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Abstract. The adiabatic theory. of charged-particle motion is developed
systematically in this review. We present the essentials of the theory
without giving allvthe analysis in detail. The general expressions

for guiding-center motion and partiele energy change are given, with
application to fhe.Van Allén radiaiion and to Ferml acceleration. It
 1s shown that Fermi acceleration and betatron accelération should not

be regarded as distinct processés¢ Modifications éf the noprelativist;c
vtheory necessary when the particle is relativisfic are discusséd. Proofs
are given of the invariance to lowest order of ﬁhé first and sécond |
adiabatic invariants for the caée of static‘fields.. Finaily, applications

are made to the theofy of plasmas.
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1. INTRODUCTION

The adiabatic approximation to charged-particle motion has
been widely used in our attempts to understand the Van Allen radiation
‘and to predict the results of high alpifude nuclear explosions. It
has also been used extenéivgly in fhe theory of plasmé confinement
and stability in strong magﬁetic fields. A thorough'undérstanding
bf the adiabatic predictions is therefore desirable; particularly
since deviation§ from these predictions may be important in explaining
what we observe. Our purpose in this review is to‘present what
‘adiabatic theory says, without presenting all of the analysis in the
greatest possible generality. Some of thevanalyéis, especially for
‘ relativistic particles in time-depéndent'fields, becomés quite lengthy

and will be omitted.1_

This work was performed under the auspiceé of the U. S. Atomic Energy

Commission.

Many of the subjects pfesented here are amplified in a monograph by

the author [Northrop, 1963].
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2.  THE‘GUIDING CENTER MOTION OF NONREIATIVISTIC PARTICIES

In a uniform magnetié'field that is constant in time a charged
‘particle moves ih a'hélical path.  The motion may be described exactly
as motion about 2 circle_whose center is moving along a line of force.
If the field is not quite uniform and not quite time indepehdént, one
: expécts that the mdtionuwill not Be quite helical; one aléo_expects
that something approximating he'li_cal'motion_will still be discernible,
v'and theréfore thet a good épproximation vill contain gyraﬁion'about'a
ceﬁter thaﬁ_now ﬁaj move af right énglés to thé.iinelof-force as. well
as élong it. This expectation is indeed cofrecf, and thé equations
gove_fning thig "guiding o@n;t@r"v motion can b@_d@r;véd by folﬁlowing
: one's‘phySical.intuition.‘ To do this let 7 = R + p , where the vectors
are defined in Figure 1. To corfespbnd-to thé pic£ure of rapid gyratidn

: e A A . ,
~about the guiding center, let p = p(e2 sin wt + e, cos wt) , where

3
is the angular frequency of gyration eB(R)/me ; B(K) is the magnetic_
> A = AN L .
field at R, and e2(R) ‘and eB(R)_are unit vectors perpendicular -
to B(R) and to each other. If R + p is now substituted into the

- equation of motion for the particle

.

=
H .

S IxEE .« e3® @

and an average is taken over a pefiod of the gyration,'the'result after .

. a little algebra with the unit vectoms is [Hellwig, 1955; Northrdp, 1961]

ss
R =

Hlo
olnﬂf

[E(ﬁ) +‘

X ﬁ(ﬁ)} - % v B(R) + +terms proportional to 12- .

(2)
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Here M 1is the well-known magnetic moment epw/2c = mv, /2B ,
vhere v, is the particle velocity perpendicular to B(R) . In (2)

only terms through zero order in m/e have been kept; m/e can be used
as the expansion parameter because if (1) is written in suitab;e
dimensionless form, the'dimensionless parameter that appears is the
gyration radius divided by the dimensibns of the system, and m/é is
proportional to this ratio.

The component of R perpendicular to B(R) in (2) is the
gulding center velocity perpendicular +o ﬁ(?) . It is the so-called
"drift velocity" and is obtained by taking the vector product of (2)

R )
with B . We have

- A N S
. ¢k X & e. X e. X R
R o= —— » ot — + B LI o (3)
1 - B e B e B

where e 1is .m/e ) e, is ﬁ/B, and all Tield quantities are evaluated

1
at R . There are three drift terms here. The first is the well-known
; "B X B drift, and the second is the "gradient B" drift. The third
“term contains the "line curvature" drift, but it also contains quite é
few other drifts, as will be developed below. All the drifts occur
-because the curvature of the particle trajectory is alternately largef
and smaller as the particle goes’aroundbits "eircle" of gyration; the
gyration "circle" ié not really quite a circle. This variation in the
curvature produces a graduél drift to one side as illustrated in
Figure 2. The cauge of the alternately large and‘small curvature is -

different for each of the drifts. The "E X B" and "VB" drifts have

been frequently described before [Alfvén, 1950; Spitzer, 1952]. The
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six drifts. that are contaihed in the last term of (3) also can be pgiven

geometric interpretations. That term may be e§panded by writing R as
. / o5

. . dv, de ar .
_g;_ > A =2 N A i N 1 A
dt(RL + e R el). = e ot Vi f oI vhere Vi is

A - . ’ .

R = gl(R),x the.component of guiding center velocity parallel.to the
line of force at R . We only need dﬁL/dt to zero order in € , since
the entire term is multiplied by e in (3). By iteration of (3), we

o N S - > Sy - ._’1/\‘ .
‘obtain aR;/dt = dug(R)/dt" + 0(e) , where u, is cE X el/B .
Also, dgl(§>/dt is needed. I% is the rate of change of the unit’
.vector asfone follows the guiding center. This unit vector changes
direction in a time-dependent magnetic field even in the absence of
guiding center motion. Iﬁ addition the guiding‘center sees :a change

in &

as it moves. in a field whose direction in space is not cohstant;‘
Consequently, the total derivative d@l/dt equals

Bel/at v, aél/as + quvgl + 0(e) , wvhere s is distance along

—

the line of force. Similerly dﬁﬁ/dﬁ equals BGE/Bt - BﬁE/Bs +‘Gﬁ;VhE .

