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ERRATA 

Professor Jost, in trying to simplify the proof of Lemma 4, produced 
-·-

a counter example, which has been generalized by R. Seiler''' to all r< n ~ 2 

points. The proof of Lemma 4 is valid only for the remaining points n = 3, 4, 

or r, and hence the proof of Lemma 8 is also valid only for these points. 

However, general proofs of Lemma 8, based on Lemmas 2 and 7, have re-_,_ 

cently been given by D. Williams and P. Minkowski,''' and hence the theorems 

remain valid. 

'::: 
Peter Minkowski, David N. Williams, and Rudolf Seiler, "On Stapp's 

Theorem, 11 E. T. H. Preprint and Proceedings of the Symposium on the 

Lorentz Group, Seventh Annual Summer Inst. for Theoretical Physics, 1964, 

University of Colorado, Boulder, Colorado (to be published). 

Page 5, line 16 read: For any (E, r) there exists··· 

Page 25, line 8 read: K2b = A "K2a f K2a 

Page 51, line 4 read: vectors of K 0 . 

Page 51, line 18 read: er+1 (Ko), and re-orthogonalize er+2 (K0 )· · · 

e3(KO), following a standard procedure. 

Page 63, line 16 read: In case all of· • · 

Page 87. line 18 read: (e1 (Ko). e2(K0),w) 

Page 90, line 15 read: Re ri << 0 

Page 92, line 21, read: ;[Dr; (Ro) 

Page 92, line 22, read: :t:_ Dr' (Ko) 

Page 109, line 4 read: (1/2)vr in place of vr. 

Page 109, line 12 read: (1/2)v in place of v. 
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ABSTRACT 

An axiomatic approach to S-matrix theory used earlier is 

developed in more detail. Certain of the postulates are made weaker 

and are brought closer to physically verifiable propositions. The 

viewpoint adopted is that the axioms should, whenever possible, be 

assertions of specific, verifiable physical relationships rather 

than abstract general principles. This tends to eliminate ambiguities 

and superfluous entities, to cement theory to experiment, and to 

establish a secure logical framework. The paper is the first of a 

series and is devoted to detailed proofs of the fundamental consequences 

of the first few axioms. In particular, the unitarity of the S matrix 

is derived from a completeness property that incorporates the possibility 

of superselection rules, The relationship between spin and representations 

of the rotation group is derived from the defining experimental 

characteristics of spin. The necessary existence of an S matrix whose 

connected part M c 
is a Lorentz invariant function is derived from 

the assumed relativistic invariance of experimental correlations. A 

general theorem is proved that asserts, roughly, that a function that 

is (real) Lorentz invariant anywhere is complex Lorentz invariant 

everywhere in its domain of regularity. Finally it is shown that the 

analytic continuations of M from re.r;ular points in the physical c 
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region of a given process along paths generated by the complex Lorentz 

transformations lead to a function that is single valued in a neighbor

hood of all of these paths. Applications are discussed. The results 

derived constitute the preliminaries to a discussion of the analytic 

structure of the S matrix to be given in a subsequent paper. 
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I. INTRODUCTION 

1 Mandelstam's success in obtaining terms of the renormalized 

perturbation series by methods dealing purely with scattering amplitudes 

at physical mass values has generated renewed interest in Heisenberg•s2 

suggestion that the S matrix itself, without reference to field-theoretic 

i~eas, may provide an adequate basis for elementary-particle physics. 

This idea is the basis of much current theoretical work in strorig-

interaction physics due in part to serious practical difficulties 

encountered by field-theoretic methods, in part to the apparent suit-

ableness of S-matrix methods for dealing with the complications 

associated with bound states and resonances, and in part to a belief, 

held in some quarters, that the abstract requirements imposed by field 

theories may be too stringent to permit a consistent theory of inter-

acting particles. 

In an earlier paper3 it •ras shown that CPT invariance and the 

normal connection between spin and statistics follows from S-matrix 

postulates. The postulates given there are, however, stronger than 

necessary, and fall short of achieving certainS-matrix ideals. 

The present paper is the first of a series devoted to a detailed 

study of the axioms of S-matrix theory. The objective is to define a 

* Work done under the auspices of the U. S. Atomic Energy Co~~ission. 
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set of axioms restrictive enough to permit useful practical calculations, 

and minimal in the sense that no superfluous elements are introduced. 

Also the axioms are to conform to certain S-matrix ideals, that ~ust 

themselves be defined. In this first paper certain fundamental 

consequences of the first three axioms are derived. These results 

provide the basic structure of the theory. 

The first postulate asserts the probability interpretation 

and the superposition principle. In the formulation of these assumptions 

given in SI the possibility of superselection rules was not admitted, 

and the proof of unitarity given there depended on that fact. In·the 

following section, Section II, a reformulation of this postulate that 

allows for superselection rules is given. Unitarity is then proved on 

the basis of this weaker postulate. 

The second postulate specifies that the measurement of the 

momentum, the spin indices, and the particle type of all particles present 

constitutes a complete experiment. In SI it was specified that the spin 

indlces ;;e connected with a representation of the rotation group in tr.e 

"usual" way. Though this assumption is hardly open to question it runs 

counter to the general methodological principle that has been adopted 

here. This principle is that to promote certainty, general abstract 

assertions, with perhaps many far-reaching consequences, should be 

replaced, whenever possible, by assertions of specific physically observ

able relationships subject individually to direct experil)lental test; that 

the theory should, so far as possible, be built directly upon experimental 

fact, rather than being merely indirectly supported by these facts 

... 
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a posteriori. This principle leads sometimes to a reversal of the 

usual order of argumentation, with what is usually regarded as a . 

consequence being taken as the assumption~ There is also a slight 

sacrifice of economy since broad general assumptions are replaced by 

limited specific ones, but the resultant gain in certainty is deemed 

to outweight this small aesthetic loss. 

In confcrmity.to this principle the abstract assumption regarding 

the connection between spin inJ.:i.ce~ und rotations is replaced, in Section III, 

by the as.sumption that certain relationships between physical observables 

are satisfied. The usual connection is then derived from these. 

In Section IV the relationship bet'\-Teen momentum-energy and space

time is briefly discussed. 

In Section V the principle of macroscopic relativistic invariance 

is formulated as a relationship bet'\-Teen experimental results. From this 

relationship the necessary existence of a (Lorentz) invariant scattering 

matrix is deduced. In SI an extra ad hoc postulate was used to eliminate 

certain unwanted phase factors; here this result is achieved without that 

assumption. 

In Section VI some properties of (Lorentz) invariant analytic 

functions are derived. A principal resu1t is a theorem (Theorem 3) that 

asserts that if a function is invariant under elements of the connected 

component of the real Lorentz group over a real domain and is analytic 

at the points of this domain, then the complete analytic extension of the 

function is defined over a set of sheets each of which maps onto itself 

under any element of the connected component of the complex Lorentz group, 



-4-

and the function defined (single valuedly) over each sheet is invariant 

under elements of this latter group. Moreover, if the real domain 

satisfies a certain condition that is always satisfied by a physical 

region, then this entire domain can be contained in a single sheet. This 

theorem is somewhat akin to Lemma 1 in the paper of Hall and Wightman. 4 

In conjunction with a result of Hepp5 it allows one to prove the existence 

of a local decomposition of an invariant function into a sum of standard 

polynomial invariants times holomorphic functions of scalar invariants, 

over domains of regularity bounded by cuts defined by equations involving 

only scalar invariants. This is a partial extension of the Hall-Wightman 

theorem to domains of this type, which is the type that will later arise 

from the postulate of maximal analyticity. 

A second application of the theorem is to a slight weakening of 

the assumptions needed for the S-matrix proof of CPT invariance. In SI 

the-existence of a physical sheet bounded by cuts defined by equations in-

volving only scalar invariants was postulated. This assumption would 

be a consequence of maximal analyticity but is of course much weaker, since 

the boundary of the sheet is allowed to be arbitrary, subject only to the 

condition that it be determined by equations involving only scalars. This 

assumption, which disposes of certain problems regarding single-valuedness, 

can be weakened,for the theorem shows that the analytic continuations 

from various points in the physical region of a given process along paths 

generated by various complex Lorentz transformations lead to a function 

that is single valued in the neighborhood of all of these paths. 

,. 
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II. THE BASIC QUANTUM PRINCIPLES AND UNITARITY 
•-' 

Quantum theory deals with correlations between the probabilities 

of _possible results of experiments. A class of experiments whose members 

are called complete experiments is characterized in the following way. 
• CJ c . 

Let •.. Vr (E) 

result ( E, r) 

be the probab.ili ty that a complete experiment.· E · has the 

in circumstance c • .The ·:(fi.c(E) are asserted to have 

the following properties: 

Al. 

A2. 

~c(E) ~ 0 for all c and r , 

[ 6?,c(E) = 1 for all c , 
r r 

A3. ( cR,c(E) = 1) implies, for all (E1, u) and (E2, v), 

and 

( 2.1) 

( 2.2) 

( 2. 3) 

( 2.4) 

where the amplitudes are a set of complex numbe~that are linearly related: 

A4. For any (E, r) that exists a .c such that 

Definition: Results (E1, u) and (E1, t) belong to different 

superselection classes if and only if 

for all (E 2' v) • 

( 2.5) 

( 2.6) 
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~ If for some E1 there is a set of numbers Vu{E1) such that 

{2.7) 

whenever {E1,u) and {E1,t) belong to different superselection 

classes, and such that 

{2.8) 

then there is some {E
2

, v) such that 

{2.9) 

where ~ means equal to within a phase factor that is independent 

of u • 

The principles stated above are an extraction of elements of the 

usual quantum theory. They do not exhaust the usual principles, 

since , among other things, commutation relations and the quantum 

of action are not mentioned. They are expressed directly in terms of 

correlations between observable quantities without the introduction of 

such auxiliary notions as operators and states of a physical system. 

In ~ the constraint {2.7) is required for consistency with 

{2.6). Condition {2.8) is required for consistency with A2, A3 1and A4; 

the existence of {E2, v) together with A4 allows the condition for A3 

... ..o be satisfied w1 th E2 the instance of E , and v the instance of r • 

., 

...... 
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The consequence in A3 inserted into A2 with (E1, u) the instance of 

(E, r) gives 

( 2.10) 

where the sum over v has been eliminated by combining Al and A2 

with the condition ~v(E2 ) = 1 • Thus if Vu(E1) fails to satisfy 

(2.8) there can be no (E2, v) such that (2.9) is valid. 

The remainder.of this section is devoted to the derivation of the 

unitarity property of the transformaMons S(E1, E2). In SI the existence 

of an S(E1, E2) fulfil~ing the conditions in Eqs. (2.1) through (2.5) for 

any possible au(E1) [or~alternatively) av(E2 )] was assumed, and unitarity 

followed immediately. 

Given any (E2, v) an argument essentially the same as the one 

just given leads to the consequence 

(2.11) 

This is part of the unitarity relation. Suppose x and y label 

different results of E2 that do not belong to different superselection 

classes. Let 

where 

= a ovx + b 0 
vy (2.12) 

o. . is one for i = j and is zero otherwise, and where 
~J 

(2.13) 
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The conditions of~ are then satisfied by Vv(E2), snd there is an 
I 

(E2, w) such that 

a 5 vx + b 5 vy 

By the same argument used to get (2.11) one obtains now 

(2.14) 

From the requirement in A3 that the a(E2, E, r) be indepen~ent of E1 

one obtains the chain rule. 

(2.16) 

This substituted into (2.15) gives, using (2.14), 

(2.17) 

Expanding and introducing (2.11) and (2.13) one obtains 

( 2.18) 

Since a and b are arbitrary, subject to (2.13), one obtains 

(2.19) 

for any x and y differing from each other but not belonging to 
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different superselection classes. If x and y do belong to different 

super super selection classes then (2.19). is a consequence of (2.6). 

Thus one obtains the unitarity relationship 

or in matrix notation" 

8 ' wv 
(2.20) 

(2.21) 

Condition A3 guarantees the existence of both a right and left inverse: 

(2.22) 

This, together with (2.21), implies the second unitarity relation 

8 uw (2.23) 
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III. PARTICLE OBSERVABLES 

~· There are complete experiments the possible results of which 

may be labeled by sets of variables of the form 

K: ( 3-1) 

where 

.i < { 1, 2, ( 3··2) 

( 3-3) 

k 2 
i -

and 

( 3-5) 

The finite bound NK in (3.2) will be called the number of particles 

associated with the particular result K • The R3 in (3.3) is the 

real three-dimensional continuum. The numbers ~. and S. are called 
~ ~ 

the mass and sp.in of particle i , respectively, and are functions of 

ti , the particle type. The four-vector k. will be called the 
~ 

{mathematical) momentum-energy vector of the !th particle, and the 

indices mi will be called the spin indices of particle i • 

A "sum" over a continuum parameter }Si is to be interpreted as 

an integration, and the corresponding parts of 5uv interpreted as a 

Dirac delta function defined so that the relation 

( 3.6) 
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is maintained. An arbi t_rary nonvanishing weight factor can be introduced 

in the integration and compensated by a .redefinition of- ·s • It will be 

advantageous to use a covariant momentum space element. Specifically, 

a "sum" ov_,~r momentum vectors k. will mean an integration over the 
""l. 

covariant momentum space elements 

! d
3 

k ) I -i 

7f\ 3 
i (:?lt) c 

( 3-7) 

Definition:. The set T 

labeled by K := { k., m., 

~{ t 1 } will be called the type of result 

t \ 
i l. l. 

J 

B2 • Results of the same type do not belong to different superselection 

B3. 

classes. 

The physical interpretation of the spin indices m. 
l. 

is 

associated with a direction r s. , the spin direction of particle i, 
"'l. 

which is a three-dimensional space vector in a rest frame of 
- ' 

particle i • 

Definition: The experiments of the type specified in Bl will be labeled 

Ea(s
13

), where s
13 

specifies th~ set of spin directions 

associated with the m., and a- specifies other variables. 
' l. 

[There should be no confusion between this argument S. and the transformation 

8uw(El' E2~J .. 
" 

It is convenient to adopt now the notation 

~( 3.8) 

For experiments differing only in the choice of spin axes the same subscript 

will be used. 
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One particular, but arbitrary, choice of the (s1, s2) will be taken 

as a standard and the labels K1 (s1) and K2(s2) shortened to· K
1 

and 

K2 for it. Then one may write 

S(K1 (S1); K2(s2)) = Jfs(K1 (51); rS_) S(K~; K;) S(K;; K2(s2)) , 

( ).9) 

by virtue of the chain rule (2.16). The integrations are over the repeated 
I I 

continuum variables of K1 and K2 • Sums over repeated spin indices 

are always to be understood. 

~· Transformations associated with changes only of the spin directions 
Specifically, , 

act completely within the spin spaces,JS(K
1
(s1); K1) is zero unless 

I I I 

ki = ki nnd ti- ti, and similarly for S(K2; K2(s2)). 

Condition B4 allows (3.9) to be reexpressed in the for.m 

( ).10) 

where an operator interpretation is to be made. That is, for a spin-space 

operator U(S) , 

U(S) F(K) ~ U(S) F(K0, M, T) 

( ).11) 

Here K _ { k
1

, m
1

, \} has been split into three sets K0 , M 

and T , in the obvious manner. The matrices, U(S, K0, T) are, 

according to the result proved in Section II, together with B4, unitary 

matrices in the spin space. 
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In terms of the U just introduced one may define spin projection 

operators: 

,·' ·,- '," 

K -1( K P (S) = U . S:,_ K
0

; T)D U(S, K0, T) ·i ( 3.12) 

where DK is a diagonal matrix in the spin space specified by (K0, T), 

having unity in the position specified by the M part of K and zeros 

elsewhere. In terms of these projection operators one may write 

( 3.13) 

where 

K = s = T' = 
0 

There will be no confusion if this is abbreviated by 

* S (K) P(S) S(K) , ( 3.13a) 

with the suppressed K0 and T0 of P(S) being specified by the K 

of S(K) , and the suppressed superscript M of P(S) being specified 

by the (M1, M2) of the left-hand side. 

The quantities occurring in (3.13) are special cases of 

quantities 
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( 3.14) 
. ,. . '· 

·,"• ., •J., 1 4,. 

~·-~'i.u~ti~~: (!; (E1~ ·_>~i . ~2 , w) _ will be called the correlation between 

(E
1

/ u) and (E2, w ~. :~9ondi tions Al, ~~ and A3 imply that 

(! ~E1, u; E
2

, w)) , 

( 3.15) 

where the arrow represents implication. This relationship provides the 

experimental significance of correlations. The special case (3.13) is 

* S (K) P(S) S(K) ( 3.16) 

One may consider correlations between experiments that differ 

1 ' 
only in the choice of the orientations of spin vectors. Let (K

2
(s

2
)) 

tl 1t 

and . (K2( s
2

)) label two. possible results of the same type T of two 

experiments related in this way. They are related to the set specified 

by · K
2 

by the trans~ormations S(K
2

; 

respectively. The correlation between 

11 II 

1 1 Tl II 

K2(s2)) and S(K2; K2 (82 )), 
1 ' " 11 

(K2(s
2

)) and (K
2
(s

2 
)) is ~hen 

11 !I 2 
(f!_ (K~(s~); 

1 1 

K2 (S2 )) = I s(K
2 

(s
2
); K2 ( s2 ) ) I 

IJC * 1 1 " " 2 
= S (K

2
; K

2
(s

2
)) S(K

2
; K2 (S2 )) I (3.17) 

K2 

where: the chain rule (2.16) and unitarity have been used. (The subscripts 

.on the variables of {] . and S may be considered as part of the 

identification of the·se functions.) 
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Let a'(M'). be a set of complex numbers satisfYing 

* a' (M')a'(M') L Ia' (M') 12 
= 1 . (3.18) 

M' 

According to A5 there is an experiment and associated result, which will 

be labeled by 

( 3-19) 

I 

(A summation on M2 is implied on the right.~ Condition ( 2.8) of A5 
I I 

is satisfied because of (3.18) and the unitarity of S(K2; K2{s2)) 1 and 

(2.7) is satisfiedby virtue of B2 and B4. 

In the sa.'T.e wuy one IrU;j.Y introduce tbe experiment and associated 
II II 

result labeled by A2 (s2 ) • The correlation function is 

Let· A
2
(s

2
) label a possible 

Consider a set A = /A. ·, 
l. ~ _; 

result of the kind just constructed. 

of independent rotatio~s in.the. 

rest frames of the particles specified by A2(s2). There exists 

a corresponding "_rotated" result A'
2
(s2) of the rotated experiment. 

