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ABSTRACT 

In this study the oscillating-jet technique, which has been used 

for some time to measure both the static and dynamic surface tension 

between a gas and a liquid, has been extended to the measurement of the. 

interfacial tension between two immiscible liquids. The one previous 

study done on liquid-liquid systems was entirely experimental and em

pirical. In the present application, both a theory and new experimental 

techniques have been developed. This work was undertaken in order to 

obtain a method of studying interfacial concentrations in liquid -liquid 

systems undergoing mass transfer; progress has been made toward 

this goal, and recommendations are made for the next phase of this 

project. 

The mathematical derivation given here is an extep.sion of 

Bohr 1 s theory for the gas -liquid case. However, since this theoretical 

treatment required as its input the velocity profile of the oscillating jet, 

an average profile has been solved for in the case of a circular liquid

liquid jet, as a second theoretical problem. The extension of Bohr 1 s 

mathematics with the incorporated velocity profile gives a mathemati

cal expression that calculates the interfacial tension to within 25% of 

the actual value in most cases; a large part of the observed deviation is 

believed to be experimental. 

Data have been taken on immiscible -liquid pairs whose inter

facial tension ranges from 6 to 42 dyn/ em. Experimental techniques 

are described for preparing the elliptical nozzles, illuminating the jet 

properly, and measuring the wavelength of oscillation. It has been 

found that the best methods for preparing nozzles for liquid-gas systems 
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do not give the best nozzles for liquid-liquid systems. The lighting and 

measuring techniques are different from those used in liquid-gas 

systems, because of the different range o£ refractive -index ratio 1n two

liquid systems. 

' 
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I. INTRODUCTION 

When a jet of liquid is forced through an elliptical orifice under 

a constant pressure, a standing wave is formed by the oscillations of the 

issuing stream about its equilibrium cylindrical form. The standing

wave pattern formed by the stream is the basis for an experimental 

method of obtaining the surface tension between a liquid and a gas, or 

the interfacial tension between two immiscible liquids. 

The ultimate aim of the project is to study interfacial concen

tration while mass transfer is occurring. This will be possible because 

as a solute is transferred to the interface -and through it-the inter

facial tension will change; this change can be followed by the change in 

wavelength of the jet. The concentration is related to the interfacial 

tension by the Gibbs adsorption isotherm. 

A jet is particularly suitable for mass -transfer studies because 

its area and residence time can be determined accurately. Also, it can 

be caught at a variable distance from the nozzle, and analyzed chemi

cally to give the mass -transfer rate as a function of length. Knowledge 

of how the interfacial concentration varies during mass transfer between 

two liquids should give a clearer understanding of the fundamental 

processes involved. 

Before the ultimate aim can be realized it is necessary to adapt 

the oscillating-jet method to liquid-liquid systems. In the pre sent work, 

we have developed the necessary mathematical framework and have 

studied the experimental techniques. The liquid-liquid jet is not yet at 

a stage where it can be used to determine mass-transfer behavior; how

ever, a promising start has been made toward this goal. 

The oscillating-jet phenomenon was reported independently by 

Bidone 
7 

in 1854 and Magnus 24 in 1855, but neither of them identified it 

with the surface tension of the liquids used. 

In 1879 Lord Rayleigh28 gave the first mathematical treatment 

in which the oscillations were correctly attributed to the surface -tension 

forces. When interpreted by the mathematical treatment he had 

developed, the measurements showed that the surface -tension values of 
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soap solutions were very near that of pure water for surface ages less 

than 0. 001 sec (measured from the time the jet leaves the orifice). 

Bohr 9 and Pedersen2 7 in 1908 improved the experimental pro

cedure. Both men also developed the mathematics further in order to 

be able to interpret their experiments more accurately .. Bohr gave a 

fairly complete hydrodynamical treatment of the problem, which was 

more realistic than Pedersen 1 s treatment. Bohr related the surface 

tension to the wavelength of the oscillations, the .linear velocity, the 

maximum and minimum diameters of the stream, and the density and 

viscosity of the liquid. His main objective was a very accurate value 

for the surface tension of water with a freshly formed surface. He did 

not investigate any "dynamic" systems, in which the surface tension 

changes with time. 
31 

In 19 20 Stocker developed a very accurate method for 

measuring the wavelength of the oscillations, which involves passing a 

parallel beam of light through the stream perpendicular to its axis. The 

standing waves act as cylindrical converging lenses, which focus the 
\ 

light into a series of parallel lines on a photographic plate. A more 

complete discussion of this method is given in the experimental part of 

this dissertation. 

In 1937 Bond and Puls
10 

used the oscillating jet to check re

sults obtained with their flowing-sheet method for the dynamic surface 

tension of some soap solutions. Their method consists of shooting two 

circular jets at each other, then measuring the diameter of the liquid 

disk formed from the collision. The age of the surface is calculated 

from the time required for the liquid to reach the perimeter of the 

liquid disk. They used the oscillating jet to check only one of their ex

periments; the results from the two methods agreed ~easonably well. 

Between 1943 and 1945 Addisonl-b did a great deal of work on 

adsorption in alcohol-water solutions by using the oscillating jet. 

Avoiding Bohr's mathematics, Addison developed his own empirical re

lations. As part of his study, he undertook to adap~ the oscillating jet 

to immiscible liquid-liquid systems. In such systems Bo~r 's mathe

matical treatment no lange r applied, but Addison was able to 
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interpret his results. by the same empirical method as for liquid-gas 
32 33 . 

systems. From 1950 to 1953 Sutherland ' stud1ed several systems 

with the oscillating jet, with use of Bohr 1 s equations. On systems 

studied by both Sutherland and Addison, their results were noticeably 

different . 

During this same period (1950 to 1953) Burcik 11 - 13 used the 

oscillating jet in a fundamental study of foams and emulsions. He 

determined that one of the important parameters in the stability of 

foams was the rate at which the surface tension changed. He studied 

this rate of change with the oscillating jet, but used Addison 1 s ernpiri

cal approach rather than Bohr 1 s equation. 

I t k 1. ·a. t . . D f d H 1 •16-18 n recen wor on 1qu1 Je s 1n a1r, e ay an ornrne en 

have investigated the question of whether adsorption at the liquid-gas 

interface is controlled by diffusion or by some energy barrier that must 

be crossed to enter the interface. They studied two of the same sys.,. 

terns studied by Sutherland and Addison. Their results agreed with 

Sutherland's, which throws some doubt on Addison's experiments or 

h . . . 1 1 . H d h. k 21 - 23 · d 1s ernp1r1ca re atlons. ansen an 1s co -wor ers, 1ntere ste 

in the same problem as Defay and Hornrnelen, have discussed the de

fects in Bohr's mathematical treatment (for the jet behavior very close 

to the nozzle) and have introduced serniernpirical corrections to it. 

Thomas and Porter36 have recently used a jet to study the effects of 

surface-active agents on hard water. 

At this point it is appropriate to discuss the theory behind the 

oscillations of the jet. The reason it is possible to use this jet to 

measure interfacial tension is that the oscillations are a direct result 

of the interfacial tension. Thermodynamically speaking, the inte rfa

cial tension is the free energy per unit area. As the stream is sues 

from the elliptical orifice in the form of an elliptical cylinder, the 

interfacial free energy is not at a minimum and he?ce the system is not 

in equilibrium. Therefore the stream tends toward the equilibrium 

configuration, which is a circular cylinder; however, the stream over

shoots this equilibrium form, and then oscillates about it. This oscil

lation-when viewed from a point perpendicular to the axis of the 
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stream-gives the standing wave from which the experimental 

measurements are taken. 

It is apparent that very little use of the bscillating jet has been 

made in liquid-liquid systems. ·It is very difficult to pr'event the jet's 

breaking up within a path length too short for measurements to be made, 

Breakup occurs more easily due to the outside liquid's having higher 

viscosity and density than a gas. A second problem is the unavailability 

of suitable mathematical expressions, either empirical or theoretical, 

that would relate the wavelength of the oscillation to the interfacial ten

sion. 
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II. STATEMENT OF THE PROBLEM 

In this dissertation we deal with the problem of determining 

the interfacial tension between two immiscible liquids by using the, 

oscillating-jet technique. Our ultimate objective, not yet reached, is 

one of using the oscillating jet to determine dynamic interfacial concen

tration during liquid-liquid mass transfer. The measurable parameter 

in this method is the wavelength produced by the oscillation. 

The calculational problem is one of finding a suitable relation, 

either analytical or empirical, between wavelength and interfacial ten

sion. The experimental problem is one of obtaining (a) suitable 

nozzles; (b) operating conditions that produce a maximum number of 

nodes in the jet and also a maximum total jet length, and (c) an optical 

assembly to provide high accuracy in measuring the wavelength and the 

minimum and maximum diameters of the jet. Because of the higher 

density, viscosity, and refractive index of the exterior fluid in a liquid

liquid system, both producing the jet and measuring it appear to be 

considerably more difficult than working with a liquid jet in air or other 

gas. 

Thus the pre sent study has been directed entirely toward the 

determination of equilibrium values of the interfacial tension. 
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III. MATHEMATICAL STUDY 

A. Introduction 

Bohr 9 has developed a mathematical treatment for calculating 

the surface tension of a single liquid, using the oscillating -jet technique. 

The objective of this section is to extend his mathematics to liquid

liquid systems. A rigorous attack on this problem, to solve exactly the 

Navier-Stokes equations describing it, is not possible. Hence, we 

must simplify the equations, but not to such an extent that their solution 

will no longer be physically valid. In order to meet this criterion, we 

have split the problem into t:wo parts. 

First, we have solved the Navier-Stokes equations with the 

same lineari~ing assumptions used by Bohr. We have assumed that the 

axial velocity is a constant plus a small perturbation, and that the 

radial and tangential velocities are only small perturbations. We do 

this for both phases since we must obtain a solution in each phase, and 

join them at the interface by using the boundary conditions. The pertur

bation velocities are caused by the oscillations of the jet. The solution 

thus obtained gives a relation between the wavelength and the interfacial 

tension; but it d.oes not take into account the radial profile of the axial 

velocity, or the spreading of the jet. These important parameters are 

corrected for by the rest of the mathematical treatment. 

The second part of the problem consists of a solution for the 

velocity profile in a circular liquid jet issuing into a second immiscible 

liquid. Two different methods have been used to solve the velocity 

problem. The first is an extension of Schlicting 1s solution29 to the 

boundary-layer equations for a jet of liquid issuing into a large volume 

of the same liquid. The extension involves solving the boundary-layer 

equations for an inside liquid, and for an outside immiscible liquid of 

different physical properties, and then matching the solutions at the 

interface of the jet. 

This treatment has some questionable characteristics. A 

solution can be obtained only for a jet issuing from an infinitely small 

orifice, and it is impossible to make the stress continuous at the 



-7-

interface. In this treatment the jet is predicted tp expand continuously 

after leaving the orifice; whereas, experimentally, the cr9ss-sectional 

area of the jet is found first to contract and then to/expand. Because 

of these departures from the physical situation, the solution obtained 

from the boundary -layer approximation with use of Schlicting 1 s ap

proach does not seem adequate. 

A more realistic solution is suggested by the work of Okabe, 26 

who used a method similar to that of von Karman and Polhausen30 for 

obtaining an approximate solution to the boundary-layer equations. His 

solution, again for a liquid jet issuing into the same liquid, has the 

advantage of giving reasonable results at the orifice. In this method, a 

function assumed for the velocity profile contains several arbitrary 

parameters that are solved for by satisfying a set of physical condi

tions. This method should not be confused with the fitting of a function 

to experimental data, because the final velocity profile is determined 

without recourse to an experiment. 

In our case we must fit nine conditions, outlined in Sec. C 

following. The function we have chosen is much simpler than Okabe 's, 

but it satisfies all the necessary conditions and gives a velocity profile 

that appears realistic. 

The next problem that confronts us is how to join the two 

mathematical results, so as to get one. solution that best fits the physi

cal situation. ·As there is no rigorous mathematical way of doing this, 

we resort to physical reasoning. In the oscillating-jet derivation, the 

same (constant) velocity is assumed for both the inside and outside 

phases. This is incorrect in two ways: neither the outside nor the in

side velocity is constant, and the two velocities are equal only at the 

interface. To correct partly for this deficiency in the relation between 

wavelength and interfacial tension, we have replaced the velocity, in 

the terms pertaining to the inside liquid, by the average velocity of the 

jet calculated from the cylindrical-jet velocity profile. Also, the out

side velocity has been replaced by the interfacial velocity calculated 

from the cylindrical velocity profile. It might seem that the inside 

velocity should be replaced by the interfacial velocity also, but-as 



-8-

shown by trial numerical calculations -this does not take irito account 

the total momentum of the jet. 

One other correction allows for the fact that the amplitude of 

oscillation of the jet is not infinitesimally small, as has had to be 

assumed in order to solve the linearized differentii:tl equations. Bohr 9 

·developed this finite -amplitude correction with use of potential theory, 

and we have assumed that is also applicable to liquid-liquid systems. 

The correction is as follows: 

(}" = (}" (1 the or 
37 2) 

+ 24 ( rJrx ) ' ( 1) 

where r =r +r. 
x max m1n 

r. = r - r . 
1 max m1n 

B. Liquid-Liquid Oscillating Jet 

The theory presented here is an extension of Bohr's fluid

dynamic analysis of the oscillating jet, to systems where the exterior 

fluid has appreciable viscosity and density. In this approach we have 

used reasonably simple mathematics, but have still tried to maintain a 

close correspondence to the actual physical situation. 

The assumptions used will be explained at the point where they 

are first introduced, and then will be summarizedat the end of this 

section. The method of attack will be to solve the equations of fluid 

motion (the Navier-Stokes equations), after linearization, in both 

liquid phases, and then to join the solutions at the interface with the 

appropriate boundary conditions. 

The equations of viscous fluic;l motion for incompressible flow, 

in vector form,are 
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grad P 
. 2 -+ = !J.'V w 

div :; = 0 . 

These equaFions must be linearized before they can be solve~. This 

will be done in rectangular coq.rdinate s, and they will then be trans

formed to cylindrical polar coordinates. 

( 2) 

The rectangular coordinates are x, y, and z, and the respec

tive velocities are g, h, and w. We assume that w = c + w, where c 

is constant; and that second-order terms in g, h, and w will be small 

enough to drop. We also assume that the waveform-and therefore the 

velocities -will be sinusoidal; i. e. , of the form 

ibz 
f(x, y) e 

Thus b is the wave number .Zrr/A., with _}.._ the wavelength. 