With these substitutidns; the total drift velocity becomes’

A - ae | au
2 _ _1 = Me jil] 1 me
Bo= 5 X8+ TV + TV v e &
. X {=-cB « ME‘VB + 22
B e e
4 X 3 W2
8@1 - o ael .y - ‘Vé\'.+ 9 ] + v uE +—> ‘VG] +O(€_‘),' u
i 3t I Ss (e B T i Ss 2 Vg
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where all guantitics are evaluated at R . The term proportional to
agl/as is the well-known "line curvature" drift.- However, the other
five terms in the square bracket, although possibly less Tamilier, should
not be overlooked. In practical cases‘the electric Tields are often so
small that the four terms containing Gﬁ are negligible, and the field
lines may change direction so slowly that the BQl/Bt drift is small.
But these five terms in the bracket are not necessérily small, and
situations where each.is of primary importance are knowvn in plasma
physics. For example, the term proportional to GE-VﬂE is responéible
for the shear, or Helmholtz, instability of/a plasna [Nopthrop 1956, 1961].
Shears occur at the solar wind—geomagnetic field interface, where the
solar plasma'slides over the geomagnetic field.

The Bgl/at drift is an eaéy one to understand geometrically.
If the direction of the ﬁagﬁetic field changes without a change in the
paftidle velocity, then some of what was "parallel" velocity wiil.become
"perpendicular," and vice versa. 'In other words, 1f there is a change
iﬁ the reference direction, with fespect té.which one defines parallel
and perpendicular,. then thg respective components of velocity will change.
It is easy .to work out the details and see that there is a periodic
variation (at the'gyration ffequency) iﬁ_the'curvature of the particle
trajectory while the line of force chanées direction. This leads to
a‘drift, Just as in the more familiar case of ihe EX3B énd VB drifts.

The component of (2) parallel to the magnetic fleld gives the
pérallel‘acceleration of the guiding center. The scalar product of (2)

with € (F) is
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2 -VB + b(e) ; - (s)

: ' o o S A N v g ' . - »
where Ey is E(R)~el(R) . The parallel acceleration dv, Jat is

. —.’/\ — e . : .
é% (R-el) , which differs‘from R-g by R'dgl/dt ;-and since the

ad
. A N¢ L
latter equals (el vyt uE)' realig 0(e) , then
. A
dv,, : de
e M 9B - .1
T TS T ms twoam *ooled) (6)

" gl'dgi/dt vanished because 31 is a unit vector. The

term -(M/m)(3B/ds) is the usual mirror effect that produces reflection

" The term v

of particles and makes them oscillate héi*‘th and. sou*ﬁh in "511@_ ceomagnetic
field,  thus trapping them. The total time deri&ative dgi/dt' may be
’ expapded'tO (Bgl/at) +(Wlagl/as) +;Gﬁ-v€l , just as in the drift‘

' equatiOn; This He'dgl/dt .term is.another example of an effect

@aused by a change in the reference direction. If the‘électric field

is small, the term may be negligible.

3. ENERGY CHANGES
The kiﬁetic-energy w: of a particle, averaged over:é‘gyration
is (mv”2/2) +.(muE2/2) +j MB . This ﬁay be demonstrated, but it As
'reallyfobviogs: the first twé terms are‘@hevenergy of the guiding
center motion and MB is the energy of rotation .about the guiding
center. IThe parallel energy W” is mv”2/2 , and the averag_;'e.'~
perpendicular energy WL is (muEz/Q) + MB . The rate of éhange 'dW/dt

.. of total kinetic energy, averaged over a gyration, can be deduced_in:a
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formal faéhion, but the result is so intuitively correct that the

procedure will be omittéd here. The result is

1 aW == M OB =z 2y, '
S 3 = RER, t) + o 53 (R ) + 0ofe), (1)
where R 1s @lv“ o+ ﬁj The first term on the right side is energy

increase resulting from the average particle motion in the eleétric}
field, wvhile the second term is the induction efféct or "betatron
acceleration” caused by the curl of i acting about‘the circie of
gyration. Part of the energy increase giveﬁ by (7) is fed into the

' parallel energy, and the rest into perpendicular ehergy. Simultaneouély,
energy is exchanged between parallel and perpendicular components by |
“the mirror effect, the exchange occurring without a'chapge in total

" kinetic energy. The_process may be visualized as in Figure 3, where

the partition of dW/dt between aw, /at  and dwn/dt comes from the
-forﬁal anélysisﬁ Note that M aﬁ/at  is only part of the
perpendicular energy increase; eﬁ-fv contains the rest of the
perpendicular_e#ergy'increase plus the entire rate of'incfease of

parallel energy.

4. TERML ACCELERATION
Fermi agceleratioﬁ [Fermi 1949, 1954k; Teller 1954; Davis 1956;
Parker 1958] is a'special'case of the adiabatic energy change of the
:pféceding section. Fermi suggested that repeated collisions between a

charged particlé and moving clumps of magnetiZed plasma'in space would
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'_acéelerate a fevaarticles £o extreme energiés.' In effect, the clumps
.agt as massiye particles wifh which the high enerpgy particles attemptl
to establish kinetic eqﬁilibrium. The many’particles in a ciump;

~ although of low energy, give it a vefy large mass. Thus, at thermal
equiliﬁrium, thekhigh energy particles will have very high energies
indeed. The statistics Qf these.collisions will not be discussed here
[see Teller 195L47; instead, details of. a single Fermi-type collision
will be inte;pfeted in 1light of the preceding section.

Equation (7) applies to any adiabatic situation, but Fermi had
ih mind special ones--namely, those where there is avframe_of referéncé
(’tha‘t of the clump) in which the'magnvetic field is static and there 1s
no electric field. 1In the frame of the clump there is‘therefore no
.Aghérgy gain dr Joss by -the particle. Thé-collision is elastic énd iﬁs
net effect is~to.alte? the velocity of the guiding center. In the
earth;s frame, with respect to which the clump.is in motion, therevmay
be an enérgy change, somewhat in ;nalogy to a ball étruck by a baséball
“bat. A particle will lose energy if'the clump is overtaken by thé
.particle, and it will gain-if the clump overtakes the.particie.

| Suppose the earth is fixed at O in Figure 4 and that the clump
1s fixed in a frame O*, moving'at velqcity U with respect t§ the

‘earth. The rate of energy gain is, from (7) and (k)

aw - > = OB
e ev“ E“, + eRL E + M Ty

(8)
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Quantities.inA(B) must now be expressed in terms of u . For example,
- -5 :
o R S I . )
the electric field seenin O 4s -= X B ¥ -2 X B . The

e

magnetic fields B and B are equal through order G/c , 1l.es,

nonrelativistically. The actual cosmic problem may have relativistic

clump velocities, and relativistic energy for the cdlliding particle.

Relativistic adiabatic motion will be reviewed in the next section, but

the nonrelativistic case is adequate here for illustrative purposes.

