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LONGITUDINAL DISPERSION IN PACKED 
EXTRACTION COLUMNS 

Alphonse Hennico, Gabriel Jacques, and 
Theodore Vermeulen 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

March 18, 1963 

In this study, axial dispersion in packed beds has been investi

gated with particular reference to extraction-tower design. 

A new model for dispersion behavior, based upon "segmented 

laminar flow}',' is derived for analysis of breakthrough curves at low 

flowrates; its applicability is discussed in comparison with other 

theoretical models of mixing. 

Axial dispersion coefficients'in single-phase flow were meas

ured by a step-input method over a wide range of Reynolds numbers 

(3 to 2000). Nine different types of packings were used, involving regu

lar and random arrangements of spheres, and random arrangements 

of Raschig rings, Berl saddles, and Intalox saddles. Different con

stant values of axial Peclet number are found in the turbulent range and 

the laminar range, which are separated by a fairly sharp transition 

region. Viscosity is found to have a large effect upon axial dispersion; 

for two solutions of different viscosity, the Peclet-number values a-re 

identical at the same Reynolds number. The axial Peclet number is 

found to vary inversely with bed poro!)ity. No effect of packing arrange

ment is observed. 

For two-phase countercurrent flow of water and kerosene, 

axial-dispersion coefficients were measured for the continuous phase; 

they were also measured for the dispersed phase, both where the current 



' ' 

-vii-

does and does not wet the packing mate'ri<U.' The continuous-phase 

Peclet number appears .to in:crease with decreasing continuous-phase 

Reynolds number, and .also with an increasing ratio of dispers.ed-phase 

_flow rate to continuous -phase .flowrate. For a nonwetting dispersed 

phase, the Peclet number remains practically constant, whereas for 
. . . . ' . 

a wetting discontinuous phase it decreases .somewhat with an increasing 

ratio of discontinuous,.phase flowrate to continuous -phase flow:r.ate. 

On the basis of typical calculations of mass-transfer rates from experi

mental extraction ,data, we conclude that longitudinal dispersion is an 

important effect and should be calculated as an independent factor in 

extraction column design. 

·~. 
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QENERA:L INTRODUCTION 

The de\r'elopment of rational de sign methods for fixed- bed ex

traction columns, absorption columns and chemical reactors requires 

a.knowledge of the extent of mass transport in the direction of flow. 

This phenomenon, called "longitudinal dispersion 11 0r 11axial mixing, ur 

tends to decrease the driving forces for transport processes or chemical 

reaction and thus limits the separations or conversions obtainable. 

Longitudinal dispersion is the result of three effects. The first 

is true molecular diffusion in the axial direction. The second is turbu

lent fluid-phase mixing which occurs in the spaces between the packing. 

The third, additional axial mixing, is caused by nonuniform velocity 

and subsequent transverse diffusion; this is sometimes called Taylor 

diffusion, from G. I. Taylor 1 s analysis of molecular diffusion effects 

during laminar flow in pipes. These mechanisms, whether acting sep

arately or in combination, are known to produce essentially similar in-
, 

tegral effects and hence are all describable approximately in term's of 

solutions to the diffusion equation. The numerical value of the diffusion 

coefficient that results from applying these solutions to experimental 

data is known as an "effective axial-dispersion coefficient. 11 

This investigation is intended as a step in the direction of de

veloping extraction-column design methods that take longitudinal dis

persion into accounL This study consists of three parts, 

In Part I we propose a new model called 11segmented laminar 

flow 11 for describing the longitudinal mixing process at low flowrates; 

for comparison, the most common theoretical models used for analyz

ing axial-dispersion experiments are also reviewed, 

In Part II we report new experimental results on axial dispersion 

for liquid flow through fixed beds of different packing, with interpreta

tion and correlation of these results, 

In Part III we make an experimental study of axial dispersion in 

two-phase flow. The two liquids used were. water and kerosene. The 

columns were packed with 3/ 4-in, ceramic Raschig rings, 3/ 4-in. 
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carbon Raschig rings, and l-in. Berl saddles. The carbon rings were 

used to investigate the influence of ''wetability" upon axial dispersion 

in the dispersed phase. 

.I 
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PART I. THEORETICAL MODELS FOR LONGITUDINAL 
DISPERSION 

The subject of lengthwise fluid mixing in continuous-flow packed

·column systems has received much attention during the past decade. A 

number of studies have shown that longitudinal dispersion (or "axial 

mixing") can exert a significant effect in reducing the mass-transfer 

performance of columns below that predicted from true mass-transfer 

coefficients alone, and hence, that this effect should be accounted for 
24 34 38 

separately. ' ' Several mixing models have been proposed for 

explaining experimental breakthrough (concentration vs time) data for 

the outflow. The problem of these models is essentially that of pre

dicting the behavior of an initially sharp interface between two miscible 

fluids. 

The most widely used approach to axial dispersion is the diffusion 

·model. In this model the dispersion process is characterized by a dif

fusion equation, with an axial-dispersion coefficient in place of the usual 

molecular diffusivity. A simple solution to the diffusion model, assum'

ing infinite boundary conditions, was first obtained by Danckwerts. 
10 

The main features of the simple diffusion model were further discussed 

b 1 h . . 1,7,13,31,33,39b h' dld y severa ot er 1nvest1gators, ut t 1s mo e oes not 

give an adequate description of axial dispersion in "shallow" beds. An 

exact analytic solution to the diffusion model, for miscible fluid dis

placement in beds of finite length, was first presented by Yagi and 

Miyauchi. 
42 

Extensive numerical results, based on an asymptotic 
. 3 approximation to this solution, were reported by Brenner. 

A second model for axial dispersion, the perfect-mixing cell 

model, in which each of the interstices of a packed bed acts as a mixing 
29 stage, was proposed by Kramers and Alberta. When the series-

mixer model was applied to experimental data, it was often found that 

fewer than ten mixers were needed to reproduce the observed data. 

Since the beds involved were more than ten packing-particle diameters 

in length, Carberry suggested that incomplete mixing in the individual 



void cells would reduce the calculated number of mixers, relative to 

the actual number of void cells as indicated by the number of layers of 

packing" 
6 

Accordingly, he introduced a mixing-efficiency factor for 

the series-mixer model, which constituted a free parameter for fitting 

the model to the experimental data. For "deep" beds (those having 20 

or more perfect mixers in series), it has been shown that the diffusion 

and series-mixer models predict essentially identical residence-time 
1 

distributions and breakthrough curves~ 

A random-walk model, developed by Einstein 
15 

for the stream 

transport of suspended solid particles, has been extended by Jacques 

and Vermeulen
24 

and Cairns and Prausnitz
5 

to the problem of longitu

dinal dispersionin packed beds" This model, describing the random 

path of tracer molecules by statistical considerations, also approaches 

the simple diffusion model at high flowrates. Here we show that, 

for practic.al purposes, the random-walk model is numerically equiva

lent to the diffusion model with finite boundary conditions. One should 

keep in mind that the longitudinal dispersion coefficients, obtained by 

using the random-walk model, are defined by comparison with the dif

fusion modeL 

A different statistical model has been investigated by 
. 26 37 

de Jossehn de Jong, and analyzed more completely by Saffman. 

In this model the porous medium is considered as an assembly of ran

domly oriented straight circular-bore capillary tubes of equal length. 

The slope of the breakthrough curve, predicted by Saffman 1 s derivation, 

for "deep 11 beds is 

( 

1/2 
uo d{c/co) = Uoh ) ln(54 h/0 

h dt 4·nE s V% 
whereas, in the simple diffusion model, 

u 0 d{c/c 0 ) =(Uct_ )
1

/
2 

h dt .fiTED 
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In these equations u
0 

is the superficial velocity, h. is the height of 

bed, 1 is length of capillary, t is time, c is concentration, and E 

is the dispersion coefficient, If the capillary-flow model is correct, 

the 1 and E (=E )its uses would be constant; then, by comparison, . s . 
the E (::::ED) given by simple diffusion would decrease with increasing 

h. Conversely, if the diffusion model is correct, ED would be con

stant, and E would increase with increasing h. The capillary model 

seems to hav: two basic defects~ 9 A packing of spherical particles has 

an open-pore structure seemingly not analogous to a capillary structure 

except perhaps during laminar flow; further, a streamline through the 

packing does not point in every direction with equal probability, but is 

strongly weighted toward the average direction of flow. 

A number of other models of lesser importance have been pro

posed in which parallel and series-parallel communication of void 

cells 
14 

or material exchange between flowing channels and stagnant 

pockets of fluid 14 • 19 • 28 are used to describe dispersion in packed beds. 

These models usually include a sufficient number of parameters to allow 

fitting the model to the available data; they introduce assumptions re

garding the frequency of communication of neighboring cells and the 

relative importance of participating transport mechanisms, which are 

not usually verifiable by independent laboratory measurements. 

Experimental studies conducted as part of the present investi

gation indicate that the random-walk and exact diffusion treatments 

give an excellent fit to the concentration vs time curves obtained at 

higher flow rates, but give a relatively imperfect fit to those for lower 

flow rates. As shown in the next section, the higher flow rates can be 

identified with a turbulent flow regime, and the lower rates with a lami

nar regime. To meet a need for more detailed study of the laminar 

regime, a new model is introduced which is statistical in its concept 

but explicit in its mathematical behavior, being patterned after 

G. I. Taylor 1 s study of the dispersion effect that results from velocity 

distribution in laminar flow through cylindrical tubes. 
40 
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For comparison with this new model, the mai:r{ features of the 

diffusion, random-walk, and void-cell mixirig modeis are reviewed 

here and their applicability to laminar-flow conditions discussed. It 

is seen that the use of one or another of these models can lead to axial

dispersion coefficients differing by a factor of two in "shallow n beds. 

A. Segmented-Laminar-Flow Model 

1. Nature of the Laminar-Flow Regime in Packed Beds 

and by 

23 
Longitudinal-dispersion studies by Jacques and Vermeulen 

7 
Carberry and Bretton, as well as the experimental part of the 

present investigation, show the existence of a laminar and a turbulent 

region with a fairly sharp transition region between them. 

When these results are compared with a typical packed..., bed 

friction-factor plot ( f vs NR ) , where NR = .d u
0
jv, with d the 

e e p p 
equivalent-sphere-volume diameter of the packing rn:aterial, u

0 
the 

superficial velocity, and v the kinematic viscosity, it is seen that the 

transition for axial-dispersion occurs in the same Reynolds-number 

range (see Fig. I-1 ). 

A second item of evidence can be found in studies by Garner et al. 
17 

of the flow pattern around single spheres. In these studies, the fol-

lowing changes in flow pattern with increasing Reynolds number were 

observed: At first, the flow is entirely streamline and satisfies Stokes 1 

solution. The velocity then ·begins to decrease on the downstream sur

face of the sphere, and increases on the-upstream surf~ce. The trend 

continues until separation of the.forward flow occurs at d U jv of 15 p 00 

to 25, when a very small, weak, toroidal vortex is forward near the 

rear stagnation point. The vortex gains strength as the Reynolds num

ber increases further; the separation ring advances toward the equator 

until at d U /v around 450 (with the angle of separation equal to p om 

104 deg), the wake becomes unstable, oscillating about the axis of mo-

tion, and spilling its content downstream. · Ranz has shown that the in

terstitial velocity in packed beds is often eight to ten times the superficial 
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Sphere- packed beds 

I. Rhombohedral (E= 26% J Martin 
2. Orthorhombic-2 ( E =40%) Martin 
3. Random (E=40%) Carman 
4. Orthorhombic -I ( E = 40%) Martin 

MU-16832 

Fig. I-1. Friction factor for beds of solids. 
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velocity, upon which the packed-bed Reynolds number (dp U
0
/v)is based" 

36 

The wake instability can be identified with a 'flow condition in which the 

flow through a void space in the packing changes from predominantly 

streamline to near-perfect mixing" In terms of Garner 1 s results, this 

change should occur at a dp u
0
jv value of around 50 or dp u

0
/v(l-e) of 

80 to 90, where E is the porosity" 

Using a suspension of fine particles to indicate the fluid motion 

.Hiby has cited photographic evidence of the transition from turbulent to 

laminar flow in packed beds; below NR =10, completely laminar flow 
21 e 

was observed" · 

A somewhat different investigation, dealing with liquid flow in 

a falling film over a· single,...file column of spheres in contact, also shows 

t evidence for a laminar-turbulent flow transition" 
11 

The axial disper

sion of liquid flowing over a system of 128 equal spheres in contact in 

a vertical line was studied by a tracer technique. 
20 

The experimental 

results indicate the presence of two different regions of behavior. One 

is representative of the very lowest flows (dp U
0
/v<20), whereas the 

other holds for higher flowrates (dp u
0
/v >20), with a quite sharp tran

sition between the two. The reason for these two different regions was 

found to lie in the onset of rippling in the column at around NRe =20, 

. which causes a considerable increase in mixing at the junctions between 

the spheres. 

Experimental evidence for the presence of a laminar-turbulent 

transition region has also been found in heat- and mass -transfer studies. 

Gamson and coworkers derived the following two relations for the Colburn 

f . f .16 J actor 1n mass=trans. er: 

jd- 1.46 NRe -0.41(1-e)0.6t:i for 

and 

N 
Re > 100, 

l - E 

1 1 2 NRe 
j d = 1 7 N - ( 1 - E ) • for -- < 1 0 0. 

Re 1 - e 
Due to experimental uncertainties, and perhaps also due to the gradual 

nature of the transition, the exact occurrence of the breakpoint is not 

well known. 

From the various indications, it is concluded that ample justification 

exists for dividing the axiah!:dispersion phenomena into two different regions 

separated by a critical value (or range of values )ofthe Reynolds number. 
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2. Description of the Model 
) ; 

As just mentioned, the laminar regime of packed-bed flow (in 

columns having relatively uniform mean flow through all cellular ele

ments of any one cross section--e. g., in circularly cylindrical columns) 

requires further study in order to obtain .a physical model that will cor

respond accurately to the experimental outflow-concentration histories 

(breakthrough curves). A new model, which constitutes a step in this 

desired direction, is termed "segmented laminar flow. " 

In the actual laminar-flow behavior of a column, each fluid fila

ment undergoes changes in velocity frOm point to point along its path. 

Such filaments can be considered to enter a new column "segment 11 each 

time their velocity crosses the mean velocity of the fluid. If the distri

bution of velocities is the same at each cross section as in randomly 

packed beds, one or more other filaments will be reduced in velocity 

at the eros s section where a particular filament changes from a slow

moving to a fast-moving segment. The resulting interchange of fast

moving and slow-moving segments is equivalent to gradual but continual 

remixing of filaments. In the idealized model postulated here this grad

ual mixing is replaced by a sequence of cross sections at uniform inter

vals, where complete mixing occurs, with complete absence of mixing 

at intermediate points. The interval between the mixing cross sections 

becomes equivalent to a weighted average of the actual segment lengths. 

In each segment then, laminar flow occurs with well defined velocity 

profiles, and transverse molecular diffusion is treated as negligible. 

In this study, two different velocity profiles are used. The 
2 2 

first one is the usual quadratic (parabolic) profile, u/u = 1-r /R , 
max 

.where u is the mean local velocity of a flow filament, and r/R is the 

mean ratio of its radius. to the total radius of the passage. The second 

one, which we call "quartic, "has the semi-empirical form 
2 2 2 

u/umax = (1- r /R ) . While the. quadratic velocity distribution might 

fit the flow through a bundle of parallel circular-bore tubes, the quartic 

distribution appears to provide a more accurate description of packed

bed flow,in the laminar regime. 
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At the end of each segment the liquid is assumed to be thor

oughly mixed before it enters the next segment, Mathematically, a 

)flow-average "cup-mixing 11 composition is computed after each seg

ment, which represents the composition o£ the feed to the following 
2 25 

segment. ' The boundary condition at the column inlet corresponds 

to a step input of a tracer material. The exact solution is not obtain

able for the response curve after each segment, but a numerical solu

tion has been derived by digital computation. The resulting theoretical 

breakthrough curves for different numbers of segments can be fitted 

to the individual experimental breakthrough curves. Each experimental 

run will thus exhibit a ''number of dispersion units 11 which can be con

sidered as a "column Peclet number"; N = h/1 or hU
0
jE, for pur

poses of defining an effective axial dispersion coefficient (here h is 

column height, 1 is mixinglength, u
0 

is superficial velocity, and 

E is the superficial dispersion coefficient). From this, a "packing 

Peclet number'',: P"' d /1 or d u
0
jE, is calculated which presumably 

p p 
is constant over the entire length of the packed bed. 

3. General Mathematical Approach 

The equations were derived for a cylindrically symmetrical 

element of flow path having the cross ·Section S. The flow is assumed 

unidirectional. The concentration is a function of time t, of distance -in the direction of flow z, and of a radius vector r which characterizes 

an element dS of the cross-sectional area. The local velocity is also -a function of r as mentioned above. The flow-average concentration 

leaving one segment is taken as the feed concentration for the next seg-

ment. This flow-average concentration is defined as 
j c (;', z, t) u ( ;,t) dS 

s 
cb(z,t)- -,---------

1 u(r, t) dS 
/ 

s 

(1) 

-At each of the cross· sections where mixing occurs, the r -de-
. -pendent concentration is replaced by its bulk average; i.e., c(r, z, t) 
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is replac'ed by cb'(z, t), In' a cylindrical element of flow path (one with 
' .. ~ '. - . ' ' : . . . . ..... 

uniform cross section) the velocity profile is only a fu'nction of r. For --steady-state laminar flow the concentration c(r, zk' t) at a point zk 

-gives directly the concentration at a downstream point, z > zk' in the 

corresponding radial location, Thus, we have 

- -c(r,z,t) = c(r,zk' t- t
1
), 

where t 
1 

is the time necessary for the· fluid to travel the distance 

(z-zk), and 

z 

t 1 = ( u~;, t) == 

Jzk 
~0 

u(r) 

(2) 

(3) 

In physical terms, the element of fluid observed earlier at z is the 

same as one which was observed earlier at zk, 

From these relations the general equation for 

ing from zk to zk+ll c:e(~•: zk+ ~ zk lu(rj dS 
S [ u(r) J 

a segment extend-

(4) 

In our study, the problem is analyzed with reference to a fluid 

in a circularly cylindrical volu~e element of radius R, 

Eqs, (1) and 

and 

(4) become 
R 
J
0 

u(r) c (r) rdr 

R 

j u(r) rdr 
0 

u(r) rdr 

For this case, 

(5) 

(6) 

By use of these equations, it is possible in principle to compute the 
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.•. concentration of t;racer material after any number of segments, if one 
. . . . 
knows the velocity distribution and the concentration distribution at the 

inle..~ Cis a f~nction of time and position. In .practice, the multiple inte

gration required for successive segments becomes progressively more 

complex, and soon ceases to give relations i!l. closed analytical form. 

The separate application of these basic equations to the quadratic and 

quartic velocity profiles is given in the following sections. 

4. Quadratic Velocity Distribution, 

For the case of quadratic velocity distribution it is assumed 

that the volume elements for flow through the packing have a circular 

cross section, in which the fluid moves with the usual laminar parabolic 

velocity profile 

u(r) = 1 _ 
u max 

2 
r 
2' R 

(7) 

where u is the maximum velocity of the fluid and r is a radial max 
coordinate. For the parabolic velocity profile the maximum velocity 

is equal to twice the average velocity. 

From Eq. (7), the flow-average concentration is given by 

This. relation can be simplified by the following change of variable: 

2 

here also 

r s=l- :::-z 
R 

u s = u max 

(8) 

(9) 

( 1 0) 

s is thus the fraction of area enclosed between r and R. Differ-

entiation gives 

ds = (11) 
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The integration limits are at r = 0, I; = 1, and at r = R, I; = 0, Apply

ing these r~1atioP.s to the segment (zk' zk+ 1) leads to the more specific 

relation 

cb(zk+l' t) = 2 } [cb (zk' t - zk:l-z1 )] I; dl; . 
) 0 max 

( 12) 

Equation (12) proves to be the key expression for evaluating_the con-

centration breakthrough after any given number of segments, Applied 

to a column of total length h, divided into a number of segments N, 

each of length J,, it becomes 

( 13) 

The initial condition can be described by the relation 

(14) 

where c
0 

is the step-input concentration, and H(t), the Heaviside 

unit function, is either zero or unity. depending on whether its argu

ment is smaller or larger than zero, The Heaviside function expresses 

the fact that the tracer fluid takes a well defined time to emerge from 

the column. 

After N divisions each of length J,, the remixed concentration 

is 

cb(NJ,, t) = c
0 

fN(t) H(t- uNP. ) 
\ max 

= cN(t) H ~ - ~~ ) , 
. 

(15) 

where fN(t) is a dimensionless function of t that remains,to be de:

rived, cN(t) is the corresponding concentration [ = c 0 fN(t)J , and U 

is the average linear velocity which for this case is equal to half the 

maximum velocity u . The Heaviside function in the above expres-
max 

sion states that cb (NJ,, t) is nonzero only if t ~ NJ,/2U, Suppose eN _
1 

is known after N -1 segments; then, at the end of N segments, 
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·-;(: i 1 . 

cN(T) = 21 [cN"l (T- A-) J H[t "h9- z~}d' ( 16} 

where T = .Ut/ 1. 

In the use of this relation, the argument of the Heaviside func-

tion serves to define a new lower_limit of integration. Physically, the 

, use of this function .me.ans replacing the lower limit by a quantity that 

avoids computing any. negative concentration values. Thus,. if we have 
N-1 1 -1 

T - - 2- - ZC > 0, or hence, if we have I; ~ (2T-N+l:) · , then 

(17} 

The general relation now becomes 

' 1 . . 

= ~2 ( . _ lxN-l (T- -zt~l l;dl; 
) (2T-N+l) l [ ] 

( 18) 

· where XN(T} :i cb (N.l, T)/ c
0 

and similarly for XN _
1 

at its respective 

position and dimensionless time; with XN(T) := 0 for T ~N/2. These 

'equations show that for each added segment, T is replaced by 

T - (1/21;.), and the integration is then performed as indicated. 

In dimensionless units, X can be given as a function of N, T, 

and I;; or as a function of N, e>, and I; , where SN = T jN. For the 

latter case, the integrand function XN-l is known in terms of E>N-l, 

but here one wishes to evaluate it in terms of E>N. This is equivalent 

to reducing the length of a column of (N -1) segments from the constant 

value h to a .new value h'·= (N-l)h/N; then an extra segment is added 

to restore the column to length h. By use of the general definition 

8 = T/N y.te have. 

cy) . T 1 
N-1 ""N-1- 2s(N-l)' 

·T 
and6 =N N 

1 ) Zs(N-1) ,· 

( 19) 

(20) 

-.. 
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and Eq, (18) takes the form 

XN(6N)=2 [!. {xN-l~N_N1 - 2(;(~-l))}sdS. (21) 

..-[N(29N-1)+1J-l-

The relations rapidly become very complex, and an exact solution seems 

to be impossible for N > 2. The solution must therefore be found by 

numerical methods on a high-speed digital computer. 

a. Analytic relations, The expressions for beds consisting of only 

one or two segments can be derived analytically, and will now be given. 

Their mathematical form is of interest to show the complexity that is 

reached for beds with a larger number of segments, and also to indicate 

possible forrris of empirical equations for representing the latter. 

For N = 1, Eq. (18) becomes 
1 

X 1 (T) = i [ X 0 (T - -h ) j l;dl; 

"ZT 

(22) 

Here x
0

, the value of inlet concentration, is constant at unity. From 

this, 

X ( T) = ( 1 - _l_ ) · H ( T - 0. 5) . ( 2 3) 
1 4T2 

This relation shows that x
1 

(T) is zero as long as T ~ 0, 5. We recall 

that T "" Ut/l, where A is the length of one segment, t is the elapsed 

time, and U is the mean linear velocity. Another dimensionless time 

can be defined as 

tU tU T 8 =11=w""N 

For N = 1 the form of Eq. (23) remains unchanged if E> replaces T. 

If N = 2, the column consists of two segments of equal length. The 

mixing efflu.ent from the first segment has the concentration x
1

, as 

just derived, Then, we have 
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1 

tlt: fl 2 J 
X 2 (T) = 2 r 1 t;dt; . (24) 

)l 
2T-l 

This relation is obtained by replaCing T by l T- ( 1 I 2 t;)] in the expres-

sian for x
1

, and by changing the .lower limit to avoid computing neg
,.~ 

ative concentration values. Integration of Eq. (24) between the speci-

fied limits yields 

X (T) = {2(t-l) [( 2 T) 3 +( 2 T) 2 -~- 12 ln (2T-l)l H(T-1). (25) 
2 

L(2T)
3
(2T-l)J (2T)

4 'J . 
The argument of the Heaviside function indicates that x2 is zero for 

T ~ 1. In terms of E>, the equation for x2 is of identical form but with 

T replaced by 28 throughout. 

5. Quartic Velocity Distribution 

A major result of the quadratic velocity profile is that it takes 

at least half of the stoichiometric time (i.e. , at least E> = 0. 5) before 

any breakthrough sets in. This is unrealistic physically; many experi

mental curves start earlier, or have shapes that would correspond to 

N values smaller than 1. The reason for this partiaL :failure of the quad

ratic model is believed to lie in the assumption of a cir.cular shape for 

the flow element, in which the maximum fluid velocity is twice the av

erage velocity. In reality the packing voids have a curved triangular, 

rectangular, or still more complex shape, with corners in which the 

fluid is practically stagnant. This tends to lead to an average fluid ve

locity larger than half of the maximum, and in turn frequently to break

through-curve X:E> slopes smaller than those given by the quadratic dis

tribution. As no exact expression for the velocity profile in these com

plex voids is available, an empirical relation giving umax/U=3 has been 

adopted as a convenient and reasonable starting point. 

::c: 
Details of the integration are given in Appendix I-1. 
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The steps in the derivation for the quartic velocity profile are 

identical with tho.se for the quadratic distribution, Hence repetition is 

avoided here by showing only the respective equations with correspond

ing numbers. 

The expression for the quartic velocity profile is 

Subsequent equations follow: 

R , 1 c(r) [1 
2 

r s=l- =-z· 
R 

2r dr 
ds = - R z 

c(o, r, t) = cb(o,t) = cb H(t), 

{7a) 

(8a) 

(9a) 

(lOa) 

(lla) 

(lla) 

(13a) 

(14a} 

( 15a} 



If 

and 

..,18-

1 ., . '. 

cN(T) = 31. ~N·l (T- -:-::-z-31. )~. H[T- (Nil) .. ·~].··s .. 2 d~, (16a) 
r ~ . . . . -3s.•, .. .. 0 ~ .· 

- ~- > o or· s 
3s 

o;, (3T~N+lr l/Z, H r-61)-· :(, ~= I, 

(1 7a) 

(18a) 

a = ___!__ - -2,.,1-~ 
N-1 N-1 

3s (N::.I> 
with 8 ::: T 

'. N N' (19a) 

(20a) · 

a. Analytic relations. The expressions for beds consistingof only one 

or two segments can again be derived ahalytically. For N = 1,. they are 

1 

X 1 (T) ~ 31· . lx0fT - ~)] s 2ds , 
. (3T> -I/2L · \ . 3s 

(22a) 

and 

(23a) 

For N = 2, also, the expressions are 

. . 1 [ ( . )-3/J x 2 (T) = 3j · · _ . 1 - 3T- ~ s2
ds , 

. (3T-l) 1/2 s 
(24a) 
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and 

X (T) = ~. l _ 2(3T)
3 

+ 6(3T)
2 

- 24(3T) + 16] . H f T -. 2\ 
2 L. (3T)3(3T- 1)3/2 \ . 3J (25a) 

6, Numerical Methods of Solution ' 

For both velocity profiles, the integrations required for succes

sive segments (beyond N = 2) were computed by two different numerical 

methods, In Method.! we evaluate the integral by a summation scheme 

using the exact concentration values calculated for the previous segment. 

This method is quite accurate, but very time consuming because of its 

use of a time scale with a constant increment which corresponds to a 

progressively smaller ~8 as N increases, In Method 2 we evaluate 

the integral by Simpson 1 s integration formula, getting the necessary 

concentration values by interpolation among the values calculated for 

the previous segmenL This method is based on the 8 scale, and com

putes the minimum number of concentration values necessary to go up 

to a specified maximum N; it is very fast but becomes unstable for 

large values of N, It seems possible that an optimum method would 

be obtained by combining the favorable features of the two methods, but 

this has not been done. 

In this section, these two methods are explained, using the 

quartic velocity profile for illustration. Results obtained for both ve

locity distr.ibutions are then given. 

a. Method l, This method numerically solves the analytical expres-

sion 

Jl ~ ( .. 1)~2 = 3 X T - --::-:7 ~ d~ 
. (3T-N+l)-l/2 N-l 3~ 

(26) 

with 

For ease of computation, a new time variable T is introduced, for 

which all the curves begin at T = 0. The appropriate transformation is 
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T = 3 T - N = N ( 39 - l ) . (27) 

Physically, 7' = 0 corresponds to the time of arrival (at the outflow) of 

the maximum-velocity flow filament, for which !;. = l. When the X-vs

time behavior of a bed length corresponding to N segments is evaluated 

from that of a length corresponding to N - l segments, the values of T 

(and T) used are based upon length N rather than uponlength (N-1). 

Hence, when T = 0 for the evaluation of XN' the function of T at which 

XN-l is evaluated (which can be termed T N-l) must also be zero when 

~ = l.. To state the problem another way, Eq. (27) can be extended to 

give 

TN-l =TN+ 3(TN-l -TN)-[ (N-1)-N} (28) 

From Eq. (26), TN~ 
1 

is seen to be T N-[l/(31;. 
2

)]. Hence, we obtain 

l 
TN_:l ='TN- ~ + l. (29) 

s 
A test of this relation shows that it does satisfy the condition stated 

above (TN= 1 =0 when !;. = l ). 

To eliminate subscripts, the function TN-l will be redefined 

as a time variable W. Equation (26), the general formula, thus be-

comes 

l 

= L.[T+I 2 
XN-l (W) s d!;. (30) 

Method l involves approximating this integral by a summation, 

using directly the X values computed from the previous segment, with 

the corresponding !;. values as shown below. A time increment 6 is 

selected such that 

'T = mo 
and 

·W=m'o, 

(31) 

(32) 
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where m and m 1 are integers. From the definition of W, we have 

~;. = o + r -. w)-
112 = [1 + (m- ffi• >or 1 ~'2 . (33) 

with m >-:- m 1 , !; can take on an infinite sequence of values starting at 

unity and tending toward zero. The general equation, in summation 

form, becomes 
m 1 =m-1 

= 3 ) [XN(W)] 
m 1 =0 av 

m 1 =m-1 2 2 
= 1.5 ) l XN(W}] (s v + s 1 +l) (sml -sml +l) · 

mi=O av m m 

(34) 

Illustration of the use of these equations is given in Appendix I-2. 

b. Method 2. Here the dimensionless time scale E>= T /N is used di

rectly, time being thus referred to the total length of the column rather 

than to the length of the individual segments. The general formula used 

in Method 2 is Eq. (2la}: 

r ·. 1' 1} 2 
8- 2"j!'! s dl;. 

