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ABSTRACT 

The effects of configuration interactions on the energy levels of con-

f:i gurations of the type .eN have been studied. In previous work the linear t.;.co)·:;· 

has sought to augment the usual Hamiltonic.r. for an N-electron system with aclditi.o:·:;:;.::_ 

tva-body scalar interactions. It has been found that by choosing sui table scale.::: 

interactions it is possible to include, to second-order, all electrostatic :..:-,t<:::~·

N . 
actiohs with configurations havin.s two electrons excited from the .£ confi:::;~.;.re:.-

tion. Using perturbation theory it has been found possible to derive expli·:::it.ly 

the form of the scalar interactions together with the analytical form of tLc:::..:::·. 

radial parts. Effective three-body interactions are introduced to account fo~ 

the perturbations due to one-electron excitations. The physical significa:-.ce:: of 

the parameters associated with :.he linear theory is clarified. 

\ 
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1 . IN'rRODUCTION 

The theoretical understanding of complex spectra commenced with the clar,~;i-

1 cal paper of Slater. In this paper he presented a method for calculating the 

electrostatic energies of the LS terms of electron config\~ations expressing them 

as a linear function of a few radial integrals, usually considerably fewer than 

the nW11ber of terms of the configuration. The calculation of the energy levels 

2 of atoms and ions was further improved by Condon's sug~estion of including the 

effects of spin-orbit interactions. With the development of the powerful techni-
. 6 

quE~s of tensorial operators by Racah3- it became possible to calculate the 

complete electrostatic and spin-orbit interaction energy matrices of virtually 

any electron configuration. 

It soon became evident that the diagonalization of the combined electro-

static and spin-orbit interaction energy matrices for a particular electron con-

figuration yielded energy levels that deviated by several hundred to a thousar.d 

wave-numbers from the observed energy levels even when the radial integrals vrere 

. . . 7-13 treated as freely var1able parameters. These deviations were usually ascribed 

to the effects of configuration interaction. Following the realization that the 

assumption of pure electron configurations was jnadequate, numerous attempts have 

been made to include the effects of configuration interaction. The most obvious 

approach was to diagonalize energy matrices which included all the electrostatic 

interactions within and between several connected configurations. While this 

approach has met with some success it has been found to be a very cumbersome 

method requiring the construction of extremely large matrices, a great increase 

in the number of radial integrals and the assumption that only one or two perturb-

ing confi~rratlons need to be considered. 

In more recent times considerable attention has been directed towards tl1e 

possibility of modifying the energy matrices of the principal electron conf:i.[';\Jr:l-

tion in such a way as to include the greater part of the effects of all the 

perturbing confi.gurations. This approach has had the great advantage of requ:i,ring 
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- no increase in the dimensions of the energy matrices and relatively few additional 

parameters. 

Particular attention has been given to the so called "linear" theory of' 
l!t 

configuration interaction following the observation of Bacher and Goudamit · th~t 

tnost configuration interactions whiah are ijecond~order effects may be add@d · 

linearly. In the Hnear theory thll:l Hamiltonian of the N elec:~t:ron my~;~tem has b®@/1 
· 14 ... u 

augmented with additional two .. body fHl5l-1.~;:, interaction te:rm!i!. Am~ociated ·with 

each interaction 16 an adju6table constant which has been determined from th~ 

experimental data. In general the number of additional interac1rlon~ ha~ b~en 

chosen so that the total number of adJut!!table pa.rwn~ters equala the rmmber of 

allowed lS terms occurring in all distinct two .. electron configu:ratiol'll1! fo~®d by 

Whil~ the lin@~r th@~ry h~lll had ~~m@ m~~~ur~ ~f ~uee@!?.~~th@ ~~f@@ID@nt w~th 

th~ ob~erv§d en§r~y lev@l§ h~~ nG1t been li~ ~Glod a~ would b~ t\@dr~'bl!il, 'J:'h§r@ hM 

'be(;jlft Qonlll1g,e:~:~'ble eonfu§i~n ~~ to th@ phy!lli@~l !l!i~ifiQ~ft@@ of th@ r~JitUtiom~,l t'vm= 

body int®ra~Jti~tl§ ~nd to th@ v~Hai ty Glf th§ m@th!;'Hi, 

in th§ fll'@§@nt f!§.p@r·~. d@t~U@ti §tutiy ©f th~ ~ff~gt§ ©f §©nfi~w§:Uem 
N int§raetion§ ~nth@ §l'l§r~ l§V§l§ or e©nfigu;r~ti©n§ ©f th@ t~~ £ i§ m~fi@, it 

i§ lllhown th~t 'both two .. 111nti thr@~··,.tmtiy int@;r~l•etion§ mu§t 'b@ Q©ft§id§rE!d ~nd th§:t 

th!l! :lJ .. n!l!at> th§ory ~l©n§ 1!?. immffiei§nt, fJJh~ phy§i@~l §i~ifie~ng~ ©f th§ E!ff€Hrt§ 

gf Q§ftfi~u;r~tign int§t'!11@ti{;'lft i§ @~!J!rH'i@tlr P~rti@Ylt!r §.t'j~@ftti©H h~§ 'b@@ft ~iV@ft 

to the tr§~tm§nt ~f e©nfi~~ti©n int§t>§.@ti~n§ in §y§t§m§ @©Ht§.inin~ fN 

• 
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2. '11m SECOND ORDE:R 'riiEORY OF CONFIGURATION INTERACTION 

N 
For the doubly and. triply ionized lanthanides the l~r configuration is generally 

isolated from the 
02 

nearest interacting configurations by many thousands of wave rn.mtlx~r:5 ."" 