Navier -Stokes equations, in linearized formll- are then 

e ibcp) l 0 p - -- g = fl 0 X ' 1-L 

(vz i~cp )h = l 0 p 
fl 0 y ' 

The 
' 

( 3) 

(4) 

( 5) r 

It is necessary to solve for the pressure P before the velocities can 

be obtained; P is obtained from the above linearized equations; as is 

more evident from their-vector form; Eq. (2}. We take the divergence 

of Eq. ( l ), and interchange operations where permissible: 

D.--.. 2 ·-p Dt ( d1 v w) + di v ,gra1 P, =. 1-1 'V ( di y w) • 
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Since 
-+ 

div w =' 0, we obtain 

div grad P = 'V
2P = 0 . (6) 

Solution of the linearized momentum relations, Eqs. (3) 

through (5), is much easier if they are made homogeneous.·· To do this 

we use the following transformations: 

1 0 p 
g = gl + cbp ox ' 

h=h + i oP 
1 cbp oy ' 

( 7) 

+ 
i oP 

w = w
1 cbp Oz 

, .. 

The momentum equations thus·become 

(~2 ~) f.1 gl = 0 ' ( 8) 

(~2 ibcp) h = 0, 
f.1 1 

(9) 

_ ibcp) w = 0 
f.1 1 ' 

( 1 0) 

and the equation of continuity, Eq. ( 2 ), remains: 

0 . ( 11) 

Now we transform to cylindrical polar coordinates r, 8, and 

z by the following transformations: 

X = r COS fJ , y = r sin 0 , ( 12) 
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h = v sin e + u cos e ' 

0 
ay 

=cos 

= sin 
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g 1 = v 1 cos e - u1 sin e ' 

'() ea r 
sine 

r 
0 

a e • 

e a + cos e a 
or r ae. 

( 13) 

(14) 

A further transformation makes the momentum equations in cylindrical 

coordinates homogeneous in the same manner as fo:r rectangular co

ordinates: 

( 15) 
i 1 0 p 

u = cbp r IT + ul 

The equations of motion (linearized and homogeneous), in cylindrical 

polar coordinates, as obtained by Bohr, are 

ibcp) v 
fJ. 1 

ibcp) w = 0 
fJ. 1 

( 16) 

( 1 7) 

( 18) 

(19) 
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In the following we assume (with Bohr) that u
1

, v
1

, 

P are all of the form 

00 I f(r)einB+ibz . 

n=O 

and 

This is actually a Fourier (trigonometric) expansion of the velocities 

and pressure. However, we need only the term for n = 2 because 

this corresponds to the type of perturbation we have imposed on the 

stream; i.e. , we have forced the liquid through an elliptical opening. 

In ot~er words, we use the ter:in that corresponds to an n.:.fold (in this 

case, 2 -fold) axis of symmetry for the jet. ··The periodicity in the 

z ·direction matches the assumption already made. 

The order of solution will be to solve first for P and then w
1

. 

Next we solve the radial-momentum and continuity equations for v 
1

; 

and finally we integrate the continuity equation to obtain the function for 

ul. 

With P in the above form, the pressure equation is 

. \l2P 

This is a form of Bessel's equation, which has the solution 

The complete solution is 

inB+ibz 
e 

( 2 0) 

( 21) 

( 22) 

The momentum 'equation for. the: z direction; Eq. ( 18), can be written 

in the same general form as the pressure equation: 
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with d (an indirect measure of the wavelength) defined as: 

The solution, with the same form as for P, is 

in8+ibz 
e ' 

From the continuity and the radial-momentum relations, 

Eqs. (19) and (16), we get 

which can be rewritten as 

{,
2 

- i~~cp) (rv
1

) = "b [ (d ) B K (d )] \v ' -21 B lIn r + 2 n r 
in8+ibz 

e 

( 2 3) 

(24) 

(25) 

( 26) 

( 2 7) 

The above equation contains a nonhomogeneous part, which requires 

introduction of the following operator identity: 

(..,2 i bcp) ( a ) _ / a \ {,. 2 i bcp ) + 2 a 2 
+ 2 a + 2 a 

2 

\'' - fJ. \r a r - \r a r) \v - -fJ.- a r2 r a r ~ a 82 

( 28) 

If we perform the indicated operatlons upon 

ru r ( .-1 1 _,_ -o K ( r1-..)J ,)n8+ibz l_ul Ln .._._r, , .L.'2 n ~~ ~ ' 
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we get 

=2(b2 + ibcpJ (B I {drr+B K (dr)'\ein8+ibz. (29) \ ~ J \ 1 n '·, 2 n ') 

Except for a constant multiplier, the right-hand side of Eq. (29) is the 

nonhomogeneous part of the solution of Eq. ( 2 7), which we designate as 

{v 1 )nh 

in8+ibz 
e 

The homogeneous part of the solution of Eq, ( 2 7) is 

Combining these we obtain 

in8+ibz 
e 

( 30) 

( 31) 

in8+ibz 
e 

( 32) 

Having obtained this solution for v 
1

, we can use it in solving 

for u
1

• The continuity equation, (19), integrates to 

- u = rf(owl + vl + ~vl)de. (33) 
l o z r o .r 

Substitution from Eqs. (25) and {32), and integration over 8, give 

:,.: 



-15-

ib 1 . 
(B

1
I 1(dr)·t B

2
K Hdr)] t- [C

1
J '(dr) t c

2
. K '(dr)] 

- rd2 n . . · n r n . n 

_ ib [B I ;n(dr) + B K "{dr)]\jeinOtibzdfJ. 
d2 1 n 2 n J. 

( 34) 

From the propertie·s of the Bessel functions, we have 

(35) 

. ( 2 ) K ';.(a.) + ~ K 1
1(a.) - K (a.) n

2 
t d 2 

:;;! 0 • 
n: r n n . 

r 

These relations §implify the preceding integral to the solution form 

(36) 

In the liquid-liquid Jet we need a solution for both the inside 

and the outside fluid •. It is possible to adapt the above solutions for the 

velocities to this situation, by noting that the velocity must be finite at 

r -+ 0 and r -+ oo •. Therefore, for the inside fluid, the coefficients of 

the modified B.essel functions of the second kind (K , K 1) must be zero; 
n n 

and, for the outside, the coefficients of the modified Bessel functions of 

the first kind (I , I ·1 ) must be zero. 
n n . 

.. For. the inside fluid, we get 

+ + [B I (d ) Al I
2

(br)) ein8tibz , w. = c w. = c 
1 2 

. r -
1 1 1 cp i · 

( 3 7) . 
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vi = [~1 Iz(dir) - ~bz Bl rz:(dlr)+ c~i Al Iz,'(br)] einB+ibz ' ( 38) 

iC 
-[ l I F(d ) ui- -2- 2~': ir + 

1 

2bB 1 . 
--I (d.r)'-

2 2 1 
rd. 

1 

For the exterior fluid, also, we have 

v 
e 

u 
e 

= ~ K 1 (d r) + 2b B K (d r) [

·c , 

2 --z 1 e rd 2 2 2 e 
e 

l. Boundary Conditions 

_2_. _!_,A I (br)J ein8+ibz . (39) 
cbp. r l 2. 

1 

+ 1 A2K2~(br)]ein8tibz,.(41) 
bcp 

e 

2 
- cbp 

e 
~ AZKZ(br)] einB+ibz. 

-.- ( 4 2) 

In obtaining the preceding velocity equations, we have used six 

of the available boundary conditions. However, the velocity equations 

contain six additional arbitrary constants which must be solved for with 

six additional boundary conditions. Stated in words, these boundary con

ditions are: The three velocities must be continuous at the interface; 

and the normal, tangential, and axial stresses must be continuous at the 

interface. These conditions may be ·written mathematically as follows: 

.l. r = a, w. = w 
1 e 

2. r = a, v. - v 
1 e 

3. r = a, u. = u 
1 e 

8v 8v. 

f _l \ 4. -P e -:P: 2i/. 
•1 

+ + r = a, + 2fJ = + ar a-e e 8r 1 1 Rl R2 )' 
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cw av) ew av-y 5. f.Le are + e 1 1 
r =a, az- = f.Li ar + az- · 

u. e e · 1 1 6. r =a, ~.~a:· u 1 av~ cu -r + r- --ae = f.Li ar - 1 av.~ + r r-ae· 

In condition 4, u is the interfacial tension, and R
1 

and R
2 

are the 

principle radii of curvature of the surface. We must find relations for 

R
1 

and R
2 

in terms of our velocities and coordinate system. 

2. Radii of Curvature of the Interface 

We assume an equation for the surface of the form 

in8tibz 
r-a=t;=Qe ( 43) 

with n = 2, as explained previously. The general surface condition, 

which states that the jet is bounded by its surface, gives 

0 . 

If we neglect second-order terms in velocity, as has been done pre

viously, we have 

v - c as = 0 . az 

Then 

s i 
= - cb 

v. 
1 

It is now possible to determine R
1 

and R
2 

in terms of vi, from 

Eq. (46): 

(44) 

(45) 

(46) 

( 4 7) 
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1 ( i ) 2 2 =a-vi - 2- ... (3+b a),. 
a cb · 

( 48) 

This expression will be used in the normal-stress boundary condition, 

3. The Expression for (}' 

If we now substitute the proper quantities, obtained from the 

velocity relations, into the boundary conditions, we obtain six equations 

in six unknowns, The unknowns are the six arbitrary constant~ A
1

, 

A
2

, B
1

, B
2

, C
1

, and c
2

. The six equations are: 

c
1 

c 
-· I (d.a) - _£ K (d a) -
a 2 1 a 2 e 

ibB
1 

-2- r2q d. a) + 
d. ' 1 

1 

+ 
iA

1 
I
2
' ( ba) 

iA
2 

K
2
\ ( ba) 0 ' (50) - = cbp .a cbp a 

'1 ' e 

iC l 
I
2

1 (dia) 
iC

2 
2bB

1 
2bB

2 
-2- - -2- K2' (de a) + --2- I2(dia) - ad 2 K2(dea) 

ad. 
1 e 

(51) 

+ B [O'Lib I '(d ) 
1 2 2 7 i a . d. 

1 

I 
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· (2f.l j[1 ~ C1 { ·-~· , I2 ~ } tC
2 

_e -K
2
(d a) -K

2
',(d a) +-· 2fi. I

2
'(d.a) --(d.a) - o"LI

2
(d.a) = 0, 

a, a e e .a . 1 . . . . 1 a. ; 1. . . 1 

(52) 

~· K (d a) = 0 "b J 
a 2 e 

( 
41J. )[K2(ba) ~ (4fi b)~ · K 2(d a) J - A e - K ' ( ba) - B __ e- K • ( d a) - e 

2 cbp a a 2 1 d 2 2 e a · e a 
e 

[

K '(d a) K 2:(dea) 2K2(dea)J _ 
- C (i11 ) ·· 2 e - 0 

2 'e 2 2a + 2 - ' 
a 

L = i(3 + a
2

b
2

' 

a
2

cb 

(53) 

(54) 

The equations are cumbersome; as they would be extremely 

difficult to solve by hand, they have been evaluated instead on an IBM 

7090 comput~r. The equatiqns arehomogeneous and therefore have 

the property that the determinant of the coefficients of the arbitrary 

constants must be zero for a nontrivial solution to exist. We have no 
5> 

real interest in the arbitrary constants themselves; but are interested 

only in a relation between the interfacial tension and the wavelength of 

oscillation. The above -mentioned determinant furnishes this relation. 
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A dummy determinant is used here to describe the method 

used to obtain the interfacial tension. The quantities x .. , represent 
lJ 

terms containing the densities and viscosities of the two fluids plus the 

dimensions of the jet. 

xll xl2 xl3 xl4 xl5 xl6 

x21 x22 x23 x24 x25 x26 

x31 x32 x33 x34 x35 x36 

= 0 
x41 +oKl x42 x43 + aK2 x44 x45 + aK3 x46 

x51 x52 x53 x54 x55 x56 

x61 x62 x63 x64 x65 x66 

(55) 

This determinant may be separated into two determinants in the follow-

ing manner: 

xl'l xl2 xl3 

x21 x22 x23 

x31 x32 x33 

[xl=l···6 + a 

j = 1··. 6 Kl 0 K2 

x51 x52 x53 

x6i · x62 .X63 

If we designate the first determinant; 'D, 

D 
a·= - ;; . 

xl4 xl5 xi6l 
x24 x25 x26 

x34 x35 x36 

= 0 
0 K3 0 

x54 x55 x56 

x64 x65 x66 

(56) 

aild the second t;.; then 

(57) 

I 
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This equation was solved numerically on the computer. The method 

used was a standard Gauss -reduction method. The actual program 

used, which is written in Fortran language, is included in Appendix .B . 

Thus the solution is obtained in the implicit functional form, 

fn. (a, c, a, b, p 0' f.lo, p , f.l ) = 0, 
1 1 e e 

with b.=2rr/f..., When these terms are assembled into dimensionless 

groups, and solved explicitly for CT, we have 

P e. f.le )· 
p 0, f.l 0 

1 1 

This can be interpreted to read that the reciprocal of the Weber number 

is a function of the inside Reynolds number, the dimensionless wave 

number, the density ratio, and the viscosity ratio. To show the nature 

of the exact relations given by Eqs. (55) through (57), we have evaluated 

the reciprocal Weber number in terms of the other dimensionless 

groups, by using three separate numerical values each for Reynolds 

number and wave number, and five pairs of values for density ratio and 

viscosity ratio. The results are shown in Figs. l through 5. These 

figures can be used for interpolation,withless accuracybutalsomuchless 

effort than is involved in solving the six-by-six determinant. The am

plitude correction, Eq. ( 1 ), is not included in the dimensionless plots, 

and must be used to correct the value taken from the plots. 

For very rough approximations, i.e., to obtain values within 

50 o/o or so of the correct calculated values, we have developed the fol

lowing equation: 

(
2rra0 )1. 6 7 (P e \ 

= 0.·114 -f...- pi+ 1. 18). (58) 
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This expression was obtained with use of a viscosity ratio of 1. 0, and 

should be used only when a "general-neighborhood" value is desired. 