The following relations also hold, as seen from the earth's

.

frame of reference:

OB
ot

and

L a

Vg T

Substitution

|

ol
ety
('{"‘-\-4

-
-u-v3 ,

aél
vy - vy )55 s
S

- L%
“Cvy =y Juy wg e Se .
into (8) gives
Yo, &+ I¢ 23y 5 ¢ o) (9)
S e €/

If the magnetic field in the clump is such that the guiding center moves

along a straight line of force, the last term in (9) is zefo, and one then

has what Fermi named "type a" acceleration. 'As seen from the clump frame,

the particle moves into an increasing magnetic field (magnetic mirror)

along a straight line of force,‘and reflects with no energy change. As

viewed from the earth's frame there will be an energy change.
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On the other hand if the field 1inevalong Vhich'the guiding. center
ﬁoves is curved, and if the magnitude of the field is constant élong the -
>line, the first term on the right side of (9) vanishes. The last term
is then Fermi's "type b" acceleratioh. In either case, (9) may be
" integrated with respect tQ time to give the total‘energy change produced
by the pafticle's collision witﬁ the clump. Types a and bvrealiy differ
“only in the mechanism whereby the guidiné center velocity is reversed
in the clump frame. In either case the energy change seen by the

observer on the earth is 2mu” (v”- —'ui’), where v is the componént

1y
of guiding center velocity parallel to the magnetic field after the
collision (i.e., far from the clump)vand u“ is the component of 31
parallel tq thaf field.. This énergy change is naturaliy mofe easily
obtained from the fadt that the velocity in the.static frame is.merely
reversed by the collision. But our pufpose heré has been t@ apply (7)
in,thé frame of reference in which there is an énergy change.. Eqﬁation (9)‘
gén also be integrated over a éoliisiéq ﬁithout breakiﬁg it up into tﬁe

"

special cases "a  and "p' .

| Fermi acceleration gnd'betatron acceleration‘are sometimes

- 'invoked as distinct processes whereby a_particié.gains energy. However,
they are not distinct. If oné.follows the fate of.thé (M/e) BB/af

_ ﬁermviﬁ the transitioﬁ from (8) to (9), he finds the term éoes into
'forming,.- % ﬁ” (0B/3s) , which is the "typé1a7 acéeieratioh.‘ Conseqpenﬁly,

‘betatron acceieratidn should not Ee viewed as a process distinct f;om

Fermi ac¢elera£ion, since it is part of "type a". It is correct to

distinguish between betatron acceleration and acceleration resulting
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from guiding center motion in the e;qctric‘field, since these appear as
distinct terms in (9).

Pure betatron acceleration in space is improbable, since if -
there is a OB/dt , there will usually be an electric field at the

guiding center, and the. R-E term in (7) will be nonvanishing.

5. REIATIVISTIC ADIABATIC MOTION

If the particle has relativistic energy; (1) is replaced by

d_i)) a mo; . e - -, b->—»
= = = = = B . : .
3t 3% o 82)1 5 - X B(?)v + ex(r) , (10)

- where p is the momentum, B = v/c , and my 1is the rest mass. Three

cases can be distinguished: when the électric field is zéré,-when its
component EL, perpendicular to ,g is small,.and when ﬁ;_ is large..
If there is no electric field, the force on the particle is
alwvays at right angles to the Velécity, with the resulﬁ that the energy
is constant. Then mb/(l - @2)1/2 can be removed from under the d4/dt
in (10) and the equation is identical with the nonrelativiét;c one for
a partiéle of mass mo/(l - 62)1/2 . All the pfeceding nonrglativistic
theory, with E set equai to zero, now épplies. In the following two

equations the.nonrelatiVistic guiding center eguations are revritten

with mo/(l - 62)1/2 replacing m . The drift velocity is

ﬁ - , _ my v, c CN X B . mye  p S
L7 2.1 kD 2\1/2 il B
(1-p92 22 3 (1-p5YE e
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~and the parallel force is
m dv ' ™ v, 2
9 28| S — o L B (12)
N O A T

Nonrelativistically, the magnetic moment is M = mYLg/QB .
Reiativistically, the corresponding invarianﬁ is
M. = mv 2/23(1 - 32) = é 2/2m‘B . It is not obvious that this is the -
r 0+ _ - A0 ’ : o
correct generalization of M for relativistic.energy. It is easy
enough to verify for the simple casé of a particle‘in a uniform, "
'azimuthélly symmetric, field that changes wiﬁh-time. 'The-general case
16 not so eagy to prove. The adiabatic lnvarlants wil.l be studied
more in the next section.
‘ ' : . . : 2,-1/2
The parallel force in (12) is now larger by (1 - B%) than
would be predicted by the nonrelativistic equation for the same rest.
mass. Similarly, the drifts in (ll).are-faster by the same factdr.
These effécts are caused by the inéreased'gyration radius resulting
' from the relativistic mass increase. For example, the increased
gyratidh radius increases the amount of Field inhomogeneity sampled
by the particle, hence increases the VB drift. Similarly,-the
pardllel force increases because.the larger gyration radius subjects
the pafticle to a greater convergence of the field lines and‘it is
. this convergence that producesvthe'mirror»effe¢t. As illustrated in

- Figure 5, it is the product of v, and the radial component of. B

- that results in a parallel force.
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If the electric field is sufficiéﬁtly small (formally, of

order ¢ ), the four terms containing 3E' in (%) become of order _62
and may be dropped. ‘The drift proportional to a@a/at will also
probably be negligible, since VX T and Bg/at care related by'thé
Maxwell equation. Then. only the three familiar drifts remain."One
may surriise that the correct felativistic modification is obtained by

adding ck X B/B” +to (11) and eE to “the parallel force in (12).

Il
lThis does in fact turn out to be fhe.correct procedure, but it is not a
deductive one, since (11) and (12) were derived by assuming no electric
field. The relativistic case has been studied by Hellwig [1955] and by
Vandervoort [1960] fér ﬁL large (i.e., of order i); and the small
EL results are a special case.