The deviations between the calc\llated and experimentally determined energy levelr; ~LJ;'C 

appreciable 1 tbough still q_uite small when ex_pressec:l as a percentage of the width o:C t)1e 

4/ configuration, Thus it would appear justifiable to treat the effects of confic;uro.tion 

interaction in the doubly and triply ionized lanthanides by second-order pertlirb.EJ.tfon 

theory. The analogous doubly and higher ionized actinides can undoubtedly be Hkevrlsc~ 

treated. In the lower stages of ionization the spacings of the interacting conficuratioM> 

will be quite small and it will not always be appropriate to use second-order pertur-

bation theory. However, in these cases it should be possible to construct enerGY matrices 

giving ·all the configuration interactions of the nearest configurations, diagonalize 

them, and then consider the effects of the higher perturbing configurations by second-

order perturbatlon theory. 

For generality we shall consider the effect of second-order configurat1.on inte1"' 

action perturbations on some configuration l. Let two particular states, IOSL} o.nd 

I a'SL}, of p,N be designated by, l?/1) and 11/1"), and consider a perturbing state, lm), 

from some interacting configuration (i.e., having the same parity and whose electron 

N 
coordinates differ in not more than two electrons). If lm) lies above £ by an energy 

· N N · 
6E 1 the electrostatic matrix element (1 1/JIGit ?J;") is subject to the correction· 

m 

= 

where G is the operator representing the configuro.tion 

general there may be several perturbing states and +,he 

will be given by 

c = 

(1) 

2 
interaction, z e /rij' In 

i<j N N 
total correction to (£ 1J; I G I/ 1f;'') 

(2) 
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.The summation in (2) is severely restricted since the matr:l.x elements of configuration 

interaction are diagonal in L an(i S. Nevertheless, for the. complex configurations we. 

shall be considering, there may pe severalperturbing states having the sa.l'lle Lands 

and it is desirable to be able to simplify the swnmation as much as possible. :i:n most 
. . 

of the cases we shall be considering, the separation, &: 1 of the interacting terms 
,. 1!1 . 

will be quite large and it becomes a reasonable approximation to assume the connected 

~tates are deg~nerate •. Within this approximation Eq. (2) may be written as 

c -1 .~ = &: (.,PIGim}(miGI?/1''). (3) 
m 

The placing of the energy denominator in Eq. (2) o\ltside the sUmJila.t:l.on over m, as 

in Eq. (3), makes it possible to search for e:Kplicit expressions for the sum over 

the ·perturbing states lm). Our task conveniently divides into two distinct steps: 

(i) Expressions must be obtained 'that will·permit the evaluation of.the matrix ele

ments of the configuratiop·interactions. (ii) Using these expressions in their 

s:ilnplest.possible form, perform th~ sum over min Eq. (3). 

The . basic techniques for performing step (i) have been outlined i~ an earlier 

paper.23 Before commencing to derive the explicit· formul~s of step (ii) we m~st 
N consider what possible configurations may interact with a configuration t • There 

are only five basic types: 

(a) .l-2(1-')2 and tN ... 2t'£", (b) (£')4.t' tN+2 and (t')4t'+l(t")4t"+l £N+2 

(c) (£)4.t'+ltN£", (d) JN-l.t' 
1 

·and (e) (.i')4t'+l t~+l. The interactions (b) (c) and 

(e) are core excitations where an electron is promoted from a closed shell to either 

N an unfilled shell or to the partiallY filled t shell. 
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3. CLOSED FORMULAS FOR CONFIGURATION INTERACTIONS 

(a) l with tN-2 (.£') 2 or l-2£'£". 

UCRL-10742 

N-2( )2 We shall consider the interaction of states of the configuration;, £' 
N . . 

with a particular state ~ of the t configuration as illustrative of the general method 

of obtaining closed formulas for the summations of Eq. '(3). A typical matrix element 

will be of the form24 

(4) 

where ¢ symbolizes the total spin (cr) and orbital (A) quantum numbers of the states of 

( 
2 "' . N -2 

£') and ~stands for the quantl~ numbers defining the particular state oft . 

