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1. Introduction. In this paper we consider the Dirichlet problem for
singular second order elliptic operators. Our object is to formulate
and prove sufficient conditions for such operators to have a discrete
spectrum. Specifically, the operators are to have the form
n n
- o 3 E: d
1l = Z 8—}-{; aij(x) S + bi(x) B_JE; + C(x)
1,3=1 oY i=1
The coefficients aij’ bi’ and c are functions defined in a bounded
domain GC;IEn. We require that the singularities occur on 9G; i.e., 1
is elliptic for x e G, but we allow 1 to be parabolic for some xe oG.
' *
K. 0. Friedrichs has obtained criteria for spectral discreteress of an
. : . -1,y 0 > .
ordinary dlfferentlal.operator 1=-1 () ST a(t) 55 - a(t).

*%
Kreith considered symmetric, singular, elliptic partial differential

n
-1 3 d
operators 1 = - r(x) E: S5 %50 F c(x). In this paper we
L b
,§=

let r(x) = 1; moreover our operator 1 ié not necessarily symmetric but
b?(x) must be less than the least eigenvalue of the matrix (aij(x)).
Kreith's criteria for discreteness are developed in the following

manner. The operator 1 majorizes an operator
n . . v .
1t = -p (x )-l 2 a, (x) 2 + v (x.), where x = ( ceesX )
n 5xi i ‘Y'n éxi n’’ X0 %0 !
i1 , _

1l and 1' are respectively restricted to self adjoint operators L and L'.
He shows that the spectrum of L is discrete when the spectrum of L' is
discrete. By enclosing G in a parallelepiped, he is able to separate

variabies in the eigenvalue equation L'u = A u. Kreith thus reduces

*see [12]

*Zee [11]



-this equation to an ordinary differential equation to which he applies

the criteria developed by Friedrichs. If the matrix (aijkx)) is not
already diagdngl, the functions ai(xn) must be less than the least*'-'
eigenvalue of (aij(x)) at each po%nt, x e G. Consgquenﬁly, if Lx‘
becomes parabolic at x', all a;(x' ) =0 and L' degenerates in all
directions simultaneously.. Kreith's criteria are governed by the di-
rection in which. T, degenerates most quickly.

Our operator 1 is extended to a closed, densely defined, Dirichlet

operator I, whose resolvent set is contained in a left half-plane. We

assume there exists a coordinate system in which the matrix (aij(x)) is

diagonal. In this new coordinate system we prove an integral inequality
which is related to Friedrichs' criteria for spectral discreteness in
ordinary differential equations. With this integral inequality we obtain

a condition for sﬁectral'discreteness of the Dirichlet operator L. When

‘applicable, our condition has‘two advantageé over Kreith's. L degenerates

only in those directions in which the eigenvalues of (aij(x)) go to zeraq,
and,'sécondly, our criterion is govefnéd by the direction in whic¢h L de-
genérates most slowly.

The object of section é is té obtain the Dirichlet operator L.
associated with 1. After formally defining 1, we introduce a bilinear
form J{u,v] ( = RE(lu,v)), whose domain is Cg . We show that J is
élosabie and that its domain may be extended to a Hilbert space

Q%OCZLJ?Q. For large positive X , and u, ve 7h0 we prove that
(1u,v) + X (u,v) satisfies the condition of the Lax-Milgram Theorem.

L is then obtained as a consequence of the lax-Milgram Theorem.



In section 3 we develop a criterion for the discreteness of the
spectrum of L.. First we consider the problem of diagonalizing the co-
efficient matrix (aiJ(x)). To this end, & new condition is introduced
which relates the eigenvectors of (aiJ(x)) to a curvilinear coordinates

system. In the curvilinear coordinate system

=
NG

n
J_ d § d N )
5 @ st b, (y) S5— * c(y) and some of the
1 Yy 11 (%) i i=1 : Y1 . o

dii(y) g0 to zero at the d3G. The rate at which the dii(y) go to zero
at the singular boundary will govern whether or not the spectrum of L
is discrete.
In the next section we prove a corollary to the~diécreteness theorem
of .section 3. We‘let 1l be symmetric and obtaln the existence theo;y of

- section 2 directly from the Friedrichs' extension theorem. Following Kreith,

_ n
we let L majorize and operator L' = - E: 2 a(x) O + c(x) eand
g %

apply our discreténess criterionAto,L'. Thus we obtain & condition which
does not depend on the diagonalization of (aid(x)). Next, criteria for
non-4dlscreteness are proven fqr the case when L' majorizes L.‘

Finally, in the eppendix, section 6, we prove a relationship used
throughout this paper. Here we develop positive lower bounds for the least
eigenvalue of a positive definite hermipiah matrix. |

To Professor Frantifek Wolf go my wholehearted thanks for the

guldance, patience and understanding giveh me throughout this undertaking.
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" 2. Definition and Extension of 1. We will consider the Dirichlet '

‘problem for the elliptie 0peratorv;,
n ‘

. . N . ) V L ‘n—-— . . . .
L oy 3 N v L
201 1= - ‘i;— : a,,(x) + b, (x) + e(x) .
s S ) mld G e

“4,3=1 - : B ‘i_=l‘ : '

"Tﬁé foliowing cénditions are_qssumed to hoid iheide a bounded'doﬁaiﬁ G.
.i) aiJ(x) are complex fqlued'and of class CT in G with a13(3)>=
Zji(x,) . | |
R S : : ,
11) :{_ gij(x)\gi E& >0 for all complex T #0 .
1,5=1 | |
i11) Aﬁieveryvpoint. x¢G, the n. eigenvalﬁes of the coéfficien£ 
O metrix (aij(x)) ave distinct. _'
iv) e¢(x) is real continuous and bounded from below on G.
v) bi(x) are real and bouqdedly differentiable in G and

ex O G g et

1=1,2,..n Ioa(x)) == (x)
=1t 4= %y
l_ J=l

2.02 ﬁefinitionﬁ ‘We say th@tva jéint Xy on oG is a siﬂguléri

bOunda;y point and that the ellipticity'degeherates_at' %o if théfé

existsla-seQuénCé of points (%) in ‘G for which o

| klifz’x% = X, and klfyéélé ?éj(xk) by ¢y = O for come fixed ¢ # 0.
i,3=

We allow the ellipticity to degenerate on & set S <oG. It is
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assumed that YG is in canonical position,* i.e. ¢ C (xlxn >0)

and s.Ci(x[xn =0}, and that the boundary of G is sufficiently smooth
‘for Greenfs Theorem to hold.

2.1 We will consider i on the space_of functions which are infinitely
, often_differentiable andrwhich have compact support in G. With 1 we
_define a'bilinear form J[uqv] which is bounded from below.

