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ABSTRACT 

A general method for calculating the inversion matrix for a 

helium-3 fast-neutron spectrometer is obtained here by analyzing the 

wall effect, the recoil effect, and the He3(n, d)D effect. The dependence 

of the inversion matrix and the counter efficiency on the filling-gas 

pressure and the counter dimensions is also presented. A computer 

program that computes the response matrix and inverts it for the case 

of a 10- atmosphere -pres sure neutron detector is included as an ex­

ample. 
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I. INTRODUCTION 

Because of its ability to discriminate against 'I rays, the He 
3 

fast-neutron counter using the He
31n, p)T reaction has drawn the inter­

est of investigators from many fields. A number of papers regarding 

the use of He 
3 

counters for investigation and experimentation have been 
1-6 3 

published, and now the He detector is commercially available. 
3 

However, the use of most He counters has been limited to neutron 

energies below l MeV by two factors: first, the ambiguity that arises 

when neutrons with more than l MeV make He
3 

recoils whos'ecpulse 

heights are the same as those of the protons produced by lower -energy 

neutrons in the He 3 (n, p) T ·reaction, and second, the difficulty in re­

moving wall effects. 

In a rather successful attempt to raise the useful energy range of 
3 

a He counter, a special design known as a wall-less counter has 
5 

recently been developed by Brown. He uses a peripheral ring of 16 

small counters to eliminate the cylindrical wall effects and to unfold 

the He recoil from the competing processes. The useful range of the 

counter with this method is as high as l 0 MeV. 

This paper primarily treats the wall effect in an ordinary He
3 

gas -filled detector. Based on this analysis, a method of computing the 

original spectrum from the known response spectrum by using an inver­

sion matrix is presented here for inverting the raw spectrum recorded 

by the ordinary He 3 gas -filled detector to a "resultant"':' proton pulse­

height (without wall effect) spectrum due to the He
3

(n, p)T reaction. 

The 11 corrected11 neutron spectrum is then obtained from this inverted 

spectrum divided by the counter efficiency. 

The 11 resultant11 proton pulse -height spectrum is defined as the 

spectrum produced by tra<;:ks of protons which do not hit the counter 

wall; this special nomenclature will be used later and refers to the 

same thing. 
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The recorded pulse -height spectrum is due to the deposition of 

energy from all possible charged particles from all the possible reac­

tions of neutrons with He
3

. These possible reactions, which are energy­

dependent, are as follows: 

a. He
3

(n,p)T for neutrons of all energies. 

b. He
3

(n, n)He
3 

for neutrons of all energies. 
3 

c. He (n, d)D for neutrons of energy :;:,:.4.36 MeV. 
3 

d. He (n, p, n)D for neutrons of energy :;:,:.7 .32 MeV. 
3 l 

e. He (n, p, 2n)H for neutrons of energy :;:,:. l 0.3 MeV. 

All of the tracks of these charged particles can of course be cut 

short by the counter walls producing the wall effects ·that we must un­

fold from the desired spectrum. Therefore the recorded raw spectrum 

is actually a complicated combination of all of these pulse heights. 

In order to unfold all of the extraneous pulse -height spectra from 

the resultant (without the wall effect) proton spectrum due to (n, p) events, 

the following scheme is used: 

a. General analysis of wall effect. 

b. Analysis of the wall effect due to protons. 

c. Analysis of helium nucleus recoils and their wall effect. 

d. The analysis of deuterons and their wall effect. 

After unfolding all of the above effects the final result will be the 

desired resultant (n, p) spectrum, which can be approximately calcu­

lated by a machine computation method. In most detectors, a mixture 
3 

of He gas and krypton gas is used to provide increased stopping power 

for the protons. This has been taken into account by computing the 

range of charged particles in the gas mixture. 

The dependence of filling-gas pressure and counter size have also 

been considered. Due to the una:~:ailabili:ty of eros s s·ectiohs for 'Such re­

actions as He 3 (n, p, n)D and He 3 (n, p, 2n)H
1 

their effects are not calcu­

lated here. Howev.er, following a procedure similar to that used here, 

the calculation will be straightforward whenever these cross sections 

become available. 

In order to show the application of this method, a computation is 

included to illustrate the unfolding of the spectrum of a l 0 -atmosphere 

He 
3 

-filled commercial detector. 
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Finally, it should be mentioned here that the study reported here-

1n is essentially an extension of the work of Brown, 
5 

i.e. , the' wall 

effects on the spectrum are corrected in addition to the corrections 

developed in Brown's work. For the purpose of utilizing his results 

to the maximum extent, the analysis presented here follows his method 

very closely. A number of his graphs, drawings, and equations con­

cerning the reaction cross sections, the energies of particles in question, 

and the probability of particle tracks not hitting the counter walls are 

also included here for completeness and for direct reference in later 

applications. These materials, some of which are added with a more 

detailed description or derivation, are all indicated herein by a 

"dagger" (t). 

As a result of close application of his derivation-as well as taking 

the wall effects into account-it is found (a) that one newly developed 

term has to be added to each formula in each case (i.e., his formulas 

of deuteron effects or recoil effects) and (b) that one additional formula 

has to be developed here to take into account the wall effect due to protons 

and tritons. This effect was completely eliminated in Brown's work by 

using an anticoincident counting technique. The important step of taking 

wall effects into account is based on the development of a new probability 

function P(E -+E.); this is the probability per unit energy that there-
1 

action products of energy E will deposit energy E. inside the sensitive 
1 

volume due to the wall effect (see discussion in Subsec. II. B.) 
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II. WALL EFFECT 

The wall effect in the detector arises when ionizing tracks pass 

out of the sensitive volume through the wall. This action results in a 

loss of events at the original spectral energy and the coincident appear­

ance of extraneous events at lower energies. 

A. Analysis 

The analysis is based .on the following assumptions: 

a. The nuclear-reaction site density is uniformly distributed 

throughout the volume of the detector. 

b. The charged particles are expelled from the nuclear reaction 

in an isotropic laboratory (lab) distribution. 

c. For the first-order approximation the charged particles pro­

duce tracks along which the specific ionization iE? constant; i. e. , the 

pulse height produced is proportional to the length of the track falling 

inside the sensitive volume of the detector. This assumption can be 

fairly well justified from the cur·ves of Figs. 39 and 40, the range­

energy curve f6r protons in helium. Based on these curves, the assump­

tion introduces no essential error in the the energy range from 3 to 30 

MeV. In the energy range from 0 to 3 MeV, th7 error due to this as­

sumption can be limited to within 5% if a proper proportional con''stant 

1s chosen for this assumption. 

The usual configuration of cylindrical gas -filled detectors will 

have a form as in Fig. 1. The sensitive volume of this detector is 

measured by the counting -wire length L, while the actual gas -filled 

f---Sensitive volume­
L 

Counting wire./' 

Fig. l. 
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volume will also include the volume of the counting -wire insulation, 

which provides insulation between the counting wire and detector wall 

and gives more uniform electric field along the wire. 

The geometry of analysis is given in Fig. 2. 

L ~I 

Fig. 2. 

Choose the reaction site as the origin of the coordinate system. Then 

the origin is at a distance r from the counting wire, the z axis is 

par'allel to the counter axis, the radius of the counter is b. Assume 

the track length of charged particles is f.. For the analysis the whole 

gas -filled volume of the detector can be divided into four regions, which 

will be defined in the subsequent discussion. 

1. Region A 

Region A is the core of the sensitive volume defined by radius of 

b-£ and length L-2£, as shown in Fig. 3 where f. is the track length 

of charged particles. 

Fig. 3. 
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,,, 

It is clear that only tracks of "full size"''' can be formed in this 

region. Therefore, the probability p A ( p) per unit track length, that a 

track will have a length between p and p + dp, in this region is 

PA(p)dp = o(p -.e)dp. 

Then for a single reaction happening in region A the probability is 

l oo p A ( p) d p = J oo o (p - £ ) d p = 1. t 
0 0 . . 

2, Region B 

Region B is the hollow cylindrical volume with an inner radius of 

b-£, an outer radius of b, and a length of L-U, as in Fig. 4. 

-·­,,, 

(\ UB / £ /( \ :,fiT- ----,1111 I,., . T I Iii 

1 1 11 i_ l11l 
I I ' \1.4--:----7- ..u;, 
,,.- 7

1 
/ H / . /£ ~ £ 

Fig. 4. 

The "full size" track of a charged particle is defined here as the track 

length of that charged particle which deposits all of its energy inside 

the sensitive volume of the detector; or in other words, it is the track 

of a charged particle falling completely inside the sensitive volume 

f 

without hitting th~ walls of the counter. And the spectrum due to differ- \' 

ent 11 full size 11 tracks is called a resultant spectrum as defined before. 
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The track length can be classified into two different cases: 

Case l. 

From a single reaction in this region, those tracks not intersect­

ing the wall will have length f., the full-size track. The probability, 

pB 1 (p), per unit track length that a track will have a length between p 

and ( p + dp) in this region is 

where the factor F Bl (p) represents the fractional area of a sphere with 

radius f. centered at (0, 0, 0) that falls inside the sensitive volume. 

Referring to Fig. 5, it is seen that the fractional surface area of 

the sphere inside the cylinder is 

4TT f. 2- J S f. 
2 

sin a. d a. d f3 

4TTf.
2 = l l 

2 f
a. 2 

sin a. d a. 

a.l 

where S =spherical surface area outside of the cylinder. Therefore 

(II.3) t 

X 

Counter wall 

Counting wire 

Fig. 5. 

For the detailed derivation ofF Bl (p) see Subsec. III. A. 
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Case 2. 

Those tracks that do intersect the detector wall will lose a fraction 

of their length. The probability of hitting the wall is then the spherical 

surface outside of the cylinder: 

is 
PB2(p)dp =---4-rr-'-£..,....2 __ _ = 

Since 

b-r . b-r 
p = s1nud•u=--2-

cos a p 
then 

PB2(p)dp 
1 b- r 

= --- dp. 
2 p2 

30 Region C 

r 2rr 
Jc dl3 sinu'du 
. 0 

dp 

1 
-- sinudu. 

2 

(II. 4) t 

(II. 5) 

(II. 6) t 

Regions C are the portions of the sensitive volume of distance i. 

from the ends of the sensitive volume, as in Fig. 6. 

L 

Fig. 6. 

The track length can be classified into two different cases: 

Case 1. 

For a simple reaction in this region, the probability of having a 

full track length i. is 

f 

t 



t 

"\.' 

-9-

Pel (p)dp = FCl (p) 6 (£ - p) dp , 

where 

1 '0 
= 1 -- [cosa] -1 Z/£ 

2 cos 

1 z = 1 - [1 - -] 
2 p_ 

= ]:_(1+ ~) 
2 p_ 

Case. 2. 

1 

2 

(II. 7) 

J sin ada 
a 

The probability of having a curtailed track length due to the wall 

effect is 

Pcz(p)dp =(~sin ada)X2. 

Since cos a= Z/ p , sin ad a= (Z/ p2 )dp; therefore 

z 
Pc2 (p)dp = 2 dp. (II. 9) 

p 
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4. Region D 

Regions D are the portions of the gas -filled volume beyond the 

sensitive' volume, as in Fig. 7. 