4. Summary of Assumptions 

The assumptions made in linearizing the Navier-Stokes equa,.. 

tions were similar to those made by Stokes for solution of the creeping

flow problem. The difference is that we assumed the axial velocity had 

an added constant. Physically, this means that the axial velocity is 

assumed to be a plug -type profile on which we impose a small pertur

bation. This is not the type of profile actually encountered in the ex

periments. For this reason the next section develops a correction for 

the velocity variation of the.profile. 

The assumption made about the type of wave pattern encoun

tered, i.e. sinusoidal, should be very good. Pictures of experimental 

jets have shown that the oscillation can be approximated very well by 

this assumption. 

The final important assumption was made in solving the deter

minants to obtain the interfacial tension. The quantity b is actually of 

the form 

b = b
0 

+ i e 

Here b
0 

= 2rr/'A and e is the damping factor on the oscillations. We 

have had to assume that b = 2rr/'A, which would be true if e is very 

small. This assumption must be made because our final answer is not 

explicit in b; i.e., at the conclusion of the calculation, we cannot 

separate b into its real and imaginary parts. In fact we must begin 

the calculation with a value of b in order to obtain the interfacial ten-

sion. 

The assumption that e is small compared with b
0 

is physi

cally inexact, but in most cases probably not a large source of 

numerical error. In the case solved by Bohr, 'it was possible to find e 

and it was indeed much smaller than b
0

. Since we could not separate b 
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into its real and imaginary parts, the interfacial tension calculated had 

a small imaginary part which we disregarded, 

C, Velocity Profile of a Cylindrical 

Immiscible Liquid -Liquid Jet 

The preceding section led to a mathematical relation between 

the wavelength and the interfacial tension for an oscillating jet" To ob

tain this relation, we assumed that the velocity in the axial direction 

had a constant profile, realizing that this is not a good assumption. In 

this section we derive an axial velocity profile (in two different ways), 

and use the result to correct the relation between interfacial tension 

and wavelength, 

1, Schlicting :- Type Solution 

The Navier-Stokes equations for an incompressible fluid under 

boundary -layer type approximations, for the case of an axially sym

metric jet, reduce to the following: 

OW 
w 

oz 
+ v 

ow 
a r 

ow 
ar-

OW+ v av + = 0' 
a z- r 

+ a-~ , 2-) 
a r 

(59) 

where v = f.!/p , It is possible to make these equations dimensionless 

by dividing the length terms by a
0

, the radius of the orifice, and the 

velocities by w
0

, the average velocity in the orifice, We thus obtain 

r 
r = a' z = 

0 
and 

v 
v = 

The boundary-layer equations may now be written 
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ow + v 
ow v 1 OW + o

2
w 

w 0 z fi = --2 ' aowo r o r or 
( 60) 

ow + v + ov 
0 ' 0 z or = r 

( 61) 

Schlicting29 has solved this case, when both the jet liquid and 

the exterior liquid are the same or have the same densities and vis

cosities, by using the following transformations: 

X 
<!> = R h(1'J), ( 62) 

Here <P is the stream function, 11 is a 11 similarity 11 variable, and R 

is the Reynolds number a
0

w
0
/v. To obtain the preceding form of the 

boundary-layer equations, the pressure in the z direction is assumed 

constant; hence, the total momentum in the z direction is constant at 

all points downstream. The momentum balance may be written 

2rr 
2 

p w rdr = constant . ( 6 3) 

Use of this similarity -variable treatment makes the velocity infinite at 

the orifice, with the orifice being infinitesimally small in order that 

the mass flow rate and momentum remain finite. To make the solution 

physically usable, it must be truncated at a value of x greater than 

zero. As an arbitrary but probably optimum choice, truncation is 

made where the radius of the jet is a
0

. 

Since there are two regions physically, corresponding to the 

two different liquids, the equations must be solved in both regions and 

joined at the interface by appropriate boundary conditions. The veloci

ties in terms of the stream function q,, for either phase, are 

w= 1 0 <I> 

r 8 r' 
v - - 1 0 <I> 

r- a z, • (64) 
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The transformed equation is thus 

_! (h" - h' + hh') = 0 . 
dT"j \ Tl Tl 

(65) 

This third-order nonlinear differential equation requires six boundary 

conditions to give a solution for both the interior and exterior phases. 

The following boundary conditions are used: 

l. r = 0: aw./8r = 0 
1 

2. r = 0: v. = 0 , 
1 

3. r = a: w. = w 
1 e 

4. r = a: v. = v • 1 e 

5. r _,. oo: vi 
_,. 0 , 

e 

6. Constant momentun;~ 
from Eq. ( 63) : 

00 

f 2 w rdr = constant. 
e 

a 

We first apply Eq. (65) to the interior phase: 

d h'. 
dYj 1 

h'. 
1 + 

Tl 

h.h1• 
1 1 

Tl 

This may be integrated once to give 

h'! 
1 

h'. 
1 + 

Tl 

h.h'. 
1 1 

= 0 . 

Frorn boundary conditions 1 and Z, both h and h' are zero at 

( 66) 

( 6 7) 
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11 = 0. Expansion of the equation in a 'l'aylor 1 s series. about 11 = 0 

gives C 
1 

= 0. Equation ( 6 7) can be integrated again to give 

, h'. - 2h. + 
1 1 

h.2 
1 

2 
( 68) 

The constant c
2 

is also zero, since the velocity must remain finite 

for 11 = 0. 

For the outside liquid, Eq. ( 65) can be integrated again to 

give: 

The constant C 
3 

h" 
e 

h' 
e + , h h' 

e e 

must be zero because h" , h' , and h 
e e e 

main finite as 11-. oo. Integrating a second time, we get 

,h' - 2h + 
e e 

h 2 
e 
2 

=C 
4 

(69) 

all must re-

( 70) 

The derived differential equations are still nonlinear, but 

first-order, and are forms of the Riccati equation. They are reduced 

to linear equations by the transformation 

The inside equation becomes 

= 2, dy h yd,· 

Y" - y' = 0 . , 

( 71) 

(72) 

This is solved by two quadrature s, and then is transformed by Eq. ( 71) 

back to 

h. = 
1 

( 73) 
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Thet'oU:tside ..:fluid. equation transforms, by Eq. ( 71 L to 

0 . (74) 

This corresponds to the Euler equation; integration, .followed by back

transformation, yields 

where 

In terms of the original variables, the velocities become, 

inside: 

and outside: 

w. = 
1 

v. = 
1 

8 Az
3 

2 2 4 r(Az - r R.) 
1 

(75) 

( 76) 

( 7 7) 

( 78) 

(79) 

JJ 
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1-B(v:ry 
l+B(~fy 

( 79a} 

There are still three constants to be determined, and three boundary 

conditions remain: 

l. At r = a: w. = w . That is, 
1 e 

2. At r = a: v. = v or 
1 e ' 

2 2 
4a( Az -a R.} 

1 

3. The momentum balance gives 

a 

2 J wi 
2 

rdr 

0 

00 

+ 2 Pe J w 
2

rdr = 4 
pi e 3 

a 

( 80) 

( 81) 

( 82} 

The constant 4/3 is obtained by assuming that the velocity profile in 

the nozzle fits the parabolic form 1 - r 2 . 

These three conditions are solved for '/ and yL
2

( a}; from 

these, y and B are readily obtained. Thus, from Eqs. ( 80} and 

(81}, we obtain 

2 
y = ( 83} 
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2 2 Ax +a R. 
1 

- 1 . 

The third equation then involves A as the only unknown. 

(84) 

The first integral of the momentum balance may be integrated analyti

cally, but the second must be done numerically. In this study, 

Simpson's rule was used to evaluate the second integral on an IBM 7090 

computer. In most cases a fairly good approximation ofthe momentum 

balance was obtained by integrating the first integral from zero to 

infinity: 

from which we get 

4 = 2 
3 

A= 16 
R. 

1 

rdr, (85) 

( 86) 

However, for two cases studied experimentally, this approximation 

was not good enough. In those cases Eq. ( 85) had to be divided into 

two separate terms as indicated in boundary condition 6. The two 

cases involved (wa.ter-n-heptane and water~isoamyl alcohol) were for 

liquid pairs with viscosities that were very different. 

The jet radius can also be calculated, as a function of z, 

from the material balance: 

( 8 7) 
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2 
a = 
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Az 2 

8z- R. 
1 

( 88) 

In fact the jet begins for a = 1; i.e., this is the point where we wish 

to truncate the solution. Solving for z at this point, we get 

8 ± -v 64 - 4ARi 
z = 0 2A 

Then, since A= 16/R., 
1 

we obtain 

R. 
1 zo = 4. (89) 

2. Exponential Method 

For immipcible liquid-liquid jets, the Schlicting method ap

pears deficient in two aspects. First, the continuous-stress criterion 

cannot be satisfied at the interface between the two liquids. Second, as 

observed experimentally, the jet decreases in area for a distance after 

leaving the orifice, before it begins to expand; whereas the Schlicting

type solution, which gives a continuously expanding jet, only applies 

beyond the point where the jet has reached its minimum cross

sectional area. 

It appeared that these objections could be overcome, at least 

partly, by assuming an equation for the velocity distribution and then 

making it fit certain conditions. The empirical forms of velocity pro

file chosen for the jet and for the outside phase are 

w. 
1 

-mz/R. 
. 1 

=A e 
2 -Br , 

e 

w 
e 

B l 2 
=A' e- r 

( 90) 

(91) 
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Here A must have a value near 2. 0, by comparison with a parabolic 

velocity profile. The nine required conditions are: 

ow. 
1. 0: 1 

== 0 r == --sr ' 

ow. 
ii (~ 

ow. a 2wi) . 
2. 0: 1 1 

+ r == w. 8Z == --sr 1 2 ' or 

3. r == a: w. == w 
1 e 

ow. ow 
4. 1 e 

r == a: fl· == fle 1 or or 

(neglecting the divergence of the jet shape), 

5. Mass balance, as in Eq. ('87), 

6. Momentum balance, as in Eq. (82), 

7. r __,. oo: w __,. 0 
e ' 

8. z __,. 0 : 

9. z __,. 0 : 

Several of these conditions are satisfied automatically, due to the 

choice of function for the profile. Conditions 2 through· 6 remain, to 

determine the parameters m, B, A' 
' 

B' 
' 

equations and five unknowns. These are: 

2a. 

3a. 

m 
2 

-mz/R. 
1 

e - B, 

-mz/R. 2 
Ae le-Ba B' 2 

== A' e- a 

and a; thus we have five 

~ 
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-mz/R. 
2 

Ae 1 ( 1 -Ba 
5a. 1 = - e ) 

B 

-2mz/R. 
2 Pe AA'2 2 

4 Ae 
1 

-2Ba -2B'a 
6a. = ( 1 - e ) + 4B' 

e 
3 B P· 1 

From these five equations, we find that m must satisfy the following 

equation: 

( 92) 

with 

a. = ( 9 3) 

Based on an assumed value of A (e. g., A= 2), Eq. (92) can 

be solved numerically for m as a function of a. and z/R., 
1 

with the 

aid of a computer. Alternatively, an explicit solution can be obtained 

for z/R., and this can be plotted as in Fig. 6. After m is calcu-
1 

lated, the other four parameters are solvec). for explicitly, as follows: 

A' 

2 a 

B=m 
2 

-mz/R. 
1 

e 

B' = (f-1/f-le)B , 

-mz/R. -a2(B-B') 
=A e 

1 
e ' 

mz/R. 
-ln[l- (B/A)e 

1
] 

= 
B 

(94) 

( 95) 

( 96) 

( 97) 
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Fig. 6. Center-line velocity parameter as a function of jet 
length and density -viscosity product ratio. 
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In the present study, A = 2 has been used throughout, This is rela

tively precise at a = 1. For ·a values greatly different from l, a 

somewhat better fit to the mass balance would be given by using the 

relation A= (7/4) + Sa/(40. + 16) .. The basic problem is that Eqs. (90) 

and (91) do not describe the jet exactly at the nozzle (z = 0), even 

though they give a much better fit there than Eq. (62). 

The behavior of these equations at a = 0, corre spending to a 

liquid jet in air, is of interest for reference. Equation (92) then 

simplifies to: 

z = ln [3(4A- m)/8A] 
~ 

( 98} 
m 

1 

At z = 0, then, m = 4A/3. At large z, 

constant value of ln 1. 5 ( = 0. 406 ). 

mz/R. approaches the 
1 

In the preceding analysis we have treated m as a constant. 

Strictly speaking this is not correct, but it is a good approximation. A 

rigorous mathematical treatment would be handled in the following 

manner. Let the velocity profiles, replacing Eqs. (90) and (91), be 

given by 

-Br 2 
w. = 2F

1
(z) e 

1 
(99) 

F 
2 

(z} -B'r
2 

w = e 
e 

( 1 00} 

After introducing all of the required conditions, we would obtain the 

following equation for F 
1 

( z}: 

1 
3 - - ( 101) 

F 
1
'(z} = ( 102) 
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This equation is nonlinear, and would have to be solved-numerically. 

This did not seem necessary, since we could obtain a good approxima

tion by setting 

-mz/R. 
1 = e ( 103) 

as w,as done in Eqs. (90).and (91). Th~ approximation enteri? into con

dition 2. T.he exact form is 

1 -mz/Ri 
2 e 

and the term that has been neglected is 

dm 
z dz . 

This term does not become appreciable until z reaches a value larger 

than 100. In the present experiments, such high values of z are 

never involved, hence the approximation used here is adequate. 

As already shown, m can be plotted as a function of z, 

R. ( = c a
0 

p./f-1.), and a(= p fl. /p. f-L.). By use of Eqs. (94) through 
1 11 ee 11 

(97), B isfoundfrom m, z, and R.; and a from 
1 

B, m, z, and 

R.. Through m, 
1 

then, the inside -phase parameters B and a are 

each a function only of z/R. 
1 

and of a; these relations (based on 

A = 2) are shown in Figs. 7 and 8. If the outside profile is desired, 

B' is calculated from B, f-Li' 

parameters, by Eq. (96). 

and '' ; and A' from the other 'e. 

Figure 9 is a graph of jet radius, interface velocity, and 

center -line velocity, as functions of z for a typical system. Like 

Fig. 8 this gives a somewhat pictorial -representation of the change in 

diameter of the jet. 

Figures 10, 11, and 12 give comparisons of the Schlichting 

and exponential methods for three different liquid-liquid systems, each 
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Fig. 9. Center-line and interface velocity and jet radius as 
function of jet length (a = 0. 74). 
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Fig. ll. Comparison of exponential and Schlicting -type velocity 
profiles; water into normal heptane; (a) z = 15, (b) z = 40. 
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shown at two values of z. As indicated earlier, the procedure for 

fitting the Schlichting-type result to the true jet is somewhat arbitrary. 

