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A SEGMENTED LAMINAR FLOW AND OTHER MODELS
L '~ FOR PACKED-BED LONGITUDINAL DISPERSION

Alphonsé Hennico¥ Gabriel Jacquesy and Theodore Vermeulen

ABSTRACT
‘For corﬁpa‘rison'with,._the diffusion, lrandom—walvi(, an,d mixing-cell

models of axial di~sp¢rsion., a Segmented-1a1ninar-ﬂ6w model vis_ developed
- for packed 'b‘eds, by analogy with ii‘aylo;"s derivation for concentration

| 'dis.tribllltion in laminar pipe ﬁow. - Two different radial ‘distributions of
velocity are éésumed, .t.hé quadratic p‘ro_ﬁle_}.xaving its vaverage' velocity
;t one-haif the peak value, and a "quartic" proﬁlevwith’ ‘the a’..v'erage at
one-third the maﬁcimum. The latter gives. substantially better. agreement
with exéeri'ment,v but is stili, ifnperfeét. A numerical evaluatiof} 1s
described fovr the cdncentration dis‘-cri'butidn:', .and_tﬁe results are »presented
in graphiéal form". o Th_e techniquebs deveioped_he‘re, when used with aﬁ
effective velocity distribution sfill to be determined, a>re expected to provide
a dependable and versatile de_scriptic;n of ligquid-phase laminar- fl_O'V"v'v

breakthrough behavior.

_ '* Present address: In.stitut Francais du Pét.role, Rueil—Malmaison
(S-et-0O), France. ‘ ' : :
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In troduction ..

» " The subject of lengthwise fluid mixing in continuous- flow packed-
B _ o column systems has received much. attention during the past decade.
:.Se'veral .7 studies have shown that longitudinal dispersion (or ‘'axjal -
mixing'') cé.n exert a significant effect in reducing the massntransfer
performance of columns below that predicted from true mass-transfer
coefficients alone, and hence, that this effect should be accounted for
separately. 24, 34,38 Several mixing models have been proposed for
explaining experimental breakthrough (concentration vs time) data for,
the outflow. The problem of these models is essentially that of pre- -
dicting the behavior of an initially sharp interface between two miscible
fluids. | | |

The most widely used approach to axial dispersion is the diffusion.
model. In this model the dispersion process is characterized by a dif-
fusion equation, with an axial-dispersion coefficient in place of the usual
molecular diffusivity. A simple solution to the diffusion model, assum=
ing infinite boundary conditions, was first obtained by Danckwerts,

The main features: of the simple diffusion model were further dlscussed
by several other investigators, 1, 7,13, 31, 33 39 but this model dces not
give an adequate description of axial dlspersmn in "shallow' beds. An
exact analytic solution to the diffusion model, for miscible fluid dis-
placement in beds of finite length, was first presented by Yagi and
Miya.uchi; 42, Extensive numerical results, based on an asymptotic
approximation to this solution, were reported by Brenner.

A second model for axial dispersion, the perfect-mixing cell
model, in which each of the interstices of a packed bed acts as a mixing
stage, was.proposed by Kramers and Alberta. 29 . When the series- '
mixer modél was applied to experimental data, it was often found that
: \;,'_f; . fewer than ten .mixers were needed to reprodﬁqe the observed data.
~ ~ Since the}be'ds involved were more fhan ten packing-particle diameters

g': S .~ in length, Carberry suggested that incomplete ‘ndixing in the individual
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' .. and serles-—parallel communication of v01d cellsi4 or matenal

. is used to describe dispersion 1n packed beds. These models

gt

'-?>v01d cells would reduce the calculated number of mixers, relatlve to.
. the actual number of void cells as 1nd1cated by the number’ of layers of-'_:f

| packing. 6 Accordlngly, he 1ntroduced a mlxlng eff1c1ency factor for -

the series-mixer model Wthh const1tuted a free parameter for f1tt1ng '

" the model to the experlmental data. For ""deep' beds (those having 20"

or more perfect mixers in serles),' it has been shown that the dlffusmn ‘

‘“and serles mlxer models predlct essentlally 1dent1cal res1dence -time’

dlstrlbutlons and breakthrough curves

A random walk model, developed by Elnstelnils for the stream o

. transport of ‘suspended sohd partlcles, has been extended by Jacques .

23,24

ahd Vermeulen i and Cairns and Prausmtz5 to the problem of longltu-
ddlnal dlspersmn in packed beds. This model, descrlblng the random
' 'path of tracer molecules by statlstlcal con31derat10ns, ‘also approaches

‘the simple d1ffu51on model at high flowrates. For practlcal purposes,

the random—walk model is numerlcally equlvalent to the d1ffus1on model
with f1n1te boundary conditions. ' ' '

‘A different statlstlcal model has been 1nvest1gated by R
) 26 370

. de Josselin de Jong, " and analyzed more completely by Saffman

In this model the porous medium is con51dered as an.assembly of ran-- i

domly orlented straight circular-bore capillary tubes of equal length.

The capillary model-seems to have two basic defectS'g A packlng'of

spherlcal part1cles has an open-pore structure seemingly not analogous
to a caplllary structure except perhaps during laminar flow further, =
a streamline through the packlng does not point.in every dlrectlon w1th " )
equal probablllty, but is strongly Welghted toward the average dlrectlon
of flow. B _ ' o , ’

A number of other models have’ been proposed in which parallel
14;19,28V

exchange between flowmg channels and stagnant’ pockets of fluid™"

T .
~

~ include a sufficient number of parameters to allow flttlng the model .

. . of communication of neighboring cells and the relat1ve 1mportance of

to the available data; they introduce assumptions regarding the frequency,__

part1c1pat1ngtransport mechanisms, which are not usually verifiable = %
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by inldepe_ndent laboratory measurements.

Experimental studies conducted as part of the present investi-

. gation indicate that the random-walk and exact diffusion treatments

give an excellent fit to the concentration-vs-time curves obtained at .
higher flow rates, .but give a relatively imperfect .fit to those for lower
flow rates. As shown in the next section, the higher flow rates can be
identified with a turbulent-flow regime, and the lower rates with a lami-
nar regime. To meet a need for more detailed study of the laminar
regime, a new model is introduced whichis statistical in its concept

hut explicit in its mathematical behavior, 'being patterned after '

G. I T_aylor's study of the dispersion effect that results from velocit‘j

distribution in laminar flow through cylindrical tubes. 40

TR
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to 25, when a very small ‘weak, tor01da1 vortex is formed near the

A Segmented—-Lamlnar Flow Model

l '3Nature of the Lamlnar Flow Reglme in Packed Beds ,

L

Longltudmal d15per51on studles by Jacques and Vermeulena.

