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SEGMENTED LAMINAR FLOW AND OTHER MODELS 

FOR PACKED .. BED LONGITUDINAL DISPERSION 

Alphonse Hennico;'~ Gabriel Jacques;:~ a~d Theodore Vermeulen 

ABSTRACT 

For comparison with the diffusion, random~walk, and mixing-cell 

models of axial dispersion, a segmented-laminar-flow model is developed 
.. . 

for packed beds, by analogy with ~aylor's derivation for concentration 

distribution in laminar pipe flow.· Two different radiai distributions of 

velocity are assumed, the quadratic profile. having its average velocity 

at one-half the peak value, and a "quartic" profile with the average at 

one-third the maximum. The latter gives substantially better agreement 

with experiment, but is still. imperfect .. A numerical evaluation is 

described for the co-ncentration distribution.' and the results are presented 

in graphical form. The techniques developed here, w:hen used with an 

effective velocity distribution still to be determined, are expected to provide 

a dependable and versatile description of liquid-phase laminar- flo~· 

breakthrough behavior. 

. . 

· * Present address: Institut Francais du P~trole, Rueil-Malmaison· 
(S -et-0), France. .. 
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Introduction_, 

The subject of lengthwise fluid mixing in continuous-flow packed-

column systems has. received much.attention during the past decade. 

cSeverai , z: studies have shown that longitudinal dispersion (or "axial .· 

mixing") can exert a significant effect in reducing the mass -transfer 

performance of columns below that predicted from true mass-transfer 

coefficients alone, and hence, that this effect should be accounted for 
. 24 34 38 

separately. ' ' Several mixing models have been proposed for 

explaining experimental breakthrough (concentration vs time) data for .. 

the outflow. The problem of these models is essentially that of pre= 

dictingthe behavior of an initially sharp interface between two miscible 

fluids. 

The most widely used approach to axial dispersion is the diffusion 

model. In this model the dispersion process is characterized by a dif­

fusion equation, with an axial-dispersion coefficient in place of the usual 

molecular diffusivity. A simple solution to the diffusion model, assum'­

ing infinite boundary conditions, was first. obtained by Danckwerts. 
10 

The ~ainfeatures of the simple diffusion model were further discussed 

by several ot,her investigators, 1• 7 • 13 • 31 •33 • 39 but this model does not 

give an adequate description of axial dispersion in "shallow 11 beds. An 

exact analytic solution to the diffusion model, for miscible fluid dis­

placement in begs of finite length, was first presented by Yagi and 

Mi. . h' 42 E . d yauc 1; xtens1ve numerical results, base on an asymptotic 
3 approximation to this solution,. were reported by Brenner. 

A second model for axial dispersion, the perfect-mixing cell 

model, in. which each of the interstices of a packed bed acts as a ·mixing 

stage, was proposed by Kramers and Alberta. 29 . When the series­

mixer model was applied to experimental data, it was often found that 

fewer than ten mixers were needed to reproduce the observed data. 

Since the beds involved were more than ten packing-particle diameters 

in length, Carberry suggested that incomplete .mixing in the individual 
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void cells would reduce the calculated number of.mixers-, ·relative to 

the actual number of void cells ,as indicated by the: number of laye.rs of 

packing. 
6 

Accordingly, he introduced a rn.ixi_ng -efficiency factor for 

the series -mixer model,. which consti~uteda free para~eter.fo:t fitting 

the model to the experimental data. For "deep" beds (tho~e having 20 

or more perfect mixers in series), it has been shown that the diffusion 
. . 

,and series -mixer models predict e s sent1ally identical residence -time 
. 1 . 

distributions and breakthrough curves.-
. . 15 

A random-walk model, developed by Einstein for the stream 

transport of suspended solid particles, has been extended by Jacques < 

ahd Vermeul~n23 • 24 and Cairns and Prausnitz 5 to the problem of longitu­

dinal dispersion in packed beds. This model, describing the random 

path of tracer molecules by statistical considerations, also approaches· · 

the simple diffusion model at high flowrates'. For practical purposes, 

the random-walk model is numerically equivalent to ~e diffusion model 

with finite boundary conditions. 

A different statistical model has been investigated by .. 
26 • . . . 37 

de Josselin de Jong, · and analyzed mqre completely by Saffman. 

In this model the porous medium is considered as an.assembly of ran.:.· 

domly oriented straight circular-bore capillary tubes of equal length ... 

The capillary model seems to have two basic defects: 9 A packing of , 

spherical particles has an open-pore structure seemingly not analogous. 

to a capillary .structure except perhaps during laminar flow; furthei; · 

a streamline through the packing does not point in every direction with 

equal probability, but is strongly weighted toward the average direction 

of flow. 

A number of other models have been proposed in which parallel 

and series -pa:rallel communication of voi<:i cells 
14 

or material 

exchange between flowing channels and stagnant pockets of fluid 14• 19 ' 28. 

is used to describe dispersion in packed-beds. These models · .. ~ .. 

include a sufficient number of parameters to allow fitting the model 

to the available data; they introduce assumptions regarding the frequency 

of communication of neighboring cells and th~ 'relative importance of 
. ' 

participating transport mechanisms, which are not usually verifiable 

'• 

1:. 
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by independent laboratory measurements. 

Experimental studies conducted as part of the present investi.;. 

. gation indicate that the random-walk and exact diffusion treatments 

give an excellent fit to the concentration-vs-time curves obtained at 

higher flow rates, but give a relatively imperfect fit to those for lower 

flow rates. As shown in the next section, the higher flow rates can be 

identified with a turbulent-flow regime, and the lower rates with a lami­

nar regime. To meet a need for more detailed study of the laminar 

regime, a new ~odel is introduced ~hicll i_s statistical in its concept 

but explicit in its mathematical behavior, being patterned after 

G. I. Taylor's study of the dispersion effect that results from velocity 

distributionin laminar flow through cylindrical tubes. 40 
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A. ·Segmented-Laminar-Flow Model 

1. .. Nature of the Laminar-Flow Regime in Packed Beds· 
. . . .~ 23 

Longitudinal..:dispersion studies byJacques and Vermeulen.:, 
. . . . ·'' ... ': . '7 ..... · . 
. :.-. ~ r,.~_,Carberry and Bretton, . and others· · ., 

........ 
: J 

show the existence of a laminar and .a turbulent 
~ ~.'·' 

region: with a fairly sharp transition region between them. 

Wheri these results are compared with a typical' packed-: bed 

friction-factor plot ( fvs NR ), where NR = d u
0
jv, with d the. e . e p · : p 

equivalent-sphere-volume diameter of the packing material, u
0 

the 

superficial velocity, and v the kinematic viscosity, ·it is seen that the.· 

transition for axial-dispersion occurs in the same Reynolds -number 

range (see Fig. :· ;1). 
·. ,/. .· -. J•. 

A.second item of eyidence can be found in studies by Garner ~tal. 
17 . 