It is possible that a different procedure would cause the Schlichting

method curves to correspond more closely to a true jet (and also, 

probably, to the exponential-method curves). 
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IV. EXPERIMENTAL STUDY 
(j 

A. Apparatus and Measurements 

From the theoretical analysis,' it is seen that the quantities 

that must be measured from an oscillating jet in order to calculate the 

interfacial tension are: the wavelength of the oscillations, the jet flow 

rate, the maximum and minimum diameters of the jet at the place of 

measurement, and the densities and viscosities of the two liquids. 

A schematic diagram of the flow system used to obtain the jet 

measurements is shown in Fig. 13 .. It consists of a feed reservoir 

that provides constant flow, polyethylene tubing with regulatory valves, 

a rotameter, and a jet chamber. A photograph of the jet chamber, 

4X4X 12 in., constructed of lucite acrylic polymer slabs, is shown in 

Fig. 14. The constant,flow reservoir is similar to one used by Defay 

and Hommelen. 16 The valve in the line ahead of the nozzle allows for 

varying the flow rate without moving the reservoir. 

B. Materials 

During an experimental run-in order to avoid any mass

transfer or adsorption-the phases were mutually saturated before the 

start of the run. The liquids that were used in the experiments were 

di-isobutyl ketone ( "DIBK "}, cumene (isopropyl benzene), normal 

heptane, carbon tetrachloride, isoamyl alcohol, and wafer. Water 

was always taken as one phase, and an organic compound as the other. 

The cumene and n-heptane were from Phillips Petroleum Company and 

were technical grade (with less than 5 % impurity, of similar chemical 

nature). The DIBK, from Union Carbide Chemical Corp., also had a 

purity of at least 95 %. The carbon tetrachloride and isoamyl alcohol, 

from Allied Chemical Corp., were 99+% pure. 

C. Physical Properties 

Viscosities were found with an Ostwald viscometer, calibrated 

wiG1 water. Den::>ily rneasurements were 1nade with a pycnorneter, also 
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calibrated with water. The interfacial tension was checked before and 

after each run with a Du Nouy ring tensiometer . This was done to 

make sure no contamination had taken place during the run, and also to 

provide a standard for the oscillating -jet method. The properties of 

the liquids used are given in Table I. 

Table I. Physical properties of liquid used. 

Interfacial tension 
Compound Density Viscosity against water (25°C) 

(g/cm3) ( g/cm-sec) (dyn/cm) 

Water l. 00 0.0091 

Cumene 0. 86 0,0080 35.6 

n-Heptane 0.68 0,0049 42 .. 2 

Carbon tetrachloride l. 59 0. 0091 41.4 

Di - isobutyl ketone 0. 81 0.0086 21. 5 

Isoamyl alcohol 0. 81 0 . 0360 6. l 

D . Optics 

The wavelength and the maximum and minimum diameters of 

the jet were measured photographically. The illumination assembly 

and the camera location are shown in Fig. 15 . 

The method most frequently used to measure wavelength is 

due to Stocker. 31 This method utilizes the fact that the waves will act 

as cylindrical converging l enses when parallel light is passed through 

the stream perpendicular to its axis. The light converges into a series 

of parallel lines, each located at a node of the wave pattern, that may 

be focused on a photographic plate. The distance between two adjacent 

lines is thus the wavelength. 

Stocker's method is convenient and accurate. Howeve i, it can

not be used in most liquid-liquid systems, because the convergence or 

divergence of a lens depends partly on the refractive indexes of the lens 
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and the medium surrounding the lens. In gas -liquid systems the liquid 

always has a substantially higher. index of refraction, and the stream 

will act as a converging lens. In liquid-liquid systems, the jet liquid 

may easily have a lower index of refraction than the exterior liquid, and 

in this case the jet acts as a diverging lens . Even when the jet does 

have a higher refractive index than the outside phase, the difference 1n 

refractive index is small enough so that the focal length of the wave is 

generally too long for practical measurements . 

The method used in the present experiments has an advantage 

over Stocker's method in allowing both wavelength and diameter 

measurements to be made from a single experiment. Its disadvantages 

are that the jet is much more difficult to illuminate properly, and that 

the measurements made on the negative are much less accurate than 

those using Stocker 1 s method. 

One difficulty in obtaining proper illumination of the jet was 

caused by reflections from the inner surfaces of the Lucite walls of the 

containing vessel. To help overcome this problem, the jet was illumi

nated from both sides, so th~:l.t the light on the jet was distributed sym

metrically. In order to remove a part of the reflection, the outside of 

the container was painted a dull black, except for four small windows. 

The inside could not be coated because it would have contaminated the 

system. A photograph of the coated container is shown in Fig . 16. 

The photographs of the jet were taken with a 135-mm Pace

maker Graphic camera, using a Graflex Optar lens fitted with acce s

sory lenses giving a correction of four diopters. The photographic 

plate was generally positioned 10 to 12 in. from the stream, and gave a 

magnification of about 2X. The nozzle, which had accurately known di

mensions, was used to determine the exact magnification ratio; a scale 

factor, calculated from the nozzle for each photograph, was used to ad

just the measured values for the wavelength and diameters. 

The nozzles were calibrated with a Nikon model-3A Optical 

Comparator accurate to 0. 0001 in. The actual wavelength measure

ments from the photographic negative wer e made with a Vanguard Mo

tion Analyzer which was accurate to 0. 001 in. ; wi-th this machine a 
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further magnification of from 2 , 5X to 16X could have been obtained, 

and a ratio of 4X was generally used . The limitation to this method 

lies in the difficulty of determining the exac t maximum or minimum of 

the wave. For this reason the accuracy of the wavelength and diameter 

measurements is only ± 0 . 005 in . (in actual l ength) , which amounts to 

approximately ± 2 to 5 o/o. 
Figure 17 is an example of one of the photographs that was 

measured . This particular photograph is of a jet of water directed in

to di -isobutyl ketone. 

E . Preparation of Nozzles 

One of the more difficult problems encountered when the oscil

lating jet is used is the preparation of the elliptical nozzle . Several 

d 'ff t h d f . h 1 h b dl-6,16-18,21-23 1 eren met o s o prepar1ng t ese nozz es ave een use , 

most of which have been tried in the course of the pre sent work . The 

best -known method for making liquid -gas nozzles , by sagging of glass 

capillaries in a furnace, was found not to be best for liquid-liquid noz

zles. For the latter, the best nozzles could be made by heating glass 

capillary tubing in a flame, drawing it to obtain a taper, pres sing the 

tip between flat graphite plates to form an elliptical cross section, and 

then removing part of the tip. 

It is very important that the nozzl e be broken off squarely after 

it has been pres sed, in order to obtain a very sharp well-defined edge. 

Cutting the nozzle with a glass- saw produces scratches in the rim of 

the opening which will affect the jets adversely . 

Several other methods of making the nozzles were tried . The 

points on stainless- steel hypodermic needles were ground flat and 

pressed into elliptical shapes. Thes e were found unsatisfactory be

cause they frequently split during pressing, or they contained burrs in 

the opening, from the grinding . Among various glass companies con

tacted for possible manufacture of nozzles, m o st would not attempt to 

make them ; one company that did try was not very successful. We also 

tried to form glass around an elliptical mandril , but then had the prob

lem of preparing the mandril, which was n o t solve d adequate l y. 
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In regard to the length of nozzle required, we found that be

cause of the small-diameter tubing being used, the nozzles could be as 

short as 1.5 in. without having problems caused by incompletely de-

vel oped velocity profiles at the nozzle outlet. Many nozzles had to be 

made before even a few acceptable ones could be obtained. Out of 350 

trials, 20 nozzles gave a passable performance, and six were selected 

for more extensive use. The dimensions of thes e final six are given in 

Table II. Figure 18 is a photograph of three of the nozzles. 

Table II. J e t dime nsions . 

Jet No. Max diam Min diam Area 
(em) (em) ( c m2) 

l 0.109 0.061 0.00519 

2 0.100 0.055 0 . 00434 

3 0.108 0.061 0.00517 

4 0.166 0.059 0.00767 

5 0 . 139 0 . 064 0.00703 

6 0.196 0.066 0.0102 

F. Measurements 

A few generalizations should be made h e re about the oscil

lating jets encountered in the present experiments. 

First, as the theory would predict, the wavelength of the jet 

depends very strongly on the velocity and the interfacial tension. 

When the jet velocity was decreased, more waves -which were each 

shorter-became visible. A still further decreas e caused the waves 

to blur and disappear, giving a cylindrical jet with a diameter near 

that of the equivalent diameter of the nozzle. At the maximum 

velocity used, only about one -half wavelength remained visible before 

the jet broke up into droplets. Runs were generally made at or near 

the velocity at which the greatest number of waves was visible, and at one 

or two higher velocities. 
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Second, for three of the jets there was an unexpected and un

wanted variation in the wavelength. Nozzles 4 and 6 gave jets whose 

wavelengths increased steadily with increasing flow rates, in the 

operable range. Nozzle 5 also showed some variation in wavelength be

havior, less pronounced than for nozzles 4 and 6. Thes e three nozzl es 

had the largest cross sections and the greatest eccentricities, and did 

not conform as closely to the required mathematical ellipse as jets l, 

2, and 3. For this reason only one run was made with nozzles 4 and 6; 

nozzle 5 was used more frequently. Any variations in the wavelength 

of jets from nozzles 1, 2, and 3 can probably be attributed to the finite 

distance required to dissipate the nozzle's effects on the velocity pro

file. 

The third generalization is that it is possible to use either the 

more- or less -dense liquid as the jet phase. Two of the systems used 

were run successfully both ways: di -isobutyl ketone - water, and 

cumene - water. Carbon tetrachloride - water and n-heptane - water 

were both tried also, but with poorer results . Isoamyl alcohol as the 

jet liquid was not tried. When the less -dense· liquid is the j e t phase, 

the jet is directed vertically upward. The opposite is true with the 

more -dense liquid as the jet phase. Gravity played no measurable part 

in lengthening or shortening the wavelengths. 

The data are presented in Appendix A. The jet liquid is al

ways named first. Experiment 2, water into cumene, is not presented, 

because it was found that the cumene from one of the containers was 

contaminated with resinous particles. The scale-correction factor in

cludes only the conversions to account for magnifications and put the 

final values into the proper dimensions. The velocity given is the 

mean velocity of the jet as it leaves the nozzle (flow rate divided by 

nozzle cross -sectional area). The first value given in the maximum

diameter column for each experiment is the maximum diameter of the 

nozzle. The wavelengths were measured from minimum to minimum, 

and thus the first half wavelength is not included. 
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V. DISCUSSION 

Table III gives a comparison of the calculated and actual 

values of the interfacial tension for the nine experiments that were 

carried out. The scatter of the calculated value is very often high, and 

off by more than 50o/o in some cases. However , the values in all but 

very few of the 70 or 80 experiments a re within 25 o/o of the correct 

value, which is rnoderately good when the wide range of interfacial ten 

sions used is considered. The results a re somewhat better for those 

experiments (Nos. 3, 4, 5, and 10) in which it was possible to obtain 

four or more waves . These were water into di-·isobutyl ketone, car

bon tetrachloride into water, water into cumene , and water into 

isoamyl alcohol. The last system gave only about 2. 5 waves ; however, 

because of the extremely low interfacial tension, its long wavelength 

gave jets as long as the others , and it could be measured with higher 

accuracy. 

Where . the less dense liquid was used for the jet, it was possi

ble in two systems to obtain fou r wavelengths. These were di-isobutyl 

ketone into water, and cumene into water. In these cases, the jets 

were much more unstable t h an in the reverse cases; that is, more sus

ceptible to breakup by a ·. r andom shock. They were also variable, and 

seemed to give better jets on one day than another. 

Our being able to obtain data from systems where the less

dense liquid was the jet phase constitutes an improvement over the only 

previous work with liquid - liquid systems. In Addison 1s experiments l- 6 

using the less-de nse l iqu id as jet phase, the jets broke up before the 

end of the first node. However, he obtained as many as ten nodes when 

directing CCl
4 

into water., whereas we were able to get only five or six 

in this system. Our inability to get longer jets suggests that the 

scatter in our interfac ial -·tension values is l argely due to our not having 

had good enough nozzles. 

There seems to be a density factor not accounted for by our 

pre sent mathematical treatment. As seen from the data, when the 

more -dense liquid is the jet phase , the calculated v alues are a lways 

too low ; for the r everse case , the values are too high. It is possible 
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Table III . Comparison of actual and calculated values 
of interfacial tension. 

(J (J (J (J 

Run calc. actual Run calc . actual 

1-b 55.5 42.2 6-a 5 . 2 6. l 
c 70. l b 5.5 
d 63. 8 c 4.2 
e 41. 8 d 3.5 
g 45 ·. 0 e 4.6 
h 35. 5 g 4.8 
k 39. l h 7. 2 
l 32. 7 k 10.5 
m 66.0 
n 34.2 7-a 23. 3 21. 5 
0 50. 5 b 37.5 

c 45.8 
3-a 16. 8 21.5 d 19. 3 

b l 7. 5 e 42.5 
c 18. 0 f 37.8 
d l 7. 2 g 25.6 
e 14. 0 h 28.8 
f 13. 7 k 33. 2 
g 18. 1 l 41.5 
h 18 . 0 
l 15. 6 9-a 71. 0 35.6 
k l 7. 7 b 53.0 
m 14. 5 c 27.5 
n 14. 8 d 45.6 

e 40.4 
4-a 36. 5 41.4 f 45.0 

b 49. 2 g 30. 3 
c 50.0 h 40.4 
d 49.5 k 50.8 

5-a 31. 4 41.4 10-a 33.2 35.6 
b 33.4 c 45.2 
d 29.5 b 33.5 
e 39. 1 d 3 0.4 
g 35. 3 e 33. 3 
k 39. 2 f 33. 2 
h 50.5 g 42. 7 

h 45.3 
k 45.5 
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to get a rough correction by plotting the ac tual val u e divided by the cal

culated valu e vs the density ratio. This plot was made in Fig. 19, 

using only what appeared to be our most reliable data, and these data 

do little more than suggest a trend. 