v

' ,n ; Carberry and Bretton, 7 and others

SO T show the ex1stence of a lamlnar and a turbulent

~

'vreglon w1th a falrly sharp tran51t10n reglon between them

When these results are compared w1th a typ1ca1 packed bed SR

- fI'lCthn factor plot (fvs NR ), where NR = dp UO/V, Wlth».dp ‘the. SR

equivalent- sphere volume diameter of the packing material, Uo the ~
superﬁmal veloc1ty, and v the kmematlc v1sc081ty, it 1s seen that the -

transition for ax1al dlspersmn occurs in the same Reynolds number

-range (see Flg , 1)

A second 1tem of ev1dence can be found in studles by Garner et al

-of the flow pattern around smgle spheres 1_7 In these studies, the fol-

lowing changes in flow pattern with 1ncreas1ng Reynolds number were

observed " At first, the flow is entirely streamhne and satisfies Stokes s

solutlon The veloc1ty then. begins to. decrease on the downstream sur- ‘

- _face of the sphere, and increases on the upstream surface The trend

g cont1nues unt11 separatlon of the forward flow occurs at de /v of 15

N

_rear stagnation p01nt The vortex galns strength as the Reynolds num- "
ber increases further; the separation ring advances toward the equator,

E until at- de /v around 450 (with the angle of sepa.ratlon equa.l to e

104 deg) the wake becomes unstable, osc1llat1ng about the axis of mo--

i tlon,;v' and spilling its content downstream. Ranz has shown that the in-

tersticial velocity in packed beds is often eight to ten times the superficial -

Y
)

-

TE
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B veloc1ty, _ upon whlch the packed bed Reynolds nurnber %UO/V is based

- The wake 1nstab111ty can be 1dent1f1ed with a flow cond1t1on in wh1ch the Lo

. flow through a void space_ln the packl_ng changes from predomlnantly

: 'streamline to near-perfect mixing. Interms of Garner's results, this:‘_v"_”

change should occur. at ad Uo/v value | of around 50 or d Uo/v ’1 €) f .

80 to 90, where € is the poros1ty

U31ng a suspension of fine partlcles to 1nd1cate the fluld motlon, .

7 Hiby has c,1ted_ photographlc evidence of the transition from turbulent_to

laminar flow in packed beds; below Ng_ = 10, completely laminar flow .

'_was observed 21 ’

A somewhat d1fferent 1nvest1gat10n, deahng with llquld flow in

) a fall1ng film over a single-file column of spheres in co‘ntact also shows:

- »l,ev1dence for a lamlnar-—t urbulent flow: tran51t1on

' E*{perlmental ev1dence for the- presence of a lamlnar turbulent
| v'transn:lon region has also been found 1n heat- and mass- transfer studles

Gamson and coworkers derived the followmg two. relatlons for the Colburn

‘j factor 1n rnas_s—tr_ansfer 1§, ‘ L .
| e a6 -Nké'-o.41<1;€j )065 for .II\I_R_e > 100, S

_Due to exper1mental uncerta1nt1es, and perhaps also due to the gradual
nature of the tran31t10n, the exact occurrence of the breakp01nt is not
vwellknown' S B A - :

From the various 1nd1cat1ons,- cons1derable Justlflcatlon ex1sts |
a for d1v1d1ng the axial- d1spersmn phenomena into two different reg1ons

‘separated by a critical value (or range of values) of the Reynolds number

36{_ :
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2, Description of the Model

| As just mentloned the 1a.m1nar regime of packed- bed flow (in

columns having relatlvely uniform mean flow through all cellular ele-

“ments of any one cross section--e. g., in circularly cylindrical columns)

requires further study in order. to obtain a physical model that will cor- -~

- respond accurately to the exper1menta1 outflow- concentratlon histories (or

breakthrough curves). A new model, which constitutes a step in th1s
desired direction, is termed '"segmented lamlnar flow. "

In the actual laminar-flow behavior of a column, each fluid fila-

‘ment undergoes changes in velocity from point to point along its path.

Such flla.ments can be considered to enter a new column ''segment" each

time the1r velocity crosses the mean velocity of the fluid. .If the distri-

‘bution of velocities is the same at each cross-section,as in randomly

- packed beds, one or more other filaments will be reduced in velocity

at the cross sectlon where a part1cu1ar ﬁlarnent changes from a slow-

moving to a fast mOV1ng segment/ 'I%le reéultlng interchange of fast-

-

‘moving and slow-moving segments is equivalent to gradual but continual

remixing of filaments, In the idealized model postulated here, this grad-

' ~ual x‘riixirig is replaced by a sequehce of cross-sections at uniform inter- o
. vals, where complete (rqunngoccurs with complete absence of rnixing
“at intermediate points/ The interval between the mixing cross-sections

" becomes equwalent to a welghted average of the actual’ segment lengths.

In each segment th_en, laminar flow occurs with well defined velocity
profiles, and transverse molecular diffusion is treated as negligible.

In this study, two different veloc1ty profiles are used e

One 'is. the familiar. quadr-atlc (pa.rabol_lc) profile, u/u max -1-(r /R%
where u is the mean local velocity of a flow filament, and r/R is the
"mean ratio of its radius to the total radius of the passage. The other o

‘one, which we call "quartic, ! has the . emp1r1ca1 form o

_ ﬁ/umax = [1-(r /R )f‘ While the quadratlc veloc1ty distribution mlght

fit the flow through a bundle of parallel 01rcular-bore tubes, the quartic
distribution appears to provide a more accurate description of packed-

bed flow,in the laminar regime. .

Tahoc L
.
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Fig. 2. Idealized flow filaments, showing 'poin’cs'b of i'riterc‘hange/

" between low-velocity (unshaded) and high-velocity (shaded) segmehts. -

~(a) Random distribution. - (b) Simplified model with uniform -

... . spacing of segments. S
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At the end of each segment the liquid is assumed to be thor-

~ oughly mixed before it enters the next segment, Mathematically, a

I)ﬂdw_-average 'cup-mixing® composition is computed after each seg-
ment, which represents the composition of the feed to the following

2,25 The boundary condition at the ' column inlet corresponds

segment,
to a step-input of a tracer material. The ek’act solution is not obtain-

able for the response curve after each segment, but a numer1ca1 solu-

" tion has been derived by digital computation. The result1ng theoretlcal

‘breakthrough curves. for different numbers of segments .can be fitted '
to the individual experiment_al breakthrou.gh curves. KEach experimental
_run will thus exhibit a "number of dispersion units" which can be con-
sidered as a '"column Péclet number!, N = h/JZ or hUO/E,»- for pur-
poses of defining an effective_ axial dispersion coefficient (here h is
column height, g is mixikngvlength, U, is supervfici'all velocity, and
E 1is the superficial dispersion coefficient). From this, a 'packing
Péclet number",’ P = dp/l or deO/E" is calculated which presumably

is constant over the entire length of the packed bed.