I 
r 
\ 
\ 

~ L ~1-

Fig. 7 

Nuclear reactions occurring at sites outside the ends of sensitive 

volume can also cause energy to be d,eposited inside the sensitive volume 

of the counter. 

If the probability of depositing energy from a. track length inside 

the sensitive volume per unH track length of pis pD(p), then 

but 

therefore 

1 
p ( p) d p = (- sin a. d a.) X 2, 

D z 

z 
- cos a., = -

sin a. d a. 

= Zdp 

(.£-p)z 

p - .£ 

z 
=---·- dp for.£> p, 

(.£ -p) 

for (.£ -Z) :::::.p :::::.0. 

and 

(11.10) 
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Sensitive volume 

5. Summary of the General Wall Analysis 

For an arbitrary track length f_ the gas -filled volume can be 

divided into four regions, as in Fig. 8. 

Fig. 8. 

The probabilities per unit track length that a track will have a 

length between p and (p + dp} in each region are listed in Table I. 



Region 

A 

B 

c 

D 

~ 

Table I. Probability functions for different regions of the counter. 

Probability of giving full track length 

PBl 

pA(p) = o(p-£) 

0 {J-t[(b2/)~ f b \ 3rl} 
+ \I- z) - Zij o ( P -£) 

Pc1 
z = (l +-. ) o(p-.11) 
.R. 

Probability of giving 

partial track length due to 

wall effect 

l b-r 
PBz (p) = z 7 

z 
Pcz(P) = p2 

z 
Pnz(P) = ~)2 

-

I 
....... 
N 
I 



t 

-13-

B. The Probability, P(E ..... E.), per Unit Energy that Reaction Products 

of Energy E Will Deposit Energy Ei Inside the Sensitive Volume Due to 

the Wall Effect 

According to the foregoing analysis, now, if we assume that the 

pulse height is proportional to the energy deposited inside the sensitive 

volume, then it is reasonable to assume, for the first-order approxi­

mation, that 

E = K, 

E.= Kp, 
1 

Eb = Kb, 

EL = KL, 

where K is some proportionality constant that will be cancelled out 

shortly. Therefore 

P(E-E.)= K 1p(i-p), 
1 

where K
1 

is another proportionality constant. For the whole counter 

From Subsec. II. A, 

1 b-r z z 
PB2 = 2 -2- ' Pcz = 2 ' 

p p 
Pnz = 2 

(.e-p) 

and the volume fractions are, respectively, 

2rrrdr 
gl (r)dr = rrb2 = 

dz 

L 

(II. 1 1) 
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therefore 

Ib f-;;dz+ f p(£-p)::: h~; r2 dr + z dz 
2 

b-£ p b 0 p L 0 (£ - p) L 

• 
[ l 2 2 3 £2 l ] ' ::: (b£ - - £ ) + +--

2b2 p2 3 2p 2 L 2L 

and since p(£-p)dp::: P(E-E.)dE, 
1 

then 

P(E-E.) [ l 2 - ~ E3) + 
E2 l ] (II.l2) ::: 2 2 (EbE +--

2 1 
2E 0 Ei 3 2ELE. 2EL 

' 1 

This function will be used later. 
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III. WALL EFFECT OF PROTONS AND TRITONS 

A. Energy of Protons and Tritons 

The wall effect due to protons and tritons in the detector arises 

when protons or tritons pass out of the sensitive volume of the detector. 

Before going to the unfolding of the wall effect, let us first investiga,te 

the energy distribution of the protons and tritons. Protons and tritons 

. H 3 d f h . 1n a e neutron etector come rom t e reactlon 

(III.l) 

where the reaction energy Q = 0. 764 MeV is determined from the masses 

ot these particles in this reaction. If E is the neutron energy in the 
n 

laboratory system (lab), then, the neutron energy in the center of mass 

(c. m.) system (En) c. m. is 

3 
E -- E . n 4 n 

(III. 2) 

The total energy delivered to reaction products in the c. m. system is 

~E Q + . 
4 n 

(III. 3) 

This energy is divided between the protons and tritons in c. m. as 

follows: 

(III.4) 

(III. 5) 

In the lab system, the total energy deposited is 

E + Q. 
n 

(III.6) 

This energy is divided between these two reaction products in a manner 

dependent on their masses and the angle of emission (see Fig. 9): 
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Fig. 9. 

From the conservation of momentum 

p,V ,E p p 

mnVn = mpVpcos<j>lab+ mTVTcoselab' 

From the conservation of energy 

ET + E = E + Q p n 

and by using the relations mV = (2m E)l/2 , for each particle, 

easily derive 

and 

The angular eros s section in the lab system is obtained from 

dn ' c.m. 
c.m. 

where ds-2 = 2rrdf.l (fl is the cosine of the angle in question). 

f 

(III. 7) 

(III. 8) 

(III. 9) 

we can 

(III.lO) 

(III.ll) 

(III. 12) 
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If the particles are emitted isotropically in the c. m. system, 

then 

therefore 

Since 

' ( du \ · 1 
\dn ) .. = 4rr \ c.m. c.m. 

(III. 13) 

dn 
c.m. df.l c.m. 1 1 (ciu'j 

\~n}lab = 4 1T df.llab 
(III. 14) 

41T 

and f.llab are related (Fig. 1 0), 

= 

f.lc. m. = cos() c,m. 

V + (V ) f.l c.m. p c.m. c.m. 

c 2 2 ] 1/2 ' 
l(V p )c. m. +V c.m.+ 2 (V p) c.m. V c.m. f.lc.m. 

v c.m. 

Fig. 10. 
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If we define 

v 
c. m. = velocity of c.m. 

X= 

(V ) velocity of particles in c.rn. p c.m. 

then 

therefore 

df.l. c.m. 
= 

dfllab 

and 

(: ) lab= ~TI 

x+f.J. c.m. 

2 3/2 ( 1 +x + 2xf.J. )· 
c.m. ----,;--,------__;_ __ = 

1+xf.J. 
c.m. 

1 

f.J.l 1-.(l +x
2 

+ 2xf.J. ) au c.m. 

2 
f.J.l b( 1 + X + 2Xf.J. ) a c.m. 

1 +xf.l.c. m. 41T 2 
( 1 - f.l.l b) X+ f.l. a c.m. 

(III. 1 5) t 

(III. 1 6) 

. (IIL1 7) 

The particular lab angle at which one -half of the protons are ahead 

and one-half behind is obtained by setting fJ. = 0. Then 
c.m. 

since 

X= 

v c.m. 
----= 

1 

4 

(III.18) 

(III. 1 9) 

Then the average lab proton energy is obtained by averaging the lab 

proton energy over the lab angular cross section: 
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r d~ ( d~ 
(E ) ( ~) df2 I (E ) ( v df2 

J Plab df2lab 1ab lab ) p lab dnc.m. c.m. c.m. 
(Ep)la b =· --------,--------- · · ..,..-~r_'------------

J( du jl ( du ) df2 
df2lab )lab df2lab df2c.m. c.m. c.m. 

Since 

V + (V ) cos 8 = (Vp)lab cos Blab c.m. p c.m. c.m. (A) 

(V ) sin 8 = (V )1 b sin e1 b p c.m. c.m. p a a (B) 

v c.m. 

Thus (A)
2 + (B)

2 
gives 

(V ) 
2 

- (V ) 
2 + V 

2 + 2V \ (V ) cos 8 P lab - p c .m. c.m. c.m. p c.m. c.m. 

= (V )
2 

' + v 2 + 2V (V ) fJ. p c .. m. c.m. c.m. p c.m. c.m. 

or, 

En 1 [ ( E ) E ) 1 /2 
(E )1 (•t ) = (E ) + --p- + -2 p c.m. n·~c.m. , p ab 'c.m. p c.m. 10 ' 
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therefore 

E 
n 

16 

or, 

(E) = ~E +~Q = 0.625E + 0.574 
p lab 8 n 4 n 

(III.20) t 

The average energy of lab distribution in the plane perpendicular 

to the counting wire is considered in the following manner. 

Consider a particle emitted from the reaction at an angle <j>lab 

with the counting wire (see Fig. 11t). 

Coun.ting :-wire direction __ _, __ 

Fig. 11. 

The component in the plane is given by 

2 . 2 2 1/2 
(cos <j>lab + sm <j>lab cos e) 
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The average component in the plane perpendicular to the wire is 

1T 

2 12 2 
; ) [cos <!>lab+ 

0 

. 2 2 l/2 
sm <!>lab cos e] de . 

If we let K = sin<j>lab' the integral becomes a complete elliptical inte­

gral of the second kin'd, and' the expression becomes 

1T 

2 El 

= ~ (K). 
1T I 

At angle <j>lab the average energy deposited in the plane perpendicular to 

the counting wire is 

By integrating this expression over the lab distribution, and 

defining the results of averaging as (Ep
1

)lab 

= 

Since 

l 

2 

= ~ (E + Q) 
4 n 

f (Ep)lab(<l>lab)( iftm.tmdnc.m .• 

I (dn:.:,. ) c.m. dnc.m. 

and x = 
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therefore 

3 .En 1 (3 )1/2 (E ) (f.L ) = - (E +Q) + -
6 

+ - - (E +Q)E f.L 
p c.m. c.m. 4 n 1 2 4 n n c.m. 

5 3 rEn 
= - E + .,.,.. Q + .------- f.Lc ' 

8 n 4 '8x ' 

and 

[( ~ E + ~ Q) + En f.L ] E (K)df.Lc.m .. 
8 n 4 8x c.m. 

Let 

11 = fl [I (K) df.L . > 12 = U c.m. 

-1 

1 J [ (K) ~c.m. 
-1 

df.L . c.m. 

Then 

1 1 5 3 1 En 
(E ) - f- E + -Q) 11 (E ) + 12 (En) p 1ab-.rr\..8 n 4 n rr Sx 

(III. 21) t 

These 1
1

.(:8 ) a~d 1
2 

(E }, shown graphically in Figs. 12 and 13, 
n . n 1 

have been evaluated by machine computation and hence (Ep )lab can be 

represented approximately
1 

as . . 
(E )1 b = 0. 505 E + 0.450 p a n 

(IIL22) t 

This is shown in Fig. 14, together with lab distribution average energy 

(5:>)lab' and energy of the average cosine of the laboratory angle, 

(Ep)lab' 

where 

"' ~·En {-- 12Q -- 2 1/2} 
2 

(E:p)lab -16 cos <Plab + [8 + En + (cos <Plab) ] ' 
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Protons 

MU-30963 

Fig. 12. The energy dependences of 11 (EN) for protons and 
tritons. t 
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0.2 Tritons 

0.1 
Protons 

0o~--~--~--~3----~4----5L---~6----~7--~a~--~9--~ro 

En( MeV) 

MU -30964 

Fig. 13. The energy dependences of I 2 (EN)Jor prot.OJI:P.§ ;9-p,<;l 
tritons. t 
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Approximations: 

Epl= 0.625 En +0.574 
/\ 
EpL ~0.586 E n +0.574 

E~ ~0.505 En +0.450 
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E TL = 0.375 En +0.191 

E~L~ 0.340En+O.I50 

Neutron energy (MeV) 

MU-30965 

3 Energy of He (n, p)T products _vs neutron energy. 
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(
dO' ) . 

f f.Llab <illJ.ab. lab dQlab 

f (dO' ') dQ . lab 
dQlab lab 

= 1 

2 

~ f 1 ___ x..,..+_f-1 ___ --.--'"1;::-c. m. d 2 2 
f.1 =- x=-

(l+x2+2xf.L .)1/2 c. m. 3 3 
_

1 
c. m. 

