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A formula for single Regge pale terms is proposed which produces the 

correct analyticity in momentum-transfer, while retaining the correct behavior 

in the asymptotic region of the crossed channel and near the pole. 



1 

* ANALYTICITY OF REGGE ·roLE TERMS·· 

c. Edward Jones 

Lawrence Radiation Laboratory 
Universityof California 

Berkeley, California 

February 26~ 1963 

UCRL-10700 

Regge pole terms in relativistic scattering are assumed to give a good 

representation for the scattering amplitude in two regions: (a) near a reson­

ance or bound state and (b) in the asymptotic region for the crossed channel. 1~ 2' 3 

Such a term is generally written4'5 

R(t, s) 
p ( t) ( -z) 

== -1! [ 2a ( t ) + 1 J [3 ( t ) s ~n 1{ a r t ) j 

where t is the total energy sq_uared in the center of mass (c.m.) and z is 

the cosine of the c.m. scattering a~~le. For elastic scattering of particles 

of eq_ual mass m , 2 
z = 1 + (s/2~ ) 7 where s is the sq_uare of the c.m. 

L, 

energy for the crossed=cr~nnel process and 

wave projection of Eq_. (1) is6 

2a(t) + 1 
£ + a(t) + 1 

The partial~ 

From Eq_. (2). one readily sees that bound states occur for values of 

t such that a eq_uals a positive integer, and resonances occur when Re a 

eq_uals a positive integer and Im :a~ 0. Eq_uation (1).9 on the other hand, em= 

bodies the result that the high~energy behavior in the crossed channel will 

contain a term proportional to or 

While a single Regge term may represent the scattering amplitude ac-

curately in certain regions, the analyticity of such a ter.m in the variable 

s violates the known analyticity of the full amplitude A(s, t). To see the 

(1) 

(2) 
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difficulty>' we recall that p (z) 
a has a cut running from z = -1 to z = -co ' 

In terms of the s variable this means a cut in R(t" s) running from 

t 2 
s = 0 to s = +00 when (4 = m ) > 0' and a cut .from s = 0 to S = -oo 

when t 2 (4 - m ). < 0 The purpose of this note is to propose a Regge pole 

formula that has a fixed branch cut in s starting at s = s0 • 

To construct such a modified Regge pole term R'(t, s), we consider 

first its partial-wave expansion" -

00 

R'(t"s).=,:E (2.& + l) R'(.&J>t) Pn(z) (3) 
t=O J:J 

The req_uirement that a singularity. oc.cur at s = s
0 

means that the Lehmann 

ellipse for expansion (3) must pass through z = z
0 

= l + (s
0
/2'lt 2 ) To 

ensure this we req_uire that R' (.&:; t·} be bounded by e -p£ as .& """'= :; where 

p = X:n ( z
0 

+ (z
0 
2 

= l )1 /
2 ] :; and also that it not be bounded by any smaller ex­

ponential df .& 7 • We further req_uire. that R 1 (.&:; t) have .a pole at .& = a(t) 

with residue ~(t) A choice of R' that .fulfills these req_uirements is 

~(t) epa(t)e=p£ 

.& = a(t) 

.We now.determine R'(tps) from Eq_. (3). First we note that with our 

choice of R'(.&"t)" Eq_. (3) can be written 

00 00 

R' (t, s) = :E (2£ + l) ~(t) f dx xa=£-l P_e (z) 
£=0 ~0 

where s0 = ep • Reversing the order of the sum and the integral we obtain 

R' ( t, s) " ~ ( t) t dx xa( t) [ -2x d~~~' z) - g (x, z) ]• 

(4) 

(5) 

(6) 
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where 
8 

oo P_g(z) 1 
g (x, z) = \ .·J' n 'l = ---··---·-=1=-"lr:::-2 L ..rrr- 2 

£=0 ~-x (1 - 2zx + x ) 

(7) 

We integrate Eq. (6) by parts to obtain 

CXl xa( t) 2~( t) so[ a( t )+1] 
R'(t,s) = ~(t) [2a(t) + 1] f dx --..;..........--

2
--,1=-7-r=-2 + 

21
72 .(8) 

so (i - 2zx + x ) (1 - 2s0z + s0 ) 

To study the analyticity of R' we .first consider the last term 

2~(t)s a(t)+l 
0 R

1 
( t, s) = ---· _ _..;.. ___ 7,..,... 