Using a result due to RacahJ (his Eq. 33c) we may write (4) as 

~~~ !N(N-1) j .. 1 /
2 

k L 2 . 
(5) 

The two electron matrix elements may be readily evaluatecf4 to yield 

(6) 

where Gk(£,£') is the usual Slater radial integral arising frorn,the radial parts of the 

left hand side. Inserting (6) in (5) we obtain 

::: L {N(N-1) 
k \ 2 

'(t II Qk l\1 t) 2 Gk ( £' £ t ) • 

(7) 
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Thus £or this particular configuXation interaction Eq. (3) becomes 

. 24 
· Using the Biedenharn-Elliott sum rule· we get 

C = - ~(~l~ J~ (/'I/J(!.eN-2 ~,lq,;SL)(/'Ijl'(!l-2 ~1.t2cp;SL) ,J.e.ei] 
'lj!cpt . . . ~.e"A 

. . . 

X ( t] ( -1) t+"A ~ '( -l)k+k 
1 

kk' 

where "A now appears in, only one 6-j symbol ~d the S;YJilbOl [t] = 2t + l has been tn"Pro

duced. Not:l,ng that:5· 

N 
r-

(.eN'I/JI. )~ 
i<j 

we may now write Eq. (9) as 
N 

c == -
LN)~-t t N· t ..... ( .e '1/11 .. __ ; '(}li ~ £J. )\ .e 1/1 I ) [ t J C·l) 
t i<j 

(tll£kllt I )2(.ell£k I lit I fak(_e 1 _€ I )Gk l.(.e 1 _e I) 

N 

== x(t) . CeN'I/!1 L (}l~ . u~)l.eNt 1 ) Eb] '(-l)t , 
t . i~ ~, . 

= 

· where. the function X(t) is defined by 

(~0) 

(11) 
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I. .C.elt~tu.e, )2C.ell£k lu.e I )2akc.e,.e I )ak, c.e,.e I). \·--· hu tJ2 
kk' kk'£ 1 

N 

(12) . 

(l?/11)~~ (yti • Jltj) j.l?fl') appearing in Eq. (11) will contain both terms 
i<j .· 

The expression 

even in t and odd in t. ' •· .. We consider first the even terms. 
t . 

The coefficients ft of the Slater integrals F appearing in the electrostatic 

N' energy matrices of the £ configuration are given by 

(13) 

and hencejfor even tJEq. (11) may be written as 

<r""' 

c ... 
t even - L X ( t) f t [ t ] I (£II£ t II£) 2 

• 
t even 

(14) 

Thus the corrections to the matrix elements of-~ arising from the ter~s in event 

are proportional to the coeff1cientsof the·Slater.radial integrals Ft. 

We now consider the terms odd. in t. Limiting ourselves to f electrons (£=3) vre 

6 
may write 

l 
N l/14 ·(15a) 

J 
N .....-

'( N I ) ,~3 • 3) I N ; ) f ?/1 '--··· ' u. Jl. f 1/1 
i<j J 

'(l5b) 

and 

N 

(fN1/J I'~~ 
i<j 

-, 

(£~. £~) \l'!fr') ~ e(1fr,1fr') [28 G(G2)- L(~6l) - N .1/ll>, 

(l5c) 
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where G(R
7

) and G(G2-) are the eigenvalues of Casimir's operators for the groups R
7 

and 

G2 respectively. These eigenvalues are given by 

(16a) 

(16b) 

where ( u1 u2
) and (w1w

2
w

3
) are the integers used by Ra·ca.h6 to label the irreducible 

representations of the groups R
7 

and G
2 

which in turn were used to clasSifythe states 
N . 

~of the f confi~a~ions: 

Inserting the results of Eq. (15) into Eq. (11) the corrections to the diagor.al 

matr.ix elements clue to the odd t terms may be written as 

Ct odd = L(L+l) [X(l) .. _X(5) J/56 + 2G(G2) [X{5) • X(3)] + . ~ '·G(R7) · X(3) 

- ~- [3X(1) • 7X(3) + 11 X(5)) 

where a a _[X(l) - X(5))/56 

"/ = ~ X(3) 

and X(t) is given by Eq. '(12). 

~ a 2[X(5) - X(3)] 

5 a ~ (3X(l! - 7X(3) + 11 X(5)] 

(17) 

(18) 

(19) 
. I 

From Eqs. :(14)' and (18) we obtain the total correction to the matrix elements 

'(~IGI~') of the ~ configuration perturbed ~Y all the interacting states of the 

~-2 (£•) 2 configuration as 

\'~1 

c ~ ~ / ,! 
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0 shifts all terms of the fN configuration by a constant.amount as does the contri

bution fort= 0 in the summation. Where our interestis restricted to the relative 

shifts of terms within the fN configuration we may write 

,...... r .~ 

C' c - lt .. X(t)ft [t)/(311£t\13)
2 

+ B(?/f,?/1 1
) l <XL,(L+l) + ~G(G2 ) + )G(R7)j , 

(21) 

where t assvmes the values 2, 4 and 6. 

We note that for pN configurations ,(.£=1) Eq. '(21) has the form 

where a' = (23) 

For dN configurations (£~~) Eq. (21) assumes the form 

C' = - (24) 

where. t = 2 and 4 and 

ex" = [X(l) ~ X(3) ](10 . ~I = 3X(3)' (25) 

where G(R
5
),is the eigenvalue of Casimir's operator for the group R

5
• G(R

5
) is easily 

evaluated by means of Eqs. (18) and .(19) of Racah.6 

where Q is the seniority operator. 
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N In the particular case of·a configurat:i.on .£ interacting with a configuration 

;,N-
2 

s 2 the correction to (~IGI~·} of .£N is ~iven by 

(26) 

where Q(N,v) = (N-v) (4.£+4-N-v)/1+ (27) 

and v is the seniority number5 6f ·.the state ~ of ;,N. 

In a similar manner it can be shown that the energy shifts produced by inter-

N~2 . ( ) action with the sta.tes of a configuration .£ .£ 1 .£" is identical·with that of Eq. 11 