1\ 

(E )
1 
b~0.586E + 0.574. 

p a n 
(III. 23) t 

For tritons, the same procedures are followed as for protons, and the 

outlined expressions are: 

X = T 
V c.m. = ( 3 )1/2 ( En 

(V T) c. m. 3En +40 
)

l/2 = 
3xp, 

(ETl)lab = l (~ E + ~Q) I (E ) + ~ (3En \ I2 (En) 
1T 8 n . 4 l n 1T ·~ 8x J 

0.340E + 0.15, 
n 

(III. 24) 

(III.25) 

(III. 26) t 

(III. 27) t 
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These 1
1 

and 1
2 

for tritons are depicteq in Figs. 12 and 13, 
1 - A 

respectively. Figure 14 shows plots of (ET )lab' (ET)lab' and (ET)lab" 

B. The Probability that Protons or Tritons Will Not Hit the Counter Wall. 

There are two different methods for studying this problem. 

t Method 1. 

Assume that protons are emitted isotropically in the lab system. 

Then-the proton having been assigned a representative energy depend­

ing upon the incoming neutron energy-the problem becomes one of ex­

amining the intersection of a sphere, having a radius equal to the track 

length (range) at this average energy, with the surface of the sensitive 

volume of the cylindrical counter. 

Referring to Fig. 15,t let the reaction occur in region B, at a 

distance r from the counting wire, and let .£ be the track length of 

the proton, for the case .£ < b, where b = radius of the detector. 

Then the normalized spherical surface element is 

y 

.£
2

sin8d8d<j> 

41T .£ 2 
ds = 

= d!J.d<j> 
4rr 

-----------------------------------------------------------r=O 
Fig. 15.t 
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The fractional surface, outside the cylinder, that represents the frac­

tional loss is 

where f.J.(cp) represents the line of intersection between the two figures, 

which can be determined as follows: 

Toward the side of the cylinder (cj>=O) 

given 

b2-f.2-r2 

2d 

An end view is sketched below. 

. lT 
Toward the end of the cylinder .(cj> = -) 

b-r 

f. 
= cos e, b-r 

f.J.max = -­
f. 

a side view is sketched below. 

2 

-·-r T 
1-t ,.D 

i ! 

•. 
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The transition from f.L . to f.L along the intersection is approx-
mln max 

imated: t 

f.L (<j>) = 
b -f. -r b-r 2 2 2 ( 

+ --
2rf. f. 

therefore 

f(r) J
~""2n ( f.L(<j>) 

l 1 
=- ! df.Ld<J> 

4n 0 j l 

l 
=-

4rr 

l [(b2
-P.
2) l (b ) ( 3) l F Bl = l - f(r) = l - 4' 

2
£ -; + "i- 2 - 2i r 

The volume probability of reaction occurrence at r is 

g(r) dr = 
2Tirdr 

2 ' nb 
therefore g(r) 

an end view is sketched below. 

2r = 17 
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Then the net loss function is 

L(f) = 1 g(r) f (r) (r) dr. 

v 
For small spheres no loss is incurred until r=b-£, at which time the 

~· 

---------~·phe-r-e-j-B.-s-t-t-e-u-G-he--S-the-:inside_oi_th.e_c-Y-"""'h._.· n=d""-'e""-"'-r_,_. t __________________ _ 
-

L(l) = rl (~~) {- ~ [tb:/ ~ ; t (~ -2) -(~l) r ]} dr 
£ 

= Tb 0 ~ £ ~ b. 

This solution can be analytically continued for £ > b by changing the 

lower integral limit (b-£) to zero; it is then found that t 

1 b £ 
L(£) = 4 (- T + b + 2 ) ' b ~ £ ~ 2b. 

The limit on this continuation, (£ < 2b), is set at the point £ =2b, where 

an entirely different geometrical situation exists. The new geometry 

is ~ssentially that of a small cylinder passing through a large sphere. 

The only events not hitting the counter wall are those that occur in the 

small solid angle down the cylinder toward the two ends. 

I 
-- -1-+-----?;t.cE--0 

By shifting ~oordinate. systems as~ shown, 

ds = 
2 ' 

2n£ sinBdB 

4n £ 2 = 

where, now 

1 d!J. 
2 
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(f. 
2

- b 
2

) 
1

/
2 

b 2 ] 1/2 
f.1=cos8= f. =[1-(£) . 

The fractional spherical surface area inside the cylinder is now 

[ 
b 2]1/2 

1 - 1 - (f) . 

However, the above expression was derived for r=O (axis of the 

cylinder passing through the center of the sphere). For off-center 

positions, the area inside the cylinder is greater: 

This can be taken into accoun~ by a weighting function w(r). It was 

decided to match this function to the geometry at f. =2b: 

\ 
\ 
I 
I \ 

\ 
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The function w(r) is adjusted so that as r goes from zero to one-half, 

w(r) goes from s
1 

to s
2

. A linear weighting function was chosen, 

and the condition was found to be satisfied by 

(S 2js1 -1) 
w(r) = ------' r + 1. 

--------------------------------~-- i. 

2 

The ratio of the area was estimated to be 

s2 
1.294, 

sl 

so that then the weighting function became 

r 
w(r) = l + 0.588 p_ 

Thus, the fractional net loss due to.the hitting of the wall is 

This quantity was multiplied by a factor to compensate for the angular 

distribution. Assv::ning _tpat neutrons are introduced into the counter 

from the side (perpendicular to the counting wire),· the relative angular 

cross section must be estimated in the direction of the ends. The angu­

lar eros s sections have been derived in the treatment of the proton 

energy distribution: 

1 

as the angle approaches 90 deg, 

proache s the quantity x + f.l . 
c.m. 

2 
f.ll b ( 1 tx + 2xfJ. ) a c.m. 

2 
(l-fJ. c.m.) x + f.lc.m. 

fJ.lab- 0, and the denominator ap·:­

By substituting in the expression 

we obtain from the relationship between the angles in the lab and c.m. 

system 
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Based on the fact that when f.ll b=O then f.l = -x, 
a c.m. 

The above expression is the probability per unit solid angle that protons 

will leave the reaction site in a direction perpendicular to that of the 

incoming neutron. The relative probability is 

and the fractional probability of not hitting the counter wall becomes 

the fractional loss at point r is one minus this quantity: 

f(r) = 1- (1-x
2

)
1

/
2 

{ 1- [1- (~) 2 ] 1/~ [1+0.588 fl· 
Again, this must be integrated over the counter volume to obtain the 

net loss, or the probability that protons will hit the counter wall is: 

L(i) 

therefore 

Then the probability that protons will not hit the counter wall is: 
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Because the track length f. is related to the initial energy of the ioniz­

ing particle through the range-energy relationships, the f
1 

becomes a 

function of energy and differs for each type of particle. In the case of 

the proton from the He 3 (n, p)T reaction, the energy assigned to the iso·::;.· 

tropic distribution in this method is the energy corresponding to the 

average cosine of the proton angle. From Subsec. liLA, 

This· was selected to account for the forwardness of the angular distri­

bution. 

Method 2. t 
This approach treated the case of a single track. The treatment 

assumed that the important quantity is the track component perpendic­

ular to the counting wire, because the parallel component passes down 

the length of the counter. 

Consider an ionization track, of length f._ lying in a plane perpen­

dicular to the counting wire. The origin of the track may occur with 

equal probability at any point inside a circle of radius b formed by 

the counter. The figure below shows that a track in"!: giv:en direction 

will deposit all its energy if it is to the left of the circle of radius b 

whose center is located a distance f. back from the counting wire. 
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The fraction depositing all their energy will be proportional to 

the relative area bounded by the intersection of the two circles: The 

expression for this area is 

f (E)= l -~ [(~) (l-(--b-i 2 ) 1/
2 

+ sin-l(__!_)] 
pl n rr 2b 2b 2b 
~ 

(III. 29) 

For a small track length .R., this expression becomes 

4 .R. 
f (E ) = 1 - - ( -) 
pl n rr 2b ' 

(III. 3 0) 

which is similar to the expression found for the intersection of small 

spheres with large cylinders. Since particles from a reaction are 

emitted in a distribution that varies in angle and energy, the important 

quantity is then the average of the lab distribution in the plane perpen­

dicular to the counting wire. This quantity has already been calculated 

for each of the various particles. Representative energies are used to 

compute the track lengths to evaluate the function f 1 , given above. 

C. Consideration of Two Simultaneously Emitted Protons and Tritons 

At neutron energies below Ecri::' the probability of not hitting the 

wall for a proton and a triton, respectively, based on the precedi!lg 

section may be taken as 

f l(E )=1-~ {~ [1-(~)2]1/2+ sin-1(2.R.bp)}' 
P n 1T 2b 2b 

(III. 2 9a) 

(III.30a) 

Therefore the net probability of not hitting the wall is a combination of 

these functions. 

From Subsec. III.A we see that the angular distribution for a 

proton may be approximated isotropically in the lab system, while for 

the case of a triton it tends to be distributed more forward. If the 

distribution with the forward track component is considered, it can be 

seen that the degree of isotropy must be determined. Because the 

~:: 

E .t is defined in Appendix A. cr1 
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representative angle of the distribution increases from zero, the trend 

toward isotropy moves relatively. Let 

- -1-
<P 1 b = cos f.l a c.m. 

in the. following illustration: 

The degree of isotropy may be indicated by the value of sin{iilab as an 

approximation to the physical situation. 

Therefore the combined probability of not hitting the wall is 

_ . sin~ 
f 1 (En) - fp 1 fT 1 lab 

- 21/2 

( 
2{£ P. 21/2 -1£ 1)[ 4 P.r 1(1-f.LT) 

= 1- - ____£_ [1- (_E_) ] +sin (..E._)? 1-- (-1 )' 
1T 2b 2b 2b ) 1T 2b J 

(III. 31) t 

For neutron energy E ~E 't' then [c. f. (III.28)], n cr1 · 

2. 1/2 
P. (1-j:l ,) 

[1-_± (__!_)] T . 
1T 2b 

~. 

(III. 32) 

D. Unfolding of the Wall Effect of Protons and Tritons 

The wall effect due to recoil protons and tritons from any neutron 

energy will contribute counts of all energies below that energy. There­

fore the raw spectrum recorded from the He
3 

neutron detector will in-
. -

elude the above wall effects. 

The counts at any channel include the events of protons, tritons, 

recoiled helium nuclei, deuterons, and their wall effects. This makes 

the unfolding of wall effects very complicated. However, the fact that 

\ 

'• 
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the recorded spectrum at top channel represents only "full size" (n, p) 

events simplifies the analysis, because all other nuclear reactions can 

only contribute counts at lower energies. 

