For an example of the "rule-of-thumb" in the spherical 

211 
region we consider the decay of Bi ·: .. to the first excited state (presumably 

a d
3

/ 2 proton hole) of Tl-
207 The odd proton in Bi~~l is h

9
/

2
. To use the 

electric transition rule to guess the relative strengths of 1=3 and 5 partial 

waves we look at the vector diagram of fig. 7 .L. It is obvious that the E5 

transition will be somewhat retarded by geometrical factors, since there tends 

to be an intrinsic-spin flip. An E3 transition proceeds with little change in 

intrinsic spin orientation. Shell-model alpha theoretical calculations of 

Mang27 ) show the 1=5 admixture only 0.12 of the 1=3, an admixture consistent 

with the alpha-gamma directional and polarization correlation experimentally 

observed 54 ). We shall presently develop some justification for the electric 

transition rule. Accepting it, we may make several predictions: The 1=1 

partial waves will often. be highly hindered, since low-energy El transition 

probabilities are greatly retarded in spherical and spheroidal nuclei. For 

spherical nuclei with parent and daughter orbitals of opposite type (ji= £.± l/2, 
, l 

'\ 
jf= £f + l/2) the higher of the permitted~ values in alpha decay are preferred, 

and when the orbitals are of like type, the alpha'decay may go nearly purely by 

the lowest allowed~ value. The corollary of this rule for spheroidal nuclei 

243 
is that if ~ (projection of intrinsic spin) changes (as in Cm· , . discussed 

above), the alpha decay will avoid 1 values less thanK. + Kf, (~being the 
---2:. 

familiar projection of total angular momentum) and conversely for no ~ change 

in the odd nucleon the lowest allowed ~ values tend to be favored. It is well 

to bear in mind that the rule is only valid on the average, and ser,ious 

exceptions may be encountered. Where intrinsic spin orientation governs 

hindrance for electric transitions, the hindrance more generally will carry 

over to alpha decay, but where a cancellation in angular or radial orbital 

integrals is involved, alpha decay rates may depart from the rule, since two 

/ 
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kinds of nucleons are involved in alpha decay. 

Prior has made a correlation 55) of hindrance factors~ (calculated 

by a formula due to Fr8man 41 )) for odd-A nuclei. He sought relationships 

between ~ and the changes in asymptotic QUantum numbers in the orbital of the 

odd-nucleon. He treated only decay groups to the lowest state of rotational 

bands and summarized his observations as follows: 

a. The favored transitions mostly have ~between 1 and~. 

b, There are some transitions in a region of ~between 8 and 20 

including some favored decay and some to levels containing favored 

state configuration mixture through the Coriolis interaction. 

c. All transitions with ~ > 630 have a spin flip 6. L: = ± 1. 

d, The transitions involving a change in parity and no spin flip 

have r between 60 and 600. 

Prior's observations are clearly consistent with the electric transition rule. 

It is in the calculation of relative alpha intensities for Po211 _ 

decay that the shell-model alpha theory has enjoyed striking successes. The 

211 decay scheme of Po : is shown in fig. 7 ._2. 

It is of interest to carry out these ratio calculations by the simple 

delta-function model. EQuations (5.28) and (5.29) were given for favored and 

hindered decay of even-even nuclei to or from closed shell configurations. By 

use of fractional parentage coefficients these eQuations may be used away from 

closed shells and with odd-A nuclei. For Po211 the fractional parentage 

coefficients will be unity. After a Racah recoupling of three angular momenta 

(most easily done by second QUantization methods) to project out the appropriate 

configurati.on with attention to antisymmetrization) eQ. ( 5. 29) can be directly 

applied. For decay from one-odd-nucleon-to one-hole nuclei there comes an 

(
21+1 _, l/2 

extra factor of 2ji+l) ) where ji is the angular momentum of the initial 

/ --
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state orbital. 