Correlations are invariant under this set of rotations: 

(3.21) 
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Condition B5 expresses a purely kinematical relationship, not a 

dynamical one; the correlations are between experiments differing only 

by rotations of spin directions, not by, say, temporal displacements or 

in any other way. The condition is a particular case (hence i·reaker 

requirement) of the c;eneral property th3.t kinematic correlations between 

the spin states of a particle are invariant under rotations in the 

particle rest frame. 

With the introduction of the notation 

I I 

S(K2; A2(S2)) = WM ') ( 3.22a) 

II II 

S(K2; A2 (82 )) = ¢M ' 
( 3.22b) 

-· _, 
S(K2; A2(s2)) = WM ~ (3.22c) 

and 
II II 

¢M , S(K
2

; A2 (82 ) ) = (3.22d) 

condition B5 takes the form 

2 2 
IC-?t, ¢)I ::: I(*, ¢)I . 

' 
( 3.23) 

where the bracket represents the complex inner product. 

Condition !35, as expressed in (3.23), is just in the form required 

for an application of the argument gl.ven in the-appendix to Cnapter 20 of 

Wigner 1 s book. 6 That is, for all vectors "IV and ¢ in a finite-

dimensional space there are corresponding vectors "IV and ¢ , and 

(3.23) is valid. From Wigner 1 s argument one concludes that it is 
· jhat 

possible to redefine the phases of the ~ and ¢ such they are obtained 

from "IV and ¢ by a linear unitarity transformation. That is> 

• 
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(3.24) 

where u2(A) is a linear unitary operator in the spin space. The 

linearity means that u2(A) is independent of a' 
I 

and of s
2 

• The 

linearity and unitarity ensure that the possible redefinition of phases 

gives a function S still satisfying the basic quantum principles. 

From the linearity of U(A) one concludes that the U(A) are 

elements of a representation7 of the product-of-rotation group; 

( 3-25) 

. I I 

provided S(K2; A2(s2)) is different from zero for each value of M•, 
I 

for some value of a' and s2 . This condition is, in fact, satisfied; 
I 

one may take s
2 

to be the particular one chosen above Eq. (3.9), and 

~(M1 ) to be ~' • 
I I 

The development just carried through for S(K2 (K2);S2) can be 
I I 

done also for S(K1 (S~; K1) • From (3.24) and the analogous equation 
I I 

for S(K1 (s1); K1), one obtains for the projection operators defined in 

(3.12) the relation 

= (3.26) 

where the U(A) are unitarity, linear operators (i.e., independent of 

S and M). 

Because A represents a product of independent rotations the 

U(A) must be a direct product of representations of the rotation group: 

U(A) = ff Ui (A1 )". 
i 
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B6. The representations U .(A.) 
~ ~ 

are irreducible representations 

whose dimensions are independent of k .• 
~ 

By virtue of the factorization property of U(A) the projection 

operator PK(s) defined in (3.12) also factorizes: 

From B6 one easily shows that Pm(s.r) has the form 
"'~ 

::: 

2s. 
\"'~ 
L 
n=O 

>-rhere the coefficients a are determined by the equations mn 

2s. 
~ 

\""' a (m,)n = 
L. mn 
n=O 

0 1 mm 

for lm' I ~ si , and where 

r 
s ) ::: 
-i· 

1 r 
+ - i E cr. ·s. ) 

2 "'l "''~ 

( 3. 27) 

( 3. 29) 

(3.30) 

is the operator that gives the rotation by the infinitesimal ane;le E:: 

about the axis r · ~h · of' th 'th t· J !i > ln ~ e sp~n space e ! par ·1c .e. 'l'he label 

m is chosen to conform to conunon usuac,;e. (The symbol ~ £ 1-ras used 

rather than the more usual ~ to avoid. a still further prolife:::·at:i.on 

of symbols S, and to emphasize the connection Pauli matrices.) 
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The conclusion is that,· as a consequence of the assumptions 

made so far, the usual connection between spin projection operators 

and rotations in the particle rest frames must hold; that this connection 

is not only sufficient to give the usual experimental relationships but 

is also a necessary consequence of certain of these relationships. By 
t·· ' ,-

the "usual" connection is meant the relations given in (3.27) through 

(3.)0). 

There is no implication in the foregoing that one must use the 

same representation (i.e., the same matrices a. ) 
-~ 

for spin spaces 

associated with different values of ki • And indeed, since different 

values of k. 
~ 

give distinct rest frames the analysis for each k. 
~ 

is 

separate also in a physical sense. Of course one may change at will 

between representations that are unitary equivalent. This just induces 

a redefinition of the transformation function S(K) occurring in (3.16), 

since the physical correlations are fixed. Stated differently, it is 

by specifying the representations of the spin operators that a corresponding 

arbitrariness is removed from S(K). 

It is convenient to always use the same matrices for the 0. ' 
-~ 

for all values of the k. . That is, the unitary 
~ 

operator u_2( A) in 

(3.24) will be taken to be independent of K2 , and similarly for u1(A). 

Accordingly, the operator U(A) in (3.26) will be independent of K • 

As all irreducible (2S.+l)-dimensional represe!ltations of the rotation 
·. ~ . .. ; . 

group are unitary equivalent, the adoption of this convention involves 

no loss of generality. (Conjugate and transpose representations are 

included if the sense of r 
~i is left open.) 
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The vectors used in the foregoing are three-component space 

vectors. They define the physical spin directions in a rest. frame 

of the particle. Experiments for measuring spin characteristics can 

always be considered to measure rest-frame quantities.8 

Of course, there are many rest frames of a particle, which differ 
·,.'', 

in their orientation, and the components of ~ir will depend on which 

frame is chosen. Giv~n a particular rest frame and the components in 

this. .frame the components in any other frame are determined by Lorentz 

tranaformations. In • general frame the spin vector will become a four-
·' 

vector, which will be denoted by si • Since it is only the space parts 

in. a rest frame that enter into the characterization of the experimental 

results the time part in such a frame is irrelevant and can be set to 

ze:ro. Then the four vectors si will satisfy the relations 

-1 and = 0 . (3.31) 

The oonvenient way to specify the {.~/} is to give the { si ~ , 

for these latter can all be given in a single· general coordinate sys tern, 

the sam~ one used for the If the r s. 
""L 

themselves are given then 

one must also specify the various particular rest frames relative to 

which each has physical significance. Adopting this convention we shall 

consider that the argument of E(S) is a set S = {si} of four-vectors 

satisfying the condit1pns (:;.:;1) and specifying the spin directions 

associated with E(S) • The s1 and ki are to be the values of the 

spin-four vector and the momentum-energy four-vector in some single 

coordinate system. For convenience the connection between the signs of 

the mathematical vectors si and k1 and the corresponding physical 

vectors will, however, ge left open, for the moment. 
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IV. SPACE-TIME VARIABLES AND CONSERVATION lAWS 

Space-time variables are related to momentum-energy variables 

by a Fourier transformation, in units where Planck's constant is 21f • 

This relationship, conjectured by DeBroglie 1 is borne out by diffraction 

experiments and gives the mathematical basis for the uncertainty principle. 

Using this connection one can deduce the conservation law of momentum

energy from translational invariance. Considerations relating to space-time 

variables will be discussed in detail in the following paper. For the 

present it will merely be remarked that the functions S(K) are subject 

to the conservation-law constraint 

(4.1) 

Here, for simplicity, the mathematical momentum-energy vectors for one of 

the two experiments, say E
2 

, have been taken to be the negativesof the 

physical momentum-energy vectors. 
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V. MACROSCOPIC BEIATIVISTIC INVARIANCE 

Definition: L will denote the real proper orthochronous homogeneous 

Lorentz 

Lorentz 

group (i.e., the connected component of the real homogeneous 

group, often denoted by L 1 ) . 
+ 

Cl For every experimental result A (or B), and any A € L, there 

is an associated transformed result AA (or AB) of the transformed 

experiments that is specified by vectors (perhaps tensors) related 

to those specifying the original result by the transformation A • 

Correlations are unchanged if each result is replaced by the 

associated transformed result: 

C (A, B) = (_ (AA, AB) • (5.1) 

It will be sufficient to use three more specific assumptions, which can 

be regarded as particular instances of Cl. The first of these is 

ClA, For any A € L 

(5.2) 

where 

AK 
r . \} = \ Ak., m., 

~ ~ 

and 
(5.3) 

AS { Asi} (5.4) 

Using (3.16) one may write (5.2) in the alternative form 

* * s· (K) P(S) S(K) = S (AK) P(AS) S(AK) , (5.5) 

where the suppressed M's on P(S) and P(AS) are the same. Because 

of the ~ir appearing in (3.28) the relationship between P(S) and 
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P(AS) is relatively complicated; it depends on the particular choices 

of the various rest frames. However, the operator (3.28) is just the 

value in the rest frame of an invariant spinor function (sec Appendix A) 

Pm(k., s.) = z a P(n, ki, si) 
~ ~ mn n 

(5.6) 

I 
that satisfies, for all /1.. E L ' 

m I I I 

Pm(k., p (A. k.) /1.. s.) = A.s si) 
~ ~ ~ 

( 5.7) 

I I 

In particular, if /1.. k. 
~ 

and /1.. s. are taken to be the rest-frame 
~ 

values of ki and si , the left-hand side of (5.7) becomes just the 

Pm(s.r) of (3.28). Substituting (5.7) into (5.5) one obtains the 
-~ 

alternative form 

* * N (K) P(K, S) N(K) = N (AK) P(AK, AS) N(AK) , (5.8) 

where P(K, S) is obtained from P(S) by replacing each projection 

by its covariant generalization Pm(k., s.), and 
~ ~ 

N(K) is obtained from S(K) by incorporating into it the various 
I 

spinor Lorentz transformations /I..S of (5.7). This prQcedure was 

described briefly in SIA and in more detail in SIB. 

The new covariant operators P(K, S) are invariant spinor 

functions: 

P(JI..K, AS) = /I..S P(K, S) ( 5 ·9) 

The result of substituting (5.9) into the right-hand side of (5.8)_can 

be expressed in the form 
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* N (K) P(K, S) N(K) [AS -l N(AK) J * P(K, S) [AS -l N(J\K) J 
(5.10) 

provided the spin indices of the N functions are assigned a spinor 

index type fixed by specifying that the contractions in (5.8) connect 

always upper and lower indices of the same dottedness. The transformation 

properties of the P(K, S) are, of course, purely algebraic conse~uences 

of their definitions. On the other hand, the transformation properties 

of an N(K) cannot be obtained simply by examination of its specific 

form,. since this is not given. One is, of course, free to assign any 

arbitrary transformation rule to any spin index of N • The important 

~uestion is whether, for some particular assignment, the function N(K) 

will be aninvariant spinor function. 

The continuum of operators PK(S) for various values of 
( ' 

S = · < s i ~ span the finite 
l J 

( i/ ( 2S. + 1)) -dimensional spin space 
i ~ 

specified by K • (See Appendix A.) Thus from (5.10) one. obtains 

immediately 

* * I II 
N (K ) N(K ) = [AS -l N(AK' )] [As-l N(AK")J, (5.11) 

I II I II II 

where ki = ki and ti = ti , but mi and mi can differ. From 

this one obtains 

N(K) = Ag -l N(AK) exp [i o:(A, K~ , (5.12) 

where o:(A, K) is real and independent of the mi indices of K • 

The nondependence of o:(A, K) on the indices mi deduced above 

is, in effect, a consequence of the observability implied by B2 and.A5 

of the relative phases of spin amplitudes. According to B2 and A5 
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combinations of amplitudes labeled by different values of ki are, in 

effect, also observables. The nondependence of the a(A, K) on the 

k. 's can be obtained by an examination of these observables, as will 
~ . 

now be shown. 

let' (K2a(s2a)) and (K2b(s2b)) specify experiments and 

associated possible results of the same type T • And suppose K2a and 
II 

K2b are related by a real rotation A * I 

it 

K2b - A K2a f K2a (5.13) 

Let a and b be two complex numbers satisfying 

( 5.14) 

Then according to A5 there exists an experiment and an associated possible 

result, which will be labeled by B, such that 

(5.15) 

Condition (2.8) of A5 is satisfied by virtue of (5.13), B4, (5.14), and 

the unitarity of S(K2; K~(S~)) . Condition (2.7) is satisfied by virtue 

of B4 and B2. By means of the chain rule, (2.16), one canals~ obtain 

(5.16) 

If (K1 (s1
)) is abbreviated by A then the correlation function 

{!(A, B) is 



~(A, B) = 

= lal2 
N*(K ) P(K , S ) N(K ) a a a a 

where Ka =. (K1, K2a) , etc. The operator 

natural generalization of the operator P(Ka' 

~below (5.8). It has the property 

= 

which is the generalization of (5.9). 

<5.17) 

P(Ka' Sa; Kb' Sb) is the 

S ) _ P(K , S ; K , S ) 
a a a a a 

(5.18) 

According to Cl correlations are invariant under the replacement 

of experimental results by associated transformed results. Because of 

this the transformation B ~ AB can, if the phase factors are fixed 

appropriate~y, be represented by a line~ transformation. The proof of 

this, which is similar to one given earlier, will be deferred until the 

end of this section. This linearity, which means that the transformation 

is independent of the coefficients a and b , and does not change them, 

allows one to take as the second instance of Cl the statement 

ClB, For all A E L and all a and b satisfying ( 5.14) the right-

hand side of (5.17) is numerically unchanged by the substitution 
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( 5.19) 

The restriction (5 •. 14) is, of course, no actual limitation, due to a 

scaling invariance. 

Experimental tests of relativistic invariance always involve 

interference between amplitudes of at least slightly differing momenta, 

and hence ClB, though morerestrictive than .91!, is a special case of 

the type of relationship that is verified in practical tests of relativistic 

invariance. 

The invariance of the first two terms on the right of (5.17) 

follows from (5.8). * Consideration of the cases a b = 1/2 and i/2 

give the separate invariance of the last two terms of (5.17). From the 

fact that the continuum of operators P(Ka' Kb; Sa' Sb) span the spin 

space (see Appendix~) one obtains, using (4.18), 

* 
(5.20) 

It follows from this trJ.B.t the phase factor exp[i a(A, K~ in (5.12) is 

the srurefor all sets of K = (K1, K2) for which the K
2 

are related 

by real rotations in accordance with (5.13)~ Similarly, one obtains the 

analogous result for the arguments K1 • 

however, undefined. 

If N vanishes the phase is, 

Combining the above result with (5.12) one obtains 

N(K) = AS-l N(AK) exp f a(A, K)l 

= ~-l N(AK) exp [i a(A, K' )] 

( 5. 21) 
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provided K' may be carried to K = A1K1 by a sequence of rotations 

on K1 and K2 individually with the N(K') nonzero at the various 

points on the sequence of values of K' • 

Equation (5.21) may be ~sed to establish a group property 

for ex:r;[ i a( A, K) ] . Define K' so that A 1 K1 = K, with A 1 e: ~ , 

the rotation subgroup of L . Then using {5.21), one obtains 

N(A 1 K1
) 

= A
8

' N(K 1
) exp[-i a;( A 1 , K' )] • (5.22) 

The last two lines may be rewritten 

N(K') exr{-i et(A 1
, K')] exp(-i et(A, K' )] 

-1 
= (AA')s N(AA'K 1

) 

" 1 It = A - . N(A K1 ) s 

= N(K') exp[-i a(A", K')] ( 5 .23) 

Comparison of the first and last lines gives 

exp[-i et(A 1
, K')]exp[-i a(A, K')] = exr[-i a((AA'), K')], 

( 5. 24) 

provided the conditions for the validity of (5.21) are satisfied. 

Equation. (5.24) is the group property. But the unique one-dimensional 

representation of the rotation group is the identity representation. 
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Hence if the conditions stated beneath ( 5 .21) a·re satisfied th~n 

exp( -i a(/\, K)] = 1 , (5.25) 

and the N(K) are invariant spinor functions: 

N(K) 
-1 

= 1\.S N( 1\.K) • 

It is, in fact, sufficient to establish the group property over 
'. . . 

a finite but arbitrarily small neighborhood of the identity,since the 

entire rotation group can then be built up by multiplication. Thus 

a sufficient condition for the vaUd:i.ty of (5.26) is that 

N(/\' 1 Kl, A' 
2 K2) t 0 (5.27a) 

for all 

I\' € N 1 r (5.27b) 

and 
I 

A2 € N J r· (5.27c) 

where N is a neighborhood of the identity iri L r r Hence continuity 

of jN(K) I at K in the manifold generated by the individual rotations 

A' 
1 

is sufficient to guarantee (5.26). Indeed, continuity of 

IN( /\.1 K) I in this manifold for any /\.1 £ L is ·sufficient~ since 'the 

result (5.26) with K replaced by /\1K implies (5.26) itself, byvirtue 

of' the group property of the J\ IS j i.e.' 

N(/\.1 K) -1 (5.28) = 1\.S N(A /\.1 K) 

I .. 1 
with A set to I\ /\.1 gives 
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= 

. -1 
= A A' N(A' K) 1 

1S s 

hence 

-1 ' 
A~ . N(A K) = N(K) , (5.30) 

where the special case ' A = 1 has been used in the last-step. 

The conclusion is, then, that N(K) is an invariant spinor 

function, 

N(K) = As-l N(A K) (5.31) 

for all points K such that for some point A1K , A1 € L , 

IN(A1 K)l is continuous in the manifold generated by independent 

rotations of A
1 

K
1 

and A1 K2 • Take A1 to be the transformation to 

the center-of-mass frame. Then these rotations will keep the arguments 

in the manifold of definition defined by the conservation-law CQnstraint. 

Thus N(K) is an invariant spinor function wherever it is continuous 

within its manifold of definition. 

Finally, we return to the deferred proof that the transformation 

B2 - AB2 can, by appropriate choice of phases, be represented by a 
f II 

linear transformation. Let B2 and B2 label two experiments and 

associated possible results correspondinG to linear combinations of 

amplitudes of the type occurring in (5.15). The (K0)2a' (K0)2b' and T2 

are to be the same for all contributions, but the a and b and the spin 

variables can differ. The correlation function (!_ (B', B") is 

= (5.32) 
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.The final special case of Cl is then 

ClC .. 
., 

For experimental results B2 of the type specified 

above, and for any A E L , 

") AB2 (5.33) 

This condition is kinematic, like B5, rather than dynamic, like ~' since 

. I 
the experiments B2 do not differ by temporal displacements. 