Another very important factor to be conside red is that the noz

zles used do not fit exactly the mathematical form of an ellipse. This 

h 1 d th . . 16 - 1 8 1 d 1 h 1 . as e o er Investigators to cone u e t1.at eac nozz e g1ves a 

wavelength that must be corrected for the nozzle 1 s deviation from an 

ell ips e. D efay and Hommelen used water as a standard to find the cor

rection factor for each jet. The deviation of our nozzles is probably 

larger than that of Defay and Hommelen, because more -eccentric noz

zle s are needed to make visible waves in the liquid -liquid systems. 

Of the four nozzles plotted, three seem to form a family of 

parallel lines. One would expect the lines to be parallel or concurrent 

in one point with the correction factor due to the imperfection of the el

lips e as a parameter that would collapse all of the lines into one line. 

T abl e IV gives several of the best runs with this correction. 

In order to develop this method of rneasuring interfacial ten

sion into a more useful tool, there are four areas in which m .ore work 

is necessary. First, better nozzles are needed. From the present 

work we have se en that at least four waves are necessary for the re

sul ts to be fairly reliable. (When mass transfer is to be measured, a 

larger number yet will be needed.) To i mprove the jets it is necessary 

to find a method of making a nozzle with a more perfect ellipse, but 

still with relatively high eccentricity. The most promising method 

still untried is probably that of making a metal mandril around which 

the nozzle can be formed. One way to make it would be from an e llip

tical die, through which a wire could be drawn to give the desired 

shape . 

Second, it is definitely possible to improve the illumination of 

the jet. This can be done by using lenses to focus the light, along with 

the collimating slits that were used in the present work. The thinner 

the band of light that illuminates the edge of the jet, the more accurate 

the measurements of wavelength and jet diameter will be. Another 

possible improvement would be the building- in of a cylindrical l ens, ln·

side the jet chamber or as part of the charnbe r wall. 
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Table IV. Comparison of corrected values of 
i nte r facia l tension. 

a 
Run Correction a a actual Run Correction a a 

3 - a 1. 2 20.2 2 1. 5 9-a 0 . . 68 48. 0 

b 21. 0 b 36. 0 

c 2 1. 6 c 19 . 0 

d 1. 45 25 . 0 d 0 .8 2 3 7 .4 

e 20 .3 e 33. 2 

f 19. 9 f 36.8 

g 1.2 2 1. 7 g 0 .8 0 24 . 0 

h 21. 6 h 32. 3 

1 1. 45 22 . 6 k 41.4 

k 1.2 21. 3 

m 1. 45 21. 0 lO-a l. 10 36.5 

n 21. 5 c 49.6 

b 36. 8 

6 - a 1.2 6 . 2 6 . l d 1.3 39.5 

b 6. 6 e 42.3 

c 5. 0 f 42.2 

d 1. 4 5 5. l g 1.3 50.0 

e 6. 6 h 50.0 

g 6.9 k 50.0 

h 1. 45 7 . 0 

k 7. 0 

Corrected. 

(J 

a ctua l 

35.6 

3 5 . 6 
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Third, another new phase for experimental investigation 

would be the use of a flowing external phase (instead of a stationary 

one) at a velocity near the mean velotity of the jet fluid. The mathe

matical framework already developed 'would apply equally. well to this 

case. 

Fourth, the mathematical model for oscillation of the jet 

might be made more realistic with respect to axial ~veloCity distribu

tion. This would make the differential equations much more difficult to 

solve, but numerical solution might still be possible. With th'is im

provement, the mathematical model should take into account all 'possi

ble variables, with the exception of nozzle imperfections. 
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VI. CONCLUSIONS ' 

1.. ·A mathematical derivation, .given here makes it pqs sible to 

C<;ilculate interfacial tension froJl1 an,oscillating-jet experiment to with

in 25 to 50 o/o of the correct value. For experiments that we feel are 

most reliable the calculated. v(l.lue is within. 25 o/o. The mathematics is 

divided into two parts,. First, an interfacial-tension. relation. was ob

tai:red, assuming a c.onstant velocity profile, Second, the. velocity pro-
o 

file for a. circular jet was calculated by using two different approxima-

tions .. This s~cond derivation was, used to giye a velocity correction 

for the interfacial-tension relation, 

2. The best nozzles for liquid-liquid systems were made by 

drawing heated capillary glass tubing to obtain a taper and then press

ing the tubing into an elliptical shape. An ellipse is necessary that ha,s 

just enough eccentricity to give visible waves in liquid-liquid systems. 

Too large an eccentricity causes the wavelength of oscillation along the 

jet length to vary. We believe that better nozzles might be made by 

forming the glass around a mandril, made by drawing a metal wire 

through an elliptical die. 

3. The jet can be run with either the more -dense or the less

dense liquid as the jet phase. However, the results were better when 

the more -dense liquid was the jet phase. 

4. The jet illumination can be improved by using lenses, 

plus the collimating slits that were used in the present work, to focus a 

tiny line of light on each edge of the jet. The smaller this line of light 

is, the more accurately the photographs that are taken of the jet can be 

measured. The limit on how fine a line of light may be used depends on 

the speed of the camera used and on the sensitivity of the film. 
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NOMENCLATURE 

Definition 

Arbitrary constants that app_ear in the solutions of vari

ous differential equations. 

Average jet radius 

Ave rage nozzle radius 

Wave number 

Ave rage axial velocity 

Relative wave number defined in Eq. (24). 

d for interior phase 

d for exterior phase 

Determinant, Eq. (56) 

Substantial derivative 

General function to represent pressure or velocity 

Generalized axial variable for circular jet 

x-direction velocity 

Relative velocity, defined by Eq. ( 7) 

y-direction velocity 

Relative velocity, defined by Eq. ( 7) 

Modified stream function 

h for interior liquid 

h for exterior liquid 

Modified Bessel function of first kind 

Represents terms that multiply cr in Eq. (54) 

Modified Bessel function of second kind 

Simplified variable in velocity expression, Eq. ( 79a) 

Arbitrary parameter, Eq. (90) 
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Definition 

Separation constant, Eq. ( 20) 

Pressure 

Radial component of cylindrical coordinates 

Difference in major and minor axes of an ellipse 

Sum of major and minor axes of an ellipse 

Reynolds number, a
0

w
0
/v 

Interior R 

Exterior R 

Principle radii of curvature of a surface 

Components of velocity in cylindrical coordinates 

Relative velocity components, defined in Eq. ( 15) 

Average axial velocity 

Components of rectangular coordinates 

General term of determinant Eq. (56) 

Dummy variable, Eqs. ( 7) through ( 74} 

Greek Letters 

Ratio of density-viscosity products, Eq. (93) 

Arbitrary constant 

Laplacian operator 

Wave -damping coefficient 

Surface furiction, Eq. ( 43) 

Similarity variable 

Component of cylindrical coordinates 

Dynamic viscosity 

Interior viscosity 

Exterior viscosity 

Kinematic viscosity, f.L/p 

Stream function 
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Definition 

Density 

Interior density 

Exterior density 

Interfacial tension 

Axial-velocity perturbation 

Relative perturbation, Eq. ( 7) 
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APPENDIXES 

A. Experimental Data 

Experiment 1 

System: Water- n-Heptane 

Correction Jet Max diam Min diam Wavelength Flowrate Velocity 
Run factor No. (em) (em) (em) (cm3jsec) (em/sec) 

b 0.348 o. 109 0.061 0.995 192 
o. 094 0.055 0.523 
0.088 o. 057 o. 535 

c 0.346 o. 109 0.061 o. 780 150 
0.088 o. 062 0.368 
0.085 0.067 0.358 
o. 081 0.067 0.369 
o. 077 0.069 o. 359 

d 0.332 o. 109 o. 061 0.645 124 
0.083 0.066 o. 2 73 
o. 081 0.068 o. 293 
o. 081 0.070 o. 278 

o. 283 

e o. 325 2 o. 100 o. 055 o. 625 144 
o. 066 0.043 o. 290 
o. 068 0.043 o. 319 
0.067 0.044 o. 319 
o. 067 0.044 o. 322 

g o. 300 o. 100 0.055 0.840 194 
o. 075 0.039 o. 434 
o. 071 o. 042 0.426 

h o. 318 4 o. 166 0.059 0.630 82 
o. 081 o. 073 0.322 
0.083 o. 075 o. 284 

0.081 o. 274 

k o. 330 o. 166 0.059 o. 735 96 
o. 093 o. 073 0.342 
0.088 o. 073 0.352 
0.085 o. 073 0.349 

o. 075 

o. 325 o. 166 0.059 o. 855 111 
o. 096 0.064 0.448 
o. 095 o. 065 0.450 

0.071 

m 0.299 2 0.100 0.055 o. 600 138 
o. 067 0.052 0.229 
o. 063 o. 052 o. 230 

o. 057 

n o. 310 o. 100 o. 055 0.505 116 
o. 070 0.052 o. 292 
o. 069 o. 053 0.303 
0.063 o. 055 o. 318 

o. 056 o. 308 

0 o. 312 o. 100 o. 055 0.935 192 
o. 076 0.050 0.455 
0.073 0.050 0.453 
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Experiment 3 

System: Water- DIBK 

Correction Jet Max diarn Min diarn Wavelength Flowrate Velocity 
Run factor No. (ern) (em) (em) (cm3/sec) ~m/se=J 

a 0. 329 0. 109 0. 061 
0. 080 0.042 0.490 0. 615 119 
o. 075 0. 049 o. 500 
o. 072 0. 054 0.500 

0.056 0.500 

b 0. 330 0. 109 0. 061 
o. 073 0. 047 0. 395 0. 515 99 
o. 073 o. 052 o. 404 
o. 072 0. 053 0.406 
o. 071 o. 055 0.408 

0. 055 0.406 

c o. 341 o. 109 0.061 
0. 087 0. 042 0.624 0. 740 143 
0. 083 0. 048 0.629 
0.076 0.056 0.632 

d 0. 351 0. 100 0.055 
o. 077 0.032 0.538 0.600 138 
o. 077 0.038 0.560 
0.076 0. 046 o. 558 
0. 074 o. 049 0.548 

e o. 344 o. 100 0. 055 
o. 077 0. 035 0.460 0.500 115 
0. 076 0.039 0.465 
0. 076 0.037 0. 458 
0.076 0. 040 o. 452 

0. 041 0.468 

0. 351 0. 100 0.055 
0. 083 0. 031 0. 704 0. 760 175 

g 0. 347 0. 108 0. 061 
o. 086 0. 046 o. 437 0. 530 102 
0. 078 0.054 0.435 
0. 075 0. 058 0.453 
0. 073 0. 061 o. 448 
0. 069 0.064 0.452 

h 0. 343 o. 108 0. 061 
0.086 0. 042 0. 572 0.680 131 
0. 081 0. 049 0.567 
0. 078 o. 05 7 0.574 

0.060 0.576 

0. 35 3 5 0. 139 0.064 
o. 100 0. 049 0.528 0.695 99 
o. 092 o. 056 0.555 
0.086 0.062 0.560 
0. 083 0.066 0.593 

0.069 

k 0. 35 3 0. 108 0. 061 
0. 088 0.044 0. 742 0. 825 159 
0. 083 0. 051 0. 731 
o. 078 0. 05 3 o. 740 

m o. 353 o. 139 o. 064 
o. 083 0.061 o. 335 0.540 77 
0.083 0.061 o. 379 
0.080 0.063 0.417 
0. 079 0.064 0.461 

o. 065 

n 0. 356 0. 139 0.064 
o. 106 0. 050 0. 719 0. 865 123 
o. 099 0. 051 o. 738 
0. 089 0. 058 0. 744 
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Experiment 4 

System: Water -Carbon Tetrachloride 

Correction Jet Max diam Min diam Wavelength Flowrate Velocity 
Run factor. No. (em) (em) (em}· (cm3/sec) (em/sec) 

a 0.434 l O.J09 0.061 
0.072 0.064 0.337 0.530 102 
0,071 0.065 0.346 

0.066 0.322 

b 0.434 o. 109 0.061 
0.082 0.059 0.372 0.630 122 
0.074 0.068 0.385 

c 0.460 3 o. 100 0.061 
0.072 0·. 054 o. 349 0.540 124 
0.068 o. 05 7 0.381 

d 0,448 o. 100 0.061 
0.067 0.060 o. 2 75 0.470 108 
0.067 0.062 0.304 

0.063 
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Experiment 5 

System: Carbon Tetrachloride -Water 

Correction Jet Max diam Min diarn Wavelength Flowrate Velocity 
Run factor No. , (em) (em) (em) (em3/sec) (em/sec) 

a 0.491 6 0. 196 0.066 
0.126 o. 091 o. 43 7 0, 574 56 
o. 121 0.096 0, 478 

o. 104 0.491 

b 0.494 o. 196 0.066 0.499 
0. 135 0.105 o. 498 0.648 64 
o. 129 0.108 0.534 

o. 111 0.593 

d 0.438 1 0.109 0.061 
o. 091 0.052 0.516 0.599 116 
0. 090 0.056 o. 487 
0.087 0.062 0.519 

e o. 438 o. 109 0.061 
0.087 0.065 0.350 0.448 86 
0.086 0,067 0.378 
0.085 0.068 0.360 

0.069 0.364 

g o. 475 3 o. 100 0.061 
0.076 o. 058 0.343 0.418 96 
0.076 0.056 0.373 
0,075 0.059 0.368 

0.062 o. 356 

k 0.464 0.100 0.061 
0.088 0.051 0.441 0.500 115 
0.086 0.053 0.445 
0.085 0.054 0.439 