3(N -1 )S . , 

For simplification, a new variable V is defined as 

N 1 
V= --6- ---....,. 

N-1 3(N-l)s2 

From this, we have 

and 

s = [3NE}- 3(N .:. l)V] -l/2 

3NE>-l 
3 (N -1) 

XN(S) = 4.1/3 X (V) (N-l) dV . 
N-l [3N6-3(N-l)V] 2· 5 

( 35) 

(36) 

(37) 

(38} 
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To compute the concentration values XN to. a dimensionless 

time value ~· it is necessary to know XN-l values to a time 8N-l 

larger than ~· The relation between the different time values is 

. i 1 
~-i =E>N +N-i {~- 5)' (39) 

where i is an integer. After the largest e that is needed' for the 

largest N has been specified, Eq. (39) indicates the largest E> that 

must be carried for each lesser ~umber of segments. 

Computation was made with the analytic results for N=2 as 

sta:rting values. In the computation for each new N, E> was varied by 

constant increments up to the limit. For each (9, Eq. (38) was evalu

ated by Simpson 1 s integration rule, with the X values for a specified 

·value of the argument V being obtained by interpolation. The number 

. of points us.ed in Simpson 1 s rule was determined by specifying the maxi

.mum interval between any two successive points ori the time scale. 

The Fort.ran listings for both methods are given in Appendix I- 2. 

Both programs also compute the area between the concentration-versus

time curve and a horizontal line drawn at X = 1. The stoichiometric 

p'oint should occur. at e = 1; thus' for correct computation, the above

merilioned area should also be unity. 

c. Results. Numerical results for the quadratic and the quartic dis

tribution obtained by Method 1 With o (quadratic) = 0.100 and 

o (quartic) = 0.166 7 are given respectively in Tables I-I and I-II. In 

Figs. I-2 and I-3, the same results are presented graphically as semi

logarithmic plots of X vs E>, the time scale being normalized by the 
__) 

stoichiometric time. The numerical results were limited toN ~45,due, 

to the relatively large amount of computer time involved in going further 

(about 0. 5 hr on the IBM 7090 was required for the present range of 

values),~ An exact estimate of the error. iriyolved in the use of Method 1 

is not ~9ssible; however, trial runs<for the quartic dis,tribution up to 

N = 10 showed that by· reducing thE:d.ncrement o from 0.1667 to 0.0833 

the x
10 

values changed only by 1 digit in the third place. Concentration 



N €>=0.6 

1 0.305556 
2 0.159055 
3 0.088238 
4 "" 0.051324 
5 0.030608 
6 
7 
8 

0.018543 
0.011357 
0.007013 

9 0.004357 
io o.oo2121 
11 0.001706 
12 0.001073 
13 0.000677 
14 0.000428 
15' 0.000272 
1"6' 0.000173 
17 0.000110 
18 0.000070 
19 0.000045 
20 0.000029 
21 0.000018 
22 "0.000012 
23 0.000007 
24 0.000005 
25 0.000003 
26 0.000002 
27 0.000001 

_" ___ 2.!L_O .ooooo 1 
29 0.000001 
30 o,oooooo 
"H 0.000000 
32 o.ooooco 
33 0.000000 
34 0.000000 
35 " 0. oooooo" 
36 o.oooooo 
37 o.oooooo 
38 o.oooooo 
39 0.000000 
40 o.ooooog 

Table I-1. Breakthrough concentration values (X) for the segmented laminar-flow model with quadratic velocity 

0. 7 o:8 0.9 1.0 

0.489796 0.609375 0.691358 0.750000 
0.3669,3 0.~2~802 0.638919 0.719336 
0.287963 0.469662 0.60~349 0.702030 
0-~32503 0.42i527 0.580729 0.690576 
0.190808 0.393416 0.560988 0.682131 
0.158282 0.364627 0.544349 0.675502 
0.132314 0.339684 0.529868 0.670079 
0.111253 0.317680 0.51698~ 0.665512 
0.093974 0.298014 0.505338 0.661580 
0.079673 0.280262 0.494679 0.658138 
0.067757 0.264113 0.484829 0.65~083 
0.057773 0.249331 0.475656 0.652342 
o.o49369 o~2j5729 0.467061 0.649859 
0.042269 0.223161 0.458963 0.647594 
0.036251 0.211506 0.451300 0.645513 
0.03(136 0.20066~ 0.444021 0.643589 
0.026778 0.190551 0.437084 0.641803 
0.021058 0.181097 0.4304~3 0.640137 
0.019876 0.172239 0.424098 0.638577 
0.017150 0.163925 0.417995 0.637110 
0.0~4811 0.156109 0.412122 0.635728 
o:o12ao1 o~·1487so o.406460 o.634420 
0.011072 0.141813 0.400992 0.633(81 
0.009584 0.135265 0.395704 0.632003 
0.008300 0.129077 0.390583 0.630881 
0.00719j 0.123224 0.385618 0.629810 
0.006237 0.117683 0.380798 0.628787 
0.005411 0.112433 0.376115 0.627806 
o.oo46<i_7_o~·io7453 0.371~61 o.626866 
0.004079 0.102728 0.367127 0.625963 
0.003543 0.098240 0.362807 0.625094 
0.00307'i 0.093976 0.358595 0.624257 
0.002677 0~089922 0.3~4486 0.623449 
0.002328 0.086065 0.350473 0.622670 
0~0020i~~;o~~393 0.346553 0.621917 
0.001763 0.078897 0.342722 0.621188 
0.001535 0.07~566 0.338974 0.620482 
0.001337 0.072391 0.33jJ06 0.61979d 
0.001164 0.069363 0.331715 0.619134 
0.001014 0.066475 0.328198 0.618489 

1.1 

0.793388 
o. 777410 
0.770727 
0.767693 
0.766352 
0.765931 
0.766059 
0.766535 
0.767241 
0.768101 
o. 769069 
o. 770110 
o. 771202 
0.772329 
o. 7734 78 
o. 774641 
0.775811 
0. 776984 
o. 778155 
o. 779322 
0.7804!:!2 
0.781634 
0.78277/ 
0.7!:!3909 
0.785031 
0.786141 
0.787239 
0.788324 
0.789398 
0.790459 
0.791508 
0.792545 
0.793569 
0.794582 
0.795582 
0. 7'165 70 
0.797547 
o. 7'J8512 
0.799466 
0.800408 

1.2 1.3 1.4 

0.826389 0.!:!52071 0.872449 
0.820196 0.852360 0.877001 
0.820143 0.856313 0,883281 
0.822088 0.861022 0.889400 
0.824747 0.865728 0.895004 
0.827667 0.870222 0.900078 
0.830657 0.874454 0.904672 
0.833630 0.878419 0.908847 
0.836541 0.882132 0.912657 
0.839372 0.885613 0.916149 
0.842114 0.888881 0.919365 
0.844763 0.891956 0.922337 
0.847320 0.894854 0.925093 
0.849788 0.897593 0.927658 
0.852170 0.900185 0.930052 
0.854470 0.902643 0.932293 
0.856692 0.904977 0.934394 
0.858839 0.907199 0.936371 
0.860915 0.909315 0.938233 
0.862925 0.911335 0.939991 
0.864871 0.913265 0.941655 
0.866756 0.915112 0.943230 
0.868585 0.916881 0.944725 
0.870359 0.918577 0.946146 
0.872081 0.920205 0.947498 
0:/373755' 0.921770 0.948787 
0.875381 0.923275 0.950016 
0.876963 0.924723 0.951190 
0.878502 0.926119 0.952312 
0.880000 0.927465 0.953386 
0.881459 0.928764 0.954416 
0.882881 0.930018 0.955403 
0.884268 0.931229 0.956350 
0.885620 0.932401 o. 
0.886940 0.933535 o. 
0.888228 0.934633 o. 
0.889486 0.935696 o. 
0.890715 o. o. 
0.891915 o. o. 
0.893089 o. o. 

1.5 

0.888889 
0.896209 
0.903756 
0.910474 
0.916332 
0.921456 
0.925972 
0.929985 
0.933578 
0.936815 
0.939750 
0.942425 
0.9441>74 
0.947125 
0.949203 
0.951127 
0.952915 
0.954580 
0.956135 
0.957590 
0.958956 
0.960240 
0.961449 
0.962590 
0.963669 
0.964690 
0.965658 
0.966577 
0.967450 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 
o. 

1.6 1.7 

0.902344 0.913495 
0.911418 0.923632 
0.919565 0.931966 
0.926414 0.938678 
0.932177 0.944168 
0.937087 0.948746 
0.941323 0.952627 
0.945020 0.955962 
0.948278 0.958863 
0.951173 0.961411 
0.953765 0.963668 
0.956100 0.965681 
0.958215 0.967489 
0.960140 0.969121 
0.961901 0.970603 
0.963518 0.971954 
0.965007 0.973191 
0.966385 0.974327 
0.967661 0.975375 
0.968849 0.976344 
0.969956 0.977242 
0.970990 0.978078 
0.971958 0.978857 
0.972867 0.979585 
0.973722 o. 
0.974527 o. 
0.975286 o. 
o. o. 
o. o. 
o. o. 
o. o. 
o. o. 
o. o. 
o. o. 
o. .o. 
o. o. 
o. o. 
o. o. 
o. o. 
o. o. 

1.8 

0.890 
0.983 
0.985 
0.986 
0.986 
0.986 
0.986 
0.986 
0.986 
0.986 
0.985 
0.985 
0.985 
0.984 
0.984 
o. 983 "" 
0.983 
0.982 
0.982 
0.981 
0.981 
0.980 
0.979 
0.979 
0.978 
0.977 
0.976 
0.975 
0.974 
0.973 
0.972 
0.971 
0.969 
0.968 
0.967 
0.965 
0.963 
0.962 
0.960 
0.958 



Table I-II. Breakthrough concentration values (X) for the segmented laminar-flow model with quartic velocity profile 

N 9=0.5 0.67 0.83 1.0 1.17 1.33 1. 50 1.67 1. 83 2.0 2. 33 

1 0.455669 0.646447 0.747018 0.807550 0.847279 0.875000 0.895243 0.910557 0.922472 0.931959 0.939657 
2 0.313635 0.565152 0.703622 0.784933 o. a 3631 <; 0.8708l7 0.8951.17 0.912907 1].'126348 0.936769 0.945027 
3 0.231530 0.512640 0.677476 o. 773386 0.832528 0.871183 0.897734 0.916734 0.930801 0.941514 0.949870 
4 0.176117 0.472610 0.658340 0.766012 0.831148 0.872814 0.900858 0.920568 0.934930 0.945718 0.954032 
5 0.136300 0.439849 0.643069 0.760800 0.830892 0.874913 0.904035 0.924193 0.938690 0.949457 0.957673 
6 0.106700 0.411951 0.630266 0.756895 0.831251 o. 877198 0.907137 o. 927589 0.942131 0.952828 0.960925 
7 0.084218 0.387589 0.619182 0.753860 0.831978 0.879549 0.910129 o. 930773 0.945307 0.955910 0.963879 
8 0.066889 0.365939 0.609372 0.751442 0.832940 0.881911 0.913004 0.933773 0.948265 0.958759 0.966599 
9 0.053388 0.346452 0.600544 0.749481 0.834060 0.884257 0.915768 0.93b612 0.951041 0.961420 0.969132 

10 0.042781 0.328740 0.592499 o. 747873 0.835289 0.886573 0.918428 0.939313 0.953664 0.963926 0.971512 
ll 0.034396 0.312518 0.585095 0.746543 0.836593 0.888852 0.920993 o. 941892 0.956157 0.966300 0.973767 
12 0.027730 0.297569 0.578226 0.745439 0.837951 o. 891092 0.923473 0.9443b6 0.958537 0.968564 0.975915 
13 0.022410 0.283723 o. 571809 0.744519 0.839349 0.893293 0.925875 0.94b746 0.960821 0.970734 0.977973 
14 0.018148 0.270844 0.565783 o. 743755 0.840774 0.895454 o. 928207 0.949044 0.963020 0.972821 0.979954 
15 0.014723 0.258821 0.560095 0.743123 0.842220 0.897578 0.930475 0.951269 0.965145 0.974837 0.981869 
16 0.011963 0.247563 0.554706 0.742604 0.843680 0.899666 0.932684 o. 95 3428 0.967204 0.976790 0.983724 
17 0.009735 0.236992 0.549581 0.742182 0.845151 0.901719 0.934840 0.955528 0.969204 0.978687 0.985529 
18 0.007932 0.227044 0.544692 0.741845 0.846627 0.903740 0.936948 0.957575 0.971152 0.980536 0.987288 
19 0.006470 0.217661 0.540015 0.741584 0.848108 0.905730 0.939010 o. 959513 0.973053 0.982340 0.989006 I 
20 0.005283 0.208797 0.535531 0.741390 0.849591 0.907691 0.941032 0.961527 0.974911 0.984105 0.990689 N 
21 0.004318 0.200407 0.531222 0.741255 0.851075 0.909624 0.943015 0.963442 0.976731 0.985834 0.992339 ~ 

22 0.003532 0.192456 0.527072 0.741173 0.852558 0.911532 0.944963 0.965319 0.978516 0.987531 0.993960 
23 0.002892 0.184910 0.523069 0.741140 0.854039 0.913415 0.946879 0. 96 7163 0.980268 0.989198 0.995524 
24 0.002369 0.177739 0.519202 0.74ll50 0.855519 0.915275 0.948764 0.968975 0.981991 0.990839 0.996932 
25 0.001942 0.170918 0.515459 0.741200 0.856995 0.917113 0.950621 0.970759 0.983688 0.992451 0.998103 
26 0.001593 0.164423 0.511833 0.741287 0.858469 0.918930 0.952452 o. 972516 0.985359 0.994003 0.999007 
27 0.001308 0.158232 0.508315 0.741406 0.859939 0.920728 0.954258 0.974249 0.987008 0.995435 0.999627 
28 0.001074 0.152327 0.504898 0.741556 0.861406 0.922508 0.956041 0.975958 0.988633 0.996703 o. 
29 0.000883 0.146688 0.501576 0.741735 0.862869 0.924270 0.957802 0.977646 0.990226 0.997783 o. 
30 0.000726 0.141302 0.498342 0.741940 0.864328 0.926015 0.959543 0.979315 0.991760 o. o. 
31 0.000597 0.136151 0.495192 0.742169 0.865783 0.927744 0.961265 0.980964 0.993204 o. o. 
32 0.000491 0.131224 0.492121 0.742420 0.867234 0.929458 0.962970 0.982596 0.994539 o. o. 
33 0.000404 0.126508 0.489124 0.742693 0.868682 0.931158 0.964657 0.984206 0.995747 o. o. 
34 0.000333 0.121990 0.486197 0.742986 0.870125 0.932844 0.966328 0.985787 o. o. o. 
35 0.000274 0.1l7661 0.483337 0.743297 0.871564 0.934517 0.967984 0.987326 o. o. o. 
36 0.000226 0.113511 0.480540 0.743625 0.873000 0.936178 0.969626 0.988810 o. o. o. 
37 0.000186 0.109529 0.477803 0.743970 0. 8744 31 0.937827 0.971254 0.990228 o. o. o. 
38 0.000154 0.105709 0.475123 0.744330 0.875859 0.939465 0.972869 o. o. o. o. 
39 0.000127 0.102041 0.472498 0.744705 0.877283 0.941092 0.974469 o. o. o. o. 
40 0.000104 0.098518 0.469926 0.745094 0.878703 0.942709 0.976052 o. o. o. o. 
41 0.000086 0.095133 0.467403 0.745496 0.880120 0.944315 0.977614 o. o. o. o. 
42 0.000011 0.091880 0.464927 0.745910 0.881533 0.945913 0.979149 o. o. o. o. 
43 0.000059 0.088752 0.462498 0.746336 0.882943 0.947501 o. o. o. o. o. 
44 0.000049 0.085744 0.460112 0.746773 0.884350 0.949081 o. o. o. o. o. 
45 0.000040 0.082851 0.457768 0.747221 0.885754 0.950652 o. o. o. o. o. 
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values calculated by Method 2 with .68== 0,042 uptoN= lOdid not dif

fer more than 2 digits in the third place from those computed by 

:Method L Beyond N"' 10, cumulative errors led to erroneous results 

unless .6€) was much further reduced, which in turn was very time con

suming, 

The coordinates of Figs ,I- 2 and I- 3 are very convenient for com

paring experimental breakthrough curves with the theoretical results, 

since a logarithmic scale of the experimental volume or time will only 

differ from the logarithm of dimensionless time by a constant additive 

term, Dimensionless slopes at the midpoint (X= 0,50), defined as 

s 1 = e50 (dX/cl9), are given in Tables I-III, and I-IV, In this definition 

850 is the E> value corresponding to X= 0,50, and dX/dE> (=s) is the 

slope at e
50

; the tabulated slopes were obtained graphically from plots 

of the data on rectangular coordinates, These slopes will be used later 

to compare the results from different models, 

A frequency-response analysis for the quadratic velocity distri

bution, obtained from the step-input response, is given in Appendix I- 3, 

A similar approach could be used for the quartic velocity distribution, 

if needed, 

C, Diffusion Model 

In the diffusion model for longitudinal dispersion, it is assumed 

that equations of exactly the same form apply as those describing the 

molecular-diffusion process, The governing equation is 

Ea 2
c uoac_ac 

--2 - -E- 1fZ - at ' 
E oz 

(40) 

where z is axial distance, t is time, c is the solute concentration of 

interest, E is the superficial axial-dispersion coefficient, E is the 

void fraction, and U 
0 

is the superficial velocity of the fluid, The solu

tion to this equation has been given for two different sets of boundary 

conditions corresponding to a finite-length column and to an infinite 
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Table I-III. Midpoint slopes for the segmented-laminar-flow model, 
with quadratic velocity profile 

N 8 so s E) •S 
50 

1 0. 708 1.45 1.027 

2 0. 785 1.43 1.123 

3 0.825 1.48 1.221 

5 0.865 1.62 L401 

7 0.888 1. 71 L518 

10 0.905 1.88 1. 701 

15 0.925 2.14 1. 980 

20 0.932 2.28 2.125 

25 0.940 2.42 2.280 

30 0.950 - 2.60 2.470 

35 0.952 2. 72 2.589 

40 0.954 2.80 2.671 
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Table I-IV. Midpoint slopes fo'r the 'segmented-laminar-flow model 
with quartic velocity profile 

N 8 5o 
s e5o· s 

1 0.502 1.230 0.691 

2 0.615 1.269 0. 780 

3 0.660 1.285 0.848 

5 0. 715 1.364 0.975 

7 0. 741 1.498 1.110 

10 0. 767 1.557 1.194 

15 0. 790 1. 720 1. 359 

20 0.813 1. 750 1.423 

25 0.820 1.859 1.525 
i 

30 0.830 1. 989 1.651 

35 0.839 2.062 L 730 

40 0.847 2.150 L820 
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column;. both of these are reviewed below; a semi-infinite column has 

also been tre~ted by Aris and AI11.undson 
1 

and others. 
23 

1. Finite-Length Column (Bounded Diffusion) 

For a column of length h, the following conditions hold. The 

feed conditions representing a step-function input are · 

for z=O,att~O(-),c=O, 

and 

at t ~ 0 (+), c = c
0 

. 

The inlet boundary condition is determined as follows: At the inlet 

(i.e. , z = 0) the rate of arrival of solute outside by convection is equal 

to the rate of removal of solute inside by diffusion and by convection, 

plus the rate of accumulation of solute at the interior boundary. To 

obtain a solution, the latter term is neglected; this is equivalent to 

assuming a steady state at the inlet. ·Then, from integration of Eq. (40), 

the boundary condition at z "' 0 and at all t > 0 is obtained: 

.E dc(O+)- U c(O+) = const = - u
0 

c(O-) (41) 
, dz 0 . 

At the bed outlet, a similar material balance (again assuming a negli

gible accumulation rate) gives 

(42) 

In a situation of rising concentration (an arriving breakthrough curve), 

regardless of the mechanism of material transport, we can never have 
10,42 

a downstream concentration higher than an upstream value. 

Since Eq. (42), with the negative dc/dz permissible in terms of this 

physical picture, would le_ad to c (h+) > c (h-), the only physicall)Y accept

able condition is that, at z = h, 

~ = 0, for all t > 0 az 
and hence that c (h-) = c (h+). 



-31-

a. Exact expression. An exact solution for the diffusion equation, ------=--"--- ' ' 
Eq. (40), applied to a column of finite length, has been given by Yagi 

and Miyauchi. 
42 

Brenner has shown that the gen~ral equation and the 

boundary conditions are similar to those governing heat loss to "sinks 11 

at the ends of a slab, 
3 

for which Carslaw and Jaege; have given the 

general solution. 
8 

The variables in Eq. (40) will be made dimensionless by intro

ducing the relations N = h/1. = h u
0
jE, X= cjc

0
, T = u0t/le,and 

Z = z/h. Here N is a "column Peclet number, " or total number of 

"dispersion units. " Thus we have 

(43) 

The solution to this equation, at the exit of the column, has the form 

where 11 rn 

Nfl (N sin fl + 2 fl cos fl ) n n n n 

is given:: :h:0:::(~~d:~:rquation 

(44) 

(45) 

b. Asymptotic solution. The formal solution given by Eq. (44) converges 1 

too slowly to be of much use when N is large or" T is small. There

fore, Brenner developed the following asymptotic expansion by applying 

the Laplace transformation:
3 

Xe = 1/2 + 1/2 erf [(N/ 46) 
112o-eiJ- (NE>/TI) 

112
[ 3 + ~ N/2)( 1 + cr))] 

• exp [-N(l - 6)
2 /4~+ [l/2+(N/2)(3+4E>)+(N

2
/4)(l+E>)

2J 
• exp(N) · erfc [(N/48)

1
/

2 (1-tSU , . (46) 

with €> = T/N. 

' 
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This last expression can further be simplified by .utiliiirlg asy·mptotic 

expansions for all the' error functio~s except those whos~ 'argufn.ents 

are (N/46) l/
2 (l..:ef.' Brenner therefore presented the-·m.6'dif1ed asymp-

- ; . . ..3 .. : . :·: :'.~ '•,'>.' 
totic expans1on 

Xe" 1/2 + {I/2) erf [<N/40) 1 /2{1-eiJ+~ (~N) 112 

where 

4;(a) 

·. [ 'N(l 8) 2]. ·: 
• ex~ - . . 49 . .lfi(a) 

2 a(l-a} 2 
= (l - 6a + 4a ) - (NfZ) . (l - 18a + 24 a ) + · · · 

K [a(l-a)] K + (-l) (NfZ) <j>K(a) +· ... ' 
:.1 

(4 7) 

(48) 

and 

~K{n) = I, 3, ,5,,,, {ZK+l)~i+l - 6~ + 4{K+l) n
2
], {49) 

and a = 8/ (8+1 ). A different approach from that of Brenner, based on 

a semi-infinite column, has led to the following asymptotic expression 

as developed b:~:is ~~:d[:::::•(o; __ 1Na)n: ::e:d~de:; :(a~:J)s]'
23 

(SO) 

2JT ,. . 2/T 

1 
+ 

2/TI 

T 

1 
This relation is believed to give similar results to Eq. (47), and is only 

shown here for reference. It contains the same boundary condition at 
• ' .,'· ·. I 

z = 0, but not at z = h. 

c. Numerical evaluations. Calculation!) of outlet concentration were 

carried out in this investigation for a large number of N and €) values, 
. . ' 

u,si~g the exact e'xpressidn l Eq. (44)'] ·with 18 roots. The roots of the 

transcendental relatiori·Eq; (45), calC-ulated 'on a digital computer, are 

given in Appendix I-4. :J'he ,bre'akth,rough value.s are given in Table I-V. 



Table I-V. Breakthrough concentration values (X) for bounded-diffusion model 

N ">=0.4 0.5 0.6 0. 7 0.8 0.9 1.0 l.l 1.2 1.3 1.4 1.5 1.6 1.7 2.0 

l 0.2547 0.3359 0.4090 0.4742 0. 5323 0.5840 0.6300 0.6710 0.7073 0.7397 0. 7685 0. 7941 0.8169 0.8371 0.8854 
2 0.1862 0. 2760 0. 3613 0.4391 0. 5086 0. 570 I 0.6241 0.67!6 0. 7130 0. 7493 0. 7810 0.8087 0.8330 0.8541 0.9028 
3 0.1367 0.2269 0. 3!85 0.4053 0.4844 0. 554 7 0.6165 0.6703 0. 7169 0.7570 0. 7916 0.8213 0.8468 0.8687 0.9173 
4 0.1015 0.1879 0. 2823 0.3755 0.4623 0.5404 0.6091 0.6687 0. 7200 0. 7637 0.8008 0.8323 0.8588 0.8813 0. 9294 
5 O.U761 0.1568 0.2517 0. 3493 0.4426 0.5275 0.6025 0.6675 0. 7230 o. 7699 0.8093 0.8422 0.8696 0.8923 0. 9396 
8 0.0184 0.0906 0.1821 0.2870 0. 3945 0.4962 0.5875 0.6664 0. 7 327 0. 7874 0.8319 0.8677 0.8963 0.9189 0.9617 

10 0.0681 0.1502 0. 2552 0.3690 0.4798 0.5803 0.6672 o. 7 396 0. 7984 0.8453 0.8821 0.9106 0.9325 0.9715 
!6 0.0284a 0.0874 0.1858 0.3102 0.4422 0.5662 0.6733 0. 7604 0.8281 0.8786 0.9155 0.9419 0. 9605 0.9881 
20 0.0150a 0.06!4a 0.1525 0.2799 0.4226 0. 5599 0.6786 0. 7734 0.8448 0.8962 0.9319 0.9561 0. 9720 0. 9932 I 
24 o.0085a 0.044la 0. !267 0. 2545 0.4059 0. 5552 0.6843 0. 7856 0.8597 0.9109 0. 9448· 0. 9666 0.9801 0.9961 w 
32 o.ooz8a 0.0232a 0. 0890a 0.2135 0.3782 0. 5483 0.6962 0. 8077 0.8847 0. 9339 0. 9635 0. 9804 0. 9898 0. 9988 w 
40 0.0009a 0.0 124a 0.0637a O.l815a 0. 3553 0. 5435 0. 7066 0.8267 0. 9045 0. 9504 o. 9755 0. 9884 0.9947 0. 9995 
8oa 0.0006 0.0135 0.0886 0. 2760 0.5311 0.7539 0.8932 0. 9606 0.9873 0. 9964 0. 9905 0. 9998 0. 9999 

aValues calculated by Brenner 
3 
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and presented graphically in Fig. 1-·3. Brenner's results, which be

came available subsequent to these calculations, have been used to ex

pand the table in the low-T-high·-'N range. Outside this range there is 

close agreement between comparable values from the two calculations, 

but different N values from those shown were usually used by Brenner, 

Midpoint slopes are presented in Table I-VII; numerical results for dif

ferent values of N and E> are given in Table I-V and presented graphi

cally in Fig. I-4. 

2. Infinite-Length Column (Unbounded Diffusion) 

The second type of boundary conditions applies to a column of 

infinite length (extending from z = + Cltl· to z = - ao). Initially, the section 

extending from z = - 0111> to z = 0 is filled with solute; at t = 0 it begins 

to flow into the test section. The initial condition can be written 

at t = 0 and z = 0 (-), c = 0; z = 0 ( +), c = c 
0 

The boundary conditions, as stated by Danckwerts, 
1 

are 

at z = <>0 and t > 0 c = 0, 

and 

at z = - eo and t > 0 c = c
0 

. 

With the use of these boundary conditions the following solution (in di

mensionless form) to Eq. (40) is obtained for the outflow concentration: 

X = 1/2 [1 - erf jN <-=-=_E>> J 
2,Je 

(51) 

Numerical results for different values of N and E> are given in 

Table I- VI and in Fig. I-5. The 'unbounded 11 solution l Eq. (44)] and 

the ''bounded" solution l Eq._ (51)] approach each other at high N. 