By virtue of the covariant form of the momentum space element, 

(5.33) can be written as 

= (5.34) 

The.integrands appearing in (5.34) contribute only for 

(K0 )2 = (K0 )2a or (K0 )2b • The equation is thus again of the form 

(3.23), the spin indices now covering their finite range twice, once for 

K2a and once for K2b • The same argument as before (see (3.23)] shows 

that the transformation B2 ~ AB2 must be represented by a linear 

transformation, aside from certain phase factors that drop out of an 

expression like (5.17). This linearity ensures that the general physical 

requirement Cl must, for the special physical case covered in ClB
1
be 

expressed by the algebraic relationship asserted in ~· 

The conclusion, then, is that if physical phenomena satisfy the 

physical relationships asserted by postulates A, B .. and C then there 
• J 

necessarily exist functions N(K) related to physical correlations in 



the manner specified in Section III, satisfying unitarity relations that 

ure easily derived, and satisfying the invariance Eq. ( 5. 31), for A € L, 

wherever they are analytic in their manifolds of definition. From 

stronger assumptions these conclusions would follow more easilyj the 

objective was to use the weakest assumptions. 

The subtraction from N(K) of possible parts defined over 

submanifolds restricted by conservation laws involving subsets of particles 

leaves the so-culled connected part M (K). This separation will be c 

discussed in the following paper. 
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VI. ANALYTICITY AND LORENTZ INVARIANCE 

In this section some consequences of assuming that M(K) is 

regular analytic at some physical point 1-rill be examined. The main 

result to ·be established is that if an M function is regular at some 

physical point then the complete analytic extension of the function is 

defined over a multisheeted manifold each sheet of which maps onto itself 

under any proper complex Lorentz transformation. Furthermore, the function 

defined (single valuedly) and regular over any sheet is invariant under 

proper complex Lorentz transformations. Finally, if M is regular at 

each point of some real domain containing only physical points then the 

sheets described above can be chosen so that all the points of this 

domain lie in a single sheet. These results have some important 

consequences, which will be mentioned at the end of the section. 

The initial considerations will refer to a function F(K) whose 

domain of definition is not restricted by the mass shell and conservation-

law constraints. Also the type variables T = { t. } 
~ 

will be considered 

fixed. Thus the argument of F(K) will be a set of the type intra-

diced in section III, but with the mass constraints and type variables 

removed. Furthermore the argument {K) will be distinguished from the 

point K ('Hi thout brackets). The point K will mean simply the set 

of momentum-energy vectors {k. } • 
~ 

But a function at a point K ·will 

mean the set of functions whose momentum-energy variables are the point 

K ; all spin indices are allowed. 
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Let the following definitions be made. 

Definition: L vill denote the real proper mthochranous homogeneous 

Lorentz group. It is continuously connected to the identity. 

_p 
Definition: ~ will denote the complex proper homogeneous Lorentz 

group. It is continuously connected to the identity. 

Definition: A will represent a Lorentz transformation and 

(A K) = [A ki , mi ~ • 
(The_ t. are temporarily either suppressed or eliminate~) 

~ 

( 6.1) 

Definition: The point K represents the set of momentum-energy vectors 

t ki ~ , but a function at a point means the set of functions having 

momentum-energy variables specified by the point K ; all. spin 

indices are allowed. 

Definition: Points ·~· and K2 related by ~ = A K2 will be said 

to be connected by A • 

Definition: The set of points connected to K by some A € J:(or L ) 

will be denoted by i..K (or L K ) • 

Definition: The set of points connected to some element of the set 

D by some A € i. (or L ) will be denoted by fn (or '[.. D ) • 

Definition: A point 

are real. 

K is real if and only if the four vectors ( k ( 
t i ) 
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Definition: A real set is a set of real points. 

Definition: A function F(K) is a (single-valued) mapping to the 

complex numbers. 

Definition: The spin indices of (K) will be presumeP. to have some 

spinor index-type label, and As F(K) will represent the result 

of the action upon F(K) of the corresponding spinor transformations 

associated with A , as discussed in Appendix A. 

Lemma 1. If F(K) is defined (single valuedly) over a real set D 
. «ll 

and satisfies for al~ A e ~ and/\ K such that K and A K 

are elements of D the invariance condition 

F(K) 
-1 

= A F(A · K) s ( 6.2) 

then (6.2) ~ith A-l KeD and A e ~ defines a (single-valued) 

function over ot D , provided any two points of D connected by 

a real element of ,_;t are also connected by an element of L . 

Proof: The prescription will uniquely define F(K) at K' of· ot'D 

if for any two poirits K1 and. K2 ·. of D for which 

K' = A1 K1 = A2 K2 ~· with A1 and A2 e .,t , one has 

( 6. 3) 

gives 

( 6. 4) 



provided A '= (A -l A ) € L • 
2 1 Hence it is sufficient to show that 

A is an element of L • If the rank r(Kl) of the Gram determinant 

at the point Kl is four, or eq_ui valently 
;4. 

if there 

are four linearly independent vectors among the vectors of K1 , then 

the rank is also four at K2 , since inner products are unchanged, 

and the same four vectors are also linearly independent at K2 . In 

this case the linear transformation A is uniq_ue. Since Kl and 
{.,> K2 are real, A is a real element of )_ • By hypothesis it is then, 

by virtue of its uniq_ueness, an element of L • This completes the 

proof for the case 

A is still uniq_ue 

r(Kl) = 4 
4 

For r(Kl) = 3 the transformation 

and the same argument holds. 

If r(Kl) < 3 then the transformation A is not always 

uniq_uely defined by the eq_uation K2 = A ~ and it may not be real, 

as req_uired for the above argument. There are several cases. If 

the rank r(Kl) is eq_ual to n(Kl) , the number of linearly independent 

vectors of Kl , then the space separates into a manifold M(Kl) of 

dimension n(K1 ) = r(Kl) spanned by the set Kl and the orthogonal 

manifold M~ (Kl) • One can construct a set of real orthogonal basis 

vectors eP(Kl), each of length plus or minus one, 

such that the first· n span m(Kl) and the last (4·- n) span 
..1. 

M (Kl) • To construct such a basis one first takes. n(Kl) linearly 

independent real vectors from the set Kl • This set is augmented 

by ( 4 - n(Kl )) real vectors to give a complete set of rea.l linearly 

independent vectors. Because tre rank r(Kl) eq_uals n(JS_) the linear 

equations arising in the construction of ep (~) are soluble.. The 
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details have been given by Hall and Wightman. 4 Since the original 

vecto~s are, for us, real the coefficients in the linear equations are 
'I 

real. and hence the solutions can be taken to be real. A similar real 

basis, ep(K2), can be constructed for K2 

Our interest is in the various Lorentz transformations A' 

satisfying K2= A' IS_, the IS. and IS being the fixed points 

D connected by 
~ 

A e: <1--; K2 =A IS. . The transformations 

A' can be represented by the matrices A" 
Pcr defined_by 

A' ep(K_. ) -= ecr(K_) A~ - e (K ) Gcr-r(K_) A" 
H -"1. -"2 u,.- ::: cr 2 -"2 T p , 

·where a 5Uillull:l.Cion convention is u:;;ed. The-labels. P, cr J and -r 

specify the basis vectors, not components, and 

For either value of j three of the vectors ecr(K.) have 
J 

10 length minus one and the other has length plus one. ·That all 

of 

(6.5) 

(6.6) 

four have length minus one is impossible because any vector v can be 

expanded as 

(6.7) 

with 

(6.8) 

where I..L labels the component of the vector. Then 



- v GIJ.V v 
1-l 1-l 

= v (K.) GP0 (K.) v (K.) 
P J J cr J 

If the negative sign were always to occur in (6.6) then all vectors 

represented by real v (K.) would have negative length. But the 
p J 

vector v with components has real v and positive length 
. p 

· [GI-lV = (1, - 1, - 1, - 1) ) , which is a contradiction. On the other 

1 2 hand if there were two real orthogonal vectors v · and v of' length 

plus one then 

1 2 1 2 
c v 0 ) . - I~ ; = 1 , (6.10) 

and 

1 2 = v • v 
"' "' 

(6.11) 

From these it would follow that 

l 2 2 
(v · v ) = 
"' "' 

1 2 2 2 
(1 + lv I ) (1 + lv I L 

"' "' 
( 6.12) 

and hence that 

( 6.13) 

which is not possible for real vectors. Thus there isJ for each ,j J 

precisely one vector of length plus one. Because of this 

the vectors e 0 (K.) can be generated from the original set of basis 
J 

vectors by real Lorentz transformations. The transformation .l\.b con·· 

necting the two sets 
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will then also be a real Lorentz transformation. 

The basis set ea(K2) is not completely specified by this 

construction. It is possible to take the first p vectors (which 

may or may not include the one of positive length) to be given by 

For, since K2 = A IS, , these vectors span the ·space M(IS) • They 

are ortho~onal, since the e a (IS,) 
0 

are and A € J:... And they are 

(6.14) 

( 6.15) 

real, since A takes all the real vectors of IS_ into the real 

vectors of K2 , and hence by linearity all real vectors of M(JS,) 

into real vectors of M(K2) • Because n(IS_) < 4 , one can by proper 

choice of the sense of the vectors ea(K1 ) with a> n(IS_) make 

Ab a real element of J.. • 
With the basis vectors fixed in this way it is clear that the 

basis vector of positive length occurs either in the first n vectors 

of both sets e 0 (K2) and ~a(IS_) or in the last (4 - n) vectors 

of both sets. Also, with this choice the first n-by-n submatrix 

of (A'.'')~ p is the n-by-n unit matrix. Since A' takes all vectors 

of M(IS_) into vectors of M(IS) the first n columns of A" have 

zeros except in the diagonal positions. The same property holds also 
t-1 

for the first n rows as a consequence of the relations A·. K2 = IS_ 

and 
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( G A" G) pa = ( 6.16) 

which is the characteristic property of Lorentz transformations. That 

A" is a Lorentz transformation follows from (6.5) and (6.14); one 

obtains 

( 6 .17) 

" which shows that A 
-1 

Ab A' • Since Ab is real, the transformation 

A" will be real if A' is. 

The conclusion from the above remarks is that for the case 

n(K1) = r(K
1

) all Lorentz transformations A' € ~ satisfying 

K
2 

= A' K
1 

with K1 and K
2 

€ D , and with K
2 

= A K1 for some 

A € ;{ , can be represented in the form 

= ( 6.18) 

with a fixed real Ab € c!, and a A" € ,~:t' differing from the identity 

only in the (4 - n)-by-(4- n) subspace corresponding to M~K1) • 
II _,t? 

And conversely, for all A €o(~ satisfying this property, which we call 

P , the transformation A' Ab A" is an element of ,;0 satisfying 

A'K
1

=K
2

• 

This result is used in the following way: The transformations 

A" € ;/; satisfying P can be parameterized in such a way that the matrix 

elements are analytic functions of these parameters regular in 

a neighborhood N of the identity, and such that real parameters 

· th real A" € g~ve ere L • Such a parameterization has been civen 

11 by Jost, for the case with no constraint P • The restriction to a 
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submatrix is accomplished by setting some of his parameters to zero. 

Now suppose first that ~ € L • Then the. hypothesis of the lemma gives 

' (6.19) 

for all A" € L satisfying p • For then IS = A ' IS_ , with A ' € L ' 

the IS. and 1<2 being the fixed points of D connected by 1<2 = A IS_, with 

A € ;L . But the validity of this equation for real values of the 

parameters of A" , together with regularity in N 1 implies its validity 

throughout N • Thus (6.19) is true for A" € L satisfying p ' 

in a neighborhood of the identity. The restriction P does not destroy 

the group property, since products of matrices having this pr:operty will 

also have it, and inverses of matrices having this property must also 

have it. Using the fact that the subgroups of J._ specified by the 

constraints P are 

of J._ satisfying 

of elements of j_ 

connected, or more specifically, that any element 

P can be expressed as a product of a finite number 

satisfying P from any fixed neighborhood of the 

.f 
origin, one obtains the result that (6.19) is true for all A' € ~ 

satisfying A' K} = 1<2 . This ensures the validity of (6.4), fzom which 

the lemma follows, for the case n(K}) = r(Kl) , provided ~ is an 

element of L • 

In the above argument it was su~posed that ~ · was an element 
' 

of L ; then for A" e: L it followed that A' e: L 1 and (6.2) was 

immediately appiicable. Now ~ is by construction a real element of 
ll 

;/._ satisfying ~ K} = 1<2 .. Thus, by virtue of the hypothesis of the 

lemma, there exists some A' e: L 'SUch that A' K}· = 1<2 • For this 
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A' the transformation A" = ~l A' must be a real element of 1 , 
Thus it is either an element of L or it can be written in the form 

.A" = A
0 

A]_ , where A]_ is an element of L and A0 is the P T (: cpr) 
.? 

transformation,· which is a real element of ;;.__ • Parameterizing 

A" € L instead of A" one can develop the same argument as before and 1 

prove, from the validity of (6.14) for the A' e L just introduced, 
~ 

its validity for all A' e d_ satisfying A' Kl' = K2 • This again 

validates (6.4), and completes the proof of the lemma for this case 

n(il) T r(J2-) . 
-

The remaining possibility is n(Kl) > r(Kl) < 3 . For these 

cases the vectors of Kl are linear combinations of r(Kl) orthogonal 

vectors of nonzero length and a single vector of zero length orthogonal 

to these. The r(Kl) vectors of nonzero leng~h are obtained by first 

picking r(Kl) of the vectors of Kl such that the Gram determinant 

of these r(Kl) vectors is nonvanishing. This is always possible. 4 

If any one of these vectors has nonzero length then normalize it to 

plus or minus one, by multiplying by a real scalar, and let it 

be the first vector of a real basis. If on the other hand. all these 

vectors have zero length then some real multiple of a combination of the 

form (k1 + kj) must have length plus or minus one, since the (Gram) 

determinant of the matrix (G .. ) = (k. • k.) is nonvanishing. Sub-
l.J l. J 

·tracting a real multiple of this normalized vector from the other 

vectors, in the usual way, one gets a set of (r(Kl) - 1) vectors 

orthogonal to it. Since the Gram determinant is still nonvanishing 
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the process can be repeated to give a real orthonormalized (i.e. to 
r(lS) · 

( e1 (I<]_) , • • • , e (I<]_) plus or minus one) set of r(KJ_) vectors 

This same construction was used (though not described) in the case 

r(KJ_) = n(KJ_) • 

Since in the present case n(KJ_) > r(KJ_) , there must be a 

vector of K]_ that is linearly independent of these first r(KJ_) 

) . 

vectors •. By subtracting from it multiples of the ecr(K]_) (cr = 1, ···, r(K]_)) 

a linearly independent vector w orthogonal to them can be obtained. 

Since the value of the Gram determinant is unaltered by adding linear 

combinations of certain of the vectors to others the Gram determinant 

of the first r(KJ_) vectorstogether with w must vanish. But then 

w must have zero length. The next step is to augment the set KJ.· by 

adding ( J+ - r (I<]_) ) real vectors that together with the first r (I<]_) 

basis vectors give foUl~ linearly independent vectors. Since n = 4 

implies4 r = 4 one can complete the construction of a complete set 

of real orthonormalized basis vectors ecr(K1 ~ , using the procedure 

just described. 

The vector w is orthogonal to the first r(KJ_) of the 

ecr(K]_) and hence it is a linear combination of the remaining ones. 

Since it is real and of zero length it must, for the case r(KJ_) = 2 , 

be of the form 

, ( 6. 20) 

where a \ 0 is real and e 0 (KJ_) is the basis vector having positive 
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length. That the coefficients of the ecr(K1) are real for real w 

follows from the existence of the real inverse of the real Lorentz 

transformation generating the ecr(K
1

) from the original basis vectors. 

The sign of ± e3(K
1

) in (6.20) depends on the sense of the 

vector e3(K
1

) • However, only one sign is possible; if different 

vectors of K
1 

were to give w's having different signs in (6.20), 

then one would have n(K
1

) = r(K
1

) + 2 = 4 , whish is impossible since 

n(K1 ) = 4 implies r(K
1

) = 4 • 

For the case r(K
1

) = 1 the vector w must be of the form 

( 6.21) 

with a and 9 real and a \ 0 . Moreover, for this case all vectors 

of K
1 

must, when the part along is removed, give multiples 

of this same vector w • To see this, note that the Gram determinant 

of two vectors w and w' of the form (6.21) is 

G(w, w') = 
2 

a a'(l- cos(e- e')) 
' 

( 6. 22) 

which is different from zero unless w' is a multiple of w • · Thus 

if two vectors w and w' of the form (6.21) can be obtained as 

linear combinations of the vectors of (K1 ) , then either w' is a 

multiple of w or r(K1 ) ~ 2 • The second possibility contradicts th~ 

assumption r(K1 ) = 1 • The form (6.21) can be brought to the form 

(6.20) by a redefinition of the basis vectors that leaves them real 

and orthonormalized. 



-45-

In the case r(IS_) = 0 all the vectors of IS_ are of zero 

length and they are mutually orthogonal. · Expanding them in terms of 

an arbitrary real orthonormalized basis ea(K]_) , each one has the 

form· 

where a and (a, ~~ r) are real and · 

+ ~2 2 
+ r = 1 

J 

If w ~ 0 , then any vector w' of the same form for which 

G(w, w') = 0 

( 6.23) 

(6.24) 

(6.25) 

is, as before, a multiple of w • Thus for all the cases n(Kk) > r(KJ.) 

one can construct a real orthonormalized basis ea(K]_) such that the 

vectors of IS_ are real linear combinations of a zero-length vector 

(6.26) 

and· the vectors 

(a= 1 ••• 
J ' r(IS_) < 3) . (6.27) 

A similar basis can be constructed for K2 . The set K2 is 
.;.· 

related to the set EJ. by the relation K2 = A EJ. , A e .J.~ • Since 

A is not necessarily real the vectors A ea(K]_) need not be real. 

However for a= 1, ••• , r(EJ.) these vectors must be real; the basis 
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vectors e 0 (IS_) can be expressed as real linear combinations of vectors 

of IS_ and hence the A o0 (IS_) will be the same linear combination of 

the corresponding vectors A IS_ o:t 11. 1<2 , and hence also real. They 

have a Gram determinant of rank r(K2) = r(IS_) and are orthogonal 

and of length minus one and hence they can be chosen to be the corres-

( 0 = 1, • • • , r(IS_) ) • (6.28) 

The entire set of real vectors e0 (K2) , constructed in the same 

manner as tre e 0 (IS_) , and using (6.28) for a= (1, .•• , r(IS_) ), 

can be related to the set ea(IS_) by the equation 

I 

wher.e ~ is a real Lorentz transformation uniquely defined by this 

equa t:i. on, once e a (IS_) and e a(~) are picked. 

