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ABSTRACT 
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Just as the derivative of the argument of the S matrix with respect 

to energy gives a time interval for events, it is shown that the corresponding 

derivative with respect to momentum transfer gives a space interval. This 

space interval corresponds to the classical impact parameter in the classical 

limit. More generally, it is suggested that these two derivatives may provide 

a basis for introducing space-time intervals into physical theory. 
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During the past few years there has been considerable interest in the 

possibility of replacing the ordinary dynamical description of physical 

systems via a Schroedinger equation by an S-matrix theory. The principal 

objection to the conventional theory is that it tells one rather more than 

he wants to know about a physical system; more precisely, it forces discussion 

of things that do not seem observable. One aspect of this problem that has 

been recently discussed is the notion of time interval in an S-matrix theory. 1 

The idea was proposed that the S matrix, although superficially involving 

only information about the state of a system over very long time intervals, 

does in fact provide a kind of coarse-grained definition of time interval. 

In a complex process, involving a sequence of operations, one can define a 

sequence of time intervals only to the extent that the S matrix for the entire 

event factors into a product of S matrices. When this is possible, a time 

label can be defined that involves only S-matrix (i.e., on energy shell) 

quantities. A dynamical principle may then be formulated from the S matrix 

for describing the change with time of physical systems. 
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It i.s natural to ask whether any analogous considerations apply for 

the definit.ion of the spatial separation of events· in an 8-matri:x: theory. 

Such a description would evidently be ucoarse grained," as was that for time 

intervals, and much 'mo·re restrictive than the notion of a space-time continuum 

inherent in conventional field theory. 

We shall see that a spatial separation for two interacting particles 

may indeed.be 4efined in terms of the partial derivative of 8 with respect 

to the scattering angle. This quantity reduces to the classical impact 

parameter in the limit that a classical trajectory may be defined, and in 

general provides a definition for the impact parameter. In a manner analogous 

to that used for defining the time interval for a sequence of events, this 

impact parameter provid,e,s a means of constructing a trajectory for a particle 

underg~ing a 9equence of scatterings. 

These, and the earlier considerations of time interva~, suggest that 

a complete but coarse-grained description of space and time intervals may be 

derived in S-matrix theory, rather than postulated--as in conventional field 

.theory. 
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II. WAVE-PACKET DESCRIP?!ION OF THE SCATl'ERING 

For simplicity of discussion we restrict ourselves to the scattering 

of a simple spinless particle by a massive scatterer located at the origin of 

a given coordinate system. More complicated and physical4Y interesting inter

actions would seem to involve complication afdetail rather than of principle. 

The interaction and its observation involve directing a wave packet toward the 

scatterer at some initial time t : ~T0 and observing it at some later time 

T , as is illustrated in Fig.. 1.. We suppose that at both times ( -T0 ) and T 

the wave packet is far from the scatterer.. In the spirit of S-matrix theory 

we can assume that we know the wave ftinc.ti0n for the particle only at silchz: 

times that it is far frem the sca.tterer.o 

The wave function of the incident particle prior to interac.tion will 

be of the form 

¢(x,t) ..... 
•3/2 i(pox - ~ t) 

= (21!) e -"' P G(! - lot) , (1) 

where p , y-" , and e are, respectively, the ini t.ial momentum, velocity, 
.... --v p 

and energy of the particle. The wave-packet amplitude 

G(x) .:::::: G(x,y, z) .., . 
{2) 

is so constructed that at t = 0 the packet is centered on the scatterer at 

x = 0 • More precisely, we write -
(3) 

The envelope G is assumed to have a spatial extent characterized by a 

length W • It is assumed. to be "reasonably smooth" in the sense that its 

Fourier transform a(J) , in -
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( 4) 

is characterized by ·a. "width'i . w-1 . . . 
in momentum space .. The width W is 

conveniently chosen large enough that spreading of the wave packet is 

~egl:i.gi.ble by the .time it reaches the det~ctor. 2 We shall also assume that 

over the momentum 'inter-Vai w""1 the s matrix~ energy, a:nd scatter-ing 'a.mpli-
: ,'• .: 

tude are very nearly constant. 