The relativiétic‘rate of enérgy change for fh_ small is

% = e XL + Mr(l‘--.Bg)l/gg—E- . (13)

- Only the betatron term has been aitered, aAcomparisbn with (7) shows.
The éomplete guiding center eguations for large iiL are
- rather long and will not bé repeated here [éee VanderVoort, 19603
"Northrop, 1963]. Their priﬁcipal features are corrections to existing
terms of thé small EJ_ relativistic exﬁressions above. Additionally,
two neﬁ drift tefms that are in the direction of fh_ appedr. They
afé pure felativistic effects that have no analog in ‘the small- EJ;
relativiﬁtic case. One of-fhese two drifts can be explained by the
change in‘difecﬁion'of B vhen a Lorentz trensformation is made in

the presence of an electric field. Basically, the drift is a result
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of the change in the reference direction with respect to which parallel
and perpendicular are .defined. Some of what was‘pafallel velocity is

converted to perpendicular velocity.

6. THE ADIABATIC INVARIANTS

The magnetic moment. The emphasis so far has been on the guiding center

motion and oﬁ energy changes. 'Not only are ﬁhe gulding center equations
usefﬁl, but also valuable are quantities that are constant over long
periodé of guiding center motion--i.e., ahy Invariants of the adiabatic
o métion, or "adiabatic invafiants."‘They are not exact invariants of the
particle motion, any more than-fhe guiding center éqﬁations are exacf
equations. for the particle motion. TFormal analysis [I{ru.skal.,.l%o ;
Northrop aﬁd Teller, 1960] shows that there afe at the most thfee

adiabatic invariants'for the charged partiéle. Each one is really an

asymptotic series in a smallness parameter ¢ --a series of the form:
' 2
constant = ao + € aJ + € a2 + =+ , Systematic analysis [Gardner; 1959;

Kruskal, 1960] is .essential for dbtaining highef order terms in the
seriles. Histpricaliy, however, the forms of the lowest order invariants
(i.e., the ao's) were deduded by pﬁyéical insight and by consideration
of special cases [Alfvéh, 1950; Rosehbluﬁh, 1955; . Northrop and Teller;
1960].  -The ¢onnection with more formal theory was made later. Such an
‘ eVolutionary history is common in bhysical science. In this paper only

invariance to lowest order-(the a.'s) will be proven.

0]

The formal theories also show that the adiabatic invariant
- . r
series are not the action integrals of the form ,? p dg , wvhere p and

. A . -~ . . .
q are canonical variables, but are instead Poincare integral invariants
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" of the form .§ }‘}gi_dq_:L ; Wwhere the number of terms in the sum is the
“number of deg;ees of freedoﬁ of the canonical system. However, the
‘number of'adiabatic invariants may vary from one to three, depending on
the field gebmetry, as will becone abparent shortly.. Iﬂ gehe;al, the
number of invariants is less than or equal to the number of degrees of
freédoh\of the system [Kruskal, 1960].

The first invariantiis the magnetic momént, defined previously
as vaQ/QB‘ for the nonrelativistic case; mYLQ/QB is really My of
the magnetic moment series: constant = My + € M)+ e M, + e+ . The
definition of v, was glossed over slightly in the bégihning bf this

'r@view. IT the component of E perpendiculer to B is small, thé
Ex3 drift is much less than the particle velocity and the pdrticie

~ trajectory will bé as in Figure 2. fhe motion is almost circular, and

“the v, o be used in thé magnétic moment is the velocity about the
circle. When EL. is this small, the last four drifts in (4) will
probably be negligible. Suppose that ﬁi_ is now increased. Eventually

. ‘the trajectory will resemble'a proléte cycloid as in_Figure 6. There
is ho resemblance to circular motion in the laboratory fréme, but in

- the frame moving at EXB the motion is approximateiy circular again
as in Figure 2. It is the v, in this“drifting frame that should be
psed‘ih mYLE/EB . Adiabatic theory therefore can still apply even
when the perpendicular electric field is so large that the particle
trajectory in the observer's frame shovs no looping or resemblance to
circular motion. One must only be careful to use the complete expfessions'

in (4) and (6), and to define v, properly.
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ThebinVariance of M is eésy to demonstrate for simple cases,
like a time dependent ﬁagnetic field vithjazimuthal Symmétrj ahd straight
- lines of force. A proof for‘tﬁe most general situation (general ﬁime_
dependent magnetic field and large elécﬁfiC'electric‘fiéld)'sééms to be
rather.longT[Kruékal;'1958; Gardner, 1959; Northrop,li963). The_mést
general case for which a simple‘proof seems to exist is the static one,
-where the energy 1s constant; a largé curl;free.eléctric field may be
'present; By conservafion'of energy,

2 2

: mv m u, ' . ‘
S~ + —= + 1 + ef) = 0, (1)

where ¢ 1is the electrostatic potential. Recall that the invariance of '
M was not invoked in dériving the guiding center equations. Thus the

_ yaiue of dv,/dt from.(6) can be used to convert (1) to

-

o | ., o L B
d(MB) _  edd il g v e M3B - %€
av o T ’m“E”d'%"A'._mVn(mEu - oSz f Uy ) e

ax at .
(15)
The total derivative dff/dt equals v, (3¢/ds) + ﬁl;v¢.,'wheré R,
s given by (L4). Putting it all together and doing a little vector
“algebra gives

anB) oo | B _ LA
T = M UEVB 4+ M V”'&; =3 Md—t. s R (16)
.Orvv
2o,
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The next two higher terms in the magnetic moment serics have
also been derived [Kruskal, 1958; Cardner, 1962]. They are rather
complicated.
The expression "nonadiabatic behavior" as applied to +the magnetic
- . - o 2
moment has by custom come to mean any deviation of v, /2B from
2

constancy. However, it is actually the series -MO + e Ml + € M2 4+ s

. that is the invariant of the particle motion, and not just MO'.

‘Therefore, My can vary according fo)adiabgtic theory. It seens
preferable *to defineAaé»nonédiébatic any Behavidr not predicted by the
_'ééries. Since the series is asymptotic [Berkowitz and Gardner, 1959],
and not convergent, it would not be surprising.to see particle behavior
that completely ignores the adiabatic predictions, even in Iow order,
énd this would be genuine nonadiabatic behavior. Examples of‘such
motion are known [Garren et al., 1958; Northrop, 1963] for the magnetic

moment.

The second or longitudinal inﬁariant. Another invariant of the particle

motion, or really of the guiding center'motion, is

J = j{-p“ as , ' ¥ (17)
where P, is m, the pguiding center momentum parallel to the line
of force. The invariant J exists if there'is a mirror-type geometry, .

such that the guiding center oscillates back and forth along the lines
of force while drifting slowly at right angles to them, as illustrated

in FPigure 7. Tor J to be constant, it is necessary that the drift

-

be slow compared to T -~-i.e,, that Ei. be of order ¢ . The
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inteﬁral is taken over a complete osciiiation, the deviation of the
guiding center from a line due to the drift during one osc111ation being
nevligible if Ei. is small.