(6.29) 

All real vectors of zero length in M(IS_) , the manifold spanned 

by the vectors of IS_ , are multiples of the single vector 

(6.30) 

since any real linear combination of the vectors of (6.27) is orthogonal to 

w(IS_) and of nonzero length unless zero. Similarly all real zero-length 

vectors of M(K2) are multiples of 

(6.31) 



-47-

Since w(Kl) is a linear combination of the vectors of Kl the vector 

,A w(Kl) is in M(X2) , the manifold spanned by the vectors of K2 • 
But then A .w (Kl) is a real nonzero vector of zero length in M(IS) 

Hence it is a multiple w(K2): 

(6.32) 

The factor c can be taken to be unity. This follows fran the 

fact that a real Lorentz transformation in the (0, 3) subspace gives 

simply a scale transformation of a vector of the form (6.31): 

(

cosh a 
sinh a 

·sinh a) ( 11 
cosh a 1 

= (cosh a + sinh a) . ( 6. 33 ) 

\sinh a + cosh a 

This transformation preserves the realit~ and orthonormality properties 

of the . e 0 (Kl) • Thus it can, and will, be assumed ttat the basis 

eO'(IS) is chosen so that 

c = l 

' 
( 6.32a) 

or eq_uivalently, that 

(6.32b) 

Using (6.29) e>ne obtains;~ then., 

(6.34) 

-1 _.p 
The general form of the J,orentz transformation ~ A € d-
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satisfying (6.34) is readily computed. If the rows and columns are placed 

in the order· (0 1 

defined by 

" a( .) A e K1 = 

2, 1), the general transformation matrix (A") a 
! 

( 6. 35) 

-1 
and .consistent with (6.34)

1 
with A" e: ;[in place of the fixed ~ A 1 

can be w;r-itten 

1 + a - a c 

a 1 - a c 

(c cos e + f sin e) -(c cos e + f sin e) cos e 

(f cos e - c sin e) -(f cos e -· c sin e) -sin e 

where c , f 1 and e are arbitrary complex numbers and 

C2 + f2 2a = 

f 

f 

sin e 

cos e 

( 6. 36b) 

The condition (6.34) imposes the constraint that the first two columns 

are the negatives of each other, aside from the unit contributions on 

the diagonal. This gives four conditions, only three of which are 

independent of Lorentz transformation condition (6.16). 

Since the relations (6.28) and (6.34) are maintained if A is 

replaced by any A1 satisfying A'K1 = K2 , of which one is Ab , the 

" o- -· -1 a-general form of (A ~ = (Ab A'~ defined by (6.35), with 

A'K
1 

= K
2 

is given by (6.36) with the last r(K1) rows and columns 

having unity in the diagonal position and zeros elsewhere, provided 

II -f' 
A e: c£.1 • 
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It can be assumed that Ab € ~. If r(k1) < 2 then there 

is freedom in the sign of at least one ea(K2), and Ab can be made 

a proper transformation. Then Ab will be a real element of c:{.. 
For the other case, r(K2) = 2 the basis eO'(K2) is uniquely specified 

by the conditions that have been imposed, and one cannot adjust Ab • 

However, in this case the conditions on (A") o- require it to be unity p 

even without the condition A" € _(, 1 for one theri has c = f = 9 = 0 

from the conditions on eO'(K1) for 0' =(1, 2),and condition (6.34) 

then gives the unique solution Ab ·= A € I. 
To complete the argument for the case n(K

1
) > r(K1) one first 

notes that Ab is a real element of ;L_ satisfying AbKl = K
2 

• Thus 

there must, by hypothesis, exist some A' € L satisfying A'K
1 

= K
2 

• 

But then 

( 6. 37) 

is valid when A" - A -lA, 
b corresponds to this A' € L • Since J\ is 

,;t II A -lAu II 

a real element of either A is an element of L or = Al 0 

is, vrhere 1\0 is the PT ( = CPT) A" II 

transformation. Then for Al ' 

whichever is in L , can be parameterized as in (6.36), with the appropriate 

constraints if r(K1) > 0 . For a neighborhood of real values of the 

parameters 1 subject to these constraints, one still has . A' K1 = K2 

with A' € L • But the spinor transformation 

A' 
s 

II 

Ab A s s or (6.38) 
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is an analytic function of these parameters, regular in a neighborhood· 

of the origin of the free variables of (c, f, 9) • Since (6.37) is 

true for real values of these variables it is also valid for complex 

values in this neighborhood. One sees by inspection of (6.36) that the 

II I 
set of A satisfying the conditions corresponding to A K1 = K2 , 

A' € v_£~ is a connected set of transformations in c::t3. From this it 

follows that any element of the set can be expressed as a product of 

a finite number of elements of the set lying within any neighborhood 

of the identity, and hence that (6.37) is valid for all A' € .fl 

satisfying A'K1 = K2 • This validates.(6.4) for this last case and 

completes the proof of Lemma 1. 

Lemma JA. Real points connected by a Lorentz transformation 

A € c£ are connected by some real A € X . 

Proof: The transformation Ab constructed in the course of the proof 

of Lemma 1 is the required real A € ~ • 

Lemma 2. Let K
0 

.be a set of n linearly independent vectors. For 
? 

any neighborhood N of the identity in .;i,.· there is a neighborhood 

D(N, K0) of K0 such that any two points in D(N, K0) connected 

by a Lorentz transformation are corillected by a Lorentz transformation 

A € N • 

Proof: Suppose the rank of the Gram determinant of the vectors of the 

set is One can arrange the vectors of K
0 

•. 
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such that the rank of the Gram determinant of the first r vectors of the . 
set is r • Using the procedure discussed in Lemma 1 , but without the 

reality condition, a set of r orthonormal basis vectors e1 (K0
),- • •, ~ (K

0
) 

can be constructed as linear combinations of the first r vectors of K 

Completing the set K
0 

to a set of four linearly independent vectors by 

the addition of (4 - n) new vectors one can construct (4 - n) more 

vectors en+l(K0 ), •.. , e4(K0 ) that are orthonormal, and orthogonal to the 

first r of the basis vectors. For the case r ; n this gives a com-

plete set of basis vectors ea(K0 ) . 

For the case n ; r + 1 the subtraction from of its 

components along e
1

(K
0

), ···, er(K
0

) leaves a vector w0 ; w ~ 0, 

which must be of zero length, ~ince otherwise the rank r would be 

n • For some a > n one must have ea(K0 ) • w ~ 0 , since oti1erwise 

w
0 

would be a zero-length vector orthogonal to three orthonormal vectors 
4 . 

in a four·-d.imensional (non:legenerate ) space and hence zero. Take this 

vector ec/K0 ) to be e4 (K0 ) • Then i &4 (K0 ) - w (e4 (K0 ) • vl r~ 
is a vector of unit length orthogonal to e4(K

0 ) and to e
1

(K
0
),···,er(K

0
) 

Take this to be the final basis vector er+l (K0) • 

For the case .r ; n - 2 the subtraction of components along 

e (K ) , • • ·, e (K ) 1 0 r 0 from the vectors k ~+l , must leave two 

linearly independent orthogonal vectors w r+l 
and w r+2 having zero 

length. Otherwise there would be fewer than. n linearly independent 

vectors>or the rank of the vectors of K0 would be greater ttan r • 

The vectors w = w 1 r+ and cannot both be orthogonal to 

e a (K0 ) for all a > n , for then they YO uld be orthogonal to two 
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orthonormal vectors. This would provide two linearly independent zero

length vectors in a two-dimensional space, which is impossible. 4 One 

can order the vectors of K0 and of the ea{K0 ) , a > n , so that 

w.e4{ K0 ) \ 0 • Then the vector i 1 e4{K0 ) - w(e4{K0 ) ·w) -l] is a 

vector of unit length orthogonal to the vectors e1(K0),···,er{K0 ) , 

and to e4(K0 ) • Let it be called er+l(K0 ) • The vectors ea{K0 ) , 

4 > a > n , can then be reorthonormalized following the standard 

procedure so that the ea(K0 ) for a ~ r. + 1 and a > n become an 

orthonormal set. If the original ea{K0 ) , a > n , are appropriately 

chosen the subtractions of the required vectors will not give any 

zero-length vectors. 

From the relation w' • er+l (K0 ) = i(w' • e4 (K0 )) it follows 

that [w•- e4{K0 )(e4{K0) •. w')- er+l{K0 )(er+l{K0 ) • w')l ::. w is 

a zero-length vector orthogonal to e4(K0 ) , e1{K0),···, er+l(K0) • 

It cannot vanish since w' is linearly independent of w whereas 

e4{K0 )(e4(K0 ) • w') + er+l(er+l(K0 ) • w') is proportional to w • 

For some vector ea(K0), a> n, one must have ea(K0 ) • w\ 0. 

Otherwise w would be a zero-length vector orthogonal to the first 

r + 1 basis vectors and the last 4 - n basis vectors and hence 

orthogonal to 4 - n + r + 1 = 3 orthonormal basis vectors. Let this 

ea(Ko) be e3(Ko) ' since it is not e4(Ko) . Then the vector 

i [ e
3

(K0) - w(e
3

(K0 ) . w) -1] e is a vector of unit length 

orthogonal to all ea(K0 ) with a~ r + 1 or a ~ 3 , where 

these vectors are all orthonormal. This is impossible unless r = 0, 

since a vector orthogonal to four orthonormal vectors is zero. 
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Thus one can set e2(K0 ) = e • This completes the construction of the 

orthonormal basis e
0

(K0 ) for the case n = r + 2 • The case 

n > r + 2 is not possible. 

For K in a sufficiently small neighborhood of K0 one can 

construct a basis e (K) 
(:J 

following the procedure just described, ~xcept 

for the following changes: The (4 - n) vectors that are _added to the 
~ 

set K to makeAlinearly independent set will, for all K, be taken 

to be the fixed vectors ers(K0) for rs > n , constructed above. For 

K in a sufficiently small neighborhood D'(K0 ) of K0 the augmented 

set will continue to have four linearly independent vectors, and one 

can proceed with the construction; one constructs a set e (K) , 
(:J rJ > n ' 

by subtracting in the standard way the components along e (K) , rs ~ r, 
(:J 

etc. and normalizing. For K € D11 (K0 ). C D'(K0) the vectors arising 

in this procedure will have nonzero length, so that a uniform procedure 

can be followed for all K € n"(K0 ) At the next stage the vectors 

[and e 
2
(K)] r+ can be defined in the same way as above except 

that additional normalization factors '!) _ (and_ T) ) must be supplied. 

For K in a sufficiently small neighborhood D 111(K
1

) C D"(K1) the 

various factors that are required to be nonvanishing will continue to be 

nonvanishing, since they will depend continuously on the vectors of K • 

The only ambiguity in the procedure is in the choice of sign for the 

normalization factors. This sign can be fixed by requiring the normal-

ization factors to be continuous functions of K • Thus in a sufficiently 

small neighborhood D(K0 ) of K0 a. basis e (K) 
(:J 

can be defined so that 

these basis vectors depend continuously on the vector K. Also, for the case 
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. 0 0 
r = n - 1 the vector w obtained by subtracting from k = k 

1 n r+ 

its components along e
1
,.(K) a = 1, ••• , r , will always have the 

standard form w = (e4(K) + i'\er+l (K)) (w • e4(K)) • For the case 

r = n - 2 = 0 this vector will have the form w =' (e4(K) + i\e1 (K)) 

(w • e4(K))~ ~d the other vector, w , will have the standard form 

w = (e
3

(K) + i-Yte2 (K))(w • e
3

(K)) • 

For any two vectors IS_ and IS in D(K0 ) a Lorentz trans

formation A (IS_, IS) € L is defined by the equation 

If Kl and IS are connected by a Lorentz transformation then 

IS_r =A (lS., !<2)!<2r , where J.l! is the set consisting of the first 

(6.34) 

r vectors of K • This is because the vectors e
0

(K) are constructed, 

following a standardized procedure, as a linear combination of the vectors 

of J.l! , and the coefficients are given as functions only of the inner 

products of the vectors of If . For the case r = n 1 J.l! = !(1 and 

this transformation connects Kl to IS . Since the transformation 

A (lS., 1<2) is a continuous function of (lS., IS) the inverse image of 

any open set in N containing the identity contains a neighborhood of 

the point (K0, K0 ) This neighborhood must contain a neighborhood of the 

form Kl e: D(N, K0 ) , IS e: D(N, K0 ) , with D(N, K0 ) c:: D(K0 ) • This 

D(N, K0 ) satisfies the requirements of the lemma for the case r = n • 

For the cases r < n any points Kl. and 1<2 e: D(K0 ) connected 

by a Lorentz transformation are connected by a Lorentz transformation of 

the form 
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(6.4o) 

For the subcase r = n - 1 the K1 and 

1\2 differ only in the value of the vector w , and both values, .. · w
1 

and w2 , lie in the ce
3

(KI); e4(K})) subspace. But two vectors in 

a subspace connected by a Lorentz transformation are connected by a 

Lorentz transformation in the subspace. This is a consequence of Lemma 2 

of Hall and Wightman. 

The Lorentz transformations in a two-dimensional subspace can be 

expressed as a product of possible inversions about the space or time 

axis times a transformation 

= A (r) a: } ( 6. 41) 

where r is a complex number and the a± are components along. two 

orthogonal light-cone·vectors. If two points are connected by a 

transformation of the form A(r) then this transformation is unique. 

If two points are in a neighborhood of the point (e+, a.) = (1, 0) 

that contains no point with ar = 0 then if they are connected by any 

Lorentz transformation they are also connected by a A (r) . This is 

because :!:'or the case a (0) \ 0 one can transform--using a J\(r)--to 

a point \·fllere a+ = t a_ • At such a point the reflections are equivalent 

either to the identity or to the particular A (r) given by 

exp r ~ exp (- r)= - .1 • As a consequence of this any sequence of 
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reflections and proper transformations can be reduced to a single trans

formation A (r) 1 for this case, by the elimination of reflections.in pairs. 

On the other hand if a_ = 0 any product of reflections and A (r) 

takes the point to a point with a_ = 0 , which can be reached by 

A (r) alone, or to a point with a+ = 0 1 which by assumption is not 

in the original domain. Thus with the neighborhood taken small enough 

so that points 9..t = 0 are not included· all points in the neighborhood 

.connected by a Lorentz transformation are connected by a unique trans

formation of the form A (r) • One can therefore define a unique 

A1 (KJ..1 K2) = A (r) .t\_ (K]_, K2) tl'B t satisfies 

This transformation is a uniquely defined and continuous function of the 

Kl and K2 1 provided the (K
1

, K2) is restricted to a sufficiently 

small neighborhood of (K0, K0) • 

In case KJ.. and K2 are not connected by a Lorentz transformation 

Eq. (6.41) can be modified by the inclusion of a 

scale factor ~ defined by 

The A1 is still defined to be A (r) A (KJ..1 K2) . This A1 is again 

continuous in Kl and 1<2 . 

Since A1 (K]_, K2) is continuous one can proceed just as before, 

and D(N, K0 ) can be taken to be any neighborhood of K0 such that 

D(N, K0 ) fi) D(N
1 

K0 ) is in the inverse image of any neighborhood of 
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the identity contained in N • Such a D(N, K0 ) must exist since the 

inverse image contains a neighborhood of (K0, K0 ) . The neighborhood 

D(N, K
0

) is to be restriced also by the condition that the vectors 

w do not have a zero component along the w+ axis • This is possible 

since·for K0 this condition is satisfied (for this case r = n- 1) . 

apply. 

and w • 

For the remaining case n = r + 2 = 2 similar arguments 

The vectors of K' 

The vectors and w' 
2 

are specified by the two vectors w 

both lie in the 

subspace and the vectors w1 and wl both lie in the (e
3

(K1 ); e1 (K0 )) 

subspace. Thus the transfer Aw will be a product of transformations in 

two orthogonal subspaces. The problem separates then into two disconnected 

parts each of which is treated in the same way as Aw for the r = n - 1 case. 

Lemma 3. Let K0 be an arbitrary set of vectors. Let the first n vectors 

of K0 be linearly independent. For any neighborhood N of the 

identity in j__ there is a neighborhood D(N, K0 ) of K0 such that 

if any two points K1 and K2 in D(N, K0) are connected by a 

Lorentz transformation then ~n =A K2n with A € N, where 

~ is the set consisting of the first n vectors of K . 

Proof: This is a trivial extension of the preceding lemma. The neighbor-

hood D(N, K0 ) can be the intersection of any (full) neighborhood 

of K0 with · Dn(N, K0n) , the neighborhood in the subspace associated 

with the ~ specified by Lemma 2 • 

Lemma 4. Let K0 . be any point and D(K0 ) be any neighborhood of K0 • 



Then there is a neighborhood n0 (K0 ) of K0 , contained in D(K
0

) , 

such that any two points KJ. and K2 in n0 (K0 ) connected by 

a A € f._ are connected by a continuous path K(t) = A (t) K2 1 

with K(O) = ~ and K(l) = KJ. , such that A (t) € ;/_ and 

K(t) e: D(K
0

) for o ~ t ~ 1 • 

Proof: Let n be the number .of linearly independent vectors of K0 

and r the rank of their Gram determinant. Arrange the vectors 

of K0 so that the first n are linearly independent and tre rank 

of the Gram determinant of the first r is r • Then. according 

to Lemma 3 there is, for any arbitrary neighborhood N of the 

identity in L, a net ghborhood D(N, K0 ) of K0 small enough 

so that if KJ. and K2 are in D(N~ K0 ) and are connected by a 

Lorentz transformation A e: i, then there is, a A
1 

€ N such that 
n n n n · KJ. = A1 1<2 J where KJ. and K2 are the subsets of K1 and 

K2 consisting of their first n vectors. The neighborhood N can 

be taken to be a domain (i.e. 1 cannected),and hence a path A(t) 

in N can be constructed with A(O) = 1 > 

A(~) = A1 , and A (t) e: N for o ~ t ~ ~ • The n0 (K0 ) eD(N, K0 ) 

and N can eYidently be chosen small enough so that all points 

A 1 K2 with A 1 e: N and K2 e: n0 (K0 ) are in any preassigned 

·neighborhood of K
0 

, say n
1 

(K
0

) c: D(K
0

) • 

Consider first the case r = n • The neighborhood D1 (K0 ) 

will be taken small enough so that for all K e: D1 (K0), the rank 

r(K) of the ()ram determinant of the first r vectors of K 

remains equal to r • Then .any K e: n
1 

(K0 ) can be uniquely 
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decomposed into a sum of two terms, K = If + V, where the vectors of 

'f! are in the subspace spanned by the first r vectors of K > and 

the vectors of V lie in the subspace orthogonal to those r vectcrs. 