apart from a redefiniti-on of the functions X(t) which must now be written as 

X 

1 
6E 

\ 
2_ 
kkl ~ lt~ {.£tt/ k kl . uf (£JI£ II£ I )(£11£ ··II£ I) 

k k 1 £ k k 1 £j 

(28) 

Tbese types of interaction correspond;· to "core excitations "where two electrons 

regarded as being pr~m6ted· from closed shells into' the partially ·, 

filled ;,N shell. The basic matrix element coupling a state of 

' 4;, I N+2 . N 4£ 1 +2 1 2 N 
( £ ') .£ may be written as ( £ -ySL( £ 1 

) S; SL 1 e 2'. 2'. 

N+2 4£ I 

. , £ 'Y 1S 1L 1 (£ 1
) crA.;SL) = 

\ ""\ I(N+2) (N+l)![L I )[8 1
] 

~. v- 2 [L ][S ] 
k 

. k i<j 

N . 
£ with a st.ate of 

k 
r< (ck . c~) I 
k+l ...., "'J 
r> 

(29)-
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N 
The correction to the matrix element (V~IGIV~ 11 ) of .£ due to this interaction is then 

X (30) 

where VI and VI' stand for the quantum numbers -ySL and "Y'S'L' respectively and X(k,.k') 

is defined by 

(31) 

We note that '1/J and 'I/J 11 may differ only in the quantum numbers "'(· Using Eq. (:;2) of :Racah5 

to evaluate the 2-particle c.f.p., Eq. (:;o) becomes· 

(32) 

24 . 
By performing the sum over a and using the Biedenharn-Elliott sum rule on the 6-j 

symbols involving L and again to sum over ~, we obtain 



t.icR.L-1 o1 42 

c . = 

N+2. .. With Eq. {33) in this :t:orm the summation over the connected. states J, '1/1' cannot be 

c~rried out explicitly·~ However, if we note Eq• (19) of Radah,5 · 

, /.{.4.e+2:-N)[s 1 [LJ · ( _1 )L+L '+ .e+s -s-s i 
V(N+1). [S I 1 [L I 1 . 

X . (:34) 

:ve may co·nvert the c. f. p. involving (.eN+ 1 1 ) l+2) to those irtvol ving tbeir cop Jugate 
. . . . . N 

states .in terms of whic:Q th~ sum over '1/1 1 maybe ca,rried out e~li-;:itly. State~ E?f f, 

N+l . · . ·.· .· . · . . 
or J, may then be recovered by making use of the relation 

which holds. for all k ~ 0. Using Eqs. (34) and (35), Eq. (33) becomes 



C . = - (N+l)/2 
kk'. 

¥i ~· 
tfO 
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X(k,k') ... if~ H~t 

T):ie t = 0 term in the sum over t may be ree.dily shown to give an additional correction 

C' = -
(~·£+1-N) (4£+2-N) . 

2(£)2 k 
X{k,k) 6('/JI,j,") 

[k] 

which contributes only a linear shift of all terms of. £N . 

• 
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The identity (Bq •. (68 .) ). derived in the appendix can now be 'used to convert · 
·.· . . . . . . . . . . · · N+l. . N 

the matrix element involving states of t to one involving states of t . This gives 

c ;:: - ·~ :(N+l) I X(k,k') 
ltic'tro 

[t J [s).(LJ 
[S ][L) 

·( .:ol)l+t+L+L+t . . ( -r k k···i 2 

' £'£ .£ J 
'1/1 

.X ·[I (£N'1/fj}£N+Jyi) (.eN+l;p(ll7J;"'j .r L L1 '(£N1f!"'il!ltB.eN'!fl") 
'1/1"' '• . ~"t t J 

+ < -ll~+L+L <l+1tnl'"if!l <l"ifl"Dl+ltlt££J]. . (36) 

·Again converting to·conjugate states, summing over '1/J,and reconverting to states ;_N 

we get 

\ / . :.2 '[\: 
c = - ~ /_,' X(k,k '.Htl( -1) t ) ... ~ t t k k.·~.·. ;' L 

kk'tfO ~~ '£ £ j : '1/J"' 

( N II tl.ll N ) ·".·4.· n + 2 - N.· )·· .. (· .. '') ]· .X • .£ 7J;''j £.:, .e ij;u - \ x- [£]. - .o.'ljl,'lj; : .• 
I 

,4 
Application .of the closure property · gives 

(37) .. 

' r" ·-
\ 

1 t k k 1 J 2 
L :X(k,k') [t ]( -1) t ) J r · 1 l (J$11 (J{) 

21!/' 'ir') - (4~+2-ii)O(M/') /[.£ J j · c = 
kk 1 tfO Le 1 .e £ ' . 

. If we. let 

X(t) 
1 -·--~.E 

\. k( ) k'.( )·(, 'II kll ··· 2( .II lt',ll )2 L G ' £ J £ I G £' £ I ' . £ I .lg .• .e J ' .e I ' £ ·. : .e 
. kk' ~ 

k k''-]2 

.e·.e .e r ) 
J 



The total correction becomes 

C + C' = -

(4.£+1-N)(l~£+2-N) L 
2[£]

2 
k 
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X(k,k) f>(l!r,l!r"). 
[k) 
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(38) 

N Tne first term is identical with Eq. (ll), the expression for the depression of .£ by 

.£N-
2
(.e•)

2
• Thus, as in case (a) the terms even in twill scale the Slater inteerals 

k 
F while, for .e ~ f = 3, the terms odd in t may be written as 

(see :Sq. (18)). 'I'he second and third·terrns in Eq. (38) merely produce a linear shift 

N of all the terms of f . 

The correction for the effects produced by interactions with the 

· (.e•) 4
£'+1 (.e") 4£"+ll+2 configuration are identical to those of Eq. (38) if the 

substitution 

( .e lick I II n I ) ( p, 1/Ck I I I.e II) ·{t k k I l {t k k I} x ..... )J · .. _,_ tl.e .e r p,"p, .e. 
"" 

is made. 

This is another "core excitation" corresponding to an electron£' 'being pro-

4£1+2 
moted from tile closed (n'.e') ... shell to some empty n".e" shell .. A typical matrix 

l t . N 0 N( ) 4.e '+l II II ' e emen coupl1ng .e w1th .e n'£' n .e is given oy 



\Irk 
·/'(' 
A<::: 
of.. 

-15a-

N 