2.11 Definition. Z °(G) denotes‘the Hilbert space of functions u(x)
fof which J-Iu(x)]2 dx < o .

. » : .

2.12 Definition. cz (@) = {v(x)]ue(x) is infiﬁitely often.differen~

tiable and has compact support in G}.

Let u,‘vec: (G) then,

n n \
o) du S du -
(lu,V) = f[’z '5;(: alJ 5‘)‘(; + bl BX_]_.+Cu 4‘ v dx
G i,j=1 i=1
n .1 -
— ou  ov
- VLYY X cos (n * x,)v ds +-j E: 15 S Si: dx
i,3=1 G 1,3=1 ’
—— =
| n
+ J({'E: b, gE~ v o+ cu?] dx
¢ “i=1 *

We define the bilinear form J[u,v] = 1/2 [(1u,v) + (u,1v)] for all

u,veC: (G).

¥ ra :
_ See[}q page 9



2.13 J [u,V] =

. n n )
e ) amn s 1se [ 3 e B8] o B 3o
A J i )
' G i,J i,
n .
: ou = ;v
+ l/ejz bl(é—- v + g—- ) dx +] cuy dx
¢ i-1 "1 G
n n . ‘
G 1i,J G i=1 ‘ G-

n ~
- ob,
=‘/’€~ g—-?— -1/2J'Z 61 uv dx+[cu5dx
G S J i 5
lJJ G = G i
n
n ab
du i -
= Eai,j&._ : dx+f[c-l/2§: 33-c—.-jiuvd_);
G i,3=1 J + c i=l T

: ob.
We have assumed that ¢ is bounded from below and 'a_x_l is bounded,
= 3.,
so that ¢ - 1/2 Z 5—- is bounded from below. TLet K > - w De
i=1
n ab

a lower bound for c - 1/2 Z 5_
i=1

J [u,u] is a hermitian bilinear



u 2
ST R
J .

™1 =

form bounded from below, i.e. ﬁwﬂg_[
i G i,

Ce

for all uecg ().
2.2 By adding a suitable constent to J we define a positive form and
inner product ( .,. ) with the same domain as J. We now extend the

domain of J to a Hilbert space 77,0 (&) L 2.

Let M be a positive constant such that for uecg (G)

Jwu) + M uff > P .
Define an inner product on Cg (@)
(u,v) = Jlu,v]l +M (u,v).

We wish to show that we may complete Cg (G) with (u,v) as the inner
product.
2.21 Definition. We say a form J 1is closed in a Hilbert space H

if [uk} € domain of J, and W - ue H, as k -~ and J[uk - us] - 0,

for k, s -~ implies ue domain of J and J [uk -u] » 0.

2.22 Definition. Let J; , J, be two forms such that the domain of J,
is contained in the domain of J, and Jl[u,v] = Jg[u,v] for u,ve D[Jl] .
Then J2 1s called an extension of Jl' | ~

2.2% Definition. A form J is said to be closab1e if it hgs_a closed
extension.

2.24k Theorem. A necessary and sufficient condition that a form J be
closable is that if u ¢ domain of J and w - O as n - and

J [u;u])

il

J[u.n - umJ -0 for m, n 5o implies J[un] - 0. (J[u]
Proof. See [1] page 13.

2.25 Lemma. J as defined in 2.13 is closable.



Proof. We may assume J > O or else replace J by J +M in what
' ‘follows. Let u € COS (G) and suppose u - u as n o and
Jfu - um] - 0 asn, m o . For every £ >0 there exists an

N such that if m, n > N

£ >7 [w-wl= Jul+Jwl-2R Ju,ul>0 4s J[gn] > 0,

£ >J [}\lm] - 2 Re J[un, um].

For fixed m let n — o then w - 0 and

2 du, du g‘ o, 1
,J[un,un<|j>_13Eg}qumf[c-l/e k|, ¢

G i,j=1 J =1t
=1 -] ) T &—;.u dx+é/ Z u cos(nxj) ds |
Gi,j=1 Y ¢ 1i,Jj=1
o
[ v — & _
+ | [c-l/ejz S5 YW U dx
G i=1

Using Schwartz's inequality,‘we obtain

Pl ol < ?n” Kf(fi '?-— S w) )

G 1i,j=1

— W, N2 \/F
-i-(fG(Fc-l/EL gf;]um> dx> -0 as n —owx ..



So that Re J[un, um] - 0 as n - . Therefore £ > J[um] for
m> N.

|

Q.E.D.

'2.26 Definition. %O(G) = {u(x)| ue z° (¢) and there exists a

sequence :{vn} € C; (G) for which (udvn, u-vn) >— 0. as n oo } .
The closure of J has ’hb (G)_as its domain.
2.3 We will use the following theorem due to ILax and Miigram to show
that 1 can be extended to a closed operator L densely defined in
Z %(6).
2.31 Theorem. If F(u,v) is a bilinear form in a Hilbert space 9,

: 2
satisfying IF(u,u)j > ¢y Il Iy cy > O

and ]F(u,v) |.<_ Cl ”u”%O “V” /)770

~ then every linear functional (u,v) in 7%0 can be represented in the
form (u,v) = F(u,w), where w depends only on v and is unique.
Also, there exists a bounded linear operator S such that Sv=w.

Proof. See [2] page 169.

2.32 Lemma. For u, vef, , let F(u,v) = (lu,v) +Xx (u,v)
(o

n _ n
du oV u = -
G i,j=1 G 1=l '
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We wish to show that for X\ - sufficlently large

1) ] 2w lfy, > 0

11) lF(u,V)lvg ¢ | w il Mo v |l o
i’ro_of: - By 2.13, we have that Re(lu,u) = J[u] for all ue C‘S (@).