· of the flow pattern around single spher.es. . In these studies, the fol.:. · 

lowing changes in flow pattern with i!lcreasing Reynolds number were 

observed: At first, the flow _is entirely streamline and satisfies Stokes 1 s 

solution. The velocity then begins to decrease on the downstream sur­

face of the sphere·, and increases on the upst~eam surface. The trend 

continues until separ~tion of' the forward flow occurs -Cl.t dp U 
00
/v of 15 

to 25, when a very small, weak, toroidal vortex is formed~ near the 

rear stagnation point: The vortex gains strength as the Reynolds num­

ber -increases further; the separation ring advances toward the equator, 

until at· dp U 
010

/v around 450 (with t~e angle of separation equal to . . -· 

104 deg) t~e wake becomes unstable, _osci~lating abo\lt the axis of mo-· 

tion_. and spilling its content downstream. Ranz has shown that the in-

tersticial velocity in packed beds is often eight to ten times the superficial 
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Sphere-packed beds 
I. Rhombohedral (~= 26%) Martin 
2. Orthorhombic -2 ( ~ =40%) Martin 
3. Random ( ~ = 40%) Carmon 
4. Orthorhombic -I ( ~ = 40%) Martin 

Transition regJon 
for Peele I numbers 

1. Friction factor for beds of solids. 
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velocity, upon which the ·packed-bed Reynolds number (~U0jv)1s b~sed. . · 

The wake instability can be identified with .a flow condition in which the 

flow through a void space in the packing cha:Uges from predominantly 

streamlin~ to near-pe:dect mixing. In terms of Garner's re~ults, this 

_change should occur at a dpU0/v value of around 50 or dpU0/v(1~e:) of .. 

80 to 90, where e is the porosity. 

Using a suspension of fine particles to indicate_ the fluid motion,~ 

. Hiby has cited photographic evidence of the transition from turbulent to 

lamina~ flow inpacked beds; below NRe = 10, completely laminar flow 
21 . . . 

was observed. - · 

A somewha~ different investigation, dealing with liquid flow in 
. . 

a falling film over a single.-file column of spheres in contact, also shows 

. evidence for a laminar -burbulerit flow· transhion. 11 ' . .. ', . ' .\ 

Experimental-evidence-for the presence of a laminar-turbulent 

transition region has also been fo~nd in heat- and mass-transfer studies. 

Gamson and coworkers derived the following two relations for the Colburn 
0 16 

j factor in mass -transfer: . 

6 N . 
· ·- 1 46- N · -0.4i(1 )0 ; 5 f Re > 1. oo· 
Jd - . - Re -e - . . . or T-:-e ' 

and 

-. N 
·.. ..;.: 17 N - 1 (1 )LZ f · Re. <. 100 Jd - Re -e or T-:-e . 

~ .. 

Due to experimental uncertainties, and perhaps also due to the gradual 

nature of the transition, .the exact occurrence of the· breakpoint is not . 

. , well known~ 

·.From the various indications,- considerable justification exists ·. 

for dividing the. axial-dispersion phenomena into two different regions 

·separated by a critical value (or range of values)of the Reynolds number . 

.i 

.. 
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2. Description of the Model 

As just mentioned, the laminar regime of packed-bed flow {in 

columns having relatively uniform mean flow through all cellular ele­

ments of any one eros s section- -e. g. , in .circularly ·cylindrical columns) 

requires further study in order to obtain a physical model that will cor­

respond. accurately to the experimental outflow-concentration histories (or 

.!breakthrough curves). A new model, which constitutes a step in this 

desired direction, is termed "segmented laminar flow. " 

In the actual laminar-flow behavior of a column, each fluid fila­

ment undergoes .changes in velocityfrom point to point along its path. 

Such filaments can be considered to enter a new column "segment" each 

time their velocity crosses the mean velocity of the fluid .. If the distri­

bution of velocities is the same at each eros s~section, as in randomly 

packed beds, one or more other filaments will be reduced in velocity 

at the cross section where a particular filament changes from a slow-
. .·· · {Fig. 2a). 

moving to a. fast-moving segment; The resulting interchange of fast-

moving and slow-moving segments is equivalent to gradual but continual 

remixing of filaments. In the idealized model postulated here, this grad-

. ual mixing is replaced by a sequence of cross-sections at uniform inter­

vals,. where complete ro~xin...2: ·occurs, with complete absence of mixing 
. . \Ftg. Zb). · . 

at intermediate points/ The interval·between the mixing cross-sections . 

becomes equivalent to a weighted average of the actual segment lengths. 

In eaci?- segment then, 'laminar flow occurs with well defined velocity 

profiles, . and transverse molecular diffusion is treated as negligible. 

In this study, two different velocity profiles are used. · .. 

. One is the: 'fami:Har quadratic (parabolic) profile, u/u = l-{r
2 
/R 1: max 

.where u is the mean local velocity of ·a flow filament, and r/R is .the 

mean ratio of its radius to the total radius of tl?-e passage. The other 

one, which we call "quartic, "has the .-< .empirical.form 
. 2 2 -2 . 

u/u = [1-(r /R )J. While the quadratic velocity distribution might max . . _ 
fit the flo:w through a bundle of parallel circular-bore tubes, the quartic 

distribution appears to provide a more accurate description of packed­

he'd flow,in.the laminar regime. 



-:-10-.• _ .... --. ............ -~---¥--- ___ ., __ ...,_. ____ .__ _______ ;. __ -..... -:---.. :--... ~--·----~---..of--- -~ ~--- - ~~...:..... ~ .. _._ 04':---~:._ _____ ;_..,. --- --# ... -~ ~--·· . ...-. --- _... ___________ ...._ ________ ~ ~-. 

' . 

. i 
·! 
i 

l 
I 
l 
i 
j 

.! 

i 
I 
I 
I 

r 
J 
l 

l 
-1 

i 
'I 
I 

I 
' 

i 
l 
' l 
1 
J 
! 
i (a) 
I . 

(b) 
---------------:--- MU-31815 --------:-.--------------..--

Fig. 2. Idealized flow filaments, showing ·points of interchange 
·. between low-velocity (unshaded) and high-velocity (shaded) segments. 

(a) Random distribution. (b) Simplified model with uniform 
spadng of segments. · 
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At the end of each segment the liquid is assumed to be thor­

oughly mixed before it enters the next segment. Mathematically ... a 

Jflow-average "cup-mixing" composition is computed after ·each seg­

ment, which represents the composition of the feed to the following 
2 • 25 h b d d ' ' 1 d segment. T e oun a.ry con ition at the column 1n et correspon s 

to a step-input of a tracer material. The ex·act solution is not obtain­

able for the response .curve after each segment, but a numerical solu­

tion has been derived by digital computation. The resulting theoretical 

breakthrough curves for di££'ere~t numbers of segments can be fitted 

to the individual experimental breakthrough curves. Each experimental 

. run will thus exhibit a ''number of dispersion units 11 which can be con­

sidered as a "columnPeclet number,"; N = h/1. or hU
0
jE, for pur­

poses of defining an effective axial dispersion coefficient {here h is 
I 

column height, .t. is mixing length, u
0 

is superficial velocity, and 

E is the superficial dispersion coefficient). From this, a "packing 

Peclet number'.',' P = d /I. or d u
0
jE,. is calculated which presumably p . p . 

is constant over the entire length of the packed bed. 

3. General Mathematical Approach 

The equations were derived for a cylindrically symmetrical 

element of flow path having the cross-sectionS. The flow is assumed 

unidirectional. The concentration is a function of time t, of distance· 
. . -

·in the direction of flow z, and of a radius vector r which characterizes 

an element dS of the cross-sectional area. The local velocity is also -a function of r as mentioned above. The flow-average concentration 

leaving one segment is taken as the feed concentration for the next seg-

ment. This flow-average co!lcentrati~n is defined as 
j c { r , z, t) u ( r , t) dS 

s 
cb{z,t)- --------

{ u(i'-"'; t) dS 
/ s 

{1) 

At each of the cross sections where mixing occurs, the -;-de--pendent concentration is replaced by its bulk average; i.e. , c {r, z, t) 



.: ... 

is replaced by cb(z, t) •. In a cy~indrical ele~entof flow path (one with 
. ·. . ·. . '-<> . 

uniform cross section) the velocity profile is- or1ly- a fu'nction q£ r. For 
. . , ... ~ . . 

