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~. Introduction. In this paper we consider the Dirichlet problem for 

singular second order elliptic operators. Our object is to formulate 

and prove sufficient conditions for such operators to have a discrete 

spectrum. Specifically, the operators are to have the form 
n n 

1 = L 
i,j=l 

+ '[ b
1
, (x) d + c(x). dX,'" 

l. i=l 

The coefficients c are functions defined in a bounded 

domain GC En. We require that the singularities occur on dG; i.e., 1 

is elliptic for x E G, but we allow 1 to be parabolic for some XE dG. 

* K. 0. Friedrichs has obtained criteria for spectral discreten:ess of an 

ordinary differential operator 1 = - r -l(t) ~t . a(t) ~ - q(t). 

** Kreith considered symmetric, singular, elliptic partial differential 

operators 1 = 

n , 

r(x) -l L ~''i aij ~xj + c(x). In this paper we 

i,j=l 

let r(x) = l; moreover our operator 1 is not necessarily symmetric but 

2 bi(x) must be less than the least eigenvalue of the matrix (a .. (x)). 
l.J 

Kreith's criteria for discreteness are developed in the following 

manner. The operator 1 majorizes an operator 

·1' 
d' 
(£(." + 'Y ( x ) , where 
xi n 

1 and 1' are respectively restricted to self adjoint operators Land L'. 

He shows that the spectrum of L is discrete when the spectrum of L' is 

discrete. By enclosing G in a parallelepiped, he is able to separate 

variables in the eigenvalue equation L'u = A u. Kreith thus reduces 

* see [12] 

** see [11] 
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· this equation to an ordinary differential equation to which he applies 

the criteria developed by Friedrichs. If the matrix (a .. (x)) is not 
l.J 

already diagonal, the functions a
1

(xn) must be less than the least· 

eigenvalue of (aij(x)) at each point x E G. Consequently, if L 

becomes parabolic at x', all a 1 (x' n) == 0 and L' degenerates in all 

directions simultaneously. Kreith's criteria are governed by the di-

rection in which L degenerates most quickly. 

Our operator 1 is extended to a closed, densely defined, Dirichlet 

operator L whose resolvent set is contained in a left half-plane. We 

assume there exists a coordinate system in vThich the matrix (a .. (x)) 
l.J 

is 

d~agonal. In this new coordinate system we prove an integral inequality 

which is related to Friedrichs' criteria for spectral dis~reteness in 

ordinary differential equations. With this integral inequality we obtain 

a condition for spectral disc+eteness of the Dirichlet operator L, When 

applicable, our condition has two advantages over Kreith's. L degenerates 

only in those directions in which the eigenvalues of (aij(x)) go to zero, 

and, secondly, our criterion is governed by the direction in which L de-

generates most slowly. 

The object of section 2 is to obtain the Dirichlet operator L 

associated with 1. After formally defining 1, we introduce a bilinear 

form J[u,v] ( = RE(lu,v)), whose domain is C~ . We show that J is 

closable and that its domain may be extended to a Hilbert space 

~O C .;(2 . For large positive A , and u, VE fn 0 we prove that 

(lu,v) + A (u,v) satisfies the condition of the Lax-Milgram Theorem. 

L is then obtained as a consequence of the Lax-Milgram Theorem. 
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In section 3 we develop a criterion for the discrete!less of the 

spectrum of L. First we consider the problem of diagona.lizing the co­

efficient matrix (a1J(x)). To this end, a new condition is introduced 

which relates the eigenvectors of (a. (x)) to a curvilinear coordinates 
ij 

system. In the curvilinear coordinate system 

n n 

3 

L = .. ~ ay~. dii(y) a~i. + \ bi (y) J:- + c (y) and some of the L oY .. 1. 
i=l i=l 

dii(y) go to zero a.t the oG. The rate at which the d
11

(y) go to zero 

at the singular boundary will govern whether or not the spectrum of L 

is discrete. 

In the next section we prove a. corollary to the discreteness theorem 

of.section 3· We let 1 be symmetric a.nd obtain the existence theory of 

section 2 directly from the Friedrichs' extension theorem. Following'Kreith, 

I we let L majorize and. operator L = w 

' apply our discreteness criterion to.L. 

n 

L -~ · a(x) _L + c(x) ·and 
1=1 xi , . oxi 

Thus we obtain a condition which 

does not depend on the diagonalization of (a (x)). Next, criteria. for . ij 
I 

non-discreteness a~e proven for the case when L majorizes L. 

·Finally, in the appendix, section 6, we prove a relationship used 

throughout this paper. · Here we develop positive lower bounds for the least 

eigenvalue of a positive definite hermitian matrix. 

To Professor Frantisek Wolf go my wholeheart.ed thanks for the 

guidance, patience and understanding given me throughout this undertaking. 



2. Definition and Extension of 1. We will consider the Dir:i.ehlet 

problem 'for the elliptic operator 

n 

.r n 
d .() "\-

0 2.01. 1 = - dx
1 

aij(x) dXj + L. bi (x) 
dXi 

+ c(x) 
....__. 

i, j=l . i=l 

The following conditions are assumed to hold inside a bounded domain G. 

1) aij(x) are complex valued and of class c1 in G with aij(x) = 

aji (x) 0 

n 

ii) \ L aij (x) ~i Ij > 0 for all complex r ~ 0 

iii) At every point X€G 1 the · n. eigenvalues of the coefficient · 

matrix (ai/:x:)) are distinct. 

iv) c(x) is real continuous and bounded from below on G. 

v) b.(x) are real and boundedly differentiable in G and 
~ 

max (b~ (x)) :::; 
i=l 1 2, .. n 

det. (a1 . (x)). 
. .. .. . J .... 
n . n 
n a .. (x) \- .1:_ (x) 

. -1 u L ajj 
~- . 1 J= 

2.02 Definition. We say that a point :x:0 on oG. is a singular 

boundary point and that the ellipticity degenerates at x0 ·i:f' there 

exists a sequence of points (~) in ·G for which 

- n ~ 

. lim ~ = x0 · and . lint L aij (~) ~i ~j = 0 for some fixed ~ ~ 6. 
k -+ 00 k ~ 00. 

. i, j=l 

We allow the ellipticity to degenerate on a set S C:()G. It is 

.h 



* assumed that G is in canonical position, i.e. G C {x lx >0} n 

and S <: (xlxn =0), and that the boundary of G is sufficiently smooth 

for Green's Theorem to hold. 