0.054 

h 0.462 o. 100 0.061 
0.083 0.038 0.505 0.577 133 
0.081 0.047 0.522 

0,508 
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Experiment 6 

System: Water- iso-Amyl Alcohol 

Correction Jet Max diam Min diam Wavelength Flowrate Velocity 
Run factor No. (em) (em) (em) (cm3/sec) (em/sec) 

a 0.424 1 o. 109 0.061 
0.086 0.036 0.800 0.485 94 
0.078 0.052 0.802 

0.063 

b 0.431 o. 109 0.061 
o. 086 0.038 1. 095 o. 600 116 

0.054 1.086 

c 0.433 o. 109 0.061 
o. 087 o. 043 0.620 o. 350 68 
0.076 0.055 0.622 

0.065 0.619 

d 0.363 5 o. 139 0.064 
0.086 0.034 0.677 0.455 65 
0.076 0.049 0.661 
o. 068 o. 05 7 0.665 

e 0.322 o. 139 0.064 
0.079 0.064 0.801 0.615 87 
0.070 0.054 0.806 

g 0.363 0.139 0.064 
o. 087 0.044 0.693 0.520 74 
0.079 0.053 0.683 

0.063 0.697 

h 0.409 2 0.100 0.055 
0.076 0.037 0.634 0.520 120 

0.049 

k 0.418 0.100 0.055 
0.077 0.038 0. 748 0.660 152 
0.069 0.048 0.735 

0.054 



-76-

Experiment 7 

System: DIBK- Water 

Correction Jet Max diain Min diam Wavelength Flowrate Velocity 
Run factor No. (em) (em) (em) (cm3 /sec) (em/sec) 

a 0. 394 l o. 109 0.061 
o. 089 0.052 0.554 o. 746 114 
0.087 0.060 0.544 
0.083 0.063 0.559 

b o. 395 o. 109 0.061 
o. 094 0.054 0.462 0. 667 129 
o. 091 0.064 0.462 
o. 090 o. 065 o. 476 
0.089 0.066 o. 483 

c o. 399 o. 109 0.061 
0.099 0.057 0.663 0. 881 170 
o. 094 0.065 0.666 
0.089 0.073 0.670 

d o. 411 2 o. 100 0.055 
o. 086 o. 052 0.543 o. 746 172 
0.079 0.056 o. 541 
0.074 0.060 0.559 

0.062 

e 0.423 o. 100 o. 055 
0.088 0.051 o. 720 o. 887 204 
o. 083 0.055 o. 714 
o. 083 0.060 o. 715 

f 0.407 o. 100 0.055 
o. 081 0.053 0.452 o. 633 152 
o. 078 0.062 o. 4 79 
o. 075 0.065 0.464 
0.074 0.067 

g o. 363 5 o. 139 0.064 
o. 106 0.064 0.451 o. 831 118 
o. 092 0.070 0.536 
0.086 0.074 0.532 

h 0. 362 o. 139 0.064 
o. 091 0.060 o. 398 0.678 96 
o. 088 0.069 0.407 
o. 086 o. 072 0.430 

k 0.369 o. 139 0.064 
o. 103 o. 064 o. 620 
0.099 o. 065 0.625 o. 977 139 

0.069 

1 0.368 o. 139 0.064 
o. 091 0.069 o. 375 o. 729 104 

o. 075 0.369 
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Experiment 8 

System: n-Heptane -Water 

Correction Jet Max diam Min diam Wavelength Flowrate Velocity 
Run factor No. (em) (em) (em) (cm3/sec) (em/sec) 

a 0.359 1 0.109 0.061 
0.094 0.063 0.323 0.645 124 

0.063 

d 0.404 5 o. 139 0.064 
0.128 0.064 0.432 o. 781 111 

0.066 0.490 

f 0.335 2 0.100 0.055 
0.075 0.061 0.272 0.589 135 

0.062 

g 0.333 1 0.109 0.061 
0.078 0.060 0.258 o. 775 150 
0.076 0.064 0.256 

h o. 350 0.109 0.061 
0.088 0.061 0.383 0.626 121 

0.068 
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Experiment 9 

System: Cumene -.Water '· 

Correction Jet Max dia.m Min diam Wavelength Flowrate Velocity 
· Run .·factor No. (em} · (em} . (cmJ (tm3/sec} '(em/sec} 

a 0.335 1 o. 109 0.061 
0.073 0.057 0.239 0.638 123 

0.063 0.249 

b 0.330 0. 109 0.061 
0.081 0.047 0.414 o. 796 154 
0.078 0.055 0.419 

0.058 

c 0.339 0, 109 0.061' 
0.080 0.056 0.329 0.512 99 
0.077 o. 060;' 0.323 

. o. 074 0.064 0.336 
o. 068 0.332 

d 0.323 2 o. 100 0.055 
o. 075 0.048 0.400 0.670 154 
o. 075 .0.055 0.382 
0.073 0.058 

e 0.327 o. 100 0.055 
0.069 0.051 0.304 0.561 129 

0.055 

f 0.325 o. 100 0.055 
0.077 0.042 o. 5 02 0.834 192 
o. 076 0.053 0.520 

g 0.337 5 o. 139 0.064 
o. 096 0.056 0.464 0.823 117 
0.089 0.064 0.486 
o. 085 0.067 0.445 

0.069 

h 0.335 0. 139 0.064 
0.089 0.067 0.328 0.698 99 
0.085 0.068 0.334 

k 0.337 0.139 0.064 
0.094 0.061 0.419 0.905 129 
o. 092 0.069 0.433 
o. 089 o. 074 0.432 
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Experiment 10 

System: ·Water - Cumene 

Correction Jet Max diam Min diam Wavelength Flowrate Velocity 
Run factor No. (em) (em) (em) (cm3/sec) (em/sec) 

a o. 421 1 o. 109 0.061 
o. 086 o. 057 o. 3 73 0.645 124 
0.080 0.057 0.378 
0.076 o. 058 o. 397 
0.074 0.059 0.392 

o. 061 

c 0.427 o. 109 0.061 
0. 094 0.047 o. 587 0.890 172 
o. 093 0.056 o. 598 
o. 091 0.060 0.594 

b 0.419 o. 109 0.061 
o. 093 0.051 0.495 o. 770 149 
0.086 0.053 o. 496 
o. 084 0.059 0.508 

0. 061 o. 503 

d 0.416 2 o. 100 0.055 
o. 084 0.043 0.476 0.695 160 
0.081 0.046 o. 502 
o. 079 0.048 o. 501 

0.499 

e 0.407 o. 100 0.055 
b. 079 0.045 0.529 o. 770 177 

0.055 o. 531 

f 0.384 o. 100 0.055 
o. 078 0.047 0.363 0.605 139 
0. 077 0.048 0.369 
0.075 0.050 0.384 

0.052 

g 0.419 5 o. 139 0.064 
o. 102 0.070 0.532 o. 855 121 
0.096 o. 075 0.513 
o. 091 o. 079 0.534 

h 0.409 o. 139 0.064 
o. 105 0.068 o. 592 0.990 141 
0 •. 099 0.073 0.612 
o. 094 0.080 0.623 

k 0.403 o. 139 0.064 
0.089 o. 077 0.360 o. 710 101 
0.088 0.077 0.389 

o. 379 
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B. Computer Programs 

1. Wave -Length-Interfacial-Tension Relation 

The following program was written to solve Eq. (57), to obtain 

the interfacial tension. It can be separated into three parts: the calling 

program, the determinant-reduction program~ the Bessel-function pro

gram. 

a. Galling Program ( "Valor"). The object of the numenc work is to 

evaluate a 6 X 6 complex matrix equation~ the matrix being a function 

of a variable 

A( <J) a X = 0. 

For nontrival X, IA(<J) I= 0 must hold, which leads to solving the de

terminant equation for <J, as it is involved in one row of A only. 

I A( <J) I= /::,. + D<J = 0 

or, 

(J - -

The machine program has as input the raw experimental data, from 

which it evaluates the program parameters. Then certain values of the 

Bessel functions I 
1
(az), I

2
(az), K 1 (az)~ K

2
(az) are computed; and 

the matrices (D) and ( t::,.) are formed. These serve as input to the 

Gauss -reduction program, which returns the complex determinants D 

and !::,. ; the calling program then calculates <J. 
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VALOR 

5 
- -····· ·--· -

READ INPUT TAPE2,l,N,B,A,REl,RE2,RATl,RAT2 
BA=B 
82 = B••2 
Yl2 = IB/2.1•1-B+SQRTFIB2+1RE1 1••211 
Y22 = IB/2.l•I-B+SQRTFIB2+1RE2 1••211 
Xl2 = 82 + Yl2 
X22 82 + Y22 
DlR = SQRTFIX121 
Dli = SQRTFIY12l 
D2R = SQRTFIX22l 
D2I SQRTFIY221 
Wf3..ITE OUTPUT TAPE3,2,N,B,REl,RE2,A_,RMl,RAT2 
DlAR DlR•A 
DlAI Dli•A 
D2AR = D2R•A 
D2AI D2I•A 
Rl = SQRTFIDlAR••2+DlAI••2l 
PHil = ATA~FIDlAl/DlARl _ 
R2 = SQRTFID2AR••2+02AI••21 
PHI2 = ATANFID2AI/D2ARI 
CALL Blll,BA,O.O,BllR,Bllll 
CALL BII2,BA,0.0,812R,812ll 
CALL BKil,BA,O.O,BKlR,BKlll 

_C/IL.L .Bt<I2,BA,O.O,BI(2R,BK21 I 
CALL Blll,Rl,PHil,DilR,Dllll 
CALL Bli2,Rl,PHil,DI2R,DI211 
CALL BKil,R2,PHI2,DKlR,DKlll 
CALL BKI2,R2,PHI2,DK2R,DK2ll 
Dl2PR = Dl R•DllR - Dl I•Dill -12./AI•DIZR 

______ ... _D_t~P.l __ :: __ Ql_ P,~D_Ill + D 1 ... I •D_IJ~ -= t2_.._} A I •D_I2I 
DK2PR = -02 R•DKlR + 02 I•DKll -12./Al•DK2R 
DK2Pl = -02 R•DK1l - 02 I•DKlR -(2./Al•DK2l 
D12PPR=B••2•Dl2R 

1 -8•REl•DI21 
2 + 16./A••21•DI2R 

---·-··--- _L _____ - IDl R/ ;\ l ~DI 1_R + I Dl I/ A l •QJ)._l_ 
DI2PPI=B••2•DI2I 

1 +B•RE1•DI2R 
2 + (6./A••21•Dl21 
3 -101 R/AI•Dill 
4 - 101 1/AI•DllR 

----·---·----~~ ~e.f3. B•B 11 R - ( 2./ A I •B I 2R 
BI2PI = B•Blll -12./AI•BI2l 
BK2PR = -B•BK1R-12./AI•BK2R 
8K2Pl = -B•BKli-12./AI•BK21 
BI2PPR = 8••2•812R + 16./A••21•812R -IB/AI•BllR 
BI2PPI = B••2•BI21 + 16./A••2l•BI2I-IB/AI•BI11 

________ .OI< . .ff'P~ I 8**2+6 .I A**2 I •DK2~ . 
1 -B•RE2•DK21 
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VALOR 

CT 

2 
3 

- .. - ----------------------------------------------------------

DK2PPI = 

+(02 R/Al•DKlR 
-102 1/Al •DKli 

IB••2+6./A••2l•DK21 
1 '+B•RE2•DK2R 
2 +102 R/Al•DKli 

-~------------ __ +_!D? I/ALti)JS18_ _____________________________________________________ ----------------. 
BK2PPR = IB••2+6./A••2l•BK2R + (B /Al•BKlR 
BK2PPI = IB••2+6./A••2l•BK2I + IB /Al•BKll 
WRITE .OUTPUT TAPE3,3,BA,BilR,Bili,BKlR,BKll,BI2R,BJ2I,BK2R,BK2I, 

1BI2PR,BI2PI,BK2PR,BK2PI,BI2PPR,Bl2PPI,BK2PPR,BK2PPI, 
2DlAR,DlAI,D2AR,D2AI,DilR,Dili,DKlR,DKli,DI2R,DI21,0K2R,DK21, 

_______ }D_Il P~ _,_QJ_?f> !_, DK?PR_,_Q_~?J~J..!.!?J_?_Il_f>__R_,_Q_!__?f.P_L!.QI(_2 f>f__~, D~__?_P._P.L _________ __ 

0 I MENS I ON AR I 20,20 l , A 1(20, 20 l , J ROW I 20 l, I COL I 20 l , I ROW I 20 l , J COLI 20 l , 
1 BRI20,20l 1 BMI20,20l,AARI6l,AAII6l,CRI20,20l,Cit20,20l 

EL = 13.+(A•Bl••2l/lA••2•Bl 
ARtl,ll=-12./IREl•Bl l•BI2PPI-BI2R 

---- ~AB..!_l_J.::_HJ,_~_IH 2 p R)_l _IL ______ ---- ----- ----- - - -------- --------- --- --- . 
Aitl,ll=I2./IREl•Bl l•BI2PPR-BI21 
AAIIll=IEL•BI2Pil/B 
ARI1,2l=IBK2R+(2./IRE2•Bl l•BK2PPil•RATl 
AARI2l=O. 
AII1,2l=IBK2I-!2./IRE2•Bl l•BK2PPil•RATl 
A_AU2J=O. _ _ _ 
SSQ = ID1R••2+01I••2l••2 
RED12R=IDlR••2-Dli••2l/SSQ 
RED12I=-2.•DlR•Dli/SSQ 
SSQ = ID2R••2+D2I••2l••2 
RED22R=ID2R••2-02I••2l/SSQ 
RED22I=-2.~D2R•D2l/SSQ 

·-A-I {i ~-3 )- =-· (2 .·*siRE 1 -> --(Oi z-·p·p-Ri.RE.[ff2·R·-----------· .. --·-·:.::·(ff2PP-I•RED12 r l 
ARI1,3l=I2.•B/RE1 l•IDI2~PI•RED12R+DI2PPR•RED12Il 
AARI3l=-IEL•Bl•IDI2PR•RED12R-DI2PI•RED12Il 
AAII3l=-IEL•Bl•IDI2PR•RED12I+DI2PI•RE012Rl 
AARI4l=O. 