Table I- VII gives the midpoint slopes, calculated from the relation 

1/2 s = (N/ 4n) ; (52) 

these slopes are practically idehticalfor N > 20. 
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Table I- VI. Breakthrough concentration values (X) for unbounded diffusion model 

N 0:0.3 0. 5 0.6 0. 7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 2.0 

I 0.1831 0. 3085 0.3575 0. 3999 0.4372 0.4703 0. 5000 0.5269 0.5514 0.5738 0.5945 0.6136 0.6479 0.6915 
2 0.1006 0.2398 0.3028 0. 3600 0.4115 0.4580 0. 5000 0.5380 0.5724 0.6038 0.6323 0.6585 0. 7043 0. 7602 
3 0.0588 0.1932 0. 2635 0.3303 0. 3921 0.4486 0.5000 0. 5465 0. 5885 0.6264 0.6606 0.6915 0. 7446 0.8068 
5 0.0217 0.1318 0.2071 0. 2854 0.3618 0.4338 0.5000 0.5599 0.6136 0.6613 0. 7035 0. 7407 0.8020 0. 8682 
7 0.0084 0.0929 0.1670 0.25! 2 0. 3379 0.42\8 0. 5000 0.5708 0. 633 7 0.6887 0. 7365 0. 7775 0. 8424 0.9071 

10 0.0021 0.0569 0.1241 0.2113 0. 3085 0.4068 0.5000 0.5844 0.6585 0. 7219 0. 7752 0.8193 0.8850 0.9431 
15 0.0002 0.0264 0.0786 0.1631 0.2701 0. 3864 0.5000 0.6030 0.6915 0. 7644 0.8227 0.8682 0. 9293 0. 9736 
20 0.0000 0.0127 0.0512 0.1284 0.2398 0. 3694 0. 5000 0.6185 0. 7181 0. 7973 0.8575 0.9016 0.9552 0.9873 I 
25 0.0062 0.0339 0.1024 0.2146 0. 354 7 0. 5000 0.6320 0. 7407 0.8239 0.8840 0.9255 0.9712 0. 9938 w 
30 0.0031 0.0228 0.0825 0.1932 0.3415 0. 5000 0.6440 0. 7602 0.8459 0. 9048 0.9431 0. 9812 0. 9969 "' 40 0.0008 0.0105 0.0544 0.1587 0.3187 0.5000 0.6651 0. 7929 0.8803 0.9347 0.9661 0.9918 0. 9992 
50 0.0002 0.0049 0.0365 0.1318 0.2991 0.5000 0.6832 0.8193 0. 9058 0. 9545 0.9794 0. 9964 0.9998 
70 0.0000 0. 0011 0.0169 0.0929 0. 2664 0. 5000 0. 7!36 0.8600 0. 9402 0. 9772 0.9921 0. 9993 0.9999 
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Table I- VII. Midpoint slopes for diffusion model 

Bounded diffusion Simple diffusion 

N 8 5o 
s e · s 50 050. s 

1 0.746 0.610 0.455 0.282 

2 0. 787 0.665 0. 5 2.3 0.400 

3 0.821 0. 729 0.600 0.488 

5 0.866 0.845 0. 732 0.631 

7 0.896 0.922 0.826 0. 746 

10 0.920 1.044 0.960 0.892 

15 0.942 1.195 1.126 1.092 

20 0.954 1.330 1.265 1. 261 

40 0.962 1.855 1. 786 1. 784 

60 0.968 2.259 2.183 2.182 

80 0.973 2.592 2.520 2.520 

100 0.976 2.888 2.820 2.820 
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D, Random- Walk Model 

The random-walk model applies to the motion of tracer mole

cules traveling through the column, . Their path is made up of a succes

sion of motion and rest phases, where the motion phases require negli

gible time compared to the rest phase, Physically, the motion phase 

may correspond to the narrow void channels in a packed bed, through 

which the liquid moves at high velocity; whereas the rest phases will 

then represent the wider void spaces, Diffusion, also, could be viewed 

as a random-walk process of individual molecules or of fluid packets, 

but one occurring with equal ease in the upstream and downstream di

rections, The distinguishing feature of the present model is that the 

random walk occurs in the downstream direction only, 

In the derivation the fluid is considered to travel with a charac

teristic velocity u, in a series of discrete jumps corresponding to a 

mean free path .t, 5
' 

23 
For a column of length h, in which a particu

lar portion of fluid has stayed for a time t, a number of mixing lengths 

N = h/1 and a dimensionless time scale T 1 = ut/J, can be defined, 

The analysis is based upon the probability of finding any one 

packet of fluid at N mixing lengths away from the inlet at time T 1 , 

after it has taken (n+l) jumps away from the inlet in its random walk;( 

all possible paths for arriving at N at time T 1 are taken into account, 

This probability is 

p(N, T') = ~~ [ exp(-N-T)] (53) 

This relation can be converted to a continuous function, which has the 

normalized form 

p(N, T' )dT' =[ exp{-N-T' )]1
0 

(Z,j NT') dT' (54) 

Here 10 is the zero-order Bessel function of the first kind with imagi

nary argument, If a step input of tracer is fed in continuously starting 

at t:j.me T) = 0, the equation for the concentration at plane N is 
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T' 
. c ( X= -=) exp(-N-11) I (2/N11) co . 0 . 

0 

(55) 

with X increasing from zero toward unity as T .1 increases toward 

infinity, It may be noted that X = l-J (T i, N), using a function J derived 

to describe heat and mass transfer in fixed beds, 
18

• ~ 2 Two useful sim

plifications for Eq, (55), as developed by Klinkenberg, 
27 

are 

X= l/2[1 + erf f.rrr -jN -· _l ___ 1-.-)] 
\ 8/W 8JTi 

(56) 

and 

X= 1/2 [1 + erf (j'T 1 
- l/4- ,jN + l/4]. (57) 

It is useful to define a time scale E> such that, for any value of N, the 

stoichiometric point will occur for 8 = L A m~terial balance yields 

the result that when t = h/U, with U being the average linear velocity, 

T' = N + l, The derivation of this important result is given in 

Appendix 1=5. Through this relation, the characteristic velocity is re

lated to the average linear velocity by the equation u = U (N + l )/N; 

the dimensionless time becomes T 1 = (Ut/.£) · (N+ 1 )/N . These con

siderations lead to the following definition of 8: 

8=.!= ~ 
N N+l 

(58) 

Also, evidently, we have T= Ut/1 = T 1 N/(N+l). 

With these definitions, the Klinkenberg approximations become 

X= l/2 [1 + erf (

1

-../ (N+l)0 -..JN"- -1 - - . 
1 )J- (59) 

sJN s,J<N+l)e 

and 

X= 1/2{ l + erfl,j(l\1+1)8-l/4 -j~N+.l/4]}', (60) 

Values of X for different values of 0 arid N computed from Eq, (60) 

are given in Table I- VIII and Fig. I-6. Dimensionless slopes 6)50 · s are 

given in Table I-IX, e
50 

being the time when X=0.5, and s bei~g dX/dE> at 

this point. 



Table I- VIII. Breakthrough concentration values (X) for·the random-walk model 

N 0=0.4 0.5 0.6 0. 7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7 2.0 

2 0. 2305 0.2955 0.3596 0.4217 0.4808 0. 5363 0.5880 0.6356 0.6791 0. 7185 0. 7540 0. 7857 0.8390 0.8974 
4 0.1487 0.2140 0.2845 0.3573 0.4298 0.4999 0.5661 0.6272 0.6826 0. 7322 0. 7758 0.8137 0.8740 0.9331 
6 0.1011 0.1623 0. 2345 0. 3136 0.3958 0.4773 0.5551 0.6271 0.6920 0. 7490 0. 7980 0.8393 0.9016 0.9562 
8 0.0705 0.1259 0.1970 0. 2799 0.3693 0.4603 0. 5482 0.6297 0. 7024 0. 7652 0.8180 0.8612 0. 9228 0.9710 

10 0. 0499 0.0991 0.1676 0.2522 0.3474 0.4465 0. 5434 0.6333 0.7127 0. 7803 0.'8356 0.8796 0. 9390 0. 9807 
12 0.0357 0.0787 0.1437 0. 2289 0.3285 0.4347 0. 5398 0.6373 0. 7227 0. 7941 0.8512 0.8953 0.9516 0. 9870 
14 0.0258 0.0630 0.1240 0. 2088 0.3118 0.4244 0. 53 70 0.6414 0. 7322 0.8068 0.8651 0. 9086 0.9614 0.9912 
16 0.0187 0.0507 0.1075 0.1911 0.2968 0.4151 0. 534 7 0.6457 0. 7413 0.8185 0.8774 0.9200 0.9692 0. 9940 
18 0.0137 0. 0409 0.0936 0.1755 0.2832 0.4066 0.5328 0.6499 0. 7499 0.8293 0. 8884 0. 9299 0.9753 0.9959 
20 0.0100 0.0332 0.0817 0.1616 0. 2707 0. 3988 0.5311 0.6540 0. 7 580 0.8392 0.8982 0. 9384 0.9801 0. 9972 
22 0.0073 0.0270 0.0715 0.1491 0.2592 0.3915 0.5297 0.6581 0. 7658 0. 8484 0.9071 0. 9458 0.9840 0.9981 
24 0.0054 0.0220 0.0627 0.1378 0. 2485 0. 3846 0.5285 0.6621 0. 77 32 0.8570 0.9150 0. 9523 0. 9871 0. 9987 
26 0. 0040 0.0180 0.0551 0.1275 0. 2385 0.3782 0.5274 0.6660 0. 7802 0.8650 0.9222 0.9579 0. 9895 0.9991 
28 ·o. oo 30 0.0147 0.0485 0.1182 0.2291 0.3721 0. 5264 0.6698 0. 7870 0.8724 0.9288 0.9628 0.9915 0. 9'994 
30 0.0022 0.0121 0.0427 0.1097 0. 2203 0. 3663 0. 5255 0.6736 0. 7934 0.8793 0.9347 0.9671 0.9931 0. 9996 
40 0.0015 0.0100 0.0231 0.0765 0.1831 0.3407 0.5222 0.6910 0.8218 0. 9080 0.9572 0.9819 0.9975 0.9998 
so 0.0700 0.0127 0.0543 0.1540 0.3192 0.5198 0. 706 7 0.8452 0. 9290 0.9715 0. 9899 0.9991 0. 9999 
60 0.0071 0.0389 0.1307 0. 3006 0.5181 0.7209 0. 864 7 0. 9448 0. 9809 0. 9943 0. 9999 0. 9999 I 
80 0.0023 0.0205 0.0957 0. 2693 0.5157 0. 7459 0.8954 0.9661 0.9912 0. 9982 0. 9999 0.9999 ~ 

100 0.0008 0.0110 0.0711 0. 2435 0.5141 0. 7672 0.9182 0.9788 0.9959 0.9994 0. 9999 0. 9999 -120 0.0060 0.0535 0.2216 0.5128 0. 7859 0.9355 0. 9866 0. 9980 0. 9999 0. 9999 0. 9999 I 
150 0.0025 0.0353 0.1939 0.5115 0.8099 0. 9544 0. 9932 0. 9993 0. 9999 0. 9999 0. 9999 
zoo 0.0006 0.0182 0.1575 0.5100 0. 8423 0.9738 0. 9977 0. 9999 o. 9999 0.9999 0. 9999 
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Fig. I-6. Breakthrough curves for the random-walk 
model. 
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Table I-IX. Midpoint slopes for the random-walk model 

N 850 s 9 5o· s 

2 0.8333 0.568 0.473 

3 0.8750 0.639 0.559 

4 0. 9000 0.695 0.626 

5 ' 0.9167 0. 750 0.688 

8 0.9444 0.894 0.844 

10 0.9546 0. 981 0.936 

15 0.9688 1.164 1.128 

20 0.9763 1.323 1.292 

25 0. 9808 1.466 1.438 
( 

30 019839 1.596 1.570 

40 0.9878 1.832 1.810 

50 o. 9901 2.036 2.016 
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An eddy-dispersion coefficient E and a Peclet number P for 

the random-walk model are defined by comparison with the diffusion 

model: 

and 

E = u
0

..€ 

P 
= dp- dp uo 
--r- E 

Consistent with this, we have N=h/..€ = Ph/dp = hU0/E. 

E. Mixing-Cell Model 

(61) 

(62) 

K d Alb 2 9 f 11 d b h . . 1 ' 6 ' 7 ' 3 3 ramers an erta, o owe y ot er 1nvest1gators, 

proposed that the mixing effects occurring in process equipment could 

be described in terms of a cascade of mixing cells. In packed columns, 

the voids between the packing particles can be considered as unit cells 

for such mixing, the influent to a cell acting as a jet which sustains a 

mixing condition" At high Reynolds -number values, well within the 

turbulent~flow regime, the individual voids may each approach perfect 

mixing, Even if local mixing i.s not complete, a series of voids may 

be represented theoretically by a mixing celL 

In each "cell, 11 perfect mixing is assumed to occur, such that 

the effluent from the cell has the same composition as the fluid at all 

points within the celL For a step-function feed of a tracer solute (at 

concentration c
0

) at the inlet to a sequence of mixing cells of equal size, 

the effluent from the Nth cell in the series has the dimensionless con-

cent ration 

- t l t 1 t -t t [ (. )2 ( ' N-lJ ~-
XN - 1 - l + T + Z! t .. + . , , , (N- l) ! ~) e 

(63) 

where t is the average residence time in the sequence. 

The mixing-cell model is identical with a random-walk process 

in which the time for each step is variable, but the step length is fixed. 

The probability of encountering a tracer molecule in the outflow from 

the Nth cell, at a time t after it has entered the first cell, is 
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-T N e T 
p(N, T) = N! (64) 

Integrating with respect to time, from T = 0 to T, leads to Eq. (63). 

By comparing the diffusion model and the mixing-cell model, 

1 . . f h 1,29,33 d h d' 30,35 severa 1nvest1gators or one-p ase · an two-p. ase stu 1es 

have shown that the cell size in the mixing-cell model corresponds to 

twice the mixing length in the diffusion model. This· comparison can 

be most easily seen by using the finite-difference form of the diffusion 

equation. The diffusion equation has the form 

E a2x uo ax ax_ 
€ -;7 -E az- at- 0 · (65) 

With division by u
0

, and replacement of E by 1u0 ,. and adoption of 

the finite-difference form, this becomes 

(66) 

where ~X and ~2x stand for the first and second differences, evalu

ated at plane ND. We now adopt ~z = U (=2dp/P), an.d obtain 

.41e dXN 
~zx- z~x -uo ~ (67) 

By evaluating the finite-differences over a distance of 21 upstream 

and downstream from plane ND' we obtain 

or 
UedXN 

X -X=--N-1 . N u
0 

dt 

(68) 

(69) 

The unsteady-state stirred-tank equation, without chemical re

action, can be written in the form 
dXN 

XN-1 - XN = t ---err- (70) 
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t being the average residence time in the tank. If the unit length is 
·,,. 

21., t becomes equal to 21fj'u
0

, and hence 

dX 
X X - 2~ .. N 

N-1 - N - u
0 

---err-'. ( 71) 

which is seen to be identical with Eq. (69). The key to this matching of 

the two models lies in the choice of .6.z = .U. · Only. for this particular 

inte:rval will Eq. (67), the function of XN-l' XN' and X~Hl' reduce 

to .a function solely of XN-l and XN. The stirred-tank equation like

wise involves a function of. XN-l and XN; and perhaps fortuitously, 

it is found to be the same function. The weak point in the match lies in 
. . 

the initial adoption of the finite -difference form; this is valid only if 

.6.z < < h, or hence if N( = h/1) is large. A somewhat more explicit re-
29 • 

lation, as stated by Kramers and Alberta is 

L!o.h 1 h 
Nc - 1 ::::: 2E = 2 I <72) 

where Nc is the number of mixing cells in series. Differentiation gives 

the relation dNc/dz = l/2J.l = (l/2) dND/dz], which is equivalent to the 

comparison just made. If every void in a packed bed were to be a per

f~ct mixer, then 2~::::: 0.8dp and P = 2.5. Experimentally, P::::: 2 is 

often encountered. 

Numerical results for different values of N, as given by Eq. (63), 

are presented in Table I-X and Fig. I-7. For comparison with other 

models, the dimensionless slopes for the cell model are given in 

Table I-XI, as computed analytically from the expression 

(N -1) ! 
-NE> ....N-1 

e t:'J • 

For large values of N, Stirling's approximation for the factorial 

N! = e-N NN A./ 2iTN leads to 

(7 3) 

(74) 



Table I-X. Breakthrough concentration values (X} for the mixing cell model 

N (h0.3 0.5 0.6 0. 7 0.8 0.9 0.95 1.0 1.05 1.10 1.2 1.30 1.40 1.5 1.7 2.0 

1 0.2592 0.3935 0.4512 0.5034 0.5507 0.5934 0.6133 0.6321 0.6501 o·.6671 0.6988 0.7275 0.7534 0. 7769 0.8173 0.8647 
2 0.1219 0.2642 0.3374 0.4082 0.4751 0.5372 0.5663 0.5940 0.6204 0.6454 0.6916 0. 7326 0. 7689 0.8009 0.8532 0. 9084 
4 0.0338 0.1429 0.2213 0. 3081 0.3975 0.4848 0. 5265 0.5665 0.6046 0.6406 o. 7058 0. 7619 0.8094 0.8488 0.9072 0.9576 
6 0.0104 0.0839 0.1559 0. 2469 0.3490 0.4539 0.5050 0. 5543 0.6012 0.6453 0.7241 0. 7898 0.8427 0.8843 0.9401 o. 9797 
8 0.0033 0.0511 0.1133 0.2030 0.3127 0.4311 0.4900 0.5470 0.6014 0.6522 0.7416 0.8137 0.8693 0.9105. o. 9607 0. 9900 

10 0.0011 0.0318 0.0839 0.1695 0.2834 0.4126 0.4782 0.5421 0.6029 0.6595 0. 7576 0.8342 0.8906 0.9302 0. 97 39 0. 9950 
12 0.00C4 0.0201 0.0629 0.1429 0.2588 0.3969 0.4684 0.5384 0.6050 0.6668 0.7722 0.8519 0. 9080 0.9451 Ot9825 0. 9975 
14 0.0001 0.0128 0.0475 0.1214 0.2376 0.3831 0.4599 0.5 356 0.6075 0.6740 0. 7857 0.8673 0.9222 o. 9566 0.9882 0.9987 I 
16 0.0000 0.0082 0.0362 0.1037 0.2190 0. 3 707 0.4524 0. 5333 0.6102 0.6809 0. 7979 0.8808 0.9341 0. 9656 0. 99 20 0.9993 *"' 18 0.0000 0.0053 0.0277 0.0889 0. 2025 0. 3594 0.4456 0.5314 0:6130 0.6876 0.8093 0.8927 0. 9439 0.9726 0. 9945 0.9996 --.J 
20 0.0000 0.0034 0.0213 0.0765 0.1878 0. 3491 0.4394 0. 5297 0.6157 0.6940 0.8197 0. 9032 0.9522 0. 9781 0. 9962 0. 9998 
24 0.0000 0.0015 0.0127 0.0571 0.1624 0.3305 0.4283 0.5272 0.6213 0. 7061 0. 8385 0.9208 0. 9650 0. 9860 0. 9982 0.9999 
30 0.0000 0.0004 0.0059 0.0374 0.1321 0. 3065 0.4140 0. 5243 0.6293 0. 7227 0.8621 0.9409 0. 9779 0.9927 0. 9994 0. 9999 
34 0.0000 0.0002 0.0036 0.0284 0.1158 0. 2925 0.4055 o. 5228 0.6345 0.7328 0.8755 0.9511 0.9836 0. 9952 0. 9997 0.9999 
40 0.0000 0.0001 0.0017 0.0190 0.0956 0. 2737 0. 3941 0.5210 0.6419 0. 7469 0.8927 0. 9630 0. 9894 0. 9974 0. 9999 0. 9999 
44 0.0000 0.0000 0.0011 0.0146 0.0844 0. 26 24 0.3871 0.5200 0.6467 0. 7556 0. 9026 0.9692 0.9921 0. 9983 0. 9999 0. 9999 
50 0.0000 0. 0000 0.0005 0.0098 0.0703 0.2468 0.3774 0.5188 0.6535 0.7678 0.9156 0. 9765 0.9949 0.9991 0. 9999 0 9999 
60 0.0000 0.0000 0.0002 0.0052 0.0523 0. 2240 0. 3629 0.5172 0.6642 0. 7861 0. 9331 0. 9999 0. 9999 0. 9999 0. 9999 0. 9999 
70 0.0000 0.0000 0.0000 0.0028 0.0392 0. 2044 0. 3499 0.5159 0.6741 0.8023 0. 9999 0. 9999 0. 9999 0. 9999 0. 9999 0. 9999 
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Fig. I-7. Breakthrough curves for the mixing-cell model. 
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Table I-XI. Midpoint slopes for the mixing-cell model 

N a so s a · s 50 

1 0.690 0.500 0.346 

2 0.840 0.686 0.576 

4 0.920 0.838 0. 771 

6 0.945 1.006 0.950 

8 0.960 1.162 1.115 

10 0.975 1.279 1.247 

15 0.979 1.615 1.589 

20 0.983 1. 792 1. 761 

25 0.986 2.060 2.034 

30 0.988 2.212 2.186 

35 0.990 2.402 2.380 

40 0.991 2.547 2.524 
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F. Relations Between the Different Models 

Chemical·-engi·neering interest in 'axial dispersion; up t.o the 

present, has centered upon fluid mixing in the turbulent (or nearly tur

bulent) flow regime. In this region, the diffusion, random-walk, and 

void-cell-mixing models are nearly equivalent, and all appear tC? 

give consistent descriptions of the experimental results. The analysis 

of liquid-liquid extraction in packed columns places new emphasis on 

the interpretation of longitudinal-dispersion behavior in laminar flow. 

From a theoretical viewpoint the void-cell mixing model cannot apply to 

this region, at least for liquids, owing to the fact that perfect mixing· no 

longer is approached in each void cell. The diffusion model with finite 

boundary conditions and the randon1-walk model, as empirical treat

ments, may apply relatively well to all Jlow conditions. Clearly the 

segmented-laminar-flow model, with an appropriate velocity profile, 

is applicable only to the laminar-flow regime. For the most part, the 

step responses given. by the different models do not coincide over their 

entire rise. Quantitative comparison hence has to be made at some ref

erence condition; this is selected here as the (dimensionless) midpoint 

slope. A plot of dimensionless slopes for the different models, as func

tions of N, is given in Fig. I-8. This figure shows that, for small 

slopes, the use of one or the other model to analyze experimental data 

can easily lead to N values (or to packing P~clet numbers) differing by 

a factor of two. 

The finite-boundary diffusion model and the random-walk have 

very similar midpoint-slope values. The entire breakthrough curves 

given by the two models have quite similar shapes, with the result that 

the t
50 

values for the diffusion model are only about Zo/o less than those 

for random walk. This small difference can be eliminated by use of a 

dimensionless midpoint slope as a comparison criterion; thus, for 

practical purposes, we can assume that the two models are identical. 

The segmented-laminar-flow result with a quartic velocity distri

bution approaches the diffusion model at large values of N; in the 
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low-N-value range, at any given N,. it predicts less axial dispers'ion 

than the preceding models. The segmented-laminar-flow result with 

quadratic velocity profile {not recommended for use) seems to indicate 

that, for large N 1 s, NSFP approaches ND/2. 

For reference purposes only the unbounded-diffusion results are 

also shown, which for large N values become equivalent to the diffusion 

model with finite boundary conditions. The void-cell model at hi~h N 

is approximately equivalent to the diffusion model (with Nc z ND/2). At 

low N 1 s it approximates the unbounded diffusion model. 

In the low-N (shallow-bed) .range the difference between the dif

fusion model and the segmented-laminar-flow model (quartic) is quite 

large. The proper choice between these models, for laminar flow in 

packed beds, must depei).d at present upon comparisons with experi

mental breakthrough curves.··· 
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G. Notation for Part I 

A Ainplitude of inlet concentration wave. 

B
1

, B 2 Va·riables defined by Eqs. (38) and (39). 

c 

erf 

erfc 

f 

f(t) 

F 

h 

Conc€mtration. 

Flow average concentration. 

Feed concentration. 

Mean composition above which the concentration oscillates. 

Particle diameter. 

Longitudinal-dispersion coefficient, based on superficial 

velocity, U 01. X 
2 -x2 

Error function; r e ' dx 
,fTI Jo 

Complementary error function; 1-erf X 

Friction factor. 

Dimensionless function of time. 

Laplace transform of time -dependent functions. 

Total,height of bed. 

h 1 Modified height of bed = (N -1 )h/N. 

H 

i 

. m,m 1 

n 

N 

NRe 

p 

p 

r 

Heaviside unit function. 

Integer. 

Bessel function of zero order, with imaginary. argument .. 

Colburn j factor, for mass.transfer. 

Function used in regenerative heat and mass transfer operations. 

System transfer function. 

Mixing length . 

Integers. 

Number of random-walk jumps under consideration. 

Number of dispersion units (mixing lengths), .laminar-flow 

segments, or mixing cells. 

Reynolds number, u
0
dp/v. 

Probability. 

Peclet number, d / J.. 
p 

Radial coordinate. 
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-r Rq..dius v:~ Cto.r . 

.. R Total radius. 

s .Slope of the breakthrough curve at: X == 0.5 (based on 9 scale). 

s 1 Dimensionless midpoint slope (ba,sed on t/t 50 scale). 

S Cross section. 

t Time. 

t 1 Time ~efined by Eq. (3). 

t"" Residence time. 

T Dimensionless time. 

T 1 Dimensiohles s time. 

u Gharacteristic,or local, velocity in segmented laminar-flow 

model. 

u Characteristic velocity in random-walk. 

u Maximum velocity. max 
U Interstitial velocity or mean linear velocity. 

u
0 

Superficial velocity; E U. 

U AsymptotiC'uniform velocity of fluid past a single ~-phere . 
• co 

V Variable defined in Eq. (36). 

W Variable defined in Eq. (30). 

X Dimensionless concentration; c/ c 0. 
z Axial distance. · 

Z Dime:q.sionless length; z/h. 

a ·Dimensionless time ·, ®/(E>t-1). 

o Time increment. 

E Void-fraction. 

~ Variable defined by Eq. (9), (s= l-r 
2 
/R 

2
); fraction of surface 

. --~J. ·enclosed between r and·. R. 

£ Dummy variable. 

T] Dummy variable. 

fJ.n Roots of transcendental equation l Eq. (45)] . 

v Kinematic viscosity. 

T Time, variable. 

9 Dimensionless time T/N. 
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E>
50 

Time corresponding to X = 0. 5. 

ljJ Phase shift of outlet wave. 

w Angular frequency. 

w1 Dimensionless frequency. 
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Appendixes for Part I 

I-1. Analytic Integration ·for Columns Having One or Two Segments 

For beds consisting of one or two segments, exact analytical ex

pressions can be derived fo~ the breakthroughcurves. 
' . ~ . . . 

A. . Quadratic ¥elocity Profile 

For N = 1, Eq. (18) can be written 

X 1 (T) = 2 j I [ X 0 (T - ~} dC 
ZT. 

because X
0

, the inlet concentration, is unity, Eq. (1} simplifies to 

XI (T) = 21 C dp [1-(z~rJ. 

··Finally, we have 

XI (T) =[I -(2~) 
2

JH(T -0 SJ 

For N = 2, Eq. (18) can be written 

l 

[c 3 

J = 21 ' I; 

(2T.s-: 1) 
2 

. 1 
ZT-l 

ds . 

( 1) 

(2) 

(3) 

(4) 

(5) 

This integral can be solved in two parts; the first one is straightfor

ward and leads t:o 
1 ]_I_ 1. dC 

ZT~-1 

c. (6) 

. :: 
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The solution to the second part is given in standard integral tables as 

and 

. < 

+ 31n (2T(,-I)- 2Tt-l] II 

Z'T-""l 

" ( 2~£) 4 [ { ( 2 T- I) 2- H~ i- I r 
. . 4 l 
t 4 ( 2 T - 1 ) - T _ l + 6 1. n ( 2 T - l )J ·, 

1 (2T-l)
2 

1 
( 2 T) 4 + -( -2 T-)---.4-( 2-T---l-) --z (2T-l)z -

8 12 
+ - --4..,-- ~n(2T-l). 

(2T)
4

(2T-l) (2T) 

8(2T-l) 

(2T)
4 

(7) 

(8) 

(9) 

This expression can be further simplified by regrouping the following 

terms: 

and 

-
__ 1--..... __ 2T(2T-2) 

l -
(2T-l)

2 
(2T-l)

2 
' 

(2T-l)
2 

l (2T-2)[ (2T-l)
2

+l] 

(2T) 4 + (2T) 4 (2T-l) 2 =- : (2T) 3(2T-l) 2 

8(2T-l) 8 

- (2T) 4 + (2T) 4(2T-l) 

2T-2 
(2T-l) 

Adding these terms gives the following final form: 

{t (2T}'i +I] .(2T+l) - (ZT-1)-8} 

lZ 1n(2T-l) 
(2T)

4 

(10) 

( ll) 
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or 

X (T)::: {(2T-2)[(ZT)
3

+(ZT)
2

- 6liZ ln(ZT-1)} H(~-d (12) 
2 

( 2 T) 
3 ( 2 T- 1) j ( 2 T) 

4 . · 

For columns of more than two segments, no exact analytical expression 

was found. 

B. Quartic Velocity Profile 

The steps in the derivation of the exact analytical expression for 

the quartic velocity profile are very similar to those for the quadratic 

distribution. For N = 1, Eq. (18a) becomes 

1 

x 1 (T) = 31 ; [xo(T _ :-!z-\l s
2 

ds 
. (3 T> -1/2 • 3s B 

with x
0 

= 1, this equation simplifies to 

1 

1 2 3 1 
x 1 {T) = 3 s ds = Is I _ 112 , 

. (3T) -1/2 . {3T) 

or 

X
1 

(T) = [1 - (3T)-J/Zl H(T-1/3) . 

For N = 2, Eq. (18a) becomes 

1 J 1 -3/2 2 
X 2 (T) = 31 _ r1- (3T- :-z-) s ds 

(3T-1)1/2 L \ ~ 

This integral will be solved· in two parts; the first integral leads to 

3' r . s 2 ds = 1 ;,. _l_ . 

1 
( ) 3/2 

j{3T-1)-l/2 3T-l 

The solution of the second integral is given in standard integral tables: 

( 13) 

(14) 

(15) 

( 16) 

( 17) 

( 18) 
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(19) 

3/2 J 1 
1 [(3Tl;2-l) + 6(3TI;2-l)l/2- 3 - --3 2 lfZ I 

(3T) (3Tt; -1) (3T-l)-l 2 

= l [ ( 3 T - 1 ) 
3 

+ 6 ( 3 T- 1 ) 
2 

- 3 ( 3 T- 1 )l 
3T(3T-1)

3
/

2 J 

1 

~ (3T) 3(3T-1) 3f 2 
2 

[1 + 6(3T-l)-3(3T-l) ] 

_ (3T)
3 

+ 6(3T)
2 

- 24(3T)+l6 

- (3T) 3(3T-l) 3f 2 • 

Finally, we have 

(2 0) 

(21) 

(22) 

X2(T) = [1 - 2(3T)3 + 6(3T)2- 24(3T)+l6] H(T-2/3) (23) 
(3T) 3 (3T-1) 3fZ . 

For N > 2, no analytical expression for the breakthrough curve could 

be derived, 
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I- 2. Numerical Solutions for Segmented Laminar Flow 

A .. Graphical Illustration of Method 1 

Method 1 uses a complex summation.scheme which can be most 

easily explained by a graphical illustration as follows: 

The general equation of Method 1[ Eq. (34)J is 

XN(T) = 1.5 mr-1 [ XN(W)jav(!;~, + !;~, +l)(!;m' -!;m+l). 

m'=O 

In the calculations based on Method 1, simple arithmetic averages were 

used starting with the exact analytical expression for N = 1 and N = 2. 

The pattern of calculation is shown schematically in Fig. I-9. 

This figure is drawn, for calculations from N = 1 to N = 2, with a. time 

interval o = 0.50. The upper half of the graph shows XN-l (in this 

case x
1

) vs T on linear coordinates. The lower half shows lines of 

constant TN = mo , the .ordinates being a logarithmic scale of (!;, 
2

) .6.1;, . . · av 
The calculation method involves obtaining the product of a value of XN-l 

by a corresponding value of g 2
.)av.6.!;,. Since a linear average of X is 

used, the lower part of the graph is displaced horizontally by the distance 

+o/2, to give an exac;:t, correspondence of abscissas (at the same m 1 ) 

between two points onthe T N-l scale. Then for each value of m (or TN). 

the products are added together and the sum multiplied by 1.5. 