2.1 We will consider 1 on the space of functions which are infinitely 

often differentiable and which have compact support in G. With 1 we 

define a bilinear form J[u,v] which is bounded from below. 

2.11 Definition. ;( 2 (G) denotes the Hilbert space of functions u(x) 

for which J ju(x) j2 
dx < oo 

G . 

2.12 Definition. C~ (G) = (v(x) lv.(x) is infinitely often differen­

tiable and has compact supportinG}. 

Let u, VEC~ (G) then, 

(lu,v) 
e f[- f 

G i, j=l 

n 

=- f L 
i,j=l 

~=0 

e .. 
:lJ 

n 
dU \ 
dXj + L 

i=l 

cos (n · x. )v ds 
l 

~ v + cuv] dx 
xi 

b. 
l 

n 

dU "'\'::- + cu ox. 
l 

a .. 
lJ 

dx 

We define the bilinear form J[u,v] 1/2 [(lu,v) + (u,lv)] for all 

*See [1~ page · 9 
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2.13 J [u,v] = 

n 

1/2 [(lu,v) + (u,lv)) = 1/2 j[ I a1j 

. n. 

=J I 
G i,j 

We have assumed that 

n· 

so that c - 1/2 ~ 
i=l 

G i,j 

cuv dx 

n 

dx + 1/2 f I bi 
G i=l 

2l (uv) 
dXi 

cuv dx 

n 

dx + J [ c - 1/2 ~ 
G i=l 

G· 

uv dx + J cuv dx 

G 

c is bounded from below and is bounded, 

db. 
]. 
~ is bounded from below. Let K > - oo be 
ox. 

]. 

n 

a lower bound for c - 1/2 L 
i=l 

Clb 
i 

dX.' 
1. 

J [u,u] is a hermitian bilinear 

6 



J L
n 

form bounded from below, i.e. J[u u] > a 
' ij 

G i,j 

for all U€C~ (G). 

2.2 By adding a suitable constant to J we define a positive form and 

inner product ( .,. ) with the same domain as J. We now extend the 

domain of J to a Hilbert space 'Jn (G) c ;;{_ 2 (G) . 
. 0 

Let M be a positive constant such that for U€C~ (G) 

J[u,u] + M llull2 > llull2 

Define an inner product on C~ (G) 

· (u,v) s J[u,v] + M (u,v). 

We wish to show that we may complete C~ (G) with (u,v) as the inner 

product. 

2.21 Definition. We say a form J is closed in a Hilbert space H 

if(~} € domain of J, and ~ ~U€ H, as k ~oo and J[~- us] ~o, 

for k, s ~ oo implies U€ domain of J and J [~ - u] ~ 0. 

2.22 Definition. Let J
1 

, J
2 

be two forms such that the domain of J 1 

is contained in the domain of J
2 

and J
1

[u,v] ~ J 2 [u,v] for u,v€ D[J1 ] · 

Tnen J 2 is called an extension of J 1 . 

2.23 Definition. A form J is said to be closable if it has a closed 

extension. 

2.24 Theorem. A necessary and sufficient condition that a form J be 

closable is that if u € domain of J and u ~ 0 as n -~ oo and n n 

J[u - u ] ~ 0 for m, n ~ oo n m 

Proof. See [1] page 13. 

implies J[u]~o. 
n 

2.25 Lemma. J as defined in 2.13 is closable. 

(J[u] _ J [u,u]) 



Proof. We may assume J > 0 or else replace J by J + M in what 

follows. Let un E C~ (G) and suppose un ~ u as n ~:oo and 

J [:un - um] ~ 0 as n, m, ~ oo • 'For every £ > 0 ther~ exists an 

N such that if m, n > N 

> J [u - u ] = J[u ] + J[u ] - 2 Re J[u , u ] > ~ A~ J[u ] > O, n m n m n m .n 

> J [~,·m] - 2 Re J[u, u] n m • 

For fixed m let n ~oo then u ~ 0 and 
n 

~ n 

jJ[~,1lm] I < 1j 2._ aij 
G i,j=l 

()u du 
n -m dxj+ 

axj C'lxi 

-J t ()u n 

I d m un dx+ ~ "[ = dx." a .. 
C'lxi JJ 

G i,j=l J G i,j=l 

n 
db . ,r [c - l/2] L i 

dx + dx. u u 
.. JG n m 

i=l ~ 

Using Schwartz's inequality, we obtain 

IJ[un' umJI <II unn[(fO"- ~ aij 

G i,j=l 

+ (J ( [c-l/2 )_ 
G .. 

n 

1/2) 
i=l. 

u cos(nx.) 
i n J 

ds I 

0 

as n ~ oo 

8 



So that Re J[u , u ] -4 0 as n -4 oo • Therefore t _> J[u ] for n m m 

m > N. 

Q.E.D. 

2.26 Definition. 
2 . 

~ (G) = {u(x) I UE ;r (G) and there exists a 
0 . 

sequence . (vn} E C~ (G) for which (u-vn' u-vn) > -4 o. as n -400 } • 

The closure of J bas 'Jn (G) as its domain. 
0 

2.3 We will use the following theorem due to Lax and Milgram to show 

that 1 can be extended to a closed operator L densely defined in 

2.31 Theorem. If F(u,y) is a bilinear form in a Hilbert space 0 
. 0 

satisfying 

and IF(u,v) I~ c1 JJuJJ/J,o JJviJ 1ho 

then every linear functional (u,v) in ~ can be represented in the 
0 

form (u,v) = F(u,w), where w depends only on v and is unique. 

Also, there exists a bounded linear operator S such that Sv=w. 

Proof. See [2] page 169. 

2.32 Lemma. For u, ve:'h;, let F(u,v) = (lu,v) +A. (u,v) 
0 

G i,j=l G 

9 



We wish to show that for A sufficiently large 

2 
1) lfF(u,u) 1. ~ c0 II u II 1n ,

0 
> c0 > o 

ii) IF(u,v) I =s cl II u II mo II v II mo . 

Proof~ By ~.13, we have that Re(lu,u) = J[u) for all U€ C~ (G). 