(Note that If is not the same as in Lemma 2 • ) 

The neighborhood D1 (K0 ) can be specified by conditions of the 

form II If - K0r II < pr and II V II < P , with 

s:ince this is an arbitrarily small open set containing 

p and 

K = 0 

Pr > 0' 

K r One 
0 

can use here for instance the Euclidian norms; e.g., 

II v II 

The proof will be completed, for this case, if a continuous 

A (t) for ~~ t ~ 1, with A(~)= A1 and A (1) K2 = Kl 1 can 

(6.42) 

be found that acts only in the space orthogonal to the space spanned 

by the set Kl n and keeps II V II < P • 

-1 L The Lorentz transformation A = A(l) A1 € .>which takes the 

point A (~) K2 :=.. A1 K2 to A ( 1) K2 :::. K1 1can, as any A € ;{_ , be expressed 

12 in the form 

A = R exp A J ( 6. 43) 

where R is a unimodular real orthogonal (hence unitary) tmnsformation 

and A is Hermitian and imaginary: 

(The metric tensor G has been converted to the unit matrix by the 

introduction of the appropriate imaginary units.) The required 

(6.44) 
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1 transformation A ( t) for 2' ~ t ~ 1 can be taken to be defined by 

A'(t): A(t) A-l = 
1 

exp [4(t - ~) AJ 

R(t) exp A 

for ~ ~ t ~ t 

for t ~ t ~ 1 ~ (6.46) 

where R(t) for t ~ t ~ 1 is any continuous curve from the identity 

E to R in the connected space of real unimodular orthogonal matrices. 

TheEuclideannorm llv(t) II of V(t)~ fA(t)vi} is 

the square root of 

:=<At (t) A (t)> 
v 

(6.47) 

In the interval t < t < 1 the II V(t) II is constant~ because of the 

unitarity of R(t): 

Rt(t) R(t) = R(t) R(t) = E 

. 1 3 
On the other hand, in the interval 2 ~ t < 4 one has, since 

? 0 (6.49) 

P.eause the second derivative of IIV(t) 11 2 is non-negative its maximum 
end 

value must be assumed at an end point. As the/points are in D1 (K0 ) 
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they satisfy I lv(t)l I< p. Thus for all 0 ~ t ~ 1 this condition 

is satisfied. Consequently all points K(t) = ·· A(t) K2 are in 

D
1

(K0) ~D(K0 ) • This completes the proof for the case that r, the 

rank of the Gram determinant of K0 , is equal to n , the number of 

linearly independent vectors of K0 • 

In the case r < n the first part of the transformation, 

1 0 ~ t ~ 2 , can be performed as before. For n ;;?;.. 3 this already com-

pletes the proof, since the coincidence of three linearly independent 

vectors ensures the coincidence of all vectors. The special form of 

Suppose n = r + 1 • Then the vectors of K0 are a linear combination 

of the first r vectors of K0 , plus a linearly independent vector w0, 

which must, according to the arguments given in Lemma 2 of Hall and Wight-

man or in Il:!mma 2 above, have zero length. Tbe vector is a particular 

linear combination of tre first n vect~rs of K0 •. Let w(K) be the 

same linear combination of the same vectors of K • This w(K) is generally 

of nonzero length. As before let ~ be the part of K formed from 

vectors in the space spanned by its first r vectors and let 

K s If+ v. Also let K0 :=.. K0r + v0 ~ K
0
r +K0w, 

where the vectors of w K0 must all be multiples of w0 • Let 

the vector obtained by substituting w(K) for w0 in K0w . Finally, 

be characterized by conditions of the form let tre neighborhood n
1 

(K0 ) 

II~ - K0 r II < Pr , II Kw - K0 w II < p < p and 
w II V - Kw II < P with 

positive p's • This is evidently an arbitrarily open small set 
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containing K0 • 

With D1 (K0 ) defined in thfu way the same argument applies, 

provided w = w(K(l)) is not a light-cone vector. For if w • w \ 0 

the Lorentz transformation A(t) fur~~ t ~ l, as defined above)will act 

in the subspace orthogonal to the subspace spanned by the first n 

vectors of K(t) , since these n vectors are not changed by the 

transformation A • Thus the vector Kw (t) = A ( t) Kw ( 0) will be con

stant for ~· ~ t ~ 1 and D(t) = llv(t) - Kw(t) II = I lA (t) (v(o) - Kw(o))ll 

l 3 will again have, for 2' < t < '4 )n nonnegative second derivative, as before. 

Thus D(t) . will assume ~ts maximum at an end point of the interval 

~ ~ t ~ 1 and K(t) will be in D1 (K0 ) for all t in this interval. 

For the case that '" is a light-cone vector this argument fails 

because the space does not separate into two orthogonal subspaces, one 

n of the dimension n spanned by the vectors of K1 • Consequently, it is 

no longer clear that the A'(t) = A(t)A~1 defined in (6.46) must 

leave w(t) unchanged throughout the interval ~ < t < l , ·just because it 

gives the same value w = w(~) = w (1) at the two end points. 

To cover the case w • w = 0 the neighborhoods D1 (K0 ) associated 

with other orderings of the vectors of K0 can be considered. The 

vector w(K) was constructed as a linear combination of the first n 

vectors of K ; it is the nth element of the set V = [ v. (K) ~, 
~ ) 

the first r = n - 1 elements o:t' which vanish. As a generalization, 

define 

} j ~n ' 
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where the ~j are fixed positive numbers chosen small enough so that 

each w: (K) remains independent of the first r vectors of K over 
J 

some neighborhood of K
0 

• The replacement of w(K) by a w:(K) 
J 

corresponds to replacing k by a certain fixed linear combination of 
n 

the ki • One can obtain, then, D1 (Kj 0 ) analogous ~o the D1 (K0 ) 

above. And these domains will have tlieir images Dj(K0 ) in the original 

space--the space in which the vectors K have their original meaning. 

Each of the Dj (K
0

) contains K
0 , s.ince this point is the image of 

the point Kj 0 . Also, each Dj(K0 ) will be a neighborhood of K0 ) 

since it is the image of the neishborhood of under 

a nonsingular linear mapping. Thus the intersection of the finite 

number of D~(K0 ) must contain a neighborhood D2 (K0 ) of K0 • 

If D2 (K0 ) is used in place of D1 (K0 ) in the definition of D0 (K0 ) 

then the lemma follows from the previous argument, unless for all 

j ~ n the wj(K1 ) have zero length. 

In case of the w:(K) 
J 

have zero length the vectors v. (K) 
.1. 

must all be orthogonal to w(K) • This follows from the eq_uat:ions 

w~(K) • w~(K) - w:(K)•w:(K) = 4 C. v.(K) · w = 0 • Now the trans-
J J J J J J 

formation A defined by K1 = A K2 ~ A A1 K2 leaves 

invariant. The general transformation A € 
; 

/ 
::.~--. ...-

that leaves a multiple of the light-cone vector w+ = (1, i, 0, 0) 

invariant is 
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I \ 
! 1 + a 
I 

( 
i a - b - c \ 

i a 

\: cos 6 + c sin 6 

cos 9 b sin 9 

\ 

:i: :6. ) 

cos / 

1 - a - i b 

i(b cos a + c sin e) cos 9 

i(c cos 6 b sin 9) - sin 6 

where a, b, c, and e are arbitrary complex parameters satisfying 

. 2 2 
b + c ~ - 2 a • Writing an arbitrary vector v in the form 

+ v_ w_ + + v e 
c c 

where and and e 
c 

are the third and fourth unit vectors, 

one finds, for v 1 ~ II. v , tl::a t 

and 

v' = v 

v:' ~ 
b 

v' c 

cos e vb + 

cos 6 v 
c 

cv + 2av c 

sin 9 v + 2(b cos e + c sin e) v 
c 

sin 6 vb + 2(c cos 6 - b sin e)v_ 

The transformation A takes V' ~ V 
2 

into V = V' • V' = A V • 1 J 
It 

also takes w 1 which can be considered a multiple of w+, into itself. 

Thus A can be written in the above form. The conditions v. • w 0 

give vi- = 0 , and hence also v~ = 0 
l-

l 

Thus for each value of 

one must have for some si~gle set (a, b 1 c, 8) the equations 

v' i+ v i+ - c vib = V. l+. 

i 



• 

-65-

I = cos e vib + sin e v. vib l.C 

and 

v! = cos e v. sin e vib l.C l.C 

But then the equations are also satisfied with b = c = 0 • Thus A 

can be replaced by a A acting in a subspace orthogonal to one con-

taining w • This consequence of the equations v .• w = 0 
l. 

could also 

be obtained using abstract arguments. Since this new A acts in a 

subspace orthogonal to one containing w , the A1 (t) = A(t) A~1 

constructed in accordance with (6.46) will act in that subspace and hence 

leave w invariant. Thus as before, the non•negativeness of the 

second derivative of D(t) for ~ < t < L ensures that K(t) 
2 4 remains 

in the domain for 1 
2~ t ~ 1, and hence .for (). ll 

0 ~ t ~ 1 • This completes the proof for the case r = n - 1 • 

The remaining case is r = n - 2 = 0 • In this case there 

are two linearly independent, orthogonal light-cone vectors 

w0 = w(K0) and w0 = w(K0 ) • The related vectors w(K) and w(K) are 

also orthogonal and tbey are brought into coincidence by the first part 

f th t f t . A (-
2
1 ) - A

1 
(K~, K ). • o e rans orma J.on, _"1. _""2 

are not light-cone vectors then they define a subspace which together 

with its orthogonal complement spa~the space. And all vectors in this 

subspace are brought to their final values already by A1 (Is_, K
2

) = A1 

The transformation A defi?edby __ Is_= ~-~l-IS; acts therefore only in 

the orthogonal subspace and hence the A(t) defined by (6.46) completes 

the path in /.._ • In order to cover the case that w(K) or w(K) is a 



-66-

light-cone vector one takes D2 (K0) to be in the intersection of the 

images of the various D1 (Kj~) , vrhere Kj~ has wj (K) = w(K) ! £.j vj (K) 

in place of w(K) and wk (K) :::. w(K) ';!: "'{·k vk (K) in place of w(K) • 

If N and D
0

(K
0

) are taken to be small enough so that K
0 

€ n
0

(K
0

) 

and A' € N implies A' K2 € D2(K0) then the consequences nee~d!or the 

lemma are satisfied unless wj(K
1

) has zero length for all j or 

wj(Kl) has zero length for all k ' since otherwise for at least one 

value of j and one value of k the previous (w • w '\ 0) argument 

holds. If wj(KI) has zero length for all j then w • vj(KI) = 0 

for all j and the argument still works because an appropriately 
1 

chosen transformation A' (t) , 2 ~ t.::; 1 , leaves w invariant. It goes 

similarly for W'j(Kl) Thus the argument for the case r = n - 2 = 0 

is virtually the same as for the r = n - 1 case. This completes the 

proof. 

Definition: A function F(K) will be said to be regular at a point K 

if and only if the various functions of K corresponding to the various 

combinations of the spin indices are all regular analytic functions 

of the canponents of the four vectors [ k
1 

~ at the point K • 

Lemma 5. Let A be a fixed Lorentz transformation. Let FA(K) be 

defined by 

If F(K) 
-1 .J 

is regular at the point K = A K then F~(K) is 

(6.50) 
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regular at the point K = K: • 

Proof: This is an immediate conse~uence of the theorem in several com-

plex variables that an-analytic function of an analytic function is 

analytic. This well-known theorem is easily proved using the Cau.chy-

Riemann e~uations. 

Corollary A. Let FA (K) be defined by (6.50), where A is fixed. 

Then FA(K) is regular at K = K1 if and only if F(A-l KJ) is 

regular at K = A -l K 1 • 

Proof: The first part of the corollary is just the lemma. To prove 

the converse apply the lemma to the function 

F" (K) ::= A ~l FA (A K) 

to show that F 11 (K) is regular at K if F A(A K) is regular at 

A K • But F" (K) is just F(K) • The substi. tution K = A -lK' 

gives the desired result. The fact that the inverses 

A-l exist is essential to the proof. 
s 

-1 A and 

Corollary B. The property of being regular at a point does not depend 

on the choice of coordinate system relative to which the components 
, }.he 

of the vectors k are measured, providea;components in the two 

systems are related by a Lorentz transformation. 

Proof: The proof is the same as for the lemma. 
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Definition: A domain in an arcwise connected open set. 

Definition: A real domain is an arcwise connected real set open With 

respect to the set of real points. 

Lemma 6. Let F(K) satisfy the invariance condition 

F(K) = A F(A-l K) 
s ' (6.53) 

for A € L , and K and A-l K in a real domain D containing the 

point K
0 

• Suppose F(K) is defined (single valuedly) in a domain 

D(K
0

) containing K
0 

and is regular at all points of D(K
0

) . 

Then for ·each point K in D(K
0

) Eq. (6.53) is satisfied for 

A € N (K) , where N (K) is some neighborhood of the identity r r 

in L • 

Proof: Let K1 be a fixed arbitrary point of D(K0 ) • Since D(K0 ) 

is a domain there exists a continuous curve K(t) , 0 ~ t ~ 1 , 

from K0 to K1 , all points of whi.ch are in D( K0 ) • Let the 

distance between two points be defined as maximum of the absolute 

values of the differences of the components of the vectors \ ki ~ . Then 

the distance of a point K in D(K0) to the boundary of D(K0 ) 

will be defined as the maximum (real) number ~(K) such that every 

point whose distance from K is less than ~(K) is inside D(K0) • 

Since D(K0 ) is a domain ~(K) > 0 for all K € D(K0 ) • More-

over, ~(K (t)) ~·a> 0 , for 0 ~ t ~ 1 • For if there were no 

positive lower bound a> 0 of ~(K (t)) one could find a sequence 
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t , 0 ~ t ~ 1 with A(K (t )) < 2-n. "These t would have to have n n n n 

an accumulation point t , o· ~ t ~ 1 • But A(K (t)) = b > 0 • · Hence 

for all t such that the distance between K(t) and K(t) is less 

than b/2 one would have A(K ( t)) ;? b/2, by the triangle inequality. 

Since K(t) is a continuous curve the inverse map of the open set 

I IK(t) - K(t) I I < b/2 contains an open interval At about t • But 

since 6(K (t)) > b/2 for t e A t only a finite number of the t 
n 

can be in At • Hence t cannot be an accumulation point. This is a 

contradiction. Thus there is a positive lower bound a • 

·Let the maximum value of IlK( t) II for 0 !{. t ~ 1 be A • Let 

) -f' -1 ) N(K1 be a neighborhood of the identity in ~ such that if h e N(K
1 

, 

then ll(h:-"1) V- 5 VII < (a/4A). · Then, for h-l e N(K1), it follows that 
IJ. IJ. 

llh-l l<[~t)- K(t) II < a, and the (continuous) curve KA(t) = h-~(t) 
remains inside of D(K0 ) for all 0 ~ t ~ 1 • 

Let Nr be a neighborhood of the identity in L such that A-~0eD 
for h-~ eN The existence of such a neighborhood follows immediately 

r 

from th~ continuity of · A -~0 . in h at the identity. For any fixed 

h -l e Nr n N(K1) = Nr(K1) there is a real domain D(A, K1) C. D , with 

K0 e D(h, K1) , such that for all K e D(A, K1) the points K and 

h-l K are in . D n D(K0). The existence of such a D(h, K1) follmrs 

from the fact that K0 and h-l K0 are in D n D(K0 ) , in conjunction 

with the continuity of A-Ix as a function of K. Thus (6.53) is valid 

for any fixed A-le Nr fl N(K1) for all K e D(h, K1). The validity of 

(6.53), for fixed ~-le N;nN(K1), for all K in the real domain D(A, K1), 
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together with the analyticity of both sides of the equation, as functions 

of K , (Lemma 5), implies the validity also at the point K1 , since 

one can analytically continue along K(t) with the argument of the 

function on the right tracing simultaneously the curve KA(t) , which 

remains inside the domain of regularity D(K0 ) • 

Lemma 6A. Lemma 6 modified by the substitution of ~ for L and of 

a (full comple~) domain D for the real domain D is also valid. 
c 

Proof: Makes these substitutions throughout the proof of Lemma 6. 

Lemma 7. Let F(K) satisfy the invariance condition (6.53) for A € L 

and K and A-l K in a real domain D containing the point K
0 

. 

Suppose F(K) is defined (single v~luedly) in a domain D(K0 ) 

containing K0 and is regular at all points of D(K0 ) • Then (6.53) 

is also valid for all K € D(K0 ) and A €~ such that there is 

a continuous path A(t) € ~·, 0 ~ t ~ 1 , with A(O) = E and 

A(l) = A , such that K(t):: A-1(t) K € D(K0 ) for 0 ~ t ~ 1 • 

Proof: The assumptions of the lemma are the same as those of Lemma 6. 

Thus the conclusions of Lemma 6 may be used; (6.53) is valid for 

every point K € D(K
0

) for A-l € Nr(K) , a neighborhood of the 

.. 
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identity in L • 4 11 Following Hall and Wightman, and Jost, the Lorentz 

transformations A in a neighborhood N of the identity in £.. can be 

parameterized by a continuous one-to-on~ mapping A(~j) in such a way 

-1 that the representations of A and A are regular analytic functions 
s 

of the ~j ·for A -l € N ; and such that for A -l € N (.) L the ~j 

are real; and such that the origin in ~- maps into the identity in. 
J 

A • Such a parameterization has been given by Jost. 11 

Considered as a function of the the right-hand side of (6.53) 

is an analytic function regular at all points for which A-l € N and 

-1 1 
A K € D(K0 ) • But for A- in the real neighborhood of the origin 

Nr(K) the right-hand side of the eq_uation is, by lemma 6
1
eq_ual to the 

left-bB.nd side, which is independent of ~- . Thus the right side must 
~ 

be eq_ual to the left for all A= A ( t) such that A -l(t I) € N and 

A ( t') K ~ D (K0 ) for 0 ~ t t ~ t .J since one can analytically continue 

to this point, the right-hand side remaining regular. If for all 

0 ~ t.::;. 1 the A -l(t) are not contained in N tl:'e n the continuation 

can be carried out stepwise by expanding A-1 (t) ~ in the manner specifiec. 

above, about a finite seq_uence of intermediate points, t , and by using 
n 

the gro1~p properties. The invariance eq_uation is in this way validated 

-1 for all points K, A K connected by a continuous path A(t)K tmt 

remains always inside the domain of regularity D(Ka) • That only a 

finite number of 

Theorem. 

t 
n 

are req_Uired follows from the Heine-Borel Covering 
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Lemma 7A. Lemma 7 is also true if the real D and L are replaced by 

complex D and ~ • c 

Proof: Make these substitutions throughout the proof of Lemma 7 •. 