I~: 
k i<j 

UCRL-10742 

s s s 

s .s 0 
/: 

rtf C1 S 
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where 

[ ( -l)A"+'- { '- A £") (l)£'+C1 (u" .e 
X k P,'J!, El + k £' .e (39) 

El = (.e"ucku.e•) ( .e lick I I.e) Rk(.e"t,.e•.e) 
"' "' 

Carrying out the summs except those over k and 1\1, the right hand side of Eq. (39) becomes 

I ( -l) t 5(k,t)e(s 2 ,o)VT~£N'l'JIUtl/.eN\\f,) 
k (L ] [ t] 

where r = L + L + P, + s + S + S + l + k + t, t =: L
2 

and t is even. Ee,ch value of t 

corresponcls to a different perturbing state. The sum over 'if in the sec~nd term may 

be written as a matrix element of a double tensor v/3212 as defined by Judd~ 25 

However, the form given in Eq. (l.JO) is more convenient for the 

,., ·· · ;1 !, calculations. 

If we let 

xk = f E coefficient o . 
1 

coefficient of E2 , 

the total correction to the matrix elements of .l due to states of .eN(n•t•)
4
£'+

1n".e" 

is of the form 

c = 
l [ [ k k' k k' -- X X E1 E1 !:::.E 

IV •s t 
2 

kk' 

I. 
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Using the closure property to swn over 7jJ', the first term in Eq. · (41) may readily 

be sho'lm to . be 

Carrying out the sums over s2 and t, the .term in ykyk' becomes 

X 

L o(s, 8 1 )(.eN7/J{ !.eN -1-;p) (.eN 7/J" {!.eN -1-;p 1 ) 

kkl 
'lj; ?/J I 

7/JIX 

[L I ][S I l(-1)1+1: . 
[s] . 

.[x] . ( -1)k+k I 

'(43) 

Again changing to conjugate states in order to carry out the sum on 7/J'J we obtain 

\ 

)._. F (x) (.eN -1*lllf II .eN -17ji ')(.eN 7/J ( I .eN -1 ?ji) (.eN 7/J" (!.eN -1~ 1 ) 

* -;f' 
·kk' 

XfO. 

X ( -l)L+L'+.£+1 
(E k)2 

2 5(7/J,7/J")) (44) 
[k] 

where F(x) is given by 

F(x) 

and k + k 1 is even. 
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The identity '(Eq. (68 ))again allows us to convert the sum over reduced matrix 

N-1 N 
elements of states of £ to a similar sum over states of £ • Eq. (44) then becomes 

r
\ 

) = L_ 

~kk' 
x-:}0 

where x may be even or odd. 

N(4£+3-N) ~ 
liE' [£] 2 

k 

N(4£+3-N) 

6E' [£]2 

The third term in Eq. (41) is given by 

X 

2 
where X(k',t) = 6E 

Carrying out the sums on ?fJ and ?f1 1 , Eq. (47) may readily be rewritten as 

k 1t 
(48) 

The total correction to-t;l;lematrix elements of £N by l(t 1 )
4£'+ln"£" is then 

given by the sum of J?qs< (42), (46) and (48). The net effect of this interaction is 

to modify the _sl·at~r integrals Fk, introduce the parameters o:, [3 and 'y (for lJ) and 

produce a'iinear shift of all the levels of the configuration. The relative corrcctior 

produced by this interaction are then of the same form as the corrections to the 

matrix elements of £N proc1uced by interaqtion with £N-2 £ 1 £11
, Eqs. (11) and (28). 
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· (d) · P.N with P.N-l P. * 
~ ' y ' '. ' • I ' • • \ 

' Wybour.ne?3 has shown that the matrix elements of this 'configuration interaction · 

may be written as 

. ' 

( . 

: t 

· I:t' the s~tioh over 7/Jl is evaluat~d PY_ means of' .the identity ·in Appendix I, 

(Eq~ (:68·)),the right hand side o:r Eq. (49) becomes 
. l • 

(49) 

= · ~ Hf+L '+£ .fN (e IIQkll t) ( t II? II~') Rk( u, u' ) [ (~1) t+t '+k t ( rLl/ [L 1) 1/ 2 

X UN?f(ltN-17/JI) {~.- L L}·. (£N'I/JII1l:kll•N?ii) 
.· ~ t'k 

. . . 

For .e f .e 1 when the second term in Eq. (50) is zero 1 we may write the . 
, . N 

corrections to the mn~rix elements.of £ as 

. ·, 
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(51) 

.where 

(52) 

N-1 
Performing the summation over the states of£ £'which connect a particular 

state ~ of £N we obtain 

{ ' 0 1 ,--, \ k k" k I\ k k" k I 
C ~ - 2._ !:-_ X(k,k')[k"]/[L] . _

1
{ \ · ( 

kk ' k" ~ 1/J ' L 'L 1 I p, p, I p, 
~ l J 

(53) 

Using a result due to'Racah 4 (this Eq,. 33) we note. 

---) 
= L_ 

?f' 

Eq,uation (53) can now be rewritten as 

c = 

(54) 
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We note that Eq. (5.4) contains 3-particle terms of the type 

, When :E s .£' two.additional terms must be added to C. The first is given by 

where X(k,k') is given by Eq. (47). Evaluating the sununation over '1/J' and then 

using the closure property to sum over 'ljl, we obtain 

(55) 

The second term is mere~y 

c2 = - Nk~' il:(k,k') r (tN1/J' (I ;-1"', )(l"'" (il-l"', )/(t]2 = -Nk~ ,xc~~~') o("""'") 

(56) 

Adding Eqs., (55) and (56) we obtain 

C' = (57) 

Thus we see that when,£ a£'; interaction of/ with R,N-l£.' is represented 

by a 3-body interaction, plus a scalar 2-body interaction proportional to the co-. . 

efficients of the Slater integral.~ and a·linear shift of all the terms in the 

configuration. 