Then IF(u,u~ J == f(lu,u) +A (u,u) I ~ I Re[(lu,u) +A (u,u)]l = 

IJ[u) + A (u,u) I· 

Choose A > M ~s M was defined 2.2. Then, 

2 . 2 2 
jF(u,u) I ~ J[u] t A. II u II > J[u] + M II u II = II u II ho · 

Therefore c0 = 1. 

ii) we must show 

10 

I 

I(J.u,v} +A (u,v} I s:_ cl.[(ll u IIi + II u I@ + M If u 112)( llv IIi + II v II~ + Mllvjl2r 
where 

2.33 

= 

n 

II u II~ " (u,u)2 • J [ c - 1/2 L: 
G i=l 

n 

J c I u 1
2 

dx - 1/2 f L 
G .. .. G i=l 

db. 2 
). I u I ax. dx. 
.). 



cb1 
Since each ~ is bounded in G we can find B such that 

ox
1 

B > 

Thus 

{
cb.} 

,n ax: . Then 

cb. 2 2 2 
dX~ I u I dx < II u 112 + B II u II 

J. 

r 

j ( c + A) I u 12 
dx < II u I@ + (B + A ) II u 112 

. 

G 

For A sufficiently large and XEG c(x) + A> o .. Then 

2.36 IJ (c +A) uvdx I 
. G .. 

11 

< (11 u ~~~ + (B + >->II u 112 :Y2 (11 v J@ + (B +>-> II v 112 ) 1/~ 

For u,ve C~ (G), we have 

n 

0 < J\ a .. ~ ~ dx - L J.J ox. ox . 
. . 1 J i 

G J;J = 

n 

a .. 
lJ 

cu u dx 
dXj 



12 

n 

so that the operator - \ ~ L .ox1 
is :positive and hermitian. 

i,j=l 

Therefore, by Schwartz's inequality for :positive forms, 

= 

We assumed that max. 
i=l, ... n 

det(a .. (x)) ___ l.;::..J _______ , but· 

~ a .. (x) L 
j=l JJ i=l 

(see the appendix) this is a loifer bound for the smallest eigenvalue of 

(aij(x)). Let dii(x) be the eigenvalues of (aij(x)). Therefore, 

max. 

i=l. .. n 

min 

ic:l. .• n 

{dii(x)} • We will make use of the following 
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n n 

inequality ! II L Ai 112 ~ 2n-l L II Ai 112 • 

\ i=l 1=1 

Then 

n 

JG bi ~ ~~~i 12 dx ~ 2n-l ltvll2 f L (min di~ ~~~. I 2 dx 
G i=l . ~ 

Finally we combine 2.35, 2.36, 2.37 and 2.38, obtaining 

2 
jF(u,v) I 



Thus 

Let c1 > (B + ;>...) /.2.n+l • Therefore IF(u,v) I ~ cl Jlull?,0 lh11?;,0 • 

We have shown .that the bilinear form defined by 2.32 satisfies 

Theorem 2.31 when ;>... · >max. . (M, min I c(x) I) • 
X€ G 

as 
Q.E.D. 

2 4 ·Lemma If. 1 F(u v) and· '1~·0 aro!lpreVJ..' ously defined, then there 
• • , . ' ' YY/ I\ 

exists a closed operator L which is: a restriction of 1, densely 

defined in c( 2 and has a left half-plane in its resolvent set. 

Proof. Let ;>... > max. ( M.~ min I c(x) j} • For u € 1n 0 , each element 
X€ G . 

we:c(2(G) induces a linear functional (w,u) in 1n0 • Since (w,u) 

~llw II !lull ~ llw II Jlu!l ~ 0 , (w, u) is a bounded linear fUhctional on h7 0 

14 

for each W€ ;C 2 (G). By Theorem 2. 31 there exists a unique v € 11,0 so that 

2.41 (w,u) = F(v,u) ~ ((l +A.)v,u) for all u e: ~O • 

2.42 Denote the dependence of v on w by v = Sw.. S is linear and sends 

all of ,( 2 ( G) into a subset D of 0 0 • S has a single val.ued inverse. 

Suppose Sw = o, we: t<2 (G), then for all ue:. ~O , (w,u) = F(Sw,u) = 

F(Q,u)= 0. Therefore w = 0 and s-1 exists and the domain of 

S is boUhded. For all ·we: £ 2 (G), Sw e: in0 and 

-1 . 
S is D. 

/ 
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Therefore 

flswjj:;; cJ. ({ wjj~ S is also bounded in f.n 0 since .if w € ~0 we have that 

1/Swj/'h, 0 < 

2.43 D :J c~(G) and so D 
2 

wehave(l+f..) v=w€.;e(G). 

00 

is dense in ~O • Suppose u, v€C0(G); 

F(Sw ,u) and Sw = v i.e. v € D. 

44 -1 ' . 
2. . S is closed. Let gn € 

-1 2 
and Sg -) h in 'i<: (G). 

n For 

Then F(v,u) = ((1 + A.)v,u) = (w,u) = 

domain of S -1 and gn -) g in fn 0 
. 2 

u € '\ and ·h€ oC (G) we have 

{h,u) = G(v,u). v is unique and Sh = V€ D. F(v,u) = (h,u) = · 

u) = u) = F(g,u). 

Therefore v = g, and g€ domain of 
-1 -1 

S and S g =h. 

. .:..;_ -1 2.45 We now define an operator L on D. Let L · = S - f.. or 
-1 

s-1 = (L +AI), and S = (L + A.I). L is independent of f.. and an 

extension of 1. For ue. D and v €1>J ,((L + A.)u,v) = F(u,v) = ((1 + f..)u,v), 
0 

Therefore (Lu,v) = (lu,v). · 

·L is closed and densely defined since s-1 is closed and densely 

defined. As (L + f..)-l is bounded and defined in all;( 2 we see that 

L has a left half-plane in its resolvent Pet. 



3· A Condition for the Discreteness of the Spectrum. For the purpose 

of proving the main result of this section, we shall introduce a co-

ordinate system in which the coefficient matrix (aij(x)) is diagonal. 

Although in general ~e cannot find such. a coordinate system, we shall 

discuss some cases in which we can. Let 

n 

3·1 L =I 
() 

dXi 
a.: 
~J 

i,j=l 

and y1 .= yi(x) be n independent functions of x. upon making a 

change of variables, the differential operator assumes the form 

n 

L = L 
k, £=1 

n 

where ak£ =r ~~~· a .. 
~ 

~J 

i,j=l 

If L is to be diagonal, we must 

have for k I= £ 

3.11 

n 
c)yk 

0 I = ak£ = a£k = a xi 
a .. 
~J 

i,j=l 

This imposes 1/2 (n2 -n) conditions upon the new variables. 