· steady-state laminar flow, the concentration c(r, zk' t) at a point zk 

gives directly the concentration at a downstteam point, z > zk; in the 
., . 

corresponding radial location. Thus_ we have-

- -c(r, z, t) c(r, zk' t -~ t 1) , {2} 

where_ t
1 

is .the time necessary for. the_fluid.to traveL the distance 

(z-zk}; and , 

z ·1· dz - tl = ·_u(;;"",t)::: 
zk_ 

z-z -· 
k 

---::;- . 
u(r) 

(3} 

In physical terms~- the element of fluid observed earlier at z is the 

same as one which was obse·rved earlier at -zk·-

From these relations the general equation for a segment extend-

ing from zk to zk+li betco~es zk+l-zk] ..:. _. 

cb zk' t - _ u{r) dS -
S u(r) , 

-u{r} dS 
-· ' (4) · .. 

In 'thi:,s st,udy, th~ problem is analyzed with reference to a fluid 

in a circuliuly cylindrical volume element of radius· .R~ For this case, 

_,Eqs. 

·and 

{1) and (4) become 
· .. R 

_ j
0 

u(r) c (r) rdr 

cb(z,t) =-_"T';R~-----

1 u(r) rdr 
0 R 

, jo. cb {zk,_t :-

__ cb {zk+ 1' t) = 'Rn-----...:---..,.._....___;: _ 

_ fo. u{r) rdr. 

{5} .-

_.;:-.' 

'<6} 

By use of these equations, it is possible in principle to compute the • 

· .... 

·-

oi' 
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concentration of tracer material after any number of segments, i£ one 

knows : the velocity dist.ribution .and the concentration distribution at the 

inlet as a fU.nction of time and position. In practice _ _, the multiple inte­

gration required for successive segments becomes progressively more 
. . 

complex, and soon ceases to give relations in dosed analytical form . 

The separate application of these .basic equations to the quadratic and 

quartic velocity profiles is given in the following sections. 

4:. Quartic Velocity Distribution 

A major result of the quadratic velocity profile is .that it takes · 

at least hal£ of the stoichiometric time· before 

any breakthrough sets in. This is unrealistic physically; many experi­

mental curves start earlier, or have shapes that would correspond to less 

. than one segment. · The r·easort for this partial failure of the quad-

ratic model is believed to lie in thE:! assumption of a cir.cular shape for 

the fl'?w element, in which the maximum fluid velocity is, twice the av­

erage velocity. In reality the packing voids have a curved triangular, 

rectangular, or still more complex shape, with corners in which the 

fluid is practically stagnant. This tends to lead to an average fluid velocity 

·smaller · · ": than hal£ of the maximum, and in turn frequently to break­

through-curve · ·: slopes smaller than. those given by the quadratic dis-

tribution. As no exact expression for the velocity profile in these com­

plex voids is available, an empirical relation giving (umax/U}::3 has been 

adopted as a co~veni.ent and reasonable starting point. 

The expression for the quartic velocity profile is 

~(r) = (1 -R~) 2 
max 

(7 .) 

where u is the maximum velocity of the fluid and r is a radial 
max 

coordinate. ..._.:.: 

From Eq. (7), the flow-average concentration is given .by 

I' 

cb. ? l~<~l[l- ~r r dr' 
. (8) 
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This relation can be simplified by the following .change of variable: . 

here also 

2 
.. t;, = 1- r 

R:: 
(9) . 

... r;. 

t;, = (·~ )1/2 ( 1 0) ' 
max 

s. is thus the fraction of . ~rea .enclosed between r and R. Differ­

entiation gives 

( 11) 

' 
.The integratio'n iirnits are at r = a·,· r; :-~ 1; and .at r ~ R., t;. = o: Apply::. 

ing _these relations to·.th~ segment (zk' zk+_l~- :e..~-~~--~c:> .. ~~-=--~9..~.: specific 
---·~·" ·-· .............. · ..... -------·-.----·--.. ·-·--. ------------. . . 7 

relation r- cb(zk+l't) = 3101 ~_cb("k'.t ~ _zkfl-z~)·J Cz dC, 1.: 

.! L \ umax .s · : (12) 

---. ·--··-··":"· .. ~~.·--~---.....:....--~ 
EquationTf2fproves ·to be:.the .k.ey e~p;;-;;~-si~~ fo-r evaluating_ the con.,.· 

centration.breakthrough. after any given number of segmen_ts .. Applied· 
. . .. 

to a column of total length h, divided in~o a number of segments N, 

each of length 1,, it becomes _ 

(J 3) 

The initial condition can be described by the relation 

c(O,r;t).= cb(o;t) = c·
0

H(t), (14) 

where c
0 

is the· step-input concentration,' and· H(t), the Heaviside 

unit function,. is either z_ero ~n unity,_ ~epending on ~he_ther its argu­

ment-is smaller or larger than zero~ The Heaviside.function expresses 

the fact that the .tracer fluid takes a 'well defined· time to· emerge fr~m ·.­
the column. 

After N divisions each of length .A., the remixed concentration ... 

.· 

cb(N.t, t)=_ c0 fN(t)·Hft.;.. uN£ ) 
. . \ -max 

is 

·_- - ·~ N£ ). 
~' cN(t)~H ~ .- 31r , (15) 

where fN(t') is a .dimensionless function of t that r'emains.to be de;,; 
-·---~----·· ------------·· -·· ...... ·-·- ·- .. -. --- ·----~--~~ -~-- ..,...~~----'----

I. 

-. 

~ ... 
·. 
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' -··-·. -----------'--~.r-:ived, cN(t) i~ th'e-corres-pondini concent"ratl.on] = -c
0 

fN(t)] -~ --- and_U_ 

is the average linear velocity which for this case is equal to cm~·-thir:-d the 

.. 

·. J 

maximum velocity u . The Heaviside function in the above expres-
max 

sion states that cb(N£, t) is nonzero only if t ~ N£ /3.U. Suppose cN-l 

. is known after N-1 segments; then, at the end of N segments, 
c.-... _ ;c;·- -~,-----· ·---- ---------.,....-----

-cN('Bl = 31 ~N-I (e- 3 ~z)] · [ (. ) '] N-1 1 2 ' 
H e - -r - 3?. . s. ds . (16) 

~------- --- -----· ----.:....·--·#'' -

·where e = Ut/1. 

In the use of this relation, the argument of the Heaviside func­

tion serves to define a new lower limit of integratJon. Physically, the 

use of this funct~on means replacing the lower limit py a quantity that 

avoids computing any negative .concentration values. Thus, if we have 

-- - - --- --~·- (J\l31t_ :~ 2 > o' or ~ ;, (38'~~:~~-1/2- ----~--
then 

(17-) 

The general relation now becomes 
' ------~~- -. ~ ·--·- -- ---

' 1 ' . 

XN(ill; = 3 [<3'1J'-N+ll -1/Z [ xN" 1 (~ c 31~z)J ~z d~. (18) 

- ... .1 ••• ~.¥..,_,,_. ___ \''' ·.------- h·-·--- -- ...... -~-~-----... -.----- - -----
where XN( ~) = cb(N.2, ··e)/ c

0 
and similarly for XN _ 1 at its respective 

position and dimensionless time; with ~(~) ~ OJor · ,e ~ N/.3. These 

equations show that for each added segment, (3; is replaced by 

e;; - (1/3 ~;1, and the i~tegration is then performed as indicated. 

In dimensionless units,·· X can be giy~n .as a function of N, ·e, 
and {,; or as a function of N, _:T, and {, , where. TN = e jN.* For. the 

latter case, the integrand function XN-l is known in terms of 'J;·N _ 1 , 

but here ~ne wishes .. to ~valuate it in terms of ·f~. This is equivalent 

to reducing the length of a column of (N-1) segments from the constant. 
. . . . \ 

value h to a newvalue h' = (N-l)h/N; then an extra segment is added 

to restore the column.to length h. By use of the general definition 

·'I:= S /N .we have ,..,_. ___ .. _____ ·---

' (19) 

* For any value of N, the true filling time for the bed will occur at T = 1. 