. A sample calculation for T 2 = 2,0(m= 4, 0 = 0.50). 

At m 1 = 0 (1;,2) .6.1;, = 0.0404 av XN-1 = 0.2279 Product = 0.0092 

1 = 0.0672 = 0.5511 = 0.0370 

2 = 0.1274 = 0.6967 = 0.0888 

3 = 0. 3061 = 0. 7773 = 0.2379 

Sum = 0.3730 

The resulting concentration x
2 

= 1.5XSum = 0.5595. The same pro

cedure is repeated for all the values of m (or TN). The calculation is 

ended at an arbitrary high value, m , which is kept the same for all 
max 

values of N. 
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o~~-=~~---~_.---~~~~~~~ 

J.JI 
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~ 0.02 -
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Fig. I-9. Illustration of Method l for numerical integration. 
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The true value of X
2 

at T 2 = 2.0 (or e2 = 0.667) as given by 

. Eq. (25a) is 0~566 7. In the computer calculations, the error shown here 

was largely eliminated by taking 6 = 0. 25, and by starting with the exact 

analytical expression for N = 2 which gives a less steep curve. 

The X-value output from the computer was tabulated at specified 

values of a (=T /N) corresponding to particular values of T included 

among those at which calculations were made. 

1. Fortran Progra~s for Numerical Methods 

The IBM-7090 Fortran programs:'fo·rboth velocity profiles and 

both methods are given in the following pages (see Table 1-XIL). A 

partial list of variable names follows; the· mathematical symbols are 

those given in the nomenclature. 

a. Variables havingthe same meaning in all programs 

N number of segments; N varies from 1 to NMAX 

T dimens~onless time 8 

DT time increments ~8 

C, Cl dimensionless concentration X 

CP, CT arrays used for printout 

AR area computed for checking purposes; AR should be close 

to lt, 

b. 

A 

TAU 

'DTl 

Variables used in Method ·1 

2 
corresponds to ~ 

time variable T 

time increment 6 

'AI: ~ (used only in quartic distribution) 

c. Variables used in Method 2 

Fl time increment at which concentration values are printed 

out 

T3 maximum time value for N = NMAX 



DTll, DT12 

TMl 

TMAXl 

A 

v 
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distances separating the points used in Simpson's rule 

quantity at which either DTll or DTJ:2is used. If the 

variable is smaller than TMl, DT 11 is used 

maximum time value for which concentration values are 

calculated for each N value 

product under the integral sign of Eq. (38) 

integration variable 
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Table I-XII. Fortran progra,.;,_ for both velocity profiles and both methods. 

SEGr~E~TED LA.M INA~ fLOW ~ODlL QU.\DRA f !C ME THUD l A. H~N:l I CCI 
DI~cNSION C(4tY'Ol,C1(4C00),1\(4JOC•l,CPtlJ0vl,Cf(l0C,l 
READ IN DATA CHARACTERIZING NUMDER OF S~GMLNTS,NUMdfR OF tiME 
INTERVALS AND NUMBtR UF PRINT buT~VALUES DlSIKED 
READ JNPUT TAPE 2,500,~MAX,MMAX,LMAX,OT,OT1 
DC 10 l=1,MMAX .. 
A ( L l = l ./ ( l. +FLOAT F ( L l * C T 1-0 Tl l ** 2 

10 CONTINUE 
c ( l) =0. 
SUM1=<-.50 
EXACT EXPRESSION FOR FIRST SEGMENT 
N=l 
LFAXl=LMAX+1 
DC 20 M=Z,LMAXl 
T=0.5+FLOATF(Ml•DT-DT 
C!Ml=l.-l./(2.•Tl••2 
C1!Ml=T 
SUMl=SUMl+(1.-C(Mll 

20 cer-n INUE 
AREA CALCULATION FOR CHECKING PURPOSES 
Ml=MMAX 
SUM1=SUMl-l 1.-CI~Hl l/2. 
AR=SUM1•DT + 0.5 
HEADINGS FOR PRINT OUT 
SET UP RESULTS FOR PRINT OUT 
00 25 Ll=l,LMAX 
M= l + Ll 
CPILll=CI~\l 

CTI Ll l =C 1 I M l 
25 CONTINUE 

WRITE CUTPUT TAPE 3,30C 
WRITE OUTPUT TAPE 3,400,(CTILll,Ll=l,LMAXl 
WRITE OUTPUT TAPE 3,6QO,N,tCPILl),L1=l,LMAXl,AR 
EXACT EXPRESSION FOR SECOND SEGMENT 
1~=2 

Clll=o.c 
SUt'1=0.5 
00 30 M=2,1'MAX 
TAU=FLOATFIMl•DTl-DTl 
Tl=ITAU+2. l/2. 
C ( M l =I 2. • fl- 2. l • I ( 2. * T ll u 3+ ( 2. * T 1 l *" 2-6. l I ( I 2. • Tl-1 • l * ( t:. • T 1 
l • • 3 ) - ( 12 .I I 2. * T 1 l **4 l •L UG F I 2. * T 1- 1. l 
SUMl=SUMl+(l.-CIMl) 

3C CONTINUE 
AREA CALCULATION FUR CHECKIN~ PURPOSES 
Ml=M~\AX 

SUMl=SUMl-11.-C(Mlll/2. 
Z2=DTl/FLOATFI2•Nl 
AR=SUMl•Z2 + 0.5 
SET UP RESULTS FOR PRINT OUT 
DC 55 Ll=l,LMAX 
B=Ll 
M=l.l+FLOATFt2•Nl•B•IDT/DTll 
C PI L 1 l =C ( M l 

55 CONTINUE 
WRITE OUTPUT TAPE 3,600,N,ICPILll,Ll=l,LMAX),AR 
START OF NUMERICAL COMPUTATION FOR COLUMNS OF 3 OK MORE SEGMENTS 
DC 200 N=3,NMAX 
M=l 
CIMl=O.O 
SUMl=0.5 
DC 80 M=2,t'MAX 



SU~=O.O 
DO 50 M1=2,M 
J=M-M1+1 
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SUM=SUM+IAIJI-AIJ+11 I;,ICIM11+CIM1-11 1/2. 
50 CCNTINUE 

IFISUM-1.170,70,60 
60 SUM=1.0 
70 C11MI=SUM 

SUM1=SUM1+11.-C11MII 
8C CONTINUE 

OG 86 M=1,MMAX 
86 CIMI=C11MI 

AREA CALCULATION FOR CHECKING PURPOSES 
M1=MMAX 
SUM1=SUM1-11.-CIM111/2. 
Z2=DT1/FLOATFI2•NI 
AR=SUM1•Z2 + 0.5 
SET UP RESULTS FOR PRINT OUT 
DC 120 Ll=1,LMAX 
B=L1 
M=1.1+FLOATFI2•NI•B•IDT/Df11 
C PIll I =C I M I 

120 CONTINUE 
200 WRITE OUTPUT TAPE 3,600,N,ICPIL11,L1=1 0 LMAXJ,AR 
300 FORMATI1H1,40X,38HSEGMENTED LAMINAR FLOW MODEL METHOD l I 
400 FORMATI2X,1H1,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=~4.2 

1 3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2, 
2 3X,2HT=F4.2,3X,2Hf=F4.2,3X,2HI=F4.2,5X,2Hlll 

500 FORMATI315,2F6.3l 
600 FORMATII3,1H ,12F9.6,F8.3l 

CALL EXIT 
END 
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SEGMENTED LAMINAR FLOW MODEL QUADRATIC METHOD 2 A. HENNICO 
DIMENSION CI4000I,Cli40001,AI40001,CPI10001,CTI1001 
READ IN DATA CHARACTERIZING NUMBER OF SEGMENTS,NUMBER OF TIME 
INTERVALS,NUMBER OF PRINT OUT VALUES DESIRED AND NUMBER OF POINTS 
USED IN SIMPSONS FORMULA. 
READ INPUT TAPE 2,500,NMAX,LMAX,DT,Fl,T3,TMl,DTll,OT12 
EXACT EXPRESSION FOR FIRST SEGMENT 
N=l 
MAX. TIME AT WHICH CONC.VALUES ARE COMPUTED TO AVOID EXTRAPOL. 
Al=NMAX-N 
A2=N 
TMAXl=T3+1T3-0.51•1Al/A21 
Ml=ITMAXl-0.51/DT 
~MAX=Ml+l 

Clll=O.O 
SUM1=0.5 
DO 10 M=2,MMAX 
T=O.S+FLOATFIMI•DT-OT 
CIMI=l.-l./12.•TI••2 
CliMJ=T 
AREA CALCULATION FOR CHECKING PURPOSES 
SUMl=SUMl+ll.-CIMII 

10 CONTINUE 
Ml=MMAX 
SUMl=SUMl-11.-CIMlll/2. 
AR=SUMl•DT + 0.5 
HEADINGS FOR PRINT OUT 
SET UP RESULTS FOR PRINT OUT 
DO 30 ll=l,U1AX 
B=ll 
M=l.l+B•IFl/DTI 
CPilli=CIMI 
CTilli=CliMJ 

30 CONTINUE 
WRITE OUTPUT TAPE 3,300 
WRITE OUTPUT TAPE 3,400,ICTILli,Ll=l,LMAXJ 
WRITE OUTPUT TAPE 3,6oo,N,ICP1lli,Ll=l,LMAXJ,AR 
EXACT EXPRESSION FOR SECOND SEGMENT 
N=2 
MAX. TIME AT WHICH CONC.VALUES ARE COMPUTED TO AVOID EXTRAPOL. 
Ar=NMAX-N 
A2=N 
TMAXl=T3+1T3-0.Sl•IAl/A21 
Ml=ITMAXl-0.51/0T 
MMAX=Ml+l 
c 111=0.0 
SUM1=0.5 
DO 40 M=2,MMAX 
T=O.S+FLOATFIMI•DT-DT 
Tl=2.•T 
CIMJ=I2.•Tl-2.1•112.•Tli••3+12.•Tli••2-6.J/112.•Tl-1.1•12.•Tl 
1••3J-112./12.•Tll••4l•LOGFI2.•Tl-1.J 
AREA CALCULATION FOR CHECKING PURPOSES 
SUMl=SUMl+ll.-CIMJI 

40 CONTINUE 
Ml=MMAX 
SUM1=SUMl-11.-CIMlll/2. 
AR=SUMl•DT + 0.5 
SET UP RESULTS FOR PRINT OUT 
DG 60 ll=l,LMAX 
B=Ll 
M=l.l+B•IFl/DTJ 
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CPCL1l=CIMI 
60 CCNTI~UE 

WRITE OUTPUT TAPE 3,600,N,CCPCLllrL1=1,LMAXl,AR 
START OF NUMERICAL CONPUTATION FOK COLUMNS OF 3 OR MOKE SfGMENlS 
DU 200 N=3,NMAX 
SUM1=0.5 
MAX. TIME AT hH!CH CONC,VALUES ARE COMPUTED TO AVOID EXTRAPOL. 
Al=NMAX-N 
A2=N 
r~AXl=T3+CT3-0.5l•CA1/A2l 

Ml=CTMAXl-0.51/DT 
I'~AX=Ml+l 

Y=FLUATFCNI 
DC 130 M=2,MMAX 
r=u.50+FLOATFCMI•OT-DT 
IFCr-TMll 90,'1•),92 

90 DT1=DT11 
GO TO 93 

<n DTl=DT12 
NUMBER OF POINTS USED IN SIMPSONS INT~GRATION FORMULA 

93 J4=112.•T•Y-1.l/12.•(Y-l.ll-•).5)/0r1 
K1=2•J4+1 
O=CC2.•T•Y-1.l/12.•CY-l.ll-0.5l/CFLOATF(K1-1ll 
VT8L=C.5 
DC 110 K=1,K1 
V=0.5+CFLOATF(K-1 l l•B 
CONC~NTRATION VALUES COMPUTED BY INTERPOLATION ROUTINE TLUDX 
CALL TLUDXCV,VTBL,MMAX,C,F,OTI 
O=CY-l.l/IY•T-CY-l.l•Vl••3 
ACKI=O•F 

11C CCNTINUF 
SIMPSCNS FORMULA FCR INrEGRAL EVALUATION 
CALL ARSIMPIK1,C,A,Kl 
SU~M=0.5•R 

IF ISU~M-1.) 125,12'>,120 
120 SUMM=1.0 
125 C11~1l=SUMM 

AREA CALCULATION FOR CHECKING PURPOSES 
SUM1=SUM1+11.-C11Mll 

130 CONriNUE 
DC 135 M=1,MMAX 

135 CCM.l=CliMl 
M1=MMAX 
SUM1=SUM1-C 1.-CCM1 l l/2, 
AR=SUM1•DT + o;s 
SET UP RESULTS FOR PRINT UUT 
DC 141) Ll=1,LMAX 
B=Ll 
M=l.l>O•CFl/DTl 

l4C CPCLll=C(Nl 
200 WRITE OUTPUT IAPE 3,600,N,(CP(L1),L1=l,LMAXI,AR 
400 FORMAT(2X,lHI,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4,2,3X,2HT=F4.2, 

l 3X,2HT=F4.2,3X,2Hr=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4,2, 
2 3X,2HT=F4,2,3X,2Hr=F4.2,3X,2HT=F4.2,5X,2Hl1l 

30C FCRMAT(1H1,40X,38hSEGMENTEU LAMINAR FLO~ MODEL METHOD 2 
50C FORMAT(21~,6F6.3l 

600 FCRMATII3,1H ,12F'1.6,F8.3l 
C!.LL EXIT 
ENC 
SUOROUTINt TLUOXCV,VTOL,MMAX,C,F,DTI 
SUHROUTI~E TLUDX USES A LINEAR INTERPOLATION FORMULA 
DIMENSION Cl4COOI 
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FN=~MAX 
VFIN IS THE LAST ARGUMENT FOR WHICH INTERPOLATION IS PUSSIHLE 
VFIN=VTBL+(FN-1.l•OT 
IF V IS LARGER THAN VFIN THE ROUTINE GIVES CONC.VALUE FOR VFIN 
IF V IS SMALLER THAN VTBL THE ROUTINE GIVES CUNC.VALUE FOR VT~L 
IF IV-VFINl110,125,125 

llC IF (V-VTBLl120,120,115 
115 ZEL=IV-VTBLl/DT . 

L=ZEL 
ZELl=FLOATF ( L l 
PERCE"'=ZEL-ZELl 
LP=l+L 
LP1=LP+l 
THE INTERPOLATED CGNC.VALUE DESIRE6 IS GIVtN AS F 
F:C(LPl+IPERCENl•ICILP1l-CILPl l 
GC TO 130 

120 F=Cill 
GO TO 130 

125 M1=FN-l. 
L=~d>1AX 

F=C ILl 
130 RETURN 

END 
SIMPSCNS INTEGRATION FORMULA 
SUBROUTINE ARSIMPIK1,d,A,~l 
THE NUMREK OF POINTS USED IN SIMPSON$ RULt IS COMPUTED BY 
THE MAIN PROGRAM 
THE RESULT OF THE INTEGRATION IS GIVEN AS R 
DIMENSION AI4COOl 
SET= A ( 1 l +II ( K ll 
N1=K1-1 
N2=K1-2 
SUM=O. 
SUM1=i.J. 
DO 5 K=2,"11,2 
SUM=SU,+4.0•A(Kl 

5 CCNTII'iUE 
DO 15 K=3,N2,2 
SUM1=SUM1+2.0•A1Kl 

15 CONTINUE 
R=($ET+SUM+SUM1l•B/1.0 
RtTURN 
ENC 
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SEGMENTED LAMINAR FLOW MODEL QUARTIC METHOD 1 ALPHON~E HlNNICO 
lJ I MENS I 0 N C I 4 0 0 G l , C 1 ( 4 C 0 0 l , A I 4 (; C 0 l , 1\ 1 I 4 C 0 C l , C P I 1 0 (; 0 ) , C T I l c· 0 l 
READ IN DATA CHARACTERIZING NUMUEK OF SEGMENTS,NUMHER OT TIME 
I~TERVALS AND NUMBER OF PRINT UUT VALUES DESIRED 
READ INPUT TAPE 2,500,~MAX,MMI\X,LHAX,OT,Dil 

DC 10 L=l,MMAX 
AILl=1./11.+FLOATFILl•CTl-OTll 
V=A(L) 
Allll=SQRTF!Vl 

10 CONTINUE 
Clli=J. 
SU,.,1=0.5 
EXACT EXPRESSICN FOR FIRST SEGMENT 
N=l 
Lr-',AX1=LMAX+l 
DC 20 M=2, U~AX 1 
T=l1./3.l+FLUATF!Ml•DT-OT 
T1=3.•T 
C It•") = 1.-1. II I Tl) * S QR T F ( Tl l l 
C11Ml=T 
SUM1=SUM1+11.-C!Ml l 

ZC CCNTINUE 
AREA CALCULATION FOR C~ECKING ~URPGSE~ 
M1=LMIIX1 
SUM1=SUM1-11.-C(Mlll/2. 
AR=SUM1•DT+(l./3.l 
HEADINGS FOR PRINT OUT 
SE:T UP RESULTS FOR PRINi OUT 
DC 25 Ll=1,LMAX 
M= i+Ll 
C PILl l =C I M l 
C T ( Ll l =C 1 ( M) 

25 CCNTINUE 
WRITE OUTPUT TAPE 3,3CC 
WRITE. OUTPUT TAPE 3i40C,!CTILll,L1=1,LMAXl 
WRITE OUTPUT TAPE 3,6ou,N,(CPILli,L1=1,LMAXl,L\R 
EXACT EXPRESSION FCR SlCCNO SEGMENT 
N=2 
c ( 1) =0. 
SUM1=0.5 
DO 30 t-1=2,t-'MAX 
TAU=FLOATF!Ml•DT1-0T1 
Tl=TAU+2. 
C!Ml=1.-(2.•1T1l~•3+6.•(T1l••2~24.•T1+16. )/( 11Tll••ll•IT1-1.l 
• •l. 5) 
SUM1=SUM1+11.-C!Ml l 

30 CCI\TINUE 
AREA CALCU~ATION FOR C~ECK1N~ PURPOSES 
Ml=MMAX 
SUr-'l=SliM1-11.-CIM1l l/2. 
Z2=DT1/FLOATFI3•Nl 
AR=SUM1*Z2+1 1./3.) 
SET UP RESULTS FOR PRINT OUT 
DU 55 Ll=1,LMAX 
B=L1 
M=1.1~FLOATFI3•Nl•B•IOT/DT1l 

C PI L1 l =C I M l 
55 CCNTINUE 

WRITE OUTPUT TAPE 3,600,N,(CP!Lli,L1=1,LMAXl,AR 
START OF NUMERICAL COMPUTATION FOR COLUMNS OF 3 OR MORE SEGMENT~ 
OU 200 N=3,NMAX 
M;= 1 



50 

60 
70 

80 

86 

120 
200 
300 

l 
400 

l 
2 

500 
600 

Clf"l=O.O 
SUMl=U.S 
OU !lO M=Z,MMAX 
!>UM=O.O 
DC 50 Ml=2 ,M 
J=M-Ml+1 
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S U t'. = S lJ M+ (A ( J) +A ( J + l l l " (A 1 ( J l- A l( J + l l l • ( C ( M l l +C ( M 1- 1 l l 
CCNT lNUE 
SU~1=0. 75•SUM 
I~(SUM-1.170,70,60 
SUM=l.U 
CliMl=SUM 
SUMl=SUMl+(l.-Cl(Mll 
CGNfii\UE 
DC 86 M=l,I'MAX 
CIMl=CliMl 
AREA CALCULATION FOR CHECKING PURPOSES 
Ml=t-'MAX 
!>UMl=SUMl-(l.-C(M1ll/2. 
Z2=DT1/FLUATFI3•Nl 
AR=SUM1•Z2 + (1./3.) 
SET UP RESULTS FOR PRINT OUT 
DO 1·20 L1=hLMAX 
d=Ll 
M=1.l+FLOATF(J•Nl•U•!OT/OT1l 
CP(Lll=C!Ml 
CCNfiNUE 
~RITE OUTPUT TAPE 3 1 60Q,N,(~P(Lll,Ll=l,LMAXl,AR 
FCRMAT(lHl,35X,46HSEGMfNTLO .LAMINAR FLO~ MODEL QUARTIC M[THOD 2 

) 

FORI'Af(2~,1HI,3X,ZHT=F4.2,3X,2HT=f4.2,3X,2HT=F4.2,3X,ZHT=f4.2, 

3X 1 2HT=F4.2,3X,2HT=F4.2 1 3X 1 2HT=F4.2 1 3X 1 2Hf=F4.2,3X,2Hf=F4.2, 
3X,ZHT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2,5X,ZHARl 
FORMAT(315,2F9.6l 
FOR~ATII3,1H ,l2F9.6,F8.3l 
CALL EXIT 

END 

.... 
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SEGMENTED LAMINAR FLOW MODEL QU.RTIC METHOD 2 ALPHONSE hENNICU 
DIMENSION Cl4000l,C114000l,AI4COOl,tPI400~l,CTI100l 
INTERVALS,NUMBER UF PRINT OUT V~LUES UESIKED AND NUMBER OF POINTS 
READ IN DATA CHARACTERIZING NUMB~R OF SEGM[NTS,NUMDER Of TIME 
USEC IN SIMPSONS FORMULA. 
READ INPUT TAPE 2,5QO,~MAX,LMAX,DT,F1,T3,fM1oUf11,DT12 

T13=( 1./3. l 
Clll=O. 
SUM1=:).5 
EXACT EXPRESSION FOR ~IR~T S~GMENT 
N=1 
LI!AX1=LMAX+1 
DC 20 M=2,LMAX1 
T=Tl3+FLOATF(Ml•Fl-F1 
Tl=3.•T . 
CIMl=l.-1./ll(ll•SQRTFITll l 
Clll!l=T 
ARE. CALCULATION FOR CHECKING PU~POSES 
SU~l=SUM1+11.-CIMll 

20 CCNTINUE 
M1=LMAX1 
~UMl=~UMl-ll.~tl~1ll/2 •. 
AR=SUr".l*F1+Tl3 
HEACI~GS FOR P~INT OUT 
SET UP RESULTS FOR PRl~T OUT 
OC 25 Ll=l,LMAX 
M=1+Ll 
C PILl l =C I M l 
C TILl l =C lIM l 

25 CCNTINUE 
WRITE OUTPUT TAPE 3,300 
WRITE OUTPUT TAPE 3,40C,ICTIL1l,L1=1 1 LM~Xl 
WRITE G0TP~T T~PE 3,bOO,N,ICPIL1l,Ll=l,LMAXl,AR 
EXACT EXPRESSION FOR SECO~O ~~GMENT 
N=2 
Cl1l=O. 
SUMl=O.'> 
MAX. TIME AT WHICH CONC.VALUES ARE COMPUTED TO AVOID EXTRAPOL. 
A1=NMAX-N 
A2=N . . 
TMAXl=T3~1T3-Tl3l•IA1/A2l 
Ml=ITMAX1-T13l/OT 
~MAX=M1+1 
DC 30 f'=2,MMAX 
T:Tl3+FLOATF1Ml•DT~DT 

.T 1=6;•T . 
C I M l =f~- I 2 ."• IT 1 l u J+b. • ( T 1 l ...,: 2-24. • T l + 16. l I ( I I Tl l .. 3 l • (T 1-1. l 
••1.51 
Sut-'.l=SUM1+11.·-·CIMl l 

30 CCNT!I-iUE 
Ml=~MA.X 
SUMl=SUMl-11.-CIMlll/2. 
AR=SUMl•DT+T13'. 
SET UP RESULTS FOR PRINT OUT 
.DC 60 Ll=l ,LMAX 
B.=.L1 , , , 
M = 1. l + B • I F'1/ 0 T l 
C PILl l =C ( M l 

6u CCNTINUE 
WRITE o0tPUT TA~E 3,60C,N,IC~ILll,L1=l,LMAXl,AR 
START pF NUMERitAL. COMPUTATION FOR ~OLUMNS OF 3 OR MORE SEGMENTS 
DC 200 N=3,~MAX 
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SUM1=•).5 
MAX. TIME AT WHICH CONC.VALUES ARL COMPUTED TO AVOID CXfRAPOL. 
A1=NMAX-i~ 

A2=~ 
T~AX1=T3+1T3-T13l•IA11A2l 
M1=1TMAX1-T13l/DT 
r-I'!AX=Ml+1 
Y=FLOATFINl 
DC 130 M=2,MMAX 
T=T13+FLOATFIMl•DT-DT 
IFI f-TI'o\1 l Y0,90;92 

'iC OT1=0Tll 
GO TO 93 

92 0Tl=DT12 
NUMbER OF POINTS US(O IN ~!MPSONS INTEGRATION FORMULA 

93 J4=( 13.•T•Y-1. l/13.t>(Y-l. l l-Tl3li0Tl 
K1=2•J4+1 
B= I I 3. • T • Y -1. l I I 3. • I Y- 1. l l- T l3 l I IF LUA IF I K 1-1 l ) 
VTBL=T13 
DC 110 K=1,K1 
V=Tl.H(FLOATFIK-1) l•El 
CCNCENTRATIUN VALUES COMPUTED bY (NTERPOLAT!ON ROUTINE TLUOX 
CALL TLUDXIV,VTBLii'~AX,CiF,~Tl 
O=(Y-1.l/(3.•Y•T-3.•1Y-l;l•Vl~•2.~ 
AIKl=D•F 

110 CCNT!NUE 
SIMPSCNS FORMULA FOR INTEGRAL· EV'ALUAT!ON 
CALL ARSIMPIK1,B,A,Rl 
SUI'.M=4. 5 •I~ 
IF ISUr-'M-1.1 125,125,120 

120 SUMM=l.O 
125 C11Ml=SUMM 

~REA CALCULATION FOR ChECKI~G PURPOSES 
SUM1=SUM{+t1.-Cl1Mll 

130 tCNTINUE , 
DC 135 M=1,MMAX 

13~ C1Ml=C11Ml 
M1=MMAX 
SUMl=SUM1-11.-CtMllll2. 
AR=SUM1•DT + T13 
SET UP RESULTS FOR PRINT OUT 
00 140 Ll=l,t:MAX 
B=Ll 
M=1.l+B•IF110Tl 

140 CPtlll=CIMI 
200 WRITE OUTPUT TAPE 3,600;N,(CPtL1),L1=l,LMAX),AR 
300 FCRMAT(lH1,35X,46HSEGMENTEO LAMINAR FLOW MODEL QUARTIC METHOD 2 

1 ) 
400 FORMATt2X,lH1,3X,2HT=F4.2,3X 1 2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2, 

1 3X,2HT=F4.2 1 3X 1 2~T=F4.2,~X,2HT=F4.2,3X,2HT=F4.2,3X,2HT=F4.2, 
2 3X,2HT=F4.2,3X,2HT=F4.2 1 3X,2HT~F4.2,5X,2HAR) 

50C FCRMATt2!5,6F9.6l 
600 FCRMATI13,1H ,12F9.6,F8.3l 

CALL EXIT 
ENC 
SUBROUTINE TLUOXtV,VT~L~MMAX,tiF,DTl 
SUBROUTINE TLUOX USES A LINEAR INTERPOLATION FORMULA 
DIMENSION Ct40U0l 
FN=r-'MAX 
VFIN IS THE LAST ARGUMENT FOR WHICH INTERPOLATION IS POSSIBLE 
VFIN=ViBL~iFN~1.l•CT 
IF V IS 'LARGER t·HAN- VF,IN' lHE ROUTINE ~IVES CONC.VALUE FOR VFIN 
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IF V IS SMALLE~ THA~ VTBL 
IF (V-VF!Nl110,12~,125 

THE ROUT(~[ ~!VtS CO~C.VALU( FUR VTJL 

110 
115 

(~ (V-VTBLl120o120,ll5 
ltL= ( V-VTBLI /OT 
L=lEL 
ZELl=FLDATFiLl 
PERCEN=ZEL -ZfL 1· 
LP=l+L 
LPl=LP+l 

!' 

THE INTERPOLATED CCNC, VALUE DESI~t:D IS <;(VI:;~ AS F 
.F=CILPl+IPERCENl•ICILPll-CILP)) 
GO TO 130 

120 F=CI1l 
GC TO 130 

125 Ml=F1~-1. 
L=I'MAX 
F=C ILl 

i 30 Rt:rURN 

5 

15 

ENC 
Sl~PSCNS I·NTEGRATfUN FCRAULA 
SUbROUTINE ARSIMP(KI,B,A,Rl 
THE NU~BER OF POINTS USED IN SIMPSO~S RULl IS COMPUTED BY 
THE MAIN PROGRAM 
THE RESULT OF THE INTEGRATION IS ~IVEN AS R 
DIMENSION A(4000l 
Sff=A( ll+~(Kll 
Nl=K1-l . 
N2=K1-2 
SUf"=O. 
SUMl=O •. 
D G 5 K = 2 , iH , 2 
S1J~=SUM+4,0".t11K) 

CCNTINUE 
DC 15 K=3,N2,2 
SUM1=SUM1+2,0•A(Kl 
CONTINUE 
R ISET+SUM+SUMll•0/3,0 
R TURN 
E C 
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I-3. Frequency-Response Analysis for Segmented Laminar Flow 
(with Quadratic Velocity Distribution) 

A. General 

Experimental studies of packed-bed characteristics frequently 

involve using a sinusoidal concentration wave as the input. It is im

portant to be able to interpret the response of a packed bed to this type 

of input in relation to the properties of the packed bed. We now assume 

that the input disturbance has the form 

c(O,t)=c +A(O)_sinwt, (1) 
m 

where c is the mean composition above which the concentration 
m 

oscillates, A(O) is the amplitude of the inlet concentration wave, and 

* w is the angular frequency of the oscillations. It can be shown that 

the response to this sinusoidal disturbance has the form 

c(z,t) =em+ A(O) IKG(jw)l sin (wt +'l'), (2) 

where I KG(jw) I is the absolute value of the complex transfer function 

KG(jw), and 'II is the phase shift of the outlet wave. We can calculate 

'lt from the relation · 

'II _ tan -1 (Imaginary part of KG(j_w)) 
- Real part of KG(jw) '( 3) 

These relations show that the frequency response can be calculated from 

a known KG(jw), which in turn can be obtained from the step-input re

sponse. 