For n = 2 the system 3.11 is underdetermined, and we may impose 

the further condition that y2 = ~ This last condition leaves the 

singular boundary unchanged, and 3.11 is reduced to the homogeneous 

equation 
()yl c)yl 

al2 ,""dxl + a22 a~ = o. The solution of this equation is 

given by y
1 

= f(¢) ·where f is an arbitrary function and ¢(x1 , ~) = 

constant is a solution of the equation a22 dx1 = a12 dx2 

16 



For n = 3 the system 3.11 is determined, but solution of the 

three equations presents a formidable problem. We may simplify the 

equations somewhat by first solving the system with conditions 

0:13 = 0:23 = 0 and Y3 = x3 . The resulting first order equations 

. l * can 1n genera be solved. However, once this is done, it is still 

necessary to solve a system comparable to the original system. 

For n > 3 the system 3.11 is overdetermined and can only be 

solved under particular circumstances. 

3.2 We will now develop a. condition which, when satisfied, will en-

able us to diagonalize the coefficient matrix. From conditions i, 

ii of section 2, it will be shown that the eigenvalues and eigenvectors 

of (a .. (x)) are continuous functions on G. We will then relate the com-. 
lJ 

ponents of the eigenvectors to the derivatives of the transfo:::-mation. 

The continuity of the eigenvalues of (a .. (x)) can be deduced from 
lJ 

the following more general theorem concerning the continuity of the roots 

of an equation as a function of parameters. 

3.21 Theorem: Let A be an open set in the complex plane C, F a metric 

space, fa continuous complex valued function in AXF, such that for 

17 

each x0EF, f(A,x0) is analytic in A. Let B be an open subset of A, whose 

closure Bin C is compact and contained in A, and let be such 

that no zero of f(A,x0 ) is on the frontier of B. Then there exists a 

neighborhood W of XU in F such that: 

1° for any XEW, f(A,x) has no zeros on the frontier of B. 

2° for W th f th d f th f any X€ , e sum o e or ers o e zeros o f(A,x) belonging 

to B is independent of x. 

* See [11] page 10. 



Proof. See [3] page 24). 

The pr~ceding theorem is applied in the following way. 

f(A.,x) = determinant of (a (x) - AI) ij 

Since ea~h of the a:1 (x) are sums and products of aij(x), the 

a:i(x) are cont·:i.nuous functions of x. Moreover as (a .. (x)) is hermitian, 
l.J 

the roots of the polynomial f(A., x0) are all real. Consequently, we 

have that a:. (x), are real valued functions of x. Then at each X--, 1. . -"\) 

f(A,x0 ) is a polynomial in A with real coefficients and hence is 

analytic. 

For the operi set A we choose all of C. Let x0e:G and A
1

(x0), 

~(x0 ), ... , An (x0 ) be the n distinct roots of f(A,x0 ). Let 

Ai (x0) be any root of f(A,x0 ) and d = min lA.. (x0 ) -)._ (x0) I· Let 
j~k J '"k 

[ > 0 be :iven, define c' "min {t:, ~)and B " {<1[:>..-:>..1 ("o) [< £ '} 
Then by 2 , there is a neighborhood W of x0 such that for any x

1
€W 

there is one and only one A.(x
1

)e:B, a root of f(A,x1 ) which we call 

Ai(x1). Therefore for xe:W, 1Ai(x1 ) - Ai(x0 ) I< E 

Q.E.D. 

From the continuity of the eigenvalues, it is easy to show the 

continuity o~ tbe normalized eigenvectors. For convenience we will 

sometimes use the notation A(x) for (a .. (x)). 
l.J 

).22 Lemma. Suppose A(x) is a hermitian nxn matrix each of whose com­

ponents aij(x) is a continuous function of x in G. If at each point xe:G 



A(x) has n distinct eigenvalues, then the components of each eigen-

vector are continuous functions of x in G. 

Proof. vh~ have already indicated that with the above conditions each 

of the eigenvalues of A(x) are continuous functions of x. 

Suppose A(x) is an eigenvalue of A(x), and (s1 (x), ... ,en(x)) 

is the normalized eigenvector corresponding to A(x). If all the 

eigenvalues are distinct, then the rank of (A(x) - A(x)I) is n-1, and 

19 

a solution of\the homogeneous system of equations (A(x) - A(x)I) ~· (x) = 0 

is given by 

~}(x) = k (A(x) - A(x)I)il 

~2(x) = k (A(x) - A(x)I)i2 

~~(x) = k (A(x) - A(x)I)in 

for some. i, i = 1, 2, ... n, where k is a constant and (A(x) - A(x)~)i~ 

is the cofactor of the component in the j_th l'O\.r ::;.::.:' .. ith column of 

(A(x) - A(x)I). i 

Since each of the cofactors (A(x) - A(x)I)ij are sums, differences! 

and products of continuous functions of x, each of the components si(x) 
are also continuous in x. 

~ See [ 4] page 12 . 



Then 

sj_ (x) 

Since not all s! (x-) = 0, we have that s. (x) is the quotient of two 
1 1 

contihuous functions whose denominator is never zero. Thus si(x) 

is cont.inuous, 

Q.E.D. 

Actually, for our·purpose, it is only necessary that then 

eigenvalues of (aij (x)) be distinct in some G 
8 

={x = (x1 ,x2 , ... ,xn) lxt:G 

and 0 < x < 8 } rather than in all G. This last statement will be n 

proven in ).4. 

Let A(x) =(a .. (x)), and let S(x) = (s .. (x))be the matrix whose 
1J 1J 

columns are the normalized eigenvectors of A(x). For convenience we will 

write A for A(x) and S for S(x) where the functional dependence of A and 

S on x is understood. -1 * * As A is hermitian, S = S = (sij(x)) = (sji(x)). 

We have S-l AS= D = (d .. (x)) where D is diagonal and d .. (x) are the 
11 11 

eigenvalues of A. For k f £ 

n 

0 = ~1 (x) = L s .k(x) a .. (x) s. n(x) 
1 1J Jk 

i,j=l 

20 



At each point of G, S-l is a tro.nsforiTlD.tion of the coordinate 

n 

system to the principal axes of the ellipse I: aij (x) si ~ J = 1. 

i,j=l 

We now introduce a new condition. 

vi) At each point XEG there exists an invertible trans-

formation of coordinates y 1 = y i (x), i = 1,2, .... , n, 

which for X€G satisfies the equations 

oyJ 
dxi = sij(x), as s1j(x) was defined above. 

n 

By 3 . 23 and 3 . 24, 0 = <\·.e { 
i,j=l 

Thus condition. 