,, 
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J 

'.·· 

....: ·.· , ... 

j) 
=.:. .. 

•. 
.~. . . 

. -' .. · .. 
1>.'· 

\. 

··Hence . ; . ~ 

~ . -. ~--16.- ·.. i. . . '·. • ·.· 
-. ....... ,......_,

0

.__.,._,_..__ • ..,'!' .,._,,,_ •.. ,, •r.._ .. - ~-·~-:.-·-7 .. :----_,.,.,, . ..,. .. , ·-.-. ........ , .•. ..,.,:.. .. \.,,,,·., 

(20) 

' ~ 
. -· ---~-.c._..:._·.-~-,-- --~-. ..:::... --~:_ __ ·.,... .. . ..: . . . 

... -·. -· --·----··-~--~-,---.... -

. . . 

:·and Eq~ (18) takes the form;· ... 

· · ,. -~;~)~·:: :r · . --~~2{~_-1[~~·. _:·
3
;i (N~ 1 >]}c 2dC ;(21 ). 

' _ )[ N(3:f} . .J-l)+l] · · ... ,. 
L.--· _ ......... '" ............ ~t~-..;,__.._..__:._"""--_' ... .: .. ..... .;. •. -~'--" .................. ..___:_ ... ~..;. .. :.... •. ·~--. __;,_____ ···-··--... · ______ .... ··:-·.---.. -

The relations rapidly become very complex; and an. exact solution seems 

. to ·be impossible for N > 2. The solution must _therefore be found by 

··.numerical methods on a high,-speed digital computer .. 

a. Analytic .relations. The expressions for beds consisting of only 
. . . ' 

on.e or two segments can be derived an~lytically, and will now ?e given. 

Their mathematical form is of interest to show the complexity that is · . 

reach~d for beds with' a larger numbe~ of segments' and also to indicate 

possible forms o.f empirical e'quations for representing the latter~ 

For N = 1, Eq. (18) becomes 
-- ___ , __ - . -. .. . T ... . . . .. . ~-~--- -· -:---- --· . "~ . ·. . .. ~--- ~ . 

x~c1.> ~-31· . lxore- ~)·l~zd~ l 
. . . ., (3P)·}/ZL- \ .. 3~ j .· : 
:.,....,-,-••• .-....... .............., .. - --:-:,-· ,; .. . ' . _____ t 

. (22) 

.f. 

·Here x
0

, the value of inlet concentration, ~s constant at unity: . From 

. '_;:1( ~ ~,:_ G .- _<3~~-~~J.: :(e ~~±r ( 23) 
• . . . . . . . '· ·'t ·. ' . . . "'· 

This_ re!ation _s_ho:w.~that •. ~-l C~) is ze~o- a~_long ~-~ ~- ~:0.33.' We recall;· 

this, 

that tEi·== Ut/1., where I. is the length of one 'segment,. t i; the_ ~f~p·s-~d-
1 I •) , ' . ' , .•r~·-•_, 

0 
,_.., _____ ,..,..,_r, ,-.-.___:_._.. ~ , __ .,. ____ ~ , __ ,_.,.... "<,---·-. .,_ , • 

-~--:~.rn~: _ :n_c:_~.l~}~~-~mean Hne·a.~-~-=-~~~..:~.!Y.::~_j . ·G;}Y .'f: 

.. 
•. 

If N = 2, the co~urnn cons.ists of two segments of equal length.. The 

_mixing effluent from the first segment has the concentration x
1

, as 

just ~erived. Then, ~- ·.: ~···· -· ~:~· · . . ,_ 
. ... ~ . ..:.- ~- ·---~-- -- ,.,.--.-~~ -·~__.:_ __ ._,.,,, •••- r----'--~·-·-~--·-.,.._....•_~_,.40:"---:- ___ _,_ ____ ,_---··~•·•------..,.._ 

x2 (".~) = -31
1 

·. _. [1 .,:- (3·;~~- ~)-312J'2db , (Z4c) 
(3 ~-- 1) 1 I z . t;. . I 

L 
I .. 

., 
\ 

·' 

i .. 

. .. 

~-· 
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This. relation is. ·obtained by replacing '$:-by l Ef- (l/3sl fi~.the expres­

sion for X , and by changingthe lower limit to avoid computing neg-
1 1 ··, 

ative concentration values. Integration· of Eq. (24) between the speci-

-fied limits yields 

i)x <8> = [ 1 _ 2(38)
3 + 6(39')

2
- 24(3e'} + 16]. H(e _ z\ i. (ZS) 

I 2 - ( 3 lit} 3 ( 38 - 1) 3/ 2 \ 3) I 
i - .. .. . . - -- - .1 

The argument of the Heaviside function ind.icates that x2 is zero for 

-~: ~ L In terms of :.T the equation for x2 is of identical form but with 

f}: replaced by 2'T throughout. 

5. Quadratic Velocity Distribution 

It is of interest to examine also the analytic and numeric results 

for the quadratic profile, despite its apparent inapplicability to packed­

.column dispersion. The derivation follows an entirely parallel course 

to the preceding one, but starts with the conventional parabolic relation: 

u(r) 
u 

max 
(7a) 

·The relation between the mixed concentration entering segment Nand 

the remixed concentration leaving it b~comes 

Hence 
1 

. xNu9_ .. ) = _ ~,2 ( _-._ · 
1 

lxN_ 1 (~'- -z-t-~ !:._d~ , \ 
:· ) (2~'-N+1f [ _·. · J · ': 

(1 8a) 

or··. 

:){NiT~)= zl .. h . ·. -l {xN-l(~~N~--~~(J-1;)}~:~-. 
[ N(~-~-~-)~~~-- -~--- _ .. --.:-·o-:·-- . ___ . · 

1 --· ·~···~---··~ -~---

(2la) 

The analytic result for the first segment.· (N ~ 1) is 

-- .... --· ··- ··- .. . .·_, 1 .• -
x1(e·) = (t - :-:::-z >. Hte:- o.s) 

4&' . . (23a) 

\ . ' J', 

with H('$ - 0. 5) unity if':~}-"??' d .. 5, and zero if ~}< 0; 5. For N = 2, · 

. the explicit relation is: . 
!·----·-- ---· .. -. -···- ---- ,. ----
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6. Numerical Methods of -Solution 

For both velocity profiles, the integrations required for ·succes...; . 

sive ~egments (beyond N = 2) were comp~tedby two different nu~erical 

methods._ In Method l we evaluate the integral by a summat~on scheme 

us.ing the exact concentration ,values calculated for ·the previous segment.· 

-This--method is quite accurate, but very time-consuming because of its 

use of a time sc.ale with a constant increment which corresponds to a· 

progressively ~maller ~ ':j;'' as N increase~. In Method 2 we evaluate 

the integral by. Simpson 1 s int~grationformula, getting the necessary 

concentration values by interpolation among the values calculated for 

the previous segment. This method is based o·n the T scale, and com­

putes .the minimum number of concentration values necessary to go up 

to a· specified maximum N; it is very fast _but' beCOn;leS unstable for 

large .values of N .. It seems possible.that an optimum method would 

.be obtained_ by combihing_the favorable features of the two methods, but 

this has not been done. 

In this .section, these two methods are explained; using the 

.quartic velocity profile for illustration .. ·Results obtained for both ve­

locity distributions are then given. 

a,_ Method 1. This method numerically solves. the ·analytical expres­

sion 

with 
<e· , _ Ut _ Ut N 

··, --r.-'11 

(26) . 