The ‘earliest suggestion that J io an invariant appears to have
-come from Rosenbluth [Chew Goldbcrger, and Low; 1955] A proof of the
inverianceiof J and some‘epplications to laborétory magnetic-field
B configurations was giVen by Kadomtsev'[lQﬁBj for a nonrelativisticb
fparticle in a static:magnetic field. ‘A proof that remains valid at.
relativistic energies, and that includes time-dependent fields has been
‘glven by Northrop and Teller .[1960]/.' :along‘withlappliCations to the
.‘ Van.Allen radiation. The proof?of the inveriance of J giyen'beIOW is
for a nonrelativistic particle in a static field with no eiectric field;
- inclusion of nonstatic fieldS'greatly‘increéses the lengthiof'the_proof.'
_ Therefdre, only the results will be given for the tiﬁeedependent case.
The timesdependent'results ﬁill be,needed to discuss the third invariant.
Relativistic modifications do not seem to materially conplicate the prooﬁsf

To begin the proof of J., a curviiineer coordinate system will
now be introduced The three coordinates Will be denoted by o, B 5
"and 8 , Where o and B are tvo parameters specifying the line of |
ﬁorce? and s denotes position along thc line. (Distinguish this' B
from v/c in a previous section.) A systen of noninteroecting lines
cen'be generated_as>the intersections of . two families of surfaces-
a(r) = .constant,. and .B(;) = constant,_ehere‘ o(¥) and B(T) are
tﬁo different functions of'pOSition.. It is,apparent that.for“abgiven

system of lines the functions o(7) and B(T) are not unique. Consider
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the simple example of straight lines of force. They can_be_generated by
the intérsections of two familles of planes{ by a family of'planés and
one of cyiinders, ete. Among ‘the many possible'paifs:of functions ‘a(?)
and B(T) for a siven magnetic field, there is a subclass for vhich
thé'véctor potential A is ovB and B therefore is 'va X B .. That
suéh & subclass exists is not.quite'vaious, but it is not difficult to
‘prove. The utility of the subclass is that for it lyu X VB] /B is
.cqnstant everjwhere, being unity, and this fact redﬁces the algebra
" involved in the proof.. |

_ | In the absence of electric fields the energy- W “equals
mv”2/2 + MB, so that

: ‘J('o:,' B, M, W) = f on(W - MB(e, B, s-)]l/? ds) . | '_(18)

The instantaneous rate of thange of J due to the particle drift

ﬁi_ in Figure 7 is.

aJ A da

oJ ap . o ‘

Differentiation of‘the integral in (18) gives

2

AT o M..jr | ds . oB(q, 5, s)
' [2m(W - 1\453)]1/2 a2 | >

X

and

o
[P

9 . .m j{ __ OB(a, B, ) .
% | Lem(v - ¥B))/° o

\

~ (20)

il

Because « and B are constant on a line of Fforce, they are changed

only by the drift velocity, and not by the parallel velocity. Therefore,



UCRL~10750
=20~

dafat = R - w(R) and ap/at = ﬁi:VB(ﬁ) . Substituting R, from

(14), with the electric field zero, gives

5 ae

| “?I-p“"

T ( -—-VB + ,:;‘q| ) . | - (21)

- Consider now.the quantity (Eﬁ/BB) X B, vhere the.guidingvcenter
‘position R 15 a function of (@, B, s) : '

'%g'xié’ "g—x(wxva) = -(w )va + (vaaR )W- (_22")‘

- By implicit differentiatibntbf' Qo= a[ﬁ(a,'ﬁ, s)] one findé that

E _ | .

v.V& . B - 0, . ‘and that \5 . 55 = 1 :
Thus, (JR/dB) X B o= w , ana}(el) becomes
2 L e
da ! Me - me . 2 1,., R , = _
w3 T® e ,§;><35 ¥ B). (23)

}Interchanglng the dot and cross, and expanding the triple vector product 

'él” X ( "X B ) gives
it = e i Js ( 3B 1518
| Mc OR | me. 2 OR aé] Me Sﬁ Ao
2. : . - é *UB

S e BTN R TSR e S E o5

e

i
o/
s3]
~~
wiR
™
20
.
=1
mlo
<
Y
Q/
>
QA
Q
o)
w
3
[#7]
e
o
CVr4>
[&) ~~~
Q
-
™
-
(6]
SN

Mc , .OR 3B(q,B,s)
+ == e,'<x . °
e 1o s (24)
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In the second term on the right-hand side of (24), we have

Q8 - , - -
3R 1 d,A OR . A d Mla,p,s) A O XK
el Eg(el §§> , since € -5c —55~L—L—— =855 5% and
. A
A O R L8 o
1'55 35 < el'ég—., which is zero. Therefore, the second term becomes -
| 23 3R d R
- me A 3 . _ ’HLC_ a0 A, 1
- 5 (el > ) = = Vi % (el ' ) . F?om (6),
BB m dVi' h e 1 e
o - T so that the last two terms in (24) combine to

me 4 /\. éﬁ . . ' ' . . :
T (v” el '55 ) . The instantaneous rate of qhange of « finally is

do . Me OB(a,B,s) ne 4 4 B . » -

e 5 - ea—f(vtlel‘gﬁ')' - (25)
By a similar analysis, we have

ap Mc B me d ;. 4  OR

at T e e om e m ) (26)

at o .e X e t

If OB/OB from (25) is substituted into 3T/ from (20), the result is

dJ }' © nds. e [aa . _ 4 A OB
= : = = + n= (v, & <)
B [om(W - 13)]/2 © |[dF at 1 9B
e ds do ' (
= = = = . , 27)
¢ } Vi a4t ' .
The integral of »9-( s . & ) has vanished because ds/v. is dt
e integral of .m ==(v, &, e as vanishe s/v, s
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‘and v, is zero.at the rofiection points. - Equation. (27) can be

writfen‘as; !