3.11, required for the coefficient matrix of the.principal part of L to 

be diagonal, is satisfied. Then 1 in this curvilinear coordinate sy&tem, 

n 

L = - '[ ~Y d11 (y) ~Y + t bj_ (y) ~ + c(y) , 

i=l i=l 

n 

21 

where bj_(y) = L bj(y) sJi(y). It is evident that bi_ still satisfies 

j=l 

condition v of section 2.0~. 

In order that 

that 

= sji be satisfied exactly, it is necessary· 

for all combinations of ~ and xj . 
\ 



An alternate condition to 3.24 is 

3·25. 

From the theory of exact equations, the condition for the e~istence 

of an integrating factor k(x) for yi(x) is that each of the equations 

22 

}.26 
. ·[os · · .. im 0 = s .. 
~-r-~ .· p 

-[osi os1. ]·· :[os1- osi.l· · . . -r ·r. m +s · - +s - .. 
1m . 'tiiC ax- 1p ax- <ir 

r p . m r 

be satisfied for all CGmbinations of the indices m; p, r from th·e s'eries 

. * : 
1 1 2, }.; .•• ; n and ·of. these 1/2 {n..;l) (n-2) are independent. ItS ~e wish 

have the same integrating factor for each yi , }.26 must hold for 

1 =.1,2 1 ••• , n. If k(x) can be found, then the. transformed operator will 

have the form 

L =- t 1 0 ( ) k(y) b (y) ~ + c y • 
1 

i=l 1=1 

The results developed in the remainder of this section assume ~hat }.24 ho~ds. 

However, substant'ially the same r.esults are obtainable i:f' we assume 3•25 

instead of }.24. 

* See [5] page 12. 



We note that condition vi holds, whenever s is constant, for ij 

all i and j. For example, consider the follmring matrix: 

= 
I 

1 
1 + X'"l 

c; 

1 

23 

(a1j(x)) is positive definite for x2 > 0, and by some simple calculations, 

it follows that = 

and (sij (x)) = 
1 

{'2 

-1 

.,1""2 

1 1 

;--:2 

3.3 In order to simplify the notation used while singling out a 

particular coordinate, we will denote the pointy= (y
1

, Y2 , .•. yn) 

by (yi,yi), where yi = (y1 ,y2 , ... ,yi-l' yi+l'''''yn). Accordingly, 

the volume element dy is dy. dy. where 
]. ]. 

dy. where a. and b. are the 
]. ]. ]. 

appropriate limits of integration along the curve y,. 
]. 



3·31 Lemma. Let dii(y) > 0 in G and dii(y) ~ 0 for y on dG 

and u(y) = 0 for y on dG. Then there exists a positive function 

-r1 (y) such that 

.. I dii (y) 

G 

2 

Proof, With the above notation, 

dy > 
2 lui dy 

,.~ (y) dii (y) 

As the y coordinates are curvilinear, the singularities which 

occur.for xn = 0 may appear in either ai, b1 or both a1 and b1 • Let 

ai < mi < b;i'. 

< < b For mi - y1 - i 
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where k1 > 0 is such that when ai ~ yi ~ m1, ~i > 0 and when 

m. < y, < b1 , ~: > 0. ~1~(y) is a decreasing function of y. , 
J.- J.- J. J. 

while 'f~(y) is an increasing function of yi. ~~(yi , mi) = 
+- ) - +c- ) ~i(yi, mi = ki' and ~~(yi' ai) > ki' ~i yi, bi > ki 

3·34 Definition. ~ ~ (y) 
J. 

for a. < y
1 

< m. · 
J.- - J. 

m. < y. < b
1 

. 
J.- J.-

3·35 Definition. T}i(y) = log ~. (y). T}j ::: yj J for j I= i . 
J. 

For a. < y. < m. T}i(y) is a decreasing function of yi , while 
J. - J. - J. 

for 

Let 

3·36 

ni. < y, <b. 
J. - J. -

-1/2 v
1
. = u~ 

i 

6rr. · 
J. 

dyi 

J. 
T}i(y) is an 

dT} .. 
l Then d:r.-
J. 

6rr. · 6~·. · 
J. J. 

d~. ey. = 
J. . J. 

6v·.· 
J. 

dyi 

where the minus sign refers to 

increasing function of yi Also 

::: 
1 
~. 

J. 

= 
+ 

in the range 

1 and 
~.d .. 

J. J.J. 

1 
dv·.· 

l 

~.d .. 
J. ll ~ 

a. < y. < m. and 
l- l- l 

the plus sign refers to in the range m.< y. <b. 
J.- l - l 

25 



26 

au 1/2 dvi -1/2 01"1 1 ~-
v. 

3·37 + 1/2 
l 

= 1". = - :::: 

dyi 1 dyi 't"i dY."' v. yi l + 1/2 . 
1". di. OTJi + 1/2 2-r. d .. 

l l 

- 1 <tL + !;i.) 
+ d .. 1"1/2 11· 2 

11 l. ' 

From 3-32, 3-36 and 3-37 we have 

=I Vi 1~12 

1". d .. 
l ll 

G- ai 
yi 

=f[fb~ 1" .d .. 
l ll. 