The wave func·hion ( 1) may' with the assumptions just made' be written 
'. 

as 

¢(x;t) - = 
~·.' -.3/2 1· · 

3 
i(;;•x "" 

(21!) d~ e 
E t) 

K a(rt - p) • 
"" "' 

(5) 

The momentum p is taken to be the mean momentum of the incident packet: 

p = (6) -
The complete wave function for the scattering event is then 

w(x,t) 
"' 

(7) 

+ 
Here *rt is the steady-state wave function having the asymptotic form -

+ · -3/2 I i<·x iKX 
A A l VK (l5) (21t) .e""""+ e 

f(K, ~·~) (8). = ·' X 
"" 

I' fl 
as x-+ ro. The quantity f(tt, X•K) is the amplitude for ·scattering from the --
initial direction ~ to a final direction 

"" 
S matrix is described by the equations 

and 

1'\ 
X " 
~ 

The relation of f to the 

(9) 
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tt• ( A ' /\ T, = 
(21!)2 

f' K, It •tt) 
' It It "' --"" p€ 

( 10) 

where 

2 
It 

p€ de /dtt 
It 

(11) 

The separation X between the packet and scatterer is certainly 
"' 

observable, to within an accuracy of' order W so long as X>> W • The 

lower limit obtainable on W is determined f'rom the properties of' the inter~ 
' 

action and the requirement of' negligible spreading. The question that 

concerns us is whether the asymptotic wave f'unctions alone (or the S matrix) 

permit one to describe the spatial separation of' the particle and scattering 

center during the interaction. 

To investigate this, we f'irst use Eqs. (7) and (8) to write the 

asymptotic scattered wave as 

i(ttx-e t) 
e It 

X 

The complex scattering amplitude may evidently be written in the f'orm 

where R and X are real. 

Now, by our assumption that f' varies little over the momentum 

interval w-1 
J we may take 

~It = € + J/'v € 
' p ,.., p p 

It = .. 'p + t·~ ' - ..... 

( 12) 

(13) 

( 14) 



and 

= 

in the integrand in ( 12) .. Here 

.t = tt-p 
"" ._Ad ~ 

and 

R(p, 
A 1\ 

Ro- xop) --
xo :::: x(·. p, /\ II) X•p 0 --

~6-

i£o\7 X 
- p 0 e 
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(16) 

The factor exp(_!·V'P .tn R0 ) in (15) leads to a distortion in the shape of 

the scattered wave packet.. This is not of interest to us nGw, so we suppose 

it to be absorbed into the definition of the amplitude function a in Eq .. (1~) .. 

The second factor, exp( i £<>\7 x
0

) , .... p leads to a displacement of the packet 

and does concern us. Indeed, on inserting the expressions (14) and (15) into 

( 12), we find 

ljl (x,t) = 
sc ·-

-3/2 
( 2l!) 

i(px-e: t) 
e P 

X 

': .. :' 

/\ 
Here Yr-. . = p v = \7 e: is the velocity of the incident particle .. 

""'-' - 0 p p 

For the validity of Eq. (17) we require that 

\7 2 x << w2 
p 0 ' 

2 which are conditions placed on the wave packet .. 

( 17) 



UCRL-10776 

-7-

To give Eq. (17) a physical interpretation, we introduce 

as a variable, and write 

( 18) 

It is a natural to call ?%.0/oEP a "time delay", 

d arg f 
d € ' 

( 19) 
p 

and to call 

( 20) 

a "space shift". It may be noted that £o is perpendicular to the incident 

direction p • -
The wave-packet amplitude in Eqc (17) has then the form 

G (21) 

If, for example, the scattering lies in the x - z plane of a rectangular 

coordinate system, with ~ directed along the z axis, we may write this in -
the notation of Eq. (2) as 

(22) 

Equation (22) has a direct physical interpretation. Particles 

scattered into the direction Q tend to be displaced off the z axis by a 
""' 



UCRL-10776 

-8-

distance £o .• . This is illustrated in Fig. 2, where a "classical" t:r;ajectory 

is drawn. The displacement £a is seen in this case to correspond to the 

classical impact parameter. 

These considerations permit us to give a strictly quantum-mechanical 

definition of the impact parameter for a collision. In addition, ·we can 

define a distance of closest approach as the vector 

p = - p(i' cos e 
- 2 

A • e ) p s1n- ; 
2 

where l' is a unit vector parallel to the x axis, e is the scattering -
angle ( A 1\) cos 9 = X•P , and --

2 . e d xo 
p s1n - Pdu' 2 

2 
g 

sin - d f 2 arg 
p d u 

(23) 

(24) 

The expression (19) is a direct generalization of the Wigner-Eisenbud3 

time delay for scattering in pure eigenstates of the S matrix. The quantity 

Td evidently corresponds to a delay in the arrival of the packet at the 

detectoro Its significance for the present considerations was discussed in 

reference (1). 