. '•,. 

For ease Of computation, a new time variable 'r is introduced,_ for 

which.all the curves begin at 'T =· 0. The ap:propriate transformation is 

' ·~~ 
-.'fO. 

'f.._-€ 

-. 
' 



; 
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T = 3.S- N = N(3.T- 1). (27) 

Physically, T = 0 corresponds to the time of arrival (at the outflow) of 

the maximum-velocity flow filament, for.which t;, = 1. When the X-vs­

time behavior· of a bed length corresponding to~ N 'segments is evaluated 

from that of a length corresponding to N - 1 segments, the values of T 

(and S) used are based upon length N rather than upon length (N-1 ). 

Hence, when T = 0 for the evaluation of XN' the function of T at which.' 

XN-l is evaluated (~hich can. be termed 'T N-l) must also be zero when 

~ = 1. To state the problem another way, Eq. (27) can be extended to 

give 

'TN-l ='TN+ 3(8N_ 1 eN)-[ (N-1)-NJ (28) 

From Eq. (26). B' is seen to be eN-:[ 1/(31;, 
2)J. Hence, we obtain 

, N-1 
1 

'TN 1 = 'TN - -::-z- + 1. (2 9) 
- t;, 

A test of this relation shows that it does satisfy the condition stated 

above (T N= 1 =0 when t;, = 1). 

To eliminate sub~cripts, the function 'TN _
1 

will be redefined 

as a'time variable W. Equation (26), the general formula, thus be-

comes 1 . . 

= 31 [x~_ 1(T+l - +'\1 t;, 
2

dt;, 

1/~ s n 
1 

=L-rm 
2. 

XN-l (W) t;, dt;, . (30}. 

Method 1 involves approximating this integral by a summation, · 
•I . . 

using directly the X values computed from the previous segment, with 

.the corresponding 1;, values as shown below. A time increment o is 

selected such that 

'T = mo 
and· ·W=m'o, 

(31) 

(32) 
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. •_···. 

where m and m 1 are integers. From the definition of W, we .hav~ 

. · . - 1 1 2 l · . . · ·. l - 1 I 2 · · •. _. ·.·. . < 3 3_> 
~ :: (1 + _T - W) ::. 1 + (m - m 1

) o . . . < 

with m ~ m 1 , 1;, · can take on an .infinite sequence ~f values starting at 
1 

unity and tending toward z_ero. The general equation, in summation 

form, becomes 
m 1 =m-1 

XN(T) = 3,> [XN(W)]. 
rn• =0 av 

':_,, . 

; .· . 
. ' •' 

(34) 
.. -~- .. 

Illustrati~n of the use of these equations is given in_,jry~,i.: ,3·;~ > :· ·. ',·_ : ":. 
b. Method 2. Here the dimensionless time scale :1= B/N is ~sed ·di-. 

rectly, time being thus referred to the total length of the col~mn.rather ' 

than to the length of the individual segments .. 

in Method 2 is Eq. (2la): 

The general formula used 

1 . 

XN\'f,!) = 3 ( : . {xN-1 
. . . J l N ( 3 .. ;} 1 )+ 1 ] -

1 I 2 
• 

For sim-plification, a new variable V is defined .as 

' ·. N ··' . 
' ~t· ·~ 

V=---T­.. N-1 · ·" 

From this, we have 

·and' . i 
3N.::-l 

1 · .. 
. . ·z· 

3(N-l) s ·. 

i' 

I ·, '_. 

, . . .3 {N-1) 

..
. X. N('t_.··.l·)_·. =· 4 .• 5(·1··~3· . XN 1 (V) (N-: 1} 2 5 dV • . 

).
1 

- [3N'J::-3(N-l)V] . 

(35) 

(36) 

(37). 

{38) 

-.,..:· 

• 
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Fig, I3 i. Illustration of Method 1 for numerical integration. 
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. . . . To compute the concentration values XN. to a dimensionless · · 

· time . .value TN' 

larger -than· TN~ 

it is nece~sary to.khow. XN_ 1 va1ues. to a tirne·~ :TN~ 1 
The relation between the different time·values. is 

,· 

. i . 1 .· 
;I'.,..T ,. =.TN+. N-1· (TN -: -3), 

JJ:N·-·1 
. (39) .. 

. . . . 

where i ·is ·an integer. After the largest T that is needed for .the · · 

largest N, has been specified,· Eq. (39) indicates the largest T that 

must be car:d~d for each lesser number of segments. 

Computation wa.s made with the analytic results for N=2 as · .· 
starting values. .In the computation for e~ch new ·N, T was ~aried by ~. 
constant increments up to the limH. For each T, ·Eq. ·(38) was evalu:-:. 

ated by Simpson's integration rule, with the X values for a specified 

value of the argum~nt V being obtained by interp~lation." • The number.· 

of points used it?- Simpson's rule was determined by specifying the maxi.,: 

mum interval between any two successive points on the time scale . 

. c. Results. Numerical results for the quadratic and the quartic dis-· 

· tribution obtained by Method:1 with 6 (quadratic)'~ 0,100 and .... 

. o {quartic) = 0.1667 are given respectively in Figs. 4 and 5, as :t 

semi-logarithmic plots _.of X ys T; the time scalebeing norma:.lized by 1 ·. 

the stoichiometric time. The numerical r·esults were limited; toN~ 45, 

due to the relatively large amount of computer time iiwolved in going 

further (about 0. 5 hr on the IBM ·7o9o was ·~equired fo·~the present rang~ ~f . . . . .. ' 

values). An exact estimate of the error involved in the use of Method, 1 

is not possible; however, trial runs. for the. q:uartic distribui;ion up to 
. -- --

N = 10 showed_that by reducing the increment o from 0.1·667 to 0.0833· 

the· x 10 values changed only by 1 dl.git in the th~rd place. Concentration .. 
. ~ . . 

· .. 

.. 
.~ 

.. 

•. 
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T. · (dimensionless time) 
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Fig. , ' -5. Breakthrough curves for the segmented­

laminar-flow model with quartic velocity · 
profile. 
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values calculated by Method 2 with ~V = 0.042 up to N = 10 did not dif­

fer more than 2 digits in the third place from those computed by 

Method 1. Beyond N = 10, cumulative errors led to erroneous results 

unless b..V was. much further reduced, which in turn was very time­

consuming. 

The coordinates of Figs. 4 and 5 are very convenient for com­

paring experirnental breakthrough curves with the theoretical results, 

since a logarithmic scale of the experimental volume or time will only 

differ from the logarithm of dimensionless time by a constant additive 

term. 

A frequency-response analysis for the quadratic velocity distri­

bution, obtained from the step-input response, is given elsewhere. 20 

A similar approach could be used for the quartic velocity distribution, 

if needed. 

C. Diffusion Model 

In the diffusion model for longitudinal dispersion, it is assumed 

that equations o.f exactly the same form apply as those de~cribing the 

molecular-diffusion process. The governing equation .is 

. (40) 

where z is axial distance, t is time, cis the solute concentration of 

interest, E is the superficial axial-dispersion coefficient, e is the 

void fraction, and u0 is the superficial velocity of the fluid. The solu- . 

tion to -this equ_1l.tion has been given for ~wo different sets of boundary 

conditions corresponding to a finite -length column and to an infinite 

column . 
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1. Finite-Length Column (Bounded Diffusion) 

An exact solution for the diffusion equation, 

Eq. (40}, ·applied to a column ~f finite len~th, has been given by Yagi 

and Miyauchi. 
42 

Brenner has shown that the general equation and the 

boundary conditions are similar. to those governing heat loss to "sinks 11 

at the ends of a slab; 
3 

for ~hich Cars'raw and Jaeger have -given the 
. 8 . 
- general solution. 