G- ai 
yi 

dy. 
l 

fb +: 1/4 l 

a. 
l 

!
b. 2 

d~ + 1/4 l t~ .. 
l. l.l 

t· 2 l 

~ dy. + 1/2 
1" .d.. l 

l ll 

a. 
l 

dy. 
1 f

bi -2 

- 1/2 ~~~~ 
a 

i 

= Jl~( 
l l.l 

dy + l/4 1 "~~t. 
G :t, n 

' 1 [ u(a.) 2 
dy + 1/2 """'"'1,....,/=~--

G- ~i (ai) 
yi 

l ll. 

~~~12 
dyi J dY1 

l 

't"i dii 



ai and bi are on ClG so that 

I(W· 12 
I~ 
1'. di. ' 

1 1 
2: 0 , 

2 
dy. 

1 

u(a1) u(b.) 
l 

I/2 ( ) "' 
1' a. 

i 1 

> o. Consequently, 

> 1/4 f 
G 

When we apply the inequality to each of the terms of 

d .. (y) 
11 

J 
G 

(Ju 1
2 

dy, we get: 
dYi 

n 

\ d .. (y) L n ldU j2 
dy 

dY.' 
' l 

= 0. For YEG, 

dy . 

Q.E.D. 

juj2. 
2 ·r. d .. 
1 11 

dy. 



3.4 Definition. The essential spectrum of an operator A, a~(A), .consists 

of the points A for which the range of A-~I is not closed and of eigen-
' 

values of infinite mUltipliCity. 

3.41 Definition. An operator A has a singular sequence (u } if the 
n 

sequence (u } is normalized and has no convergent subsequence and 
n 

there is a ~ such that l1m(A-~I)u = 0. 
n~oo n 

3.42 Theorem. (Wolf) Let A be closed and densely defined. Then A has a 

singular· sequence corresponding to ~ =0 iff the range of A is not closed or 

the null space of A is infinite. 

Proof. See (6] page 215. 

In section 2 we proved that the operator 1 defined by 2.01 and 2.02 

has an exten'sion L. L is called the Dirichlet operator associated w.ith 1) 

2 
and L is closed and densely defined on ;L (G). For ~ real and 

sufficiently large, (L+~I)-l exists and is bounded and defined on all ~(G~. 
Let G0=(x =(x, x, ••. ,x )lx( G and O<x < o}. Let L 

- 1 2 n n o 
be the Dirichlet operator associated with 1 on G

0 
. The following theorem 

is a. restatement of a theorem by Wolf. 

3-43 Theorem. Let L and L be the Dirichlet operators associated with 
0 

1 on G and G
0
respectively. is in the essential spectrum of L 

0 

on G
0 

iff ~O is in the essential spectrum of L on G. 

Proof. See [1] pages 168 and 176. 

Because of this theorem, condition iii of section 2.01 and condition 

vi of 3.2 will be required to hold in some region G rather than in all 
0 

G. 
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3.44 Theorem. Let L be the Dirj.ch1et operator associated with 1 on G. 

The spectrum of L is discrete if 

n 

Lim' L 
X -) 0 .. 

1 n l== 

l 
2 

.. 
1 

(y(X: ,x ) ) d .. (y(x ,x ) ) n n ll n n 

= oo uniformly in X: n 

Proof. Let ~t~~ be the Jacobian of the transformation of coordinates 

Then a(x) 
dGT = 

1 
d(y) 
()(x) 

1 

det (~~: ) 
l 

1 
det (s .. ") · 

lJ 

But det (s1j) = det (sji) = det (s1j)-
1 

, so that det (s1j)= 1. Let 

UEC~ (G). 

3·45 Then j(Lu,u) I > Re [(Lu,u)] 

= ()u(x): u (x) 
dXj 

()u u + c 
dXi 

n 

= ! E ~yi dii t~y) UTYT ~1~l dy + f [ tlbi ti fu 1
2 

+c [u 1
2

] dx 

= 



. . . 2 . 
= - IK I /lull2 

cK:- (G) . + J I dii (y) 
· G' i=l 

!u(y) 12 2 
2 . dy- jKj /lull.,.. 2(G) 

t. (y) d .. (y) o£-. 
~ .. ~~ 

30 

y) ~u(y) u(y) cos(n.y)dy 
yi 

= 0 

Let A.0 Ecr~(L). Then there exists a normalized singular sequence (u } ED(L) n 

on G such that Lim Lun - A.0un = 0. For each n there is a sequence of 
n-7 oo 

normalized functions 

(''} ()()() b ECO G such that (u - u'k , u n n n - u' ) = Jtu - u'k] + M/lu - u'k/1
2 

nk n n n n 

-7 0 as K. -7 oo • 

' Construct the sequence {U:') where for each n u' E {u } n > n m and 

2 
J[u - u'] + M/1 u - u' /1 < 1/n . n n n n -

tK is ·defined in section 2.1 
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(u~) has no convergent subsequence (otherwise so would (un}). 

Also 

Let (L-A0 )u = v and u'- u = w . By the definition of a n n n n n . 

singular sequence llv II ~ 0 as n ~ oo • By 3.46 I~ II ~ 0 as n~ oo • 
. n n 

IJv II I~ II ~ 0 as n ~ oo. n n 

I ( (L-A0 )w , u ) I< I (Lw , u ) I + I Ao I I (w , u ) I· n n- n n n n 

theorem 2 . 31, I ( Lw , u ) + A ( w , u ) I < c1 II w JL II u jl.. . 
n n n n - n rmo n 'bto 

By 2.13:, J [u ] = Re(Lu, u) ~ AO as n ~oo • Thus, n n n 

2 1/2 1/2 4 ( J [ un] + M II un II ) ~ ( Ao + M) as n ~ oo • By 3 . 6, 

. (J[ wn] + M 11wn11
2

)
1

/
2 ~ 0 as n ~ oo •. Also, IAI l(w, un) I ~o as n ~oc) • 

Consequently, I (Lwn' un) I ~ 0 as n ~ oo • 



as n ~co • 

Combining 3.47, 3.48, 3·49 and 3.50, we obtain l((f-A.0 )u~, u~) I ~ 0 
.. I . 

' lim (Lu' u' ) = A. . 
.n n 0 

as n ~ oo • · Thus, 

n 
'\ 

I 
L 

i=l 

Then 

n ~oo 

Let N >.0 be given. There is a 8 > 0 such that if 0 < x < 8 
n -

1 

'T
2
i (y(x·n' x ) ) d .. (y(x , x ) ) n 11 n n 

n 

L 
i=l 

G' 
8 

> N + IK I . 

' 2 
lu~ (y) I 

2 
'(i (y) 

32 

and as II U' II Y' 2 
n u-.._ (G ) 

is ;normalized, IKI = N. 

' 8 

Therefdre I (L 
8 
u~, u~) I 2: N for every n ; consequently Ao 2: N. As 

N was arbitrary, cre(L
8

) is empty, and the spectrum of L
8 

is discrete.­

By'~'heorem 3.4:3 the spectrum L is discrete. 

Q.E.D. 



4. The Method of Majorization. ~f ;tjb,e operator 1 is symmetric, the 

existence theory for 1 is obtaine<il. ,4-;Lrectly from the Friedrichs ex­

tension. ·As a corollary to theor~w ~.~4, a condition for discreteness 

is developed which eliminates the nec.essity to diagonalize (ai_j(x)). 

4.1 Consider the elliptic operator 

n 
.---

4.11 1 L_ 
'i,j=l 