3. General Mathematical Approach -

\ The equations were derived for a cylindrically. syrrimetrica.l
element of flow path having the cross-section S. The flow is assumed
unidirectional. The concentration is a function of time t, of distance’

"in the dlrectlon of flow z, and of a radius vector r which characterlzes

an element dS of the cross-sectional area, The local veloc1ty is also

. :
a function of r as mentioned above. The flow-average concentratlon

leaving one segment is taken as the feed concentration for the next seg-

- ment. This flow-average, concentration is defined as ey
: jc(r z,t) u(r,t) dS S
cy(z,t) = > = - (1)
' [u(r,t)ds o .
S/
S

At each of the cross sections where mixing occurs, the r -de-

B pendent concentratlon is replaced by its bulk average; i.e., c(r z, t)
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‘:)13 replaced by cb(z t) In a cylmdnca.l element of flow pa.th (one w1th'x-
' un1form cross sectlon) the veloc1ty prof1le is- only a function of r. For

: steady state lam1na.r ﬂow,tbe concentratlon c(r z ,t) at a p01nt zk

o correspondlng rad1a.l loca.tmn Thus we have-

c(r, z,t) .—“—'c(r,_zk

13

where t, is.the time necessary for the fluid to travel the distance

(z zk), and \ '

o . ‘uﬂ(r,t) . u(rv)v.jv- L : o :

In ph'ySical terfns the element of fluid observed earller at z is the -

same as one wh1ch was observed earller at Zk'* c

. From these relatlons the general equation for a. segment extend-:

- gives dlrectly the concentra.tlon at a downstream p01nt z > Zk’ in the - N

ing. from zk k+l becomes LR
R zv,t‘-'_ﬁ_l__ﬁu(;')ds_: L
bk P ' .o ST
Jg Lo ulr) S

¢ (z, V1) = ——— — ,
L R RELT f u(¥)ds

In thls otudy, the problem 1*= analyued w1th reference to a fluld

R R
u(r) c(r) rdr -

ez, t) = g 5
- j u(r)rdr : '
jR b(zk’ t - —E'L]'(—T—)u(r) rdr . ': -
R o 0
e ‘,Cb(zk.-l-l’t) = " . . -j
IR j u(r) rdzj‘
0

(6

By use of these equations, it is possible in principle to compﬁte the :

in a c1rcularly cyhndncal volume element of rad1us R For th1s case,

. Egs, ’:(l) and_(l—ll)i become

b
o

o



' quartic velomty proflles is given in the following sectlons

13-
: .
concentratmn of tracer material after any number of segments, if one
knows : the veloc1ty distribution and the concentration distribution at the

inlet as a function of time and position. In practice the multiple inte-

gration requlred for successwe segments becomes progressively more

'vcomplex, and soon ceases to give relations in closed analytical form.

The separate apphcatlon of these basm equations to the quadratic and

!
i

£, Quartlc Veloc1ty Dlstrlbutlon

- A major result of the quadratic velocity profile is that it takes

" at least half of the stoichiometric time’ . . N before

" any breakthrough setslm. This is unrea11st1c phys1ca11y, Vmany expe'ri-v :

mental curves. start earlier, or have shapes that would correspond to less

than one segment.. ~ °  The reason for this partial failure of the quad-

" ratic model is believed to lie in the assumption of a circular shape for

the flow element, in which the maximum fluid velocity is.twice the av-
erage velocity. In reality the packing voids have a curved triangular,

rectangular, or still more complex shape, with corners in which the

fluid is practically stagnant. This tends to lead to an average fluid velocity

-smaller ~ .. than half of the maximum, and in turn frequently to break-

through-curve "'::;-vslopes smaller than those given by the quadratic dis-
tribution. As no exact expression for the velocity profile in these com-~
plex voids is available, an empirical relation giving ( /U)—3 has been

adopted as a convement and reasonable starting pomt

The expres sion for the quartlc velocity prof11e is

2 . . _ :
ale) _(1 rz) | _. e
umaxv _ 1;\2- : . Co LT _ -

where un;a:x is the maximum velocity of the fluid and r is a radial -

coordinate, = - = o S

. From Eq. '(7), the ﬂoweaverage concentration is given by -

jo-

¢y, = —éz fc(r)[l - ] ‘rdr S )
R o oo P

-

! . ot ten ws e EEE —— RN
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Th1s relation-_-Can_ be 'simplified by the Af"ol_lo_;wing change o'f,variable v R

here also -

u
. ‘ max . . ! . ‘
¢ is thus the fractlon of ~area enclosed between r and R lefer-_- j

entiation gives

. _The 1ntegrat10n 11m1ts are at r= 0 t;, =1, andj at r ? R C = O Apply-

ing these rela.tlons to the segment (zk, Zk-bL) leads to the more spec1f1c

2417 %k O
( k+1’t) =3 f[_ 't - '_ 1 ﬂ ? dg \;. N (_‘12,)‘ R

. k
1

D2 ¢ s Sy s - ‘ -

.' Equatlon (12) proves ‘to be the key expressmn for evaluatmg the con—_j
- centration breakthrough after any glven number of segments Apphed
“to a column of total 1ength h, divided into a number of segme_nt_s N,

“each of length l , it becomes

o

} . . ".:L - . o -N“M 0 ) RN u i ok .

max

- The 1n1t1a1 condltlon can be descrlbed by the relatlon

(0,70 = cb(o 9= e H(t), f ISR e (14)

vwhere‘ cé is the step input concentratlon, _and H(t), the Heav151de

: un1t functlon, is either zero or umty, dependmg on whether its argu-
ment-is’ smaller or larger than zero. The Heav151de functlon expresees
."the fact that the tracer ﬂu1d takes a well defmed t1me to emerge from o
. the column. ' :

'A.fter N divisions each of.‘v‘length 4, the__'remixed concentration * '

ON(t)H<t-u - )
- . max/ -
e(t): H(t - 3U> G (15)

where £ (t) is a d1mens1on1ess function of t that rema1ns to be dex | ‘tw

is

Jl

cl")(_m,tj

S
v
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‘rived, ¢ (t) 1s the correspondmg concentratlon[ = cO N {t)y] “and U
1s the average linear velocity which for this case is equal to. one ~-third the
maximum velocity u . The Heaviside function in the above expres-

max )
sion states that cb'(Ni,t) is nonzero only if t >N{/3U. Suppose CN-1

is known after N-1 segments; then, at the end of N segments,

B s O e “

- where 9 Ut/i

In the use of this relation, the argument of the Heaviside func-
tion serves to define a new lower limit of 1ntegrat_10n. Physlcally, the -
use of this function means replacing the lower limit by a quantity that

av01ds computmg any negatlve concentratlon values. Thus, if we have

B (E,_',’_l> -1 > 0,0r ¢ 2(36“-—N+1)'1/2,
S 3. e

o, - s

H |6 +(—=]- =1, | e

then

" where X, (9) b(NI e)/c and similarly for X,

e sy

The general rela.tlon now becomes
I — 1 A

[ A L
‘ (39 “N+1)~ -1/2 : °t L

N-1 at its respeetive
position and dimensionless t1me, with XN(Q) 0 for "6<N/3. These

equations show that for each added segment, g is replaced By
& - (1/3 QZ) and the 1ntegra.t1on is then performed as indicated.