211 For Po , which decays across the 126-neutron shell, the alphas to 

the Pb
20

7 final states are formed from the odd g
9

/ 2 neutron and one of a pair 

of neutrons in orbit j 1 (p1 / 2 ' f
512

, or p
3

; 2 ). If we wish only to calculate 

alpha reduced widths rela~ive to the ground state transition, the factors 

depending on the paired proton orbitals divide out. Let us designate the 

207 p1/ 2 Pb ground state A, the f
5

/ 2 first-excited state B, and the p
3

/ 2 

second excited state C. Remembering that the alpha formation proceeds from a 

g
9

/
2 

neutron plus one from the final state orbital we have 

[(2j:2+ l)r2 I 2. l .. l I Lb) YL j (j . - - -... 2 2 2 

y 5 pl/2 l 2. l l 
r 50) (- - -

2 2 2 2 
(7.2) 

R' 
j B (.ef .8. L) n l 

B (l .8. L) 
n l 

Table 7.1 shows the results of the calculations with eq. ,(.7.2). 

After calculation of reduced widths r 2, using Blomqvist-Wahlborn radial 

functions34)at 9 fm, they are further multiplied by relative barrier 

penetrability factors 21) to facilitate comparison with experiment and with 

previous theoretical calculations of Zeh and Mang31 ). 



Table 7.1 

Theoretical Relative Alpha Intensities f p 211 or o 

Pb207 Angular Radial function Finite alpha Y~ Relative intensities 
final factors ratio correction J 

L ratio (R = 9 fm) (Bf/Bl/2) 
y Finite alpha 

state pl/2 Eq_. (7.2) ·theor3 Experiment 0 

(Zeh-Mang 1 )) 

A (pl/2) 5 1 1 1 1 10
4 

10
4 

104 

B (f 5/2) 3 0.427 0.74 0.883 0.279 44 37 24 

5 -0.785 0.74; 0.938 -o.545 39 30 22 

7 1.49 0.74 1.020 1.124 19 13 rv 7 

Total to B 102 80 53 
I 

(p3/2) 0.942 43 44 49 
U1 c 3 -1.16 1.0 -1.092 ..... 
I 

5 0.816 1.0 1.00 0.816 6 5 1? 

Total to c 49 49 50 
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To calculate relative alpha intensit.ies further from closed shells 

using eq. (5.29) it may be necessary to multiply by a correction factor from 

pairing force calculations. That is, the square -of the matrix element should 

be multiplied by the probability that the final orbital of the odd nucleon is 

occupied by a pair in the parent times the probability that the .initial orbital 

of the odd nucleon is vacant in the daughter. 

The principal angular factors in eq. (5.29) for the relative reduced 

alpha widths of unfavored decay of angular momentum L are-identical to the 

statistical factor in the Weisskopf electric-transition-probability formula. 

S(jijfL) for the electric 2L-pole radiation formula .. It has been pointed out33) 

that the usual form of the.S-factor involving a Racah coefficient can be 

simplified to a Glebsh-Gordan form like eq. (5.29). 

We see the qualitative operation of the "electric transition rule" 

from examination of the Y./Yp column. For the r
5

; 2 final state B, (a j £-
. J -l/2 

l/2 orbital whereas the g
9

;
2

-initial orbital is of£+ l/2 type) the high 

angular momenta are favored intrinsically. For the p
3

/ 2 final state, G, the 

opposite holds. 

In deformed nuclei for non-zero parent spin Bohr, Fr8man, and 

56 Mottelson ) advanced some very useful branching relations governing relative 

intensities of decay to different states of a rotational band. The projection 

~ of total angular momentum along the nuclear symmetry axis is nearly a 

constant of the motion for most spheroidal nuclei. Thus, one expects that 

the conservation laws will force the projection of alpha orbital angular 

momentum~ to add with the daughter Kf (or -Kf) to equal the parent Ki' at 

least for alpha separation distances not far from the nucleus. To satisfy this 

condition a given partial wave ~ must split into components to various final 

rotational states in the ratio of Glebsch~Gordan coefficients. In subsequent 
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transmission through the barrier the waves to different final states will 

suffer different attenuation according to the Gamow penetrability factor 

(reciprocal square of the irregular Coulomb function at R ) for each. Thus) 
_Q 

we have the formula for the partial decay constants to a band. 