a .. (x) 
lJ 

() + c(x). 
axj 

The following conditions are assumed to hold inside a bounded domain G: 

33 

4.12 i) ai}x) are complex valued and of class 2- in G with ai}x) = aj1(x). 

n 
~ 

ii) l_ aij(x) ~i~j > 0 for all complex~ + 0 

i,j=l 

iii) c(x) is real, continuous and bounded from below on G. Without 

loss of generality, we may assume c(x) > 0. 

We continue to assume that G C {xJxn > 0} , S C f xJxn = 0]. , and 

that the boundary of G is sufficiently smooth for, Green's Theorem to 

hold. We will redefine 

4.13 .Definition. 11J 0 (G) = {u(x) luE 0( 2 (G), and there exists a sequence 

{un} Ec'0X) (G) for which (l(u-v ) , u-v ) + (u-v ,u-v ) ~ 0 as n ~ co} . n n n n 

For UEC~ (G), the operator 1 is non negative and symmetric. The 

discreteness theory for 1 follows from the theorem of Friedrichs. 



4.1~- Theorem (Friedrichs). If 1 is a positive, symmetric operator on 

a d1~nse subset C~ of the Hilbf~rt space ;( 2 (G)_, then 1 has a unique 

self adjdint extension, L, whose domain is contained in 1n
0 

(G). 

Proof. See [8] p. 330 

From the Friedrichs Theorem it follows that the self adjoint 

operator - L is a Dirichlet operator. If (aij(x)) is diagonal, then 

L satisfier;; the hypothesis of theorem 3.44; and hence that theorem 
I 

holds for L.; If (ai}x)) is not diagonal and: 

31+ 

iv) ·At every point x E G the n eigenvalues of the coefficient -

matrix (aij(x)) are distinct; 

v) At ·every point x E G there exists an invertible trans-

formation of coordinates yi = yi(x)j i = 1, ... , n which 

for x E G satisfies the equations 

s .. (x) as 
lJ 

s .. (x) 
lJ 

was defined in section 3.2j 

then L again satisfies the hypothesis C>f ·theorem 3.44. 

4.2 We now define a second operator on G. 

4.21 Let 1' = 
n 
~ 

L 
i=l 

d a(x) ~ + c(x). 
Cixi oxi 

The following conditions are assumed to hold in G. 

4.22 i) a(x) is real valued and of class c1 for all x E G. Further-! 

more a(x) > 0 for x E G. 

n n 

ii) I_ ai/x)si fj 2: a(x) L lsi 1
2 

i, j=l i=l .. 

~ 

for all. XE G and ; 

a
1
j(x) are the same as the fUnctions in 4.12. 



iii) c(x) is the same fu"lction as found in 4.12. 

Denote byl L' the Dirichlet operator associated with l' on G. 

4.23 Lemma (Rellich). Suppose A is a non-negative self adjoint 

operator in a Hilbert space H. The spectrum of A is discrete iff 

every sequence of functions (ui} in the .domain of A which satisfies 

(Aui,ui) + (ui,ui) < C < oo has a subsequence which is convergent 

in H. 

Proof. See [9] p. 343. 

4.24 Lemma If the spectrum of L' is discrete, then the spectrum 

of L is diserete. 

Proof. Suppose the spectrum of L is not discrete. By 4.23 we can 

choose a sequence (~ ) in the domain of L which has no subsequence 

convergent in ~ 2 (G) and for which (1~,~) + (~~~) < c. By 

the definition of the domai.n of' L we can choose a sequence 

(~) has no convergent sequence in ;;( 2 (G). By ii of section 4.22, 

the spectrum of L' is not discrete. 

In the appendix two positive lower bounds f'or the least 

eigenvalue of a positive definite hermitian matrix are derived. 

We may take either lower bound as a(x), for both satisfy conditions 

i and ii of 4.22 
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Let the coefficient matrix (aij(x)) be diagonal for x € G , 

and suppose G is in the canonical position of section 2. In this 

situation we may simplify the definition of -ri(x) , which was pre­

viously defined in section 3·3· 

4.25 Definition. Ti (x) = 1ixi -a-. -. ~-x-.-,-x-. ) 
ll l l 

for 

ai < xi :::. ·;·fi' Where ki > 0 is such that when a. < xi < bi l 

Ti > o. 

4·.26 Corollary {to theorem 3.44} Let a(x) be either of the lower 

bounds for the l~ast eigenvalue of (aij(x)) derived in the appendix. 

Let -r. (x) be the function defined by 4.25 where for all i, 
l 

a(x). 

n 

If lim l \ 
a(x) L 

X ~ 0 i=l n 

·spectrum of L is discrete. 

1 = oo uniformly in x then the 
n 

Proof. As . a(x) is defined, it satisfies the conditions 4.12. 

By the hypothesis and theorem 3.44, the spectrum of· L' is discrete. 

By Lemma 4.24, the spectrum of L is discrete. 

Q.E.D. 

' 
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4.27 Definition. r= h 1- ""' < f (. X < g < ..o 1 i < n; 0 ( X < g ( co 1. 
· i i i n n 

n 
4.28 Lemma. Suppose l = - I o a (x) o + c(x) is defined in 

dxi i dxi ir::l 

a region r C G where ai (x) and c(x) satisfy the conditions of 4.12. 

Suppose also that 
! 

i) 

I If the spectrum of L is not discrete then the spectrum of "L is not discrete. 

Pro:)f. See (11] page 27. 

I 

4.29 Theorem. Suppose 1 satisfies the conditiops of Lemma 4.28 with 

r C G and that for all i:; n, ai (x) ;; a(x). Define -r(x) - -r~(x) as 

't" (x) was defined in 4.25. Suppose further that for xcr: 
n 

i) 

ii) 

iii) 

lim a(i ,x ) = 0 uniformally in x 
· n n n x ~o 

n 

J c(x)/ + 1 
2 

a(x) -r (x) 

< ·-

the~ the spectrum :1f L is not discrete. 



Proof. We will use Lemma ~. 23 to prove that the spectrumi of L' is 

not.discret~. For this purpose we shall construct a sequ:ence of functions 

{~} in the ·domain of L' which has no convergent subseque~ce_ and for 

which (L'~ , ~) + (~ , ~) < C < oo 

For 

Define the coordinate transformation: ~i = x1 , 