Starting from the top channel of the raw spectrum, let the counts 

recorded there be CN. 

Since the probability, for protons and tritons, of not hitting the 

wall is £1 (EN), then the true events are 

£dEN) 

Therefore the number of counts contributing to lower energies is: 

In general, at any channel E., the counts there due to the contribu-
1 

tion of the wall effect from (n, p) events with energy larger than E. 1s 
1 

then 

where 

or 

C (E) 
N [l-£

1
(E)) P(E-+E.)dE 1 ' 

f (E) 1 
l 

P(E-+E.) :::the probability per unit energy that the (n, p) event 
1 

products (proton and triton) of energy E deposit only 

E. inside the sensitive volume due to the wall effect 
1 

CN(E) ::: counts of raw (n, p) spectrum at channel E, 

c (i) 
p 

(III. 33) 

This C (i) should be calculated for i running from i ::: N -1 to 
p 

i ::: 0 for a fixed top channel as an upper limit. This calculated. result 



-38-

is then subtracted from the original raw (n, p) spectrum, which is the 

result of unfolding deuteron and recoil effects, at the corresponding 

channel; the difference .serves as a new spectrum for the next calcula­

tion. The next calculation is made by changing EN to EN _1 and comput­

ing C (i) for i = N -2 to i = 0, etc. These processes are repeated until 
p 

the upper limit of the integration reaches the lower limit of the original 

raw spectrum .. 

) 
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IV. RECOIL EFFECT 

A. t Recoil Cross Sections 

The recoil effect in the detector arises when a He
3 

nucleus passes 

out of the sens.itive volume of the detector. This He
3 

nucleus comes 

from the elastic scattering reactions He 
3 

(n, n)He 
3

. The total elastic 

scattering cross section of He
3 

was obtained through the comparison of 

the partial cross sections with the total cross-section, and by numerical 

integration of the differential elastic scattering cross sections: 

1 J((da) 1 J1 

da a 8 (E ) =- - dst = - - (E ,f.l) df.l. 
n 4rr dst 2 dst n 

-1 

The elastic scattering cross section for zero neutron energy was 

calculated from potential scattering to be 

2 -13 1/3 2 a
5

(0)=4rrR =4rr(l.SX10 A ) =0.588b. 

Experimental data on the He 3 differential elastic scattering cross 

section are available. Because there are some contradictions among 

them, it is necessary to reconcile the values from the different sources. 

This was done by plotting smooth curves of differential cross sections 

as functions of neutron energy. The point for zero-energy neutrons 

was taken as 

da 
dst {O,f.l) 

= aS( 0) = 
4TI 46.8mb. 

These curves are shown in Figs.; 16, 17, 18, and 19. 

For the convenience of computer calculations, it is found desir­

able to express this differential cross section through an analytical 

approximation, as an expansion of Legendre polynomials: 

dcr (E , f.L) 
n . 

3 

(IV .1) ~------ = 
dst 

The energy-dependent coefficients a1 (En) were determined by 
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MU.30966 

Fig. 16. Total elastic scattering cross section of He
3

(n, n)He
3 

vs neutron energy. 
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0 5 10 15 

Neutron energy (MeV) 

Fig. 17. Differential scattering eros s section of 
He 3 (n, n)He3 (p.c from 0. 5 to 1 ). 

MU-30967 
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15 

Fig. 18. Differential scattering cross section of 
He3(n, n)He3 (f.lc from -0.4 to 0.4). 

MU-30968 
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400~------------~------------~------------~------~ 

Neutron energy (MeV) 

Fig. 19. Differential scattering eros s section of 
He3(n, n)He3 (1-lc from -0.5 to -1 ). 

MU-30969 
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least-square fitting of the plots of 

at a sufficient numer of energies. The fits were checked to verify that 

CJ 8 (En) = 41T a 0 (En). Curves of the coefficients a.e(En) vs En are shown 

in Fig. 20. 

B.t Energy of Recoiled Nucle,i 

The energy of the recoiled He
3
nuclei can be obtained by using the 

conservation of both energy and momentu,m, ·as 

wher.e· 

E 
r 

E 
n 

E 
r 
~= 

n 

3 -(1-jJ. ) 
8 c.m. 

(IV. 2) 

3 
= energy of He nucleus after scattering in the lab system, 

= incident neutron energy in the lab system, 

!J.c.m. = cosine of scattering angle of neutron in the c.m. system. 

It is seen from Subsec. IV.B. that the recoil energy E depends 
' r 

on both the incident energy and the scattering angle of the neutrons. 

This E ranges from a maximum value of 3/4 E (at !J. = -1) to zero r n c.m. 
(at !J. = 1). This fact will be considered in the unfolding of recoil c.m. 
effects. 

The ave rage energy of the recoiling He 
3 

ion in the lab system in 

a plane perpendicular to the counting wire is obtained through a similar 

consideration to that of protons in Subsec. liLA, as 

3E n 
E He == -B"'1r- (IV. 3) 

where 

and 1T 

= fo Z (l-K
2 

sin
2 

e)
1

/
2 

dB 
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Neutron energy 

MU-30970 

Fig. 20. Legendre polynomial expansion coefficients . 

... 
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is the complete elliptical of the second kind, and 

K = (1 - 4E r ) l /2 = 

. 3En 
[ 1 - .!_ ( 1 - 1-1 ) ] 1 /2 . 

2 c.m. 

For the head-on collision 

~E. 
4 n 

(IV .4) 

C. The Probability, P(Er}, per Unit Energy that a Neutron of 

Energy E Undergoing the, Reaction He3'(n, n) He3 Will Cause that 

Helium-3 Nucleus to Recoil with Energy Er 

The probability per l!lnit angle of a scattered neutron scattering at 

an angle e (in the c.m. system) is 
c.m. 

dO" dO" dQ . ~dO" ') . p(e ) = c d-e = c d" , de = c 2n s1n e d" , c.m. ~~ c.m. ~~ c.m. 

where c is a constant to be determined later. 

The probability per unit energy that this scattering will result in 

a recoiling nucleus of energy E is 
r 

d8 
P ( E ) dE = P ( e ) de 

r r c.m. c.m. 
c = p(8 )-dE dE . c.m. r 

Where C and E are related by Eq. (IV.2}, i.e., 
r 

E 
r ~(l-ease }, --r- 8 c.m. 

then 

dE 
---=--=--r- = ~ E sin 8 

dB c.m. 8 c.m. 
and 

To normalize this expression, 

r 
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1 l
·E 

= max 

0 

E .. 

= C f max(dcr) 

0 dr.l c.m. 
2rrsin8 de 

c.m. c.m. 

= c d~ 
c.m. = CaS ~ 

therefore 

c = 

and 

p(E ) 
16rr 1 (~Lm. = --r 3E crs 

3 

16rr 1 \ --- L_, a.eP£(1-1) 3E crs 
Ji=O 

(IV.5) 

D. Unfolding of Recoil Effects 

The unfolding of recoil effects of the spectra recorded is a very 
3 

important p_rocess to increase the useful energy range of a He gas-

filled detector because of the fact that'neutrons in excess of 1 MeV are 

able to cause He 3 nuclei to recoil with sufficient energy to overlap the 

low-energy part of the spectrum due to the (n, p) events. According to 

Subsec. IV. B, neutrons with an energy of 1 MeV can cause a He
3 

nucleus 
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of 0.75 MeV. This is close to 0.764 MeV, which comes from the prod­

ucts of an (n, p) event. Furthermore, the wall effect on the He
3 

nucleus 

track will cause counts at lower energies. Therefore the unfolding of 

the recoil effect will consist of two main parts, <;liscussed below: 

Part l:: The tracks of He 
3 

nuclei that do not intersect the counter wall, 

Part 2: The tracks of He
3 

nuclei that do intersect the counter walL 

The analysis is then based on the following assumptions: 

(a) The nuclear reaction site density is constant throughout the 

volume. 

(b) The nuclei produce tracks along which the specific ionization 

is constant; i.e., the pulse height is produced proportionally to 

the length of the track falling inside the sensitive volume. This 

assumption follows from the assumption c of Subsec. II.A. 

S . h 1 . f H 3 1 . H 3 . 1nce t e energy-range re atlon or a e nuc eus 1n e .1s 

calculated by aid of proton curves. 

Part l: The tracks of He 3 nuclei do not intersect the counter 

wall; i.e., the He
3 

nuclei will deposit their whole energy inside the 

sensitive volume. 

Then 

Suppose a recorded spectrum is given; then let 

CN == top channel counts recorded solely from (n, p) events,·: . 

, f 1 (EN) == total fraction, or the probability that protons will not 

hit the counter wall, 

fl (EN) 

is the true number of (n, p) events that actually happen in the sensitive 

volume. 

The number of scattering events corresponding to the number of 

(n, p) events can be closely approximated by 

These recoil helium nuclei can then cause counts at energies below 

3/4 EN. 
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If only those events that do not hit the detector wall are considered, 

letting the probability per unit energy of a recoil nucleus reaching E, 
r 

be p (Er}, then the number of counts in channel i coming from the top 

channel N is 

E.< ~ EN , 
1 4 

CN aS (EN) f2 (EN) 
(E )f (E ) p(E.) ,6.iE, 

a n,p N l N 1 

EN> E >E., 
r 1 

where ,6.. E = energy width of channel i 
1 

f 2 (EN) =probability of a scattering event for which a nucleus 

of energy EN will not hit the wall. 

In general, at any other channel j below N 

for all channels i where, from Subsec. III.B, Eq. III.30, this f 2 (En) 

may be taken as 

:: 1 _ _± (_e He J 
1T 2b / 

(IV.6) 

Part 2: The tracks of He
3 

nuclei.do: inters--ect .. the counltE:r wall; 

i.e., the He3 nuclei will deposit only part of their energy (due to the 

wall effect) inside the sensitive volume. These events can be analyzed 

as follows. 

Let f 3 (EN) be the probability, per unit energy at neutron energy 

EN for a scattering event, at which the recoil nucleus will hit the wall. 

This equals 1-f2 (EN)' [where f 2 (E) is defined as before]. 

Also let P(E-+ Ei) be the probability per unit energy that a recoil­

ing nucleus of energy E deposits only energy E. inside the sensitive 
1 

volume due to the wall effect. 

Since the number of counts 1n channel i, due to wall effect, can 

come from all the track energies between the limits E. and 3/4 EN' 
. 1 

the number of counts due to partial deposition of energy is 
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In general, at any- other channel j below N the contribution of the 

partial deposition of energy in counts is expressed as 

. [3/4-EJ 
c 3 

(He )2 = 
E. 

1 

3 
E.~ E ~-E .. 

1 4 J 

Therefore the total counts due to recoil helium nuclei is the sum 

of these two parts; i.e., 

= 

C. O"S (E.) f 2 (E.) 

= O"J (E.f f
1 

(E.; p (Ei) 2:-i E 
n,p J J 

3/4E. 