In dimensionless units, - X can be glven as a function of N, 6
and §; or as a function of N, T, and {, where. T 9/N For the -

latter case, the integrand functmn X is known in terms of TN 1’

N-1
but here one wishes. to evaluate it in terms of T - This 1s equivalent

 to reducing the 1ength of a column of (N-1) segments from the constant.
value h to a new value h! = (N-1)h/N; then an extra segment is added

‘to restore the column.to length h. By use of the general definition

A E
TN-1 " N-1

“T= §/N we have

' o
X

a9 W

, Wwith -j;TN =

i, e e g e e e —— e

* For any value of N, the true filling tir‘ne for the bed will occur at T= 1.
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- ;'"va.nd Eq (18) takes the form

- N- 1( 'N- 1) XN- 1[1\1 T 3§ (N 1)]’- ARERERINE C NN

T S A

ST ,,f. l

oy

T 2 A 1/z N-1| 3§2 o) B
I [N(3TN 1)+1] | ; g

.A~"T’ o

s a e ot e s e S e

'The relatlons rapldly become very complex, and an exact solutlon seems -

. to be’ 1mpos s1b1e for N > 2. The solutlon must therefore be found by

E ‘,numencal methods on a hlgh speed d1g1ta1 computer

.'-"'__a.‘ Analyt1c relatlons The expressmns for beds con51st1ng of only

< one or two’ segments can be derlved analytlcally, and will now be glven

S 'I‘helr mathematical form is of interest to show the complex1ty that is =+ . }'-

reached for beds with'a larger number of segments, and also to 1nd1cate

possible forms of emp1r1cal equatlons for represent1ng the latter

For N,- 1 Eq (18) becomes . o : .;;..‘ ) o

1

- j<39)'1/2[0 3§

e b a2 pmem .. __N._FJ_

" Here X . the value of 1n1et concentratlon, 1s constant at umty F;'om

0

. ‘~.-—.—6-.. e irnire vt ity s s e

. ‘.:_.n‘v*'_:. e e e e gt e

- " : X (9) E - (3 9)'3/2J “ (9_ %.) : ':._‘."'(23)

_ ThlS relatlon shows that X (G) is zero as long as 9 <O 33 We recall

e =
3
.
v
o~

that 16 Ut/ﬁ where 1 is the 1ength of one segment t 1s the elapsed .

- time, and U is.the mean 11near veloc1ty @ U S k o
s 4 o v et e e e M‘....-. e an— e . - ?._> ___...1 i ) L e e
t

- . A . r T [N - » 4
I L. x e ) " e "'T'»z.' oy
L. . - . : . . A p . TROa s
B e A

If N = 2 the column c0n51sts of two segments of equal length The

. m1x1ng effluent from the first segment has the concentratmn Xl’ as e

o Just derlved Then,

| x,00 = f S [1,,- (39 -z> ]C . @)
(3¢-1)" /2L T



17 )

' ThlS relation is obtained By "replacing 6 by [6-(1/3&2)] in.the expres-

sion for X., and by changing the lower limit to avoid computing neg-

1’ ¢ .
ative concentration values. Integration- of Eq. (24) between the speci-

fied limits yields

3 g2 = ,
S 1

(3@) (39 - 1)3/‘2

The argument of the I—Iea.v151de functlon 1nd1cates that X is zero for
9-<1. Interms of .. the equation for X is of 1dent1cal_ form but with .

2 replaced by 2T throughout

5. Quadratic Velocity Distribution

It is of interest to examine also the analytic and numeric results
for the quadratic profile, despite its apparent inapplicability to packed-
':.column dispersion. The derivation follows an entirely parallel course

to the preceding one, but starts with the conventional parabolic relation:

r

. ':1-_152=z;” - | (72)

‘The relation between the mixed concentration entering segment N and

the remlxed concentratlon leavmg it becomes

N"*N-1
(z L) =2 ,t - L. d§ (13a)
b ) : f [ -1t "‘—ZumaxJ )} -
Hence _ e - :
“"”': A [ ‘e‘zrﬂ?d@ v s
o (ze N+1) R S |
or_ ,,;.A U S ', e o
N 1 R { : 'I N .
gl = 2 f " - 1<N“"1 mN—Tr e (21a)
. N(zﬁ‘:\Y 1)41]° R S
_ The analytlc result for the ‘fTr-;c segment i' (N = 1) ls T
REsa-dyae-en gy

with H(@ - 0, 5) unity 1f 9 > 0.5, and zero 1f 9’/< 0.5. ForN=2, °

the exp11c1t relation is:

X, () = {2(9 1) [“"e’ +(28) ‘J- 2 In (2@‘-1)} Heo-1). 2%
| 20y 26-1) ] o)yt S

N
¢
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6. Numerlcal Methods of Solution R e Y

- For both veloc1ty profiles, the 1ntegrat10ns required for succes-v-

| ';_'51ve segments (beyond N = 2) were computed by two different numerical

methods In Method 1 we evaluate the 1ntegral by a summation scheme '

'_’usmg the exact concentration values calculated for the prev1ous segment .

' -,This method is qu1te accurate, but very time-consuming because of its

g,
.

~ use of a time scale with a constant 1ncrement Wthh corresponds to a

. progressively smaller AT as N mcreases In Method 2 we evaluate

" the 1ntegral by Simpson' s’ 1ntegrat1on formula getting the necessary

concentratlon values by 1nterpolat10n among the values calculated for e .

" the previous segment, This method is. based on the T scale, and. com-

with -

| _ vp.utes.the’min'imum’r'iumber of concentratlon values necessary to go up
toa specified maximum N; it is very fast ‘but becomes unstable for
_'.large values of N. It seems pOSS1ble that an optimum method would

. .be obtained by combining the favorable features of the two methods, but

this has not been done.

In this.section, these two methods are exolained; using the. - .

.quartic velocity profile for illustration. ._.-Resul'tsv vobtained.for_both".ve.' .

locity distributions are then given.

