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ERRATA

Professor Jost, in trying to simplify the proof of Lemma 4, produced
a counter example, which has been generalized by R. Seiler* to all r< n <2
points. The proof of Lemma 4 is valid only for the remaining points n=3, 4,
or r, and hence the proof of .Lemma 8 is also valia only for these points,
However, general proofs of Leinma 8, based on Lemmas 2 and 7, have rev—
cently been given by D. Williams and P. Minkowski, ¥ and hence the theorems

remain valid.

" Peter Minkowski, David N. Williams, and Rudolf Seiler, "On Stapp's
Theorem,'" E. T. H. Preprint and Proceedings of the Symposium on the
Lorentz Group, Seventh Annual Summer Inst. for Theoretical Physics, 1964,

University of Colorado, Boulder, Colorado (to be published).

Page 5, line 16 read: For any (E, r) there exists* - -
Page 25, line 8 - read: Ky = A "K,, # Ko,
Page 51, line 4 read: vectors of K.

Page 51, line 18 read: € it (KO), and re-orthogonalize e, (Kg) - -
e3(KO'), following a standard procedure.

Page 63, line 16 read: In case all of.:-

Page 87,  line 18 read: (ey (KO), e (Kp), w)
Page 90, line 15 read: Re I'; <<0

Page 92, line 21, read: D (K,

Page 92, line 22, read: IDI. (KO)

Page 109, line 4 read: (1/2)vY in place of v¥.
Page 109, line 12 read: (1/2)v in place of v
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ABSTRACT

Aﬁ axiomatic approach to S-matrix theory used earlier is
developed in more detail. Certain of the postulates are made weaker
and are brought closer to physically verifiable propositions. The
viewpoint adopfed is that the axioms should, whenever possible, be
assertions of specific,'verifiable physical relationships rather
than abstract general principles. This tends to eliminate ambiguities
and superfluous entities, to cement theory to experiment, and to
establish a secure logical framework. The paper 1s the first of a

series and is devoted to detailed proofs of the fundamental conéequences

'of the firsf few axioms. In particular, the unitarity of the S matrix

is derived from a completeness property that incorporates the possibility
of superseleétien rules. The relationship between spin and representations
of the rotation group is derived from the defining experimental
characteristics of spin. The necessary existence of an S matrix whose
connected part Mc is a Lorentz invariant function is derived from

the assumed relativistic invariance of experimental correlations. A
general theorem is proved that asserts, roughly, that a function that |

is (real) Lorentz invariant anywhere is complex Lorentz invariant
everywhere in its domain of regularity. Finally it is shown that the

analytic continuations of MC from regular points in the physical
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region of a given proéess along paths generated by the complex Lorentz
transformations lead to a function that is single valued in a neighbor-
hood of all of these paths. Applications are discussed. The results
derived constitute the preliminéries to a discussion of the analytic

structure of the S matrix to be given in a subsequent paper.
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I. INTRODUCTION
Mandelstam'sl success in obtaining terms of the renormalized
perturbation series by methods,dealing purely with scattering amplitudes
at physical mass values has generated renewed interest in Heisenberg‘52
suggestion that the S matrix itself, without reférence>to field-theoretic
ideas, may’providé an adequate basis for elementary-particle_physics.
This idea is the basis of much current theoretical work in strong-
interaction physics due in part to serious practical difficulties
encountered by field-fheoretic methods, in part to the apparent suit-
-ableness of S-matrix methods for dealing with the complicaticns
associated with bound states and resonances, and in part to a belief,
held in some quarters, that the abstract requirements imposed.by field
theories may be too stringent to permit a consistent theory of inter-
acting particles. |

3

. In an earlier paper” it was shown that CPT invariance and the
normai connection between spin and statistics follows from S-matrix
postulates. The postulates given there are, however, strénger than
necessary, and fall shoft of achieving certain S-matrix ideals.

The present paper is the first of a series devoted to a detailed

study of the axioms of S-matrix theory. The objective is to define a

Work done under the auspices of the U. S. Atomic Energy Comnission.
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set of axioms restrictive enough to permit useful practical_calculations,
and minimal in the sense that no superfluous elements are introduced.
Also the axioms are to conform to certain S-matrix ideals, that must
themselves be defined. In this first paper certain fundaméntal
éonsequénces of the first three axioms are derived. These results
provide the basic structure of the theory._

| The first postulate asserts the probability interpretation
and the superﬁosition principle. Iﬁ the formulation of these assumptions
given in SI the possibility of superselection rules was not admitted,
and the proof of unifarity given there depended on that fact. In-the
following section, Section II, a reformulation of this postulate that
allows for superselection rules is given. Unitarity is then proved on
the basis of this weaker postulate,

The second postulate specifies that the measurement of the
momentum, the spin indices, and thé particle type of all particles present
constitutes a completevexperiment. In ST it was specified that the spin
indiccs e connected with a representation of the rotation group in the
"usual" way. Thoﬁgh this assumption is hardly open to question it runs
counter to the general.methodological principle that has been adopted
here. This principle is that to promote certainty, general abstract
assertioﬁs, with perhéps maﬁy far-reaching consequences, should be
replaced, whenever possible, ﬁy assertions of specific physically observ-
able relationships subject individually to direct experimental test; that
the theory should, so far as possible, be built directly upon experimental

fact, rather than being merely indirectly supported by these facts
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a posteriori. This principle leads SOmetimes to a feversal of the
usual order of argumentatlon, w1th what is usually regarded as a .
| consequence belng taken as the dosumptlon. There is also a sllght
sacrifice of economy since broad general assumptions are . replaced by
limited speclfic ones, but the resultant galn in. certalnty is deemed
‘to outwelght this small aesthetlc loss.

In conformity.tolthis prineiple the abstract assﬁmption regarding
the conneCtion betweeﬁ spin indicee.andvrotations is replaced, in Section III,
R byethe aesﬁmption that.cerﬁain relationships bet&een physical observables
ére'safisfied. efhe usual connection is theﬁ derived from_these.
- e'In‘Sectien'iV the relationship between momentum-energy and space-
time isvbriefly discussedf

In Secfien V the principle of mecroscopic relafivistic invariance
ie formulated as”a relationship between experimental_fesults. .From this
relationehip the necessaryvexistenee of a (torentz) invariant scattering
matrix is deaueed. In SI»an extra ad hoc peetulate was used to eliminate
certein unwanted phase factors; here this reeult is achieved without that
assumptien. |
| In Section VI eome properties of (Lorentz) invariaﬁt analytic
functions are derived. .A:principal result is a theorem (Theorem 3) that
asserts that if a function isvinvarienf under elements of the connected v
component of the EEEl Lorentz group over.a real domain and ie analytic
at fhe points ef this domaiﬁ, then the complefe analytic extension of the
function is defined over a set of eheets each of which maps onto itself

under any element of the connected component of the complex Lorentz group,
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and the function defined (single valuedly) ovér each sheet is‘invariant '
under elements of this latter group. Moreover, if the real domain
satiéfies a certain condition that is always satisfied by & physical
region, then this entire domain can be contained in a single sheet. This
theorem is somewhat akinvtO'Lemma‘l in the paper of Hall and Wightma.n.h

In.cpnjunction with a result of Hepp5

it aliows one to prove.the existeﬁCe
of a local decomposition of an invariant function into a sum'of standard
polynomial invariants timés holomorphicvfungtions of scalar invariants,
over domains of fegularity bounded by cuts defined by equati ons involving
only scalar invariants. This is a partial exténsién of the Hall-Wightman
theorem tb domains_of this ﬁyﬁe, which is the type that will later arise
from the postulate of maiimal'analyticity.