C.0"
5

(E.)f
3

(E.)·J J 
+ J J J . p (E) P ( E - E . ) dE 2:.. E 

()" 1 1 
n,p(E.)f

1 
(E.) E 

J J i 

c .0"
5 

(E.) 
J J 

3/4E. 

[fz (E.) p (E.)+ f3 (E.) I J p(E)P(E-E.)dE] &,E, 
\., J 1 J 1 ,1 

E. 
1 (IV. 7) 
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This quantity CHe3(j- i) should be first calculated for each i 

running from i = 3/4 N down to i = 0 for a fixed upper limit j- = N. The 

results are then subtracted from the corresponding counts of the raw 

spectrumo These differences serve as a new spectrum for the next 

calculationo The next calculation is made by changing E. to E. -
1

_ ~ and 
. J J-

letting i run from i = (3 N/ 4) -1 to i = 0, etco These processes are 

repeated until the upper limit of the calculation reaches the channel 

equivalent to a neutron energy of 1 MeVo At 1 MeV the energies of 

recoil He
3 

nuclei begin to overlap the energies of events from n,p 

reactions 



-52-

.V. EFFECT OF THE REACTION He
3

(n,d)D 

A. Reaction Energy t 

The endothermic reaction 

2 2 
= 1 D + 1 d + 0 n,d 

has a reaction energy 

Q d = -3.27 MeV. n, 

The threshold for the occurrence of this reaction is then 

Eth = 4/3 Qn,d = 4.36 MeV. 

(V .1) 

(V.2) 

Therefore, at energies above threshold, the total energy carried away 
l 

by the two deuterons is 

E + Q d' n n, 
(V.3) 

From considerations similar to those in Subsec. IlL A, the energy of 

either deuteron in the lab system is 

(V.4) 

At threshold, the cos <j>lab = 1, and 

Q 
(ED)lab = b,d (V. 5) 

Both particles go straight forward together. 

At any energy above threshold, the angles in the c. m. and lab 

systems are related (see Subsec. liLA) by 

where 

x+f-1 c.m. 
f.l.lab = 1/2 

( 1 + x2 + 2x f.l. ) 
c.m. 

X= 

(V.6) 

(V. 7) ·''to.' 
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and the angular eros s section is. given by 

'. 2 

~
duj _ 1 f.llab( 1 tx + 2xf.lc.rn.L 
dfl·l b-""4Tr 2 -- a (1-p. )xtp. 

lab c .. rn. 

From these relations it is found that 

fraction forward :::: ltx 
2 

From Eq. (V .4) let <j>lab = 180 deg, then 

2Q 
2 t n,d t 1 < 1, for E < 12Q d I , 

En n n, 

(V.8) 

(V. 9) 

(V .1 0) 

(V .11) 

This. means that there are no deuterons corning off in a backward 

direction. Therefore, below this critical energy, the velocity of the 

deuterons in the c.rn. system in the backward direction is less than the 

velocityofthecenterofrnass. Andat E =21Q dl, frornEq.V.7, n n, · · 
X= 1; for 4/3 I an,d I < En< 2Qn,d' X > 1. Then the reevaluation of 

f.ltab gives 
2 

f.llab = 3x for 2 I an,d I .:::::; En< 00 (V.12) 

1 4 
= 1 - -- for - I Q d 1.:::::; E .:::::; 2Q d' 3x2 3 n, n n, 

(V .13) 

The average energy of the distribution in a plane perpendicular to the 

counting wire is calculated, similar to that of Subsec. liLA, as 

(E 1) = _!_(En + Qn,d)r (E ) + _!_ (En\ I (E ) 
D lab rr 2 1 n rr \ 4x ) 2 n 

1 (V .14) 
Tf 
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with 

E = n n,d + ~ 
(

E + Q ·~ E 
( D)lab (f.Lc.m.) 2 4x f.Lc.m. · (V.l5) 

The curves for 1
1 

1 o! (ED )lab vs En 

(Eb)lab vs En for 

imately as: 

arid 1
2 

are shown in Figs. 21 and 22. The curves 

are shown in Fig. 23 together with (~D)lab and 

comparison. Hence they may be expressed approx-

(V.l6) 

and 

(V.l7) 

Data on the nuclear eros s sections for this reaction are very 
5 

meager. However Brown , who took into account the known threshold 

energy and cross-section shape immediately above the threshold energy 

for endothermic charged-particle reactions, was able to approximate 

the cross -sectional curve shown in Fig. 24. 5 

B. Unfolding of the He
3

(n, d)D Effect 

The unfolding of the He 
3 

(n,d)D effect on the recorded spectra, 

just as in the case for a recoil nucleus considered in Subsec IV.D, is 

another very important process in which the useful neutron energy 

range is increased beyond 4.36 MeV for a He 
3 

gas -filled detector. How­

ever the difference between these two effects is that the deuterons 
3 

cause pulses only at a specific energy, unlike the pulses caused by He 

nuclei, which give a continuous energy distribution. 

To start the analysis, consi~er a number of counts in the top 

channel and 

E > 4 Q 
n 3 n,d 

If it is 

suppose that these counts now correspond to an energy 
4 

(-Q d = 4.36 MeV}. 
3 n, 3 

assumed that there are no He recoils from above and that 

there are no deuterons from above, the number of (n,p) events in the 

counter causing these counts is .. 
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Fig. 21. The energy dependence of 1
1 

(En) for deuterons. t 
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Fig. 22. The energy dependence of 12 (EN) for deuterons. t 
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Fig. 23. Relation of deuteron energy to neutron energy. 
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Fig. 24. Helium-3 (n, d) cross se~tion vs neutron energy. t 
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The number of (n,d) events corresponding to this number of 

(n,p) events is; 

The deuterons cause counts at a lower energy, 

E. =EN+ Q d . 1 .. 1)., 

It is seen that the CN counts recorded will give rise to 

counts in the channel i, corresponding to energy E.; i.e. , 
1 

C d (E.) n, 1 

where f
1 

(EN) is the probability that the protons will not hit the counter 

wall, as already defined, and where f 5(EN) is the probability that 

deuterons deposit all their energy inside the sensitive volume. 

Following a similar analysis as that considered in Subsec. III.C, 

it is found that the form of f
5

(EN) can be expressed as 

where 

- 2 liz 
[ 1 + ( 1 - fln ) ] 

(V.l8) 

(V .1 9) 

Furthermore, the wall effect will give counts at all energies smaller 

than the energy of E + Q d' Therefore the following two cases can 
n n, 

exist: 

(a) Deuterons which deposit all their energy inside the sensitive 

volume, The number of counts is 



cr d(E.)f5 (E.) 
= C. n, J 1 

J cr (E.) f 1 (EN) 
n,p J 
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E.< E.< EN' 
1 J 

E. ~4.36 MeV. 
J 

(b) Deuterons which deposit only parts of their energies inside 

the sensitive volume and contribute counts to channel i. 

Since this kind of contribution is possible only for deuterons from 

neutrons of energies which lie between EN and Ej; i.e., larger than 

E., 
J 

E. 
1 

E=4.3-6 E. 
(MeV) J 

Therefore the number of counts is 

cr n,d (E) f6 (E) 

cr (E) f 1 (EN) n,p 
f

EN 

= C(E) 

E. 
J 

.d E 
-'t ~ 

E 

P (E.- Ei)dE > 

Therefore the total number of counts at channel i is 
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u d(E.)£5(E.) 
n, J 1 

u (E.)£
1

(E.) 
n,p J J 

fEN u (E)£ (E) } 
+ C(E) n,d 6 P(E- Ei)dE ~·· 

E u (E .)£1 (E) 
j n,p J 

(V. 20) 

Where the counts fall in the channel i at energy 

E.=E.+Q d 
1 J n, 

The unfolding calculation method will be found in Subsec. VI.C. 
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VI. INVERSION MATRIX 

A. Spectr'ometer Efficiency 

The spectrometer efficiency is, in general, dependent on the 

following independent factors: 

(a} Nuclear cross. sections, 

(b) Counter dimensions, 

(c) Gas pressures. 

Therefore, the ov~rall spectrometer efficiency of this detector as a 

function of neutron energy may be written 

(VI.l) 

where 

where 

11 = overall spectrometer efficiency, 
3 

NHe3=number of He atoms per cubic centimeter of sensitive 

volume at filling pressure, 

. - 3 
0' He3(E) = He (n,p) T eros s section, which has been plotted in 

Fig. 25, 

D = effective thickness of the detector for 4'TT geometry 

total sensitive volume 
= 

= 

effective area 

-,.-TI-;-b_2_L_c_-:-- =(±3 )2/3 b 2/3 Ll/3' 
3 2/3 2/3 4/3 

TI(4 ) L b 

b = radius of counter, 

L = effective length of the counter, 

f
1 

(E) = probability that protons will not suffer wall effects. 

The variations of f
1 

(E) vs pressure and counter dimensions are 

presented in Figs. 26, 27, 28, and 29. 
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Neutron energy (MeV) 

MU-30975 

Fig. 25. Helium-3 (n, p) cross section vs neutron energy. t 
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Neutron energy, En (MeV) 
MU-30976 

Fig. 26. The function f
1 

(E ), the probability that protons will not 
hit the counter wall~ for counter radius b = l. 16 em. 
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Fig. 27. The function f 
1 

(E ) , the probability that protons will not 
hit the counter wall~ for counter radius b = 1. 5 em. 
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MU-30978 

Fig. 28. The function f
1 

(E ), the probability that protons will not 
hit the counter wall~ for counter radius b = 2 em. 

·~· 
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Neutron energy, En (MeV) 

MU-30979 

Fig. 29. The function f
1 

(E ), the probability that protons will not 
hit the counter wall~ for counter radius b = 3. 0 em. 
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B. Recombination Considerations t 

The phenomena of recombination of ions should be taken into 

account. Helium-3 ions produce tracks having considerably greater 

specific ;ionizations than those of protons. Since the specific ioniza­

tion is proportional to z 2
, it will give rise to different columnar (or 

preferential) Yecombination for these two ions. To a first approxima­

tion, this has the effect of collapsing to a slight extent the energy scale 

for the He
3 

ions relative to the scale of protons. The effect can be 

taken into account by subtracting off the recoil spectrum at an energy_ 

given by the recombination constant (K) times the calibration scale. 
3 

Because the He energy scale has been collapsed, the ordinate must 

be increased by the same factor (1/K). 

The recombination constant is a function of filling gas pressure, 

operating voltage, and filling gas composition. The probability for an 

electron to combine with a positive ion in a given time interval is pro­

po_rtional to the density -of p()sitive ions. Because of the lack of experi­

mental data on this recombination constant, the usual way of estimating 

it is by comparing the location of the mean upper energy limit of the 

recoil spectrum with the location of the peak of the calibration spectrum 

due to the monoenergetic neutrons. 

C. The Matrix 

According to all the foregoing analysis, it is possible to express 

the resultant pulse-height spectrum of protons from the raw spectrum 

(without unfolding any effect) by means of a so-called inversion matrix, 

by the following procedures. 