v I +K 2 
~LI = RL PL(Ef)l(-) f f bL(IiL KiKf-KiiifKf)+ bL(IiL Ki-Kf-Kiiif-Kf)l 

f 0 
(7.3) 

The second term vanishes except for L ~ Ki + Kf and corresponds to transitions 

where the angular momentum projection of the daughter nucleus is opposite from 

that of the parent. The bL and bL are reduced wave amplitudes. The equation 

should be exact in the limit of infinite nuclear moment of inertia or vanish­

ing nuclear electric quadrupole moment57). Actually it is an approximate 

relation which may be poor for weak partial waves coupled by E2 Coulomb 

excitation matrix elements to relatively strong partial waves. 

Equation .(7 .3) has been most widely used to analyze the intensity 

patterns in decay to the favored band in odd-A nuclei. Frequently in such 

2 
cases bL is normalized and approximated as the reciprocal reduced hindrance 

factor averaged from the nearest even-even neighbors) and bL is taken as zero 

for favored decay. Table 7.3 gives such an anlysis for the Es 253 favored 

band58 ). 
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Table 7.3 

Analysis of Es253 Decay to the Favored Band 

Excited· statE: Calculated abundances (%) (BFM approx) Experimental 
energy Barrier values 

(keV) penetration 
4 

(%) 
I factor 

T = 0 L = 2 L = Total .u 

ratio 

0 I .1.00 79.6 10.0 0.127 89·7 90 2 

41.7 I 2 0.653 -- 5.92 0.327 6.24 6.6a) 
2 

93.4 
ll 

0.381 0.88 0.267 -1.15 ,0.85 --2 

156 .li 0.197 -- -- 0.083 0.083 0.08 2 

'230 12. 0.087 --2 -- 0.0083 0.0083 0.012 

a) This intensity may be a fraction of a percent too high) since it is only 

partially resolved from a neighboring group. 

Such analyses have been made for numerous favored decays. The agree-

ment with experiment is generally ~uite good. When one looks at finer details) 

though) the experimental ratio of reduced transition rate to the I +2 level 
0 

rel~tive to that to the I + l level runs lower than theory by about 20 percent 
0 

in most cases. Both these groups are predominantly populated by L=2 waves) so 

the reduced transition ratio comes mainly from geometric considerations and 

e~uals (I 2 I ol I +2 I )2/ (I 2 I 0 I I +l I )f~. Detailed examination 
0 0 0 0 0 0 0 0 

of the coupled barrier-penetrability e~uations with a nuclear electric ~uadrupole 

field have shown that deviation from the above ratio is to be expected with a sense 

dependentc..·orLthe phase d:i,.ffer~eh'c:e-~t41'eeBL;=_O~.and. L=2 waves. 57 )59). The observed 

deviation implies that L=O and L=2 are in-phase in the main group) where they 

give rise to true interference effects in angular correlations. The deviations 

from the simple branching relations are especially large in Pu239 decay and are -'/ 

not understood. 
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Angular correlation experiments may test the alpha partial wave 

mixtures and phases inferred from the intensity patterrL In particular the 

predicted L=2 admixture in the main alpha group (mostly L=O) gives a large 

interference term seen in alpha-gamma angular correlation experiments
60

J
61 ) 

on Am24~ and Am243 and in low-temperature-nuclear-alignment experiments62 ) 

on Cf249 and Es253 (Np237 has also been studied63) but is somewhat more 

complex to interpret). In all the a-y experiments there remains some un­

certainty that the full anisotropy was observed, but in Am243 Asaro and 

Siegbahn
61

) have restored the usually-attenuated correlation by a 12 kilogauss 

field along the alpha direction with the recoil atoms in a vacuum. Their 

anisotropy re~uires a slightly larger admixture of L=2 with the dominant L=O 

group thane~. (7.2) indicates) a deviation in accord with the expected 

corrections, All the experiments call for a positive o02 in the dominant 0-2 

interference term; that is) these waves interfere constructively along the 

nuclear spin axis) hence in the polar regions of the prolate spheroidal surface. 