A second application of the theorem is to a slight weakening of
the assumptions needed for the S-matrix proof of CPT invariance. In SI
thé'éxistence of a physicél sheet bpunded by cuts defined by equations in-
volving only scalar invariants was postulated. This assumption would
be é consequence of maximal analyticity but is of course much weaker, since
the boundary of the sheet is allowed to be arbitrary, éubject only tb the
condition that it be determined by equations involving only scalars. This
assumption, which disposes of certain problems regarding single-vaiuedness,
can be weakened, for the theorem shows that the analytic continuations
from various points in the pﬁysiéal région of a given process along paths

generated by various complex Lorentz transformations lead to a function

that is single valued in the neighborhood of all of these paths.
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II. THE BASIC QUANTUM PRINCIPLES AND UNITARITY
| Quantum theory deals with correlatlons between the probabllitles
of possible results of experiments. A class of experiments whose'members
are called complete experiments is characterized in the following way.
Lethﬁjélc(E) .be the probability thaf_a complete_experimentr E: has the
result (E, r) in circumstance c¢ . .The :(;ZC(E) are asserted tovhave :

the following properties:

Al. @‘:(E) > 0 for all ¢ and r , (2.1)
A2. L. él?c(E) = 1 forall ¢, = (2.2)
A3. ( ér)c(E) = 1) implies, for all (E;, v) and (E,, V),

B2 = lafEy, B o) - (2.3)
.and’ . '

\7AVC(E2) = lav(Eex E: r)|2 ) ) | (2~)+)

whefe the amplitudes are a set of complex numbexrs that are linearly related:

a(E;y B, 7) = ‘%" av El’ E,) 2 (EQ, yx) e (23)

Al, For any (E,'f) that exists a ¢ such that (;7

Definition: Results (.El, u) and (El, t) . belong to different

. superselection classes if and only if

S E ) s (El, E,)

wlEp =0 for all (E2, v) . (2.6)
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If for some El there is a sef of numbers vu(El) such that

whenever (El’u) and.(El,t) belong to different superselection

classes, and such that -

then there is some (E2, Q) such that

Fa®

5,,(Ep» Bp) & V(E), - - (2.9)

uv' 1’

where 2 means equal to within a phase factor that is independent

of u.

The principles stated above are an extraction of elements of the

usual guantum theory. They do not exhaust the usual principles,

since , among other things, commutation relations and the quantum

of action are not mentioned. They are expressed directly in terms of

correlations between observable quahtities without the introduction of

such auxiliary notions as operators and states of a physical system.

In A5 the constraint (2.7) is required for consistency with

(2.6). Condition (2.8) is required for consistency with A2, A3,and Al;

the existence of (Ea, v) together with é& allows the condition for A3

*0 be satisfied with E

2 the instance of E ,and v the instance of r .
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The consequence in A3 inserted into A2 with (El; u) the instance of

(B, r) gives

Z Is, &, EDI® = 1, (2.10)
u . C

where the sum over v  has been eliminated by combining Al and A2
with the condition ‘65L(E2) =1 . Thus if Vu(El) fails to satisfy
(2.8) there can be no (Ee,‘v) such that (2.9) is valid.

The remainder .of this section is devoted to the derivation of the

unitarity property of the transformations S(E In SI the existence

v B
of an S(El, E2) fulfilling the conditions in Egs. (2.1) through (2.5) for
any possible au(El) [or,alternatively) av(Ee)] was assumed, and unitarity
followed immediately.

Given any (E2, v) an argument essentially the same as the one

Just given leads to the conseguence
I ols (E,EDE = 1. | (2.11)
5 uv' 1’ T2 ‘

This is part of the unitarity relation. 'Suppose x and y label

different results of E that do not belong to different supérselectibn

2

classes. Let

v (E2) = a B + b (2.12)

where 61, is one for 1 = J and is zero otherwise, and where

lal® + [b]® = 2 | (2.13)
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The conditions of A5 are then satisfied by Vv(Ea)’ snd there is an

1
(EE’ W) such that

"

ad + b8 . (2.14)

1
va(Ea’ E2) vx vy

By the same argument used to get (2.11) one obtains now

N I, (E, Eé) 2 = 1. | (2.15)

From the requirement in A3 that the a(Ea, E, r) be independent of E,

one obtains the chain rule.
t t
By Ep) = Z: Suw(Ep By) S (Ep Ep) o - (2.16)
This substituted into (2.15) gives, using (2.1%),
‘ 2
1 = :Z; l5,(Brs Bpda + S, (B, B )u[” . (2.17)
Expanding and introducing (2.11) and (2.13) one obtains

* K. :
2 Re ab %I SuxlEyr Ep) Suy(El, E)) = 0. (2.18)

Since a and b are arbitrary, subject to (2.13), one obtains

% s (B, B)) s:y(El, E) = 0 (2.19)
< |

for any x and y differing from each other but not belonging to
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different superselection classes.. If x and y do belong to different
super super selection classes then .(2.19).1s a consequence. of (2.6).
Thus one obtains the unitarity relationship

< ¥ '
ﬁ‘ SulEys Bo) 8, (B, E)) = &, | (2.20)

or in matrix notationx

1- ' .
5 (B, Ey) S(B), E) = 1. o o (2.21)

o)

Conditién A3 guarantees the existence of both a right and left inverse:

-1 -
S (El, E2) = s(Ee,_ E

AR ‘ o - (2.22)

This, together with (2.21);'implies‘the second unitarity rélation

% s, (B, E) s (E,E) = o . C (2.23)
w
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III. PARTICLE OBSERVABLES

Bl. There are.complete experiments the possible results of which

may be labeled by sets of variables of the form

K = {ki, m, , ti> s - (3.1)
where ‘
ie {1, 2, *u0y Ny <oo} 3 (3.2)
"lsi € R3 Y ‘ (3'3)
.2 (ko)2 L2 2 | (5.4)
1 = 1/ TR T W o, 5
and
mi € <Si’ Si - l’ .",> -Sig . . (5'5)
J

The finite bound N in (3.2) will be called the number of particles

K
associated with the particular result XK . The ‘R’ in (3.3) is the
real three-dimensional continuum. The numbers My and Si are called
the mass and spin of particle i , respectively, and are functions of
t, , the particle type. The four-vector k; will be called the
(mathematical) momentum-energy vector of the ith particle, and the

indices m, will be called the spin indices of particle 1 .