We see from Eqs. (21) and (22) that a meaning can be given to the 

term 11 spatial separation" of two interact,ing particles. In the next section 

we give a different, and more direct, calculation of this quantity. 
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III. DIRECT CALCULATION OF POSITION OF THE WAVE PACKET 

We discuss once again the same scattering event that was described in 

Sec. II, but now calculate directly the center of mass of the packet. 

If there were no scattering, the wave function (5) would describe the 

packet motion. Its mean initial position at the time t = -T0 is then 

(25) 

In the absence of scattering, and at the time T , the mean position of the 

packet is 

(26) 

When scattering occurs we must use the wave function (7) to find the 

packet location. At the time t = -T this is 
0 

(27) 

Since (-T
0

) was chosen as a time long before scattering occurred, we will 

have 

or (28) 

~ = !oo • 

To find the position of the scattered wave packet at time T for 

those particles scattered into the direction ~ , we introduce a projection 
""' 

operator A(~) onto those plane-wave states corresponding to momentum vectors ,., 

parallel to i and lying in the small increment 8Q(~) of solid angle. The ,., . -
required mean coordinate of the wave packet is then 
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--_,_·,,: 

(29) 

where 

N ( 30) 
• ·~ , ':. L' j • • ! ~ '1 ... ', 

The dis'placement due to scatterfng''i·s . -: J ..... ·:····' 

IS£. [X(T) - X-} - [X0 (T) -x o]. - - ;.-:a "' ;.;o, .. i·; 

= X(T) - X0 (T) ( 31) - -.. ,_, ~ ... 

' _: 1!"_:_ j •': : .... :.• 

It will be convenient and will involve no serious loss of generality to· 
~ .. 

suppose that x is so directed that the wayes sc~ttered to the detector do 
. "" ; '' :. ,· :' \. :· .. 

not overlap the nonscattered waves in the incident packet. 

The quantities { 27) and'( 29} d() not ·of cciu'rse eXhaust the :~verages 

that may be evaluated for a descrfption of the 'peirticles orbi't.11 For exa.lriple, 

higher moments may also be found by the method desc:r;-ibed hereo 
' ' ·. :. i ~. 

To calculate the expressions (25) and (26), w~ shall use Eq. (5) for 

¢(~~it}~ For the -exp~ession'(29).we shall''f·irid it ·convenient to write ·v(~,T) 

in the form4 

'ljr(x,T) -
i(tt'"X -€ T) ··. 

·. It I· ' 
e "" - -s a(tt ~ p)·•, 

lt
1

1t - --- ( 32) 

where is the S-matrix element (9). --Let us first evaluate X0 (T) , Eqe (26). Using Eq .. (5), we obtain 
•' . • ., • i·· . • ~ . • . I :'; ' ' . #"ftt . ' : . ':,, • . • ·. ·. :. , ::: • ;' ·,~: : ,· 

~o ( T) " ( 2>!)"3 I d 3x .ad d3<~ ~5~2 exp {~ [ (~2 - ~l )·~ ~ (<<2 ,~ "•1 )T J} 
: . . ~' 

(33) 
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If we define 

and ( 34) 

we may write 

1 
~ = i "t (35) 

in the integrand of Eq. (33). Then, after performing a partial integration, 

we find 

= 

( 36) 

Here we have used the notation 

-f '\1 g f( 'Vg) - g( '\7f) • ( 37) 

Since is the velocity of:the particle when its momentum is ~ , 

we may use Eq. (6) to write the first term in Eq. (36) as 

(38) 

where !0 is the incident velocity of the packet [see Eq. (1) ]. On trans

forming the second term to coordinate space, we then have 
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.. -~' r 

( 39) 
. . ~: ., 

= !() T ' 

because of the condition (3). 

We next simplify Eq. ( 30) for N • Using Eq. ( 32), we m~y write this 

as 

= 

( )-31 3 21!:···dx 

Here J d3
tt 

1 ••• denotes an integral over ~~ with the direction K
1 - -52 

( 40) 

-restricted to the.solid angle B~(~), as implied by the projection operator ,., 
·- -~, 

in Eqs. ( 29) and ( 30)" Because we have assumed that waves ~scattered in 
) 

the direction ~ - do not overlap the incident packet at time T [this implies 
' i, 