' a. Method 1. This method numerically; solve'sﬁthe analytical expres-

sion

‘ - R 1 23r S
N(e) : “ -l/Zl:XN 1(9_-;£Z>Jg ., 26
: (39 N+1) TR T

- I

T*TNP;Q"_'

: For ease of computa.tion, 2 new time variable T is 1ntroduced for

'which all the curves ‘begin at 7 =0, "‘he appropriate transformation is

e o
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~and. A ‘W=m's, o : E (32) .
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| 7236 - N=N@3T-1). o (2T
Physically, T = 0 corresponds to the t1me of arrival (at the outflow) of
the max1mum veloc1ty flow filament, for.which { =1, When the X-vs-
time behavior of a bed length corresponding to N segments is evaluated
from that of a length corresponding to N - 1 segmen’cs,. the values of T
(and ‘@) used are based upon length N rather than upon length (N-1).
Hence, when T =0 for the evaluation of X, the function of 7 at which ’

N

XN—l is evaluated {(which can be termed ‘TN_l) must also be zero when

{ = 1. To state the problem another way, Eq. (27) can be extended to

give _
™N-1 = TN T30y -0 - (N-1)-N] . - - (28)
From Eq.. (26) N 1 is seen to be "G'N—‘[ 1/(3?;2)]. Hence, we obtain
- 1 '
TN-]. = 'TN - ZT-+ 1. ) . | (29)
A test of‘this relation shows that it does satisfy the condition stated
above ('T =0 when § = 1).
To ehmma.te subscrzpts, the function T will be redefined _b

N-1
as a'time variable W, Egquation (26), the general formula, thus be-

1 . .
3f | [XN_I‘(TH - —%—)]Ezdé'
1/ATH- 5 | -

1

comes

X (7

it

j X Wtfar.  30)
1/ 741 ' ’

Method 1 1nvolves approximating this 1ntegra.l by a summation,

usmg d1rect1y the X values computed from the previous segment, w1th

~ the correspond1ng { values as shown below. A time increment § is

selected such that .
‘ T = mb » ) - | (31)
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- form, becomes

and’

Ce20-

 where’ m: and m' are integei's From the defmltlon of W we have :

s e ey

' w1th m- /m' { can take on an 1nf1n1te sequence of values startmg at

um_ty and tendmg toward zero. The general equation, in summation

rn'—rn 1 - Z,IT

_32 _ 1%, <W)] 'av__Aé

: .;':.Xl\'l(f.)

m'=m-1

“hg. (3é)ﬁu~

U,

’ Illustra.tlon of the use of these equatlons is glven in; Filg 3 h

- b, Method 2. Here the dlmensmnless t1n‘1e scale T G/N is used d1-_ '

rectly, t1me being thus ‘referred to the tota.l length of the column rather

- than to the- length of the individual segments  The general formula used

~in Method 2 is Eq (21a.)

-

X \T)='3 o X N “; 1 L dé

o 51 /2 N-1 N1 30- 1)§2J
SR [N(3 '1)+1] R

- S L . . SN - ’ (35)
For ‘sim'piificat'ion, a new vaijiable _V__is defined:.as_.

'i
1

L V——-——-—T —"—Z L (38)
R P RN . N-1 - 3(N- 1)1_; e el Co-

From this, we have

=;[3N.Ta-,s_m-,nv]-}/Z:f.-i», o Ten
Canil | - o
(N-1)

X ‘T>-45 X “'(v')' - L av. ey
' j;/3 N-1 [?N?-3(N-1)V]2‘5 S |

AV

152‘_1 {x <w>] +ém +1> <4 ' %r’ﬂ*
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Illustration of Method 1 for ndme_rical integration.
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To compute the concentratwn values XN to a d1men51onless

. }t1me Value TN,,lt is necessary to know XN 1 values to a t1me TN ,1

5 "4‘.i'larger than TN The relatlon between the d1fferent tlrne values is

Tnei = T "f.N-i _(TN"-E')’ (39)

.w,here»'i; ' i‘sf'aﬁ' :_lnteger. After the largest T that is needed f.or the e -
~largest N “has b'een specified, Eq. (39) 1nd1ca.tes the largest 'I' that

'~must be carrled for each lesser number of segments

Computatlon was made with the analytlc results for N 2 as

‘ startlng values. In the computatlon for each new N, T. was varled by
ated by: Simpson's integration rule, w1th the X values for a spec1f1ed

:';j of points used in Simpson's rule was determ1ned by spec1fy1ng the max1-'~

. mium. 1nterval between any two successive po1nts on the t1me scale.

- tribution obtained by Method:1 with & (quadrat1c) 0,400 and
8 (quartic) = 0.1667 are given respectlvely in F1gs -4 and 5, as it

. '_ semi - logarlthmlc plots of X vs T the t1me scale belng nolmallzed by

due to the relatlvely large amount of computer time involved in gomg

P

: constant increments up to the limit. For each T, Eq (38) was evalu-:v.:-"»‘v.‘.‘ :

" value of the argument V being obtained by 1nterpolat10n “The number R

L.c. Results. ' Numerlcal results f,or'-the quadra‘tm and the quartlc d1s—»_ LT

" the st01ch10metr1c time. The numer1cal results were limited to, N 45,‘ R

further (about 0.5 hr on the IBM 7090 was requlred for the present range of

values) An exact estimate of the error 1nvolved in the use of Method 1 o

“is not p0551ble however, ‘trial runs. for the quartic dlstrlbutlon up to

N = '10 showed that by reduc1ng the increment & from 0. 1667 to 0.0833"

the- Xr,10 ‘values c_hanged only by 1 digit in the third place. .Concentrat1on .

* .
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Fig. B, ‘Breakthrough curves for the segmented-
' laminar-flow model with quartic velocity
profile.
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values calculated by Method 2 with AV = 0. 042 up to N = 10 dld not dlf-
fer more than 2 digits in the third place frorn those computed by
Method 1. Beyond N = 10, - cumulative errors led to erroneous results
unless AV was much further reduced, which in turn was very time-
consuming. v | h '

The coordinates of Figs. 4 and 5 are very convenient for com-
péring experimental breakthrough curves with the theoretical results,
since a logarithmic scale of the experimental volume or time will only.
differ from the logarithm of dimensionless time by a constant additive
term. A

A frequency-response analysis for the quadratic velocity distri-
bution, obtained from the step-input response, is given elsewhere. 2
A similar approach could be used for the qué.rtic velocity distribution,

if needed. .

C. Diffusion Model

In the diffusion modél for longitudinai}di_sper'sio'n, it is assumed
'that equations of exactvly the same form apply as those describing the

- molecular -diffusion process. The governing equation is

2 U,

EJ3%c T068c _oc o
€.l €%z T (20)

b4

where z is a.xial diStancé, t is tifne, c‘i_s the solute concentration of
interest, E is the superficial axial- dispersion coefficient, 'e is the

void fraction, and U0 is the superflclal velocity of the fluid. The solu- :.
tion to this equation has been given for two different sets of boundary-
conditions corresponding to a finite- length column and to an infinite

column. .
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1. lete-Length Column (Bounded lefusxon) :

o ' " An exact solution for the diffusion equatlon, e
Eq. (40), applied to a column of finite length has been given by Ya.g1 _
and Miyauchi, 42., Brenner has shown that the general equatmn and the -

boundary. condltlhons are sxmllar to those governing heat loss to ”smks“'
‘at the ends of a slab, 3. for which Carslaw and Jaeger have. given the.