The variables in Eq. (40} will be made dimensionless by-intro­

ducing the relations N ::= h/1. = h u
0
jE, X= c/c0 , B = u0t/l.e., and 

~ga1n · . 
. Z = z/h. Here N isfa "column P~clet number," or total number of 

"dispersion units. " 
---~-

.The solution;t 

where· f..1. . is 
nr 

·L 
. ; 

! 
--'---- ·.-·--·-·---· -·-----~··--···----'---·~------..J 

· .. -' 
at the exit of·the column, has the form 

e 
- 7N 

given by the t::n(s~:nde~ta)l equation 
. > 

...... I 

(41} 

::-· 

(42) . . f..l.n = cot N .,. 4f..l.n . 

------------------~-------- -~-----~-----~-----

The roots of this transcendental equation, up to. n = 18, have been 

re-evaluated on a digital computer, and are tabulated elsewhere 20 
• • . 1 

Breakthrough curv.es based on these equations are shoyr.rn in Fig~ 6, · 

in which results obtained by B;renner3 have· been used .to extend the 

.. low-·l9 --high-N range. Asymptotic appreximations for this problem 

have been given by Aris and Amundson
1

, and extended by Jacques and 

Vermeulen23 . 

"*I 

.. 
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Fig. 6 • Breakthrough curves for bounded diffusion 
model. 
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-.. z: Semi-infinite Column (Unbounded Diffusion) 

The second type of bounda.w- condition applied to the diffusion 
. . 

. model assume's a column of infinite lengthextending from z = 0 to 

z = + co; solution(' o~,£ uniform composition enters at ·z =. 0, starting at 

t = 0, and progressively displaces the solute-free fluid initially in the 

column. Danckwei'ts ha.s given a relation for the concentration at a point . · 

downstream, which takes the following dimensionless form: 
. ' 

X l { 1 erf N ,..., '$•. !· (43) ... = 2 21/7!\ 
where '$:• is a dimensionless time ratio based on the time to reach 

X= 0. SO. By numerical integr~tion it is found that B' is.(N + l)U~t/h, 
or (N + 1) :.G/N .. Hence, ,using ~'t = e/N, Eq. (43) becomes . 

x=lS1_-
2 ~-

erf N - ~(N + 1) ·T
1 

l 
2v'(N+ lLT · J ~ 

(44) 

Numerical results are given in Fig. 7. It is seen that the i'unbounded" 

solution approaches the "bounded" curves (Big .. 6) at high·N. 

··.· ·~·, ' 
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D; . Random- Walk Model· , 

• ..., I . -~. ' . 
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The. randoin..:walk model applies to the motion oft;~c~r mole~ . :.-
. :, -- .. ·. . .-:. . - .· ·' 

· fUle_s·tra~eling,t~rough th'e co.lmnn. '· TlJ.eir pathjs :ma~e·\ip_· of a succe_s~ 
sion o~ motion and rest phases, where. the motion phases require negli~ 

·: gibletime compared to the rest phase.; Physically, the motion phase. 

·may correspond.to.the,narrow void ~hannels ii'l. a packed.bed,,through/ 

. which. the li·q~id moves at high velocity;_ wher~~s the ~est phases will . 

:then repres~nt the wider void spaces. Dif~usion, also, could be viewed · 

as a random-walk process of individualmolecu1es or of fluid packets,. 

but one occurriri.~ with equal ease in the upstream and downstrea~ di..: . 

.. ·· rections. The distinguishingfeatu~e of the present model' is that the .. : .. : 

rando'm walk occurs iri:the downstream dire~tion ~nly. 
. . . ·. -· ·r 

In the .derivation the fluid .is considered to travel with a charac-
--~" ' 

. teristic ~elodty u, in a serie~ of.discrete jumps corresponding_to a · . : 
' . 5 23 

mean free path l. ' .. .F'or a column .of length .h, . in which.a pa~tic~:: 

lar portion of fluid has stayed for a time . t, ··.a number of mixing ,lengths 

N;;: h/J. and a dimensionles~ :time scaie ·e• = ut/.1. can,be:defined. 

The analysis i-s based upon the probability of finding <iny one 

.·. 

packet of fluid at N mixing lengths away from th~·inletat _time e•, · ·' 
after it has ta]:<en (n+l).jumps away fro~ the inletin.it,sran~om ~alk;~.---. 

I 

. allpossible paths for arriving at N at time :e' are taken into account. 
~ ': . 

' This probability is 

' ~ ' : 
-; . .,: 

. . .-·~ 

(45:f: ... 

... 
•.' This. relation.,.c.an.be conve·rted to a continuous Of:unetiori, which h~s. the-·. , 

. ! '• ·.. ' . ,·... . . ~·: .... : . ·. -~-~-~ ·. ~ ~-

. • · norm.alized.:'for:tii · ·, 
_,. ~ .... ' 

:· _ '· ., .. ,. p(N, 8-')dT' '"=[exp.(-N-e_!)]I0 (2,.) N,~e') de•. ~:: '. (46) 
~- . '·... . _, '- '' ~. ~ . • ' ~ . ~ • • • • ) :·- ' ' .·i.: ~ . 

'.:·-... · 

. ·.Here 10·. ·is the zero-cn~der Bessel
1
function of the: first ki:o,d,with imagi-

' .. 

nary argument. Ifa step.input-oftr~~er is fed in-continuously starting 

at time . 11 .. = 0, . the equation. for the. concentration .·_at plane N .is 

... ~ 
.- ... 

·'' \ 

·.· 

' .. 

. ~--

,, 

f:,. 
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(4 7} 

with X increasing from zero toward unity as e I increases toward 

infinity. It may be noted that X = 1-J (T 1., N}, using a function J derived 

to describe heat and ~ass transfer in fixed beds. 
18

• 
22 

A useful sim-

plification.:' for Eq. C47}., as developed by Klinkenberg, 
27

its .. 

X = 1/2[ 1 + erf (..J 8' - 1/4 ~ "./ N + 1/4 J. (48) 

~--. -·- --:-·--·---.----"---··-·----~--~---- ~--·-·-- --- ~--~. -- -------·-·----~----·--·- ---- .. ---- ______ , _________ ~------···-·------------- ·------- ------------- ---------·-"' 

. For any value of N, the 

stoichio~etric point will occur for ':.e = N. A material balance yields 

the result that when t = h/U, with U being the average linear velocity, 

e I = N + 1. The derivation of this important result is given in the 

Appendix. · ), Through this relation, the characteristic velocity is re­

lated to th.e average linear velocity by the equation u = U (N.+ 1)/N; 

the dimensionless time becomes -·~ 1 = (Ut/£ ). · (N+l)/N. ·These con­

siderations lead to the following definition of 'Ii as in Eq. (44): 

T= 8 '= L 
N N+l 

. (49) 

Also, evidently, we have ~: = ·Ut/1 = -e1 N/(N+l}. 

With.these definitions, the Klinkenberg approximation becomes 
-~-- . ./ .. _ 

. ~------------------------------------------...__ ____ -----

X= 1/2{1 + erf[..J(N+1).T-1/4- ~N+1/4] }. (50) 

.. ---- ----------·- --. -------- -' ---.-···· 
' 

Values of X for different values of ·'I' and N computed from Eq. (50) .... 
....---·----- .-----·- ------ ·-------~--------·--·--·--··- :::-----~-- . : . .,1'·,_;_._.:._ __ ---------- --·- •. ---- -··- - - ---.-.-.--.-••• , .•.. ~.~~ .. -.--.-----.. ·--------"1 
~ . are "given in Fig. 8. : I 

~ ; r --
). 
I 

-·- ,. 
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An eddy-dispersion coefficient E and a Peclet number P for 

the random-walk model are defined by comparison with the diffusion 

model: 

E = u
0

..e , 

and d 
p = -f = 

d uo p 
E 

Consistent with this,. we have N=h/~ = Ph/d = hU0/E. 
. p . 