\,' 

that a(tt~ - p) is negli,gibly small],. the B-function terms do not contribute, 

and N reduces to 

N = 

•, ~, ~ 1 I (41) 
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* The assumption that T 1 · and T 1 are essentially constant over the 
~ ~2 ~ ~1 

packet now permits us to write this as 

N = (2~)2 Peon(~) IT~I2 ~ d3Kl d3K2 o(eKl- eK2)a~(~l- 2)a(~2- £) ' 

( 42) 

where 

k - "" px - ( 43) 

is the momentum of the scattered particle and p€ is the expression (11), now 

evaluated at K = p • 

Let us next substitute 

+oo 

J 
-oo 

dt exp[i(e - e )t] 
Kl K2 

into Eq. (42) and Use Eq. (10) to obtain 

+00 

N on(~) lf(p,2·£>1
2 j dt l¢(o,t)l

2
• 

-oo 

Now, 

= 

is the differential scattering cross section, and 

+oo 

j at l¢<o,t) 1
2 

-oo 

( 44) 

( 45) 

( 46) 

(47) 

is the flux of particles (per incident particle) on the scattering center. 

Thus, we finally have 

N = da(~ ~ x)F0 ...... "" 
( 48) 
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· • l (' • I 

To be strictly consistent, we should have kept the f'irst-order 

* variation of' T and T 
'\. 

vdth momentum [as in Eq. (15)] ii1 Eqo (42). This 

would have led to a f'lux (47) evaluated at.the displaced position £o [Eq. (20)]. 

Since this correction does not affect our resul~s, we have:a~oided the ~lgebraic 

complication of' including it here. 

We turn next to the evaluation of the quantity [see Eq. (29)] 

= 1 a\2' r 1 a\ expi( ~l' ·z- •• .~)s ~ '. a(~l :;\' )J * 
2' l . . 1 -1 -1 

"' 

( 49) 

which of course differs from the first form of Eq. (40) only by the factor x -
in the integrand. This expression may be.simplified by introducing the variables 

,· . ' ... ; .. · .... - l . . 

( 34) and using Eq •. ( 35) for The steps leading to Eqc (36) now give 

. NX(T) 
' ..... " { A' 1 a3.l a3"2 f\7•' 

-£)J} i 
+ -

2 [ 
a*(~1 ~ £)s:,K ·]·~, [s, a(~2 . ""'-1 K "'2 

t : 
(50) 

Were we to set and and integrate 

over all K: i , this would agree with Eq. ( 36)~-as it should, bee~~~-~ in the -
absence of scattering t:X. = 0 0 

"' 

.•. 
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Since o~(~) - is very small, we may factor ( 'V t € I ) T = y_.p T ' K K ~.L 

where !f = v0 2 , out of the integrand of the first term in Eq. (50) and 

rewrite this as 

NX(T) - i 
= !rTN + 2 d3~ d3~ [a*c~ p)s* 

~l ~2 ~1 - I 
. "" - ~ K --1 

X ~ [ a(~.r~ - p )8 1 ] • 
·-c. "" K ~t2 . ""'-

[Compare Eq. (51) to the final form of Eq. (40).] 

] 

(51) 

The leading term for large T in X(T) - is just !f T , as would be 

expected from elementary kinematical considerations. The second term on the 

right in Eq. (51) is independent of T and corresponds to a displacement of 

the particle trajectory. 

To simplify this term we substitute the expression (9) for the 

8 matrix and again use the condition that a(pQ - p) ~ 0 to write 

- -
N [~(T) - !fT] = 1-. (211')2 

2 

X {[ 5( • •• * l - € T K ) K1 K 

Now, 

'VK 1 [TK 1 K: 
--2 

o(€ ' K: 

1 --1 

= 

]d\ 1 J d3~t d3~t a*(K - p) 8.(!;.2 - p) 1 2 . -1 - -"' X -
-'VK, [ 5( < , - E )T , l} 

K K2 ~ ~2 
(52) 

etc., where v' =. 'V 1 € , 
- K: K: 

!f • This permits us to put Eq. (52) into the form 
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* ( [ * ~ ,1\ "'- l X a (tt1 - p)a ~t 2 - p) T , .\V'_,, + x p•\7 )T , 
·"" "" "" ..., KK It "",., K ltK 

4'\f f"\,!t #1\.11 "' 

+ terms that vanish for small 1 w . (53) 

(The neglected terms here involve gradients of the a's and thus depend on 

wave-packet characteristics_. When ~ is small enough that we can set · 

xl ~ x2 ~ Xo·' these terms· vanish.) 