Then ]F(u,u)] = [(1u,u) + 2 (u,u)l > | Re[(1u,u) £ (ﬁ,u)],:

[glu] + A (u,u) ]
Choose ‘);' >M .-a.—s M was defined 2.2. Then,

[Plaw)] 2 Jtd + 2 [ u P> atud +u fu P fuf -
Therefore c, = .l. | ) |

ii) we must show

Caev) + A (@) | <o Ru wlf e fuff+m g ue)( b 15+ v I3 +an{l?)]1/
where
2.33 s <u,u>1=f'7_ %13 ?x— gg‘ ax
1 @ i,3=1 J 1
,. 3w, -
2.3k | w Hg = (wu), = j [,c -1/2 X sx—l ] [u f ax
| : a i=1 R
T db,
- [c[u'zdx-l/Q[Z 5;1_|u{2ax
¢ G i=1 *
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oby _
Since each S is bounded in G we can find B such that

‘ n x abi |
B Z é‘ I=1 sy~ o1 5—}2— . Then
. i

XeG

Jeru P o nubwﬁfz yﬁulw<HH@wHuH

G G i=1
Thus
2.35

Jeen [ufa < [ulgsEer)fulf
J A

For A sufficiently large and xeG c¢(x) + A > 0. Then

2.36 |Jv (c +A) ur ax

1/2 1/2

(j(c-&-k)[uld.x) <[(c+x)|v] >

(Wﬂb+®+kWuuj wae+@ﬂﬂﬂvﬂ>vf

For u,ve COS (G), we have

du 3 u -
fX ST [2 STl

¢ =1 i,9=1~



. n . ] -
s0 that the operator - Z g'f' 8y j g—}-{— is positive and hermitian.
i:J=l '

Therefore, ‘by Schwartz's inequality for positive forms,

237][2 ?as“i aidg-;-:—;dxl
G 1:3?1 ; J
1/2 n 1/2
- | -
g ij g;l—j- u dx ([ Z a’ij ; v dx>
)J—l % ' T G -1,]J=
/2 . 1/
U U . v v ‘
=sz aijTB'EI‘“) ([Z_'aig é’:’c“&““)
1,3=1 : G j=1 gt
c VISRV = iy gy
, o det(a, ,(x))
We assumed that  max. 0 (x)) < LJ : , but
i=l, e N + ?I a (X) i .._«]_‘_.. (X)
- | =1 9T Lo e

(see the appendix) t_his is a lower bound for the smallest eigenvalue of

(aij(x)). Let dii(x) be the eigenva.iﬁes_of (&ij(x))' Therefore,

max. [bi (x)} < min {dii(x)} . We will make use of the following
i=l...n ' j.:l--on



inequality

n n
: 2 n-~l 2
IS a B <2 ) ga |
i=1

‘ =1

Then

i=1

aw'](ZHS%,Q|<wmz% n<¥*wu2ﬁ

-=“M2j IIMQMWIZW%N

1-',!3. A ¢ I 3

14,,

dnw j}_ S e g

i,j=1

'Fina.lly we combine 2.35, 2.36, 2.37 and 2.38, obtaining

[F(a,v) |°

G 1i,3=1

13

2

55 2 2 é _ 2 | )
<ll-[|fz i u S—J_ d-xI""l’/’zbi‘gl:{—fv,dxl'l‘l‘[(c.k)‘)u‘-idxl]
. Gaa * R o

_nbwﬁwﬁ+é”ww2wﬁ+qM€+wnuwﬁ(W@«mmwfl

< 2n—i—l

waﬁf[ww§+w@+nﬁ%<mﬁ+uw§+wfﬂ



1k

<o (o2 [ (2 o 12« lhl2) (U2 + 3+ m 0l 2)

i

= . | | ‘ | | 1/2
Thus  [F(u,v)] < VARRERN [l + ull + w22 + [ vIE o)
.Let cy > (.B»+ a) V.'E.n+l . Tilerefore IF(u,v)] < e “0“7)70 “V”7;/o .

We have shown that the bilinear form defined by 2.32 satisfies

" Theorem 2.31 when A > max. . (M, min | c(x)l}.b
: . xe G

Q.E.D-
as

2.4 Temma. If 1, F(u,v), and ’)’VIO are[\previously defined, then there
exists & closed operator L which is: a restriction of 1, d'ensely

deflned in p(2 and has a left half-—plane in its resolvent set.

Proof. Let A > max. (M, min| c(x)[}. For ue 7140 s each element
: xe G . '

.we,;(?(G) induces a linear functional (wou) in 7?70. Sirnce (w.,u)

<[l )l < Wl il 2,0 > (wou) is a bounded linear functional on %y O .

for each we el 2 (G). By Theorem 2.3l there exists a unique v € 7770_ so that
2.41 (w,u) = F(v;,u) = ((L +A)v,u) for all u € }70'.

2.42 Denote the dependence of vonw by v = Sw. S is linear and send's

&l of £ 2(@) into a subset D of %O’ S has a single valued inverse.
Suppose Sw = 0, we K (G), then for all ue 7770 5 (wyu) = F(Sw-,u) =
F(O,u)= 0. Therefore w.= 0 and 5™ exists and the domain of g™t 1s D;

S is bounded. For all weg® (G), Sw € ¥, and

o 5wl < [F(sw,m0) | = | Gr,s0) | <l 5ol < ol 1wl 7 -



15

Therefore “SWH}WO < E%—”w”,and asHSw” < ”SWH%O s itvf'ollvcvzws that

”Sw“ < _c-J;— ”w”. S is also bounded in /}y,o since .if w € 7?70 w¢ have that

5o < o llols % I¥fmo -

. oe]
2.43 D D C;KG) and so D is dense in ?no . Suppose u, veco(G);
‘ . |
we have (L + A) v =weX(G). Then F(v,u) = ((1 + A\)v,u) = (w,u) =

F(Sw,u) and 8w = v i.e. vED. .

b
v

2.4k s is closed. Let g, € domain of 5} and g, —g in 7)70

-1 ' o
and Sg L~ h in < 2(C-). For u e'zb and he sz(G) we have

{n,u) = ¢({v,u). v is unique and Sh = ve D. F(v,u) = (h,u) =
. -1” . ‘

lim (sg ;, w) = lim F(gy, u) = F(g,u).

n— ) n —® :

- -1
Therefore v = g, and g€ domain of S 1 and S g = h.

2.45 We now define an operator L on D. Let L. 284 o\ or

}S'l = (L + A\L), and § = (L + xI;. L is independentvof A and an .
extension of 1. For ueD and v Ef%b,((L + Nu,v) = Flu,v) = ((T + AMu,v),
Therefofe (Lu,v) = (1u,v).

'L is closed and densely defined since st is closed and densely

defined. As (L + x)"l 18 bounded and defined in allX © we see that

L has & left half-plane in 1ts resolvent Set.
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3. A Condition for the Discreteness of the Spectrum. For the purpose
of proving the main result of this section, we shall introduce a co-
ordinate system in which the coefficient matrix (aij(x)) is diagonal.
Although in general we cammot find such. a coordinaﬁe system, we shall
discuss some cases in which we can. Let

, - n
2 b O M ow

' 1i,j=1 J

and ¥y= yi(x) be n independent functions of x. Upon making a

change of variables, the differential operator assumes the form

n .
d d -
L = E: Sxk akl 5y£
k, I=1
- W o, . .
~where o, , ==§: 5;?- 85 3 - If L'Als to be diagonal, we must
i,3=1
have for k # £
: n
2L 0 = oy =T =) s oty
1.9=1 ES J
5d

This imposes 1/2 (n2-n) conditions upon the new variables.
Fof n = 2 the system 3.11 is underdetermined, and we may impose
the further condition that Yp = X - 'This last condition leaves. the:

singular boundary unchanged, and 3.1l is reduced to ‘the homogeneous

dy; vy o o
equation 815 J;ZI + 855 5;; = 0. The solution of this equaxlop is

given by y, = £(¢) where f is an arbitrary function and @(x ,.x2) =

constant is a<solu§ion of the equation a,, dx, = &4, dgz .
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For n = 3 the system 3.11 is determined, but solution of the
three equations presents & formidable problem. We may siﬁplify the
equations somewhat by first solving the system with conditions

a = = = .
13 O 0 and y3 X The resulting first order equations

3
can in general be solved.* However, once this is done, it is still
necessary to solve a system comparable to the original system.