A "sum" over a continuum parameter k. 1is to be interpreted as

i

an integration, and the corresponding parts of auv interpreted as a

Dirac delta function defined so that the relation -

S e =1 o (5.6)

A'S
D ow
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is maintained. An arbitrary nonvanishing weight factor;can-be~introduced
in the integration and coﬁbensated by a redefinition of. 'S .ﬂgIt,will be
advantageous to use a covariant momentum space element. Specifically,

a "sum" over momentum vectors Ei will mean an integration over the

covariant momentum space elements

o = - =3 (3.7)
. 3| = 77 : »
///\m) 7 (eer V2 . .2
c E ~f i /
Definition: The set _TV = -<ti:> will be called the type of result
labeled by K = { ,_ki’ m, , ti j‘-.
§g.‘ Results of the same type 40 not belong to different‘superselection
classes.,
B3, The physical interpretation of the spin indices mi' is

associated with a direction Eir , the spin direction of particle i,
which 1s a three-dimen51onal space vector in a rest frame of

particle 1 .
Definition: The experiments of the type specified in Bl will be labeled
specifies thé set of spin directions

B

- ~associated with the ‘mi, and o specifies'other variables,

Ea(SB)’ vhere S

fThere should be no confusion between this argument S. and the transformation
S e El, E ).]
It is convenlent to adOpt now the notatlon

For experiments differing only in the choice of spin axes the same subsceript

will be used.



One particular, but arbitrary, choice of the (Sl’ Sa) will be taken
as a standard and the labels xl(sl) and K2(82) shortened to K, and

Ké for 1it. Then one may write

.r' - ; \ 1 [} .l 1
s, (5,)3 Ky(5,)) = [ stiy(sy)s ) (s 1) sk x08,))
| . » (3.9)
by virtue of the chain rule (2.16). The integrations are over the repeated

1] t
cqntinuum varigbles of Kl and Ké . Sums over repeated spin indices

are always to be understood.

gg. - Transformations associated with changes only of the spin directions
Specifically, |, ' '
act completely within the spin spaces./'S(Kl(Sl); Kl) is zero unless

ki = ki and ti

Condition Bhk allows (3.9) to be reexpressed in the form

1 . . 1
- t, and similarly for S(K.; K2(Sa)).

8(K)(8,); Kx(8p)) = U(Sy, 8p) 8Ky Kp) - (3.10)
where an operator interpretation is»to be made. That is, for a spin-space
operator U(S) , »

u(s) F(k) = U(s) KKy, ¥, T)

= Uy, Ky, T) F(Ky, M', T) . (3.11)

3
Here K = <ki’ m, , ti? has been split into three sets Ko, M
and T , in the obvious manner. The matrices, U(S, Ky T) are,
according to the result proved in Section II, together with g&, unitary

matrices in the spin space.
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L3

In terms of the U Jjust introduced one may define spin projection

operators:

Ps) = uTNs; K, DS u(s, Ky, T) 5 ©(3a02)

where ¥ is a diagonal matrix in the spin space specified by (KO, T),

"having unity in the position specified by the M part of K and zeros

elsevhere. In terms of these projectibn operators one may write
ls(x,(s,); K (s, )" = s'(x') P(s) s(x') , (3.13)
1V71 2 2 v
where
K | (' | S,.) X ind T
K = (XK K), 5 = (8;, 8, 2 o = Koo and Ty = T, .
There will be no confusion if this is abbreviated by
. . 2' * v
Clstx(s,)s K (8,007 = s (K) B(S) 8(K) , (3.12a)
AN 282 _ ,
with the suppressed K, and T, of P(S) being specified by the K
of S(K) , and the suppressed superscript M of P(S) being specified
by the (Ml, M2) of the left-hand side.

The quantities occurring in (3.13) are special cases of

quantities
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' 7 S ,,‘,( ,'“'i 2 i. : N
Q.(El’; w By vl oz fs (B B - (3.14)

{

';ff_.qﬁgigughtityi(Z;(EI}EQ}'fEQ, &)_ will be'éalled‘tbe correlation between

- (El;fu)..and '(Ee,.w};.?gonditions_él, A2, and A3 imply that

(P ey =1) = (FE) = CE, w 5, ),
| | (3.15)

where the arrow représents implication. This relationship provides the

’

experimental signifiéahbe of correlations. The special case (3.13) is
/F o ' — * ’s ‘ | ' ‘
Cry(8))5 Ky(85)) = 87(K) B(8) s(K) . (3.16)

One may considér correlations between experiments that differ
only in-the choice.of the orientations of spin vectors{ let (K;(Sé))
and ,(K;(s;)) label two'possible results of the same type T of two
experiments related.in ihis way; They are related to the setﬂgpecified

N 1 H " "

‘o . ] o ~f . A
by X, by the transformations V(KQ, KZ(SQ)) and 3(K,; K, (82 ¥,
K2(S )) is thea

respectively. The correlation between (Ké(sé)) and | o

1 1 n" on - v Y " 1" 2
C(ky(85); Ky (8, )) = ,' s(Kp (S); Ky (8, )]

1 " «

- 1 ST sy st 1 (s N1, ()
N

2

n
[

where the chain rule (2.16) and unitarity have been used. (The subscripts
.on the variables of _Z? ~and S may be considered as part of the

identification of these functions.)
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Let a'(M') be a set of complex numbers satisfying

ety ar(w) = Z ol -1 o

According to A5 there is ah experiment and associated result, which will

T 1 . to
= t -
be labeled by A2(S = (a', Kop? Too (Sa))’ such that

0)
. 1 1 ~ . ' . , , . | ‘ .
S(Ky; A,(S,)) E 5(Ky; Ky(55)) a' (M) o (3.9)
, . , ,
( A summation on M, is implied on the right.) Condition (2.8) of A5
' ) : T 1
is satisfied because of (3.18) and the unitarity of S(K2; Ké(sa))f and
(2.7) is satisfied by virtue of B2 and Bk .

In the same way one may introduce the experiment and associated

’ 1" "
result labeled by A, (82 ) . The correlation function is

‘ - o ) o o,
Clagisys 2 (5,0 = 1 [ %y agleg)) sty 8, (s, N1 -
(3.20)
B5, Iet A2(82) label a possible result of the kind just constructed.
Consider a set A = < Ai;* of independent rotétions in.the
rest frames of the partiéle; specified by A2(82). There exists

a corresponding "rotated" result Ke(gé) of the rotated experiment.

Correlations are invariant under this set of rotations:

(3.21)

o
—
2]
n
~~
[
>l
(M)
—
wn
no
~
~r

Clay(sp)s b (5,)) = (IR,
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Condition B5 expresses a purely kinematical relétionship, not a
dynamical one; the correlations are between experiments differing only
by rotations of spin'directions, not by, say, tempdral displacements or
in any other way. The condition is a varticular case (hence weaker
requirement) of the general property that kinematic correlations between
the spin states of a particle are invariant under rotations in thé
particle rest frame.