- general | solution. | ' _

The variables in Eq (40) will be ma.de d1mens1onless by 1ntro- .
ducing the relations N = h/! " h U /E X = c/c 6=U t/ﬁe and

L Z = z/h Here N 1s/§ "column Péclet number, n or total number of

‘"dispersion units, "

[ o e D ma a e - e e,

The solution,‘fin ‘ '.‘;: _‘ .+ at the exit of.the column, has the'_forfn_ i S

i
1

o o nee o B  4#2 o o v' |

| x(,,e"‘)zez e‘xp{‘%‘ [1 -~ (14--.-2‘1)” R v

N|.L (Nsmp +2|J. cosp)
[(N/Z) + Nt :]EN/Z)Z-H?]

- '-V“’hé,re, My . is glven by the transcendental equatlon 3 R ;~.~';-1
o = cot *N'"Zun : Conne T (42)

The roots of this transcendental equa.tlon, up ‘ton =18, have been.
re-evaluated on a dxg1tal computer, and-are tabulated elsewhere20
Breakthrough curves based on these. equatxons are shown in Fig, 6,
in which results obtained by Brenner3 have been used to extend the
low-@--hlgh-N range, Asymptotic appreximations for this problem |
" have been given by Aris and Amundsonl, and extended by J'a.cquesve.nv_d'

VermeulenZ?’



_27.

T (dimensionless time)
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Fig. »_'6 . Breakthrough éurve_s for bounded diffusion -

model.
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' 'downstream whlch takes the followmg dlmensxonless form
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Semx-mﬁmte Column (Unbounded lefusmn)

The second type of boundary condition apphed to the dlffusmn

) model assumes a column of infinite length extendmg from z =0 to

=+ 0o; solution{ of uniform composition enters at z _—.JO, sta.rtmg at

. t=0, and progressively displaces the solute-free fluid inxtlally in the

.v.column Danckwerts has gwen a relatlon for the. concentratxon at a pomt

X= é{l_' et 1/2: } . e

-‘where 9' is a dxmensxonless txme ratio based on the tlme to reach
o X .= 0. 50 By numerical mtegratmn it is found that 9' is (N + DU t/h
- or (N + 1) G/N ‘Hence,. usmg T" G/N Eq. (43) becomes R

x- 3’{ L - et Moy T } R 7

ZVZN +1§ T

Numerxca.l results are given in Fig. 1. It is seen that the ”unbounded”

"

solutwn approaches the. ”bounded" curves (Flg 6) at hlgh N.
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) rectlons. The dlstlngulsmng feature of the present model is that the

: random walk occurs. 1n the downstream dlrectlon only

" mean free path L.

‘packet of fluid at ‘N mixing lengths away from the’ inlet at time - 9'

. This probabxhty is

e V"-fnormahzed form _ o R w v

_D Random Walk Model

B - ‘gible t1me compared to the. rest phasé. Physmally, the ‘motion phase . :"
" ‘may correspond to.the narrow void. channels 1n a packed bed,’ through

,l"'-':-FWhJ.Ch the 11qu1d moves ‘at high veloc1ty, whereas the rest phases will -

i

PR

The random walk model apphes to the motlon of tracer mole-'~j;"_;-,.

' »':smn of motlon and rest phases,. where. the motlon phases require negh-

" but one occurrmg with equal ease in the upstream and downstream d1—‘ -.

T cules travehng through the column. Thelr path is made up of a succes-_, '

o then represent the w1der void sPaces. lefusmn, -also, could be v1ewed

v as a random walk process of- 1nd1v1dual molecules or of fluid packets, |

L In. the derlvatlon the. fluid is con51dered to. travel with a charac-

- 'f.,,terlstlc veloc1ty u,’in a ser1es of. dlscrete Jumps correspondlng to a )

5,23

lar portlon of fluid has stayed for a t1me t .a number of m1x1ng lengths L

N =h/? and a dlmenswnless ‘time. scale 6' = ut/l can be: defmed

The analy51s is based upon the probab111ty of finding any one

. after it has taken (n+1) jumps away from the. 1n1et in. 1ts random walk

call p0531b1e paths. for arr1v1ng at N at tlme 6' are taken 1nto account

Y

p(N e')dT'v_=[exp( N- 9')]1 (ZAf___—N er)de"‘

_,l‘Here IO is. the zero order Bessel functlon of the f1rst k1nd w1th 1mag1—
o nary argument If a step input -of tracer 1s fed in contmuously startlng

i at t1me n = 0 the equation for the. concentratlon at plane N 1s S

5.

-

- For a column of length h, . in whlch a partlcu-

v
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X = c_c_.-= / exp(-N- n) I (2.4/ n) dn , (47)
0
0 . .
increases toward v

with X increasing from zero toward unity as 0!

infinity.
' 18, 22
to describe heat and mass transfer in fixed beds,

A useful sim-
(47, as developed by Klinkenberg, 21 ‘

plification  for Eq. ils

>

(48)

X =1/2[1 + erf (N 6" - '1/4 -NN+1/4]. |

_the result that when t = h/U,
9" = N+ 1.

. the dimensionless time becomes 6;'

b

e e it e e e e cmoetis ¢ e S s e ot e o = e e e e s e oo

_ . S : Lo "7 I _For any value of N, the
sto1ch10metr1c p01nt W111 occur for ‘6 N A matenal balance yields
with U being the average linear velocity,
The derlvatlon of this important result is given in the |

Through this relation, the characteristic veloc1ty is re-
lated to the average linear velocity by the equation u = U (N + 1)/N;
= (Ut/2) - (N+1)/N.
siderations lead to the following definition of T as in Eq.

; .
| B =1% = Nil |
Also, ev:.dently, we have 6 = Ut/f = @' N/(N+1).

- With these definitions, the Klinkenberg approximation becomes

’

Appendix, .

‘These con-

(44):

- (49)

= 1/2{1 + Ierf N(N+1)T-1/4 - '\fN+.1/4] 3 (50)

(50)

e e e ORISR U S S, EES.

Values gf X for dlfferent values of T and N computed from Eq

are glven in Flg 8.

TR . . . — e

It may be noted that X = 1- J(T',N), using a function J denved o

e o g ey

{ .
P
{
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An eddy-dispersion coefficie‘nt" E and a Péclet number P for

the random'—walk model are defined by comparison with the diffusion

model: : . v
=U4 '

- E‘ Uyt | | ,(51)

= T = E (:)L,)

Consistent with this, we have N=h/? = Ph/iclp =>hUO/E.