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(e) .eN with (t 1 ) 4£~l£N+l 
This type of interaction corresponds to a "core excitation" where an electron 

4£'+2 . 
£' from a closed (£ 1

) shell is regarded as being promoted into the partially 

filled .eN shell. A typical. matrix element coupling a state of the .eN configuration 

with a state of (£ 1 )
4£

1

+l£N+l configuration will be of the form 

N 

)
1

S;SLI L ~ e
2 

k i<j 

I' .... \ 

(1kL;. 
X (.eN~II;l\ll1/J) ~ J (£ 1 \\Qk\\£) -B(£ J .e 1 Hl+1

1/1 1 
( ll1/J) 

~£1L'£ 

-· 
l 

X (tli£kli£)(-1)1 'H+L/[t]J Rk(U,££') 

where the principal quantum numbers are of course always diffE~rent. 

(58) 

In order to obtain an expression for C, we again consider first the case '· 1 

£ f .£ 1
• The total correction is then 

X 

~ 
\ 

C = -(N+l) /_ 
kk' 

[_ X(k,k') 
:1!.1 1jJ 
</J ' 

[S'][L'] 
[S ][L] 

.,-·-

~ L' k' Ljt 
' £1 L I )j 

L 
J 

(59) 

where X(k,k') is again given by Eq. (52). We may now use Eq. (3!1-) to convert to 

conjugate states and carry out the sums over 'ljJ 1
, ~' and ~ 1 • Converting back to 

N N+l 
states of t and £ by means of Eq. (35), for k"fO, Eq. (59) becomes 
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c = . 2... X(k,k I) 
kk'' 
k"f.o 

x cl7flll<nr~k"Jk'. ~k')II£N7fi") 

N 5( I II)] + [£] ".jf,?/J 

(Go) 

L .{_4£+2-N)X(k,k) 
[k][£) 

k 

where k and k' are even and£ f £ 1
• The first term differs only by some multiplicative 

N N-1 ( 4) factors from the interaction of.£ with.£ .£', Eq_. 5 , while the last two terms 

N 
give a scalar two-body interaction and a linear shift of all terms of .£ . 

'dhen .£ ::; .e I. We again haVe tWO additional teri'TJS, 

C ~ 2 L~ X(k,k 1
) 

l kk' 

X 

(N-i-1) [S I J [L') 

[£] [S)[L] 

Again converting to conjugate states to carry out the sum on 7/J' 'and using the 

closure property, we obtain 

c = 
l' 

\ 

L. 
kk' 

Using Eq_. (20) of Racah,5 c
2 

is =Padily seen to be 

For the case of .£ := t' we must then add to Eq_. (60) the expression 

(61) 

(62) 

C' = 

(64) 

(N+4.£+2)/LeJo(7fi,7fi") j. 

The total correction then has the same form as Eq. (57). Thus when p, := Jl,' the inter

actJon of .eN with (£ 1 )4.£ '+lnN+l' 
• ,. • )j · may l1e represented in the same way as the i:·,teruction 

of P,N with nN-ln•, · 
)J h i.e·' as a 3-body interaction plUs a scalar 2-bodv ilnteraction and a 
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linear shift of all the terms of £N. 

4. EVALUATION OF THE RADIAL PARAMETERS 

If radial functions were available for both the ground state and excited 

orbitals it would now be possible to calculate the perturbation due to the various 

excited configurations. One must, however, be sure that the perturbation to be 

calculated has not already been included in the calculation of the wave functions 

used. The use of perturbation theory starting from Hartree-Fock functions has been 

6 discussed in some detail by Nesbet. 2 His method of symmetry and equivalence · 

restrictions, used by Watson and Freema~ 27 in their HF calculations for the rare 

earths, includes configuration interaction involving promotion of any electron to 

another state of the same symmetry, e.g.; 4f to 5f, 5P to 6p, etc. Because the 

angular part of each function is fixed and only the radial parts are allowed to 

vary, one electron excitations to states of different symmetry, which would be in-

eluded in an unrestricted HF calcula~ion, must be treat~d as a perturbation-on 

these functions. Similarly the SCF calculation of Ridley 28 includes one-electron 

excitations to states of the same symmetry. No two-electron excitations. are in-

eluded, even in the unrestricted HF functions. HF functio~s calculated for a 

particular S and L can contain configuration interaction only 1;Ti th states of the 

same S and L in an excited configuration. Such functions may be appropriate for 

estimating perturbations due to a one-electron excitation to another state of the 

same symmetry but, of diffel,'ent S and L. A function which is tm average for a con-

figuration must, in some average way, take into account all one-electron excitation~ 

of the same symmetry1 but it is diff:i.cult to say exactly what has been included. 

Thus, in computing the interactions due to various configurations one must be very 

careful that all or part of that interaction has not already been included in the 

computation of the radial wave functions. 
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5· CONCLUSIONS 

It has been shown that, to second-order, in the approximation tLat th0 

configurations are well separated, all two-particle interactj.ons with the con