For n >3 the systém 3.11 is overdetermined and can only be
- 80lved under particular circumstances.

3.2 We will now‘develop a condition which, when satisfied, will en-
able us to diagonalize the coefficient matrix. From éonditions i,

ii of section 2, it will be shown that the eigenvalues and eigenvectors
of (aij(x)) are continuous functions on G. We will then relate the com-
ponents of the eigenvectors to the derivatives Qf the transformation,

The continuity of the eigenvalues of (aij(x)) can be deduced from
the following more general théorem céncerning the continuity of the roots
of anAequation as a function of parameters.

3.21 Theorem: Let A be an open set in the complex plane C, F a metric
space, f a continuous complex valued function in AXF, such that for
each x.cF, f(k,xo) is analytic in A. ILet B be an oﬁen subset of A, whose

0

closure B in C .is compact and contained in A, and let xbeF be such

' that no zero of £(A,x,) is on the frontier of B. Then there exists a
neighborhood W of Xy in P such that:
lO for any xeW, £(X\,x) has no zeros on the frontier of B.

2° for any xeW, the sum of the orders of the zeros of £(\,x) belonging

to B 1s independent of x.

o
See [11] page 10.



Proof. See [3] page 243.
The pregceding theorem is applied in the following way.

- £(\,x) = determinant of (aij(x) - AI)

' N2 ‘el
ay(x) + oy (XX + aa(x)x 4. 4 ozn_l(x)xn + 2.

Since_g%gh of the dl(x) are sums and products'df aij(x), the
ai(x)-are continuous functions of x. Moreover as Gwij(x))is hermitian,
the roots of thé polynomial f£(\, xo) are all reai. Consequently, wé
have that ai(x)ﬁare'real valued functions of x. Then at each x,,
f(},xo) ié & polynomial in A with real coefficients and hgnce is
analytic.v - |

For the open set A we choose all of C. Ilet X,eG  and Al(xo), ‘

XQ(XO), ey, An(xo) be the n distinct roots of f(x,xo). Let

i

Xi(xo) pe any root of f(A,x;) end d ?iijxj(xo)—xk(xo)]. Leﬁ

IXin(Xo)l< £y -

B and B = A
J v

Then by 2° , there is a neighborhood W of x

TN

£ > 0 be given, define 5' = min {Eé

o such that for any X, W

there is one and only one X(xl)eB, a root of f(x,xl) which we call
Xi(xl). Therefore for xeW, [xi(xl)_— A (x| < €
| Q.E.D.

Frém the continuity of the eigeﬁvalues, it is easy to.show the
continuity of the normélized eigenvectors. For convenience we will
sometimes use the notation A(x) for (aij(x)).

3.22 Temma. Suppose A(x) is a hermitian nxn matrix each of whose com-

ponents aij(x) is a continuous function of x in G. If at each point xeG
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A(x) has n distinct eigenvalues, then the components of each eigen-
vector are continuous functions of x in G.
Proof. We have already indicated that with the above conditions each
of the eigenvalues of A(x) are continuous functions of x.

Suppose A(x) 1is an eigenvalue of A(x), and (gl(x),...,gn(x))
»is the normalized eigenvector'corresponding to X(x). Iflall the
eigenvalues are distinct, then the rank of (A(x) - A(x)I) is n-1, and

a solution of ithe homogeneous system of equations (A(x) - A(x)I) &'(x) =0

is giyen by
gi(x) = k (A(x> = K(X)I)il
e (x) = k (A(x) - Mx)I),,
G0 = B (AG) - AT,
for some. i, i = 1, 2,... n, where % is a constant and (A(x) - X(X)I)ij

'is the cofactor of the component in the ith row wzxl jth column of
(A(x) - AMx)I). 8

Since each of the‘cofactoré (A(x) - X(x)I)ij are sums, differences:
and products of continuous functions of X, each of the components gi(X) '

are also continuous in x.

é See [4] page 12.
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Then
o K gi(x) N 6! (x) 5
b = /2~ n 0 N\I/2
RN 5 (507

{ cj=l j:l

Since not all £1(x) = 0, we have that £ (x) is the quotient of two
continuous functions whose denominator is never zero. Thus 'gi(x)
is continuous.

'Q.E.D.

'Acﬁually; for'our'purpbse, it ié only necessary that the n
eigénvglues of (aij(x)) be diétinctvinvsome Gy ={x = (xl,xa,...,xn)JxeG
and 0 <x_ < &) rather than in all G. This last statement will be
proven in 3.4,

T Let A(i) = (aij(x)), and let S(x) = (sij(x))be the matrix whose
columns are the normalized eigenvectors of A(x). TFor convenience we will
write A for A(x) and S for S(x) where the functional dependence of A and |
S on x is understood. As A is hermitian, st S* = (sij(k))* = (sji(x)).
We have S_l AS =D = <dii<x)) where D is diagonal and dii(x) are the

eigenvalues of A. For k £ 2

3.23 0 = dkﬂ(x) = }: sik(x) aij(x) sjz(x)v.

i,j=1
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, | N
At each point of G, S is a transformation of the coordinate
n
system to the principal axes of the ellipse E: aiJ(x)gigJ = 1.
We now introduce a new‘condition.
vi) At each point xeG there exists an invertible trans-
formation of coordinates Yy = yi(x), i= 1,2,...., n,

which for xeG satisfies the equations

oy
3.24 J .
A 5;; = sij(x), as Sij(x) was defined above.
| - 3y, 3y,
By 3.23 and 3.24, 0 = dkf %}: S aij 5 Thus condition
- i =1 * o

3.11, required for the coefficient matrix of the principal part of L to

be diagonal, is satisfied. Then, in this curvilinear coordinate systém,

R SR C) S NI SPNEE
i=1 ' i=1

n
E: bJ(y) sJi(y). It is evident that b' = still satisfies

where bi(y) i
J=1 ‘

]

condition v of section 2.02.