(1) Starting from the top channel of a recorded raw spectrum CN' 

the unfolding 6f the deuteron effects is from the formula 

u (E-)£
1

(E.) 
n,p J J, 

.:EN 

1.. u (E)f (E) } 
+ C{E) n,d 6 P(E~E.)dE .•· 

u (E.)£
1

(E) 
1 

-
E. n,p J 

J 

u d(E.)£5(E.) 
n, J 1 

(V.20) 
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The unfolding calculation, starting from the fixed top channel 

j = N, carries out this computation for each channel i. This result is 

subtracted from the raw spectrum for each i, from i = N -1· to i = 0. This 

difference serves·as the new or unfolded spectrum for the next calcula­

tion. The next calculation is made by changing j from J= N to j =N -1, 

and computing this CD for each i from i = N -2 to i = 0. These proc­

esses are repeated until E.= 4.36 MeV, the threshold energy of the 
J 

(n, d) reaction. This step finishes the unfolding of deuteron effect. 

(2) Starting also from the top channel of the same recorded raw 

spectrum CN' the unfolding of the recoil effect is from the formula 

r 
3E· 

. . c . (J"s (E . ) 4 J l \ 
CH (J-+1) = { J (E ;f (E )·[f2 (E.}p(E.)t£3 (E.) p(E)P(E~E .. )dE.i(b..E. 

e :__ <T n, p j 1 , j J 1 J ) , . . . 1. .. .J) 1 . 

E. . 
1 

This CHe (j-+ i) should be first calculated for each i running from 

l::::; 3/ 4(N) down to i = 0 for a fixed upper limit j = N. The results are 

then subtracted from the data (or counts) of the corresponding raw spec­

trum. This difference serves as a new spectrum for the next calcula­

tion. The next calculation is made by changing E. from j = N to j = N -1, . J 
and letting i run from i = 3/ 4(N -1) to i = 0. These procedures are 

repeated until the upper limit of the calculation reaches the channel 

equivalent to that of 1-MeV neutrons. This step finishes the unfolding 

of the helium-nucleus recoil effect. 

(3) Starting from the top 'channel of the unfolded ( l) and (2) spec­

truro CN the unfolding of the wall effects of protons and tritons is from 

the formula 

This C (j-+ i) should be calculated for each i running from 
p 

i = N -1 to i = 0 for a fixed top channel j = N, as upper limit. This 

calculated result is then subtracted from the CN spectrum at the 

corresponding channel, and the difference serves as a new spectrum 



-70-

for the next calculation. The next calculation is made by changing EN 

from EN= EN to EN= EN _1 , and computing Cp (j-+ i) for each i from 

i = N -2 to i = 0. These procedures are repeated until the upper limit 

of the integration reaches the lower limit of the original spectrum. 

This step finishes the unfolding of the wall effects of protons and tritons. 

Therefore, after unfolding the effects, a resultant proton-pulse-height 

spectrum is obtained from the raw spectrum. To express this idea 

symbolically, let 

then 

c o(i) = resultant proton pulse -height at channel i, 

- C.(i) = raw spectrum at channel i, 
1 

for i = 0, l, 2, · · · N, the channel number; or, to express this idea 1n 

matrix form, 

co = A c., 
1 

where 

C 0(N) C.(N) 
1 

C
0
(N-l) C.(N-1) 

1 

co = c.: 
1 

c.({)) 
1 

and A is the so-called inversion matrix whose elements should in­

clude the unfolding and subtracting operators. 

D. The Corrected Spectrum 

Since the efficiency of the detector is, from Subsec. VI.A, 

let c
1 

(E) be the corrected spectrum in question. Then, since 

c
1 

(E) TJ (E) = c
0 

(E), 
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therefore 

where C 0 (E) is the- resultant proton .spectrum.'_ The ei'p:ies,si~ris ,£or f
1 

(E), 

f 2 (E), f 3 (E),f 5 (E))P(E), and P(E- Ei) from the foregoing analysis 

are listed as follows. 

f1 (E) = f1 p, T = flP)<:flT(l'-~iiT2)1/2 . 

p 
There are two cases for f

1 
. 

Case 1. ForE .::::; E .t':', based on a single track: 
n cr1 

p 2 
f = 1 - -1 1T 

(VI.2) 

(VI. 3) 

where 1 is determined from the range formulas for protons at any p 
energy 

E = 0. 505 E + 0.450 (MeV) 
p n 

Case 2. For E ~ E 't' based on intersection surfaces of a cylinder n cr1 
and a sphere: 

with 

f p 
1 b ') + 0.392 ~ , (VI. 5) 

0. 764. (VI. 6) 

Where i is determined from the range formulas for protons at an p 
energy 

E = 0. 586 E + 0. 574 (MeV), p n 
(VI. 7) 

(VI. 8) 

Where 1 T is determined from the range formulas for tritons at an 

energy 

·'· .,, 

ET = 0. 340 En + 0.1 50 (MeV) (VI. 9) 

E .t is defined as the neutron energy where the functions in above 
cr1 

two cases continue; the: value of E .tin MeV depends on the gas 
cr1 

pressure of the detector (see Appendix A for a more detailed definition). 



Where f. He 

energy 

where 
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and x = 3x = (3)1/2(_ En 
T p ~3E +4Q 

n n,p 

f2(E) ~ 1- ~(-£:_be). 
(VI.l 0) 

(VI. ll) 

is determined from the range formulas for He
3 

ions at an 

E = 3En (~ -I) 
He 8lT 3 2 ' 

(VI. 12) 

lT 

( l . ·I 2 I , . 2 . 2 l 2 

J E ( f.L )f.L . d f.L · [. ( f.l )= o -K s m e) I d e, 
c.m. c.m .. c.m.1 · c.m. 

-l -' 0 (VI.l3) 
. . l/2 

( 
. 4 E r ) l . l /2 

K= 1---· =[1--(1-f.L )] , 
3 E 2 c.m. 

n 
(VI.l4) 

Where f. D is determined from the range formulas for deuterons at an 

energy 

ED= 0.42 En -1.27, (VI.l 7) 

E ~4.32 (MeV), 
n 

(VI.l8) 

)

l/2 
, Qn,d=- 3.24 (MeV), 

(VI. 19) 

(VI.20) 
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p(E) 
16rr = 3E. 

1 
(VI. 21) 

J 

P(E-+E.) 
1 

(VI.22) 

where Eb, EL are from the energy-range {ormu1as for ranges b and 

L, respectively, for each different particle in question. 

The variation of f
2

(E) and f
5

(E) vs neutron energies and filling 

pressures a:·re plotted in Figs 4 30 and 31, respectively. 

In order to increase the counting efficiency of the detector, 

krypton gas is usually added to the He 3 gas. The krypton is to in­

crease the stopping power of the filling gas, and the He
3 

serves as the 

reaction gas. The ranges of charged particles in the mixture of these 

gases can be estimated as follows. 

Range formulas for individual gases t (mg/ cm
2

): 

- Protons 

R (E) in Kr = R ,(E) in air [1.89 - 0.25 log (E)] - 0.36, p p 

R ,(E) in He = R ,(E) in air [0.82 - 0.25 log (E)]. 
3 p p 

He Ions · _ 

RHe3 (E) in Kr = ~ { Rp in air(~) [1.89- 0.25 log(~)]- Q.36}, 

RHe3 (E) in He=.~ h, in air ( ~} 0.82 - 0.25 log (~)1} . 
Tritons 

RT (E) in Kr = 3 {Rp in air (~)[I. 89 - 0. 25 log ~) 1 - 0.36}, 

RT(E) in He • 3 Rp, (~)in air [0.82- 0.25log (~)1. 

D~:t~;~:: Kr = 2 b,, (~) in air [1.89 - 0.25 log(~) 1 . -0.36} , 

Rd (E) in He • 2 RP' (~) in air [0.82 - 0.25 log (~)1 . 
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Neutron energy, En (MeV) 
MU-30980 

Fig. 30. The function £
2

(E ), the probability that He
3 

nuclei will 
not hit the counter U>all, vs neutron energy E . 

n 
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Fig. 31. The function £
5 

(E ) the probability that deuterons will 
not hit the counter .J}all, vs neutron energy E . n 
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2 
Conversion of particle ranges from mg/ em to em is as follows: 

f. (em) :: 
Rtot (in:g/ em 2) 

Rtot :: total particle range in the gas mixture in mg/ em 
2

, 

p :: partial pressure of individual gas as given in the input 

data (psia), 

p :: gas density at STP. 

Ranges in Gas Mixture t 

where 

where 

1 WHe w 
Kr 

Rtot (E) 
:: + 

R in He (E) R in Kr (E) 

WKr 

p 

p 

PHe 

PKr 

W :: Weight fraction, W He + W Kr :: 1, 

PHe PHe 

PKrPKr 
1 - WHe' :: :: 

PHe PHe + PKr PKr 

:: partial pressure of the gas as given in the input data (psia), 

:: gas density at STP, 

:: 0.116629 g/liter, 

:: 3 . 4 5 5 g/ liter. 
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VII. SAMPLE CALCULATION 

A. The Detector 

For the purpose of illustrating the method mentioned in the pre­

vious sections, a machine -computed calculation that computes the re­

sponse matrix and inverts the spectrum of a TNC (Texas Nuclear 

Corporation) detector model 312 follows. The TNC detector construe­

tion details are: 

Detector material 

Length 

Diameter 

Active length 

Active diameter 

Filling pres sure 

Copper 

7-1/8 m. 

1 in. 

3-1/2 in. 

15/16 in. 

10 atm. 

The filling gas He 
3 

which contains 10 -f)% of tritium. Therefore the 

purity of the filling gas is high, and the effect of the tritium can then 

be neglected. 

B. The Raw Spectrum 

A raw spectrum is obtained by putting this detector inside of con­

centric sheaths made of 0. 04 -in.- thick cadmium and 0. 023 -in. -thick 

indium, and then irradiating with plutonium fluoride neutrons. This 
>:(; 

raw spectrum is plotted in Fig. 32. 

The calibration of the spectrum fixes the top channel ( 1 00) of the 

spectrum as neutron energy of 2.28 Mev.':":' There are essentially no 

counts above this energy. Therefore we need only consider the wall 

effects due to protons and tritons, and the recoil effects due to He 
3 

nuclei. 

~::: 

The data and calibration of this figure were supplied by Mr. A. H. 

Redmond of the U. S. Naval Radiological Defense Laboratory, San 

Francisco . 
........... ............. 

Refer to Appendix B for neutron energy calibration. 
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Fig. 32. The raw spectrum 
Appendix B -1 for E 

n 
Redmond.) 

from the TNC detector. (See 
scale; data supplied by A. H. 
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C. Unfolding Procedures 

The recoil effects should be unfolded first according to the formula 

3 

.. { Cj [f2(E)p(Ei) J4(Ej)p(E)P(E-Ei) Jl 
CH (J- r)"" f + f 3 (E .) f (E ) dE .6-.E. 

e u (E.) dE.) J 1 . 1 
, n, p J J E. J 

1 

After unfolding this effect, the spectrum is as shown in Fig. 33. 