With the introduction of the notation

S(Ky5 Ax(Sp)) = W, » | (3.202)

S(Kys Ay (8,0) = fy (3.220)

s(ky Ep(8)) = ¥ . | C (3.220)
and W ‘

S(Ky By (5,)) = By s (3.224)

condition B5 takes the form

2 2 '

n O = 1w DI, = (5.23)
where the bracket representé the complex inner product.

Condition B5, as expressed in (3.23), is just in the form required
for an application of the argument given in the- appendix to Chapter 20 of
Wigner's book.6 That is, for all vectors ¥ and ¢ in a finite-
dimensional space there are corresponding vectors E and 5 , and
(3.23) is valid. From Wigner's argument one concludes that it is
possible to redefine the phases of ﬁhe E and a sﬁch Eﬁ:y are obtained

from ¥ and ¢ by a linear unitarity transformation. That is,
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S(Kys KoEy) = V(M) S(Ky Ans)) (3.28)

where UQ(A) is a linear'unitary operator in the spin space. The
lineariéy means that U2(A) is independent of é' and of S; . The
linearity and unitarity ensure that the possible redefinition of phases
gives a function S still satisfying the basic quantum principles.
From the linearity of U(A) one concludes that the U(A) are

elements of a representation7 of the productéof-rotation group;

. ' ' ) .
provided S<K2; Ae(se)) is different from zero for each value of M,
'
for some value of a' and S, . This condition is, in fact, satisfied;

2
4 -
a(M') to be Syt

1 t
The development just carried through for S(K2 (K2)382) can be

one may take S, to be the particular one chosen above Eq. (3.9), and

. 1) 1
done also for S(Kl (Slx Kl) . From (3.24) and the analogous equation

1 1
for S(Kl (Slh Kl)’ one obtains for the projection operators defined in

(3.12) the relation

Kas) = un) o) vl (3.26)

where the U(A) are unitarity, linear operators (i.e., independent of
S and M). |

Because A represents a product of indepehdent rotations the
U(A) must be a direct product of representations of the rotation group:

u(n) = 77 U(A) .
i
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B6. . The representations Ui(Ai) are irreducible representations
whose dimensions are independent of ki .
By virtue of the factorization property of U(A) the projection

operator PK(S) defined in (3.12) also factorizes:

P(s) = 7/9 Mg, | . (3.27)

1

From B6 one easily shows that Pm(gir) has the form

55, | (5.28)

-1
P, = ) ale

where the coefficients amn are determined by the eguations

2s,
—'v‘l
’ T\
>_ . am_n(m ) = Smm| ' (3-29)
=0
for |m'| < s, » and where
I.(e, s r) = (I, + Lie g.os.0) ' A‘ (3.30)
it Ric i 2 ~1 ~d _ *

is the operator that gives the rotation by the infinitesimal angle ¢

R r . . o . .
about the axis s, 5 in the spin space of the ith particle. The label

g was used
~

POT 1

m 1is chosen to conform to common usuage. {(The symbol

Lo ]

rather than the more usual S to avoid a still further proliferation

of symbols S, and to emphasize the connection Pauli matrices.)



#

-19-

The conclusion is that ‘as a consequence of the assumptlons
made so far, the usual connection between spin projection operators
and rotations in the particle rest frames must hold- that this connection
is not only suffic1ent to give the usual experlmental relatlonshlps but
is also a necessary consequence of certain of these relatlonshlps. By

T Yo

the usual" connection is meant the relatlonsvgiven in (3.27) through
(3.30).

There is no implication in the foregoing that one must use the
saxne representation (i.e., the same matrices gi ) for spin spaces
associated with different values of ki . And indeed, since different
values of ki give distinct rest franes‘the analysis for eacn ki Iis
separate also in a physical sense. Of course one may change at will
between representations tnat are unitary equivalent. This just induces
a redefinition of the transformation function S(K) occurring in (3.16),
since the physical correlations are fixed. Stated differently, it is
by specifyiné the representations of the spin operators that a corresponding
arbitrariness.is removed from S(K). |

It is convenient.to always use the same matrices for the 95
for all values of the ki‘..”That is, the unitary operator UE( A) in
(5.2h)>will be taken to oe‘independent of K, ; and 51m11arly for U (A)
Accordingly, the operator U(A) in (3.26) will be independent of K .
As all 1rreducible (2S +1)~ilmen51onal representations of the rotatlon
group are unltary equivalent the adoptlon of this conventlon involves

no 1loss of generality. (ConJugate and transpose representations are

included if the sense of ¥ T is left open.)
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The vectors gir used in the foregoing are three-component space

vectors. They define the physical spin directions in a resﬁ.frame3
of ﬁhe particle. Exberiments for.measuring spin characteristics can
always be considered to measure rest-frame q_uantities.8

Of course, there'gre many rest frames of a particle, which differ
_ in QAeir orientation, and the components of Eir will depend on whiéh
'frame is chosen. Given a particular rest frame énd the components in -
- this. frame the componénts in any other frame are determined by Lorentz
traﬁsformations. In §4general frame the spin vector will become a four-

vectdr, which will be déhoted byv 8, . Since it is only the space parts

i
inia rest frame thatenﬁer into the characterization of the experimental

results the time part in such a frame is irrelevant and can be set to

zero. Then the four vectors si will satisfy the relations

s('sy = -1 . and s;'k;, = 0. (3.31)

1
The convenient way to specify the {Eir} is to give the <si}:- )
¢

for these latter can all be given in a single general coordinate systen,

the samé one used for the k If the gir themselves are given then

i -
one must also specify the various particular rest frames relative to

which each has physical significance. Adopting this convention we shall

consider that the argument of E(S) is a set S = <’si} of four-vectors
_ _ i
satisfying the conditions (3.31) and specifying the spin directions

associated with E(S) . The s; end k, are to be the values of the

spin-four vector and the nomentum-energy four-vector in some single
coordinate system. For cofivenience the connection between the signs of
the mathematical vectors s, and ki and the corresponding physicai

vectors will, however, be left open, for the moment.
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IV.  SPACE-TIME VARIABLES AND CONSERVATfON LAWS

Space-time variables are related to momentum-energy variables
by a Fourier transformation, in units where Planck's constant is 2r .
This relationship, conjectured by DeBroglie, is borne out by diffraction
experiﬁénﬁs and gives'fhe mathematical basis for the uncertainty principle.
Using this connection one cén deduce the conservation law of momentum-
energy from translational invariance. Considerations relating to space-time
variables will be discussed in detail in the following paper. For the
present it will merely be remarked that the functions S(XK) are subject

to thé conservation-law constraint
(2 k) s(k) = 0. : - (k.1)

Here, for simplicity, the mathematical momentum-energy vectors for one of

the two experiments, say E2 ’ have been teken to be the negatives of the

- physical momentum-energy vectors.
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V. MACROSCOPIC REILATIVISTIC IﬁVARIANCE
Definition: I will denote the real prbper orthoéhronous'homogeneogs
Lorentz group (i.e., the connected component of the'real homogeneous
Lorentz group, often denoted by L? ) .
Cl For e?ery experimental resultj Av(ér B), and any A € L, there
is an associated transformed resﬁlt AL (or AB) of the transformed
_experiménts that is specified by vectors (perhaps tensors) related
to those specifying the original result by the transformatioh A .