.oy : _ ' .
In order that 5~£ = 8 be satisfied exactly, it is necessary
xJ Ji , :
9544 98y
that %, = 6;3— for all combinations of X ??d xJ
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An alternate condition to 3.2k is

. oy, |
3.25 . : -l k(x) s, (x).

From‘the—theory of_exact equaﬁions, the condition for the existence

of an integrating factor k(x) for yi(x) is that each of the equations

3.26

bevsetisfied for all combinations of the indiceé m, p,'r from the series
1, 2, 3,..., n and of these 1/2 (n—l) (n-Q) are independent. AB we wish
“have the same 1ntegrating factor for each Yy o0 3.26 must hold for.

1 =1,2,..., n. If k(x) can be fbund, then the transformed qperator will
, have the form

2 > . d

Le-) S KO A S +) k) B0 G vet)-
i=1 _ : i= : '

.The results developed in the remainder of this section assume ﬁhat 3.24 hoﬁds.
However, subétantially the same results are obteinable if we assume 3.25

instead of 3.24.

" |
See (5] page 12.
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We note that condition vi holds, whenever sij is constant, for

all i and Jj. For example, consider the following matrix:

//
1
(aiJ(x)) = 1 +x2 i +X2
1
T, 1+ %,
AN
(aij(x)) is positive definite for x, >0, and by some simple calculations,
1+2x, + xg ‘ | o2x, xg
it follows that dll = T = , d22'“ T
2 2
and (si.(x)) = L o1
J 5 5
1 1
2 /2

3.3 In order to simplify the notation used while singling out a
particular coordinate, we will denote the point y = (yi, yé,...yh)
by (yi’yi)’ where &E = (yl’yé’."’yi—l’ Yi+ll"'}yh)' Accordingly,

the volume element dy is dyi dyi where dyi = dyl “ee dyi_l dyi+l"'dyn ’
b,
. i ~
and f(y) day = f(y) dy; dy, vhere a, and b, are the
G G— &,

¥y 1

appropriate limits of integration along the curve yi.‘
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3.31 Lemma. Let dii(y) >0 in G and dii(y) >0 for y on oG
and u(y) = O for y on 3G. Then there exists & positive function

T i(y) such that

Juf® ay
© () 4, ()

du
vy

dy, (¥) dy > 1/k

" Proof. With the above notation,

332 4, ()

A

As the y coordinates are curvilinear, the singularities which

~occur for x, = 0 may appear in either a8y, b, or both ay and bi' Let

i
a.i < mi <b;i.
i
. - dgi ' '
3.33 Deflnition.'ri(y) = - .d,ii 3_’1’51 + ki' For a;, <y, <my .
1 .
Y
+ ' ‘i"'dg‘i"' : <. <b, .
7 (¥) = ——— K For m, =y, =1



where k, > 0 is such that when a; <y; <m T; > 0 and when

i)

+ -
b, T > 0. Ti(y) is a decreasing function of vy, ,

AN

my S Yy

+ -y —
while ‘Ti(y) is an increasing function of y,. Ti(yi , mi) =

+ = ' - bz
Ti(yi; mi) = k., and Ti(yi s ai) >k, Ti(yi, bi) >k,

. Definition. N
3.34 Definition : Ti(y) for &y =< Yy < m,
,(y) =

7 (y) m, <y, <b

i i—vi-="1
3.35 Definition. ni(y) = log Ti(y). : nj = yj , for 3 # 1.
For a, <y, <m , ni(y) is a decreasing function of y, , while
for m, <y, <b, , ni(y) is an increasing function of y, . Also

. an'
-1/2 i 1
Let vi = uTi . Then 5;; = ;i s

536 5———5%' ) g—aTi' B e S

’ y. 4T, y. T, +d../  + t.4..-

i i Ui i ii iii

Bvi~ _ avi' anl - 1 aVl

Byi Bnl Byl ¥ Tidll Bni

where the minus sign refers to T in the range a; < vy < m, and

the plus sign refers to T 1in the range mif 5 S'bi

25
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v ot v
du 1/2 74 1/2 4 1 & : i
| : TGy 1 2midgy
| ,
‘l oV Vi
e (571'; +5)
11

From 3.32, 3.36 and 3.37 ife have

bi _ i ,'-./2 2 '
- 5 P . C(E ) (e LW\ [, T .
< : . o= i | = =t . .
11 ) ‘5—9’1 ay, | ay; ] dl; T g-l-ni + 2 é—l-ni + 5| dy, | ay
G, = Le, . -
Yy ot ;o0
L e b, b, dul?
on. | . 2 n -
3 171 _ vj_[ i
_'[[ L T o, vy t1/2 . dy; | 9y
1 11 1 11 1 11
G- L a a, a
Y. i i i
R
> ,
b, |ov b. b
i : i 2 i 2 57]
vy W
STBL aean [0 w, e [Fomf 2 |
i dii i7ii : i Y.
a a l.
G— i a, i
yi 1

BVi | . 2 2
En-i~ , TP ! u(ai) u(b,) L
= T-dii dy -+ l/ T_E_L,_‘d. - dy + 1/2 d i
* | ¢+ G- LI% %y
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' u(ai) u(bi) .
e, and vbi are on oG so that T = Y 0. Tor yeG,
' 7. (a)) T/%(b,)
i 1 1 1
2
lovy vy [P
&7y 3y
— >0, and ) dy > 0. Consequently,
iii i7idi
G
, 2 2
- H 373 < (y) 4., ()
G G i ii
Q.E.D
When we apply the inequality to each of the terms of
n
Z dg; (v) u : dy wé set:
i1 N 53;; LAY, get:
c i=1
n . n -
du ' u =
3.38 Zdii &) |57 &y > 1/ Z _éLdL— W
: G i=1 (I i= Ty %41
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3.4 Definition. The essential spectrum of an operator A,'Ge(A),_consists
of the poiqts A for which the range of A-AI is_not closed and of.eigen-
valﬁes_of infinite multiplicity.

3.&1 Definition; An operatér A has & singular sequence (uh} if the
seqﬁence [uh] is normalized and has no convergent subsequence and

there 1s & N such that 1im(A-XI)u_ = O.
n— o n )

3.42 Tﬁeorem. (Wolf) Let A Ee closed and densely defined. Then A has a

- singular‘sequencé corresponding to A =C iff the range of A is hot closed or

the null space of A is infinite.

Proof. See'[6} page 215.