Lemma 8. Let F(K) be defined (single valuedly) and regular for points 

in a domain D(K0 ) containing K0 ~ And suppose 

F(K) = A F(A-l K) (6.54) s 

for A € L and A and A-1 K in a real domain D containing 

Ko • Then for every point ~ € D(K0 )_ there is a domain Do(~) 

containing ~ such that the equation 

F(K; D0 (~)) := As F(A-l K) (6.55) 

and. !1. € I_ 
with A-l K e: D0(~)/ defines a (single valued) function F(K; D0(K)) 

over the points K e: cL D0(~) • This function :is regular throughout 

its domain of definition and coincides with F(K) in the domain 

Proof: The assumptions are the same as those of lemma 7 • Thus the 

invariance equation (6.54) holds for all K and -1 A K connected 

by a path A(t) K , 0 ~ t ~ 1 , that is everywhere i.n D(K0 ) • 

Consider an arbitrary point ~ € D(K0 ) • According to L ~mma 4, 

there is a domain D0 (~) containing K1 such that the points of every pair of 

points in . D0 (KJ.) connected by a Lorentz transformation a:t~e connected 
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by a continuous path A ( t) K , 0 ~ t ~ 1 , that is everywhere in 

D(K
0

) • Lemma 7 then ensures that the invariance e~uation (6.54) is 
-1 . 

valid for all K, A K € D
0

(KJ_) • This in turn ensures that (6.55) 

defines a (single valued) function F(K; n
0

(KJ_)) . To show this 

suppose for some K € -J~ D
0 

(KJ_) the. points A~1 K and A;1K are both 

in D0(KJ_) Then one can write 

F1 (K; D0(KJ_)) = Als F(A~l K) 

and· 

That these are e~ual follows from E~.(6.54) expressed in the form 

which is true because both arguments are in D0(KJ_). 

(6.57) 

Since F(K; D0(KJ_)) is independent of the particular A used 

on the right of (6.55), so long as 

F(K; D
0

(KJ_)) in some neighborhood 

. A -l K € D0 (KJ_) , the values of 
? 

of any K € ~~ D0(KJ_) can be generated 

from a fixed A , as a conse~uence of the continuity of -1 A K as a function 

of K ' for fixed A • That is, the inverse map of the open set Do (KJ_) 

of A-l K's is an open set D A (K]_) of K's . But for fixed A the 

regularity of,the left-hand side of (6.55) is ensured by Lemma 5, since 

A -l K € D0(KJ_) c. D(K0 ) • Finally, that F(K; D0 (KJ_)) coincides with 

F(K) for K € D0(KJ_) is true by virtue of (6.55) with A-= I. 
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Lemma 8A. The lemma remains valid if the real D and L are replaced 

by a complex D and L. 

Some concepts from the theory of functions of several ccmplex 

variables will now be introduced."
13 

Definition: A regular function element e is a triple [ Ke; De; Fe (K)] 

consisting of a base point K , a domain D 
e e 

containing K ' e 

and an associated function F (K) defined (single· valuedly) and 
e 

regular in D . e 

Definition: Two regular function elements will be called equivalent 

if and only if they have. the same base point and their functions 

coincide in some neighborhood of this point. 

Definition: A germ is a set of regular function elements such that 

(1) any two elements of the set are equivalent 
and 

(2) any regular function element equivalent to an element of the set 

is also in the set. 

Definition: A germ neighborhood N(DN' FN(K)) is the set of all germs 

containing a regular function element [K; DN; FN(K) J The 

domain DN and the function FN(K) are called the base domain 

and the characteristic function of the germ neighborhood, respectively. 

Definition: The topological (Hausdorff) space with germs as points and 
.. 



-75-

germ neighborhoods as neighborhoods will be called the germ space. 

-
Definition: The domain of regularity of a function F(K) defined 

(single valuedly) and regular in a domain D is the set of all 

germs connected to any germ of N(D, F(K)) by a continuous curve 

in the germ space. 

Definition: The unique germ g ['e J containing e is called the germ 

specified by e • (Uniqueness is easily proved.) 

Definition: The base point K(g) of a germ g is the common base 

p~int of the e € g • 

Definition: F(g) = F (K(g)), with e € g. (F(g) is independent of 
e 

the choice. of e € g • ) 

Definition: Let N :::: N(DN' FN(K)) be a germ neighborhood. Then, for 

K € DN , define gN(K) =. g [ e J , where e = [ K; DN; FN(K)] 

is the unique g € N such that K(g (K')) = K' 
N 

Restated, gN(K) is the unique inverse of K(g) , subject to the 

condition that g € N • 

Lemma 9. If the characteristic functions of two germ neighborhoodS 

N and N' coincide in a domain 

gH(K):; ~,(K) , for K € D • 
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Proof: The associated function of any element e of ~(K) coincides 

with FN(K) for K in some neighborhood N(K) of K € D • Thus 

it must coincide with FN,(K) in N(K) 1/ D and hence in some 

neighborhood of K • Thus e is in ~,(K) • ·Conversely every 

e e: ~,(K) · is in ~(K) • 

Some terminology associated with Lorentz invariant analytic 

functions will now be introduced. 

Definition: A function will be called L (or L)-invariant over a set 

of points s if and only if it satisfies 

F(K) = A F(A-l K) 
s 

for any K and A such that A is in ~(or L) and both K 

and A-l K are in S . 

Definition: An orbit is a set of points K all connected to a single 

point by a Lorentz transformation A € ;;C . 

Definition: A regular orbit is a set of germs whose base points cover 

exactly once the points of an orbit, and such that the imace in the 

germ space of any continuous curve in the orbit is a continuous 

curve in the germ space. 

Definition: Let g(K) for K e:,;{ K0 K(g(K')) = K' , be the germs 

of a regular orbit. This regular orbit will be called 

o't -invariant if and only if the function F(K) = F( g(K)) is 
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~-invariant over the orbit ~ K0 • 

Definition: A domain of regularity will be called ~-invariant if and 

only if it is a union of ~-invariant regular orbits. 

Theorem 1. A function defined (single valuedly) and regular in a domain 

containing a point and L-invariant over a real domain containing 

the point has an ~?-invariant domain of regularity. 

Proof: Let K0 be the point in the real domain and let the function be 

called F(K) • There is a domain D(K0 ) containing K0 on which 

F(K) is defined and regular. Thus the set e0 := [K0; D(K0); F(K)] 

constitutes a regular function element. Let be the germ 

specified by eo • This is in N . N(D(K0 ), F(K)) • Let 

gl and g2 be any two germs in N Then there is a continuous 

curve in the germ space connecting gl and ~· rn: particular, 

if K(t) is a continuous curve in D(K0 ) connecting K(g1 ) and K(g2) 

then ~(K(t)) will be a continuous curve in the germ space connecting 

and For consider any germ neighborhood N' =: N(D', F'(K)) 

that contains a germ ~(K (t0 )), where t 0 is some fixed value of 

t , 0 ~ t ~ 1 • Let D" be a domain in D' n D(K0 ) containing 

K(t0 ) • Any germ of N' with base point in D" is identical to the 

germ of N with the same base point. For D" is a domain and hence 



the function F 1 (K) must be identical with F(K) for K e D" . This 

is true because F(K) and F i (K) are. both regular over the domain D" 

and they coincide over some neighborhood of K( t
0

) e D", since g(K ( t
0

)) 

contains both [ K(t 
0

); D; F J and [ K( t
0

); D 1 ; F' J . Since the functions 

F 1 (K) and F(K) are identical for K e D" the germs of N 1 and N 

with base points in D" must be identical, by virtue of Lemma 9 . 

Because K(t
0

) is in the domain D" , and K(t) is a continuous curve, 

the inverse image of the points K( t) e D" contains an interval 6 t 

that contains t
0 

and is open with respect to the set 0 ~ t ~· 1 • 

The germs gN~K(t)) with t in the interval 6 t are all in the 

arbitrary neighborhood N1 containing gh(K(t
0

)) • Thus, this curve 

~ (K( t )) = g ( t) is continuous. Hence any two germs in N can be c ortnected 

by a continuous curve. This means that the word "any" in the definition 

of domain of regularity can be replaced by "every" with no change in 

the meaning. (Thattwo continuous curves joined at their end p0ints give 

a continuous curve follows easily.) 

Consider now an arbitrary germ g in the domain of regularity 

of F(K) • It is connected to g0 by a continuous curve g(t) in the 

germ space. Since 'g(t) is continuous the inverse image of any germ 

neighborhood containing a germ g(tJ contains an interval 6 t containing 

"to that is open with respect .to the set 0 ~ t ~ 1 • By the Reine-

Borel theorem~the closed bounded set 0 ~ t ~ 1 .is covered by a finite 

number of these intervals, 6. , with i = 1, 2, ••• , n • Associated with 
~ 

these intervals are corresponding germ neighborhoods Ni,with i =1, 2.1."',n, 
• 
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such that for t € ~i , g(t) € Ni • And trere is then a sequence f ti} 

so that g(ti) is in both Ni. and Ni+l • 

The assumptions of the theorem are a par~phrasing of the 

assumptions of Lemma 8 . Thus for each point K1 of D(K
0

) there 

is a domain n
0

(K
1

) c. D(K
0

) containing K
1 

such that F(K) is 

The first N. 
J. 

can be taken to be N 
1 

- ':\T 
- J.'j. 

Take Kl = K(t1 ) . Then K1 will also lie in the domain D
2 

, in which 

lie the base points of the germs of N
2 

• The germ neighborhood N
2 

is characteriZed by the requirement that each of its germs has an element 

having the domain D
2 

and the function F
2

(K). Also, N
2 

contains the 

germ g(t
1
), which is also in N

1 
= N , and which therefore has the 

element [ K(t1 ) ; D(K0 ) ; F(K)J But then F2 (K) and F(K) = F1 (K) 

must coincide with each other in some neighborhood of Kl . But since 

F(K) is L-invariant in D
0

(Kl) the function F
2

(K) is "i--invariant 

in some domain containing K
1 

. Thus the conditions for 

Lemma 8Aare satisfied for F
2

(K) Hence for any point K
2 

in D
2 

there is a domain containing ~ such that F
2 

(K) is L -invariant 

in this domain. Take K2 = K(t2 ) • The argument may then be repeated to 

j ( ) give J..--invariance in a domain about Ki = K ti for i = 3 , and by 

iteration, for i = n - 1 . In particular, there is a point K 
n-1 

of the domain D , in which lie the base points of N , such that 
n n 

F (K) 
n 

is ,~~~ • invariant in some domain containing K 1 . n-
Lemma 8A 

now shows that there is a domain 

of the germ g , such that there 

D (K ) containing K , the base point 
n g g 

is a function F (K) defined (single· 
g 
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valuedly) over ~D (K) , where it is regular and ~-invariant, 
n g 

and which coincides with F (K) 
n 

in D () ZD (K ) , which contains n n g 

K 
g The germ neighborhood 

by virtue of Lemma 9, since 

hood of K 
g 

N 
g 

F (K) 
g 

N(Z D ( K ) , F (K)) contains g n g g 

coincides with F (K) .'in a neighbor
n 

The set of germs g' € N with 
g 

K(g') € of K constitute an 
g 

J -invariant regular orbit containing g. Let g(K(g')) = g' for 

g' € N • 
g 

That any continuous ..P 
K( t) € rL Kg has a continuous image 

g(K(t)) follows from the .argument given earlier, since g(K(t)) € N g 

(See Lemma 10. ) The~ -invariance of the set g € N with K( g) € c:Z: K g g 

follows from the ·~L" -invariance of () _.; .. ( )~-/ 
F g K over ·~):.:.. D n Kg J c;....~ Kg • 

Thus each germ g in the domain of regularity of F(K) is on an 

,~-invariant regular orbit. Since all pints of this orbit are connected 

to g by a continuous path they are also contained in the domain of 

regularity of F(K) • Thus each germ g in the domain of regularity 

of F(K) is a member of an ci' -invariant regular orbit each of whose 

members is also in the domain of regularity of F(K) • This is what was 

to be proved. 

Theorem lA: Theorem 1 is also true if "L-invariant" is replaced by 

".£-invariant", and the real domain is replaced by a (complex) domain. 

Defip.i tion: A germ neighborhood will be said to be c~t' -invariant if and . 

only if its base domain is of' the form ·;[ D and its characteristic 

function is d ;..invariant. over ;:i D • 



-81-

Theorem 1': The domain of regularity of a function satisfying the 

conditions of Theorem 1 is a union of ~~invariant germ 

neighborhoods. 

Proof: In the course of proving Theorem 1 it vras shown that each g 
t:' 

in the domain of regularity of such a function is in an c:l -invariant 

germ neighborhood N . All the points of this neighborhood are in ·. g 

the domain of regularity since one is, by virtue of the following 

lermna, which was also proved in the course of proving Theorem 1. 

Lemma 10: The image in a germ neighborhood of a continuous curve in 

its base domain is a continuous curve in the germ space. 

The converse of this lemma is: 

Lemma 10': The image K(g(t)) of a continuous curve g(t) in the 

germ space is continuous. 

Proof: A continuous function of a continuous function is continuous. 

But K(g) is continuous, since given any domain D containing 

K(g) one can take a germ neighborhood N g 
containing g specified 

by a function element whose domain D' , which contains K(g) , is 

contained in D • Then for all g' € N 
g 

K(g) € D • 

Lemma 11: Let D be a real domain satisfying the condition of Lemma 1 

that points of D connected by a real A € ~ are connected by a 

A € L • Let there be two converging sequences Ki ~ . K0 and 
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Ki -+ K0 whose limit points K0 and K0 are in D • And suppose 

Ki € d..._ Ki . Then K0 € L K0 • 

Proof: The scalar and pseudoscalar invariants formed from corresponding 

vectors of Ki and Ki = Ai Ki are equal. Thus these points map 

into the same points in the space of scalar and pseudcscalar invariants. 

As the mapping from K to the space of invariants is continuous_.the 

converging sequences Ki -+ K0 and Ki -+ K0 map into converging 

sequences in the space of the invariants. Thus K0 and K
0 

have 

the same scalar and pseudoscalar invariants. 

In case r , the rank of, the Gram determinant of K0 or K0 , 

is greater than two it follows from a trivial generalization of 

Lemma 2 of Hall and Wightman that K0 and K0 are connected by 

a Lorentz transformation A € f.. .i that the transformation is proper 

in the case r = 4 follows from the invariance of the pseudoscalar 

invariants, and for r = 3 there is sufficient freedom to allow A 

to be made proper. Thus the lemma is proved for the case r > 2 • 

Let n(K) be the number of linearly independent vectors in the 

set K • And let n = max(n(K0 ), n(K0 )) • The above argument 

works equally well for all the cases r = n • One constructs the 

the orthonormalized basis vectors ecr(K0 ) and ecr(K0) in the manner 

specified in Lemma 1 above and obtains K0 = '),. K0 , where 

~· is the real A € L defined by ecr(K0 ) = '), ecr(K0 ) • 

Thus K0 and K0 are connected by an element of J.....- • This 

completes the proof for the case r = n • 



Because K
0 

and K0 are real" the only other cases are 

n = r + 1 < 4 • Suppose n(K0 ) = r + 1 < 4 . Then, as in Lemma 1, 

one can construct a set e1 (K0 ), ···, er(K0), e0 fK0 ) + e
3

(K0), which 

spans the space of the vectors of K0 • The combination e0 (K0 ) + e
3

(K0) 

is chosen to be equal to some vector ro of zero length formed as a linear 

combination of vectors of K0 • Such a vector must exist in this case. 

If ro , the same linear combination of the corresponding vectors of 

K0 , is not zero then one can construct a set e1 (K0 ), • • ·: er (K0 ), 

!e0(K0)! e
3

(K0), by means of the same operations as before, but with the 

corresponding vectors of K0 • The two + signs are independent and 

will be specified by the condition that the ~ defined by 

e
0

(K0 ) = Ab e
0

(K0 ) is in L • For r(K0 ) < 2 the sign of e
3

(K0 ) is 

not determined by this condition and it can, and will, be taken positive. 

The points K0, Ki 

-1 -quantities K0 = ~ K0 , 

, and ro can be represented by the transformed 

-1 - . , -1 -
Ki = Ab Ki , and ro = ~ ro • This, in 

effect, refers the barred points to the same coordinate system, e
0

(K0 ) , 

used for the unbarred points K0 , Ki, and ro • In particular 

ro' = ! e0 (K0) ~ e
3

(K0 ) , where the ! signs are the same as the corresponding 

ones in ill. The vectors ill (or m') are what is left after removing 

from some vector of K
0 

(or the corresponding vector of K0) the 

parts along e1 (K0 ), ···, er(K0 ) • In this same way one constructs 

from the sets K0 = .[ koa ~ and K0 = [ kOa -~ the sets of light-zone 

vectors l~a·J=faaro~ and [cp~i = fa~ro'~ byremovingtheparts 

along e1 (K0 ), ···, er (K0 ) • 
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That the vectors of these sets are cdlinear follows from the con-

dition n = r + 1 < 4 . In the special case that w' = w and 

ao; = a~ one has again K0 = ~ K0 with ~ € L • But if w' f= w 

K0 are not connected by a - and or a ::f a 1 
, for some a , then Kb a a 

A € L • However these cases cannot occur. This will now be shown by an 

examination of points in D near K 0 
- q 

and K0 • In the real 0 - 3 

plane consider a set of small circles f C(~a) J drawn around the 

points 

points 

, and a set of small circles [ C(w~) 1 
A set of points with one in each c(w ) 

a 

drawn around the 

corresponds to 

a real point near K0 • And a set of points with one in each C(w~) 

corresponds to a real point near K0 • By taking the circles sufficiently 

small these two points near K0 and _K0 respectively will be constrained 

to lie in arbitrarily small real neighborhoods about K0 and K0 , and 

hence in D •. 

The plan is to show that there is a real point arbitrarily close 

to Ko connected to a point arbitrarily close to K0 by a real A € ~' 
but not by a A € L • The sets of points in the real 0 - 3 plane 

connected by A € L lie on the various hyperbolas having the light-

cone lines as asymptotes. The circles are centered on these light-

cone lines, the C(wa) lying on the line with positive slope ;.:J.nd the 

C(w~) lying either on this line or on the other one, depending on the 

signs in w' = ± e0(K0) ± e
3

(K0 ) 

If C(wo;) and C(w~) lie on the positively and negatively 

sloped light-cone lines, respectively,· then there is always a A e L 

connecting some point of C(wo;) to some points of C(w~) • Moreover; 



there are then also points in these circles connected by any still 

;; larger" A € L The magnitude of the Lorentz transformation is measured 

by the ~uotient.of the initial over the final (Euclidean) distances of 

the point from the negatively sloped light-cone line. -From these facts 

it follows that some set of points, one in each of a given set of circles 

along the positively sloped light-cone line, can be taken into some 

set of points1one in each of any given set of corresponding circles along 

the negatively sloped light-cone line1 by a single Lorentz transformation 

A € L • Thus for the cases w' = ! (e0 (K0 ) - e
3

(K0 )) one can find a 

A € L connecting some real point in any real neighborhood of K0 to 

some real point in: any neighborhood of K
0 

, even though the points 

themselves cannot be so connected. 