Correlations are unchanged if each result is feplaced by the

associated transformed result:
C (A, B) = (M, aB) . | (5.1)

It will be sufficient to use three more specific assumptions; which can

be regarded as particular instances of Cl. The first of these is

g}ﬂ. For any A € L
C(r,(s,); Ky(8,)) = (AK (As)); AK,(4S,)) (5.2)
where
K = { i} | (5.3)
and ! :
AS = < > | : (5.4)
Using (3.16) one may write (5.2) in the alternative form
s"(k) B(S) S(K) = 8 (AK) P(AS) S(AK) , (5.5)

where the suppressed M's on P(S) and P(AS) are the same. Because

of the s, appearing in (3.28) the relationship between P(S) and

~i
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P(AS) 1is relatively complicated; it depends on the particular choices
of the various rest frames. However, the operator (3.28) is just the

value in the rest frame of an invariant spinor function (see Appendix A)
) : _ | _ .
Pv(ki, s;) = %; a P, k;, s;) | (5.6)
that satisfies, for all A e L,

'k, Ms) = oag P, s (5.7)

1 1 .
In particular, if A ki and A si are taken to be the rest-frame

values of ki and s the left-hand side of (5.7) becomes just the

i 2
Pm(gir) of (3.28). Substituting (5.7) into (5.5) one obtains the

alternative form
¥'(1) B(K, 8) M(K) = N(ag) B(AK, AS) N(AK) , (5.8)

vhere P(XK, S) is obtained from P(S) by feplacing each projection

operator Pm(g,r) by its covariant generalization Pm(ki, si) , and

N(K) 1is obtained from S(K) by incorporating into it the various
~ spinor Iorentz transformations Aé of (5.7). This procedure was
described briefly in SIA and in more detail in SIB.

The new covariant operators P(K, S) are imnvariant spinor

functions:

P(AK, AS) = Ag B(K, S) . (5.9)

The result of substituting (5.9) into the right-hand side of (5.8) can

be expressed in the form
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N (K) P(K, 8) N(K) {As‘l N(AK)} p(K, S) [As'l )|

| (5.10)
provided the spin indices of the N functions are assigned a spinor
index type fixed by specifying that the contractions in (5.8) connect
always upper and lower indices of the same dottedness. The transformation
properties of the P(K, S) are, of course, purely algebraic consequences
of their definitions. On the other hand, the transformation properties
of an N(K) cannot be obtained . simply by examination of its specific
form,. since this is not given. One is, of course, free to assign any
arbitrary transformation rule to any spin index of N . The important
question is whether, for some particular assignment, the function N(K)
will be aninyariant spinor function.

The continuum of operato?s PK(S) for various values of

{ k]

S =. <si S span the finite (7".7/(25i + 1))-dimensional spin space
\ 1 : i
t

specified by K . (See Appendix A) Thus from (5.10) one obtains

immediately
'S 1 " l * l "
N(K)NK) = [AS N(AK' )} [AS’ N(AK"), , (5.11)
] " 1 " 1 _ " .

wbere ki = ki and ti = ti , but m, and m, can differ. From

this one obtains
N(K) = As-l N( AK) exp[i alA, KS:] , : ‘ (5.12)

where a(A, K) is real and independent of the my indices of K .
The nondependence of a(A, K) on the indices 'mi deduced above
is, in effect, a consequence of the observability implied by B2 and A5

of the relative phases of spin amplitudes. According to B2 and A5
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combinations of amplitudes labeled by different values of ki are, in
effect; also observables. Tﬁe nondependence of the a(A, K) on the
ki's can be obtained-by.an'examination of these observables, as will
now be shown.

let - (Kea(sza)) .and (K2b(32b)) specify experiments and
associated possible rgsults of the same type T . And suppose - K2a and

"

bi are related by a real rotation A + I:

Xy - & Ky f Kpe , (5.13)

let a and b be two complex'numbers satisfying

al® + Iol® - 2 S (5.14)
Then according to A5 there exists an experiment and an associated possible
result, which will be labeled by B, such that

s(Ky; B) = a S(Kys Kny(S5,)) + b 8Ky Ky(S, )
| (5.15)

Condition (2.8) of A5 is satisfied by virtue of (5.13), Bk, (5.14) and
the unitarity of S(KE;.Ké(Sé)) . Condition (2.7) is satisfied by virtue
of B4 and B2. By means of the chain rule, (2.16), one can also obtain

S(K,(8,); B) ¥ & S(K)(8)); Kpp(Sp,)) + b S(KL(S))5 Ky (8,))

(5.16)

If (Kl(Sl)) is abbreviated by A then the correlation function

C(A, B) is
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_ 2
O, B) = | as(ki(s)); K, (8,)) + bs(K(S)); Ky(5,)) |
- 2 _* ‘
= |a|® W (xa) P(Ka, sa) N(Ka)
> ,
+ o] N(K,) (K, 5,) MK)
o ) P(K , S_; )
+ ablN (Ka a, a: }%: Sb N(Kb)
*  * , |
+ba N (K) PB(K, 8K, 5) NK_) ,
(5.17)
where K = (Kl’ Kéa) , etc. The operator P(Kﬁ, .5 K Sb) is the
natural generalization of the operator P(Ka’_sa) = P(Ka’ S, K Sa)
defired below (5.8). It has the property
. - -1 . .
P(Ka; Sy Ky Sb) = Ag P(AKA: AS_; MK, Asb) ’ (5.18)

which is the generalization of (5.9).

According to Cl correlations are invariant under the replacement
of experimental results by associated transformed results. Because of
this the transformation B - AB can, if the phase factors are fixed
appropriately, be represented by a ligggz transformation. The proof of
this, which is similar to one given earlier, will be deferred until the
end of this section. This linearity, which means that ‘the transformation
is independent of the coefficients a and b , and does not change them,
allows one to take as the second instance of Cl the statement

C1B, For all A € L and all a and b satisfying (5.14) the right-

hand side of (5.17) is.nﬁmerically unchanged by the substitution



o
: (Ka: Sa) 'Kb’ Sb) g (AKa: Asa: AKb,ASb) . (5.19) -

The restriction (5tlh> is, of course, no aétual limitation, due to a
scaling invariance. -
| Experiﬁénta; teéts of relativistic invariance always invo;ve.>

interference betweén amﬁlifudes of:at least slightly differing momenta,
aﬁd hence C1B, though more“restrictive than‘gyg; is & special case of
the type of relationship that is verified in practical tests of relativistic
invariance.

The invariance of thegfirétrtwo terms on the right of (5.17)

folioﬁs from (5.8). Consideration éf‘thé caées ab = 1/2 and 1i/2
give the sepafate invariance of the last two terms of (5.17). From the
fact that:the continuum of operators P(Ka’ K i Sa; Sb) span the spin

space (see Appendix A) one obtains, using (4.18),

*

N*(,Ka) N(Kb) = [As'l N(Axa')] [As-l N(Axb):} . (5.20)

It follows from this that the phase factor exp|i a(A, Kﬂ in (5.12) is
. L

the same for all sets of K = (X Ké) for which the K. are related

1’ 2
by real rotations in accordance with (5.13). Similarly, one obtains the
analogous result for the arguments Kl'. If N vanishes the phase is,

however, undefined.