%rr"<a>,,~ | N O

el

'Wher - T is the time for ‘a long1tud1na1 oscillation, and the brackets

,denote tho time average over an 090111at10n.‘ olmllarly,

& (29)

Ol('D

%= " T< ) /
-ﬂquationn(l9) can then be written as
dJ :'e. ' |

Now this quantity is not zero exéept-under_véry spe¢ial circumstances, so
 that J>‘is‘not instantanesusly boihg'conserved by the guiding center
. motion. However, -the rate of change of J avéraged_over'a longitudinal

oscillation is '

':f v;; at ¢ :[< a[>,%i Vi g i  <.5 ) :f-.Vn a] o (51)

{< a3 B - (B)a >j

it

ol

| Vhichfis identically zefo;,ahd this is the importént fact_for the long
term motion. | | | | |

| Equations (28) andb(29)_aro new equations of motion, with the
guidingfcenior osoillatioﬁ o?efaged out; they aré'tho onalog of‘tho guidin$
center equations of motion, which are the p“rticle equauions ¢of motion

with the particle gyration averaged out.
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When Eqauations (28) and (29) are solved for ( Q) ﬁnd { B) ,
they are at first sight—suggesti?ely canonical in form, with J(a,B,M,?).
,playihg the role of Hamilitonian. But théy are no£ guite canonical. In
fhe first.place the time of oscillation T 1is also a functlon of
(o, B, M, W). Turthermore there are the time averagés of & and é ,
rather‘than the instantaneous vélﬁes. The first difficulty can be
overcone by.differéntiating J = J(a, B, M, W) implicitly with respect
to @ and B to yield ‘&T(a,ﬁ,M,W)/B@ = -(37/aw) S(a,B,n,T)/38 .
ete. for oJ/x . ‘The factorv BJ/awl:is simply T , as can be verified

from (18). Then

E)W(OZ‘, e, M, J)

(&) o - :
and I | (32)
(By - £ &

Excepf for the time averages,‘these are now canonical. It would‘seemlthath
_the matter 6f the time averageé cOuid be overlooked if one ié inferested J
oqu in the averagelguiding-centér pdsition,‘and“thérefore that ﬁhe‘
eépations of motion can be regarded a; canoniéél.- If this is the.cage,’u
any theorems in classical meéhanics that come from the‘canonical'eéuaﬁians
shouid‘have an analog in the (@, B) space. Liouville's theorem comes

to mind immediatel&, aﬁd.it is possible to derive it [Northrop and Teller,
1960] for fhe density in (e, B) space by disregarding the time averages.
To dispel any lingering doubts about the time averages, a more direct
derivation can be ﬁade by using the expressions for the instantaneous
valués of & and é . The consequences of the Liouville theorem will

be described shortlj.
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The third adiabatic invariant,. As a guilding center oscillates beitween

v-ﬁirrdr pointéa it‘grédually changes lines of fofce.”»During ité motion
alopg a_liﬁee it insgéntaneously‘drifts towards a variety of adjacent -

}iﬁés,,but there is one 1iﬁe.towards“which it moves on the average and
thisbline is specified by (32). Thus a surface compésed of lines on -
‘which AJS is conStant is gradualiy-traversed by the guiding center; |
Noﬁ'it may happen that this surface islclbsed, 50 that the particle
.eventually returns'to.a line it t;aversed eaflier. If so, there is a
third periodiéity‘and a third adiabatic invariant is to be expecteds
vThe‘surféces seem to be closed for particles.in the inner Van Allen -
.belt.. Such a surfacé (idealized) is sketéhéd iﬁ Figure 8.

R Note that if the particle ié not traﬁped betWeeh mirrors, the
‘longitﬁdiﬁalimbtioh.is not periodicvéna there is not‘even & second
.adiaﬁatic invariant, nor isrthere a thifd} Only tﬁe magnetic moment
exists. This illustrates the fact that the number of adiabatic
,ihvériantsAdepehds on the géométr§ and is less than or equal to the
fﬁumber of degrees of freedom.

To returﬁ to the Liouville theorem: it says fhat in the steédy
.state.in.fhe absence of electric fields; cbnfours of constagt'magnetiq
field are also constant guiding-center aensity cdhtours on a longitudinal
’invériént surface (Figure-S).lv |

 The third adiabatic invariant is the flux i of B encloéed

by tﬁe surface of Figﬁre 8. That this flux should be éonstant in a
static situation is a trivial statement, much as the invariance'of.the
magnetic moment in a uniform field is- trivially true. But the flux'is

’
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also invariant if the field is time dependent, and this is the
significant fact. The surfage about which the particle ﬁre¢esées
is not even well definéd unless the particle traverses it in‘a.time
small compared to the time scale for fields fo change. It is not |
surprising therefore‘that this rapid precession assuﬁption ié necessary
to prove the invariance of @ . Trom a practical standpoint, the tiﬁe
scale of field fluctuations must be 310west to conserve @ ; they can
be faster and still conserve J , and fastest of all without disturbiné
M, since the time scale then need only be long compared to éhe gyration
period.

Proof of the invariance of @ is reminiscent of the proof
for J . It is necessary to extend equatiohs (52) to include timej
dependént fields. When the fields arevtime dependent, it is appropriate
to  generalize the quantity W used previously té_a quéntity K,
defined by

mV112

K = + MB o+ e<¢ 4+ % %% ) S (33)
. o |

where ¢ is the scalar potential for the electric field, so that E is’

- V¢ - % %%QYE) . Ina time—dependgnt field «a and 3. are functigns

of both time and position. The second invariant is now defined by

| M O o .a‘o | 11/2
J(a; B, M, K, “l:) = jD i om !K - o Eg% + ¢) _ MB'f as |
. L ‘ ]
; | (34)

where 03/3t is to be expressed as a function of (a, B, s, t). The

generalization of equations (32) turn out to be
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. - c K

< 04 ) = = 'é' '5'5 (a) B) J: M: t) i)

. c OK

(B) =gga ’

. N
A ) _\
and - o E ' ) o (35)

' 1 - 7 oK ‘ o
= 55

The quantity.'( K ) is related to the»gain'in energy averaged over a
longitudinal oécillatibﬁ.

| Thé details of fhe proof that ;@ is_invariant will nof be
"giveﬁ here [see'Northrop and Telief; 1960]. One finds that d@/dt is
*not Zéfo as the particle drifts-around:tﬁe surface defined_by the
invariénce of J (i.e., as it precesses around the earth)j the:average
motioh from line to line as giveén by'eéuations (%5) doe; nqt conserve §
But ifl dQ/dt .ié éveraged_ovér a comiplete breéessiongithe time avérage
ié'zerd.: This is analogous fo the éituatioh with aJ/at . The