Afterward, the wall effect of protons and tritons is unfolded by the 

formula 

l
E =2.28 MeV 

N C(E)[l-f1 (E)] 
C (j-i) = ) P(E-E.) dE . 

p fl (E 1 

E. 
1 

After the unfolding of the wall effects of protons and tritons, and 

the removal of the thermal-neutron peak spectrum, the spectra are 

shown in Fig. 34. The thermal peak is taken from the experimental 

response of this detector incorporated into a moderated PuBe neutron 

source. 

Fig. 35 expresses the comparison of spectra from various steps 

of unfolding results. 

Fig. 36 shows the resultant spectrum together with He 3 recoil and 

wall effect of protons and tritons. 

Fig. 37 shows the corrected spectrum that is obtained from the 

resultant spectrum (in Fig. 36) divided by T), the counter efficiency. 

The f
1 

(En)v s are from the following two cases. 

:::.: 
Case l. E ~ 1.27 (MeV), 

n 

. . 1 _- 2 1/2 

( {£ [ (£ )2 ]1/2 (£ ~}') [ (£ ) ]( flT ) 
f1 (En) = 1 - ~ 2: 1- 2~ + sin-1 2~) 1"'; 2~ ' 

~:<: 

This value of En has been calculated for the continuity of f 1 (En) 1 s 

for case 1 and case 2, which will be seen shortly. 
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Fig. 33. The spectrum after unfolding He
3 

recoils. 
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Fig. 34. The spectra after unfolding the wall effect of protons 
and tritons (from PuF 4-3 source). 
o Spectrum after unfolding the wall effect of protons and 

tritons only. 
Thermal-neutron peak spectrum from moderated 

PuBe source. 
e Spectrum after unfolding the wall effect of protons 

and tritons as well as thermal peak. 
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Fig. 36. Resultant spectrum together with He
3 

recoil effect 
and wall effect of protons and tritons (with PuF 4 -3 source) . 



10 
0 

X 

w 

z 

-84-

30.----.--~----r-----~----~--~ 

20 

10 

o~--~--~----~--~----~--~ 
0 0.4 0.8 1.2 1.6 2.0 2.4 

Neutron energy, En (MeV) 

MU-30987 

Fig. 37. Corrected spectrum from PuF 4 -3 source. 
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where 

b = 1.16 em, 

(

, E )1/2 
' xT = (3)1/2 n 

3E +3.056 .n 

E is from E = 0. 505 E + 0.450, (MeV) p p n . 

. 1. 07 6. 7 2 ::< 
£ T 1s from £ T = -rD (7ET + ---"5 ET ) , 

ET is from ET = 0.340 En+ 0.15 (MeV). 

Case 2. 10 ~ E ~ 1.27 (MeV), 
n 

X = 
p 

. . 1 

(3l72 ~ 
E .. · )I/2 . 

ri , E =0,586E +0.574(MeV), 
3En+3.056 P · n 

All other. quantities are the same as those in case k 

0;:::; E ;:::; 10, 
n 

p_He = 1.07 (7E + 6.7 E 2·)':' 
10 

He 3 He 

EH is from E = 
3
En (~ - I ) ~ 

e · He STr 3 2 

J1E E 1; 2.2.1/2 
12 = . (f.lc. m. )f.lc.m. df.lc.m.' . (f.lc.m.) = (1 -K Slll e) a.e 

-1 0 

The origin of these formulas is discussed later in this section. 
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3 

p(E) = L a 1 (EJ.)P1 3E.cr l=O 
J s 

(,_ ~) 
~ 3E. 

J 

Eb:.: 1.14 (MeV), EL = 4.65 (MeV), 

A.E = 0,06 (MeV). 
l 

The formulas for lp, Ep, l T' ET' b, and L are calculated as 

follows. 

7 8 Range formula ' 

For the same particles we assume 

P., R · - ·p R 
He4 ~~4 - · He3 He3 ' 

where RHe4 = range in He4,_ 

RHe3 =range in He3,· 

therefore 

and 

1 
RH 4 =- RH 3 

e 1. 07 e 

The calculation of Eb and EL is as follows: 

Counter sensitive length .L 10 = 3.5 in. X2:54 = 8.89 em, 

Counter sensitive radius b1 0 = ;~ in. X 2. 54 = 1.16 em. 
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The gas in the sensitive volume is at p = 10 atmosphere; then the 

above values equivalent to values for standard pressure (i.e., p = 1) 

will be 

L 1 = L 10 Xp = 8.89X10 = 88.9 em, 

b
1 

:;:; b
10

Xp = 1.16X11.6 em. 

These values are in He 3 gas; their equivalent values in He 
4

, according 

to RHe4 = RHe3/1.07, will be 

L = ~~O~ = 83.1 em, 

b = ~ \;~ = 1 0. 84 em. 

For the proton case, from Figs. 39 and 40, Eb = 0.85 MeV, 

EL = 3.05 MeV. 

For the case of the He 3 nucleus we estimate as follows. 

According to the formula for different particles in the same gase,.. · : 

ous medium, 

M 3 (-M He R . H 4 p = M 1n e ::-M-::=----
p p He3 

therefore· 

and 

RHe3 in He 
4 

(E) = 

therefore 

L . H 4 88,9 
He3 ln e = = T.07 83.1 em, 

bHe3 in He 
4 = 11.6 

T.07 =l0.84cm. 

The equivalent proton range of L in He 
4 

is 

. 4 (1 ,\ 1 . 
Rp, Lin He 3" E)= 3"X83.1 = 27.7 (em). 

The equivalent proton range of b in He4 is 

R . b. in He4 (~ E~ = ~ 10.84 = 3.61 (em). 
p, 3 ) 3 

•.· 
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Fig. 39. Range of protons in He at l5°C and 760 mm Hg (range, 
0 to 800 em; curves from references 7 and 8). 
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103 to l09cm; curves from references 7 and 8). 
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From Figs. 39 and 40, 

± EL = 1.55 (MeV), 

therefore 

±Eb = 0.38 (MeV), 

EL = 4.65 (MeV), Eb = 1.14 (MeV). 

For the case of pure He3 gas, the range of particles can be cal­

culated from the information of range - energy relationship of protons 

in He4 by assuming 

therefore 

1.78Xl0- 4 (g/cm3) 
= RHe4 , 

1 . 6 6 X l 0 - 4 ( g/ c m 3) 

or 

For the convenience of machine computation the curves up to l 0 MeV 

on Figs. 39 and 40 may be approximated by 

RHe4 = 7E + 6.7 E 2 . 

D. Comparison of Results 

Figure 37 is replotted in Fig, 38 along with those curves for 

PuF4 neutron sources from different observers.9 The curves of PuF4-3 

and PuF 4 -2 are obtained by Tochilin9 by using an emulsion technique, 

while PuF 
4

-2 is a Hanford source. The PuF 4 -3 is described in Table 

I, reference 9. 

It is seen that the curve obtained here agrees within statistical 

variations with the curve PuF 
4

-3 for most energies. However there 

are some differences observed in the range from 0.4 to 0. 8 MeV. The 

possible reasons for this disagreement are as follows: 
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(a) A moderated PuBe source was used to determine the response 

of the He3 detector to thermal neutrons. This measurement was nor,..., 

malized and used to subtract the thermal-neutron background. There 

is uncertainty in the distribution of thermal neutrons from the moder­

ated PuBe source and the thermal-neutron spectrum that was acutally 

present when the PuF 
4 

source was measured. 

(b) Range straggling in emulsion technique increases rapidly m 
10 

this low-energy range. 

It is also seen that this method, in principle, is able to predict 

neutron distributions down to zero neutron energy if a proper thermal 

distribution is taken concurrently and subtracted, whereas the emulsion 

method is unable to do this. 
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Table II. Ranges of protons in helium and energy losses 
for l5°G and 760 mm of Hg. a 

Helium (I- 44 eV) 

E(MeV) Energy loss~ 
(MeV/cm) 

Range (em) 

0 4.759~5X10- 2 1.303gX!O 1 1 
2 2.80637 
3 2.00607 8.4!60 
4 1.61918 

2.0778XI0
2 

5 1.35183 
6 1.16537 2.8769 
7. ~:~~~~~X!0-3 3. 7930 

·8 4.8229 
9 8.35660 s. 9645 

10 7.66136 7.2155 

II 7.08158 
1.0039XI0

3 12 6.59015 
13 6.16793 
14 5.80097 1.3281 
IS 5.47889 
16 5.19375 1.6931 
17 4.93944 
18 4. 71110 2.0980 
19 4.50487 
20 4.31764 2.5419 

25 3.59050 
30 3.08987 5.3241 
35 2. 72299 
40 ~:iimx~o- 3 8.9943 
45 

1.3498XI0
4 50 2.03861 

55 1.88867 
60 I. 76226 1.8791 
65 1.65406 
70 I. 56046 2.4736 
75 1.47862 
80 1.40644 3.1597 
85 1.34229 
90 1.28488 3.9046 
95 1.23320 

100 1.18642 4.7154 

125 ~:~~mx1o-4 
!50 9.6737 
175 7.94925 

1.5955XI0
5 zoo 7.27717 

225 6. 75029 
250 6.32684 2.3356 
275 5. 97928 
300 5.68919 3.1712 
325 5.44364 
350 5.23335 4.0893 
375 5.05144 
400 4.89271 5.0787 
425 4. 75315 
450 !:~m~XI0-4 6.1303 
475 

7.2363XI0
5 

500 4.42128 

550 4.25293 
600 4.11470 9.5859 
650 3.00067 

1.2085XI06 700 3.90293 
750 3.82084 
800 3. 75057 1.4701 
850 3.69004 
900 3.63760 I. 7410 
950 3.59196 

1000 3.55206 2.0194 

1500 3.33866 
2000 3.27707 4.9940 
2500 3.26866 .. 3000 3.28242 8.0499 
3500 3.30613 

1.1074X!O 
7 4000 3.33429 

4500 3.36423 
5000 3.39457 1.4046 
5500 3.42457 
6000 3.45387 1.6967 

·~ 6500 3.48228 
7000 3. 50971 1.9839 
7500 ~:m~~XI0-4 

2.2666XIO 7 8000 
8500 3.58604 
9000 3.60960 2.5456 
9500 3.63227 

10000 3.65412 2.8209 

aThese data are from references 7 and 8. 
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APPENDICES 

A. Computer Program 

The actual inversion calculation is carried out by a Fortran 

program •. This program utilizes the principles and formulas given in 

Subsec, VL C" The calculation takes the following steps . 