The same conclusion holds if one uses instead of A € L the 

real A € J.. obtained by multiplying the A € L by a reflection through 

the origin in the 0- 3 plane. However, as will soon be shown, the 

points connected in this way cannot be connected by any A € L • Since 

by taking the neighborhoods of K0 and K0 small enough the points 

will be in D , one obtains a contradiction with the assumed property of 

D • Thus this case w' = + (e0 (K0 ) - e
3

(K0 )). can, in fact, not occur. 

To see that there would be points in D connected by real 
IJ 

A € j_ · but not by A € L 1 consider first the case w '= -c0 (K0 ) + e
3 

(K0 ) • 

A time-like point in the circle C(w) will be carried to a time-like 

point in the corresponding circle C(w 1 ) by the real A € L. 
these two points are in the forward and backward light cones respectively 
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they ca~~ot be connected by an A € L • The other case, 

m1 = e0(K0 ) - e
3

(K0 ) , occurs only if r = 2 , as previously mentioned. 

But notv a space-like point in C(ro) is taken to a space-like point in 

C(ro') by the real A €L. However, transformations involving the first 

t\vO vectors, el(Ko) 

of vectors of K 
0 

and 

and 

I 

Ko 

e2(K0 ), are not allowed, because the conponents 

in these subspaces are fixed and .equal, and 

hence these t'm space-like vectors, which lie in the right and left space 

cones, respectively, cannot be connected by a A € L • 

The remaining cases are ro' = ! ill, or zero. If ill' = ! ill and 

r < 2 then the construction used above again allows certain points near 

to be connected to corresponding points near One first uses 

a A € L in the 0 - 3 plane to take the points of the C( a> ) a to points 

near the negatively sloped light-cone line, and then uses a rotation 

through ~ in the 2 - 3 plane to bring the points to the desired 

positions in the 0 - 3 plane. In particular if illa and ill' a have 

the same sense, certain time-like vectors near illa can be taken to time-

like vectors near ill I 
a r~ve opposite senses then 

space-like vec.tors can be connected. lim-rever, if roa and ill~ have the 

same (opposite) sense a space-like (time-like) point near illa can be 

carried to a space-like (time-like) point near ill~ by a real 

But these points cannot be connected by a A € L unless ill = ro 1 and 

I 
a = a a a 
lemma. 

In that case K
1 = K 0 0 and R0 = Ab K0 , as asserted by the 

The next case is ill 1 = ill and r = 2 • If ill' = ill and 

for all a then and R0 = Ab K0 , which proves 
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the lemma. If aa \ a~ for some a then R0 and K0 are, in fact, 

not connected by a A € L • In any event it is sufficient to show that 

ro 1 = ro and .;.mply for all a . 

The conditions Ki ~ K0 and K~ = Ai Ki ~ K~ are now involved, 

for the first t:i.me. Let e
1 

(K) , e2(K) , and ro(K) be the linear 

combinations of the vectors of K that become e
1

(K
0 ) , e

2
(K

0
) , and 

ro(K
0

) = ro when K becomes K
0 

• The e. (K) 
~ 

are then generally not 

orthonormalized, and ro(K) is not a null vector. The Ai are specified 

by the conditions A. € -1' and by the quantities e
1

(K.) = e .
1 

, ~ ~- ·~ ~ 

e. 2 , and ro( K. ) - ro. j 
~ ~ ~ 

and 

I 

A. e1(K.) ~== 
~ ~ ei2 = Ai ei2 ' 

and = at least for sufficiently large i , vrhere the 

eil '· ei2 , and roi are linearly independent. For these quantities 

Give the effect of 

since 

ft. 
~· 

on three linearly independent vectors. But 

I 
and ro . ~ ro . , 

~ ~ 
it follows from 

Lerr.ma 3 that A. ~ 1 • 
~ 

For Lerr.ma 3 says that given any neighborhood 

N of the identity in ,;( one can find a neighborhood N' of 

( el (KO' e 2 ( Ko ) ' . ro) such that any points in N' connected by a 

A € ;;{_ are connected by a A € N . Since for the case of three 

linearly independent vectors the A €d 
~ 

is uniquely defined by 

points one concluded that since the sets (eil' ei2' roi) and 

(e~ 1 , e~2 , ro~) both converge to (e1(K0 ), e2(K0 ), ro), the 

these. 

A. € 
~ 

connecting them must approach the identity. But if A. -+ 1 
~ 

and Ki -+ K0 then Ai Ki -+ K0 • Thus R0 = Ab K0 , which proves the 

lemma for this case. 
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If ru' = - ru a reflection through the origin in the 0 -· 3 

plane takes one to the previous case CJ) 
1 = ru • Because of the condition 

on D this case is then ruled out, f:'.:!.nee . K
0 

is connected to K
0 

by 

a real A E L but not by a A e: IJ 

Next there is the case W 1 = 0 . If all of the ru' = 0 , a 
[i.e. if n(K0 ) - r] J then this case is ruled out l1y ·the same argument 

that ·used in. the case ill! 'K ' .·r e3(Ko) there are points was = - eo\ --.) j 
'-' 

D connected. by rea;t A € -;L but not by A € L • ('I'he possibility 

out in this way, it might be added. ) If ru' = 0 but some ill' is a 
a 

of 

nonzero vector lying along the negatively sloped light-cone line one may 
case 

again use the same argument as was used for the{m' =- e
0

(K
0

) + e
3

(K
0

) 

case; the C(cn') is s:imply centered at the origin instead of at its 

former position. 

For the case r < 2 , w' = 0 and m' =a' ru ~ 0 ' · a a T 
for some 

a , the argument used in the case r < 2 , ill' = ± ill , goes through 

w:i.thout any c:hange. 
IS 

Finally there /
1
J..;he same case but with r = 2 • Every ill a and 

(J)I 

a is either zero or on the positively sloped light-cone line. For 

every a either (J) or ill' is zero; otherwise it can be made into the a a 
case ill' :::"till . And not every m' a is zero; otherwise it is the 

previously considered case n(K0 ) = r • This means that the A. are 
~ 

such tr~t the following conditions can be satisfied; 
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(eil, ei2, ill. ) ~ (el (Ko), e
2

(K0 ), m) 

' ~ 

A. (eil, ei2' mi) ___, ( el (KO)' e2 (Ko), o) 
~ ~ 

( II II m") ->- ( el(Ko), e2 (Ko)' ml) , eil' ei2' i . 
and 

A~l ( II II m'~) ___., (el(Ko), e2 (K0 ), o) eil' ei2' • ~ ~ 

Here the double-primed quantities are a particular set of primed quantities, 

the m~ being a~ m~(Ki) whose limit is. m1 ~ 0. 

These two conditions on tre set A. are incompatible. The first 
~ 

two equations imply that, for sufficiently large i , the points A. m 
~ 

must lie in a narrow cone-like region about the negatively·sloped light-

cone line, whereas the second two imply that A. m must lie far from the . ~ 

origin iri some narrow cone •like region about the positively sloped light-

cone line. The incompatibility of these conditions rules out this last 

possiblity. 

The conreque~es for the A. m asserted above follow from a detailed 
~ 

examination of the converging sequences. A general description of the 

argument should be sufficient • .Since (e11, ei2 ) ·~ (e1 (K0 ), e
2

(K0 )) 

one can choose basis vectors eOi and e3i in the subspace orthogonal 

the one spanned by the (eil' ei2) in such a way that (eOi' e3i) 
~ 

(co(Ko), e3(Ko)) • The (eOi' e3i) ' unlike the (eil' ei2) are to be 

parts of an orthonormal basis. A set (eOi' e3i) similarly related to 

(ej_l' ei,2) = Ai (eil' ei2) is constructed. Then A r is defined by - i 

the conditions Air (eil' ei2) = Ai (eil' ei2) and A/ (eOi' e3i) = (eOi' 

to 

the 

e3~ . 
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S • ( ) d ( I I I I ) b th Lnce e11, ei2, e
31

, e0i an e11, e12, e
31

, e0i o converge 

to (e
1 

(K
0

), e
2 

(K
0

), e
3 

(K
0

), e0 (K0 )) it follows that A/----} 1 , by Lemma 3~ 

c· A r(e e ) A (e e ) it follow!'< that A.m = (11..r)-l A o.mce 1 il' i2 = i il' i2 - l - l i 

acts only in the (eOi' e
3
i) subspace. Also since (e01, e

31
, mi) ~ 

(e
0

(K
0

), e
3

(K
0

), m) , with w =e0(K0 ) + e
3

(K0 ), one has <Di -7 (e0i + e
3
i) . 

Since A~ r ~ 1 and A. = A.r A.m the condition A. w. ---? 0 
• l l l l l 

implies A1m mi ~ 0 • Since A1m acts only in the (eOi' e
3
i) sub-

space the problem is reduced now to a problem in this two-dimensional 

space. The two conditions imply 

the general Lorentz transformation in 

this two-dimensional space is represented by 

and 
(eOi + e3i) --? (exp ri) (eOi + e3i) 

(eOi - e3i) -~ [exp ~ri~ (eOi - e3i) 

and hence one cannot transform a point near (e0i 

to a point near the origin unless Re ri >> 0 

this case the point (eOi + e3i) is also brought 

Moreover any point is brought closer to the line 

the point (J.) will be brought closer to the line 

+ e'7..) 
Jl 

But in 

close to the 

f.. (eOi - e3i) 

f.. (eOi e3i) 

origin. 

. Thus 

As 

increase~ the lines f..(e0i - e
3
i) are constrained to lie in smaller 

and smaller cones about the line f.. (e0(K0 ) ~ e
3

(K0 )) . Thus for 

i 

sufficiently large 1 the point ill must be taken by A. 
l 

closer to a point 

near some small cone about f.. (e0(K
0

) - e
3

(K0)) , the cone becoming 

narrower with increasing i Thus for sufficiently large i the 
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Ai w are constrained to lie in a cone-like region about the 

e0(K0 ) - e
3

(K0 ) axis. 

A -1 ( II II ) • If~on the other hand, ni takes a point near the e0i + e
3

i ax1s 

to a point near the origin then Re r. >> 0 • But then under A. all points are 
l. l. 

moved further from the line ~ (e0i - e3i) and closer to the line 

'\ ( II II ) ,.. eOi + e 3i • Thus Ai w must for sufficiently large i be far from 

the origin in a narrow cone-like region about the line ~ (e0(E0 ) + e
3

(K0 )) 

By taking i large enough these two cones can be made arbitrarily 

narrow. Hence the allowed regions will not overlap. This gives the 

contradiction. 

Theorem 2 • 'Let D be a real domain satisfying the conditions of 

Lemma 1 • Let F(K) be defined (single ·valued1y) and L-invariant 

over D , and be regular at points of D , in the (weak) sense that for 

any point K' E D there is a domain D(K') containing K' >and a 

function F(K, K') that is regular at points K E D(K') and which 

coincides with F(K) at points D (K') some real domain contained r J . 

in D n D(K') and containing K' • Let C be any closed, bounded 

subset of' D • Then there is an ;[-invariant germ.neighborhood whose 

base domain B = i_B contains C and whose characteristic 

function coincides with F(K) for K e C • 

Proof: Let K
0 

be any point of C • Let C(K0, p) be a polysphere of 

radius p. centered at K0 • Let pi--;:::, 0 be a monotonically decreasing 

set of radii converging to zero. And let the first pi be small 
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enough so that C(K0, pi) C D(K0 ) , for all i Suppose Ki is an 

infinite sequence of points in { C such that Ki € C(K
0

, pi) and such 

that F(Y1, K0 ) ~ F'(Ki), where F'(Ki) is the (single-valued) ~-invariant 

extension of F(K) to { D , which according to Lemma l exists. For each 

point K. € -£_c 
]. 

I) 

there is a point K. € c n -;)_ K. • 
]. ~ 

Since C is closed 

and bounded the Ki have a limit point K
0 

€ C • And one can find a 

subsequence Ki ~ K0 € C • 

The point K
0 

cannot be on 1 K
0 

• If it were there would, 

according to Lemma lA and the property of D 1 be a A € L such that 

:K0 € A K0 . This A would map the real domain Dr(K0 ) containing K0 

into some real domain containing :K
0 

€ C • The intersection of this 

domain A Dr(K
0

) with D contains a real domain n;(:K
0

) containing 

K
0 

. At points of n;(R
0

) the value of F(K) is given in terms of 

F(K) at points of Dr(K0 ) by the L-invariance condition. Now according 

to t,emma 8 there is an -£.-invariant germ neighborhood, wi ~h a base 

domain: {n
0

(K
0
), having a characteristic function that coincides 

with F(Kj K0 ) for K € n0 (K0 ) C: D(K0 ) . The value of F(K) at points 
/) the 

of n; (K0 ) n i.n0 (K0 ) must coincide with/value of the characteristic 

function at these points, since both are given in terms of F(K) at 

K € Dr (K
0

) by the L-invariance condition. But then F' (K) must coincide 

with this characteristic function for all points of i n;(K0 ) n in0 (K0 ) 

Therefore F' (Ki) = F(Ki, K0 ) for all Ki € ..J__ n; (K0 ) n D0(K0 ) 

This precludes the possibility that a subsequence of the Ki € C 

;[ Ko converge to K
0 

• -Thus the limit point K
0 

cannot lie on 
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But according to lemma ll the point K0 must lie on d K0 , 

since Ki -7 K0, Ki ~ K0 , K0 and K0 are in DJ and R1 €~ Ki . 

Thus there can be no infinite sequence of Ki with the specified properties. 

In particular for some p0 > 0 there can be no pointtiK1 €(C(K0, p
0
)(1! C) 

with F 1 (Ki) ~ F(Ki, K0), 

Take some p0 with Po> Po> 0 .such that C(K0, p0) C: D0 (K0) • 

Then the restriction of the -J... -invariant germ neighborhood over 

-;;{. n0 (K0 ) to the L-invariant germ neighborhood over j_ C(K
0

, p0) 
is an ~-invariant germ neighborhood_whose characteristic function 

coincides with F I (K) for K € ( j_ c n lc(Ko, Po)) . 

The point K0 was an arbitrary point of C • This construction 

can be carried through for every point K1 € C • Let the radius 

corresponding to p0 , but for the general K' € C , be denoted by 

p(K 1
) • One can take p(K') < A , some positive upper bou.."ld. 

Let ri ~ 0 be an infinite sequence of positive numbers that 

decrease monotonically to zero. Let K0 be an arbitrary point of C 

and let C(Ko, r (.:K
0

)) be a polysphere of radius r(K0 ) about the point 

r.(K) > 0 be less than p(K) and less than r .• Let 
~ 1 

Ki be a new set of points such that for each Ki 

such that Ki € C(K0, r i (K0 )) n l C(K~, r i (Kj_)) 

characteristic functions constructed above for K0 

coincide at K=K i . Either an infinite sequence 

or there is some a(K0 ) such tha. t for ri < a(K0 ) · 

there is a K' € C 
i 

and such that the 

and K' i fail to 
,. 

of Ki can be found 

no such Ki exists. 
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Suppose there is an infinite sequence of K. For each K. there is 
~ ~ 

a Ki e ;( Ki that is in C(Kj_, ri(K~)). Since the union of the 

C(K') p(K')) , K' e C, is a bounded set the Ki must have an accumulation 

point K
0 

. This point must be in C J since the r. (K~) -7 0 
~ ~ 

This 

point K
0 

is a limit point for a subsequence of the K .• 
~ 

The other 

~i can be omitted. This limit point must, according to Lemma ll lie on 

i_ K
0 

• . By virtue of the property of D there must then be a A e L 

such that K
0 

=A K
0 

• Thus K
0 

is in ·-1._c(K
0

, p(K
0

)) • But since 

Ki ~ K0 and Ki --7 Ki , also Kj_ --7 K0 , and the K.j_ e C must be 

in lc (K
0

, p(K
0

)) , except for a finite few vrhich can be omitted~ 
Then also the C(IC , r. (K!)) will be completely inside 

~ ~ ~ 

except for a finite few>which can be omitted. But then the characteristic 

functions over -;[ C'K
0 

, p(K
0

)) and ·i.c(K.j_ , p (Kj_)) must coincide 

at the points in C(K!, r.(K!)) 
. ~ ~ ~ 

si;-1ce they coincide over points of c 

contained in this polysphere, whose intersection with L C(K0 , p(K
0

)) 

is a domain, ro(K' r (K' ). ) But then the two characteristic functions 
v. i J i i . 

must coincide at Ki' and hence also at poin~ of ;[Ki) and hence at 

K .• 
~ 

This contradicts the assu~ption concerning the K. 
~ 

Thus there 

cannot be an infinite sequence of K. satisfying those conditions} and 
1. 

hPnce there is an a(K0 ) such that for ri < a(K0) the characteristic 

function over ~C(K0 , p(K
0

)) coincides with the characteristic 

function over L c(K' , p(K')) for all K' e C , at all points 

K E C(Ko J r i (Ko)) n L C(K'' r i (K')) and hence at all points 

K e i_ C(K0, r ~:~(K0 )) n ;/_ C(K', ri (K')), w!:ere r i (.K ) < min (r i', p( K ) ) 

The point K0 was an arbitrary point of C • Thus i.;here is 

for every K' e c a characteristic radius a(K') > 0 . If there is no 
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lower bourid a> 0 such that a(K') ~a> 0 for all K' € C then 

one can find a sequence of. K. € C such that a(K.)--} 0 • These K. 
~ ~ ~ 

must have an acc,.liilulation point K € C , though. a(K) > 0 But such an 

abrupt jump in a(K) at K = K is not possible, for if 

b (K) = min f a (K) , p (K) l then certainly a (K) ~ 3' b (K) > 0 for 

1 - 1 K € C (K, 2 b(K)) n C, since ·fer these K all points of C(K, 3' b(K)) are 

in C (K, b (K)) , where the various characteristic functicm coincide 

even with the weaker limit a(K) on the rt , and hence certainly for 

1 (-) ri<3bK. Thus there must be an a > 0 

for all · K' € C • Thus the union of the 

such that a(K') > a 
J._ -invariant germ n~ighborhoods 

over the base domains £ C(KJ, b 1 (K')) , with K' € C and 

b' (K') = min (a, p(K' )), satisfies the r_equired conditions; its base domain 
I' 

contains all points K' € C , it has an d:_.-in variant characteristic 

function defined (single valuedly) over its base domain B = LB , 
and this c·haracteristic function coincideswith F'(K) for K € Bf};(,.c • 

Definition: An enlargement of a germ neighborhood N is a germ neighborhood 

containing N but not contained in N . 