4instantaneous’rate of change of @ is

G S Tk Wiyl 4o 6
at = e A ooy | FoY | “

whére‘ ((‘k )) means (‘K ) vavérage@ o#ér a precession, and -Tp is

vfhe time for»the‘particle’tofprecess once arouhd'the surfacg. Thevrighﬁ

side of (56) obviously vanisheé wheq averaged over the periéd Tp .
Befdre‘leéving the subject of the third invariant, several points

should be diséussed concerning motion of lines of force and the avéragc

- (over a longitudinal oscillation) guiding-center drift. The "velocity"
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‘of a line of force in a time-depmdﬂnt_field is not physically cbscrvable.
We cannot see lines of force. One is therefore free to define line
veloéity, and it should be defined so as %o cnhance our visualization
of ‘how the magnetic-field pattern changes with time. One usually uses
the picture in which a magnetic field has an intensity proportiocnal ﬁo
the line density one draws. As the field changes with time this picture
remains valid if the lines are moved:around at a "flux-preserving
Velocity." To define’this velocity, suppose an arbltrary closed curve
is drawn in space; now let each elemént of the_curve move at a velocity
ﬁ(?,‘t) . If the flux through the curve'remains constaht as the curve
:distofts, U is said to be flux preserving. As shown by Newcomb [19581,
U must satisfy. VX (E+ T X B/c) = 0. This limits U but does not
~determine it wuniquely.  One often.chobses U as cE X ﬁ/B? , which
is acceptable if V X'E“ is zero.

A more generai defini%ion of line velocity'that is always

acceptable (but not unique) is’

BF 0 - (2w - S x 2. (57)

It is ﬁof.difficult to show ﬁhat v X'(ﬁ +vﬁ‘X-§/c) is zero for this
~ choice of U . Méreovér, this choice has the advantage that 'g% + U
- is zero, and likewise for B . The significahce of this is that as an
observer moves at the line velocity, the (@, B) label on the line he
is‘following remains unchanging with time.

A convenient space in which to visualize.the invariant'surfaces

is a Cartesian (@, B, s) space, in which the field lines are straight
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"aﬁd’paraliel_té the s axis, as in Figure.9. The chbicc of ﬁ in (37)
makes the lines, 6f.fofce fixed in this Spdée; by_contrast; a particle |
;for vhich "J. (bub not nccessarlly Q is invariant mché in f(a, B)
space in. accord with equations- 55),»and consequently does not‘femain
.attached to a llne oft. force. R '-.: S

| The plcture developed-so far of~liﬁe-motion is very appeéling,

-

but is not un1Qﬁe, " To iilﬁstraté,'suppose U is defined By

>,

A S o . ‘ [ SN » e..
W - S wE w0 (Bw-Ew)x

b

eB 1 ‘
(28)

“where- K is to be regardéa as a I‘unciion of ‘the uccificd V&Tlubl@ﬂ via
(34). Thls veloc1ty can al 0 be proved flu% preoerv1n& Howeve:, for

- it, we have

Ay
g

c A o
o5 (e X V)

olo

=t Sy = (E), ()
and similarly for { B ) . With this definition of line vélocij;y, the
= lihé)of forcé cénseéuently-moves.étlekaétly'thé average parﬁicié drift 
.velécity,_aﬁd'the particle remains attached to the liné.
| Eithér of the two pictures is acceﬁﬁable,_though definit1932(37)
Seems.préferable siﬁée it does notvdepend\on any particle parameﬁers; while
définition (58).debends_on J and M. TItisa llttlc unavpealing to
‘use a definition of‘line velbcity that depends on the particle under'

observation. - One prefers to visualize the motion of field lines as
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being intrinsic to the field and.hot deﬁendent on particles. TFurthcrmore,
if two particles with different J and M arc on the came lide of force,
there will be an ambivalence in the line'velocity§ Finallj, if the
electric fields are so large that all the drift terms in (1) must bé
retained, J is not conserved. Definition (#8) is still flux preocrv1n
but J is now a time —dcoendent Darameter. And' becaus e the ruiding
center no longer shows a slow average drift, governed by eqﬁationsv(55){
it is not possible to say that the pérticle’follows the line of force

“on the average. The guiding center foilovs é trajectory in Fi~u re 9
determined by (4) and (6). Under these circumstances; dcfinition (37)

for the line velocity certainly is superior to 58)

7. APPLICATION OF ADIABATIC THEORY TO PLASMAS
-In the previous sections the motion of a single particle in a

prescrlocd field has been studied. The adiabatic.model may also apply

to a plasne, thrc the density of positively and negatively cha rged
pérticles is s0 large that their interactions are important in determiniﬁg'
their motions. The field each particle moves in is the sum of (a) any

"external" field and (b) those fields due to the motions and positions.
"of all other particles. For the particlg motion to be adiabatic, close
collisicns between charged particles nugu be infrequent (high plasma
temperature and low dénsity)‘so that a narticie at no time feels a

sudden force. Such self-consistent calculations are necessary o

[l)

-analyze the stabil lltf of plasma confinement in a given field configu-

ration.
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Newcomb [i963] has develeped a meﬁhed for using the first two
adiabatic invariante in stﬁdyihg plaema stability. The Change in energy'
of*ah eqpilibrium plesma,under:a prescribed displaceﬁeni z(?) of ‘the
element of plasma at T can be obtained from invariance of the magnetic -
‘;moment'and longitUdinal invariane; If-this energy change.is positive-

- for all possible' E(?) 5 the plasma is stable. ' If the chanfc is negative
‘.for any §(r) B it is unstable, It is pleusible that the ehange in
particle energies hould be derivable from the first’fwo inveriants.
The magnetic moment is asseciated with ﬁerﬁendicuiar enefgy, while thé
longitudinal invariant ie'esspciated with paraliéi‘velecity and‘enefgy.'
‘Chaﬁges in field enefgy under'the‘perterbation mﬁstvalse be accoﬁnﬁed s
- for in obﬁaining the totai chahge in energy; |

‘The mechanism of these instabilities can be expléined in terms
.offthe adiabatic particle dfifts; In the presence of the perturbation
the drifts lead to charge accumulations ‘whose electric Tleld” drive ;
vthe perturbation further in a typlcally regeneratlve fashion [oee |
Rosenbluth and Longmire, 1957, and Norohrop, 1961, for examples].

We can also eppiy'adiabatic.motion to fheleurrent dené#ty in a
‘collisionless plaema. Lach component (iae:, ions or electrons) of the

i

plasma obeys the macroscopic momentum conservation equation .