In section 2 wé'proved that the operator 1 defined by 2.0l and 2.02

has an extension L. L is called the Dirichlet operator.agsociated with 1y

and L 1s closed and densely défined on er(G). For A real and

sufficiently large, (L+Ki)vl exists apd is bounded and defined on all a?(cb.
'Let.G5=[x_ =(xl, X, ...,xn)yxe G and O<xn< 5}. Let L5 |

be the Dirichlet operator associated with 1 on G The fbllowing theorem

5
is a"restatement of a theorem by Wolf.
3.43 Theorem. Let L and L8 be the Dirichlet operators associated with
1 on G and Garespectivgly. v xo is in the éssential spectrum of L8
on G -ifr | N, 1s in the essential spectrum of L on G.
Proof. See iTJ pages 168 and 176.

Because of this theorem, condition: iii of section 2.0l and condition

vl of 3.2 will be required to hold in some region G8 rather than in all_

G.
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3.4L  Theorem. Let I be the Dirichlet operator associated with 1 on G.

The spectrum of L is discrete if
- n
Lim® Z 1 = o uniformly in ;':n

x~ 0.3 l (y(x ’Xn)) d;y (y(x x ))

Proof. Let 58—%))‘ be the Jacobian of the transformation of coordinates

Y, = y.(x). Then 9 (x) = 1 = = 1 .
1 1 . 3y) —  oly) det 8 ) det (s, .)
. SCx) g—‘;' 1]

. _l' . [
But  det (sij) = det (sji) = det (sij) , so that det (sij)= 1. Let

uec; (@).

3.45  Then ,@g,un > Re [(Tu,u)]

n . _ Il N
= - jz g_}-c.'_'aijg%ﬂzﬁ(x)dx+}2ef{2bi§_‘;_ﬁ+c|u[2de
¢ 1,30 * J | ¢ i=l T o
n

I
g\
O/
c</\
(9%
Ei
Zi
ol
<
+
%
r—“‘"‘)
‘\/
o‘
E
+
[e]
E
| IS
&

G' 1_1
n D
—_ 2
S b e B2 Tmer [[aa) s e it e
G' i=1 G ° i=1
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oy 0 2D T -k I re)

1

|
1

3

E

>‘ ’ |  ‘ | ﬁ | .’ ouly du —
» E?(G) ,+ ~}[.2: i1 ) ‘ Yi » dy - /'2;_11 v iy) u(y) cos(n y)é |
: e isl N v oG! . |
. | .

/e iu(yHe -
Z S ey @) - ”z 2(0)

dii

‘ v

Let X eo'(L).- Then there exists a normalized singular sequence [ﬁn}.éD(L)

on G such that L1m Lu - Xdun = 0. For each n there is é‘sequence of

nofmalizédvfunctions
oy o ! : 2,
(v, 1 eCy (G)‘such that (u -w, ,u -uw, )=Ju-u k] ¥ M”u - w
-0 askﬁ — 00 .

. R . s 3 p 1 .
Construct the sequence {un} VhereAfor each nu e {%qg gnd

. 2
YRR WE SRR U _1/n :

fK is defined in section 2.1
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{uﬁ} has no convergent subsequence (otherwise so would {un}).

Also
(EagYay 5 w)| < (A, 5 u)) [+[((Eg)u, - w)

(A (- ), w) |+ () (- ), wi- )]

Let (L-Xo)u =v_ and u'-uw =w_. By the definition of a
\ n n n~ n n .

singular sequence v [ 50 as n e . By 346 [br,]| =0 e noe ;
s gy w) ] < el gl = gl 50 as m e
38 [ ) < v‘nvn'n byl >0 a5 m e
3.49 [((‘L’—Xo)wn, w )< [, w )|+ 2y | |I(wn, unjl.
ol 16 5015 [ [l g >0 sa m e 3y

theorem 2.31, [(Lwnf‘un) + X(wn, un)[ < Cl'“ Wh'l%b I uh”ho .
[, w)[ < e (J[wn]'+M'|wnn2)1/2 (9 [u) +M || B2+ | | Gag ) [

By 2.13, J [un] = Re(Lun, un) —>XO as n oo . Thu;,

1/2 as n —sw . By 3.46,

(3 T )+ u B2 50 +10)
@)+ i P2 5 0 as no . also, JA[ [(n, u)[ 0 as n u .

Consequently, ](Lwn; un)[ - 0 as n s,
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3.50 If in 3.49 we replace u by w_, we have that |(;(L*>xo) L wn) |»0 .
R o

' Combming 3 b7, 3.48, 3.49 and 3.30, we obtain l((i‘ )u;y‘ u;l)l - 0

as n - . Thus, 1im (Lu ul ) = X

O‘ 1
n - o '

: |

Let N >0 be given. There is & 6> 0 such that if 0 <x <38

D SN

R (r(x,5 %)) a4y (7, x,)) o
! : n N2 ’
' ‘ [u! (¥)] .

n o [(Low, w)| > 14 |y B - [ III 12,
Lo e R COR I ) 0 22y
G'6 .
and as ” w B is normalized, ‘|(L8 uI'1 s ur‘l)l >N+ K| - |X|] =N

KE(G)

Therefore l<'L§_ur'1f ur'l)l > N vfo.r every n; consequently )\, > N As

- N was a.rbiti‘a.ry, Oe(LB) s empty, and the spectrum of L6 is discrete.’

By Theorem 3.43 the spectrum I is discrete. | -

. Q.E.D.
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4. The Method of Majorization. If the operator 1 is symmetric, the

existence theory for 1 is obtained girectly from the Friedrichs ex-
tension. ' As a corollary to theorepm _-‘5_.:4&&, a condition for discreteness
is developed which eliminates the necessity to diagonalize (ai‘j(x)) .

" 4.1 Consider the elliptic operator

n .
bl 1= - Z_. %- aij(x) g-f— + cx).
951 T J

The following conditions are assumed to hold inside a bounded domain G:

b1z 1) aij(x) are complex valued and of cla's‘isv'c1 in G with 8y (x) = ajiZX).

n
2. . A 5
ii) /. aij(x) giEj > O for all complex & 4 O .
V i,d=1

iii) c(x) is real, continuous and bounded from below on G.  Without

loss of generality, we may assume c(x) > 0.
We continue to assume that G C {x[xh > 0y , 8 Cé x|x =0 , and
: n

that the boundary of G is sufficiently smooth for. Green's Theorem to

hold. We will redefine = by (G).

L.,13 Definition. %O(G) = {u(x) fue O(E(G), and there exists a sequence

{un} <Cy (@) for which (l(u—vn), u—vn) + (u—vn,u-vn) ~»0as n - oo} .