1. Derivation of System-Transfer Function from Step Response 

From the definition of the system transfer function KG(s), the 

following relation holds: 

S. B. Brown, and D.P. Campbell, Principles of Servomechanisms 

(John Wiley and· Sons, Inc., New York 1948), p. 94. 
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where F. (s) is the Laplace transform of the input 
1 

(4) 

signal f. (t), and 
. 1 ' 

F 
0 

(s) is the Lapla~e transform of the output signal f
0

(t), the Laplace 

transform being by definition 
OIC· 

1 -st 
F(s) = 

0 

f(t) e dt , (5) 

In this study the step input response is not known in exact ana~ 

lytical form; therefore, a numerical method is used. To use this 

method the following characteristics for the system ar.e assumed: 

(a) The system is linear. 

(b) The system is at rest before the transient is applied. 

(c) For a unit step function applied to the input at t = 0, the output 

app;roaches some constant value as t increases without_ limit . 

. Wh~n.a unit step function is applied at t = 0, Fi (s) = 1/s and 

. f
0 

(t_) = h
0 

(t). The system relationship is stated as 

KG(s} 
F

0
(s) = KG(s) · F.(s) = • 

1 s 
(6) 

The Laplace transform of the first derivative of the output with respect 

to time is 

From assumption (b), the last term is zero. Therefore, the transfer 

function is KG(s) = dF
0

(s)/dt and 

cc 

J
. dho (t) -st 

KG(s) = dt · e . dt . 

. 0. 

(8) 

From assumption (c), dh0 (t)/d~ approaches zero as t increases to oo~. 

The integral therefore converges if the real part of s = s + jw is taken 
r 

as zero (i. e .• s - 0. and s = jw). 
r 

Then, 

. - .. _- r dho(t) 

KG~jw) = Jo· dt .. (9) 
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Previously, it has been shown that the system does not respond to any 

disturbance as long as t ~ T /2 where T is the average residence time . 

. Thus' one can replace the lower limit of integration by T /2 and Eq. {9) 

becomes 
GQ 

KG{jw) = 1 
T/2 

dho(t) . e -jwt dt . 
dt 

( 1 0) 

By introducing the dimensionless time E> = t/T and defining a dimen

sionless frequency w 1 = T w, Eq. ( l 0) can be written 

GQ 

KG(jw') c 1 
0.5 

dh
0 

(f>) 

de 

oc 

e- jw
1
(?) d8 =1 e -jw

1 8 dh
0 

{8) 

. 0.5 

( 11) 

This last equation is solved numerically in the following way: *t As in

dicated in Fig. I-10. the step response is approximated by the sum of a 

series of step functions of magnitude { .6.X
0

) 
1

, {AX
0

)2 , · · · {.6.X
0

)i · · · 

The first step function is delayed by time AE/2 , the second step func

tion is delayed by time 3.6.8/2, the i_th step function is delayed by time 

{2i-l)A8/2. Let k. = {2i-l)/2, then for numerical calculations, 
l 

Teasdale 1 s formula can be written 

"" 
KG(jw 1

) = ~ {AXO)i L - w1 ki .6.8. {12) 

i=l 

Equation { 12) indicates that the phase of the output with respect to in

put for each component is -w 1 k.A.E) where w1 is a dimensionless fre-
1 

quency { T w) and ki 6.8 is the time delay of the .::th step function com-

ponent. For digital calculation the formula is rewritten as 

<0(1 

~ 

KG{jw 1
) = 2__ (AXO)i 

i= l 

GQ 

cos(w1 k.A8)-j \L. (AX
0

). 
. l l 

i=l 

sin{w 1 k.A9) 
l 

(13) 

W. I. Caldwell, G. A. Coon, and L. M. Zoss, Frequency Response 

for Process Controi (McGraw-Hill Book Company, Inc., New York 

1959)' p. 364. 

t A. R. Teasdale.Jr., Control Eng. 2, 56 (1955). 
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Xo(t) 

8 6 8 6.8 368 21:l8 31::.8 2 2 

MU-30161 

Fig. I-10. Approximation of response. curve by a series 
of step functions. 
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Let 

( 14) 

00 

then we have 

L ( 6.X
0

). sin(w 'k.6.8), 
i= i 1 1 

(15) 

KG(jw') = B
1

- j B 2 
(16) 

and 
2 2 1/2 I KG(jw') I = (B l + Bz) (17) 

The phase angle is 

-1 2/ tj; = - tan (B B 
1

) . (18) 

However, for this numerical calculation the origin has been changed 

from 0 to 0.5 because of the system's dead time. From process con-
* i . trol theory it is well known that dead time has the characteristic of 

a pure phase shift and that in combination with other dynamic elements 

the phase lag of dead time is added to obtain the total phase lag. For 

a dead time of t = ''T/2 the phase lag is wT/2 radians or w' /2 radians. 

Thus, 
. . 1 

lJ;=-tan- B/A-w'/2 (19) 

For a column of only one segment, Eq. (11) can be solved ana

lytically. For this special case we have 

and 

"" 

h
0

(e) = 1 - (1/26) 2 , 

dh
0

(e>) 

dS 
<Ill]) 

KG(jw') = J 
0.5 

= 
1 
~· 2® 
-jw'E> e dE) 

( (20) 
~ 

( 21) 

(22) 

(23) 

D.P. Eckman, Automatic Process Control. (John Wiley and Sons, 

Inc.,) New York ,1958L, p. 288. 
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The solution to these integrals is given in standard reference tables. 

where 

and 

KG(jw') = e 2 cos (w' /2}- (w' /2)sin(w 1 /2} + (w' /2) 
2
ci (w' /2) 

jw 1 /2 · {. 

-j [sin(w' /2)+(w' /2)cos(w' /2)+(w' /2)
2

(Si(w' /2)-1r/2~, 
(24) 

ac 

- · u = s1ne 1n egra Sl. (X) ""' 1 siun u d . . t 1 

X 

Gi(X) = L cos u 
u 

du = cosine integral. 

Numerical results, obtained by digital computer for N = 1, 2, 

5, 10, and 20 are given in Table 1- XIII, and plotted in Fig. 1-11. For 

N = 1, the exact expression [ Eq. (24)] for the frequency response was 

used; for N = 2, the computer used ( ~XO)i values computed by the ana

lytical expression for the step response, whereas for other N' s, the 

(~XO)i values were taken from graphs. For N = 2, the ~e selected 

was equal to 0.01; for N = 5, 10, and 20, ~8 was set equal to 0.025. 

The results show that for columns of one and two segments the system 

gain is almost identical, and that for w1 > 3.0 the numerical method was 

not accurate enough to differentiate between them. 



Table I-XIII. Frequency response for segmented-laminar-flow mode'! with quadratic velocity distribution 

"'-, N"' 2 5 10 20 

w' I KG(jw) I -l\1 rad I KG(jw) I - l\1 rad I KG(jw) \ -l\1 rad I KG(jw) I -l\1 rad I KG(jw) I -l\1 rad 

0.5 0. 9496 0.4457 0.9601 0.4668 0. 9669 0.4679 o. 9796 0.4832 0. 9853 0.4909 
1.0 0.8779 0.8290 0.8967 0.8876 0. 9353 0. 9303 0. 9.544 0. 9624 0. 9671 0. 9790 
1.5 0.8164 1.1866 0.8346 1.2838 0.8873 l. 3823 0.9157 1.4339 0. 9390 1.4620 
2.0 0.7571 1.5227 0. 7725 1.6598 0.8289. l. 8197 0.8680 1.8949 0. 9038 l. 9385 
2.5 0. 7075 1.8465 0.7171 2.0217 0. 7665 2.2401 o:8157 2.3441 0.8643 2.4078 I 

3.0 0.6606 2.1597 0.6645 2.3722 0.7057 2.6433 0. 7627. 2.7816 0.8227 2.8704 
00 
N 

3.5 0.6210 2.4647 0.6178 2.7127 0.6504 3.0315 0.7117 3.2086 0. 7804 3.3276 I 

4.0 0.5836 2. 7641 0.5742 3.0463 0.6019 3.4090 0.6641 3.6271 0. 7382 3. 7782 
4.5 0.5515 3.057 0.5354 3.3719 0.5597 ·. 3. 7803 0.6199 4.0393 0.6967 4.2246 
5.0 0.5213 3.3470 0.4994 3.6932 0.5223 4.1490 0.5790 4.4467 0.6561 4.6666 
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I KG( jw') I 
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MU-30160 

Fig. I-ll. Frequency-response amplitudes and phase shifts 
for quadratic segmented laminar flow. 
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I-4. Numerical evaluation of bounded-diffusion solution 

CARD Roots of transcendental equation l P~rt I, Eq. (45)] 
CARD 2• 
CAR~ 3• N=1 
c: 4• 0.960193 3.431015 6.4382C2 9.529614 12.645414 15.771352 
CARD'· 5• 18.902444 22.036520 25.172465 28.309657 31.44 77 24 34.586424 
CARD 6• 37.7256l!i 40.865170 44.005023 47.1451()3 50.285363 53.42579(1 
CARD 7• N=2 
CAKD 8• 1.306537 3.673192 6.584625 9.631683 12.72323~ 15.834L 1 
CARD 9• 18.954971 22.081664 25.212025 28.344867 31.4 79434 34.61>283 
CARD 10• 37.752079 40.889606 44.027721 4 7.166291 50.305233 53.444497 
CARD 11• N-=3 
CARD 12• 1. 542722 3.879476 6.722276 9.73c673 12.799686 15.896132 
CARD 13• 19.007066 22 .• 126521 25.2514G5 28.379944 31.51ll·60 34.644057 
CARD 14• 37.778481 40.913994 44.05C371 47.187443 50.325078 53.463169 
CARD 15• "N=4 
C.ARO 16• 1.720664 4.057513 6.851238. . 9. 826 36 7 12.874600 15.957335 
CARD 17• 19.058670 22.171078 25.2%569 28.414878 31.542567 34.672759 
CARD 18. 37.804821 40.938334 44.0729n 47.208571 50.344888 53.4818£8 
CARD 19• N=5 
CARD 20• 1.861514 4.212757 6.971799 9.918597 12.947835 16.017615 
CARD 21• 19.109723 22.215276 25.329506 28.449633 31.573953 34.701353 
CARD 22. 37.831091 40.962614 44.095563 47.229651 50.364675 53.500463 
CARD 23• N=6 
CARD 24• 1. 9764 79 4.349257 7.084331 10.007293 13.019321 16.076926 
CARD 25• 19.160188 22.259090 25.368167 28.484207 31.605196 34.729852 
CARD 26• 37.857277 40.986834 44.118082 47.250696 50.384424 53.519063 
CARD 27• N=7 
CARD 28• 2.072388 4.470142 7.189300 10.0n416 13.088949 16.135181 
u·- 29• 19.209995 22. 3024/3 25.40654.1 28.518566 31.636295 34.7582% 
C~. " 30• 37.883367 41.010983 44.140553 47.2717()4 50.404138 53.5376:19 
CARD 31• N=B 
CARD 32• 2.·153749 4.5778?6 7.287199 10.173969 13.156672 16.192322 
CARD 33• 19.259118 22.345413 25.444602 28.552709 31.667226 34.786489 
CARD 34• 37.909360 41.035047 44.162951 47.292653 50.423804 53.556178 
CARC 35• N=9 
CARD 360 2.223677 4.674377 '7.378495 10.252010 13.222441 16.248324 
CARD 37• 19.307522 22.387861 25.4BZ329 28.586600 31. 697~66 34. 8146C4 
CARD 38• 3 7. 935258 41.059027 44.185289 47. 3135'•1 50.4434 35 53.574670 
CARD 39• N.:::l(; 
CARD 40• 2.284449 4.761266 7.463679 10.326612 13.286245 16.303128 
CARD 41• 19.355159 22.429806 25.510,696 28.620252 31.728525 34.842575 
CARD 42• 37.961036 41.082923 44.207543 47.334369 50.463005 53.'>93126 
CARD 43• N= 15 
CARD 44• 2.498463 5 .• 090553 7.813091 10.651732 13.575820 16.5'>8547 
CARD 45• 19.581122. 22.631164 25.700621 28.784124 31.8 78065 34. 97993Y 
CARD 46• 38.087961- .41.200836 44.317583 47.437494 50.560017 53.684685 
CARD 47• N=20 
CARD 48• 2.627677 5.307323 8.067132 10.9087·)9 13.819196 16.782688 
CARD 49• 19.785501 22.817255 25.870438 28.93~739 32.021323 35.ll24l4 
CARD 50•. 38.2l1G38 41.31>645 44.425117 47.538557 50.655292 53.774795 
CARD 51• '~=25 
CARD 52. 2.713987 5.459595 8.257226 11.112920 14.022484 16.971266 
CARD .53• 19.968188 22.987263 26.028186• 29.086126 32.157404 35.239265 
CAR~ 54• 38.329598 41.426799 44.52>632 47.637115 50. 748492 53.863142 
u 55• N=JO 
CARll 56• 2. 775646 5.571863 8.403457 11.277056 14. 1924 80 H.145414 
CARD 57• 20.130334 23.141356 26.173542 29.222194 32.285779 35. 359922 
CARD ·58• 38.443149 41.533854 44.630754 47.132845 50.839297 51.949452 
(ARD 59• 
CARD 60• N=40 
CARD 61• 2.857738 5.725548 8.611599 11.521114 14.456217 17.416629 
CARD 62• 20.400531 23.405357 26.428375 29.466949 32.518728 35.581666 
CARD 63• 38.654071 41.734481 44.821699 47.914741 51.012769 54 .11509H 
CARD 64• N=50 
CARll 65• 2.909845 5.825329 8.7'>1335 11.691482 14.647964 17.UZ15Y5 
Ct 66• 20.612160 23.618748 26.64004,) 29.674551 32.720782 35.777320 
CAkll 67• 38.842870 41.916282 44.996561 48.082832 51.174339 54.270437 
CARD 68• N=60 
CARD 69• 2.945834 5.895125 8.850996 11.815962 14.791798 17.779559 
CARD 70• 20.779591 23.791752 26.815525 29.850144 32.894 733 35.9484.~6 

CARD 71• 39.010253 42.079423 45.155124 48.236673 51.323411 54.414787 
CARD 72. N=BO 
CARD 73• 2.992261 5.~86085 8.982966 11.984185 14.990820 18. GC3 7cG 
CARD 74• 21.023338 24.0500b0 27.083960 3('.124930 33.172791 36.221220 ... 
CARD 75• 39.287868 42.354341 45.426231 48.503118 51.584631 54.670387 
CARD 76• N=lOO 
CARD 77• 3.020903 6.042651 9.066028 12.091815 15.120621 1-8.153035 
CARD 7:8• ·21.189463· 24.z-30230 27.t7·5551 30.32·5546 33.380214 36.439532 
CARD 79• 39.503392 42.571651 45.644116 48.72v607 51.800899 54.884796 
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I-5. Determination of Stoichiometric Time for the 
Random- Walk Model 

The stoichiometric time is defined as the time necessary to fill 

one column volume with fluid. Usually a time scale 8 is adopted such 

that the stoichiometric time corresponds to 8 = 1. From a material 

balance, this is equivalent to chasing a time scale such that the area 

between the breakthrough curve (X vs 8) and the horizontal line cor

responding to X = 1 is equal to unity. 

The general equation for the random-walk model is 

T' 

X(T 1 , N) =1 e- (N+TJ) r
0 

(2,/"NTJ) d TJ 

0 . 

(1} 

with X( ac, N) = 1. The areati mentioned above!, which should be 1 is 

ac 

S(N) "1[1-X(T', N)f dT' 

ao ac 

= 1 dT' 1 e-(N+TJ) I
0

(2jNil) dT]. 

0 T' 

(2) 

Integrating by parts leads:: to 

S(N) " [ T ' lao 
T' 

- 00 

.-(N+~) IO(Z.,tffij) d~ 0 (3) 

.., 
+ l ~ e- (N+~) 1

0 
(Z.[Nij) d ~ . 

We first show that 
~ 

[T'l, 
00 

e- (N+TJ) r
0 

(2 .[i\fri) d TJ l ··· = 0-
, . Jo 

(4) 

This expression can be simplified by the following change of variable: 

S = 2{Nlif then TJ = ~ 2/4N, and dT] = (2~/4N) d;. 
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Equation (53) -becomes 

(5) 

We first note that the expression under the integral is always positive 

and that the.Junction 1
0 
(~) satisfies the inequality 

(6) 

for all positive values of g. From this, the expression between brackets 

clearly vani-shes when T ,- = 0. To show that the same expression is zero 

at the upper limit, the expression will be replaced by a simpler and 

larger function which tends to zero when T 1 - <Ill> • Using Eq. (6) we 

~an write 

(7) 

for all s > s
1 

. Note that this relation holds for s
1 

> 8N. Then, we 

have 

(8) 

-2 ,;-NT' 
This last integral is equal to ( 1 + 2 J NT 1 ) e · . Finally, 

Eq. (5) can be replaced by the dominating function 

f = T' ~~N (1 + 2-.} NT') e -
2

--/NT' , (9) 

which tends to zero when T I tends toward ao, As the expression be

tween brackets inEq. (5) is always positive and smaller than f, it also 

vanishes for T '.--.<Ill> • Now, the area is given by 

CIIC!· 

S(N) = {; 11 e- (N+il). 1
0 

(2 .)Nil) d 11 . 

J 0 

(l 0) 
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Using the same change of variable as above, Eq. {10) becomes 
. . . . 2 . . 

110 2 . £ 
S(N)=e-N lj ~ e-4NI {~)gds 

2 4 N2 0 
0 

or 
<IIC 

S(N) = e-N BBN ( ~ 1 e 

Also, Eq. (1) can be written 

. -N 
X{T"', N) = ~ . .::.N 

Since we have X{,z, N) = 1 when· T '- -, we get 

1110 

ifo 
UsingEq. (14) in Eq. (12) it follows that 

· -N a· N 
S{N) = e aN {N e ) = N+l 

(11) 

(12) 

{13) 

{14) 

{15) 

Thus. to normalize the breakthrough curves for the random walk model, 

the following time scale has to be used: 

6=T'/N+l {16) 

With this time scale, the stoichiometric time occurs for 6 = 1. 
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PART II .. LONGITUDINAL DISPERSION IN LIQUID "FLOW 
THROUGH ORDERED AND RANDOM PACKINGS 

A. Introduc.tion 

Although the extent of axial mixing is of primary interest with 

respect to steady-state mass -transfer operations, it can most easily 

be evaluated quantitatively as a separate factor by unsteady-state tracer

injection techniques independently of mass transfer between phases. A 

tracer amount of a component is injected in a pattern approaching one 

of several kinds of idealized disturbance, and the concentration history 

(or ''breakthrough curve") of tracer at a fixed distance downstream from 

the injection points is measured. 

The characteristics of the experimental breakthrough or response 

curve may be compared with the forms predicted by a mathematical 

mixing model. The value of the mathematically calculated mixing pa

rameter that gives the best fit to the experimental curve is designated 

as being characteristic of the, experimental system. 

Several different methods of analysis have been used to measure 

the breakthrough or response curve. These include ionization-current 

counting of radioactive tracers, electrical conductivity or electrode po-
. .· ·. .. . . . ; 

tential, and absorption of ultraviolet or visible light. 

Three different forms ~f input disturba~ce are commonly used: 

a sinusoidal variation, a delta or pulse function, and a step function. 

The frequ~ncy-response technique measures the result of a sinu

soidally varying inlet concentration. When a sinusoidal concentration 

wave is passed through a packed bed, the wave suffers a reduction in 

amplitude and a phase lag which are characteristic of the longitudinal 

dispersion. A disadvantage of this method is that relatively complicated 

apparatus is required for production of the wave, and that it is very dif

ficult to measure the phase lag. 

In the pulse-wave method one determines the outlet concentration

history of an experiment in .which tracer is injected over a short period 

of time; i.e., in the form of a unit pulse. The impulse response is also 



-89-

called the residence-time distribution function (rtdf), in recognition of 

the fact that the normalized concentration function arising f:r:o.m an input 

pulse of identifiable (tracer) molecules gives the age distribution of all 

molecules passing through the system. Disadvantages of this method 

lie in the experimental difficulty of producing a unit pulse, and in the 

attendant need often encountered of having to measure extremely low 

concentration values on both sides of the peak. 

A third method involves the response to an inlet step function. 

Experimentally this can be carried out by flowing a clear solution and 

a tracer solution successively through a fixed bed and determining exit 

concentration vs a function of time. Special care must be taken to ob

tain a sharp, uniform step function at the inlet. In the present investi

gation, the step input method is used. As tracer, a solution of NaN03 
is injected into the system, and the breakthrough curve is measured by 

electrical conductivity. 

1. Previous Studies 

Until recently the transport of matter in the direction of flow by 

axial dispersion has been neglected in the study of rate processes in 

packed beds. Since 1953 several experimental investigations have been 

made to determine the nature and the magnitude of the axial dispersion 

mechanisms. 

In one of the first studies of axial dispersion, Danckwerts pre

sented a general discussion of residence~time distributions in pipes, 

packed beds, and stirred vessels. 8 He reported several measurements 

of axial dispersion in the flow of water through beds of 3/8-in~ Raschig 

rings at a mean linear velocity of 0.4 em/sec. These measurements 

involved the response of the system to a step change in the inlet con~ 

centration. 

Using the response to a sinusoidally varying input, Kramers 

and Alberta investigated axial dispersion in water flowing through a 

column packed with 1-cm. Raschig rings at Reynolds numbers of 100 

and 200. 15 Their phase-shift data yielded dispersion coefficients dif

fering by 50 to lOOo/o from the values based upon amplitude; the discrep;

ancy was attributed to '!trapping" in the interior of the rings. 
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McHenry and Wilhelm reported axial-dispersion data for gas 
. . . . . 18 • 

flowing through a bed packed with 3-mm. spheres. They used a sinu-

soidal-input signal and determined values of the axial-dispersion coeffi

cient from the amplitude change. A value of the Peclet number (de

fined as u
0
d./E) equal to about 2 was found in a Reynolds-number range 

. . p 
of fr.cim 26 to 1000. 

Ebach and White reported the results of liquid-phase logitudinal

dispersion studies for beds of glass spheres, Raschig rings, Berl sad

dles, and Intalox saddles over a Reynolds -number range from Oo 1 to 

160. 9 They also investigated the influence of viscosity in a column 

packed with 1-mm. spheres for a flow rate corresponding to a Reynolds

number of 0. 25 for water. In this flow region a change of viscosity from 

0.95 to 27 ·cp did not influence the axial-dispersion-coeffiCient values; 

however, it does not necessarily follow that viscosity changes have no 

effect at higher Reynolds. numbers, In comparisons between the differ

ent packings, the product of Peclet number and void-fraction was found 

to be nearly constant. In their experiments, both periodic and transient 

input signals were used, and the detection method was that of light ab

sorption due to a dye tracer in the water stream. 
5 . 

Carberry and Bretton employed pulse-~njection techniques very 

similar to those of Ebach and White. They obtained dispersion coeffi

cients at various flowrates in systems of 0. 5, 1, 3, and 5-mm. spheres 

and 2 and 6 -mm. Raschig rings, in a L 5-in. -i. d. column. Their data 

consistently showed the presence of "long tails 11 in the output pulses; 

the authors suggested that the concept of 'bed capacitance" would explain 

this phenomenon, but they did not include it in their analysis. 

Jacques and Vermeulen investigated the axial dispersion during 

the flow of water through beds of ceramic spheres, Raschig rings, and 
14 

Berl saddles. The present work is a continuation of that study, and 

certain of those results will be included below. 

Strang and Geankoplis studied axial dispersion through beds of 

glass beads, poro:us alumina spheres, and.Raschig rings by the fre-
. . 24 

quency-response technique, using 2-naphthol as a tracer. Their 
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investigation, carried out over a relatively short Reynolds number 

range in the laminar region, gave results similar to those of Carberry 

and Bretton and Ebach and Whiteo 

Cairns and Prausnitz investigated longitudinal=mixing properties 

for a water stream flowing through a 2-ino column packe_d with 30 2-mm. 
3 

glass spheres, over the Reynolds number range of 22 to 45000 A step 

input was used in their experiments, with NaN0
3 

solution as the tracer. 

Besides the previously mentioned axial-dispersion studies, .which 

are of primary importance for chemical engineers, many investigations 

reported in the literature have dealt with the mixing between miscible 

fluids in beds of sand or sandstone at very low flow rates. l, 6 • 
21

• 
22 

For these conditions the effect of molecular diffusion becomes significant, 

and unstable flow behavior, resulting from density and viscosity differ

ences, occurs. These studies, of primary interest to petroleum en

gineers and hydrologists. will not be discussed hereo 

Thus, previous investigations have resulted in many data con

cerning the axial mixing .of liquids in packed beds. However, as pointed 

out by Hofmann, serious discrepancies exist between the results re

ported for low Reynolds numbers. 
13 

Further, no study of the influence 

of viscosity has been found in the literature for Reynolds numbers larger 

than 0.25. 

Bo Apparatus 

1. General Specifications 

Specifications for the experimental equipmen! were based upon 

the following objectives for single-phase breakthrough experiments: 

(1) To develop the best possible experimental conditions for de

termining axial-dispersion coefficients. The variables to be considered 

were the concentration and proportion of tracer, the direction of injec

tion (top or bottom of the column), and the sharpness of the step input. 

Electrolytic conductance was selected as the measure of tracer con

centration. 
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(2) To study the influence o£ viscosity on the axial dispersion 

coefficient. Whereas the gas=phase axial dispersivity appears to re

tnain nearly constant over a wide ra.nge of Reynolds numbers (for rea

sons to be discussed latter in this article), the liquid phase is believed 

to show a transition from a ''laminar" to a 11turbulent" flow regime
5

• 
14 

coincident with changes in slope of the friction-factor and mass -transfer 

j-factor curves. 

(3) To investigate the influence of different packing-particle 

types, size, and arrangements upon axial dispersion, over a range sig

nificant for predictions on industrial- scale packed-tower apparatus. 

Ordered arrangements of sphere packing were included so as to de

termine the possible occurrence of packing-orientation effects in axial 

dispersion, and to obtain a controlled variation of packing void-fraction. 

Apparatus was designed for study over a wide range of flow rates 

with various sizes and types of packing, as just indicated. The experi

mental needs led to the following specifications: 

(a) Owing to the labor involved in packing a column and in in

stalling conductivity probes and an injection head in any chosen arrange

ment, a column once packed was kept intact for repeated experiments. 

Consequently, different column sections were designed and built, cor

responding to the different packing arrangements chosen for investi

gation. For each column the packing was locked between retaining grids 

of suitable design. Table II-I lists the columns and their correspond

ing specifications. 

(b) In order to avoid an expensive duplication of the accessories, 

everything except the packed column sections was a single installation, 

while the packed columns were interchangeable. The upper and lower 

column heads with their accessories (level control, pressure taps, and 

nozzles) were mounted permanently on the frame in a manner that per= 

mitted rapid exchange of the packed sections. A hand-wheel-operated 

sling supported the head for lifting or lowering, so that we could sub

stitute any of the different column sections. Metallic flexible hoses 

were connected to the inlet and outlet manifolds for both the top and bottom 
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of the column. The packed sections (weighing approximately 100 lb. ) 

were transported between the colunm frame and the storage bench by a 

hoist supported by an overhead rail. 

, (c) To meet the flow-rate requirements for one or two main 

phases plus a tracer stream, a complex assembly of valves, pumps, 

and rotameters had to be used. 

(d) To provide the needed flexibility in breakthrough-curve meas

urements, conductivity cells in the individual columns were manifolded 

through switches into a plug connection; this plug was joined by a cable 

to a recording potentiometer through a second set of switches on the 

main operating panel. 

2, Column Bodies 

The adoption of regular as well as rando;rn packing arrangements 

placed many limitations upon the column design; First of all, the tri

angular and square arrangements chosen necessitated flat=sided columns; 

thus, hexagonal and octagonal columns of calculated cross section were 

built, in order to simulate as closely as possible a cylindrical symmetry. 

Considerations of corrosion resistance, minimum weight, cost, and de

formation during the needed welding operation led to the choice of alumi

num rather than stainless steel for the projecL Specifically, 3/16-in, 

61ST aluminum sheet (alloyed with 0,25% copper, 0.6% silicon, lo/o mag

nesium, and 0.25% chromium) was used, Cylindrical columns of the 

same material were built for random packings, Fins were welded on 

the sides of each column for strengthening and to facilitate handling. 

Further, the design of each of the grids that locked the packing inside 

the cplumn had to be selected according to the packing geometry. 