.~> - v ‘ ) E
n_m'dv = ..'V'_P! + ne-Y- X B + neE .(14'0)‘

-676 ‘_. S ‘ HEEN
*where V is the average (over the veJoc1ty dlstributlon) of the'
'particle veloc1tj v s and P is +he pressure tensor deflned as
(nm(v - V)(v - V)) s where the'bfackets mean~an,average over the

parficle velocity distribution. _The current density ? of that
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' >
component is ne V , wvhere n is the particle density. Solvinz (10)

-
for V , we obtain

AW N - :’.T:" -
V = v 4 M 4. _‘—.—‘C"‘ 1 4- ¢ g X (_B'X
] ne B . ! CB2 1 A ax .

o>

b

(e}

(h1)

Consider now a steady situation, where there is no electric field.

Then ?L is é@l X Viﬁ/neB . This.is'just'the east-west asyrmetry

' efféct of mirroring protons obsefvéd by Heclman and Nalkano [1963].

- They observed that at the inner edge of *the inner Van Allen belt, more
high energy protons are moving east than wes®; there is an averaze
proton velocity V towards the east. The pressure gradient is caused
by the atmospheric density grédient, there being fewer particles at
lover altitudes due to the greater loss to the atmosphere. At the
outer edge of a radiation belt, where the density decreases with
increésiﬁg radius (for whétevér reason), the reverse asyﬁmetry should
appear, with more particles moViné west than east.

The divérgence of the preésure tensor can be expanded. in the

adiabatic case as [see Chew, Goldberger, and Low, 1956]

rd, P - D 1 28 .
- A L] Rl 1. bB ‘5 ! ) 1 e
VP = el 2- as - B FS- jl ‘l?» L (P” - VT.L?!’) v—OS + VP.L 5 Jg
(k2)
: . 2 . 1 2 L
where P is mm ((v“- - v, )") end P is 3 m{ v~ ) . In the

east-west asymmetry experiment there would be a small contribution
N ‘ A . . o .
from the line curvature Be]/as in addition to the one from the

pressure  gradient VQL .
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" It is poss ible to provc r‘rc>ru thc Vla (co]l ionless Bolbzma

éqyaﬁibn that

\ ST;”ﬁ) = neV = Ne<‘3l '+4 €lv”)g +~vc v X MmO

oy
e

.where N . is the number of guiding centers per unit volume at (r, ) &~
~and M 1is the total magnetic moment per unit volume of partlcles with
guiding centers at -r . The brackels mean the averaze over )”f”]ClOo
with guiding centers at r . ‘The perpendicular component of (43) is
casily derived from (41) and the guiding—cénter equations. -Iowever,v
the Darallel comnonent,is rathérvdiffiCu -to provc fo“mally [ce

Northron, l°6j], even thouw he entl re. exp“ﬂ ion-(hi) is intui uively
‘correct. I% says that the total current density in a plasmd is the

sum ‘of the guiding center current and the current that resulis from

the curl of the magnetic moment per unit volume.

8. NONADIAB TIC LFFE cms

- The appllcatloﬁ of adLaoutlc tncory and the Jowost'order

invariantsth'the Van Allen ra dl&uWOﬁ h&u been ou’ lined in prev1oug
sections. According to the theorj, in the-absence-of:colliSions,~ -

F

- particles would remain indef 1n1bely in thc beommﬁneulc Tield and

i

repeatedly precess about their invariant surfaces. Tn p“°Culce 2ll
three invariants may not hold suffiCiently'Well'fOr this pernanent 5
trap e} occur.»‘There is low uClpC‘a cure pl sima pefmea z -the

.magnetoopnere about the earbu, and the oJur v1nd may produce -

_di turbances Uhab are- propa atcd throufh>this plasma. - These
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disturbances in‘turn may be sulfficiently fast.to affecﬁ one or nore of
the lowest order invariants. Even if the deviation of one of ﬁhem
from a constant is very small, this very small effect can onerate over
very long times in the peophysical case. The question becomes whether

) ~
these effects are cumulative, or whether they are oscillatory and
seif—cancelling over a long period. If the motion is *truly nonadiabatic,
in'the sense defined in Section 6, the effects may be cumulative and
thé particle may become lost from the geomagnetic field. For example,
if the magnetic momentvdecreases‘confinuoﬁsly, the particle will eventually
Become losf in the atmosphere. However, if the motion is adisbatic, in
the sense of being predicted by the first few terms of the invariant
series, then the particle may still be permanenﬁly trapped, with the
guiding center'foilowinq a slightly different path from thaf pfedicted
by the loﬁest order iﬁvariant.'.The distinction between these two
possibilities? cﬁmulative_and osciliatory, may not always be sharp,
ﬁhbugh in one éeometry it seemed to be quite sharp for the magnetic
moment [see Garren, et al., 1958].

There would certainly be value in computing_ét leas£>one higher
term for the longitudinal and flux invariants. The conséqugnces of the
earth's rotatioh, coupled with the azimuthal asyﬁmetry of its field,
do noévseem to be known except in theblimit vhenlﬁf is invariant. In this
‘limit a particle precesses rapidly about its invériant surface, and
the surface rotatés slqwly and. rigidly with a 2k-hour period. The
- next terms of the longitudinal and flux invarient sefies pUght to

describe the lowest order modification to this simple picture.
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To cénélﬁdé; it does not seem possible,af presént\ﬁp.maké ahy”'?
"genérél statéments.about_nonadiabatic effects, other than that’numériqai
- éoﬁputation is probably needed toistudy them. However; these éffects, |
may be importaht in the dynémics of the trapped radiation and therefore

merit attention. .
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FIGURE CAPTIONG

t:‘Fig; 1. The charged pafticle'gyréﬁéé aboﬁt its guiding center;:
Fig. 2. A arift. | IR |
: ?ig; 3.. Enérgy'chaﬁges in a timéfdependent,field.
L!Figa'h. Fermi acceleration. o
Fig. 5. Thé'mirrdr effect.
‘Fig; 6. Particle‘trajecto?y vhen .EL is large.
..Figl 7. Mirror gédmetry neéded férféxiéﬁéncé of éécond adiabafic z  ' 
invariant. | |
‘_Fig;‘B.. An invariant.surface for a particle trapped in the earth‘s fiéld;??l

'Fig. 9. A line of force in (&, 8, s) space. .
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