For u<—:C°O0 (@), the operator 1 is non negative and symmetric. The

discreteness theory for 1 follows from the theorem of Friedrichs.
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L.1% Tneorem (Friedrichs). If 1 is a positive, symmetric operator on
a dense subéet Cg of the Hilbert space }Xf 2 (@), then 1 has a unique
self adjéint extension, L , whose domain is contained in '7n0 (@).
Proof. See [8] p. 330
From the Friedrichs Theorem it follows that the self adjoint
operator - L is a Dirichlet operator. If (aij(x)) is diagopal, then
L satisfies the hypothesis of theorem 3.4l ; and hence that theorem
holds for L;i If' (aij(x)) is not diagonal and:
iv) "At every point x ¢ G the n eigenvalues of the coefficient
matfix (aij(x))'are distincﬁ; |
V) At every point x e G there exists an invertible trans-
formation of coordinates vy = yi(x); i ;’l,..., n which
for x ¢ G satisfies the equations |

%Xi = s,.(x) as s,.(x) was defined in section 3.2;
X3 14 14

then L agein satisfies the hypothesis of theorem B.hh.

.2 We now define a second operator on G.

n .

' _ T d d.
)4'»21 Iet 1 . = - Z__ 5;(;- a(X) 5‘;}'; + .C(X)~
The fdllowing conditions are assumed to hold in G.

L.22 i) a(x) is real valued and of class C; for all x ¢ G. Further-

more a(x) >0 for x e G.

1i) E: lj(X)é £, > a(x)E: 2 for all xe G and g + 0.
i,j=1

aij(x) are the seme as the functions in k.12.



1i1) c(x) is the same function as found in 4,12,
Denote byl L' the Dirichlet operator associated with i' on G.

4.23 Lemma (Rellich). Suppose A 1is a non-negative self adjoint

operator in a Hilbert space H. The spectrum of A is discrete 1ff
every sequence of functions [ui} in the domain of A which satisfiés
(Aui,ui) + (ui,ui) < C< o has a subsequence Vhich is convergent

in H.

Proof. See [9] p. 343.

.2k Lemma  If thé spegtrum of L' 1is discrete, then the spectrum .
of L is disérete. |
Proof. Suppose the spectrum of I is not discrete. By 4.23 we can
choose a sequence {uk } in the domain of 'L whigh has no subsequenée

convergent in 2 2 (¢) and for which (Luk,uk) + (uk,uk) < C. By
the definition of the doma%n of L we can choose & sequence

(vk]-ecg (@) for vhich (L(uk—vk), (uk-vk))+ (uk; Vi W - vk)) S. % .
{uk} has no convefgeqt sequenée in cZie (). By ii of sectibn h.Qé,
(L'Vk, vk) + (vk, vk) < (ka, fk) + (vk, vk) < C+ 1. By k.23,

the spectrum of L' ié not disérgte. |

Q.E.D.

In the appendix two positive lower bounds for the least"
eigenvalue of a positive definite hermitian matrix are derived.
We may take either lower bound as a(x), for both satisfy conditions

i and ii of k.22

35
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Let the coefficient matrix (aij(x)) be diagonal for x ¢ G ,
and suppose G 1is in the canonical position of section 2. In this
situation we may simplify the definition of Ti(x) s ﬁhigh was pre-

viously defined in sectlon 3.3.

. X,
. 1 . ) ’ '
4.25 Definition. 1,(x) = - JL ~——¥:~——— dx; +k, , for
' ’ a..(x, ,x,) )
i i1’ :

a, < x S‘qﬁ.. Where k, > O is such that when e, < X

i Ui i i = bi ?

k.26 Corollary (to theorem 3.4l) ILet a(x) be either of the lower
bounds for the least eigenvalue of (aij(x)) derived in the appendix.

Let 7,(x) be the function defined by 4.25 where for all i,

aii(x) = a(x).
n . . . )
If  lim = —1 - « uniformly in X_ then the
a(x) 2 (x) n
x, = 0 i=1 B

_spectrum of 1 is discrete.
Proof. As a(x) is defined, it satisfies the conditions 4.12.
By the'hypothesis and theorem 3.4, the spectrum of L' is discrete.

By Lemma 4.2k, the spectrum of L is discrete.

Q.E.D.
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L.27 Definition, r‘= Sx,-«-o<f (X (g, < o, 1<n; O<Kx < g <oo}.
————— : i 1 71 ‘ n B

. n
4.28 Lemma. Suppose 1= - Z Y a(x)d + c(x) 1is defined in
e i 3 1 B—x: :

a reglon rC'G where ai(x)' ‘and c¢(x) satisfy the conditions of L.12.

Suppose alsc? that

~1s=

5 n - : -
. o2 = T eyl bt 1nP~for all T .

B

If the si)ectrui'n of L' 1s not discrete then the spectrum of L 1s not discrete. -
» Proof. See [ll] page 27.
4.29 Theorem. Suppose le satisfies the conditions of Lemma 4.28 with

[" C G and that for all 1 = n, ai(x); a(x). Define t(x) = 7 (x) as

'rn(x) was defined in 4.25. Suppose further that for x €[ :

i) ~ 1im  ‘a(x ,x ) = O uniformally in'x .
x =0 nn n
. n
1) - %) < ¢ a(; x,) , 1<n
' -_ 2 i2 /0 ’
x
i
111)  fe(x)] 4 1 < Cy < oo
5 =
a(x) T (x)

thep the spectrum of L 1s not discrete.
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Proof. We will use Lemma 4.23 to prove that the spectrum of L' is

not discrete. For this purpose we shall construct a sequence of functioné

{uk} in the domain of L' which has no convérgent subsequence and for

which (L'u.k- ) uk) + (uk , uk) < C < w
Define the coordinate transformation: ni = Xy, i < nj n, = log 7 .

For x e I the Jacobian of the transformation is = ~ ?(—}B%GCT £ 0.

The region I' 1is transformed into a region TI'' , where T

nf-w < £, <my <g <=, 1i<n;0<log t(x, g) <n <«

Let b = _ sup 'r(xn , gn).
x € r

Define a sequence. of functions '{WJ} by:

v =0, T]an ;

vy = A -3) J<m, <23,
k.30 vy = A, 2d <y <35,

wJ ENCEE BN 35 Smy SN,

Wj=O,A . ,"'J_<_T]n,

where AJ. is. a. ‘eonstant tg,-.rbe:' defimed-. Let s be an integer such

that s > b, let [wk) be that subsequence of{ WJ.} for which k = 1,2,3,...,

Lo o]

and J = 5. Note that [ le |2 dn, -=A-g' A2 .3'3: = b3
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1 ' ‘
on-1 /2 n-1 -ty
(gi—fi). Define uk(n)==wk(nn){~a——1 izlsin T T,
1

Uy

: : n-1
Let d= T
i=1

t

Define v, = 7T

0
" . v € Cq (T1) s

-, ‘be such that':f‘ér2|uk|2 an = 1
. . f

4,32 'Let':A
_ | L

koo inowy

"By 111 and 4.32 v
) | 2 s
. Kk AS &

1 2 X oo o
an > = lwl®an > == [ ag i an, = 53
T o 2 .