2 1 2 
(1 - 2s

0
z + s0 ) 

This term can be rewritten 

' 

a(t) 
where b(t) = ~(t)/(~2 ) • Assuming that b(t) and a(t) have cuts 

4 2 - 009 ( ) running from t = m to t -- . .• , ,,re see that R1 tJ s r.tas cuts running 

from 

2 
t = -s

0
+4m 

We note that 

to 

to 

to 

(9) 

(10) 

(11) 

(12) 

which makes it similar to R'(£,t) except that R1 (£,t) has a fixed pole at 

1 
£ = - 2 and no pole at £ = a(t) • A study of R1 (t, s) , as well as the 
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integral term in Eq_. (8) [which we denote ~'.R2 ( t, s) ], shows that they also 

have the cut structure (11). In the neighborhood of s = s0 , however, 

R
1 

( t, s) const ::::::: _....;;_;;.;;;.;;;;...;;._...,.-

(s - s)l/2 
0 

whereas. R2 (t, s) cc (s
0 

- s)1/ 2 + const. 

(13) 

(14) 

Thus R2 is finite at s = s
0

• Chew has recently proposed using R
2

(tps) 

as a single Regge term, instead of R 1 (t,s), since the former, being finite, 

can satisfy unitarity in the crossed s-channel near 10 s = s0 • We note that 

also has a fixed pole at 1 
£ = - 2 , but this appears to produce no 

difficulty since for 1 Re a > - 2 ,. the Regge behavior in s is maintained. 

The presence of the left t cut in R 1 (t,s) may come as a slight 

surprise. But it can be readily understood in the following way. We may 

rewrite R 1 (£,t) as 

2 £ t 2 so ( so+t 2)]1/2 (<lt ) b(t) 4' - m + 2 + s0 ~ - m R I(£_. t) - _.;....... ___ ,b..;.. ___ ...;;;;.__~..,.;._-,.;._ __ =-..--~. __ _ (15) 

£ - a(t) 

From Eq_. (15 ), R 1 is seen to have 

including the left cut which starts at t = 

·a~G).:t:r<e:c:.tl~,: bl..c>_ca;Jtedc.c ];lar-tii.:al.i.;V1B,,"V<e cuts, 

2 
=s0 + 4m If R 1 were the 

exact partial-wave amplitude, then the left t cut would be canceled in doing 

the partial-wave sum. Since R1 is only one piece of the correct partial-

wave amplitude, there is no reason to expect the left cut to cancel in the sum. 

Although Eq_. (8) a(:) it stands can only be defined for Re a< 0, we 

can define it for all values of a by analytic continuation. In particular, 

we can utilize the fact that11 



5 

00 xa(t)dx 
Q-1-a(t)(z) = J 

2 
1/2 

s (1 - 2xz + x ) 

1/2 
, ~s = z + (z2 

- 1) 

to write 

R'(t,s) = [2a(t) + 1] f3(t) Q-l-a(t)(z)- [2a(t) + 1] f3(t) 

X 

so 
f 

s 2 1/2 
(1 - 2xz f x ) 

+ R
1 

( t, s) , 

UGRL-10700 

' 
(16) 

(17) 

which is defined for all ~ues of a • In the neighborhood of a ~ integer, 

we notice that 

. -~P~(t)(-z) 
Q ( )(z) ~ _ ~ cos~ at ( ) ~- _ 
-1-a t sin~ at Pa(t) z -+ sin ~ a(t) ' 

so R' looks like R near a = integer , and has the correct residue. 

By transforming variables, we can write E~. (17) in a somewhat more 

convenient form, 

R'(t, s) = [2a(t) + 1] b(t) (~2)a(t)Q-l-a(t)(l + ~)+ [2a(t) ~ 1] b{t) 
. 2~ 

s ds' 
X f .. • 1/2 

s [ s' 2~ o: s'C4+ ~ 1 

s' -+ 2 . 
, 2 1/2} a(t)+~ 

[s'( ~+ ~ )] . 
· + R

1 
(t, s) 

(s' ~ s)l/2 

To summarize, we have found a modified formula for a single Regge 

pole in the t channel; that has the correct analyticity and asymptotic be-

havior in s , produces resonances and bound states in the t channel with 

correct residues, and - if Chew's suggestion10 is incorporated - does not 

(18) 

(19) 
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violate unitarity in the s channel. Such a form fo~ a Regge pole term ap-
' 

pears to have application in dynamical calculations (see, in particular, 

reference 12) and perhaps in semiphenomenological studies as we11. 13 
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