The observation ~ualitatively confirms the original predictions of Hill and 

64 
Wheeler ) about preference of alpha decay for the thinner barrier in the 

polar regions, The detailed calculations36 ) based on Nilsson nucleonic wave 

:unctions also predict this sign throughout the known heavy region; from this 

work we might expect that heavy nuclei far beyond the known region) where the 

Nilsson orbitals at the Fermi surface were predominantly up-sloping) might 

give S- and D-waves out-of-phase, 

The ~uadrupole coupling effects that lead to the ~20% deviations 

from Clebsch-Gordan branching relations for L=2 waves are expected to be more 

severe for the weak L=4 groups. Data are sparse; however in u233 and Es253 ) 

there are measurements on intensities of favored decay to the states of spin 

I+ 3 and I+ 4 (4th and 5th rotational levels)) and it is fair to assume that the 
0 0 
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L=6 admixture is negligible relative to L=4. The reduced intensity ratio 

should theoretically be (I
0 

4 I
0 

0 I I
0
+4 I )

2 I (I 4 I 0 I I +3 
0 0 0 0 

The deviations from theory are larger. The experimental ratio fdr 

smaller than this, and the ratio for Es253 (Table 7.3) is larger. The senses 

of the deviations imply that the L=4 group is in phase with L=2 for u233 and is 

out of phase for Es253. Such a conclusion is consistent with the theoretical 

calculations36 ) of favored decay from Nilsson wave functions; the theory 

predicts L=4 in-phase below its minimum intensity region around mass 244 and 

out-of-phase above mass 244. 

Angular correlation experiments on alpha groups other than the main 

one might test the sign of the o24 interference term. 

Equation (7.3) can also be used to analyze relative intensity 

patterns in hindered decay to rotational bands. Here, there is no guide from 

even-even decay as to the values of bL and bL' but they may be taken as 

adjustable parameters and where there are more experimental intensi ties.~than 

parameters, checks on the theory are possible. Asaro et al. analyzed65 ) the 

243 ground band hindered decay of Cm and related the observed alternating 

intensity pattern to successive band members to the interference of the two 

L=4 terms of eq. (7.3). The electric transition rule favors mL= 3, which is 

the dominant term, but the asymptotic selection rule is not too good here, 

aince the ~= 2 is only slightly weaker. The L=2 group violates the asymptotic 

selection rules of the electric transition rule and is quite weak. The possible 

L=O decay would violate the K selection rule, and it not even detectable in the 

analysis. 

The methods of shell-model alpha rate theory can be applied to 

hindered decay to give quantitative comparisons with observed intensity patterns 

and to predict multipole admixtures. Mang, Poggenburg, and Rasmussen have 
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66) 243 treated the ground-band decay of Cm . Nilsson's wave functions for the 

neutrons in the initial and final odd orbitals are used) and proton functions 

in ten orbitals near the Fermi surface are bro-ught m With. weighting according to 

the pairing-force superfluid model. The alpha wave function on the nuclear 

.surface is transformed to that outside the barrier by multiplication by 

Fr~man matrices and then re-expanded from the body-fixed to the space-fixed 

coordinate system by a Clebsch-Gordan expansion. Table 7.4 summarizes the 

results expressed. as the ratio of the reduced widths in Cm243 to that of the 

ground transition of Cm244 . Thus) these entries are essentially reciprocals 

of hindrance factors. The reduced widths are based on penetrability factors 

for L=O; hence) the different partial-wave widths for each alpha group can 

simply be summed. The general agreement of shell-model theory with experiment 

seems good. Such studies of hindered decay offer the hope of detailed testing 

of Nilsson wave functions of the unpaired nucleons. 