Combining the above result with (5.12) one obtains

N(K)

Ay~ N(AK) exp 1t a(A, K)]- ' : E '(5.21)

As'l N(AK) exp ;—l alA, K')]



- 28-

provided K' may be carried to K = A'K' by a sequence of rotations

on K, and K, individually with the N(K') nonzero at the various
points.on the sequence of values of K' .

Equation (5.21) may be nseq to establish a group property
for exg[i a(A, k)] . Define K' so that A'K' = K, with A' € ;R ,
the rotation subgroup of L . Then using (5.21), one obtains

N(A'K') = N(K) = AS']' N(AK) exp[i a(A,K')]

-1
A" N(A AK') expli a(a, k)]

1
A" W(K') expf-1 a(ar, K')] . (5.22)
The last two lines méy be rewritten

NK') exr[-i (A", K'J} expf-1 oA, k)] = Aé’l At N(ARK)

(AA')S N(AA'K')

It

"

-1 " .
Ag N(A K')

N(K') exp[-i a(A", K')]] . (5.23)

Comparison of the first and last lines gives

exp{-1i a(A’, K ) exp[-1 aa, K')] = exp[-1 a((AA'); K')j,
| o (5.24)
provided the conditions for the validity of (5.21) are satisfied.
Equation. (5.24) is the group propertj. But the unique one-dimensional

representation of the rotation groun is the identity representetion.
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Hence if the conditions stated beneath (5.21) are satisfied then

exp[-1 a(A, K)] = 1, - o (5.25)

and the N(K) are invariant spinor functions:

MK) = ASTTN(AK) . L (5.28)

It is, in fact, sufficient-to establish the group prOperty over
a finite but arbltrarlly small neighborhood of the identity,51nce the
entire rotatlon group can then be built up by multlpllcat;on.  Thus

a sufficient condition for the validity of (5;26) is that

T T )
for all ,
A e N, _ - - (5.27b)
and
, B - ) R . .
B € M e (5T
where N_ - 1is a neighborhood of the identity in- Li Hence continuity

of [N(K)| at K in the manifold generated by the individual rotations

1 J
A and A

1 o is sufficient to guarantee (5.26). Indeed, continuity of
lN(Al'K)| in this manifold for any Ay €L 18 sufficient) since the
result (5.26) with ‘K replaced by AJK  implies (5.26) itself, by. virtue

of the group property of the A's; 1i.e.,

N(A, K) = As'l N(A A, K) - (5.28)

with A set to. A AL

-1 .
1 gives



!
1 -1 1
N(Al K) (A AL g N(A K)
- ! ' " '
= Mg Ay Na K), ; (5.29)
hence
-l . [ 1 _ v
A N(Ay K) = Ay N(AK) = N(K), (5.30)
where the special case A' = 1 has been used in the last -step.
The conclusion is, then, that N(K) 1s an invariant spinor
function,

N(K) = As'l MAK), - (5.31)

for all péints K such that for some point MK, AL e L ,
lN(Al K)| 1is continuous in the manifold generated by independent
rotations of A, K, end A K, . "I‘ake: A, to be the transformation to
the center-of-mass frame. Then these rotations will keép the arguments
in the manifold of defihition defined by the conservation-law constraint.
Thus N(K) 4is an invariant spinor funétion wherever it is continuous
within its manifold of definition. |

Finally, we return to the deferred proof that the transformation '
B2 - AB2 can, by appropriate choice of phases, be represented by a
linear transformation. Let Bé and B; label two experiments and
associated possible results corresponding to linear combinations of
amplitudes of the type occurring in (5.15). The (KO)Ea’ (Ko)zb’ and T,

are to be the same for all contributions, but the '‘a and b and the spin

variables can differ. The correlation function CB(B', B") is

1

C () By = | fS*(K 5 B)) S(Ky By) ° (5.32)
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The final special case of Cl is then
1"

CiC. For experimental résults Bé and Bz of the type specified

above, and for any A e 'L',,v

((aBy, AB, ) . o (5.33)

2

This condition is kinematic, like BS, rather than dynamié, like C1B, since
: " . S - : o
the experiments Bé, and B2 do not differ by temporel displacements.
'By virtue of the covariant form of the momentum space eiement,

(5.33) can be written as

] ,[ s¥(AK.; AB}) S(AK,; AB)) |2

| * " 2 '
- ’f §7(K,s Bp) S(Kys Bp) | (5.34)

The. integrands appearing in (5.34) contribute only for.
(KO)2 = (Ko)2a or (Kio)2b . The equation ;s thus again of the form
(3.23), the spin indices now covering their finite range twice, once for

K and once for K . The same argument as before [éee (3.23)} shows

2a 2b
that the transformation B2 - AB2 must be repfesented by a linear_
transformation, aside from certain phase factors that drop out,ofvan
expression like (5.17). This linearity enéures that the genéral physical
requiremenﬂ Cl must, for the special physical case covered in g&gjbé 
expressed by the algebraic relationship asserted in C1B.

The conclusion; then, is that if physical phenomena satisfy the

physical relationships asserted by postulates A, Bgaﬁd C then there

necessarily exist functions N(K) related to physical correlations in
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the manner specified in Section III, satisfying unitarity relationé that
are caslily derived, and satisfying the invariance Eq. (5.31), for A € .IU
wherever they are analytic in their manifolds of.definition. From
strongef assumptions these conclusions would follow ﬁore easily; the
objective waé to use the weakest assumptions.

The subtraction from N(K) of possible parts defined over
submanifolds restricted by conservation laws involving subsets of particles
leaves the so-called connected part Mé(K). This separation will be

discussed in the following paper.
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VI.. ANALYTICITY AND LORENTZ INVARIANCE

In this section some consequences of assuming that M(K) is
regular analytic at some physical point will be examined. The ﬁain
result to be established is that if an M function is fegular at some
physical point then the complete analytic extension_of the function is
definéd 6ver a multiéheeted manifold each sheet of'ﬁhich maps.onto itself
under any proper complex Lorenﬁz tfansforﬁation. .Furthermore, the functioh
defined (Single valuedly) and regular over any sheet is invariant under
proper complex lorentz transformations. Finally, if M is'regularbat
each point of some real domain containing only physical points then the
sheets described above can be chosen so that all the points of this
doméin lie in a single sheet. These resulis have some importént
cdnsequencés, which will Bevmentioned at the end of the section.

The‘inifial‘consideratidns wiil.réfer to a function F(K) whose
domain of definition is not restricted by the mass shell and conservation-
law constraints.: Also the type variables T = { ti } will be considered
fixed. Thus the argument of F(K) will be a set of the type intro-
diced in Section IIIT, buf with the mass constraints and type variables
removedf Furthermoré the argument (K) willvbe distinguished from the
point K (without brackets). The QQEEE K will mean siﬁply the set
of.momentumgenergy vectors. {ki)'3 But a function at a point K - will

mean the set of functions whose momentum-energy variables are the point

K ; all spin indices are allowed.
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Let the following definitions be made.