To further simplify Eq. (53), we use Eq. (10) and Eqs. (44)· and (47) 

to obtain 

N[?f(T) - !f T] 

Now, 

where Td is the time delay (19) and 

and /\ 1\ 
U = X•p --

Eq. ( 30) as 

X(T) 
""' 

or 

!:X ., 

as 

= 

(
A . A "' "') o arg f - p .- X X•p · ~ . 1 ,... """"'"' puu 

in Eq. ( 18). Finally, 

·Xf(T - -rd) + J2f ' 

Xr(T - Ta) - v T . "'() ' 
+ Er· 

(54) 

(55) 

(56) 

Wf= use Eqs. ( 39) and (54) to write 

(57) 

(58) 

.. .. 
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The interpretation of these expressions is similar to that given in Sec. II 

of Eq. (22). The scattered wave packet is delayed by a time Td and displaced 

a distance £f , which lies in the plane of the scattering and is perpendicular 

to the direction ~ • This is illustrated in Fig. 3, where Eqs. (20) and (57) -
are used to define a 11 trajectoryn for the particle. 

Referring to Fig. 3, we see that if the scattering had "actually 

occurred'' at 0 , the point X(T) - would have been at P • Because the 

scattering is displaced by the distance p [see Eq. (23)], the point 4(T) 

is displaced by a distance Df perpendicular to the line OP • The displace

ment of the incident orbit is £o [see Eq. (20)]. We see that 

Df Do 
9 = = p cos- J 2 

(59) 

and Df is in the direction of the unit vector ~ , illustrated in Fig. 3· -
Our discussion has been quite general to this point and certainly 

consistent with the indeterminacy principle. The '' trajectory11 drawn in Fig. 3 

has been defined in terms of the mean displacements D 
~ 

and 
' 

In the 

next section we shall evaluate these quantities in the classical limit and 

see that f does' indeed then correspond to just the classical distance of 

closest approach. 

Before doing this, let us suppose that the scattering interaction 

illustrated in Fig. 3 is ~ and limited to small angles e , and that the 

orbit may be considered as classical. The displacements EQ and £f are 

then directly interpretable as displacements of the classical trajectory from 

Q.OP • The time delay ,.d requires discussion, however. There are two 

contributions to One results from the fact that the trajectory RSX 
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is 2p sin~ , we have a purely geometrical contribution to Td , 

T = geom 
. e 

s~n-
2 

UCRL-10776 

(60) 

The time delay also has a dynamical contribution corresponding to the 

fact that the velocity of the particle is in general different while it is 

interacting. To evaluate this in the classical limit, we suppose that the 

scattering .is due to a potential V( r, z) , where z is a coordinate along /\ 

£ ' 
and r a .coordinate along J . Now, the velocity v , if the particle has a ,.. 

nonrelativistic energy, at (r,z) is given by the equation 

2 2 
v + M V(r,z) = ( 61) 

where M is tne particle mass. Since we have assumed that e is small and 

that ~ I V I << v0
2 

, we obtain from Eq. (61) for an impact parameter p 

dt ::::::: + 
1 V( p, z)] 

' 

or 
+co 

1 1 V(p,z)dz 

-oo 

for the dynamical contribution to the time delay. The total time de~ay 

is then 

+ T geom .... 
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IV o SCATrERING IN THE NEAR-CLASSICAL LIMIT 

Let us evaluate the scattering illustrated in Fig. 3 in the WKBJ, or 

eikonal, approximation for the case of a nonrelativistic particle. Then, if 

the scattering is due to a potential V(r,z) and is limited to small angles 

e , 5 
the scattering amplitude6 is 

= f
ro [ 2i5(r,p) 

-ip r dr J0 (pr9) e -

0 

where J
0 

is the Bessel function of zero order and 

+00 

5(r,p) = 
1 j dz V(r,z) • 

-oo 

(64) 

(65) 

In the near-classical limit we may replace J
0 

by its asymptotic form to 

write 

()) 

-i-fl; J 
0 

1/2 d r r 
[ i [ pr9 - ( 1! /4) ] 
Le + e 

-i[pr9 -

which may easily be evaluated by a saddle-point integration. To do this, we 

must consider the two integrals 

1
1]) 1/2 i¢± 

r dr e 

0 
' (67) 

where 

::: 25(r,p) ± (pr9 - ~ ) o (68) 

The stationary phase point at r = p
0 

is determined from the equations 

(69) 
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where 

so 

o' _ d o(r,p) 
d r 

Now, 

o'(r,p) 

o'(r,p) > o 

o'(r,p) < o 

;.20-

+oo 

L d [ 
dV(r, z)] 

z - a r ' 

for a repulsive force (case R) , 

for an attractive force (case A). 