The photograph in Fig. Il-l shows Column 1 (see Table II= 1), 

before packing and before drilling for the introduction of conductivity 

leads and sampling tubes .. The.bottom grid is attached to the body; the 

top grid and the corresponding spacer plate are removed. There are 

two rings of bolts at each end; the inside rings are used for locking the 

grid to the body, and the outside rings to attach the column to the 



Table II-I. Dimensions a,nd packing of experimental columns 

Column Packing Effective Equivalent Arrange- Distance Fraction Column Useful Cross-
number diam (in.) diam (in,) ment ·t.cLween of voids height height sectional 

layer (in.) (%) (in.) (in.) . area(in. 2) 

1 Spheres 0. 75 o. 75 Tetragonal 0.53 32.0 26.9 23.6 30.3 
2 Spheres 0. 75 0. 75 Ortho- 0.65 38.0 25.8 23.0 30,3 

rhombic-1 
3a Raschig 0.25 0.22 Random 0;29 73.0 26.4 26.0 30.7 

Rings 
4a Pellets 0.25 0.23 Random 0.21 35.0 26.4 26.0 30,7 

(Tenite I 
polyethylene) -.() 

5 Spheres 0. 75 0. 75 Random 0. 71 41.2 26.0 25.0 30.7 H::-
6 Spheres 0. 75 0. 75 Ortho- 0. 75 39.5 26,3 24.0 30.6 I 

rhombic-2 
7 Raschig o. 75 0.65 Random 0.88 64.8 26.3 23,6 30.7 

sa 
rings 

Intalo" l.O 0.72 Random. 0.96 74.0 26.4 26.0 30.7 

9b 
saddles 

Berl l.O 0. 76 Randorn 68.6 26.4 25.0 30.7 

lOb 
saddles 

Spheres 0.38 0. 38 Random 0.35 42.0 26.4 25.0 30.7 

a Packing used only by Jac'lues 14 

bPacking used only in the present investigation 
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ZN -1818 

Fig. Il-l. Octagonal column before assembly. 
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permanent head and bottom; the four slots inthe grid were cut out for 

the bolts attaching the bottom to the frame, We used 0-rings to pro

vide leakproof seals between the flanges, Finally, 3/16-in, reinforcing 

plates were welded on to provide needed thickness for installation of the 

sampling outlets, These outlets were placed at nominal distances of 

0, 3, 6, 12, and.l8 in, from the level of the injection manifold, the 

spacer plate corresponding to 24 in, . The holes in the fins are for in

sertion of the lifting hoist, 

3, Column Packing 

The ordered arrangements of uniformly sized spheres corre

spond to known types of crystallographic lattice, For such arrange

ments in packed columns, one must select two parallel planes through 

the lattice that will represent the ends of the column, and several planes 

each perpendicular to theise that will constitute the column walls, The 

different lattice structures for spheres, each available for columns in 
11 

one or more orientations, have been reported by Graton and Frazer, 

and Martin, McCabe, and Monrad, 
17 

In the present investigation, three different regular packing 

arrangements of spheres w:ere used: tetragonal sphenoidal (Column 1), 

orthorhombic-! (Column 2} and orthorhombic~2 (Column 6), Spheres 

0, 75-in, in diam were obtained as over-sized cerarrti.c balls with rough 
. ·~' , . ' 

surfaces, They were wet-ground in a ball mill withgranular alundum, 

and classified between 0, 740 and 0,160. inch, Becau:s:e. of the geometry 

of the ordered packing, a boundary pro~lem arose: as the design called 

for the spheres in one layer to be tangent to the wall, some of the spheres 

in the next layer would have to be either omitted or cuL This difficulty 

was avoided by insertion, in alternate layers, of spacers between the 

walls and the balls, Wall spacers for the second layer for Column 2 

are shown in Fig, II-2, (The second layer is drawn in light lines; the 

first layer in hea~y lines, ) 

Column 1, also equipped with wall spacers, was originally in

tended to have a rhombohedral arrangement (25,9% voids), It appears 

to have been packed somewhat loosely, as its measured void-fraction 
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Second layer-

!.----- 2.625" ------.t 

Spacer I 

Spacer I 

-10 
I'- 10 
r<) C\.1 
d d 

MU-14511 

Fig. II-2. Arrangement of packing and spacers, column 2 
(orthorhombic-1, octagonal). 
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was 32%. If this packing density is uniform, the packing corresponds 

to the tetragonal sphenoidal structure; ll, 
17 

hence, this designation is 

used for Column 1. From Fig. II-2, we see that each sphere in the 

second layer is astride two in the first layer, and that these three 

spheres form an equilateral triangle that is perpendicular to the ends 

of the column. The tetragonal sphenoidal and rhombohedral structures 

are very similar, with each layer again in a square order, but with 

the equilateral triangle tilted so that the upper sphere lies more deeply 

in the hollow center of the square in the first layer. In the tetragonal 

structure, the angles of tilt (from the vertical) are 30 deg and 26 deg, 

34 min; and in the rhombohedral structure, they are 30 and 30 de g. 

The lattice structures of Columns 2 and 6 are identical, but the 

arrangement of Column 6 is perpendicular to that of Column 2. In 

Column 6 the triangles are parallel and the squares perpendicular to 

the ends of the column. Table II- I gives details on all the types and 

arrangements of packing used for the investigation. 

The randomly packed columns were stacked by pouring the 

packing into the column with attendant shaking of the bed. They in

cluded not only spheres of 0. 75-in. and ·o. 38.-in. diam, but also 

0. 75-in. and 0.25-in. Raschig rings, o'.25-in. polyethylene pellets, and 

l-in. Berl saddles and Intalox saddles. 

The void fraction e was measured for all packings by measur

ing the amount of water necessary to fill a column of known dimensions 

to a. well specified height. The void-fraction of randomly packed 

spheres is generally close to that for the ordered rhombohedral arrange

ments .. For packings other than spherical balls, several different 

"equivalent 11 diameters can be defined. The most common one is the 

vtequivalent spherical diameter," (d ) , 
2

• 16 which corresponds to a . pv 
sphe~e havi~g the same volume as the packing unit. Pratt

20 
introduced 

the "equivalent hydraulic diameter of the void space," (dp)h' as 

= 4 X free space 
periphery p 

{ 1) 
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In the case of a ·stacked ring~packing the periphery (ft/ft
2

} is identical 

with the superficial area (excluding edges} expressed as ft
2
/ft

3
. The 

determination of the periphery of random packing is much more dif

ficult; thus, it has been conveniei}t to adopt empirically the same def

inition for the periphery as that just stated for regular packings. A 

third definition is the diameter of a sphere with the same surface-to

volume ratio as a packing particle. 19 From the properties of a sphere 

this diameter is defined as 

(d } 
pa 

= 6(1-e) 
a 

p 

where a is the surface area per unit volume. 
p 

Another property of packed beds is the sphericity ( l\1) of the 

( 2) 

particle. ··This is defined as the area of a sphere having the same vol

ume as the particle, divided by the area of the particle. We note that 

(d ) = l\J(d ) . 
pa pv 

The values used for the above mentioned parameters in this 

study are given in Table II-II. 

4. Conductivity Probes 

The tracer used was a sodium nitrate solution, with tap water 

was used as the main stream; the detection method was that of elec

trical conductivity. In the concentration range used, the electrical con

ductance of the aqueous salt solution was proportional to the concentra

tion of the salt. Therefore a knowledge of the conductance of the mixed 

stream containing the salt tracer allows the direct determination of the 

concentration behavior in this stream. 

The probes used to measure conductivity were constructed of 

two spherical sectors of 3/4-in" Bakelite balls connected by a pair of 

rhodium-plated pins, as shown in Fig. II~3. They were installed at 

different heights in the column {nominal 0, 3, 6, 12, 18 and 24 in.) 

with the plane of the probe being in each case perpendicular to the main 

direction of the fluid flow. Originally the equipment was also used for 
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Table 'Il-II. Packing characteristics 

Packing E (dp)v (dp)h (dp)a ap p ljJ 
(in~ ) (~n .. ) (in. ) (ft

2 
/ft

3
) (ft/£t

2
) 

3/4-in. Raschig 
rings 0.648 0.67 0.47 0.28 80 66 0.42 

l-in. Berl 
saddles 0.686 0. 76 0 .. 42 0.25 78 77 0.33 

1/ 4-in. Raschig 
rings 0. 720 0.22 0.16 0.079 240 216 0.36 

l-in. Intalox 
saddles 0.740 0. 70 0.40 0.24 78 89 0.34 
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Fig. II-3. Construction of conductivity cell. 

CELL LEADS 
(22 gauge) 

MU-14512 



-102-

the study of radial dispersion, and thus several conductivity probes 

were installed at different radial positions. 
14 

In the present investi

gation, only longitudinal dispersion was studied, and only the conduc

tivity probes at the center of the cross-section were selected for use. 

5. Injector System 

The injection device consisted of several tubes {0.0625-in. o. d. , 

0.031-in. L d.) connected to a manifold. At the end of each injection 

tube an aluminum ball, 3/4-in. in diam, was fixed. For the central 

injector, the aluminum ball had 6 holes (0.059-in. diam) drilled, 60 deg 

apart, around a horizontal circle (perpendicular to the injection tube, 

here vertical}. The arrangement and the number of injection tubes was 

dependent on the form of the cross-section; however, the number was 

normally around 8. The end of each off-center injector were anchored 

in the bed by being run through a 3/4-in. aluminum sphere. In Column 

7, each such aluminum sphere was provided with six outlets. 

A small pump continuously recirculated the tracer solution. A 

3-way solenoid valve installed near the column allowed a very rapid 

action for either starting or stopping the flow of the injectant (tracer) 

into the test section. The pressure drops in the injection path and in 

the recirculation path were equalized by means of valves in each line 

adjacent to the solenoid valve. 

6. Column Heads 

Expanded end sections, identical in construction, were con

nected above and below the particular packed section in use (see Fig. 

Il=4). As the columns were designed to operate in upward as well as in 

downward flow {see Figs. II-4 and 5), the same accessories were a

dopted for both upper and lower end sections: two windows for visual 

observation, a 6 -in. -diam inlet nozzle with interchangeable orifice 

plates designed to give a velocity profile as flat as possible {see Fig. 

II-6), two symmetrically placed outlets, and a liquid-level control 

probe for subsequent two-phase experiments. 

J 
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Inlet nozzle 
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MU-14513 

Fig. II-4. Diagram of column head. 
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Fig. II-5. Exploded diagram of column assembly. 
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Fig. II-6. Detail of nozzle construction. 
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7. Circuitry 

The basic electronic circuit used to measure the conductivity 

is shown in Figs. II-7, II-8, and II-9. It consists of four parts: an 

amplitude-stable oscillator, a low-impedance voltage source, an ampli

fier, and a self-balancing potentiometer which feeds the strip-chart 

recorder. 

The 1000-cycle oscillator circuit employed (V 
1

, V 2) is of bridge 

"T" type, with thermal nonlinear~element stabilization. Negative feed

back is supplied from the output of the grid of V 
1 

through the frequency 

determining network. The lamp and 600-!:2 cathode resistor of V 
1 

form 

a variable positive-feedback path. 

The output of the oscillator is fed into a power amplifier con

sisting of a cathode-coupled phase-inverter (V 3 , V 
5

) driving a push-pull 

output stage (V 4 , V 
6

). Power is delivered to the probes through an out

put transformer with a nominal output impedance of 4-n. A large a

mount of negative feedback is employed to reduce the output impedance 

further. In series with the probe is a resistor (R25) across which a 

voltage is developed that is proportional to the current drawn by the 

probe and thus also proportional to the conductance of the probe. This 

voltage is amplified (V 7 , V 
8

) and transformer-coupled from a cathode

follower (V 
9

) to the detector (V l 
0

). The detector output is fed to the 

recorder through a high impedance (R41). Through the use of manual 

potentiometric span control on the input to the recorder, and of gain 

controls in the cathode circuit of tube V7, a range of conductance from 
-5 -1 

10 to 10 mho can be monitored. 

A panel board for wiring was attached to each column body, as 

shown in Fig. II-10. All the conductivity-cell leads of the column were 

connected to a rotary switch on the panel, corresponding to up to five 

combinations of six electrodes. The injection-tube manifold installed 

on the panel is also shown in Fig. II-10. Six double-pole double-throw 

switches on the column panel allowed the selection of any cell for meas

urement. Finally, an eight-wire-cable plug on the panel board pro

vided a separate connection to the electronic measuring and recording 

system. 
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Fig. II-7. Oscillator circuit for conductance measurement. 
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Fig. II-9. Amplifier circuit for conductance measurement. 
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Fig. II-10. Design of metering panel for column section. 
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8, Layout and Accessories 

As noted in the specifications, the design and construction of 

a complete pilot-plant unit with extensive manifolding was neededo The 

flow arrangement is shown in Fig, II-11, and the completed assembly 

in Figs, II-12 and II-13, A set of five pumps, five tanks, and six ro

tameters made it possible to feed and meter three different types of 

liquids at the same time for a range of Oo005 gpm to 40 gpm. 

Water for the experiments was provided from a 150-gal con

stant-head tank mounted on the roof of the building, about 25 ft above 

the columno 

The rotameters were each calibrated by weight-flow of water. 

Flow rates for kerosene were corrected by assuming that equal-weight 

flow rates gave equal readings, and by using standard correction .charts 

supplied by the Fischer- Porter Companyo The working. ranges of water 

flow through the six rotameters were 0 to 40 gpin, 0 to 6 ·gpm, 0 to 6 

gpm, 0 to 0.8 gpm,. 0 to 0,3 gpm, and 0 to Oo005 gpmo 

C, Experimental Measurements 

1 o Determination of Optimum Conditions 

The equipment as designed allowed the injection of tracer solu

tion at the top or at the bottom of the columno Theoretically, the same 

result should be obtained for either injection or shut-off of the tracer 

for either end of the column; however, it was found experimentally that 

for low flowrates large differences in behavior could occuro It thus be

came necessary to find experimentally the operating conditions that 

would minimize these differenceso The smoothness of the breakthrough 

. curve, and the proper correspondence between the calculated and meas

ured stoichiometric times determined in two different ways (that is, by 

dividing the measured flowrate into the column void volume, and by in

tegrating the experimental breakthrough curve) were also used as cri

teria for satisfactory operationo 
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ZN -1816 

Fig. II-12. Apparatus assembly, showing control valves 
and instruments. 
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ZN -1814 

Fig. II-13. Apparatus assembl y , showing storage and 
piping. 
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Preliminary studies were therefore made .of two columns with 

different packings: .Column 1 (3/4_-in. spheres, tetragonal arrange

ment) and Column 7 (3/4-in. Raschig rings}. From this preliminary 

study, with water as the main stream, it was found for injection of salt 

(NaN0
3

) at the top of the column that the purging curve resulting from 

shutting-of£ of tracer injection gave better breakthrough curves than 

the start-up of a step input of tracer, For the latter, the empirical 

stoichiometric point was much higher than the 11exact ''value. For in

jection at the bottom the start-up of tracer injection was better. 

These experimental findings were believed to be caused by a 

hydrodynamic instability, resulting from the density difference between 

the main stream and the tracer solution, which may cause a prefer

ential but irregular downward flow of the denser fluid {or upward flow 

of the lighter one). Such an effect is well known in displacement proc-

7•12•23•26 h b d b d' d 1 b d f esses; t e oun ary etween a Jacent issimi ar an s o 

liquid can become peculiarly distorted by having "fingers 81 or "channels 11 

of the displacing liquid intrude deeply into the liquid being displaced. 

In principle, this gravity effect may be partially or even com

pletely offset by a viscosity effect, although viscosity seems to have 

had very little influence in the present study. Displacement by the more 

viscous liquid favors stability of the boundary, whereas displacement by 

the less viscous one favors instability. The viscosity effect has been 

described by Hel£ferich in the following terms: 
12 

"Due to packing irregu-

larities, the displacing liquid will slightly bulge out the boundary. If 

the displacing fluid is the less viscous, the flow resistance in the bulge 

is smaller and the flow larger than elsewhere; thus the fingers grow, 

On the other hand, if the displacing fluid is more viscous than the liquid 

being displaced, the flow resistance is larger in the bulge than next to 

it, and thus the channels vanish. " 

Thus the tendency toward "instability n could explain why ''top

out" and ''bottom-inn run conditions give the better breakthrough curves. 

The curves corresponding to the reverse conditions (indicating unstable 

behavior) show an unusual breakthrough shape, with a very fast response 



-116-

at the start followed by a very long tail which eventually approaches 

saturation; such a shape can result from the presence of "fingers. " 

In our experiments it was also found that by reducing the salt 

concentration from 1 N to 0. 05 N, the shape of the curves was improved, 

the two stoichiometric times showed better agreement, and a good match 

was obtained between equivalent tracer-in and tracer-out runs except at 

flowr ate s smaller than 0, 3 gal/ min. 

2. Procedure 

As a result of the preliminary runs, the following experimental 

conditions were adopted: For flowrates smaller than 0.5 gal/min 

0.05 N NaN03 solution was injected at a rate corresponding in all cases 

to less than 5o/o in volume (in rnost cases around 1 to 2o/o), For higher 

flowrates, the.amount of tracer injected was less than lo/o in volume, 

but the salt concentration was increased to 0.1 N. The injection was 

made at the top of the column for nearly all experiments, Both injec

tion- and purge-breakthrough curves were recorded; in the low-flow

rate region, when the two curves did not agree, data were taken from 

the tracer-out or purging curves, 

The experimental procedure for typical runs was as follows: 

Preliminary experiments determined the input "span 11 to the recorder 

and the amplifier-gain setting in the cathode circuit to tube V 
7 

(-Fig, II~8) 

that were needed for the recorder to span nearly the full chart width for 

the breakthrough curve, for a specified salt injection. Before each set 

of runs, the electrical measuring unit was tested for linearity by re

placing the conductivity probe by a potentiometer; for all the runs this 

error was within 1 o/o. Then, the actual run was started, with tap water 

from a constant-head tank flowing through the column at a chosen flow 

rate. The tracer (NaN03) solution was started through the recirculation 

line at the appropriate flowrate (usually around 1 to 2 volume -percent 

of the main stream), and the pressure drops in the injection line and the 

recirculation line were equalized by means of two manual valves adjoin;3; 

ing the solenoid valve, 
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After a final check of the flowrates, tracel;" injection into the 

column was started by opening the solenoid valve, with the ~tarting 

time for injection marked electrically on therecorder chart. _ The volt

ages recorded during each run.were proportional to the conductance of 

the main stream, and thus, as noted previously, proportional to the con

centrations of the injected component, Tracer injection was stopped 

after a constant reading was reached on the chart; the conductivity was 

again followed as a function of time to give the purgingbreakthrough 

curve, The recorder results were then analyzed as explained below, 

3, Calculation of Data 

From a critical review of the different mixing· models (see Part 

I) it was concluded that for low flowrates, the data would be analyzed 

both by the random-walk model (which is equivalent to the diffusion 

model with finite boundary conditions) and by the segmented-laminar

flow model with quartic velocity profile, For high flowrates the data 
I 

would be analyzed solely by the random-walk modeL 

Output concentrations measured by the recorder were plotted as 

percentages of the total concentration-increment range, against the 

logarithm of relative time, t/t
50

, where the reference time, t 50 , cor

responds to the 50o/o concentration point. The experimental breakthrough 

curve was then compared with theoretical breakthrough curves pre

dicted by the mixing models, This graphical method has the advantage 

of comparing entire curves, and thus shows whether the theoretical 

model used is predicting the right overall shape, Once the theoretical 

models were shown to be applicable, it was found more convenient to 

compare experimental slopes for different values of column Peclet 

number N, 

For the random-walk model, the dimensionless slope s can be 

converted to a colurim P~clet number by the relation 

2 N = 41Ts ~ 0,80 (3) 

as derived in Appendix II-1, For .the segmented-laminar-flow model, 

the column Peclet number was obtained from a graph giving the 
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theoretical siopes for different'va1ties of N (Fig. II-14). Finally, the 

packing Peclet number (P) is obtained by multiplying column Peclet 

number (N) by the ratio of packing diameter to column height (dp/h). 

D. Results and Discussion 

The variables affecting axial mixing which were investigated 

were viscosity, column length, packing characteristics, and liquid ve

locity. As indicated above, the experimental breakthrough curve can 

be analyzed either by curve matching on logarithmic time coordinates, 

or by taking the midpoint slope on linear t/t50 coordinates. Figure 

II-15 is a plot of data from both injection and purging breakthrough steps 

of a run in Column 2 at a Reynolds number of 31.4, matched to the ran

dom-walk model with N = 24 and to the segmented-laminar-flow (quartic) 

model with N = 18. The method of data analysis is discussed in de-

tail in Appendix II- 2. 

Full results as obtained from 60 run conditions (approximately 

400 separate breakthrough curves) are tabulated in Appendix II-3. A 

separate table is given for each column; within each table ,for the dif

ferent flow rates used, values are listed for Reynolds number, mid

point slope, and the number of mixing units N and the Peclet number 

for each theoretical model used. 

1. Effects of Viscosity and Velocity 

To study the effect of varying the viscosity, breakthrough curves 

were measured in three different columns; numbers 2, 5, and 7. 

Aqueous solutions of glycerol were used to obtain a kinematic viscosity 

of 5 to 6 centistokes. In Fig. II-16 the results are given and compared 

with those obtained from pure water ( v = l. 0 centistokes) under the same 

experimental conditions. All runs were made at ambient temperature, 

68 ± 2 oF. The figure shows that for the viscosity range considered, 

there is a definite variation in axial dispersion as the velocity changes. 

The Peclet number for pure water and for water-glycerol solution a-re

found to be equal for the same Reynolds number. 
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Fig. II-14. Dimensionless shops for random-walk and 
segmented laminar flow. 
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Fig. II-16. Influence of visc.osity. 
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2. Effects of Packing-Particle Characteristics 

Various types of packing were investigated to determine the ef

fects of particle shape and packing arrangement, as listed in Tables 

II-I and II-II. Empirical shifting of the plots in Fig. II-15, and others, 

has shown that the points can be consolidated into a single curve, pro

vided the ordinate (Peclet number) is multiplied by the void-fraction E 

to give 

eP(=ed/~) 
p 

and the abscissa (Reynolds number) is divided by ( 1-e) to give 

where 

and 

NRe 
---r::-E 

E = void fraction, 

d = particle diameter (equivalent spherical diameter for non
p 

spherical particles), 

~ = mixing length, 

U 
0 

= superficial velocity, 

v = kinematic viscosity. 

(4) 

The dependence of axial mixing upon the factor NRe/(1- E) was adopted 

from Carman 1 s and Er gun 1 s work on pres sure drops in packed beds. 
4

' 
10 

The factor (1-E) relates the area per unit volume of particles to the area 

per unit volume of packed bed. In Ergun 1 s correlation the Reynolds num

ber was not based upon the equivalent spherical diameter, as here, but 

upon the diameter (d ) of a sphere with the same surface-to-volume 
f p a . 

ratio as a packing particle. Quite possibly a more complex function of 

e and of l(J (the sphericity) is involved, which we were not able to de

velop frqm data only on high-l(J-loW-"E packings and low-l(J high-e pack

ings. In any event, the form of Reynolds number selected by Ergun and 

Carman to bring together the pressure-drop data differs from the form 

that we have needed to use in order to match the Peclet--nurnoer shtfts 

for different packings. 

.-. 



-123-

3. Effect of Bed Length; Choice of Theoretical Model 

A crucial factor in determining a longitudinal dispersion co

efficient is the selection of the proper theoretical model for interpreting 

the- experimental data, I 

At least three experimental criteria are available for choosing 

from among several different theoretical models, in order to determine 

which model provides the most accurate measure of dispersions be

havior. These are: 

(1) The shape of the experimental breakthrough curve, in re

lation to the shapes predicted by the various models. 

(2) Related to the shape criterion, the agreement between the 

observed and the empirical stoichiometric times. (The empirical time 

is obtained by matching the experimental breakthrough curve to one of 

a family of theoretical curves, with observation of the point on the actu

al time scale that matches the stoichiometric point given by the theory. } 

(3) Constancy of the P~clet number, or mixing length, for dif

ferent bed lengths. The different theoretical models all postulate a con

stant mixing length for the entire packing. 

To measure the effect of the bed length, one column unit (Column 

10, packed with 0.38-in. ceramic spheres in random arrangement) was 

equipped with conductivity probes at its center (12-in. level) as well as 

at the downstream end. Experiments in this column were conducted at 

four different flowrates; the results are summarized in Tables II--III 

and II-IV. 

In Table II-IV the Peclet-number values in parentheses were 

determined by the random-walk model,; in the high-N region, these ap

proach the values for the segmented-laminar-flow modeL The values 

calculated from the random walk or bounded-diffusion model indicate 

no effect of bed length, confirming the observations of other investi

gators;3' 9 whereas the values given by the segmented-laminar-flow 

model do vary with the bed length. 
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Table II-III. Effect of bed length; data analyzed 
by the random-walk model 

Flowrate N N N p p 
(gpm) 

\ Re L=23.o in. L=l2.0 in. L=Z5.o in. L=lZ.o in. 

0.3 9.6 36,2 15.5 0.595 0.526 

0.5 16.3 36.3 17.3 0.605 0.586 

1.0 32.0 46,3 23.4 0. 774 0. 794 

2.0 64.0 61.0 31.4 1.020 1.040 

Table II-IV. Effect of bed length; data analyzed by 
the segmented-laminar-flow model (quartic) 

Flowrate NRe N N p p 

(gpm) L=Z3.o in. L=lZ.o in. L-Z3.o in. L-1 Z.O in. 

0.3 9.6 34.9 8.5 0.576 0.288 

0.5 16.3 35.0 10.0 0.579 0.339 

1.0 32,0 ( 46. 3) 17 0 3 ( 0. 774) 0.585 

2.0 64.0 (61.0) 29.0 ( 1.020) 0.980 



-125-

For the run plotted in Fig. II-15, both models represent the ex

perimental data equally well for the range of X between 0. 30 and 0. 70; 

outside this range, the experimental curve lies between the two theo

retical predictions. Similar comparisons on other runs have shown 

that there were curves where the segmented-laminar-flow model with 

quartic velocity profile gave a better prediction of the experimental 

curve shape than the random-walk model, for X between 0.1 and 0. 9. 

In all cases, however, the segmented-laminar-flow model predicted 

stoichiometric times that were at least 1 O% higher than the "exact"values. 

This discrepancy, accompanied by the fact that the Peclet num

ber calculated by segmented-laminar-flow does depend upon column 

length, indicates that the random-walk model is somewhat more satis

fa-ctory even ,in the laminar-flow region. At the same time, the seg

mented-laminar-flow model, based as it is on the filamental nature of 

laminar flow in packed beds, should be viewed as a necessary step in 

the development of a better understanding of axial-dispersion phenomena. 

Its partial failure might be due to the velocity profile selected, and to 

the particular _methods it involves of averaging the properties of the flow. 

4. Graphical Correlation of Results· 

Using the modified dimensionless parameter's Just discussed, 

we have plotted all the experimental points of the present study (on 

logarithmic coordinates) in Fig. II-17. Our data clearly show the pre

dicted laminar- and turbulent-flow regimes ,with a well defined transition 

region occurring,for an_ NRe/(1-c:) of from 25 to lOOOo The data given 

at high.flowrates, for NRe/(1-E) about 700 (and only these) are from a 

previous investigation in the same apparatus. 
14 

Figure 18 shows the 

data corresponding to the laminar-flow regime and part of the transition 

region, for a 2-ft column length, analyzed by the segmented-laminar

flow model with a quartic velocity profile. It is seen that the Peclet

number values thus. obtained are appreciably smalle.r at low flowrates 

than those given by the random-walk model, whereas at higher flowrates 

they are more nearly equal. As already shown, however, the laminar-
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Fig. II -17. Experimental results analyzed by random
walk. 
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flow Peclet values obtained from the segmented-flow model appear to 

depend upon column length. If points had been shown at different lengths, 

it would not be possible to represent them by a single curve. 

5. Comparison with Other Studies 

a, Liquid phase. The experimental results of the present study 

are compared in Fig. II-19 with the data of several earlier investi

gations. Collectively these data confirm the presence of a transition 

effect between lower and higher values of Reynolds number, Beyond 

this general feature, the reproducibility of measurements within any 

one study seems much better than its agreement with .any other one, 

Strang and Geankopolis 
24 

used a sinusoidal imput of dye, for 

0.23-in. glass spheres and 0,27-in, Raschig rings in a 1.65-in, diam 

column 22,5 -in. in height. 
. 14 

Jacques 1 s data are from a preliminary study using the pres-

ently described apparatus, Subsequent to that study, improvements 

were made in both the recording and the injection systems, and the 

tracer-concentration level was greatly reduced, 

Cairns and Prausnitz used 0, 125~in. glass spheres in a column 

2,0 in, in diam and 24 in, high. 
3 

A step-function input was selected 

with upward injection of NaN03 tracer solution, and purging-step curves 

were used for the analysis. 

Ebach and White used sinusoidal injection and also pulse injec

tion in a 2.0-im. -diam column 2.0 to 5.0 ft high, with glass spheres 
J 

0. 0083, 0.04, 0.131 or 0. 27 in, in diam and 0. 25-in (nominal) Raschig 

rings, Berl saddles, and Intalox saddles. 9 

Carberry and Bretton used pulse injection of dye tracer in a 

1. 5-in.- diam column at various bed lengths, with spheres ranging from 

0.02 to 0.20-in. in diam, 0.08-in. doughnut rings, and 0.25-in, Raschig 
. 5 

nngs. 

To· compare these experiments, a number of possible sources 

of error must be kept in mind: 
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( 1) Hydrodynamic instability 

{2') Adsorption of tracer on particle surfaces 

(3) Instrument lags 

(4} Injection end effects 

{5) Flow irregularities in tracer-injection system 

(6) Column wall effect and other channeling. 

A possibility exists that the correct plotting functions have not 

yet been found, and that the different curves of Fig. II-19 are in better 

agreement than this plot indicates. However, it would be difficult to 

reconcile the different results for small glass spheres on any such 

basis. 

The present results were obtained on the largest particles used 

in any study. Wall effects could have occurred in the randomly packed 

columns, but not in the ordered ones {Columns l, 2, and 6}. Injection 

end effects could occur; but both the close agreement of the stoichio

metric times observed from the input and the output, and the good 

agreement between 1-ft and 2~£t column lengths, suggest that such end 

effects are minimaL The possibility of hydrodynamic instability, which 

clearly interfered with our reproducibility at higher tracer-concentra~ 

tion levels, has been almost entirely excluded by the agreement be

tween injection and purging runs for both upflow and downflow operation. 

b. Gas phase. McHenry and Wilhelm have reported the only thorough 

study of gas -phase longitudinal dispersion in packed beds, with sinu

soidal input of hydrogen or ethylene into a nitrogen stream. 
18 

Their 

measurements were made with 0.127 -in. glass spheres in a column 

1. 94,,in. in d.iam, with several different bed heights. With some evi

denceforadipat NR_e= 250, theirdataledtoa P valueo£1.88±0.15 

or a e P value of 0. 73 ±0.06 over the range of NRe from 20 to 1000. 

Carberry and Bretton reported a few values for helium tracer in air in 

the fine-particle low-flowrate region. 
5 

Taken together, these results 

indicate that the gas-phase Peclet-number values are essentially the 

same in the turbulent and the laminar regimes, but thaCat- suffiCiently 

low Reynolds numbers molecular diffusion predominates and causes the 

P~clet number to decline. 
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As already noted, the liquid-phase values from both this and 

other investigations tend to join McHenry 1 s gas -phase data in the tur

bulent region, but then decrease to a level one-fourth to one-third of 

this value in the laminar region. It appears likely that, in gas -phase 

laminar flow, lateral molecular diffusion in the void spaces compen

sates for the segregation due to velocity distribution, and maintains the 

individual voids in an almost entirely mixed condition. 

Figure II- 20 has been drawn to examine and illustrate the logical 

consequences of this assumption. Except for axial molecular diffusion, 

the range of possible modified Peclet numbers appears to be bounded by 

a segregated-flow value of 0. 202 and a void,-.cell-mixing value of 0. 75. 

A justification for the upper limit to P.; will be given shortly. Thus, 

. the actual gas -phase behavior is indicated by ·dashed lines, and .liquid 

behavior is indicated by solid lines. 