Definition: I will denote the real proper orthochronous homogeneous

Lorentz group. It is continuocusly connected to the identity.

. Y _
Definition: A_ will denote the ¢omplex proper homogeneous Lorentz

group. It is continuously connected to the identity.

Definition: A will represent a Lorentz transformation and
(A K)= {A K, »omy g. (6.1)

(The . ti are temporarily either suppressed or eliminatéd)

Definition: The point K represents the set of momentum-energy vectors
éki% , but a function at a point meéns the set of functions having
momentum-energy variables specified by the point X ; all spin

indices .are allowed.

Definition: Points -Klv and Ké related by K1 = A Ké will be said

to be connected by A .

Definition: The set of points connected to X by some A e‘i(or L)

will be denoted by LXK (or L X ).

Definition: The set of points connected to some element of the set

D by some Ae L(or L) will be denoted by Lo (or LD).

Definition: A point X is real if and only if the four vectors {ki 2
i - )

are real.
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Definition: A real set is a set of real points.

Definition: A function F(X) is a (eiﬁgie-valued) mapping to the

complex numbers.

Definition: The spin indices of .(K) will be presumed to have some
spinor index-type label, and A F(K) will represent the result
of the action uponv,F(K) of the corresponding spinor.transformetions

associated with A , as discussed. in Appendix A.

Lemma 1. If F(K) is defined (51ngle valuedly) over a real set D

all

’ and satlsfles for all A ¢ ng andA K sueh that K and AK

are elements of D +the invariance condltion
' -1 o o
F(K) = A F(A " K) , : 3 E (6.2)

then (6 2) w1th A -1 KeD and A e CZ: deflnes a (51ngle valued)
functlon over dﬁ D , provmded any two p01nts of D connected by

a real element of «Qf are also connected by an element of L.

Proof: - The prescription will uniquely define F(K) ' at K' of" quD

‘if for amy two points K, and K,  of D for which

1
k' = A, K, = K, | with A, and A, €ol’, one ha
=M K o= MKy, W 1 2 » One has
. , . S a1l .-£¥ S,
But ey the group property K, = A2. Ay Kl = A K; . Thus (6.2)

gives

I R



~36-

provided A = (1\2‘l Al) € L . Hence it is sufficient to show that
A is an element‘of L . If the rank r(Kl) of the Gram determinant
G (:Gij= k, - _kj) at the point K is four, or equivalently T if there
are four linearly independent vectors among the‘vectors of Ki , then
the rank is alsb four at K2 ; Since inner products are unchanged,
and the samé_four veétors are also linearly independent'at Ké + In
this_case_the linear transforﬁation A is unique. Since K1 and
Ké are feal, ‘A is a reél element of 'ji . By hypothesis it is then,
by virtue of its uniqueness, an eiement of L . This completes the
proof for thé‘case r(Kl) =4, For r(Ki) = 3 +the transformation
A is still unique‘zL and the same argumént*holds.'

If r(Kl) < 3 ‘then the»t?ansformation A is not always
uniquely defined by the equation Ké = A K1 and it may not bé real,
as required for the above argument. There are several cases. If
the rank r(Ki) is equal to _n(Ki) , the number of linearly independent
veétors of K, , then the space separates into & manifold ‘M(Kl) of
dimension n(Ki) = r(Ki)v spanned.by the set K, and the orthogonal
manifold Mb (Kl) . One can construct a set of real orthogonal basis
vectors ep(Ki), each of length plus or minus one,
such that the first' n span m(K;) and the last (b - n) span
.ML(Kl)'. To construct such a basis one first takes. n(Kl) linearly
independent reasl vectors from the set Ki . This set is augmented
by .(h - n(Kl)) real vectors to give a complete set of resl linearly
independent vectors. Because tle rank r(Kl) equals n(Kl)‘ the linear

equations arising in the construction of ep(Ki) are soluble.. The
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details have been given by‘Hall and Wightman. b Since the original
vectors are, for us, real the coefficients in the linear equations are
real and hence the solutions can be taken to be real. A similar real
basis, . ep(Ké) ,‘cag be;constructed for X, .

Our intérest is invthe.various Loréntz‘transformations At
satisfying X, = A K , the K and K, being the fixed points of
D connected by A€ Ji; Ké ='A Ki . The transformations

A' can be represented by the matrices ASO defined by

Ae (k) = oK) A = © (%) 7T (x,) AL, (6.5)

‘where a suwumtion convention is used. -The-labels.pP, o0, and 7T

specify the basis vectors, not components, and

¢P(k,) = (k) - P(K) =ty for j=1,2  (6.6)

For either value of |j three of the vectors ec(Kj) have
length minus one and the other has'length plus one.lO ‘That all

four have length minus one is impossible because any vector v can be

expanded as
. () o0 _ '
Vs v () e (i) (6.7)
with -
= . = e M
vo(Kj) = ea(Kj) v o= e, (KJ) Vi o | (6.8)

where u labels the component of the vector. Then
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= KV = P93 ’
vevesv Gy vp(Kj) G (Kj) ya(Kj) . (6.9)

If the negative sign were always to occur in (6,6) then all vectors
represented by real vp(Kj) would have negative length. But the

vector v with components vu = 6“0 'haS'?eal vp and positive length'
"=, -1, -1, - 1)), which is a contradiction. On the other

hand if there were two real orthogonal vectors vl and v2 of'length

plus one then

(vol)e_ - leiz - 1, (vog)l - fl = 1, (6.10)
and -

o Vo =X ¥ . - (6.1)
From these it would follow that

@B = D) G IR (6.12)
and hence that

(v - ) > Iyllz Ifte : (6.13)

which 1s not possible for.real vectors. Thus there is, for each J,
precisely one vector ec(Kj) of length plus one. Because of this

the vectors ec(Kj) cén-be generated from the original set of basis
vectors by real Lorentz transformations. The transformation Ab con-

necting the two sets
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'Ab'eU(Kl) = VeU(Ké) g | o - (6.1h)

will then also be a real Lorentz transformation.
The basis set eo(Ké) is not completely specified by this
.construction. It is possible to take the first n vectors (which

may or may not include the one.of positivé length) to be given by
o o ' | R
“(k,) = £e’(x) o =(1, 2, -, n) . (6.15)

For, since Ké"= A Ki , these vectors span the ‘'space »M(Ké) . . They
are orthogonal,_sincé the ec(Kl) are and A ¢ L, And they are
real, since A - takes all the real vectors of Kl into the real
..vectors of Ké , and hence by linearity all real vectors of M(Kl)
into real vectors of M(Ké) . Because n(Kl) < 4, one can by proper
vchoicé of the sense of the vectors eU(Kl) with o >vn(Ki) make
A’b a real element of i .