_________ M I_(_~ L=Q. -------------- -------------------------- --- ------------- ----
ARI1,4l=-(2.•B/RE2 l•IDK2PPI•RED22R+OK2PPR•RED22Il•RAT1 
Alll,4l=I2.•B/RE2 l•IDK2PPR•RED22R-DK2PPI•RED22Il•RAT1 
ARI1,5l=I2./REll•IDI2PR-DI2R/Al/A 
Alll,5l=I2./REll•IDI2Pl-DI2I/Al/A 
AARI5l=EL•DI21/A 

________ M_L!_?_l_=-_E!,.•_Q_I?_R/~--
AARI6l=O. 
AAII6l=O. 
ARI1,6l=l2./lRE2•All•IOK2R/A-OK2PRl 
AII1,6l=I2./IRE2•All•IDK21/A-OK2Pil 
ARI2,ll=-BI2R 

___ A_I_1_2,l l=-::-~,12_1 
ARI2,2l=BK2R 
AII2,2l=BK2I 

, ... 
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VALOR 

ARI2,3l=DI2R 
AI 12,3l=DI21 
AR(2,4l=-DK2R 
Al(2,4l=-DK21 
ARI2,5l=O. 
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___________ AJ C_?J_2J>:_Q_. _____________________ -·-----------------·-
ARC2,6l=O. 
Al(2,6l=O. 
AR(3,ll=-BI2PI/B 
All3,ll=BI2PR/B 
ARI3,2l=BK2PIIB 

_ .. _______ .u_n.,?l>=-=--~KZI'R/Jt _________________ _ 
AR(3,3l=B•IDI2PR•RED12I+DI2PI•RED12Rl 
All3,3l=-B•IDI2PR•RED12R-DI2PI•RED12Il 
ARI3,4l=-B•IDK2PR•RED22I+DK2PI•RED22Rl 
AII3,4l=B•IDK2PR•RED22R-DK2PI•RED22Il 
ARI3,5l=DI2R/A 

---···- __ !lJ .. h?J=_[)HJ .. lA _________________ _ 
ARI3,6l = -DK2R/A 
AII3,6l = -DK21/A 
AR(4,ll=-(2./IB •All•BI2R 
Ali4,ll=-12./(B •All•BI21 
ARI4,2l=l2./(B •All•BK2R 
Al(4,2l=l2./IB •All•BK21 

-----·----"ART4; 3 , = i2~*siAT*coi z R*R' eo 12-R-=oTz I •R eo i2I -;--- ----·-
AI(4,3l=lz.•stAl•coizR•REolzi+oizi•REolzRl 
ARI4,4l=-12.•B/Al•IDK2R•RED22R-DK2I•RED22II 
All4,4l=-12.•B/Al•IDK2I•RED22R+DK2R•RED2211 
ARI4,5l=-DI2PI/2. 

_______ _MJ4,_5l=Dl2p_~/.2. ____________ _ 
AR(4,6l=DK2Pl/2. 
All4,6l=~DK2PR/2. 
ARIS,ll=-2.•BI2PR 
AIIS,ll=-2.•BI2PI 
ARI5,2l=2.•RAT2•BK2PR 
AII5,2l=2.•RAT2•BK2PI 

--------sTR;i-::· •8**-iiifeoi2R:··· ··----
s 11 =B••2•RED12 I 
ARI5,3l= IS1R•DI2PR-Sli•DI2Pll 
AII5,3l= (SlR•DI2PI+Sli•DI2PRl 
S2R=l.+B••2•RED22R 
S2I=B••2•RED22I 

·----------tili·c s--;4, ~-="R"Ar2*.!s2R"·•·o-t<2-PR--=s21*ol(-2il1>-· 
AII5,4l=-RAT2•1S2I•DK2PR+S2R•DK2Pil 
ARIS,Sl=- IB/Al•DI21 
AIIS,Sl= IB/Al•DI2R 
AR(5,6l=RAT2•1B/Al•DK21 

__ . _____ A I I 5_, 6! =-~AT~· I B/_A)_*.Q_I$_~_ ......... 
AR(6,ll=(4. /(B •All•IBI2R/A-BI2PR) 
AI(6,ll=l4. /(B •All•IBI21/A-BI2Pil 
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VALOR 
.... -~-~--------·-

AR(6,2)=-(4.•RAT2/IB •All•IBK2R/A-BK2PRl 
AII6,2l=-(4.•RAT2/IB •All•IBK21/A-BK2Pil 
X=(4. •B/Al•IDI2PR-DI2R/Al 
Y=l4. •B/Al•IDI2PI-DI2I/Al 
AR(6,3l=RED12R•X-RED121•Y 

____ MJJ>_t_~l=:_RED12R•Y+RED12I•X ____ _ 

_____ ?JL ... 

X=(4.•RAT2•B/Al•IDK2PR-DK2R/AI 
Y=(4.•RAT2•B/Al•IDK2PI-DK21/Al 
AR(6,4l=-IRED22R•X-RED22l•Yl 
A1(6,4l=-IRED22R•Y+RED22l•XI 
AR(6,51=- ID12PPI/2.-DI2Pl/(2.•AI+2.•Dl21/(A**211 

.. AI 16,5 l =_ I DI2PPR/2 .-D!~PR/1 2. •A I+?. •Dl2R/I A•_•2 I I 
ARI6,61=RAT2•1DK2PPI/2.-DK2PI/12.•AI+2.•DK2I/IA••2ll 
A1(6,61=-RAT2•1DK2PPR/2.-DK2PR/12.•AI+2.•DK2R/IA••21l 
DO 20I = 1,6 
DO 20J = 1,6 
BRII,JI = ARII,Jl 
B_M 1J , J l _ = A I I I , J I _ _ __ _ _ _ 
HOWBIG ~ SQRTFIDI2PPR••2+DI2PP1••21 
IFIHOWBIG-.1 E 071100,100,101 

101 IFIHOWBIG-.1 E 141102,102,103 
100 SCALE = 1.0 

GO TO 104 
!Q) S(:AL!= = .1 E~14 

GO TO 104 
103 SCALE = .1 E-20 
104 CALL GAUSSI6,AR,AI,DETR,DETI,SCALE,JROW,IC0Ll 

AR 11 tl l =AAR I U 
A I 11, 1 I =AA I I 1 I 

________ A~_1_~,_2l_=_AAREJ ___________________________ _ 
A I 11, 2 l =AA I I 2 l 
AR(1,3l=AARI3l 
AI I 1 1 3l=AAU3l 
AR(1,4l=AAR(4l 
AI 11,4l=AAI (4) 

_____ --~BJ_l_,_?_!_::AAR I_!) l ______________ _ 
All1,5l=AAII5l 
AR(1,6l=AARI61 
AII1,6l=AAII6l 
DO 101=2,6 
DO 10J=1,6 

-----~.liilt.~l =:~_R_(J_,_.u___ __ _ ___ _ _ ___ _ .. _______ _ 
10 AIII,Jl=BM(I,Jl 

30 

00 301 = 1,6 
DO 30J = 1,6 
CRII,Jl = ARII,Jl 
CIII,Jl = AIII,JI 
CALL GAUS_H 6-'A~ ,_AJ_,_Q_!=_!-_~,[)!=_1,._1,~~~1,.1:, I ~-Q-~ t..J(:Q!, l 
SSQ=OELR••2+DELI••2 
TR=-IDETR•DELR+DETI•DELII/SSQ 
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TI=-IDETI•DELR-DETR•DELI)/SSQ 
VAR=TR•RE1••2 
WRITE OUTPUT TAPE3,4,0ETR,OETI,TR,TI,DELR,OELI,VAR 
GO TO 5 

1 FORMAT 112,F8.4,Fl0.4,2F5.0,2F5.1) 
2 FORMAT 121HliNTERFACIAL TENSION.,4X,l7HEXPERIMENT NUMBERI3/llHOINP 

lUT OATA/5HOB = F8.4,12X,7HRl = F5.0,8X,7HR2 = F5.0/5HOA = F8.4 
2,12X,7HRAT1 = F6.4,7X,7HRAT2 = F6.4l 

3 FORMAT 11H0//29H BESSEL FUNCTION EVALUATIONS./lH ,15X,4HREAL,9X,9H 
1IMAGINARY,29X,4HREAL,9X,9HIMAGINARY/10H BA =,El6.8/lOH IliBA) 
2 =2El6.8,lOX,9HKliBA) =2El6.8/lOH I21BAI =2El6.8,10X,9HK21BA) 
3=2El6.8/10H l2PIBA) =2El6.8,10X,9HK2PIBA) =2El6.8/l0H 12PPIBAI=2El 
46.8,10X,9HK2PPIBAl=2El6.8/lOHODlA =2El6.8,10X,9H02A =2fl6. 
58/lOH IliDAl =2El6.8,lOX,9HKliDAl =2El6.8/lOH 1210Al =2El6.8,10 
6X,9HK21DAl =2El6.8/lOH I2P(0Al =2El6.8,lOX,9HK2PIDAl =2El6.8/10H 
712PPIDAl=2El6.8,lOX,9HK2PPIDAl=2El6.8) 

4 FORMAT llHO///lH ,51X,9HO =2El6.8/10HO T =2El6.8/lH0,51 
lX,9HOELTA =2El6.8/lHO,FlO.Ol 
ENDil,t,o,o,o,o,t,o,o,o,o,o,o,o,ol 
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b, Gauss -Reduction Program, The Gauss -reduction method is used to 

evaluate a determinant with complex values, All complex ar:i.thmetic is 

written out explicitly in Fortran language, rather than through the use 

of the "complex arithmetic facility" now provided on library tapes for 

the IBM 7090. This allows for extension later to double-precision 

arithmetic via the applicable library programs. Therefore, the result

ing program may be used either in single precision for increased speed; 

or in double precision for control of cumulative round-off error, which 

is often a problem in matrix and determinant ope rations. 

Upon entry to the program, a search is made among the n 
2 

elements of the matrix for the element z = x + iy such that x 2 + y 2 
is 

maximum. By interchanging rows and columns, this element is placed 

in the pivot position a
11

, changing the sign of the determinant if appli

cable. Following this, the remaining rows are transformed as follows: 

i=Z,ooo~ n 
j := .1 p., o o j n j 

(where ~means "is replaced by"). 

Now a 22 becomes the pivot element, into which position is moved the 

maximal element in the remaining (n- 1) X ( n- 1) matrix. The second 

and all following steps in the reduction are accomplished exactly as 

above: 

k= 2, •••,n 
i =k+l,· • ·, n 
j = 2P ···,n. 

There results a matrix that is zero everywhere below the principal 

diagonal. The determinant of this matrix is simply 

r' 
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D= rr 
i=l 

a .. 
11 

Inasmuch as the elements of this diagonal may be very large or very 

small, overflow or underflow may take place in the formation of the 

product. For co:qtrol of this condition, provision is made to supply the 

program with a scale factor used as follows: The initial value of D is 

D = (scale factor) X l, and subsequently D ~a .. X D, i = 1,• • •, n. 
. 11 

Then if overflow is likely to occur, the scale factor can be set to some 

sui table small nuinbe r. If at any stage of the reduction the pivot ele

mentis zero, then the determinant is set to zero, and control is re

turned to the main program. The program is written so that it may be 

extended easily to solve a set of nonhomogeneous equations with com

plex coefficients, 

Az = b, 

where A is n X n, n ~ 20. 

In the calling program, we define in a dimension statement a 

floating-point variable AR( 20, 20) for the real part of the matrix and 

AI(20, 20) for the imaginary part. Then, after selecting a suitable 

scale factor, the subroutine is called in this manner: 

CALL GAUSS(N, AR, AI, SCALE, DR, DI). 

Upon return, DR and DI will contain the real and imaginary parts of 

the determinant, respectively. 

The program was checked by using numeric examples of 

Vandermonde 1s determinant, which may be solved easily for compari

son with the result of the reduction: 

v = 

2 .. n-1 z ...... z 
1 . J. 

l z ••• 
n 

z 
n 

n-1 
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Then, as may be verified easily,. 

v=(z -z 
1
}(z -z z)•••(z -z 1)X n . n- n n- , ... n 

( z 1 - .Z 2 )( z 1' .- z .. 3.) ••• ( z 1 - z 1) X: n- n- · · n- · n- n-

'i 

The single -prectsion program in the 6 X 6 ·case yielded five significant 

figures with .an error whose absolute value was less ·than 1 in the last 

.place, while the double -precision program gave eight significant fig-

ures ... 
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CGAUSS 
SUB~OUTINE GAu651Mo~~o~loUtTRoUETlorACTORoJROWoiCOLI 

D DI"1EN~IONAR121lo2vltAI 120tZilloJROwi2JitiCOL 12U ltBRI2·)t201o8II20t201 
N = M 
DO '33 I=ltN 
DO 33 J=ltN 

D AR I I o J I =oR I I t J I 
D 33 AllltJI=:J'll.itJI 
U SCALE = eA(TU~ 

UO 11 IT ltN 
JROW I I T I = IT 

II I CUL I IT I = IT 
DO 4 L = ltN 
K = L+l 

U AMAX = v. 
DO 20 J = LtN 
DO 20 I = LoN 

D SSQ = ARIJii1**2 + AIIJtii**2 
D IF1AMAX-SSQI 10t20t20 
10 JR = J 

D 
2'J 
D 
D 
21 
3\J 
D 
D 
D 
D 
l) 

031 
I) 

4J 
6u 
D 
L) 

D 
l) 

I) 

061 
I) 

ji) 

D2 
D 
·3 

I) 

I) 

l) 

i) 

ul4. 
4 
i) 

U9 
1)7 

D 

l) 

D 
D~ 

8 
DIUO 
i) 

IR = I 
AMAX = SSQ 
CONTINUE 
SSQ = A•~AX 

IFISSQJ 21tl0ut21 
IFIJR-LI 30t4Uo3J 
DO 31 I = ltN 
CR = ARIJRtii 
Cl = AIIJRtll 
AMIJRtll = ARILtll 
AIIJRtll = AIILoll 
ARILtli=CR 
All Ltll = Cl 
SCALE ·= -SCALE 
JRO = J~OW {JR I 
JMOWIJRI = JRUWIL1 
JIWWILI = JRU 
IFIIR-LI 6Jo5vt60 
()Q· 61 J = !till 
CR = 4~1JtiRI 
Cl = AIIJt!RI 
ARIJtlRI = ARIJ•LI 
AIIJtl~l = AIIJtLI 
AKIJoLI = CR 
AIIJtLI = Cl 
SCALE = -SCALi:: 
ICO = ICULIIRI 
ICU~IlRI = ICULILI 
I COL ILl = llU 
Du 4 I = K tN 
SCI = ARI.ltLI**2 +AllltLI**2 
IFISQI 3t4t3 
DO 14 JJ = LtN 
J = N+L-JJ 
AX·= ARiioJI-IAKiltLI*ARILoJI*AMILtLI+ARIItLI*AIILtJI*AIILtLI 

I +All loLI*ARILtJI*AIIL.•LI-Al lltLI*AIILtJI.*ARILtLII/SSQ 
AllltJI = AllloJ.I:-IAIII•.~I*AII.L.•J.I*AliLtL.I+AIIltLI*ARILtJI*ARILtLI 

1 +ARIIoLI*AIILtJI*ARILoLI-ARI ltLI*ARILoJI*AIILoLII/SSQ 
A~ lloJ I AX 
CUNI ii-JVc. 
ir(SCHLt:.l 7t'}t7 
SCALE = J, 
ut::TR SCALE 
utTl = J, 
00 :; l = I•N 
l>R = u~TK 
0ETK v~rR•At<lloll-ut:Tl•AIIltll 
DETI ut:TI*A.<Iitli+t.!K*Allltll 
RUURN 
vETR = vo 
DET I' = uo 
RETUR'' 
ENu 
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c. Bessel-Function Program 

None of the existing programs covered a sufficiently wide 

range of values of the complex arguments to be useful in the present 

situation. In the same manner as .the National Bureau of Standards,
34

• 
35 

we used the regular Bessel-function series and truncated the su;rnma

tion after the first 26 tj:!rms. We calculated J (z) and Y (z) from 
n n 

the series, and then the modified Bessel functions I (z) and K (z) 
n n 

from combinations of J (z). and Y (z). 
n n 

The program 1 s accuracy was checked by using the previously 

mentioned tables from the National Bureau of Standards. Using single

precision arithmetic, we obtained values whose cumulative round-off 

error was less than 26 in the eighth place.. If the double -precision

arithmetic facility of the IBM 7090 was used, this error was cut to 1 1n 

the eighth place. 