figuration PP may be represented by a linear shift of all the terms of' the 

configuration and a scalar two-body interaction. One .. electron excitations, 

either from the core or the unfilled tN shell, are represented by an effective 

three-body interaction, a linear· shift of all the terms of tN and, in some cases, 

a scalar two~body interaction. 

The scalar two-body interactions are those arising :from the linear . 

theory. The validity of Ra.cah19 and Trees ,l7.treatment of the two-body scalar 

interaction has been established and, in addition, the analytical form of the 

radial parts of the interactions determined. Racah19 and Trees17 have introduced 

two scalar interactions to be added t6 the matrices of'dN, one proportional to 

L(l.+l) and the ethel' to the eigenvalues of the seniority operator Q.. We prefer 

to use the eigenvalues of Casimir's operator :for the group R5 ir1 place of the 

seniority opel'ator since the radial parameters (Eqs. (12) and (25)) are of a 

simpler :form. It will be noted that different choices of scalar interact:l.ons 

will yield different corrections to the Slater Fk radial integrals. In genern."l 

we need only introduce £ parameters in addition to the £+1 Slater parameters to 

include the effects of the two-particle interactions with the l configuration. 

Racah and Shadmi29 have made a detailed study of the Q correction in dN con-

figurations and failed to obtain a substantial improvement in their energy 
I 

level calculations, This we be1iev(! is due to their neglect of the effective 

three~body interactions. 

The three-body interactions are of a J:1tm~~inear type. For dN confiGura-

tions where there is the exc.itation of a sing1-C:. s electron they may b~~ :rl"~ducec1 

. . .. . .. 3D 
to the arldi.t:i.on of a single parameter of the type recently used by T:r•ecs to 

take into account the effect of )s~d 1 on )s2)d.G I•'or i.N the total correction ., 
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I,k h ' plus a term of t e form 

c 
kk'k 11 £ 1 

s~ ~· :J.;.· . X(k,k',£') l:• • 

X 

where X(k,k',£') is a constant for a given k, k' and P,'. The appearance of£' 

in the 6-j symbol makes parametrization of the three-body terms more diffiqult 

than for the two-body interactions. However,it.sbould be possible to parametrize 

these three-body terms for the most significant interactions, .£' =land 3 f:'lrfN, 

and determine the parameters X(k,k' ,.£'), from experiment. For the p excitations 

only two addittonal parameters, X(2,2,p) and X(lJ.,4,p), are needed while for tl·1e 

f exci ti::Ltlom; oix e.ddliilonaJ par.IJffifte:rs, X(2, 2, f), X(k, lJ-,f), X(6 ,6, f), X(6 ,2, i·,),X( J~., 2, ( 

and X(6,4,f), a.re required. Thus for the ~ configurations both the tv1o- and one-

electron excitations could be ;included by adding ten parameters to supplement the 

usual Slater parameters. 

Since the total correction for two electron excitations is given by the 

s urn of .£ addi t io.nal parameters , it is meaningless to perform a least aq uare s 

:.lJJalysis wi thou.t including all of them. Thus, for ~ it is unw'ise to consider 

only a term o.'L(L+l) as this is only part of the correction. We have also seen 

that the addition of the parameters a, ~ and ~ is alway~ associated with a modi-

' k 
fication of Slater integrals F Therefore, one should never d.o a least squares 

analysis for these parameters without allowing the Slater integrals to vary at 

the same time. 

While we have given the parameters associated with the additional t\-ro-

nnd three-body interactions in terms of explicit functions of the radial intec;rals 

for particular confj.t:,JUrations the parameters derived from experimental datn vrill 

represent the weighted contributions of many configurations since the angular part 
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oi' the intera.ctions is independent of' the principal quantum numbers n' £ 1 of' the 

exc1 ted elec·~rons, Not only will the p~lra.meters absorb the effects· of the bound 

states but also the states of' the continuum making it very dj.ff'icult to asoess 

tho aar~om'n'1t between the ex:per~.menta.lly derived parameters and those utt~loul!ll.tecl. 

:f':~.•om Ha:rtr~~ ... ~"'iock cu.1.lcuJ.a.t~.ons. Thus ~.n Trees ''0 calculation of the ef'1'ects c:,f' 

;,s3d7 on ;'Hi!
2;:;d.6 

1 the ef:f'ects o:t' ;,m2,d5tl·f.l have automatically 'been inoludecl. 

Ir1 tha, caMe (;)i' low energy perturbing con:f'~.sura.tions it will still be 

neousary to tlll.l<e 'i.rrt;o account interactions explicitly. However 1 there wil.l 

normally only be a few such configurations and we may parametrize the eif:f'ects. o:f' · 