X € f the Jacobian Of the transformation is = .-

i < n; ~ = log ~ . n 
1 

-r(x)a(x) I o. 

The region r is transformed into a region r' , where r• = 

( ~ 1- oo < f i <;: ~i < g1 < co , i < n; 0 < log -rCx , g ) < ~ < oo 1. n n n 

Let b = _ SU£. 
x € r 

n 

"ex , g). n n 

Define a sequence. of fUnctions "{wj} by: 

w. = 0' ~ < j J 
J n-

w. =A.(~ -j) ' 
j < T) < 2j J J J n - n-

4.30 W. = A.j 2j < < 3' 
J J 

J - ~n - J. ' 

w. =A.(4j-Tj) J 3j < Tj < 4j 
' J J n - n-

w. = 0 4j < . 
J 

,. - Tjn ' 

where Aj is: .a. 'constant tb'be d~f'Jried'-·. Let s be an integer such 

t_ -· 

that s ~ b, let {wk} be that subsequence of{ wj} for which k = 1,2,), ... , 

00 

and j = s4 k-l. Note that £ 2 =~ A2 .3 .: 4 .a1 jwj I dTj J .· C:: n j -,,--. 



Let 
n-1 

d = ~ (gi-fi). Define 
1='=1 

Define 

4.32 in wk , be such that 

l3Y 1ii and 4~32 

2 2 J aT I uk I d'Tl = 1 . 
r' 

2 1 3k 2 2 
lukl d'Tl ~ --c I A k d'Tln = 

3 2k k 

We now consider (v(x)} for x € r . We shall show (vk(x)) 

has no convergent subsequence in r By 4.30 and iii, 

Therefore vk(x) has no convergent subsequence. For convenience 

the index k will be used only where necessary in the rest of 

this proof. 

(L'v,v) + (v,v) ~ Jr [1i1 a(x)l *~1 1
2 

+ (c + 1) lvl 2
] dx . 

4.33 fr (c+l) lvl
2

ctx = fr,aT
2

(c+l) lul
2 

d'Tl .5. (C3+l)fr,aT
2

1ul
2

d'Tl = c3+i .. 
' 

Note that 

4.35 

ov Then,-
oXn 

U T ¥2
] 1 [ OU ·+ U 1 

~ = r-~ d'Tln 2j 
aT 

Ia + bl
2 

.5. ~[l.al 2 + lbi 2 J • 

We use the inequality 
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By 4 .. 35, 4 .. 31, 4.32 and the definition of u, 

By 4.25' and · i , 

4.37 X ~ 0 
n 

By 11, and 4.25 

'4.39 

For -~ < n , by 4.38 · 

4.40 

by 4.35 , 4.37 , and 4.39 ,. 

~ 2c; Jr. ~n1 2 
dll + sc~ c~ JJI ~nn 12 

+' / ~~2] dll 
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by the definition of u and 4.31, 

c~J 
..... 

= 2c~ [ 5 A~ k3 ( ... 2(gi-ri)2 + ~4 c~ ~ + c~)]i ~o c~c~ ... 2(gi-ri)2 

+ 6 C~ ) = C6 ." C6 is independent of k • Combining 4.34, 

4.36 and 4.40 (L'v,v) + (v 9 v) i 8c
3 

+ (n-1) c 6 + c3 + 1 = C 

which is independent of k . 

By Le.mma 4.23, the spectrum of L' is not discrete. By 

Lemma 4.28 ' 
the spectrum:of L is not discrete. 

Q.E.D. 

Remark. If a(x) = a(xn) , then our result is equivalent 

to one obtained by Kreith.* 

* See 11 page 28 



5· Appendix: Lower Bm.mds for Positive Definite Matrices. The in­

equality which is developed here is used in several of 1the preceding 

sections. 

5.1 Let A = (aij) be a positive definite hermitian matrix of order 

-1 J 

n. Define A = B'= (b1 j), jAj =determinant of A, and Aii the co~ 

factor of aii. Let An the minimum ej.genvalue of A, and \n the 

maximum eigenv~lue of B. 

5.12 Theorem. A > n 

I A I 
n n 

\ 
IT a.j L·. 

j=l J 
·i=l 

1 
a .. 

1.1. 

Proof. As· the eigenvalues of Bare the reciprocals of the eigen-

values of A, they must all be positive. Therefore 

n 

n 

Am < trace B = L 
i=l 

b .. 
1.1. 

= 

) 
i';;;! 

A .. 
1.1 

A 

We will show that A .. 
11. 

is also positive definite. 
ii 

( )
2i . = -1 X A 

(determinant formed from A by eliminating the ith row and column). 

-7 

Let g { 0 be any vector with 
n 

the quadratic form L ~£ 

k,£=1 

s . = 0. Since A is positive definite 
l. 

gk s£ > o. This last condition and 

the even exponent 2i make A positive definite. 
ii 

For positive 

n t 
definite hermitian matrices !AI :::.n ajj Then for each i, 

J=l 

t . 
See [10] page 126 
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Thus 

as 

5·13 

< 

n 

~ < ,!, L Aii 
. i,;l 

n 
1 \ 

::TAT L 
i=l 

1 
= -A- we have 

m 

I A I 
A > n n n 

._....-'- 1 
IT a .. ) 

JJ '-- a. .. 
j:=l i::::l 

).). 

Q.E.D. 

5.2 Consider the characteristic equation of.a positive definite 

hermitian matrix A of order N. 

0 = f(A) = a. - a 1 A +a 2 A2 
n n- n-

where the a. are real. That the 
J_ 

( )n-1 n-1 ( )n n . . . + -1 a1 A + -1 A . , 

a. are also positive can be 
J_ 

deduced from the knowledge that all the roots of· f(A) are positive 

and from Descarte's law of signs. 

5.21 Descarte's law states: f(A) has n or .n-2k positve real roots 

if there are n .variations in sign of the terms of f(A), n and k 

are non-negative integers. 

Let the roots of f(A) be Al ~ ~ ~ ... ~ ~ > 0. As is well 

known an may be expressed in terms of (ai .(x)) by 
' J 
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n 
a =II A = jA I· 

n i=l i 
_an-l cannot in general be simply ex-

pressed in terms of the components of (aij). However, when we 

. express an-l in terms of the sums and products of o.iJ the 

n n 
~ 

term, ·II ajj )__ 
j=l i=l 

, found in TheoDem 5.12 is 

al.Wl=l~ys.•· also found in the expression for · an-l and is always 

positive. This last remark. and the prededing theorem suggest that 

an 
may be lower bound: 'fer )t a-' a 

n-1 n 

a J!j_ -5.22 Lemma. A > n. = !1 a a "1 :1-1 n-· 

Proof. 1 1 +-1_. > 
1 

~ 
+ 
~ 

+ '• • e 

~ ~ ;; 

Therefore n 
n 

k 
1 

II A. 
Ai j:'=l J 

5·23 n 
II Aj 

j=l 

If we invert 5.23, we have 

n 
II Aj a. j=1 n A· 

1.. > = = n n 1 a n-1 an-1 n [ II Aj Ai j=1 i=l 

Q.E.D. 
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