We see then that in the present approximation 

f = 

where the plus sign corresponds to case A and the minus sign to case R. 

+ 
Evaluation of I- gives 

.f = case R 

f = case A , 

± ± 

( 70) 

(71) 

(72) 

where ¢
0 

_ ¢ (p
0
,p) 

ff II 

and ¢
0 

=-¢ (p0,p) • The plus sign in Eqs. (72) 

r~.o" is to be used when ~ 
If 

> 1 , the minus sign for ¢
0 

< 1 • 

Using Eqs. (24) and (72), we find the impact parameter p to be 

in agreement with our anticipations. 

The time delay (17) is evaluated from Eqs. (72) as 
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1 2 d 0 ± 
P0e 

Td vo dP vo 

+oo 
1 J dz V( p

0
, z) ± 

P0e 
(74) ::; +--

Mv 3 vo 
0 -co 

by using Eq. (65). For case R and small e (minus sign), this is seen to 

agree precisely with Eqs. (60), (62), and (63). 
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V. AN ALTERNATIVE REPRESENTATION 

We have considered the scattering amplitude to be a fUnction of € 
p 

and u = ~·P , and have shown that the derivatives (19) and (24) of: arg f -.... 
with respect to these variables have a simple· geometricai interpretationo If 

one considers f to be a functllion of the variables7 

s 2M € 
p 

(75) 

t -2s( 1 - u) , 

rather than of e and u , the partial derivatives of arg f(s,t) may be 
p 

given a dynamical interpretation. 

To see this, let.us first generalize the definition (62) for Tdyn, 

writing 

T - T z d geom 

where Td is defined by Eq. (19) and 

calculation then gives 

= 
p 

T geom 

2(s)l/2 d ar~ ~(s,t) 
2 . e sJ.n 2 ' 

where p is defined by Eq. (24), and 

Here 

2M d arg f(s,t) 
d s 

T dyn is defined by Eq. (76). 

by Eq. (60). 

We call the quantity T the ncausal time delay." 
c 

(76) 

An elementary 

(77) 

(78) 

Equation (62) 

suggests that this has a more direct dynamical significance than does Td • 
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VI. CONSTRUCTION OF A TRAJECTORY 

In reference 1 it was observed that for a sequence of scatterings, or 

in the quasi-classical limit, for which the S matrix factors into a product 

of S matrices, the time delay Td permits one to attach a coarse-grained 

time label to points on the trajectory. In a similar manner we can use 

Eqs. (23) and (24) to construct an "orbit" in coordinate space for the 

scattered particle. That is, when 

where Si is an S matrix for the !th scattering, we may define a sequence 

p. of displacement parameters. A path formed by line segments between this 
-J. 

sequence of veetors provides the required "orbit." It is evident that in the 

classical limit this orbit will coincide with the classical trajectory. 

We have seen that the S matrix may provide a basis for defining 

space-time intervals for events. The extent to which it may provide a 

general and satisfactory definition of space-time intervals is not ·presently 

clear. 



UCRL-10776 

-24-

FOOTNOTES AND REFERENCES 

* This work was prepared under the auspices of the U. So Atomic Energy 

Commission and a contract from the United States Air Force. 

t Presently on leave at the Massachusetts Institute of Technology~ 

1. M. L. Goldberger arid K. M. Watson, Phys. Rev. 127, 2284 (1962). 

2. See, for example, M. L. Goldberger and K. M. Watson, Collision Theory 

(John Wiley and Sons, Inc., New York, 1963), Chap. III. When the wave 

packet has traveled a distance L to the detector, its amplitude will 

. have been distorted to the form 

G' = 

where M is the mass of the particle. 
. . 

3. E. P. Wigner, Phys. Rev. 98, 145 (1955), and L. Eisenbud, dissertation 

(Ph.D. Thesis), Princeton University, June, 1948. 

4. The scattering is long since past at the time T , we recall. (See, for 

example, reference 2, Chap. V.) 

5. The limitation to small scattering angles is not essential here, but 

simplifies our discussion. 

6. See reference 2, Eq. ( 6-505), for example. 

7. A relativistic generalization is evidently straightforward. 

/ 
/ 



• 

"' 

-25-

FIGURE CAPTIO~S 

Fig. 1. Illustration of wave-packet scattering • 

Fig. 2. Illustration of the vectors £ and Eo . 
Fig. 3· Construstion of "classical" trajectory. 
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