To use the program the CALL statements are written as 

follows: 

CALL BJ(N, X, Y,,BJR, BJI) 

CALL BY( BYR,BYI) 

CALL BI ( ) 

CALL BK( ) 

where z =X+ iY. On return, the real part of J (z) will be in BJR. 
n 

and the imaginary part in BJI. Corresponding statements hold for 

Y (z), I (z), and K (z). 
n n · n 

.• 
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SUBROUTINE BJ(~tRHQ,PH!tSJMR,SJMI) 

Xf\1=1\1 
R=RH0/2.0 
RSQ=(RH0/2.0!**2 
FP=R**XN/~ACN (XI\!) 
SUMR:FP*COSF(XI\l*PHI) 
SUMI=FP*SINF(XN*PHI l 
DO 1 K.=l•26 
XK.=K. 
FA=~(RSQ/(XK.*!XK+Xi\1)) I*FP 
FP=FI\ 
SUMR=FA*COSFC(2.J*XK+XNl*Prlll+SU~R 
S U "1 I = Fl\ * 5 I N F ( ( 2 • 0 :*X K +X~~ ) * P '-II ) + S '.J ~41 
RETURN 
EI\!D 

SU~ROUTINE GYCNtRHQ,PHI,SJMR,SU~I l 
PI= 3. 1415 9 2 6 54 
FIRSTR=.J.'J 
FIRSTI=J.;J 
XN=N 
R=RHOI2.ll 
RSQ=R**2 
IF(N-ll3tltl 
FP=FACN !XN-1.0)/(R**XNI 
SIJMR=FP*COSF ( XN*PH I, 
SUMI=-FP*SINFCXN*PHIJ 
!FCN-l J 6•6•5 

5 tv!=N-1 
DO 2K=l•"1 
XK.=K 
FA=CRSQ/( CXN-XKI*XK) l*FP 
FP=F.~. 

SUMR=FA*COSF!PHI*CZ.O*XK-XNJJ+SUMR 
2 SUMI=FA*SINF(PHI*C2.0*XK-XNJJ+SUMI 

6 FIRSTR=-SU"'1R/PI 
FJRSTI=-SIJ"'11/P! 

3 X=LOGF<RJ+0.577~15665 
Y=PHI 
CALL BJ(N,RHQ,PHJ,SUMR,SUMI) 
T~OR=Z.J*(X*SUMR-Y*SUtv!I)/PI 

TWOI=2.J*(X*S0MI+Y*SUMRJ/Pl 
FP = -(R**XNJ/FACNCXN) 
FR=FP*DHY (XN,O.JJ 
SOMMER=FR*COSF(XN*PHIJ 
SOMMEI=FR*SINF!XN*PHIJ 
DO 4 K=1•Z6 
XK=!( 
FA=-(RSQ/(XK*(XN+XKJ J l*FP 
FD=FA 
FA=FA*DHY (XNtXKl 

SOMMER=FA*COS~(PHI*(2.0*XK+XNl J+SOM~~R 
4 SON1\1El=F•\*SINF(PHI•<2.0*X<.+XN) J+Sr)>1'-1tl 

SOMMER=S0MMER/Pl 
SOMMEI=SJtv!MEJ/PI 
SUMR:F!RSTR+T~OR+SOMM~R 

SUMI=FIRSTI+TWOI+SOMME! 
RETURr-.J 
EIIJD 
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SUBRbUTIIIIE Bl (NtRHQ,PHI tBRI tB! I l 
PI = 3.14159?.654 
Xlll=ll! 
PHO = PHI + Pl/2.0 
CALL 8JfNtRHOtPHOtBRJoB!Jl 
X=COSF(XN*PI/2o0l 
Y=•SINFfXN~PI/2.0) 
BRI = X*BRJ - Y*BIJ 
BII = X*BIJ + Y*SRJ 
RETURN . 
END 

SUBROUTINE BKfNoRHOoPHioBRKod!Kl 
Pl=3.141592654 
PHO=PHI+P!/2.0 
XN=N 
CALL BJfNoRHOoPHOo8RJoB!Jl 
CALL BYfNoRHOoPHOoBRYtBIYl 
X=fPI/2.0l*COSFf fXN+1oOl*PI/2.0l 
Y=fPI/2.Ul*SINFf fXN+1oOl*PI/2o0l 
BRK=X*fBRJ-BIYl-fY*(~IJ+BRYl l 
BIK=X*fBIJ+BRYl+Y*fGRJ-BIYl 
RETURN 
END 

FUNCTION PHY fXN•XKl 
SUM=O.·O 
IFfXN-1•0) 3.tltl 
N=XN 
DO 21 = 1tN 
XI=! 

2 SUM=1o0/(XK+XIl+SUM 
3 IFfXK-l·Ul 4t5t5 .. 
4 PHY=SUM 

RETURN 

5 K=XK 
SOMME=OoU 
DO 6 1=1•K 
X I = I 

6 SOMME=1.~/XI+SOMME 
PHY=2•0*SOMME+SUM 
RETURN 
END 

CFACN 
FUNCTION FACN fXNl 
IF ( X N- 2 • a· l 1t 2 t 3 
FACN= loU 
RETURN 

2 FACN=2.0 
RETUR1\I 

3 N=XIII 
FACI\1=2.0 
DO 4 I =3 tN 
XI=! 

4 FACI\I=FACN*XI 
RETURN 
END . 
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2. Velocity Profile - Schlicting Approach 

This prog-ram- is a straightforward calculation of the velocity 

profile from Eqs. ( 76) through ( 79). A second program is needed to 

check whether it is necessary to use Eq. (82) for the momentum 

balance, or whether ·it may be approximated by Eq. ( 85). The second 

program calculates the second integral of Eq. (82) with Simpson's rule. 

J 
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CCYP 
* XEQ 

D I ~ ENS I 0 N X C 7 I , A C 7 ) , A A C 7 I , H L 3 ( 7 ) , HL 3 1 C 7 I , GL 2. ( 7 I ' G ( 7 I ' H L 2 ( 7 I ' d ( 7 I ' 
2HLLRC71 

27 ~~AU INP0T fA~E 2tltiXIlltl=1t71tRrl0ltRH02•HMU1trlMU2.•UStAS,RUN 
7 FORMAT ( lf5e0t2.f~.3t2f6e4tF~.0tF6e4tf4e0) 
R1=!U~*AS*RHU1)/rlMU1 

R2=!US*AS*~rlJ~IIHMU2 
XJ=i~114ei.J 

WRITE OUfPUT TA~E 3t4tR1t~2.tXO 

4 FORI"lAT llrli.Jt5r1J.~J 

9 00 1 0 1 = l , 1 
hi AA C i J = 16 • 0 I R l 

1.)0 1 1=lt7 
1 AI 1 J=( ("-1;.\1 l) 11-X( l 1**2)/(ciev*XI I l-1~1) l**v•~ 

12 i)\..) 1 b i = 1 ' l 
ri L j ( l ) :: ( AI~ ( i ) *" ( 1 ) iH 2 +R 1 * i-1 ( i )* * 2 ) 
rlL3l ( 1 I= ( AA( 1) *X ( ll*;l-2.+r<2*A( l) ·;l-*2) 
G L 2 ( I ) = ( I 2 • \) *I~ 2 * A ( l ) * * 2 ) I ri L 3 ( I ) ) - l • 0 
G( l )::( ( 14ev>~R2*i-ll i l'h*2l*( lrlLJll 1 )/rlL3( 1) 1-l.Ji/HLJ( I l )+leOl*;<J.:> 
tiL21lJ;.:;uL2.( 1 )1\.:l( i) 

o ( i J = ( { l • v -riL ~ ( 1 ) I I ( 1 • i.J +HL 2 ( I I J I * ( 1<2 l<· i-1 ( l ) -f.·* 2 I X ( 1 I** 2 I **G ( I ) 
lo cur-J r 1 ,-~ .. .h:. 
-:Jv t-·u,;:,.iA I ( lt-li.J' h.14• b J 

WRlfC: uJit-l0f IAPc. 3t':fJ,(\.J(JJ;J:.:ltfl 
Wi~IrE uuiPUf iAt-lc. 3t'lvtld1JitJ=1tfl 
JU22. l:::ld 
JU tl.U L=ll•2.?t2 
R=rLOi-1 H ( L-11*-u• P;.U I I 
rl L L R ( 1 I ~ ( 1 • u- o ( 1 I * I X ( 1 I * * 2. I ( 1-( 2 ~ r< >H< 2 I I -;l- >< G ( 1 I I I ( 1 • U + J ( 1 I * I X ( I ) *''C. I 

211~2,<R**21 1**\.J( 1 I I 
U t: = ( ( 2 • i.J *X ( 1 I I I i~ 2 I* I ( G ( 1 I I R I * * 2 I * ( 1 • 0- H LL i-.< ( 1 I i< ,,. 2. I 
V t. :: 12 • rJ I ( R ll-J~ 2 J !-* ( ( \.J ( 1 I ;< * 2 I * ( 1 • J -riLL i-< ( l I * * 2. I - ( l • 0 +u ( l I ''" riL Z R ( I ) ) ) 
WRITE 00fPUT fAPt. 3~2ltR0NtJEtVC:tRt1 

20 CONT Ii'Wc. 
21 rURMATI1rlUtr4e1t3Xt2.Fl2.e4t3Xtffe4t3Xtl31 
22 CONflf\JUt. 

J026 I=ltl 
tJO C.4 L=1dlt2 
R=rLUATI-(L-ll*J•l*A( I I 
J I = ( o • U *A A ( I I *X ( I I *'< 3 • v ) I ( ( ,.; 1 * K * '* 2 +A A ( 1 ) *X ( I I ih< 2 I * * ~ I 
VI :;;(4.J*R*IAA( I I*X( 11**2-,~li<t.;>H<-21 II( (AA( I I*X( I 1*>>2+;-d*R~·~<LI**l!l 
wRliC: OJftJcH IAt->t. 3t2lt~~UNtJI,VI,Rd 

24 CONfiNUt 
26 CuNTINUt. 

GO TO 27 
ENO 

* OATA 
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3. Velocity Profile -Exponential Approach 

The following program is again a straightforward calculation 

of the velocity profile. However, a trial-and-error solution of Eq. (92} 

i~ necessary before the velocity can be calculated. After this is done, 

the profiles are calculated from Eq. ( 9 0} and ( 91}. 

0 
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CY2 

DIMEN-SION X C7) 
10 READ INPUT TAPE 2,7,(X(l) 1 1=1,7) 1 RHOl,RH02,HMUl,HMU2,US,AS,RUN 

1 FORMAT C7F5.0,2F5.3,2F6.4ef5.0,F6.4,F4:or . 
Rl~(US•AS•RH01)/HMU1 

---;:;R~2-:;'71· US•AS•RHti2flHMU2 
A=tRH02•HMU2)/(RHOl•HMUl) 

----~,Rl:-~re·--cror·p·ur·--r·A--Pe-·-3-;24-;--R-l, -R2-, A------------------ ----------------------

24 fORMATl1H0,2F8.2,F8.4) 
------D0--20I=i,7 - - --

PB=lO.OOO 
----- --1:-s:o. ooo --

5 P = ( P B +P S )I 2. 0 
------ o=T3. OTPTW.EXPF-1 -P•XTll7RTf*H. o::;n-;CFPl4~0T**2*( 1. d-A)) 

O=D-1.000 --------Tf-f(ff --~-i ~-12, t-4 ------ ----- ------------ ---

11 PB=P 
D=-1.0•0 
GO TO 15 

ii.--Ps=P 
15 lf(0-0.002) 12,12,5 
i2 ·el~ (Pi I 2.-0 n •EXPFI-P•X (I) /Rl) 

82=1HMU1/HMU2)•81 
--jA:.;c UJGF-1 Y • .-o.::.p/4~ of Ti ;,.::81 _____ -,-, * • o. 5 

-- -· ·------------

__ A~A_:=_I:~P_FI_-::P!~HJI~X=AA!_!?.~- __ ( Bl-:-_BV L •2.;_0_ -------- -----------------
00 30 l=ltllt2 

__ @~FLOATFtl-1)•0~1~AA 
U1:;2.0•EXPFC-P•Xtl)/Rl-B1•R••2) 
WRITE OUTPUT TAPE 3t2l,RUN,UI,R --- -j(f fo-NTINUE- - - --- - ----------- --- - ------ ---

-----~9 ___ /tQ__!, :=_U_!~.h~-- __ . ______________________________ _ 
R=FLOATFIL-1)•0.l•AA 

________ !i_E=AAA• ___ _ __ EXPFI-B2•R••2) 
WRITE OUTPUT TAPE 3,2l,RUN,UEtR 

40 C(]NTI NUE _ _ ______ _ 
UAV=I2.0•EXPFC-P•XII)/Rlll•t1.0-EXPFC-B1•AA••2))/(81•AA••2) 
WRITE OUTPUT TAPE 3,23,P,B1,AA,AAA,UAV --- --:zT-FORMATfitio·~-f:5.-l ,Fli~4-;-3)C,-Fi~-4T ________ --- ------- ·- --------------------------

_2_J __ fORMAT I 1H(), 5F 12 ._'+) _____________________ _ 
20 CONTINUE 

GO TO 10 --- --- . -----. . -- . -·-··---

END ( 1 t 1, 0, 0, 0, 0, 1 , 0, 0, 0 t'O t 0 t 0 t 0, 0) ~ 
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