a.ll higher con:t'1gura.t~.ona. 

It should be pointed out tha~ the above conclusions hold only for £N 

type configurations and do .not necessarily hold for other configurations. For 

example, starting from the e~1ations of Wybourne, 2' it ca.n readily be shown that 

N N the direct part of' the i,nteraction of' 1- £' with£·£" contains .a term of the :form 

which is a ncm-scaJ.ar two-body interaction. Such non-scalar terms may be impor

N 
tant when considering the interactionR of such configurations as d p~ 

31 The use of effective interactions has also been discussed by Talmi in 

connection with tho nuclear shell model and the remarks of this paper should have 

equivalent analogues where configurations of equivalent nucleons are encountered~ 



-28- UCRL-10742 

ACKliJ'OWLEDGlv:IENTS 

The authors wish to thank Dr. R. K. Nesbet, S. Rajnak and J. R. Gabriel 

for helpful discussions. They are expecially grateful to Dr. B. R. Judd for 

his active cooperation in the early phases of this work and in establishing 

the proof of the identity discussed in the Appendix. 



UC.RLo.l 0742 

Alternate Expression :f'or the Ihtera.ot:ton between 
. · N N l 

the Configurations J and~ •· ~~ 

f}' 

I:f' we make UM of the te~hni(]W'jj UMd. by l!taoah to fjalC',iUlate tht>! intera.otiem 

btrtween the ·Mn:f'it;;uratiem.EJ d.n arHi d.fi=ls,~ tifioth!\lr ti!xprtH!Sion, equivalefit to ;mq, (~~) 1 

mlly be g'\;JtaiMd :f'oi" the interaotiofi b!itw~en the G~on:f'iiJI,Q'atione3 AN afid lN"'~ £'• ~et1~ 

r~rnllts 1eal1 tl;} !3.n ifitEli"EJ§tinf6 idem tHy~~ whiah §an be §hown to bf.! gene:ra.lly t:ru@ 1 

even in the ~a§e o:f' double t~n§ors. 

Followin~ RafjahJ~ we may write 

f 1 \ ;;;: i 2[LJ I 
j 

' l, 

f~.,, ( -l)L·L"'(l"JSLII r .1!1 kiili"1
1/11A 'GL"') (£'1"11f!1A 'BL",I ~ 2/ll£'1·l1/l' A 'SL)] 

l ' 

- .fN ( l1f!C il"11f!' )( til2kllt • )2 e(t ,A') I (A l t~<c u ,u') . 

' J 
(66) 

IJ.lhe last term :tn this exprtiHHlion arieH~s from the fact that Raoah '~ teohl.1iq_ue o:f' re"' 
\""= c··· 

plaoine; the _/ .. (£i k • Qjk) by ( /;. £/) 2 introduces extra terms which 11l'e non 
'l<J '1 

zero for £=~' and must therefore. be subtracted out. 

I:f' we use the Biedenharn .. EJlliott sillfi rtlle and the orthoQ;gnality propertiem 

of 6 .. J e~ymbolEJ to evaluate the Sillfi over Lm, the :righthand side of Eq. (66) may b(j 

raw1tt~n 11CJ 
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~·--·· ........ -·-·-·-· 
-1 /NIL"] ( -l)L+L I+£ '+k(RP·IJ'' { j.£N-l./, I) V . [L ) ~· 'Y 

/' 
I .e I L L I 
·, I 

\ I 

l_Ll k £ J 

- ~ o(.e,.e') .fN 

Since they e.re two different expressions for the same matrix element, Eq. (67) muGt 

be identically equal to the rir;hthand side of Eq. (49). A slight rearrangement of 

terms then leads to the identity 

\ 
/ ( [ 1 It J I [ L J ) 1/2 
?/!" . 

(68) 

A r:;imilar expression for the more general case of double tensors may he gen-

Kk ') ( Kk) era ted in the following manner. Take the tensors Q = L .. 1 Q i where 

(r:;£!1QKki!s '£ 1 ) = o(s)s 1 )5(£)£ 1 ). Since the U k,s stay within a. configuration £N a 

t t . I N "M "~ ") h It ''"'"L" complete set of s a ·es lS £ ?/J c w ere ?/J "" 'Y o . 
0 .J 



Thus 

The stutes with bars 

-)l-

N.-1 
over• them. arr:~ all stn.ter; of .Z 
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We nbw mult:i.ply both sides 

b,v ('L£LV~\t f\,.ernl!) (L'Mr,.em_e\E .e VM£) (sssM8 \s M8s m
5
)(S'Mss m~ \SsS'M~~;) and sum 

elements we Get, 

,.
\ 

l_ 
'ljJ it?/1 '" 

X 5(L,L") o(S,S") 

24 Using the Wigner-Eckart theorem on the m:::LtrjX 

(70) 

N-J- Kk N-1-= ( £ .'1/J J G £ J 'ljJ 1\Q \\£ .?j/ I J S £ J ?j/ t ) • 

( N I N-1-) Because of the delta funct:i.ons jn S and L, we can multiply by .e </J £ 'ljJ and sur.1 

over 7/J. Th:Ls gives 



= 

= 

X 

+ 

X 

~--· 
\ 
/ 

\"··-
\ 

.. ~0 .. _, .. 

!. ... (llN?JI( l.eN-1~) (;eN-1~, sll, SL\I£Kkii£N-11;j,, s.e,s 'L') 

~) 
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, ....... 

/.. ( P,N?Ji (I .eN -1~) ( _1 )L+.e+L '+k+S+s+S '+K ( [L) [L, ] [S] [S, ] )1/2 
:;ji 

(LkL') 
> ( 

) - - I 
I L I.e L ! 
1.... j 

(.eN?Ji( Il-l~'·) ( -l)L'+ll+L+k+S'+s+S+K ( [L) [L,] [S] [S,] )1/2 

,.- ...... ,.. ~,\ 

( L lc L 1 
(' (8 K S 1 I 

) ) (, ) - I' - -r t.£1'£ )sS's-' 
l. .. ~- . .J 

If we now multiply by 

r ... , 
·1 k L' 1 
' . ,:' ! 

.: £ r:~.e·· 
I I 
l_ j 

and sum over S' and L 1 , we obtain 

(71) 



X 
.rL l\. Lui} 
l! L'£ J 
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This is the same as (68) for the more general case of double tensors. 

(72) 
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