· E. Mixing-Cell Model 

{51 ) 

(52) 

Kramers' and Alberta, 29 followed by other investigators, 1 ' 
6

' 
7

' 
33 

proposed that the mixing effects occurring in process equipment could 

be_described in terms of a cascade of mixing cel.ls. In packed columns, 

the voids between the packing particles can be considered as unit cells 

for such mixing, the influent to a cell ~cting as a jet which sustains a 

mixing condition. At high. Reynolds -number values, we~l within the 

turbulent~flow regime, the individual voids may each approach perfect 

m1x1ng. Even if local mixing is not complete, a series of voids may 

be represented theoretically by a m:lxirig cell. 

In each "cell 11 perfect mixing is assumed to occur,· such that 

the effluent from the cell has the same composition as the fluid at all 

points within the cell. For a ~tep-function feed of a tracer solute {at 

concentration c
0

) at the inlet to a sequence of r:nixing cells of equal size, 

·the effluent from the Nth cell in the series has the dimensionless con­

centration 

· N-lJ _ 
't' e rr (53) 

iri term~ of total elaps-~d time t, with 't' = t/ t, 
where t is the average residence time in the sequence: 

. . ~ . 

The mixing-cell model is identical with .a random~walk process 

in which the time for each step is variable, but the step length is fixed. 

The probability of encounteringa· tracer molecule in the outflow from 

the Nth cell~ at a time t' after it has entered the first cell, .is 
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. •-; 

\ .... ·,; 

.. p(N ,'ft.) 
. --r N 
e -r 

N!' 

. .... 

(54) 

. Integ:ratin~ with respect to tirn.e, from 7' = 0. to -r, leads to Eq. (S-3)._ 

By _c~mparing the diffusion model and the r.hixi~g-c~ll model, 
1 29 33 ' . .. .· .. · .. 30 35 

several investigators for one -phase ' ' arid two-phase studies · ' .· 

have shown that the celi size in the mixi~g-cell model corresponds to 
. " . . . ~ . ' 

twice th~- mixing .length in the diffusion model. This comparison can 

be most easily seen by us~ng the finite -difference form of the diffusion 

equation. The diffusion equation has the form . -

= 0~ (5.5) 

·· -'· where .6-X and-.6.
2

X stand for the first and second differences,:evaiu­

ated at plane ND. We now adopt .6-z = 21 (=2dp/P) .. For this interval · · 

the function ofXN_ 1 :. XN, and XN+i reduces solely -to a function of 
. . . ' . . . 

''.!,,_. 

... .. 
•·: 

XN_ 1 and XN. The mixing-cell equation likewise i~volves a function 

of XN _1 and XN' which is found ·to be. the same function._ The weak -

point in the match is in the initial adoption of the finite -differ€mce for:m; _' 

_this is valid. only if .6-z~< h, or hence ifN (=h/1) is large. 

If every void in a packed bed were_ to be a perfect mixer, we 

would have t.~ 0.8 d , and P- 2.5. Experimentally, values of P· 
._ p·,' ' 

' ... · 

from 0.4 to 2.3 are encountered for single-phase flow, with thelower 

values occurring in laminar flow. 
._-

Concentration--time curves for the mixing-cell model,- com_j:mted-

-.from Eq. (53), are shown in _Fig, 9. Here the dimen_sionless time Tis 

·' t/NE . 

. ' 

.: - _,. 
'. >', . .' -. ~ -~ 
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Fig .. 9.. Breakthrough curves for the mixing-cell model. 
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Relations Between the Different Models· 
· ...... -.; ·.:.L _~;. 

,- ·. ~- . : . ' 
·. ,.1 ···, 

. . 

. · , Chemical-engineering interest in axial dispersion', tip to tp.e. ": · 
. . 

· · present, has .centered upon fluid mixing in theturbulent (or neatly tlJ.r-

.-•. 

bulent) flow regime. In this region, the diffusion, random-walk, ahd 
:.· . .... _.;· .. 

void_;ceU..;.mixing models are nearly equivalent, and all app~a; to 

give consistent descriptions of the experimental results. Th~ ahaly§liS 

of liquid-liquid extraction in packed columns places new emphasis on 

the interpretation of longitudinal-dispersion behavior in laminar flow. 

From a theoretical viewpoint the void-cell mixing model cannot apply to " .. 

this region, at least for liquids, owing to the fact that perfect mixing no 
', 0 0 ' ' T,,•: 

longer is approached in each void ceil. . The diffusion model with finite 

·.·boundary conditions and the random-walk model, as empirical treat.:.. 

ments, • may apply relatively well to all flow conditions. Clearly the · 

segmented-laminar-flow model, w'ith an ~ppropriate velocity profile,·· 

is applica,ble only to the laminar-flow, regime. For the most ;art, the .·._ 

step responses given by the different models do not coincideover their· 
··;.-. 

entire rise. Quantitative comparison hence has to be made at some ref- ·. 
' ' : . . : .. , 

·.· ... 

erence condition; this is selected here as the (dimensionless) midpoint. · 
. . .. 

slope. A plot of dimensionless slopes for the different models, a~.func-·.·. 

tions of N, is given in. Fig~, 10. This figure shows that, for small 

slopes. the use of one or the other .model to analyz~ experimental data .· .• 

can easily lead to N values (or to packing Peclet numbers) differing by 

a factor of two. 
' . . . 

The finite-boundary diffusion model_and the random-walk have· 
. . 

similar midpoint-slope ·values~ The entire breakthrough curves 

given.by the two_mode!'s have quite similar· shapes, withthe result th~t· 

the t 50 values for the diffusion model are o~ly about Zo/o less tha:nthose 

for random walk. \·,: . , . 
~., ~ .... 

·:. - -··· · .. 'lLhe midpoint slopes·'.-can· be expressed in a convenient form·by 
• 'I 

·--· --~-~;_~.;i~ .. ; ,. • ·' ,• , . " I .~ .. , ' ' ~ 'I 

the following e~~ifical ~;;i~·~'i~~~~. ~he~; ~~>t dX/d{t/t~~y;-'---·-
. · · Mixing cell, N = 2Trs 2 + 0.-25 · ·.. . .. . . c . . . 

Unpounded diffusion, Nud. = ~Trs 2 . : ., 
. 2 . . . 

Bounded diffusion, Nbd = 4Trs ,_ ·)! . .45 

. Random walk, N = 4Trs 2 - 0. 80 rw 
2 S .: 1_ • £. -quartic, N = 4Trs - 6. 0 sq 

• 1 

~=s.: ' . 
. -~ 4:. ·.· ... 
; . .:r. 
,·'·! .. .. --i 

. '. ~ 
~;.'' ·. 

·.,_.. 

.4. 

. . .... . ~-

' ,•: .. · 

; l 

· ... 

·.,. .. 
... 
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low-N-:-value range, at any given N, it predicts-less axial dispersion 

than the preceding models. The segmented.,..laminar-flow result with· 

quadratic velocity profile (not recommended.for use} seems to indicate 

that, for large _N 1 s; NSFP app~oac~es ND/2. 

For reference purposes. ;:: . .-. ·· .. the unbounded-diffusion results are 

·also· shown,. which for large N values become equivalent- to. the di~fusion 

. model with finite boundary conditions •. The void-cell model at high N · 

is approximately equivalent to the diffusion model (with Nc ::::: ND/2). At 

.low N' s it approximates the unbounded.diffusion model. 