E. Mixing-Cell Model -

Kramers and Alberta, 2? followed by other investigators, 1,6,7,33

proposed that the mixing effects occurring in process equipment could

be described in terms of a cascade of mixing cells. In packed columns, ‘

the voids between the packing partlcles can be conS1dered as unit cells

' for such mixing, the influent to a cell actlng as a _]et which sustains a .

rn1x1ng.cond1t10n. A’c high.Reynolds-number values, well within the

. turbulent-flow regime, the individual voids may each approach perfect

mixing. Even if local mixing is not complete, a series of voids may
be represented theoretically by a mixing cell.

| In each "cell. " perfect mixing is assumed to occur, such that
the effluent from the cell has the same composition as the fluid at all
points within the cell. For a step- -function feed of a tracer solute (at

concentration c ) at the inlet to a sequence of m1xmg cells of equal size,

the effluent from the Nth cell in the series has. the dimensionless con-

centration

o, 2 . N
= - —- c e g A - {53

in terms of total ela.ps'ed time t, withT= t/T,
where t is the average residence time in the sequence:

- The mlxmg cell model is 1dentlca.1 with a random -walk process
in which the time for each step is vana.ble, but the step length is fixed.
The probability of encountering a tracer molecule in the outflow from

the Nth cell, at a time t after it has entered the first cell, is
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h R
p(N rr) = _._..,_..- NI o S (54) . .

' Integratlng w1th respect to time, from T 0 ‘to T, leads to Eq (53) '_"».T

By comparlng the d1ffus1on model and the m1x1ng cell model
"'_several 1nvest1gators for one~phase : 29, _33 ‘and two- phase studles O 35 - u
| have shown. that the cell sme in the mlxlng cell model corresponds to '_ T

twice the rn1x1ng length 1n the diffusion model. Th1s comparlson can ' '.
be most easﬂy seen by using the f1n1te d1fference form of the d1ffu31on

‘equat1on The dlffusmn equatlon has the form

- £ I, s § —a-t—— = 0, FE o (5-5) ST,
I e e s

: N -where AX and A X stand for the f1rst and second dlfferences,. evalu- v.._.:;._': o
" '-'ated at plane N _ We nowadopt Az = 20 ( -2d /P For thlS 1nterval

- the functlon of XN 17 XN, and XN+1
: XN 1 and XN_ The mlxmg -cell equatlon llkew1se 1nvolves a funct1on

of XN 9 and XN, whlch is found ‘to be. the same functlon The weak -
- point in the match is 1n the 1n1t1al adoptlon of the flnlte dlfference form,
.this is valid only if Az<< h or hence if N (= h/1) is large o |

If every vo1d in a packed bed were to be a perfect mixer, we . |

reduces solely to a functlon of

‘ “would have 1.2 0. 8 dp’ and P 2. 5 Exper1mentally, values of P

from 0.4 to 2.3 are encountered for single - phase ﬂow, w1th the lower |
’values occurrmg in lammar flow ' A
Concentratlon--tlme curves for the m1x1ng cell model computed
fr_om Eq. (53), are shown in Flg 9 Here the dlmensmnless trme T 1s |
" t/NE. | | | a

ey T

e o HOT g L
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. Chem1cal engmeermg 1nterest in ax1al dlspersmn, up to the
present has centered upon fluid mixing in the turbulent (or nearly tur- B
; .‘bulent) ﬂow reglme In thlS reglon, the dlffusmn, random walk and‘ '

S '9/',; voxd cell m1x1ng models are nearly equlvalent and all appear to

SR '.Rela.tlons"BhetWeen the D‘iff.erentl\'/[odels"

glve consistent. descrlptlons of the experlmental results The analysm

' Q‘-.vlonger is approached in each v01d cell. The diffusion. model w1th fmlte

_From a theoretical viewpoint the void- cell m1x1ng ‘model cannot apply LO S

of 11qu1d -liquid extract1on in packed columns places new emphasm on S

the 1nterpretatlon of long1tud1nal dlspersron behav1or in lamlnar flow

this reglon, -at least for liquids, owing to the fact that perfect rmxmg no

boundary conditions and the random- walk model as emplrlcal treat- o Lo

‘tions of N, is given in F1g 10.. This. flgure shows that, for small

R :slopes ‘the use of one or the other model to analyze experlmental data

‘ments, ‘may apply relatlvely well to all flow condltlons Clearly the ’
: segmented lamlnar -flow model, w1th an approprlate velocity proflle, -
o is apphcable only to the lamlnar-flow reg1me , For the most part the 3

step responses given by the different models do not commde over thelr RSB

© - entire rise, Quantltatlve companson hence has to be made at some. ref-_,‘,j
: _erence condltlon, this is selected here as the (dlrnenSJ.onless) mldp01nt SR o

o slope A plot of d1men81onless slopes: for the different models, as. func-”v" s

"+ can ea51ly lead to N va.lues (or to packlng Péclet numbers) dlffermg by

T a factor of two.

The fmlte boundary d1ffu31on model and the random walk have g

- S1m11ar mldpomt slope values, The ent1re breakthrough curves

,_ ‘glven by the two models have quite sxmllar shapes, w1th the result that
the t5

for random wa1 k.

0 values for the’ dlff'usmn model are only about 2%, less than those _f“j- N

Ty . The mld'oomt slopes can be expressed 1n a convement form by ORI

' the followmg empm:lcal relatlons, where s dX/d(t/t50)

Mixing cell Nc szz + 0 25 ST e e

' _"'Unbounded dlffusmn, -Nud: 41132 " ::-,; E ,!
Bound.ed dlffusmn,_ Nyg = 41782‘-, -1, 45
'Random walk, N__ = 4:TTS2 -70.80.

S;l.f. squartic, qu'_" 4_-rrs v- 6.0
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Fig. 10’. Midpoint slopes for different models.
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'~ than the preceding models. The segmented lam1nar ﬂow result with-

- _quadratlc veloc1ty proflle (not recommended for use) seems to 1nd1cate

" low N' s it approximates the unbounded. diffusion model

L bl LD b Dbt

POV VSO AR N RPN S Y
v

--38»

: 'I‘he segm"ented lammar'ﬂo{iv result w1th a quartlc veloc1ty dlStI'l- |

butlon approaches the d1ffus1on rnodel at J.arge va.lues of ‘N; in the '

-..,.‘.,‘ o, P

"‘-'low-N value range, at any g1ven N“, it predicts: less ax1a1 dlspersmn ) o

i
\ Al

'V.“’,‘
that, | for large N's, Ngpp approaches ND/Z .

For reference purposes . the unbounded-d1ffu51on results are

. also shown, Wh1ch for. 1arge N. values become ‘equivalent. to; the d1ffus1on

" model with. finite. boundary condltlons. The v01d cell model at high N.:

is approx1mate1y equivalent to the. dlffusmn model (with N = ND/Z) At '

In the low-N (shallow bed) range the dlfference between the d1f=- .