We now consider (v(x)] for x¢e¢ I' . We shall show (v, (%))

_has no convergent subsequence in [ .. By 4.30 and iii;

. 2 RT- - 2.2 2 2 2
Ivgmvl® =1 Do, Pax = Palug g 2ane Py 2 g1 Phan > 5

Therefore vk(x) has no convergent subsequence. For convenlence
the index k will be used only where necessary in the resé of

this proof. :

n ' o
+ (¢ + 1)]|v] ] dx .

(L'v,v) + (va) = fP [iél a(x)

ov

3%y

4.33 [ (c+l)|vl2dx = [ 'arz(c+l)|u|2 an < (03+1)f awgluledn’= C3+1,.
r r 4 T i

n | ‘
3t _de ™ - enp = T . Then, ov ov ann ~_ 1 ov _

Note that aﬂn = aﬂn axn aﬂn an | - ann
1 yé ou - ury%l _ 1 [Bu L u ]
= - o= lT §ﬁ; = | =r %@ Bnn + e . We use the inequality

at

%.35 la +b]2 < 2[]al® + |b]?] .
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By 4.35, 4.31, 4.32 and the definition of wu,

4.36 [ a9V ]| ax =f -8 |ou - 12

oL \;{.. ‘ 2 3 = o " ‘
e s e om0 3

By 4.25 and -1 ,

ey

4,37 - ta = %f oy 96tk < (B - X)) +ak, > g, as x>0
n
C-onséquently ‘a*r'v is bounded in T . Let art< CS for xef.’ _Fo;t i<n,
_ 5.
oy 38‘ dv Z av ' J _ov n aT-‘n ov ]/2 ou | BT] ou - u_
T 2% 53;, = j=1 o’T]J axi (m oXy 5” = 5”1 ox Xy oM 2 | *

By{'ii, ‘and 4.25

| B_f_{ | T oy T x_ 3X; g2 m T xnam ol
k
n
< C, ll —l<2 ¢,
Forv_‘ i < nv » by 4.38°
N | 12 3N 2
) _ 2! o 0
440 “/’I‘ag’%— dx—f'a —5%— -5—(3%— + 5 an <
v 1 r n v
by 4.35 , 4.37 , and 4.39 ,
2 1du |2 a2 2 du [ 2. ul? "
< 2C f . an + 8¢ j { T4 ] an
= "5 Jn. B’TT; 5) Co re B’TT; 2




43
by the definition of u and 4,31,

. A2 K2
21 2 2 2 . 12 5 k 2
205{% (gi'fi) jrlwl an,, + 4 CZJ[ %%%— an, *';LE;'"f 02}

I

™,

" 2.3 o . | -
-3 T 2 o .4 21 2l{,10 .2, [ 2, .2
T [ E ( et S g "2”5 1 e ey
+ 6 Cg ) = 06 ° C6 is independent of k . Combining 4.3k,

4,36 and_u.uo (L'v,v) + (v,v) £ 8Cy + (n-1) Cg + Cx + 1 =C

> 3

which is independent of k .
By Lemma 4.23, the spectrum of L' 1s not discrete. By .

Lemma 4.28 the spectrum . of L 1is not discrete.

Q.E.D.

Remark. If a(x) = a(xn) , then our result is equivalent

to one obtained by Kreith.*

*# See 11 page 28
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5} Appendix: Lower Bounds for Positive Definite Matrices. The in-

equality which is developed here is used in several offthe preceding
seétions. |

5.1 Leﬁv A= (aij) be.a positive definite hermitian matrix of order
‘n. Défine.A—l = B'= (bij)’ [A| = determinant of A, and Ay, the co-

vfactOr,of'aii.. Let Xﬁ the minimum eigenvalue of A, and Am the

maximum eigenvalue of B.

5.12 Théorem. Xn >‘

Proof;,'As'the eigenvalues of B are the reciprocals of the eigen-

valués of A, they must all be positive. Therefore

. n-
n > A
. ) i?‘-‘-‘I 11
A < trace B = E:_ b,. =
m ii
i=1 | A ]
. ' o4 .
We will show that Aii is also positive definite. A = (-1) T x
. : ' ii

(determinant formed from A by eliminating the ith row and column) .

- : . ,
Let & 4 O be any vector with gi = Q. Since A is positive definite

, _ . n _ :
the quadratic form Ei &y gk gz > 0. This last condition and

k, 1=1
the even exponent 2i make A | positive definite. For positive
ii
definite hermitian matrices IA[ <n ajj . Then for each i,
. =1

TSeev[lO] page 126
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n
I a
PRTNF
Ay S N
' il
n
n n- II a4 !
1 1 < J=1 1 B §i 1
Thu < E: - = —
5 M < TA M1 STAT L A 311—'1 q13L. &,
i=1 i=1 ii - i=1
as A . we have
n oA ST
m
| A
5.13 X_n‘ > T I )
II:4a.. B P
/ a,.
321 YJJ ?El ii
Q.E.D.
5.2 Consider the characteristic equation of a positive definitev
hermitian matrix A of order N.
- : 4 2. n-1 _n-1 ‘wn.n
0.=f(}) = e ey N (1) &) X + (1) A,

where the a, are real. That the a; are also positive can be
deduced from the knowledge that all the roots of f(x) aré positive

and from Descarte's law of signs.

5.21 Descarte's law states: £()) has n or n-2k positve real roots
if there are n  veriations in sign of the terms of f(\), n and k
are non-negative integers. v

Let the roots of'f(x)vbe A > A2 eee 2 A >0 As ds well

known &, may be expressed in terms of (aij(x)) by

n



| uur

: ) n.
a = II X

n T L Mg = l A !. & _y cennot in general be simply ex-

pressed in terms of the components of (aij)' However, when we’

".gxpreég an_i in terms of the sums and producfs of  &£3 the
, n n
. «— 1 '
term, . & 2~ : s found in Theovem 5.12 is
L. a
: J=1 oy i1

~always+ also found in the expression for ‘s _, ond is slvays

pdsitive;- This laSt'remark,and the prededing theorembsuggest that

a .
-2— - may be a lower bound for X .
a o n
. n-l'_ »
- .5.22 lemma. AL D> - = NS
=" - ."n a a .
: -1 n-1
'Proof." X%—_ + ~%5- + .. b in > idﬁ ﬂ
(Therefore » n
- n . . 1
I XJ SV
: g=1 Y & i
I A
=1 9
If we invert 5.23, we have
- n
I AJ
IR A A
x> = - R A ,
n 1 n-1 n-1
T oa L

Q.E.D.
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