G. I. Taylor has shown for laminar flow inside ·pipes that the 

segregation of residence times (resulting from the velocity profile) 

can be represented by an effective axial-dispersion ("Taylor-diffusion 11) 

coefficient. 
25 

As radial dispersion becomes appreciable, it serves to 

reduce the apparent axial coefficient; for this region, in a tube of di

ameter dt, in which the average fluid velocity is U, the longitudinal

dispersion coefficient is E and the molecular-diffusion coefficient is 

D, Taylor derived the relation 

(5) 

For a column randomly packed with spheres we may assume a ''tube" 

diameter equal to half the particle diameter. Then, with e = 0.40, we 

have 

E _ 1 dpUO 
u

0
dp - T23 --y) 

where U 
0 

is the superficial velocity ( = U E). 

mensionless groups, 

(6) 

Introduction of the di-

(7) 
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N 
N' ... Re 

Re-[r:E) 

and NSc = v /D, provides the relation 

(8) 

(9) 

Thus, for any given Schmidt number, reducing the Reynolds number 

should eventually increase the P~clet number from the lower curve to 

the upper curve. The lines of constant NS rising from right to left . c 
·correspond to the behavior indicated by Eq. (9). With gases, having 

NSc:::::: 1, the rising curves are intersected almost before the fully tur

bulent region is departed from (McHenry's curve does show a relatively 

narrow dip at Nke = 250, of perhaps 15o/o ). 

With liquids, the rising curves apparently are not reached with

in the usual range of chemical engineering measurements, i. e. , at 

NR.e values of 1 and greater, Raimondi et aL used pulse injection of 

radioactive tr~cer in a 1,22-in, -diam column 35.4 in, high, with glass 

beads 0.0045, 0.0214 and 0.0256 in, in diameter. 
21 

Their data led to 

a P value of 1.45±0.2 (or eP o£0.575±0.07) over the range of NRe 

from 0. 015 to 0. 28. Although this ~clet number value is lower than 

the upper limit (or P 1 = 0. 75), which might be caused by channeling, 

it is much higher than the lower limit (P':::::: 0.2). This one experimen

tal finding is in favor of the idea that Taylor diffusion can cause a rise 

in the P~clet number for liquids at NR.e < 1. The reason that P values 

seem not to exceed the values found by McHenry and Wilhelm inay be 

that the local velocities are always much higher in the channels be

tween the voids than within the voids. Within each void, both axial and 

transverse molecular diffusion occur at comparable rates, so that the 

void is reconverted to a near-perfect mixing cell. 

At very low flowrates, molecular diffusion in the. axial direc

tion becomes predominant. This effect is indicated by the lines of con

stant NSc that fall off to the left in Fig. II-20., In this region, the 

axial-dispersion coefficient E must be multiplied by the porosity to 
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obtain the coefficient of static.diffusion JY in a porous medium. 
6 

In 

turn, Sis related to the coefficient of molecular diffusion, in the ab

sence of the porous medium, by the relation 21/D ::::! Er / ft; the factor 

~ is commonly adopted to represent the tortuosity of a packed bed. 

Thus, for low flowrates, where the molecular diffusion becomes im

portant, E ~ill be replaced by D/ ,/2 and the modified Peclet num

ber P' will be given by 

( 10) 

The same definitions for NR.e and NSc as above give the relation 

P' = 0.85 NS NR' . · c e 
(11) 

The gas-phase data.of Carberry and Bretton fall in the range of molec

ular-diffusion curves shown here. 
5 

E. Conclusions 

The experimental results from this investigation lead to the fol

. lowing conclusions: 

(a) The data show separate. constant values for the Peclet num

ber in the laminar and in the turbulent region, and the existence of a 

fairly sharp transition curve between these two regions. 

(b) The segmented laminar-flow model, derived to provide a 

physical model for laminar-flow conditions, was found to give a poorer 

fit to experimental data under such conditions than the random-walk 

model. 

(c) Experiments using water- glycerol solutions indicate that 

viscosity has a large effect on axial dispersion. over the range investi

gated. The Peclet numbers for pure water and for water- glycerol solu

tions are found to be equal for the same Reynolds number. 
' . . . . . ' 

(d) Axial Peclet numbers may be correlated as a function of 

porosity and of Reynolds number. A plot of modified Peclet number 

(eP)vsamodifiedReynoldsnumberNRe/(1-e), shown in Fig. II-17, 

applies to the whole range of experimental results. 
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(e) No effect of packing arrangement was observed in this study; 

regular. and random packing give identical results. for the same porosity, 

(f) An elementary derivation shows that the_ difference between 

gas and liquid P~clet numbers (in laminar-flow conditions} can be ex

plained by molecular diffusion in the packing void spaces, At quite low 

NRe' axial molecular diffusion causes P to decrease, 
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·: • .. .. F;~ · Nota~ion for Part II 

. Surface' area per ·unit volume 

>'Concentration 

c
0 

Concentration for 'perfect mixing 

d' Particle diam.eter 
p 

(dp)a Equivalent diameter [defined by Eq. (2)] 

(dp)h .Equivalent hydraulic diameter 

- i 

.1 . 

(dp)v Equivalent spherical diameter [defined by Eq. (1 )] 

dt Tube diameter 

D Molecular diffusivity 

}3" Effective diffusivity within a packed bed 

E Superficial dispersion coefficient 

h Height of bed 

.R. Mixing length 

N Column Peclet number (h/.t.) 

NSc Schmidt number 

N Re Reynolds number 

N:Re Modified Reynolds number [ NRe/(1-e)] 

p Periphery of packing 

P Packing Peclet number (d /l) 
p 

P' Modified Peclet number ( E P) 

s Midpoint slope (based on E> scale) 

s 1 Midpoint slope of breakthrough curve {based on t/t
50 

scale) 

s 11 Midpoint slope (equals [ N/(N+l)] · s) 

t Time 

t 50 Time corresponding to X equals 0.5 

·T Dimensionless time 

U Intersticial velocity or mean linear velocity 

u
0 

Superficial velocity, equals Ue 

X Dimensionless concentration (c/c
0

) 
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13 Correction factor to N calculation based on midpoint slope 

e Bed void fraction 

E> Dimensionless time T/N 

v Kinematic viscosity 

tjJ . Sphericity 
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Appendixes for Part II 

II- L Computation from Experimental Midpoint: Slopes 
(Using the RaD.d'()ffi=-walk-Modei-) -. · 

" '. 

•'• . . " 

Once :the applicability of the random-walk model has been as

certained for any given breakthrough curve by matching its entire shape 

to the:,shapes given. by the model, the most convenient and often the most 

accurate metb,od for evaluating the Peclet gr.oup is to measure the slope 
) 

·'at a-well defined point. · .... 

... The•. random-walk model describe-s the breakthrough curves by 

:·.the ·expre·s sion 
TV -

.X= ~OF 1 fxp(-),\lcT') ! 0 (2-/NT') d;r'' 

. Differentiating Eq. (U with respect to a tim~. scale T/N 

dim ens ionle s s slopes 
_,. ; . 

. ;, . " .:.. . a x _ N { :Txl) 
s -o(T 1 /N) \v 

and 

s II= N 
2 ~ exp(,/N- JT') exp(2-v NT 1 ) 

a different slope can be defined as 

ax 
s = = lfe" 

N+l 
""N s" ' 

(1) 

gives for the 

(2) 

(3) 

(4) 

where 8 = TjN. It is not possible to determine directly the T or T' 

for which X= 0.5. Trial-and-error determinations were therefore 

performed on the computer; the results are presented in Table I-IX 

of Part I. It is found empirically that the following relation holds be

tween (T 1 )X=O.S and N: 

(T 1 )X=0. 5 = N + 0.50 (5) 

which can be used in subsequent calculations. A simple_f9rl'l} for _the 

slope at this T' can be obtained by using infinite-series expressions 

for the various terms in Eq. (3 ). 
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2.JNT' 
1
0 

( 2 /NT 1 ) = __ e __ --.-.,..., 
2JTI(NT I) 1;4 ( 

1 . + 9 ) 
l + 16(NT 1 ) 1/ 2 512(NT 1 ) + ... 

(6) 

From known algebraic expansions, using Eq. (5), it can be shown that 

r: n:::r . r.T:T 2J -
1 

1 + 9 
Lexp(vN-yTI) =l-16N 512Nz- (7) 

and 

(NT I ) - 1 I 4 = N- 1 I 2 (1 - 81N + 5 - . . . ) 
128 N

2 (8) 

Substitution in Eq. (3) leads to 

S II : (9) 

J 
As it is not possible to determine the location of the point T 1 = N from 

the data without resorting to trial and error, it is convenient to meas

ure a slope s 1 with reference to a time scale t/t
50

: 

·and 

dX T I (X=0.5) 
s 1 - s" d(t/t

50
) - N 

S I : (1 + 1 ) S II: ~ (1 +-3- - 1 f • • • )• 
ZN 2,./n B'N 128N2 

( 1 O) 

( 11) 

This last equation gives a simple relation for computing N from the 

slope s 1 : 

N = 47T ( s I ) 2 I~ 
with 

~ = ( 1 + s~ - 1 z~ Nz + ... y ( 12) 

For convenience a plot of· ~-1 versus 
2 

4TI(s 1 ) is given in Fig. II-21. 

A good approximation to the exact relations is given by 
2 

N = 4TI(s') - .C:. 

::::4TI(s 1 )
2 - 0.80. 

(13) 
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At N = l, ~ = Oo86.9; at N = ·5; !:::. = 0378; and in the upper limit 

!:::. = Oo 7500 Equation (13) is therefore_ quite :useful in analyzing experi

mental breakthrough curves by the random-walk. model. . 
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II- 2. Sample Calculation 

The calculation method used will be demonstrated with the data 

from a run (Run 412) in'·column 2 (3/4 in. spheres - orthorhombic-1; 

e "" 38%; flowrate 0.51 gal/min). The data from the recorder chart, 

and the calculations made on the breakthrough curve, are given in 

Table II- V. The calculations are made for both "salt-in" and "salt-out 11 

breakthrough curves. A plot of the concentration (in percent) vs the 

ratio of the elapsed time to the time at the 50% concentration point is 

shown in Fig. II-22. From the slope (s 1 ), taken at t/t 50 = 1, the 

Peclet number is calculated by the relation 

2 
NRW = 41TsR ~ 0.80 

and 
d 

p 
PRW = h NRW' 

where d is the packing diameter and h is the height of the bed (dis
p 

tance between the injection plane and the plane of measurement). For 

the represented run s 1 = 1.41, NRW = 24.3 and PRW = 0.790. 

The analysis of the data by the segmented laminar-flow model 

is made on a modified semilog plot (X vs 9); the advantage in this plot 

is that one can compare entire curves. Due to the nature of the loga

rithmic abscissa scale, the comparison can be made by sliding the ex

perimental curve horizontally over master plots giving the breakthrough 

curves for the different models. A plot showing the experimental curve 

with the best match from the random-walk and the segmented-laminar

flow models, is given in Fig. II-16. For this particular run NSLF=l8.5 

and PSLF=0.602. 

The experimental breakthrough curve is plotted on a t/t50 scale, 

and thus the theoretical stoichiometric point and the experimental 

stoichiometric points for the two models (6R W = 1 and E>SLF= 1) occur 

beyond t/t 50 = 1. For this column, the theoretical stoichiometric 

point, equal to the ratio of column void-volume ( = eros s- section 

X height X porosity= 1.246 gal) to volumetric flowrate (0.51 gpm), is 

2.44 min. 
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Table II- V. Sample calculations of an experimental breakthrough curve 

Tracer in 

Recorder breakthrough c 

ca t (sec) C/C
0

(o/o) t/t5o 

0 0 0 0 
0.4 92.1 7.7 0.686 
0.9 103.2 17.3 0. 768 
1.4 111.9 26.9 0.832 
1.9 121.5 36.5 0.904 
2.4 130.5 46.2 0.971 
2.6 134.5 50.0 1.000 
2.9 139.7 55.8 1.039 
3.4 148.9 65.4 1.107 
3.9 162.0 75.0 1.207 
4.4 179.0 84.6 1.332 
4.9 203.0 94.2 1.507 
5.2 00 100 00 

aConcentration given in recorder chart units. 
Conditions: 

Column 2, orthorhombic-2, e = 38o/o. 
Flowrate = 0.51 gal/min (NR = 31.4). 
Injection at top of column. - e 
Concentration of tracer = 0.05 N NaN03• 
Amount of tracer = 2 volume o/o. 

Tracer out 

Recorder breakthrough c 
C -C 

c
0

-C t _o_o/o t/t5o (sec) co 

0 0 0 0 
0.3 82.5 5.8 0.632 
0.8 100.9 15.4 0.772 
1.3 110.0 25.0 0.842 
1.8 117.8 34.6 0.901 
2.3 125.2 44.2 0.960 
2.6 131.0 50.0 1.000 
2.8 134.5 53.8 1.029 
3.3 144.0 63.5 1.103 
3.8 157.0 73.1 1.202 
4.3 174.0 82.7 1. 331 
4.8 204.0 92.3 1.562 
5.2 00 100 00 
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II-3. Experimental Data 

A. Column 1: 0. 75-in. Spheres; Tetragonal Arrangement; Porosity 32o/o;Single- Phase, Water 

Flow- NRe 
NRe 

Slope Random-walk Segmented laminar flow No. of 
rate 1-E N p P' N p P' measurements 
(gal/min) 

I -
6.2 1.29 19.6 0.620 0. 205 

~ 
0.1 9.2 11.2 0.354 0.117 8 -.J 

0.2 12.3 18.4 1.28 19.7 0.629 0.209 11.3 0.360 0.119 8 
I 

0.3 18.4 27.6 1.48 27.8 0.890 0.297 21.0 0.666 0.220 10 
0.51 31.4 46.8 1.59 30.7 0.976 0.322 22.0 0.697 0.230 10 
1.0 61.5 91.8 1. 78 38.9 1.240 0.411 37.0 1.180 0.391 10 
2.0 123.0 183.5 2.04 51.3 1.631 0.544 6 
3.0 184.5 275.3 2.24 62.1 1. 980 0.653 6 
4.86 298.8 446.0 2.22 60.9 1. 935 0.639 6 



- --·-----------------------------------------

B. Column 2: 0. 7 5-in. Spheres; Orthorhombic Arrahg~ment; Porosity 38o/o; Single- Phase, Water 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate"······ ---r:E N p P' N p P' measurements 
(gal/min) 

0.1 6'.2 9.9 1.15 16.0 0.520 0.198 9.0 0.293 . 0.112 7 ...... 

*"' 0.2 12.3 19.8 1.19 16.9 0.550 0.209 9.7 0.315 0.120 9 00 

. 0;3 18.4 29.7 l. 24 18 .. 6 0,606 0. 231 11.2 0,364 0.138 8 
I 

0. 51. 31.4 50.6 1.41 24.3 0.790 0.301 18.5 0.602 0.229 6 
l.O 61.5 99.2 1.68 34.8 1.135 0.431 33.0 1.074 o:6o8 6 
2.0 123.0 198.3 1.85 42.2 1.3BO 0.525 6 
3.0 184.5 297.5 2.03 51.20 1.665 0.631 6 
4.86 298.8 481.9 2.08 53.8 l. 755 0.668 6 



c. Column 2: 0. 75-in. Spheres; Orthorhombic Arrangement; 
Porosity 38%; Single-Phase, Water-Glycerol 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate 

T:e N p P' N p P' measurements 
{gal/min} -~ 

,!) 

o·. 31 3.2 5.2 1.17 16.3 0.532 0.202 9.0 0.294 0.111 6 I 

0.55 5.6 9.0- 1.17 16.3 0.532 0.202 9.0 0.294 0.111 8 
1.0 10.3 16.6 1.18 16.5 0. 546 0. 207 9.2 0.300 0.114 6 
1.43 14.7 23.8 1.22- 17.8 0.580 0.220 10.6 0. 346 0.131 6 
1. 93 19.8 32.0 1. 31 20.8 0.680 0. 258 13.0 0.425 0.162 6 
2.85 29.0 46.9 1. 55 29.1 0.915 0.348 6 
4.7 48.3 78.0 1.63 32.5 1.120 0.425 4 



D. Column 5: 0. 7 5-in. Spheres; Random Arrangement; Porosity 41.2%; Siil.gle-Phase, Water 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate 

-,--:-€ N p P' N p P' measurements 
(gal/min) 

0.3 18.4 30.8 1. 21 17.5 0.525 0.216 1LO 0.330 0.136 6 ..... 
U'l 

0.51 31.4 52.4 . 1.40 2.3.8 0.7140.294 18.0 0.540 0.223 8 0 
I 

1.0 61.5 102.2 1.68 34.6 1.038 0.415 33.0 0.99 0.396 6 
2.0 123.0 205.0 1. 94 46.4 1. 390 0.57 2 6 
3.0 184.5 308.0 2.06 52.2 1.570 0.645 6 



E. Column 5: 0. 75-in. Spheres; Random Arrangements; 
Porosity 41. 2o/o; Single- Phase, Water-Glycerol 

F. Column 6: 0.75-in. Spheres; Orthorhombic-2 Arrangement; Porosity 39.5%; Single-Phase, Water 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate 

-y::-e N p P' N p P' measurements 
(gal/min) 

0.3 18.3 30.2 1.26 19.2 0.606 0. 238 12.0 0.376 0.149 6 
0. 51 26.8 44.3 1.46 26.1 0.819 0. 324 18.5 0.580 0.229 6 
l.O 52.6 86.9 1.68 34.8 1.086 0.429 31.5 0.985 0.389 6 



G. Column 7: 0. 75-in. 
:=:C 

Porosity 64.8o/o; Single-Phase, Raschig Rings; Random Arrangement; Water 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate 1-E N p P' N p P' measurements 
(gal/min) 

0.3 16.5 46.8 1.19 16.1 0.487 0.316 10.1 0.275 0.178 8 ...... 
0.51 28.1 76.6 1.32 20.9 0.603 0.392 15.3 0.416 0.269 14 \.11 

N 
1.0 55.0 156.1 1.50 27.50 0.792 0.514 25.2 0.685 0.445 10 i 

2.0 110.0 312.1 1.65 33.4 0.961 0.622 32.0 0.870 0.564 8 
3.0 165.1 468.2 l. 71 35.91 1.032 o.671 6 
4.86 267.4 758.5 l. 76 38.10 1.100 0.710 6 

:=:<; 

Equivalent-volume sphere diam , 0.68 in. 



H. Column 7: 0. 75-in. Raschig Rings tRandom Arrangement; 
Porosity 64. 75o/o; Single- Phase, Water-Glycerol 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate T:-e N p P' N p pt 

measurements 
(gal/min) 

0.32 2.9 8.2 1.02 11.5 0.313 0.202 6.0 0.163 0.106 6 
.0.54 5.0 14.2 1.02 11.5 0.313 0.202 6.0 0.163 0.106 6 
1.0 9.2 26.1 1.15 15.6 0.450 0.292 8.4 0.228 0.148 8 
1. 93 17.8 50.5 1.20 17.3 0.499 0,324 11.0 0.299 0.195 8 

..... 
\Jl 

2.85 26.2 74.4 1. 31 20.2 0.574 0.379 15.3 0.418 0.272 4 w 
I 

4.7 43.2 122.8 1.414 24,3 0. 701 0.455 4 

. ':'Equivalent-volume sphere diam , 0.68 in. 



I. Column 9: l-in. ·~ Berl Saddles; Random Arrangement; Porosity 68.6o/o; Single-Phase, Water 

Flow- NRe 
NRe 

Slope 
Random-walk Segmented laminar flow 

No. of 
rate ~ N p P' N p P' measurements 
(gal/min) 

0.3 18.4 58.8 1.22 17.7 0.537 0.368 11.2 0.340 0.233 -10 \.]1 

0.51 3l.4 99.9 1.36 22.2 0.675 0.463 17.3 0.525 0.360 6 ~ 
I 

1.0 61.5 195.8 1.52 28.2 0.858 0. 588 25.0 0. 758 0.521 8 
2.0 123.0 391.7 1.62 32.4 0.985 0.676 30.1 0.945 0.646 4 
3.0 184.5 587.5 l. 70 35.7 1.085 0. 744 4 
4.86 299.9 951.7 l. 73 36.5 1.111 0.764 4 

* Equivalent-volume sphere diam , 0. 76 in. 



* J. Column 10: 0.38-in. Spheres; Random Arrangement; Porosity 42%; Single-Phase, Water 

Flow
rate 
(gal/min) 

0.3 
0.51 
1.0 
2.0 

0.3 
0.51 
1.0 
2.0 

9.6 
J.6.3 
32,0 
64.0 

9.6 
16.3 
32.0 
64.0 

NRe 
.,-:e 

16.6 
28.1 
55.3 

110.5 

16.6 
28.1 
55.3 

110.5 

Midpoint 
Slope 

l. 72 
l. 73 
1.94 
2.22 

1.14 
1.20 
1.39 
1.60 

Random-walk Segmented laminar flow 
N P P' N P P' 

Column height; 23.7-in. 

36.20 0.595 0.252 
36.3 0.605 0. 254 
46.3 0. 774 0. 325 
61.0 1.020 0.428 

34.9 
35.0 

( 46. 3) 
(61.0) 

Column height; 12.0 -in. 

15.5 0.526 0.221 8.5 
10.0 
17.3 
29.0 

17.3 0.586 0.246 
23.4 0.794 0.333 
31.4 1.040 0.437 

0.576 
0.579 

(0. 774) 
(1.020) 

0.288 
0.339 
0.585 
0.980 

0.240 
0.243 

(0. 325) 
(0.428) 

0.121 
0.142 
0.244. 
0.410 

"" Equivalent-volume sphere diam , 0. 76 in. 

No. of 
measurements 

6 
6 
6 
6 

8 
6 
6 
8 

....... 
\Jl 
\Jl 
I 
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Summary of Jacques's Data for High Flow Rates 

Column Packing description NRe NRe p P' r:e 
No. 

1 Tetragonal (0. 75-in. spheres) 646 950 2.4.42 0. 781 
E = 0. 32 ~940 2853 2.448 0. 783 

2 Orthorhombic -1 (0. 7 5-in. 646 1042 1. 893 0. 719 
spheres) e = 0.38 1940 3129 L881 0. 715 

4 Random (0. 25-in. polyethylene 528 812 2.082 
pellets) E = 0. 35 

0. 729 

5 Random (0. 7 5-in. spheres) 646 1099 1.838 0. 757 
E = 0.412 1940 3299 1.858 0. 765 

6 Orthorhombic-2 (0. 75-in. 646 1068 1.885 0.745 
spheres) E = 0. 395 1940 3207 1. 903 0. 752 

7 Random (0. 75-in 
Raschig rings) E = 0.648 560 1. 591 0.909 0.589 
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PART III. LONGITUDINAL DISPERSION IN 
COUNTERCURRENT LIQUID FLOW 

A. ,. Introduction 

The usual textbook method for designing a packed extraction 

column, as introduced by Colburn, involves computing the number of 

transfer units (N:TU) required to bring about a given extraction, and 

multiplying this number by a height factor (the HTU) determined from 

direct or indirect experience. 1 For extraction columns, the HTU 

values vary widely with the physical properties of the two phases, the 

nature and amount of solute, and rates of flow, making it necessary to 

obtain very specific data for the contemplated design. Numerous experi

mental studies have been conducted to measure effective mass -transfer 

coefficients and HTU' s in extraction columns; these have been reviewed 
4 13 1\7 

by Elgin and Wynkoop by Treybal, and by Vermeulen et al. 

The mathematical definition of HTU is based upon a piston

flow model for each of the two counterflowing phases. The actual 

phases would appear to be far from homogeneo~s at any one cross-sec

tion, and the complex flow behavior within the packing would seem to 

produce considerable "back mixing" within each phase. For systems 

with still more evident internal mixing, such as multicompartment 

. d 18 d 1 d . 1 16 1 . d" 1 d" ag1tate reactors an pu se extraction co umns ong1tu 1na 1s-

persian is known to control the performance. 

The phenomenon of axial mixing or longitudinal dispersion arises 

from the fact that a molecular-scale "packet" of fluid does not move 

through a bed at a constant velocity, nor usually at the same local ve

locity as other packets pas sing a given point. These fluctuations appear 

to result from (a) separation of the flow into filaments taking different 

paths through the packing, and (b) eddy motion of the fluid. The former 

appears to be more characteristic of a laminar-flow regime, and the 

latter is probably more characteristic of turbulent flow, but the possi

bility also exists of the two effects occurring together. 

Longitudinal dispersion in an extraction column has the effect 

of reducing the driving potential for mass -transfer substantially, so 
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that a longer column (for any given mass -transfer coefficient) is re

quired to produce the same overall separation, It thus becomes evi-

dent that any design correlation of mass-transfer coefficients or HTU 

values should .account separately for longitudinal dispersion rather than 

submerge its effect into apparent mass-transfer behavior. Mathematical 

relatio~s have been developed for this purpose which are described be

low. Therefore, the present investigation was conducted to measure 

the longitudinal-dispersion coefficients in counterflowi~g liquid-liquid 

systems (in the absence of actual extraction), in order to provide the 

numerical parameters needed for both interpretation and design of 

steady-state extraction operations in packed beds.· Measurements have 

been made for both the continuous and the dispersed phase, with sep

arate results for the latter in the cases where it does or does not wet 

the packing materiaL 

1. Mathematical Treatment 

A diffusion model for. describing the influence of longitudinal 

dispersion in countercurrent systems undergoing mass transfer between 

the phases .1?-as been developed by Miyauchi 
10 

and Sleicher. 
12 

The dis

persion effect for each phase is described by an effective longitudinal 

diffusivity E.. The basic equations obtained by material balance in a 
1 

differential slice of the column, for the X phase and Y phase re-

spectively, are 

P B dC /dZ 
X X 

N P B(C mC ) = 0 (1) 
OX X X y 

and 

d
2

C /dz
2 + P B dC /dZ + N P B(C - mC ) = 0 (2) 

y y y oy y x y 

with the boundary conditions: 

at Z = 0, dC /dZ = p B(l - c ) 
X X XO 

and dC /dZ = 0 
y 

at Z = 1' dC /dZ = 0 
y 

Cl)· and dC /dZ = P B(C 
1 y y y y' 



where: 

and 
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P. = U.d /E., Peclet number of i._th phase, 
1 1 p 1 

B = h/ d = dimensionless length, 
p 

h - column height, 

d = particle diameter, 
p 

Z = dimensionless length variable, ranging from zero at the 

X- feed end to unity at the Y -feed end of the column, 

C. = dimensionless concentration in the i phase measured 
1 

at a point Z expressed relative to X-feed concen-

tration. The number accompanying C, if a subscript, 

is the Z value inside the column; if it is a super

script (0 or 1), it is the Z value in the feed or 

product stream outside the column., 
>:C 

m = slope of equilibrium curve, dC /dC , 
X y 

N . - True overall number of transfer units for the _ith phase, 
01 

N =AN , 
oy OX 

A = 
m(UO)x 

(Uo>y 
= extraction factor, 

Ui = mean linear velocity of the i_th phase, 

(U0 ). = superficial velocity of the ith phase" 
1 -

Equations (1) and (2) are differential equations of the second 

order with constant coefficients. Their solution, obtained by differen

tiation and subsequent integration of a single fourth-order equation, 

gives the concentration of any point inside the column. 
1° Figure III-1 

shows representative behavior of the concentration profiles in an ex

tractor, for piston flow (broken lines) and for axial dispersion (solid 

lines). The decrease in driving force due to axial mixing is shown by 

the arrows. Graphical and tabular results corresponding to the solution 

of Eqs. (1) and (2) have been provided by McMullen, Miyauchi and 

· Vermeulen. 
8

• 9 The solutions are obtained in the form 



-160-

-me yo 

Z=O Z =I 

MU-14083 

Fig. III-1. Concentration profile in a typical extraction_ 
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·X= X(N ,A, P B, B B, Z) 
OX X y 

and 

Y = Y(N , A, P B, P B, Z) . 
OX X y 

The outlet concentrations are, at Z = 1, 

and, at Z = 0, 

y 
0 

1 -

1 
- (Q + mC ) 

y 

Here Q is the intercept of a linear-equilibrium plot, 

* c =Q+mC. 
X y 

(3) 

. (4) 

(5) 

(6) 

(7) 

Ideally one should be able to establish the value of any one parameter 

from a knowledge of the other parameters. The practical use of Eqs. (3) 

and (4) has been facilitated by the derivation of several empirical rela

tions between the different parameters. 9 An apparent NTU, as given 

from Underwood's result, 
14 

has been defined as 

l . [1 - A(l-X1)J 
NoxP = 1 - A .tn X . 

1 
(8) 

The subscript P indicates that the definition stems from a "piston

flow" model. The true NTU can be related to the apparent NTU by 

a difference in reciprocals: 

1 1 1 
N---w-= ~ 

oxP ox oxD 

Here N D is related to P B and 
. OX X 

(9) 

P B by an approximate empirical 
y 

~----.--1---=___,...,~~ _ A 
NoxD- ln ~/(A-1) - fxPxB 

( 10) 
equation 
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where f and f are weighting factors which are functions of N 
X y OX 

and lL 9 At A = 1, the term (~n A)/ (A-1) reduces to unity, and 

f = f ::: 1. By the use of these relations, it should be possible to carry 
X y 

out any of the following calculations: 

( 1) From an experimental X 
1

, and experimental P xB and 

P B, to determine the true N y OX 

(2) From an experimental x
1

, and a correlational N , to deox 
termine an experimental N D . 

OX 

(3) From experimental or correlational P B, P B, and N 
X y OX 

values, to predict the x
1 

value for a column to be designed or operated. 

2. Analysis of Experimental Data 

The column Peclet-number values (P.B) for the individual phases 
1 

can be determined independently of any extraction operation by use of 

tracer techniques for unsteady-state flow. Such methods involve the 

injection of a tracer into one phase, the tracer being insoluble in the 

other phase. Similarly to the "one-phase 11 study, a step input of salt 

solution was .used as a tracer and a breakthrough curve .was obtained 

by conductivity measurements. The resulting breakthrough curve is 

related to the dispersion coefficient by a suitable mathematical model. 

Van de Vusse has shown that the diffusion model is applicable to both 
15 continuous and discontinuous phases. For convenience we analyzed 

our data by the random-walk model, which as we have shown (Part I) 

is equivalent to the diffusion model with finite boundaries. An alternate 

model, that of segmented laminar flow, was not used because it was 

found to fit more poorly than random walk or diffusion in the single

phase studies (Part II). 

Based on the random-walk model, P~clet numbers were obtained 

by comparing th.e experimental curve with theoretical ones on semilog 

coordinates,or by applying the simple relation 

N = 4rr(s 1 )
2 - 0.80, ( 11) 

where s 1 is the midpoint slope measured on a t/t
50 

time scale --(-see 

Part II). 
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B. Apparatus and Procedure 

l. Columns 

Nine different columns were used for·the investigations, three 

with ordered packings and octagonal or hexagonal cross-sections and 

six with random packings and circular or octagonal cross-sections. The 

column dimensions are given in Table III-I and described in more de

tail in Part II. 