Definition: A germ neighborhood N will be called maximal if and 

only if no enlargement of N exists. 

Lemma 12 • Every germ neighborhood is contained in a maximal germ 

neighborhood. 



Proof: Let N be an arbitrary germ neighborhood. A maximal germ 

neighborhood ~ "::) N can be constructed as follows; Let 

be a denumerable sequence of points that is everywhere 

dense in the space in which lie the base points of the germs of 

the germ space. Let the Ki be enumerated. If a point Ki is 

reached that is in the base domain of an enlargement of N then 

replace N by this enlargement (probably one of many possible 

enlargements) and proceed iteratively with the enumeration of the 

points of the sequence ( KiJ Because the union of a (finite 

or infinite) set of open sets is an open set the result of this 

denumerable sequence of operations is a germ neighborhood N ' a 

since the base domain D is certainly connected and the function 
a 

F (K) 
a is defined (singl€ valuedly) over D a and is regular at any 

point in D a 

Let D be the set of accumulation points of the points K. € D a ~ a 

No enlargement of Na can contain a point whose base point K is not 

in D a 

points Ki 

For any such point K must be an accumulation point of 

not in D a Hence any enlargement containing a point 

with such a base point K would also contain a point with base 

point Ki not in D a This is impossible, for if there were sue~ 

a Ki then when this Ki was reached in the enumeration it could 

have been included in the base domain of an enlargement of the then 

current germ neighborhood, since enlargements of enlargements are 

themselves also enlargements. But the construction was such that 

r! .. 



' 
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if any Ki ·. can be included in the base domain of. any enlargement of the 

then-current germ neighbor~ood then it is in fact included in the enlarge-

ment associated with this K .• 
~ 

Thus this Ki would be in 
_,. 

no Ki not in D 
a 

and no accumulation point K of these 

D 
a 

Thus 

can 

be the base point of a point in any enlargement of N ; the base points 
a 

of all points of every enlargement of N are in I5 
a a 

If a point with base point K € D is in an enlargement of N a a 

then the value of the characteristic function of the enlargement at 

K = K is uni~ue; it is the same for any enlargement. For in order that 

a point with base point K e: D a be in an enlargement of N a the 

corresponding characteristic function must be defined (single valuedly) 

and regular in a neighborhood N(K) of K , and· it must coincide with 

F (K) for K e: D n N(K) • Thus it must coincide with F (K) at a a a 

the points Ki e: Da n N(K) , which are dense in a neighborhood of K 

But the value of F (K) at these points then determines the fm1ction a 

at K = K by virtue of the continuity re~uirement implied by the 

regularity at K of the characteristic function of the enlargement. 

Let DM ·· be the subset of D' 
a 

consisting of all the points of 

D C: D and of all the base points of the points of any enlargement of 
a a 

Na Sj.nce the DM is a union of domains each of which has a point. 

in common with Da the set DM is a domain. Since the value of the 

characteristic function of any enlargement of 

for every K e: DM one may denote it by FM(K) 

N a 
is uni~uely defined 

This function is 

regular at every K e: DM because it is defined for K e: DM by an 

enlargement of N. a 
Thus one may define a germ neighborhood 
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~ = N(DM' FM) • This germ neighborhood contains Na and hence N • 

Moreover, this germ neighborhood I\i is maximal. For a.ny elilargement of 

NM would also be an elilargement of Na .• But no enlargement of N 
a 

exists that is also an enlargement of NM because NM contains every 

point of every enlargement of N 
a 

Lemma 12A • Every -J_- invariant germ neighborhood is contained in a 

maximal germ neighborhood that is -1.-invariant. 

Proof. Let N = N(D, F) be an i- invariant germ neighborhood. If 

an enlargement of N exists then an ~-invariant enlargement also 

exists. To prove this, note first that any enlargement of N is a 

domain containing a point of N and some point not in N • By 

connecting these with a continuous curve one can, by a simple construe-

tion, find, in the enlargement, a point P0 not in N such that any 

neighborhood of P0 contains a point of N • Let the base point 

of P0 be K0 • According to the Corollary to lemma 8 there is a 

domain D0 (K0 ) containing K0 such that the function defined in 

D0 (K0 ) as the characteristic function of the enlargement of N can 

be extended to a function F'(K} th~t ;i..sf-invariant throughout.t'n0(K0) and 

and regular there. It must coincide with the characteristic function 
r· 

of the original :.f.._ -invariant germ neighborhood, wherever both are 

defined, since both functions are -:;[-invariant over their domains 

of definition ~nd they coincide-in D0 (K0 )~D, which contains a point 

of every orbit common to both domains. Thus the union of the original 

~--

' 
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:;(-invariant given neighborhood N with the :;[-invariant germ neigh-

borhood N' == N(:,ln
0

, F') constitutes an enlargement of the original 

one, and this enlargement is £. -invari1;1.nt. Thus if an -i_. invariant 

germ neighborhood has an enlargement lt has an ~invariant enlargement. 

By virtue of this, one may proceed just as in lemma 12 , using however 

only . £-in variant enlargements. After running through the denumerable 

set one has. an f... -in variant germ neighborhood N = N (D , F ) • 
a a a 

Now, no point not in D a 
can be the base point of an i- :l.mrariant 

enlargement. The set DM C Da is defined by using only £-invariant 

enlargements. Thus ~ = N(DM' FM) is a germ domain that ismaximal 
_p 

with resper.+. to J~ -invariant enlargements. But then according to the first 

paragraph NH is also maximal. Thus it is a maximal germ neighborhood 

that is i ... -invariant. 

Definition: The base domain of a maximal germ neighborhood will be 

called a sheet. 

Theorems lA and 2 , in conjunction with lemma 12A;)are summarized in 

Theorem 3. Let F(K) be a function defined (single valuedly) over a 

real domain D • For every A in the real proper orthochronous 

homogeneous Lorentz group L and ~very K such that K and A K 

are in D let F(K) satisfy the Lorentz invariance condition 

F(K) = A-l F (A K) 
s 
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If F(K) is regular at some point K € D then the analytic continuation 

of F(K) from the neighborhood of . this point is defined over a manifold 

covered by a set of sheets each of which maps onto itself under any 

element of the proper homogeneous complex Lorentz group ~ · And for 

any sheet the associated function defined (single valuedly) and regular 

at all points of this sheet satisfies the Lorentz invariance. condition 

for all A € 1._ . 
Moreover, if every point of D is a regular point of F(K) and 

D has the property, specified in Lemma 1, that any points of D 

connected by a real A € ;;!! are connected by a A € L , then any closed 

bounded subset C of D can be completely contained in a single cf...-invariant 

sheet, with F(K) coinciding with the function defined over that 

sheet for K € C • 

Definition: The restricted mass shell is the subset W in the space 

of points K= [ k1, ~ • ·, kn ~ that satisfy the n mass constraints 

2 L u2 2 
ki = (k. ) = m. 

~ 
. ~ (i = 1 • • · n) ' , ' ,:; 

1-L 

the four conservation laws 

L k.I-L = 0 
~ 

1-L = o, 1, 2, 3 

i 

and the condition that the set K € W have more than one linearly 

independent vector. The mi are fixed positive numbers and n ~ 4 . 
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Lemma 13 • The restricted. mass shell W is a (3n - 4) complex-

dimensional manifold • 

Proof: Consider any point K E W • Let the k. be ordered so that the 
~ 

last two are linearly independent. Let A (K) be a Lorentz trans-

formation that is such that the energy components of the vectors of 

K' (K) = A (K) K are all nonzero. Such a A(K) surely exists 

since the K are a finite set of nonzero vectors. Let the components 

l, 2, 3, -
1 0 10 be numbered so that k 1/k 
n- n 

~ k:'3 /k:'3 
n-1 n This is 

possible because kn-l and kn are linearly independent. By a 

small change in A (K) that does not upset the above ineQualities 

one can also ensure that 
_I 0 _I 0 2 I 3 '3 2 

(kn-l + kn ) f (kn-l + kn ) , since 

k l + k ~ 0 • n- n 
vli th A(K) fixed in this 'way the set of vectors K' (K, K) 

is defined by K' (K, K) = A (K) K • The set Z(K, K) is then 

defined as the set of (3n - 4) complex variables consisting of the 

three sp:~.ce components of the first (n - 2) vectors of K' (K, K) 

and the first two components of the (n- l)st vector of K'(K, K). 

The set of functions Z(K, K) are analytic functions (in fact linear 

functions) of the vectors of K • They define a set of mappings 

of K space onto Z space. 

"Dy v].rtue of the conditions t'nat have i.Jeen imposed on the 

vectors of K' the inverse transformation1 K'(K; Z) 1 that maps Z 

back into K' E W is uniquely defined for Z € U (K), a domain 

containing Z = Z(K, K),. and is an analytic function of Z there. 
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14 
T~is follows from simple algebra or from the implicit function theorem, 

the conditions of which are easily verified. 

The set W can be made into a topological ,(Hausdorff) space by 

defining the open sets in W ~to be the restriction of open sets in K 

space to W • The topology in K space and Z space will be taken as 

the usual one induced by the ~1lclidian norm. With the topology of W 

defined in this way the continuity of the functions K(K; Z) and 

Z(K; K), considered as mappings between K space and Z space, which 

follows from their analyticity, implies that these mappings are continuous 

mappings between. U(K) and its image UW(K) C W • For if a neighborhood 

of a point Z € U(K) maps into a K-space neighborhood of its image 

K = K(K; z) then it must also map into a W-space neighborhood of 

K = K(K; z) ,since it maps into W. And conversely, if a neighborhocd 

of K € W · in K ·space maps into a neighborhood · in. Z space, then its 

restriction to W also maps into this neighborhood. Thus the transformation 

K(K; Z) defines a one-to-one continuous mapping of neighborhoods of 

K € W contained in UW(K) onto neighborhoods of Z contained in 

U(K) • Since the inverse is also· continuous the transformation is, 

by definition, a homeomorphism and the open sets in UW(K) and U(K) 

are homeomorphic images of each other. Slnce K was an arbitrary point 

of W the set W has an open covering by sets homeomorphic with open 

sets of C()n-4) 
' 

and hence W is a (3n-4) (complex). dimensi onal 
15 

manifold. 

·~ 



,, 

··-

-103-

Definition: The functions K(K; Z) and Z(K; K) will denote the 

functions introduced in the proof of lemma 13. The function 

Z(K; K) is defined for K € W and for all K , and for each 

K € W it is an analytic function of K • The function K(K; Z) 

is defined for K € W and Z € U(K) , a domain containing 

Z = Z(K, K) , and for each K € W it is an analytic function of 

Z for Z € U(K) • The function K(K; Z) maps points Z € U(K) 

into UW(K) <::"W • Its reciprocal is Z(K, K) in the sense that 

Z(K; K(K; Z')) = Z' for Z' € U(K) and K(K; Z(K; K~)) = K' for 

K' € uw('K) c w. 

Remark: The set UW(K), as a home.omorphic image of the domain U(K), is a domain. 

Definition: The mapping $(K) is a mapping of 

Z € U(K) defined by NR) K = Z(K; K) for K € W and K € UW(K) • 

Definition: The restricted mass shell .W together with the complex 

structure induced by the collection [ uw(K) ' ¢(K) J} K € w} is. 

called the complex analytic manifold W of W 

Definition A: A function M(K) defined on a restricted mass shell W 

will be called regular at K € W if and only if M( 6 -l (K) Z) = 
(M o ~-1 (K)) Z is a regular function of · Z at Z = ¢(K) K • 

Definition A': A function M(K) defined on a restricted mass shell W 

will be called regular at K € w if and only if M 0 f 1 is regular 
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at Z = ~ K for every one-to-one mapping Q , such that Q-l Z ~ 

k(Z) € W is an analytic function at Z = Q K • 

Lemma 14. Definitions A and A' are equivalent. 

Proof: If M(K) is regular (A') at K € W it is certainly regular (A) 

at K € H since ¢(K) is a particular ~ If M(K) is regular (A) 

at K € H and ¢ is a one-to-one mapping such that ¢-1 z -= K(Z) ·€ W 

is an analytic function at Z = ¢ K , then (M o ¢-1 )z = I·1(K( 'z)) = 
M( ~-l(17) Z(K-,· K(Z))). tA ~ ,t-l(-K) ~ , But n ~ ~ is an analytic function of 

its argument Z for Z = Z(K; K), and Z(K; K) is an analytic 

function of K for K = K , and K(Z) is an analytic function at 

~ - ~-1 ~ -z = ~ K . Thus M o ~ is an analytic function of Z at ~ K 

since it is an analytic function of an analytic function of an 

analytic function. 

Theorem 4~ The preceding theorems and lemmas remain-valid if F(K) 

is replaced by M(K) defined' on a restricted ~~ss shell W , and 

all domains are taken to be domains relative to W • 

Proof: The mass shell contains all poi?ts having the sa~e scalar invariants 

as any point on it, and in particular all points on any orbit inter-

secting it. This is the only global property of the K space that 

vras used in any of the above proofs. For local properties one 

replaces the topology.of K space 'Oy the topology of H space. 

Some of the proofs become vastly simplified because for real 

K € vl one has n = r • 



., 
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Remark 1. Any real domain of W satisfies the condition of Lemma 1; 

two real points of W connected by a real A € ~ that is not a 

A € L must have opposite energy components and hence they cannot 

both be in a real domain in W . The M functions have been shown 
c 

to satisfy the L-invariance condition at regular physical points. 

Thus if D is a real (physical) domain of regularity of M 
r c 

(defined over W) then, by Theorem 3, any closed bounded set CCD 
r 

is contained in a sheet s that maps onto itself under any A € of, , 

and the function M c has a single-valued analytic continuation 

throughout S , ·and is L invariant there. 

Remark 2. One consequence of the above remark is a slight weakening of 

the assumptions needed for the S-matrix proof of CPT invariance. 

In the original proof3 the postulate of minimal analyticity required 

the existence of a physical sheet that was bounded by cuts defined 

by' equations involving on1y scalar invariants. Tnis condition on 

the boundary was imposed specifically to eliminate problems 

associated with a possible multivaluedness in the continuation to 

the CPT image point. However, consequence of Theorem 3 drawn in 

the above remark is the existences of the single-valued __ [-invariant 

continuation to the CPT-image point. The proof of CPT invariance 

11 in this way is similar to the field-theoretic proof of Jest; that 

proof rested heavily on Lemma 1 of Hall and Hightman, w·hich is 

rather analogous to Theorem 3. 

Remark ;. In the construction of the decomposition of the analytic 

functions into analytic functions of scalar invariants time standard 
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( 1 . 1) . . t 16 ' l7 th _p . . f th d po ynomla lnvarlan s, e oe-lnvarlance 0 e omnins 

of regularity is a basic ingredient. A fundamental result that 

can be drawn from this paper (Theorems 1 and 3, and the L-invariance 

at physical points established in previous sections) is that any 

domain of regularity of M containing a physical point is 
c 

cf!-invariant. Since M is defined by analytic continuation 
c 

from physical points, any domain of regularity of 

f -invariant. 
:>-"" 

M 
c 

is 

-· 

• 
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APPENDIX A. GENERALIZED SPINOR CALCUlUS 

The Lorentz transformations A~ (A, B) are defined by the 
v 

equation 

(A.l) 

where cr~ = (cr0 , £) are the usual Pauli matrices, and A and B are 

unimodular two-by-two matrices. The unimodular two-by-two matrices 

form a group. The canonical irreducible representations of this group 

of dimension (2a.+ 1) are generated by the recursion relation 

(a) a;' 
A = 

a; 

(b) ~, 
Cbc(a,a:; ~,7) Cbc(a,a:'; ~· ,y') A 

(c) y' 
A 

.(A.2) 

where the coefficients C are the usual Clebsch-Gordan coefficients. 

The is identified with A • 

Generalized spinor indices of order (2a + 1) are introduced. 

They can be either upper or lower and either dotted or undotted. The 

distinction between indices of these various types is with respect to 

the effect upon them of the operator A s 
The action of this operator 

is defined as follows: 

(a) a' 
A sa = A sa, s a 

A s· = s 0 
I B( a)&'. 

s a a a 

sa a' 0 (a)) -la' 
a 

A = s s 

0 

~(a)) -l a a' 
• I a a 

A ~ = s s (A. 3) 
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Here is defined by the analog of (A.2) with B's in place of 

A's. If a function has several spinor indices then A acts individually s 

on each in the manner given by (A.)). 

Let f(V) be·a function of a set V = 

vectors. Let AV = {Av1,···)Avn1 where 

AJ.l (A, B) vv 
v 

{ " .. ·v { 
nl 

If f(V) carries spinor indices and satisfies the equat~on 

A
5 

f(V) = f( AV) 

of four-

(A.4) 

(A. 5) 

Then f Hill be called an invariant spinor function. The Pauli matrices 

cr.. will be considered to have matrix elements cr · . 
,... J.J.Ctl3 

Then the function 

a·v (A.6) 

is, by virtue of the conventionG adopted, an invariant spinor function. 

A generalization of the Pauli crJ.J.Ct~ to higher dimension is 

defined by the recursion formula 

~ ~ • • ( b ) 
cbc a, a; 13, "' cbc(a, a'; 13', 1') cr( ') 

J.l 13&' (cr (:II)) "fr' 
(A. 7) 

where a= b + c. Here ( J.J.) = 11-Ll' • • • 'J.J.2a ~ is a set of 2a vector 

indices and (J.J.)=(J.J.') + ( J.l") The (cr(:)) is synunetric and 

traceless in each pair of tensor indices. 17 

~' 

• 
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The projectionoperator on the spin state of quantum number 

m with respect to a spin direction (axis of quantization) s ·is 

given in terms of these (cr(:)) by the equation 

r)Jl~ 
+ ~j s . 

. where the s.ummation over h is subject to the constraints 

= 

"'here 

= 

m 

1 
2 

(A.8) 

The r r 
s . and v are rest frame values of s and v , where v is 

the covariant velocity. The projection operator Pm(s) is the rest 

frame value of the general invariant spinor function 

2a 

= L 
h 

n 
j=l 

(v + ~j s) • 

The multiple, continuum of matrices Pm(s) span the 

(A.9) 

2 
( 2a + 1) 

dimensional space in which they are contained. In particular, if 

for all m and s , then N = 0. Takine; r 
s to be along the z axis 

one immediately finds that the diagonal elements of M are zero. A 

consideration of infinitesimal rotations of sr then shows that the first 

off-diagonal elements vanish and one can proceed in steps to sho"' that 

M = 0. 
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