L Calibration 

When a raw (pulse-height) spectrum is obtained by using the 

He 
3 

detector incorporated with a multiple~charinel analyzer, the spec­

trum is first calibrated to a neutron energy scale" Let 

VB = bias voltage of this spectrum (volts), 

V = voltage per channel (volts/ channel), 
c 

n = channel number of the spectrum, 

N = top channel number of the spectrum, 

E = energy of charged particles {e.g", protons and tritons 

in this detector) per volt, MeV /volt (this data is from 

the actual calibration by known energy source), 

Then the thermal-neutron energy is calibrated at channel number n
0

; 

then 

(n0 V c + VB) E = Q, 

where 3 
Q = 0" 764 MeV, the reaction energy of He (n, p)T. or 

Q -V 
E . B 

no= v 
c 

Thus the energy of thermal neutrons,. E
0

, corresponds to channel 

number n
0

, and any other neutron energy, En'' is located by taking 

E = {n - n
0

) V E (MeVL n c 

The top channel of the spectrum, L e., the channel in which the 

maximum energy is recorded. is located at N; the value of the energy 

is EN(MeV)" From this EN we can start the inversion calculation., 



-96-

2. Programming the Effect of Deuterons C (j-+i) 
d . 3 

If EN ~4.36 MeV, the threshold energy of the He (n, d)D re-

action Cd(j-i) should first be computed. The Fortran program uses 

a formula which expresses the number of counts at the channel corre­

sponding to an energy E. from deuterons produced by neutrons of 
1 

energy E.: 
J 

rc.u d(E.)£
5

(E.) 
C ( . __....) _ 

1 
J n, J 1 

dJ 1 
-, u (E.)£ (E.) l n, p J l J 

where 

cj is the raw-spectrum data at channel j, 

C(E) is the raw-spectrum data at energy E, 

u d(E.) is the He 3 n, d reaction cross section (data from Fig. 24 
n, J . 

at E.), 
J 

u (E.} and u (E) are the He 3 n, p reaction cross section 
n, p J n, p 

(data from Fig. 25 at E = E. and E = E, respectively), 
J 

£
1

(E) and £
1

(Ej) are from Eqs. (VI. 2), (VI. 5) to (VI. 10) evaluated 

at E =E. and E = E, respectively, 
J 

£5 (Ei) is from Eqs. (VI. 16) to (VI.l9) atE= Ei' 

£
6 

(E) is from Eq. {VI. 20), 

P(E -+E.) is from Eq. (VI. 22), 
1 

For programming, the calculation takes the following steps: 

( 1) Let Ej = EN' where EN is the top channel of the raw 

spectrum and the raw spectrum is denoted by C. 

(2) Use the formula Cd(j-+i) to compute Cd(N-+i) fori= N-1. 

(3) Calculate C (at E=EN-l)- Cd(N-N-1) = Cd(Ei= EN_ 1), 

where the energy (or the channel number) inside the brackets indicates 

the energy (or the number of the channel) where these C 1 s are evaluated, 

and Cd is the new spectrum which will be used in later computations. 
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(4) Repeat steps (1), (2 ), and (3) but change 1 to i - 1, 

(5) Repeat steps ( 1 ), (2 ), (3 ), and (4); decreasing i by 1 

each time until E.= 0. 
1 

(6) Replace original c by c just calculated, 

(7} Repeat the steps from (l) to (6) by changing j to j -1, 

with C as "new" raw spectrum. 

{8) Repeat step (7), decreasing j by 1 each time until 

E. = 4,36 MeV, the threshold energy of the n, d reaction, 
J 

Cd{i) 

E. 
J 

EN 

EN-1 

The desired data are tabulated in the following form, 

Table A. I 
I 

E. EN-1 EN-2 1 -· -· E = 4.36 

"' " " " 
' 
" " " " " " " " " ' ' 

" 

E = 0 

--
~:: 436 "-~~ ~------~- - ---

Data in the dashed-:line spaces will be the resultant spectrum after 

unfolding the deuterium effect, If EN< 4.36 MeV, the above calculation 

should be omitted, 
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3. Program for Cu (j- i) 
.n.e 

If EN~ 4.36 MeV, the Cd(j-i) should be calculated first; 

otherwise 9 this calculation can be omitted. The Fortran program for 

the calculation of CHe (j-+ i) uses the formula 

where 

C. is the raw spectrum at E., 
J J 

f 2{Ej) is from Eqs. (VI. 11) to (VI. 14), 

f3 (Ej) is from Eq. (VI. 15), 

p(E.) or p(E) is from Eq, (VI. 21) [also refer to Eq. (IV. 1} and 
1 

Fig. 20], 

P(E-+ E.) is from Eq. (VI. 22). 
1 -

All other quantities follow from Appendix Subsec. A. 2 except f
1 

(Ej) 

which is 

Case 1. 

Case 2. 

from the following two cases: 

EN~ Ecrit then f 1(Ej} is from Eqs. (VI. 2} and (VI. 3). 

EN> Ecrit then f
1 

(Ej) is from Eqs. (VI. 2) and (VI. 5). 

Case (2) should be used first as the unfolding process goes down from 

top channel if EN> E is critical. 

E where 
n 

This E .t is defined as the energy 
cr1 

'· 
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where f. is evaluated from the energy given by Eq, (VL 4), 
PI 

E = 0,505 E + 0,450 (MeV), 
p n 

and f... is evaluated with energy E given by Eq" (VI. 7), 
P2 P 

E = 0.586 E + 0.574 (MeV) 

x p = _2__
1

_
12 
L n E~ )

112

, 0 =0. 764MeV, Eq, (VL 6), 
p (3) I \En+ Qn, p n, p 

It is seen that E .t should be evaluated numerically with a 
cr1 

known filling-gas pressure, since f. is a function of both pressure and . p 
energy. Below E .t case (1) is then used, 

cr1 
For programmin& the calculation takes the following st:eps: 

( 1 ). Let Ej = EN, the top channel of the raw spectrum (defined asC) 

3 
Ei = 4 EN, 

(2), Use the CH (j-- i) formula to compute the contribution of spectrum 
3 e 

at E = Ei = 4 EN due· to the particles of Ej = EN, (3: Calc~late C (at Ei = ~EN) - CHe (j- i) just calculated from (2), 

Let C (Eii = .f EN) = C- CHe' This C is the new spectrum at 

E = Ei = 4 EN' which will be used in later computations, 

(4). Repeat steps (1), (2), and (3) but change i to i-1; L e,, Ei-l 

replaces E. , 
. l 

(5), Repeat steps (i), (2), (3), and (4), lowering i by 1 each time, 

until E. = 0, 
l 

(6)o Repeat steps (1) to (5) by changing j to j-1; i.e,, Ej_ 1= EN-l 

replaces Ej = EN. Also use C to replace C as the new input spectrum, 

(7), Repeat step (6), lowering j and 1 each time until E. = 0. 
J 
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Now the computation for this process is completed .. The 

required data are listed in the following table, noting that the CHe is 

the result of step (7) for each E.. The data in spaces marked with a 
J 

dashed line are the data of the unfolded spectrum. 

~E 
4 N 

~E 
4 N-1 

0 

4. Program for C (i} 
p 

Table A. II. 

0 

""- -1--

The Fortran program for the computation of C (i) uses the 
p 

formula 

c (i) = 
p 

E. 
1 

where C is the raw- spectrum data. 

in Appendix A.2 and A.3. 

All other quantities are defined 
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For programmingl the calculation takes the following steps: 

(I), Let EN = energy of top channel of the raw spectrum which 

is denoted by C. 

(2), Use the above formula to calculate C (i) at E. = EN 
1

. 
p 1 -

(3). Compute C (EN-l)- Cp(Ei= ENl) just calculated= C(EN-I), 

This Cp is the new input spectrum for later calculation. 

(4), Repeat the steps (l), (2), and (3) but change i to i- L 

(5). Repeat the steps (l), (2), (3L and (4), lowering i by I each 

time until E. = 0. 
1 

(6)o Repeat the steps from (I) to (5) by changing EN to EN-I 

using C(E ) as the input spectrum. 
n 

(7), Repeat step (6) lowering N by 1 each time until EN = 0. 

Now the computation for this process is completed, The re­

quired data are listed in the following table, noting that C is the 
p 

result of step (7). The data in spaces marked with a dashed line are 

the data of the unfolded spectrum. 

Table A. IlL 

EN EN-1 ... 0 

""--
EN-1 ""--

""" 
EN-2 ""--

~ 

~~ 
""--
~ 
~ 
~ 

""" 0 ·~ 
r- --
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5, Resultant Spectrum 

The resultant spectrum can be programmed by using the follow­

ing formula: 

c 0 = C - l {C - C d) t (C - CHe) t (C - CP)] 

= c -{[c-[c-Cd(j-i)J} +{c-[c-cHe{j-i)]}+ [c-[c -CP{i)]} 

= C [Cd (j-+i) + CHe(j-+i) + Cp(i)] l 

= cd + CHe + cp - 2C, 

where 

c 0 is the desired spectrum at the corresponding channel, 

cd' CHe' and cp are the spectra from respectively, 

C is the raw spectrum, 

B. Sample Calculation 

Based on the methods mentioned in Appendix A, the actual compu­

tation procedures are presented here for the example mentioned in 

Sec. VII. 

l. Neutron Energy-Scale Calibration 

The raw spectrum plotted in Fig. 32 is first calibrated with the 

neutron energy scale E. 
n 

The method of calibration follows from 

Appendix A. l. 

The bias voltage for that spectrum is 2 V, the calibrated energy 

is 30 keV per channel, and the analyzer channel voltage is l volt per 

channel. Therefore the channel n, corresponding to thermal-neutron 

energy, is from (nX l + 2) 0.03 = 0. 764, or n = 24. That is, channel 24 

is equivalent to thermal-neutron energy, and the top ,1channel ( l 00) is 

then identified as 2.28 MeV. 

2. Calculation of .e p' .e T' .e He' Eb' and EL 

The actual computations of these quantities are carried out in 

Subsec. VII. C. 
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... 

3. Determination of E . 
cnt 

-1 OJ-

Before computing the C' s mentioned in Appendix A, the value of 

Ecrit must be evaluated numerically. Here for a filling-gas pressure 

m the detector of l 0 atm, E 't is machine -computed to be l. 27 MeV. 
cr1 

4. CHe Data 

SiEce EN= 2.28 is less than 4.36 MeV, the effect of He
3

(n,d)D is 

omitted. By using the method mentioned in Appendix A.3, a set of data 

can be obtained and arranged in the form of Table II in the same appen­

dix. Those data in dashed-line spaces are plotted as Fig. 33. 

5. C Data 
p 

By using the method mentioned in Appendix A.4, a set of data can 

be obtain-ed. ana arranged in the form of Table III in the same appendix. 

Those data in dashed-line. spaces are plotted as Fig. 34. 

6. Resultant Spectrum 

By using the method mentioned in Appendix A. 5, the resultant 

spectrum is obtained as plotted in Fig .. 36. 

7. Corrected Neutron Spectrum 

The corrected neutron spectrum is obtained by dividing the above 

resultant spectrum by Tj, the overall spectrometer efficiency. The Yl 

is given by Eqs. (VL l) et sed. The corrected neutron spectrum for this 

example is plotted in Fig. 37. 

8. Comparison of Spectra 

Figure 35 shows a comparison of spectra obtained from the pre­

ceding Subsecs. 4, 5, and 6, together with the original raw spectrum . 

From this comparison, the effect due to any particular process can be 

seen clearly. However this is not a necessary step for inversion calcu­

lation. 
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9. Comparison of Results 

This is not. a necessary step for the inversion calculation either. 

The TNC curve in Fig. 38 is a replot of Fig. 37 by normalizing the peak 

value of the curve in Fig. 37 to the same peak value of the curve PuF 
4

-3 

in Fig. 38. 
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report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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