2. Conductivity Cells 

Conductivity was used to determine the breakthrough curve for 

the aqueou$ phase. When water is the continuous phase, the conductivity 

cells were the same as those used for single phase experiments; they 

were constructed of two spherical sections of 3.4-in. Bakelite spheres, 

connected by a pair of rhodium-plated pins. When the aqueous phase 

was the dispersed one, the breakthrough curves were recorded by a 

special conductivity cell used by Dunn et aL 
3 

in their study of gas-ab

sorption columns. A photograph of the cell used is shown in Fig. III-2, 

and a cross-sectional drawing in Fig. III-3. The conducting discontinuous 

phase entered the sampler through the funnel-shaped top and left through 

the post in the side. The probe was fixed just under the packed column 

in the expanded column head. The conductance of the solution between 

the pins.was determined by the same electronic equipment as the one 

that is used in the continuous-phase and single-phase work (see Part II). 

3. Feed Nozzle 

Special consideration was given to the nozzle through which the 

discontinuous phase is introduced. Uniform drop size was desired in 

order to achieve uniform drop rise or fall with minimum of coalescence 

of the drops. According to Johnson and Bliss, velocity at the hole has 

to be maintained between 1000 and 1500 ft/hr and a hole diameter of 

0.10-in. seems to be the optimum. 
7 

Consequently the distribution nozzle 

was designed with a set of six removable plates, varying in number of 

holes (from 37 .to 169) to provide the wide range of flow rates required. 



Table III-I. Discussions and packing of experimental columns 

Column Packing deff (dp)v Arrange- Fraction Sphericity Height for Height for Cross-
number 

(inj 
ment of voids continuous dispersed sectional 

(o/o) phase runs phase runs area (inf.) 

Ia Spheres 0. 75 0. 75 Tetragonal 32.0 1.0 23.6 24.0 30.3 
2a Spheres 0. 75 0. 75 Or tho 38.0 1.0 23.0 24.1 30.3 

sa 
rhombic-! 

Spheres 0. 75 0. 75 Random 41.2 1.0 25.0 24.0 30.7 
6a ·Spheres 0. 75 0. 75 Or tho 39.5 1.0 24.0 25.2 30.6 

rhombic-2 
7a Ceram~c rings 0. 75 0.65 Random 64.8 0.42 23.6 24.0 30.7 
9 Berl saddles 1.0 0. 76 Random 68.6 0.33 25.0 25.0 30.7 -lQb Spheres 0,38 0.38 Random 42.0 0.95 25.0 24.0 30.7 

"' llb Ceramic rings 0.50 0.48 Random 62.0 0.54 24.0 24.0 30.7 
~ 12 Carbon rings 0. 75 0.72 Random . 67.0 0.40 23.6 24.0 30.7 I 

aPacki.ng used by Jacques5 

bPacking used by Cotter6 
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Fig. III- 2. Liquid conductivity cell. 
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Section A-A 

Teflon -coated wire 

Teflon 

I 2 o.d. I ucite tube 

MU -24352 

Fig. III-3. Cross-se_ctional drawing of a liquid
conductivity cell. 
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Five of these had 0.10-in. -diam holes,_ while the sixth, for high flow

rates, had 0.15-in. holes to avoid too: great a drop in pressure. 

4, Liquid-Level Control 

The interface could be maintained at the top or bottom of the 

packing, depending on whether the water phase was continuous or dis

persed. Two Teflon-covered nickel-rod probes were mounted in each 

head section for this purpose. These probes were slightly staggered in 

level to provide a neutral zone. Originally, they were connected to a 

solenoidal valve or to the outlet water line, which was bypassed by a 

manually adjustable gate valve. Later,. a single-speed floating control 

was adapted, with all probes connected to a motorized-valve controller, 

and the column grounded to complete the circuit. With this system, a 

probe would conduct when immersed in the water phase. The outlet 

water valve opened when both probes conducted and closed when neither 

did. 

5. Piping Arrangement 

The organic phase (kerosene) and tracer solution were piped 

from storage tanks with centrifugal pumps. Water was supplied from 

a constant-head tank, about 25 ft above the column, under gravity flow. 

The incoming flows were manifolded and valved, so as to meter each 

of them through the appropriate unit in a bank of six rotameters. The 

organic phase was returned to the supply tanks through an overhead 

line, and the water was drained to the sewer, 

6. Start-Up 

At the beginning of a run, continuous phase was allowed to fill 

the column, and flow of the dispersed phase was then started. Experi

mental measurements were made only. when the interface was made 

stationary by close adjustment of the outlet flow rates. This precaution 

was essential for the following reasons. First, if the interface changes, 

the flowrates in the column are different from those indicated by the 

rotameters. Second, due to the level change, the outlet valve closes, 

causing an abrupt change in the continuous -phase flowrate, which affects 

the dispersion rates in both phases, 
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7. Conductivity Measurements 

a. Water as the continuous phase. When steady-state flow was 

reached for both phases, a solution of sodium nitrate (O.lN) was in

jected in an amount from 0, 25 to 2,0 volume-percent of the water stream, 

The starting time was noted by a pip on the strip~ chart recorder. When 

the breakthrough curve leveled off to a steady-state value, injection 

was stopped, and a second strip-chart record was taken to measure the 

purging of the tracer solution. The breakthrough curves recorded were 

not as smooth as in single-phase experiments because of the interference 

of droplets of the discontinuous organic phase in the conductance path; 

these fluctuations were averaged out for Peclet-number computation, 

b, Water discontinuous. For water dispersed, the breakthrough 

curves were again measured by c.onductivity, using the special probe 

described above. The same steps already outlined were taken to estab

lish steady-state flow in the column, to set the liquid level below the new 
,_ 

conductivity probe, to inject the tracer, and to record the breakthrough 

curves, As the organic phase was excluded from the interior of this 

probe, the curves were as smooth as in single~phase experiments. 

All runs were made at an ambient temperature of 68 ± 2 oF. At 

this temperature, the kerosene used had a viscosity of 2.46 cP and a 

density of 0.820 g/cm
3

, 

C. Results and Discussion 

L Continuous Phase 

The results of measurements of longitudinal dispersion in the 

continuous phase, using the methods just described, are shown in 

Appendix III-1. Related data taken by Jacques 
5 

and Cotter, 
6 

which will 

be used to obtain a generalized correlation, are also given in Appendix 

III- L These tables report both the packing Peclet number P itself 
c 

and the product e P , which will 'be used in the correlation to account for c 
the effect of void space available to the continuous phas-e-;- In each system 

studied, the modified Peclet number for the continuous phase e P was 
c 
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found to increase with increasing. superficial velocity of the continuous 

phase, and to decrease with increasing superficial velocity of the dis

persed phase. 

One would also expect Peclet numbers to be functions of the type 

of channels encountered by the flowing fluid" Some measurable variables 

that affect the channel shapes are the size (d ) , sphericity ( ljJ), and 
p 

porosity (e) of the packing material. The particle sphericity is defined 

as the ratio A I A , where A is the surface area of a sphere having 
s p s 

the same particle volume, and A is the surface area of the particle, 
p 

The data from Appendix III have been correlated in terms of these 

variables, The runs available are insufficient to distinguish between 

the effects of sphericity and void-fraction. A linear regression based 

on the four factors UcO' UdO' d 0 ,. and ljJ showed a 98% correlation 

coefficient for a dependence of E P upon the terms 

.~.0"53 U OA6 
'~" dO 

(12) 
d O"Z9U 0"76 

p cO 

In using this correlating function we assumed a straight-line relation 

between logarithms, whereas, in fact E P should converge asymp

totically upon the single phase value as Ud decreases, Nevertheless, 

the regression was of major assistance in determining a suitable plotting 

function" 

It also appeared that ''backmixing" in the continuous phase is 

produced by entrainment of that phase by the dispersed-phase droplets. 

This effect would increase with the kinematic viscosity; introduction of 

a viscosity term would render the correlating group dimensionless" 

With some further trial of the effects of different exponents, the follow

ing correlation was tentatively adopted: 

E p c = fn [ ( d ljJ ~ ) 
1 
I 

2 (~dO ) J , 
.~ p cO cO 

( 13) 

A dimensional correlating factor of somewhat different form, 

I 2 6 
dp UdO ljJUcO, was suggested by Cotter, based on a smaller number of 
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run conditions. In his calculations, the runs at smaller d and high ' . . ·. ' p 
4J were weighted differently by a preponderence of low U cO values. Un-

like his correlating factor, the one now adopted does provide the prospect 

of accounting for a possible viscosity effect, in an entirely dimensionless 

form, Another correlational possibility that has not yet been explored, 

but should await further experimental data, is, the use of P P as the 
c 0 

ordinate, where P is the Peclet number for single-phase flow in the 
0 

same packing. (The same superficial velocity and the same mean linear 

velocity should both be tried as possible bases.) Jacques
5 

and Cotter
6 

both appear to have used P /P , but their P was always taken as the 
c 0 0 

limiting laminar-flow value, thus giving an ordinate really proportional 

to our ordinate e P 
c 

Figure III-4 shows the data of Appendix III-1, plotted on the 

coordinates indicated by Eq. (13 ). This figure indicates the different 

asymptotes for different continuous-phase Reynolds numbers. 

2. Dispersed Phase 

The results of a few dispersed-phase measurements are shown 

i.n Appendix III--2 and in Fig. III~·5. The different packings used were: 

(Column 7) 3/4-in. ceramic Raschig rings; (Column 9) l-in. Berl saddles; 

and {Column 12) 3/4-·in. carbon Raschig rings. 

For the carbon packing (nonwetting phase discontinuous), the 

Peclet number remains practically constant over the full range of 

UcO and UdO values studied; whereas, for ceramic Raschig rings, 

P decreases slightly with increasing UdO, although it increases 

slightly with increasing Uco. 

In previous studies 5 -·6 with kerosene dispersed in water, and 

with the breakthrough curves (for a step input of dye) obtained by photo

electric measurement, the dispersed-phase Peclet numbers were much 

smaller than those found here. It is possible, in the earlier measure

ments, that additional mixing occurred in the measuring region, thus 

leading to unduly low Peclet-number values. It appears to be simpler 

and more accurate to monitor the continuous phase in the pre-sence of 
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1.0 

0.5 NRe :so 
1-E 

40 

0.2 
s20 

• 
0.1 o Spheres, tetrogonol(0.75 in.,.-=32%) <> 

• Spheres, orthorhombic·! (0,75in.,.-=38%) 

0.05 
u Spheres, random (0.75 in.,.-=41 %) 
• Raschig rings (0.75 in.,.-=65%)· 
CJ Berl saddles (1.0 in., .. =67%) 
.A. Spheres, random (0.38 in.,or=42%l 

0.02 <>Raschig rings (0.50 in.,c=62%l 

o.ol~--2~--_.5 __ _. __ _.2----~5--~--~2-----5~--~--2----~5 
I o-3 10'2 10'1 

(~ )1/2 (~) 
dpUco Uco 

MU.30175 

Fig. III-4. Dimensionless correlation for continuous
phase Peclet number. 
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0.8 r------"T--'---r--.---.,---'---,-----, 

0.7 

0.6 

0.4 

0.3 

6. 3/4- in. carbon Raschig rings 
ct l-in. Be.r:l sadd.les 
c 3/4-in. cer9mic _Raschig rings 

0.2~-~--~--~--~--~-~ 
0 0.2 0.4 0.6 0.8 1.2 

Uco I Udo 

MU-30163 

Fig. III- 5. · Discontinous -phase Peclet number. 
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dispersed phase than the reverse. In general it is necessaryto collect 

an appreciable quantity of dispersed phase in order to measure its prop

erties. It is essential to do this collecting under piston flow conditions, 

and then a correction must be made for the time .lag involved. (In the 

present study, this time .lag is estimated at 2 to 5% of the total time 

elapsed at the point of measurement. ) 

Since the present measurements are higher than previous values,
6 

they show the need for much more data before correlation can be at

tempted. 

D. . Application to Packed- Column Extraction 

The experimental Peclet-number values obtained should be of 

direct use, in conjunction with experimental extraction data from an 

operating column, to determine the true mass-transfer rates in such 

a column. To illustrate the calculation, and also to determine the 

typical magnitude of the correction from apparent to actual rates, data 
2 

from Colburn and Welsh have been selected, in which the transfer re-

sistances lie almost e'n.tirely in a single phase. 

The method outlined previously l Eqs. (8) to (10)] does not give 

precise results when applied to this limiting case. However, since no 

appreciable change in concentration (or activity) occurs in the "inactive" 

phase which does not offer a transfer resistance (to water or to iso

butanol) a separate algebraic result by Miyauchi can be applied. 
10 

Complete 

P B = 0. 
y 

where 

and 

mixing of the inactive phase can be assumed, indicated by 

The applicable relation is then ) 

(
- >-2 ->..1 

N e - e + >.. 1 N = ln ox oxP · ----~--------~----

1
-------------

p B(1 +4r) 1 2 
X 

}\1 = (PxB/2) ~ + (1 + 4r) 1/2 J' 
>..2 = (P XB/2) u (1 + 4r)1/2], 

r = N /P B. OX X 

(14) 

(15) 

(16) 

(17) 
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This relation is illustrated graphically in Fig, III-6 where NoxP is 

plotted against N for several values of P B, A simple empirical 
OX X 

relation, equivalent to Eq, (14) but explicit in N , has been developed 
11 ox 

by Moon: 

N 
OX 

2 
0,96(N p) 

ox N = --:;:::--;,.---,,.....,-~.-
oxP P B + 0,63 

X 

(18) 

Smoothed values for the apparent HTU were taken from Colburn and 
2 

Welsh's work, at superficial velocity values (G ) of 1000 lb/hr-ft for 
X 

the "active" phase, The steps involved in estimating the actual HTU 

values are given in Table III-II, and the resulting values are compared 

with the apparent HTU in Fig, III- 7 for the continuous phase only, In 

this particular system, the ratio H p/H is seen to vary from L l to 
c c 

l, 8 for the continuous phase, 

If the higher P values found for the dispersed phase are con

firmed for further studies, then the ratio HdP/Hd will be much nearer 

to LO probably in the range L 10 to L20 for usual operating conditions, 

Although the example chosen was a somewhat simplified case, 

where transfer resistance lies only in one phase, the conclusion drawn 

should apply even more to cases where dispersion occurs in both phases, 

The exact calculations for the general case are quite complicated but 

can be substituted for by rapid approximate methods, 9 

From the values obtained, it is seen that for cases where simul

taneously the dispersed-phase flowrate is large and the continuous-phase 

flowrate is small, the dispersion effect may dominate the effective 

HTU, For small dispersed-phase flowrates with large continuous -phase 

flows, mass transfer will often provide the principal resistance; how

ever, in scaling-up to larger padcings, both effects should still be con

sidered, Thus, it can be concluded that the longitudinal dispersion will 

often have a substantial influence on the efficiency of an extraction colum.n. 
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Fig. III-6. N as a function of N 
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Table III-II. Single-phase extraction studies of 
water-isobutanol systema 

(G = 1000 lb/hr ft2; Column height, 1.75 ft) 
X 

G H N EP p B N N /N H 
y xp xp c X X xp x X 

Continuous phase: water 

250 3.50 0.50 0.125 6.12 0.536 0. 931 3.264 

500 1.50 l.l 7 0.095 4.29 L437 0.814 1.218 

750 0.87 2.01 0.075 3. 39 2.975 0.676 0.588 

1000 . 0.64 2.74 0.065 2,.94 4. 760 0.575 0.367 

Continuous phase: isobutanol 

500 3.50 0.50 0.086 3.90 0.553 0.904 3.160 

750 2.60 0.68 0.065 2.94 0.804 0.846 2.177 

1000 2.00 0.88 0.052 2.34 1.130 0. 779 1. 549 

a 
From Ref. 2. 
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',~, ISOBUTANOL 
' , CONTINUOUS 

' ' ' ' '.· .... 
',HcP, 

WATER 
CONTINUOUS. 

' 

1000 
2 /hr·ft ) 

' ' 

2000 

M U -17104 

N and N for isobutanol-water system. 
c cp 



-178-

E. Conclusions 

Analysis of the results obtained in this study of axial dispersion 

in two-phase countercurrent flow through packed beds leads to the fol

lowing conclusions: 

{1) The axial Peclet number of the continuous phase increases with 

increasing continuous -phase flow rate and decreases with increasing 

discontinuous-phase flowrate, It is believed that the decrease relative 

to the single-phase behavior tnay be .caused by intermittent entrainment 

of the continuous phase by droplets of the dispersed phase. The modified 

Peclet number ( E P) is believed to be a function of the dimens,ionless 

parameter 

ljll/2~_v .)· 1/2 ( ~) ; 
. d u ud p co 0 

the effect of viscosity, only, has not yet been confirmed quantitatively. 

(2) The axial Peclet number of a wetting discontinuous-phase de

creases somewhat with decreasing continuous -phase flowrate and with 

increasing discontinuous -phase flowrate, For a nonwetting dispersed 

phase, the Peclet number remains practically constant over the full 

range of U and Ud values studied. Previous invetigations 
6 

gave 
co 0 

Peclet values much smaller than obtained in the present study; this ap-

pea~s to be a result of the experimental methods used. 

(3) True mass -transfer rates were computed from experimental ex

traction data, 
2 

using th~ measured continuous-phase axial-dispersion 

coefficients. For the particular system used it is seen that the true 

H is from 10 to 80o/o smaller than the piston' flow H p· Although only 
X X 

a simplified example, for which the mass -transfer resistance lies in 

one phase, was investigated, its result should apply to the general case 

where approximate methods of solution are available. 9 
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F, · Notation for Part III 

Surface area of packing particle., · 

Dimensionless height, h/d p 
Dimensionless concentration, 

Concentration 

. 0 
c/c 

X 

Particle diameter 

Superficial dispersion coefficient 

. Weighting factor in correlation,. Eq. ( 1 0) 

Superficial mass velocity 

Overall height of transfer unit, relative to X phase 

Total height of packed section of column 

Mass -transfer coefficient 

Partition ratio; c / c at equilibrium 
X y 

Peclet number for the column; hU/E 

Overall number of transfer units, relative to X phase 

Reynolds number; d (U
0

) jv 
p c 

Peclet number for the packing; N Pe 

Dimensionless midpoint slope of breakthrough curve (based on 

t/t
50 

scale) 

Time 

Mean interstitial velocity 

Dimensionless height, z/h 

Height within column 

Void-fraction or porosity 

Extraction factor; m(U
0

)x/(U
0

\ 

Kinematic viscosity 

Sphericity of the packing; (area of a sphere having the particle 

volume)/(actual area of particle) 

Superscripts 

0 Feed end of column, outside the column 

l Solvent-entering end of column, outside the column 
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Subscripts 

c Continuous phase 

D Dispersion unit 

d Dispersed phase 

f Final 

i For the "i" phase~ as yet undesignated 

o Overall 

o, 0 Initial 

0 Superficial 

P Exterior apparent value, conforming to piston-flow model 

x . For the X phase (usually the feed or raffinate) 

y For the Y phase (usually the solvent extract) 

0 Feed .end of column, inside the column 

1 Solvent-entering end of column, inside the column 
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Appendix for Part III 

III-1. Experimental Data 

A. Continuous-Phase P~clet Numbers for Kerosene in Water, 
l-in. Berl Saddles 

(dvt Y
12 udo 

No. of 
F u Fd udo Udo/Uco N p EP 

meas-
c co u- ure-

(gal/min) (ft/hr) (gal/min) (ft/hr) 
c c c p co co ments 

2.21 83.2 0.15 5.6 0.0673 0.0033 22.80 0.693 0,478 6 
0. 31 11.7 0.1406 0.0069 18.90 0.574 0.396 6 
0.58 21.8 0.2620 0.0129 1.5.60 0.474 0,327 4 
0. 71 26.7 0.3209 0.0158 14.60 0.443 0.306 6 

1,53 57.6 0.15 5.6 0.0972 0.0058 19.5 0.593 0.409 6 
0. 31 11.7 0.2031 0.0120 16.2 0.492 0.339 6 
0.58 21.8 0.3785 0.0224 12.3 0.373 0.257 4 
0.97 36.5 0.6337 0.0375 8.0 0.243 0.168 6 

0.85 32 0.15 5.6 0.1750 0.0139 11.3 0.343 0.237 8 
0.31 11.7 0.3656 0.0290 11.0 0.334 0.230 6 
0.58 21.8 0.6813 0.0540 8.0 0.2.43 0.168 6 
1.23 46,5 1.450 0.1152 4.20 0.128 0.0883 6 

0~5 19.2 0.31 11.7 0.6094 0.0624 7,24 0.220 0.152 6 
0.58 21.8 1.1354 0.116 2 4.5 0.137 0.0945 6 
0.97 36.5 1.9010 0.1946 3.20 0.097 0.0669 6 

0.33 12.4 0. 31 11.7 0.9435 0.1202 5.43 0.165 0.1138 6 
0.58 21.8 1. 7581 0.2239 3.20 0.097 0.0669 6 
1.50 56.4 4,5484 0.5793 1.66 0.050 0.0345 8 

• 
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B. Continuous-Phase Peclet Numbers for Kerosene in water, 
0. 75-in. Raschig Rings 

, vtj; jl/2 udo 
No. of 

F u Fd udo Ud/Ucq N p EP meas-
c co ~I u- c c c ure-

(gal/min) (ft/hr) (gal/min) (ft/hr) 
p co' co ments 

2. 21 83.2 0.15 5.6 0.0673 0.00404 25.2 0.685 0.445 6 
0. 31 11.7 0.1406 0.00845 21.3 0.579 0.376 6 
0.44 16;6 0.1995 0.0120 19 .l 0. 519 0.337 6 
0.66 24,8 0.2981 0.0179 18.8 0.511 0.332 6 

1.3 48.9 0.15 5.6 0.1145 0.00896 /21,9 0.596 0.387 6 
0.31 11.7 0. 2393 0.0187 l 7. 2 0.468 0.304 6 
0.58 21.8 0.4458 0.1104 12.7 0.345 0.224 6 

0.85 32 0.31 11.7 0. 3656 0.0659 13.40 0.364 0.237 6 
0. 71 26.7 0.8344 0.1495 7.90 0. 215 0.140 6 
0.97 36.5 i. 1406 0.2044 5.6 0.152 0.099 6 
1.50 56.4 l. 7625 0.3160 3.8 0.104 0.0676 6 

0. 51 19.2 0. 31 11.7 0.6094 0.0761 8.49 0. 231 0.150 6 
0.58 21.8 1.1354 0.14181 5.60 0.152 0.0988 6 
1.50 56.4 2.9375 0.3669 2.86 0.077 0.0501 6 

0,33 12.4 0.15 5.6 ' 0.4516 0.0702 9.0 0.246 0.160 6 
0. 31 11.7 Q. 9435 0.1466 6.12 0.166 0.108 6 
0.58 21.8 l. 7581 0.2732 3,88 0.106 0.0689 6 
0.97 36.5 2.9435 0.4560 2.46 0.070 0.0455 6 
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C. Continuous-Phase Peclet Numbers for Kerosene in Water, 
0. 75-in. Spheres, Tetragonal (Jacques) 

F U 
c co 

(gal/min) (ft/hr) 

0.6 
0.3 
0.3 

22.6 
11.3 
11.3 

Fd Udo 

(gal/min) (ft/hr) 

0.16 
0.16 
0.61 

5.95 
5. 95 

22 .. 6 

0.264 
0.526 
2.00 

0.0436 
0.1232 
0. 4681 

N 
c 

14.44 
7.95 
4.45 

p 
c 

0.454 
0.250 
0.142 

D. Continuous'-Phase P~clet Numbers for Kerosene in Water, 
0. 75-in. Spheres, Random (Jacqu.es) 

F U 
(gal/~in) (ft/IPr) 

0.6 
0.3 
0.3 

22.6 
11.3 
11.3 

E. 

F U 
c co 

(gal/min) (ft/hr) 

Fd Udo 
(gal/min) (ft/hr) 

0.98 . 
0.61 
l. 21 

36.6 
22.6 
45.5 

1.63 
2.00 
4. 01 

0.2680 
0.4710 
0.9421 

N 
c 

3. 37 
2. 21 
1.57 

p 
c 

0.105 
0.069 
0.049 

Continuous-Phase P~clet Numbers for Kerosene in 
0.75-in. Spheres, Orthorhornbic-2 (Jacques) 

Water, 

Fd Udo U /U (vljJ )'1/2 Vdo 
do co cr-t:I -u-

(gal/min) (ft/hr) · P co · co 

N 
c 

p 
c 

EP 
c 

f\o of 
meas
ure
ments 

0.145 
0.080 
0.046 

5 
4 
5 

EP 
c 

No. of 
meas
ure
ments 

0.043 
0.028 
0.020 

5 
5 
5 

EP 
c 

I\o. o£ 
meas
ure
ments 

1.0 
0.3 

37.6 
11.3 

0.95 
0.95 

35.8 
35.8 

0.95 
3.17 

0.1221 
0. 7414 

8. 73 
2.20 

0.270 0.107 5 
0.068 0.026 4 
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F. Continuous-Phase P~clet Numbers for Kerosene in Water, 
0. 75-in. Spheres, Orthorhombic-! (Jacques) 

(avt J/2 udo 
No. of 

Udo/Uco 
meas-

F u Fd udo u- N p EP 
c co c c c ure 

(gal/i:nin) (ft/hr) (gal/min) (ft/hr) 
p co co ments 

2.0 76.0 0.23 8.7 0.114 0.0103 14.54 0.474 0.180 4 
0.46 17.5 0.230 0.0208 14.45 0.471 0.179 4 

1.0 38.0 0.16 6.0 0.158 0.0201 15.28 0.498 0.189 4 
0.22 8.3 0.218 0.0279 13.01 0.424 0.161 6 
0.49 18.5 0.486 0.0621 10.31 0.336 0.128 10 
0.95 36,1 0.950 0.1212 8,44 o.i75 0.104 14 

0.8. 30.4 0.22 8.3 0.273 0.0390. 8.53 0.278 0.106 5 
1.00 38.0 1.'250 0.1788 6.38 0.208 0.079 5 

0.6 22,8 0.16 6.0 0.264 0.0433 9.48 0.309 0.117 6 
0.22 8.3 0.364 0.0600 8. 71 0.284 0.108 6 
0.43 16.2 0. 710 0.1171 5.52 0.180 0.068 6 
0.95 36.1 1.590 0. 2608 4.26 0.139 0.053 5 

0.3 11.4 0.22 8.3 o. 730 0.1698 5.15 0.168 0.064 5 
0.95 36.1 3.200 o. 7378 2.21 0.072 0.027 4 
1.82 69.0 6,050 1.4120 1.66 0.054 0.021 5 
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., 

G. Continuous-Phase P~clet Numbers for Kerosene in Water, 
0.50-in. Raschig Rings (Cotter) 

( a;tcj/

2 udo 
No. of 

F u Fd udo Udc/Uco N p EP meas-
c co u- c c c ure-

(gal/min) (ft/hr) (gal/min) (ft/hr) 
co ments 

0.850 31.80 0.100 3. 74 0.118 0.0151 13.0 0.271 0.168 3 
0.578 21.60 0.100 3. 74 0.173 0.0269 9.8 0.204 0.126 3 
0.351 13.10 0.100 3. 74 0.285 0.0570 6.6 0.137 0.085 3 
0.154 5. 76 0.100 3. 74 0.649 0.1941 3.1 0.063 0.039 3 

H. Continuous-Phase P~clet Numbers for Kerosene in Water, 
0.38-in. Spheres (Cotter) 

( ~ y/2 ~do 
No. of 

F u Fd udo Udc/Uco N p EP 
meas-

c co c c c ure-
(gal/min) (ft/hr) (gal/min) (ft/hr) 

p co co ments 

0.10 3. 73 0.056 2.09 0.560 0.3127 6.9 0.107 0.045 3 
0.10 3. 73 0.105 3.90 1.045 0.5836 5.9 0.092 0.039 3 
0.05 1.86 0.100 3. 73 2.000 1.5850 2.6 0.040 0.017 3 

{J 
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... 

I. Dispersed-Phase Peclet Numbers for Water Dispersed in Kerosene; 
0. 75-in. Ceramic Raschig Rings 

Fd udo F u U /U N p No. of 
c co co do 

{gal/min) {ft/hr). {gal/min) {ft/hr) 
meas-
urements 

1.30 48.9 0.0 0.0 0.000 16~6 0.452 10 
0.15 5.6 0.116 15.6 0.424 10 
0.31 11.7 0.238 15.6 .0.424 10 

0.85 32 0.0 0.0 0.0 16.3 0.442 10 
0;15 _5.6 0.176 14.5 0.394 10 

. ~r -d. 31 11.7 0.364 13.1 0.362 10 
0.58 21.8 0.684 13.2 0.368 10 

0.51 19.2 0.0 0.0 0.0 15.1 0.416 10 
0.15 5.6 0.293 13.3 0.368 10 
0. 31 11.7 0.606 12.3 0.340 10 
0.58 21.8 1.140 10.8 0.295 10 
0.87 . 32.73 1. 705 6.7 0.184 10 
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, .. 

J. Dispersed-Phase P~clet Numbers for Water Dispersed in Kerosene; 
1.0-in. Ceramic Berl Saddles 

Fd udo F u U /U N p No. of 
c co co do 

(gal/min) (ft/hr) (gal/min) (ft/hr) 
meas-
urements 

0.85 32 0.0 0.0 0.0 16.3 0.492 12 
0.15 5.6 0.176 15.8 0.476 10 
0.42 15.8 0.494 15.8 0.476 6 
0.68 24.8 0.774 14.8 0.446 6 

K. Dispersed-Phase Peclet Numbers for Water Dispersed in Kerosene; 
0. 75-in. Carbon Raschig Rings 

Fd udo F u Uco/Udo N p No. of 
c co 

(gal/min) (ft/hr) (gal/min) (ft/hr) 
meas-
urements 

1.3 48.9 0.0 0.0 0.0 18.7 0.510 10 
0.15 5.6 0.116 18.2 0.494 10 
0. 31 1L7 0.238 16.4 0.445 10 

0.85 32 0.0 0.0 0.0 17.7 0.480 8 
0.15 5.6 0.176 18.9 0.515 6 

. 0. 31 11.7 0.364 18.6 0.505 6 
0.58 21.8 0.684 18.4 0.500 8 

' 

0.51 19.2 0.0 0.0 0.0 18.0 0.490 6 
0.15 5.6 0.293 16.4 0.445 8 
0. 31 11.7 0.606 17.5 0.475 8 
0.58 21.8 1.140 17.6 0.478 8 

() 
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