Table 7·4 

Shell-model Theoretical Reduced Widths for Ground Band Hindered Decay of Cm243 

Theoretical reduced width ratio 
Final 

Y2/Y~m244 (Xl0
4

) 
Experiment 

state 
spin total 

L ·- 2 4 6 Total 

l 
2.3 2.3 3·8 2 -- --

} 
2.7 18 -- 21 20 

2 ' 
2 L5 14 -- 15 6.5 2 

-

1 0.5 44 5 49 54 2 

.2. 0.04 3·6 10 14 2.6 
2 

ll 
7·5 16 24 18 2 --
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SGloviev
67) has focussed attention on the specific role of super­

fluid properties in alpha hindrance factors. The alpha decay rates may be · 

one of the most sensitive properties to test the clustering implicit in the 

configuration mixing caused by the pairing force. 
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CLOSED CYCLES - 4n SERIES A·4 A 
IZ-21--Z 

lo· • jEc 
A-4 A 

IZ-31--IZ-11 

CLOSED CYCLES- 4n+ I SERIES 

MUB-580 

Fig. 3.1. Closed decay energy cycles for the 4n and 4n +1 series: 
No superscript) measured energy; c) calculated; en) calculated 
with neutron binding energies; e) estimated; ce) calculated from 
a cycle containing estimated energies; ( )) uncertain by more 
than about 0.1 MeV; t) isomers. 
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CLOSED CYCLES - 4n + 2 SERIES 

CLOSED CYCLES - 4n + 3 SERIES 

MUB-579 

Fig. 3.2. Closed decay energy cycles for the 4n + 2 and 4n + j 
series: No superscript, measured energy; c, calculated; en, 
calculated with neutron binding energies; e, estimated; ce, 
calculated from a cycle containing estimated energies; ( ), 
uncertain by more than about 0.1 MeV; t, isomers. 

·-· 
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6 198 200 202 204 206 220 222 224 226 22a 230 232 34 236 23 240 242 24 246 248 zso sz-----z54~8 

Fig. 3·3· 
region 
joined 

MASS NUMBER 

MU-11555 

Alpha Decay Energy ~(MeV) vs mass number for the 
Z > 82. Points for isotopes of even-Z elements are 
by dashed lines and those for odd-Z by solid lines. 
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60 65 70 75 80 
Atomic number (parent) 

MU- 29467 

Fig. 3.4. Alpha Particle Energy Ea(MeV) vs atomic number for 
the region Z < 82. Points for isotones are joined by lines. 
( 0 N = 84, • N = 85, 0 N = 86, 0 = 87, 6. = 82 ) 
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Fig. 3·5· Energy levels in even-even nuclides: 
a. Even spin and parity levels. 
b. Odd spin and parity levels. 
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MU-29391 

Fig. 5.1. Plot of the potentials in the Born perturbation 
solution to the alpha decay rate problem. Vf is the actual 
Coulomb potential experienced by the alpha particle Vi is 
the correct potential for the alpha particle for distances 
shorter than R0 but is an artificially-assumed potential 
beyond R0 ) forming a real bound state. The figure is from 
Born's original paper22). 
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Center- of- moss coordinate R 

Fig. 5.2. Contour diagram of potential energy in a two-particle 
barrier penetration problem and a section along the valley 
x1 = x2. x1 and x2 are position coordinates of partj_cles 
l and 2; R is the center-of-mass position coordinate and 
~ is the separation distance coordinate. 
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' I 

MU-29464 

Fig. 7.1. Angular momentum relationships for E3 and E5 
transitions of an odd proton from an h9/2 to d3/2 state. 
Note that the direction of the intrinsic spin must change 
more in E5 than E3 . 
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Fig. 7.2. Decay scheme of Po2ll with shell model assignments 
for the odd neutron (or hole) indicated. 
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