In the low-N (shallow-bed} range the difference between the dif~ 

-fusion model and the segmented-laminar-flow model (quartic) is quite 1 

. large. ·For a few experimental· studies oflarriinar -fl~w dispersion, the .
1
' 

_diffusion _model- (or the neariy equivalent ra:n.dom-walk ~-~-del). has be{m · 
. . ' ' . ., ' . 

-·found to give a much more constant value of packing Peclet number for. 

different bed heig~ts 23
. Hence the quartic velocity. di,stribution we have 

used does n,ot represent adequately the actual flow behclVior in sphere-·.' 

and ring-packed beds .. A different velocity distrib~tion, or a more 

detailed statistical treatment of fluid-filament behavior, may perhaps::.· · 
., t 

lead to a satisfactory fit. 
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G. Notation · 

Concentration. 

Flow average concentration. 

Feed concentration. 

Particle diameter. 

Longitudinal-dispersion coefficient,, based on superficial 

velocity' u o.e. 
erf Error function; 

Friction factor . 

2 X 

,;:; fo 
. x2 .. 
e- dx. 

. f 

f(t) Dimensionless function of time. 

h . Total height of 'bed. 

. h' Modified height of bed= (N-l)h/N~ 

. H Heaviside unit function. 

i Integer. 

' .· 

10 Bessel function of zero order, with.imaginary argument. 

jd Colburn j factor, for mass .transfer. 

J Function used in regenerative heat and mass transfer operations. 

J. Mixing _length . 

. m, m 1 Integers. 

n Number of random-walk jumps under consideration. 

N Number of dispersion units (mixing lengths), laminar .. flow 

NRe 
p 

p 

r 

segments, or mixing cells. . :,· 

.Reynolds number, u
0
dp/v. 

Probability. 

P~clet number, d /J., 
p 

. Radial coordinate. 
,.)' , 



~. ~ ·- -----~ --. _____ ._...__.. __ "" ..... - •••.• -.~ .. "'7'"""" .... - --·--- ~--

-r 
R 

s 

s 
,t 

Radius vector. 

Total radius. 

·Dimensionless midpoint 

Cross-section. 

. Time. 

t
1 

Time defined by Eq. {3). 

t·· Residence~ time. 

T Dimensionless time, e/N. 
· ........ 

•. 

scale). 

''·: 

:·. ·' ,. , .. 

. u .Characteristic,or local, vel99it~ i~:segmented.laminar--flow. 
-:;.·1 ',· ... ' . . 

model. 

· ·u Characteristic velocity in. random:.walk.~ 
.. . .•' . 

umax >Maximum velocity.. . 

U Intersticial velocity or mean).linear. velocity. . •, .· . ' 

u0 . Superficial velocity; E U. 

. ~ 
00 

Asymptotic uniform velocity of flt.l~d past a single· pphere. 

v Variable defined in. Eq. (36). 

. W Varia'Qle defined in. Eq. {30); . · 

X Dimensionless concentration;.·· c/c0~. 
z Axial distance. ·· · · 

z 
a 

Dimensionless length; z/h. '· .. '. 
'.• 

.Dimensionless time -, @/(6+-1): · 

Time increment. 

Void-fraction.~ 

' ' . . . . 

.· ... 

':.· . 

· .... 

. " ... ; 2 . 2. . . . . . . . ·_, . 
. ,Variable. defined by Eq. (9}, (t=::l~r'/R ); fraCtion of ·cross";§;ection . . '. : . .. '·.; ·~< .. ' . . . 

:.· .. :.. enclosed between r and R• , 
)·- £ .· Dummy variable. 

l 
T) · .. • Dummy variable. 

f.L · . Roots of transcendental equat~on [Eq. (45}] 
~~---'> 

v Kinematic viscosity. 

'T . Time. variable . 

... e. 
\ e, 

. Dimensionless. time1t , U t/1.. 

Dimensionless time, u t/1. 

· .. 

;~~ .. 

:-< 

.•_\:,'.:: 
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. Appendix 

Determination of Stoichiometric Time for the 
·Random·- Walk Model 

The stoichiometric time is defined as the time necessary to fill 

one column volume with fluid. Usually a time scale T,' is adopted such 
. / 

that the stoichiometric time corresponds to . . l= 1. From a material 

balance, this is equivalent to chosing a time s.cale such that the area 

between the breakthrough curve (X vs T} and the horizontal line cor­

responding to ,X = 1 is equal to unity . 

. The general equation for the random-walk model is 

·.~jt 

·x(e',N) =l e-(N+~) 1
0 

(Z.,IN'J) d~ (1) 

with X( cc, N) = L The area,) mentioned above. 1which should be 1 is 

110 . 

S{N) =1 L 1-X(~'. N)] d8;' 

0 . 

Integrating by parts leads': to 

flO +l ~ e -(N+~) 1
0 

(Z.,[Nii) d~ • 

. We first .show that 
. . 00 

e -(N+~) 1
0

(2.,/Nii) d1 
0 

= 0 

(2) 

(3) 

(4) 

This exp,;ression can be simplified by the following change of variable: 

2 . . 
~ = 2.y'N'Tit then TJ = ; /4N, and dTJ = (2£/4N) ds. 

.I 

t¥ 
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. ·..,~-

. :. ·. 

'.' . 

-_ Equation (53) beco~es 

· . - .ao · .·· 
2

. . ao 

• [•e• ~-: 1~NF .-< /4N Io(~J~d~J o; o. 

. , 

_/ . 

. "(_ 

";";-_ .. . . <· 

We first note that the expression under the integral is· always ·positive 

and that the function 1
0 

(;.} satisfies the inequality 

(6). 

for all positive values of g~ From this, the expression between: brackets 

clearly vanishe~ when·:·e' = 0. To show that the same expressiorl:is zero 

at the upper limit, the expression will be replaced by a simpler and .. 
larger function which tends to zero when ::er- ac> • Using Eq. (6} we . 

' . _can wr1te 

(7) 

.. 
for all g > ~l 
have 

Note that this relation holds for s
1 

> 8N. Then, we 

all GC> 

ljN~' <I> · e -s s d~ 
Jz..; N·e' _ · ·- . 

(8) 

. . . This last integral is equal to (~ + ~J N e I) e .. 2 ;;. NB' ' .. FiJJ.ally, 

Eq. {5) can be replaced by the dominating funCtion 

(9) 

_which tends· to· zero when ~·e'· tends toward oo. As the expression be .... 
. . ' 

tween :brackets in Eq. (5} is always positive and smaller than £, it also 

~vanishes for :'8 '- ac • Now, the a'rea is given by 
. . ~ ·. / ·• . 

• GC> 

. S(N)~r 
.. -. . . " 0 

11 e-(N+'I'l) I (2,/Nii) d11 •. 
. . 0 . 

(1 0) 

.. , : 

...... ·. . · ... _;-~ . ~· ,-.... ~. .. .· .. ·; 



'/·. 
), 

···: 

-45·· 

(11} 

or 

S(N) = .-N BBN (i ,:-( 12) 

Also, .Eq. (1) can be written 

, -N . r e 
.x<w, N> = -zN (13) 

Since we have X(•,·N) = 1 when $.1- •, we get 

ac ;2 { 1 e - 4N r0 (~) ~d~ = N eN. (14) 

Using Eq. (14) in Eq. (12) it follows that 

· .-N 8 . N . 
S(N) = e . aN (N e ) = N+l ( 15) 

Thus. to normalize the breakthrough curves for the .random-walk model, 

the following time scale has to be used: 

(16) 

With this time scale, the stoichiometric time occurs for T = 1. 
·. \'! 
'' 
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ratus, method, or process disclosed in thi~ report 
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or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 
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Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