" fusion model and the segmented lammar flow model (quartlc) is qulte vyH -

' ,large. ror a few experlmental studles of lammar flow dlspersxon, the

:dlffusmn model (or the nearly equlvalent random-walk rnodel) has been o

7found to gwe a. much more constant value of. packmg Peclet number for.

dlfferent bed helghts 3 Hence the quartlc velocity. dlstrlbutlon we have E

. used does not represent adequately the actual flow behavmr 1n sphere—

‘and ring- packed beds. A different veloc1ty dxstrlbutlon, or a more

detalled statistical treatment of ﬂmd-fllament behavmr may perhaps g

| lead to a satlsfactory fxt
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Partlcle dxameter

" Heaviside unit function.

.Reynolds number, Uodp/V.
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'G. Notation -

- Concentration. '

Flow ave rage concentra.tlon

Feed concentra.tmn

Longltudlnal-dlspersmn coeff1C1ent bas ed on superf1c1a.1 :
velocity, Uoi. _ - '
Error function; _ j e"x 'dx

Friction factor.

Dimensionless function of time.

Total height of bed.

Modified height of bed = (N-1)h/N.

Integer,

‘Bessel function of 2ero order, w1th imaginary argument
-Colburn j factor, for mass. transfer -

- Function used in regeneratlve heat and mass transfer operatlons '

M'ixing,lengvt'h.

Integers. .

Number of random-walk jumps under consi&ératioﬁ.
Number of dispersion units (mixing lengths), laminar-flow

segments, or mixing cells,

Probability,

‘Pécle'tvnumber',' dp/.! ‘ . B o - ¢

. Radial coordinate. T T
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=

Rad‘iu_s' vector.
’ "I‘»o‘tal radius.
) Dimeneionless midpoinf slope(b
- Cross-section. B C
'K ~ Time. ' :
- Time defined by Eq..v__(3).

_'Dimfe_nsi'on'less time, 6/N.

ax. :Max1mum veloc1ty 3
; Interstlcla.l velocity or mean 11nea.r veloc:.ty

i.,,Vanable defined by Eq. (9), : (;,

EYETPOIRIC TR O U S 31

"4:0"

Lo

Residéence:time.

' model

- ‘ ’.Characterlstlc veloc1ty in. random walk

» Superflclal veloc1ty, eU.

I

Ax1al d1sta.nce._' :

Dimensionless. length z/h

' Dimensionless time , @/(@H)

i Time 1nc rement.

V01d fractlon ~

enclosed’ between r and R

vDummy variable.
L Dummy varijable. S
" Roots of transcendental equatlon[ Eq (45)]
Kinematic viscosity. '
~Time. vériablé .'
.Dimensionless. timey Ut/'L

Dimensionless time, U t/'L

on t/tg,

e et s et Kt ot et in g

_ecaie).‘

,Characteristic ,or local, velegj,t'}'r' in: segmented laminar-flow .

'- .v Asymptotic umform veloc1ty of flu1d pa.st a smgle sphere
. Variable defined in. Eq. (36) : o
: Varlable defined in Eq. (30)..

: Dlmensmnle ss concentratlon,’ c/c

‘ /szv)l;"frac':ti‘on of "cross-
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This. exp:feséipﬁ can be simpiified by the fol»lowing‘change. of variable: -

=43
- Appendix

Detelrmination of Stoichiometric Time for the
‘Random~Walk Model

The stoichiometric time is defined as the time necessary to fill ‘

éne column volume with fluid.. Usually a time ‘s,ca.ié 'I/‘ is adopted such -

that the stoichiometric time corresponds to T= 1. From a material

balance, this is equivalent to chosing a time scale such that the area
betwe.en the bfeakthrough curve (X vs T) and the horizontal line cor-
responding to X = 1 is equal to unity.. '

. The general equation for the random-walk model is |

. "e"'

X(6", N) =j M ey Rman )
) _

with X(e, N) = 1. The area,'mentioned above ._\Whic‘h should be 1 is

s =j [1-X(6',N)] a6 -
. _ 0 ' '

o

=']d9'j ,e“(NM)IO(Z'm)dﬁ' o (2)
o ‘o o | B

Integrating by parts leads:to

S(N) = I:a xf e-(N'H']) IO(Z ) dT]:I _- : : -‘(3) |
N : g o - ' '
+j n e (N#7) io (24/Nm) dn.
S | Jo - |
. We first show that : : _
[ef = 12 /T dn} =0 @
\ :all . A - .-0 '

£=2,/Nn¢ then n=£%/4N, and dn= (28/4N)df.

IO NEF A



" Equation (53) becomes .
[>9' e o ! /4N I (g)gdg} : 0. - ‘_:'Zj' (5)

m?‘ o-'v_ B LT

- We. first note that the expressmn under the 1ntegral is always pos1t1ve

- and that the functmn I, (§) satisfies the mequahty

1 (g) <eg R .' o o

' for all pos1t1ve values of g From thlS, the expressmn between brackets

"e-clearly vamshes when 6' = 0 To show ‘that the same eXpre551on is zero
at the upper limit, the expres sion will. be replaced by a snnpler and '
larger functlen_whlbch t_:ends_to zero when - ;_.G""- o Us1ng Eq (_6) we_.z :
can write ' _ | ' | o L
for all § > § . Note that this’_relat‘vion holds for gl S 8N, Then, we. S
havevv¢,- : o S C .
j sl r 1,(6) £t <f 'é EaE. (8

) : . [ g " .‘ - V', -
ThlS last mtegral is equal to (1 + 2,,/ Ne') e 2', N'e‘-.. Finally,

(5) ca.n be replaced by the dommatlng func‘,lon o PR o
. N 5 , .4 .;. B . ‘» N v. . :
f= (1+2.\/N6') Z,NQ S ) B

' .wh1ch tends to zero when : 9' tends to_wa.rd ‘e, ,As the__ expres_sion be-.
tween ,brackets in Eq. ,(5) is always pesitive a‘.nd’smaller. than f, it also
vanishes for /0'- = ., Now, the area is given by - - o '

| ,.,_s'<N)r_='_‘[‘ne’“N*.“’ I, (2/Nm)dn.

o
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Using the sdme change of variable as above, Eq. (10) becor_nes'

‘- ' . ’gZ v
, 2 .- . .
sy =e N }Zj o on(g)gag,_ an
4N o o
0 B
S(N) = eN 5%( j I (€) §d§> , ' :5(‘12)
Also, .Eq. (1) can be written _
o , | N > N ] gz | .
X6, = S f e N (®rtat. a3
; 0 - |
Slnce we have X(eo, N) =1 when 6.‘—» w,. we get
| %fe-mlo(é)&dé:'N'eN; S as
M 0 B B i N .

Using Eq (14) in Eq. (12) it follows that

-Na

s(N)-% (Ne )—N+1 T (15)

Thus, to normalize the brea.kthrough curves for the random-walk model;
the following time scale has to be used: o
T = 6'[N+1) o (16)

With this time scale, the stoichiometric time occurs for T = 1.
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