With the basis vectors fixed in this way it is clear that the
" basis vector of positive length occurs either in the first n vectors
of both sets eU(KQ) and ,e“(Kl) or in the last (4 - n). vectors -
of both sets. Also, with this choice the fifst n-by-n submatrix
of (A“ﬁ?o is thé n-by-n unit matrix. Since' A' takes all vectors
of M(Kl) into vectors of. M(Ké) the first n colums of A" have
zeros except in the diaéonal positions. The'samé property holds also

=1

for the first n rows as a consequence of the relations A” ' Ké = Kl'

and
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(¢ A" Gy = (A"'l)op , | (6.16)

which is the characteristic property of Lorentz transformations. That

A" is a Lorentz transformation follows from (6.5) and (6.14); one
obtains

-1 ] ) ng 1" A
A, A ep(Kl) = e (K)A o A ep(Kl) ; - (6.17)

" )
which shows that A = Ab A' . Since Ab is real, the transformation
A" will be real if A' is.

The conclusion from the above remarks is that for the case

n(Kl) = r(Kl) all lorentz transformations A' €./ satisfying

1 * . :
K2 = A Kl with Kl and K2 € D, and with Kz = A Kl for some

A € T , can be represented in the form
A= A A ' (6.18)

with a fixed real Ab €ch and a A" € ¢Zf_differing from the identity
only in the (4 - n)-by-(4 - n) subspace corresponding to MJ(Kl) .

And conversely, for all A" eclf satisfying this property, which we call

P , the transformation A' = A_ A"

o is an element of ol satisfying

A K=K,

This result is used in the following way: The transformations
A" G‘Qf satisfying P can be parameterized in such a way that the matrix
elements .(Agfjp dre analytic functions of these parameters regular in
é neighborhood N of the identity, and such that real parameters

give there real A" € L . Such a parameterization has been given

by Jost,ll for the case with no constraint P . The restriction to a
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submatrix is accomplished by setting some of his parameters to zero.

Now suppose first that Ab € L . Then the‘hypdthesis of the lemms gives
_ I | o
Fi) = A F(K)) = A AQF(K) | (6.19)

for all A" € L satisfying P . For then Ké': At K , with At e L,
the Ki and Ké being the fixed points of D connected by Ké = A Ki , with
A€ ;ﬁ,’ But the validity of this equation for real values of the
.parameters of A" , together with regularity in N, implies its validity
throughout N . Thus (6.19) is true for A" € iL satisfying P,
in a neighborhood of the identity. The restriction P does not destroy
thé group property, since products of matrices having this prpperfy will
also have it, and inverses of matrices having this property must also
have it. Using the fact that the subgroups of $i~-specified by the
constraiﬁts P are connected, or more specifically, that any elemenf
of cZi satisfying P can be expressed as a product of a finite number
of elements of <ii satisfying P from any fixed neighborhood of the
origin, one obtains the result that (6.19) is true for all A' ¢ L
satisfying A' K = K2. .  This ensui-es the validity of (6.4), from which
the lemma follows, for the case n(Kl) = r(Ki) , provided Ab is an
element of L . v

In fhe above argument it was supposed that Ab' was an element
of L ; then for A" € L it followed that A' e L ; and (6.2) was
immediately applicable. Now Ab is by construction a real element of

L satisfying AB Ki = Ké . Thus, by virtue of the hypothesis of the

lemma, there exists some A' € L -such that A! Ki" = Ké . For this
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A' the transformation A" = Agl A' must be a real element of Jf.‘
Thus it is either an element of L or it can be written in the form

A" = A_ A", where A" is an element of L and A, is the P T (S CPT)

01 1 0

transformation, which is a real element of Jf;_ Parameterizing
AK € L instead of A" one can develop the same argument as before and
prove, from the validity of (6.14%) for the A' € L just introduced,
ifs validity for all A' e Ji satisfying A K1‘= Ké . This again
validates (6.4), and completes the proof of the lemma for this case
a(h) = (&) . | |

The remaining possibility is n(k ) >r(K) <3 . For these
cases the vectors.of Ki are lingar cémbinations of r(Ki) orthogonal
vectors of nonzero length and a single vector of zero length orthogonal
to these. The r(Kl) vectors of nonzero length are obtained by'first
picking r(Kl) of the vectoré of 'Kl such that the Gram determinaht
of these r(Kl) vectors is nonvanishing. This is always poséible.h
If any one of these vectors has nonzero length then normalize it to
plus or minus one, by multiplying by a real scalar, and let it
be the first vector of a real basis. If on the other.hand.all these
vectors have zero length then some real multiple of a combination of the
form (ki + kj) must.have length plus or minus one, since the (Gram)
determinant of ?he matrix (Gij) = (ki . kj) ‘is nonvenishing. Sub-
tracting a real multiple of this normalized vector from the other

vectors, in the usual way, one gets a set of (r(Ki) - 1) vectors

orthogonal to it. Since the Gram determinant is still nonvanishing
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the proceés can be repcated to give a reai orthonormallzed (i e. to
plus or minus one) set of r(Ki) vectors (e (Ki) y cee Kl (Kl) ) .
This same construction was used (though not descrlbed) in the case
r(K ) = n(Kl) | | |
Since in the;pfcseht case n(Kl) >vf(K1) » there musﬁ be a

vector of KX, that is linearly independent ofb these first r(Ki)
vectors.. By subtracting from it multiples of the ed(Kl) (o0=1, <, r(Kl))
a liceafly independent vector w orthogonal to‘theﬁican be obtained. |
Since the value of the Gram determinant is unaltered'by adding linear
~ combinations of certain of the vectors'to»others the Gram determinant

of the firsﬁ' r(Ki) - vectors together with w must vanish._.But then
W mustvhave zero length. ‘Thc next sﬁep is to augment the set Ki, by .
adding }(br» - r(Kl) ) real vectors that together with the fixj_st r(Kl)'
basis vectors give four linearly independent vectors. Sincé n=

impliesu r o= 4 one can complete the constfuction of a complete se@

of real orthonormalized basis vectors ed(Kl)v, using the procedure
Just described. | | , » | v

The vector v is orthogcnal to the fifst r(Ki) of the

e (Kl) and hence it is a linear combinatlon of the remalnlng ones.

Since 1t is real and of zero length it must, for the case r(Ki) =2,

be of the form
v = a (e (Ki) t eB(Ki ) , R : (6.20)

where a ¥ O is real and e (Kl) is the basis vector having positive
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length. That the coefficients of the eo(Kl) are real for real w
follows from the existence of the real inverse of the real Lorentz
transformation generating the ec(Kl) from the original basis vectors.

The sign of # e5(Kl) in (6.20) depends on the sense of the
vector ej(Kl) . However, only one sign.is ppssible; if differenﬁ
vectors of K, were to give w's having different signs in (6.20),
then one would have n(Kl) = r(Ki) + 2 = 4 , whish is impossible since
n(Kl) = 4 implies r(Kl) =4 .

For the case r(Kl) = 1 the vector w must be of the form
0 ' 2 : ) 3
w = afe (Kl) + sine e (Kl) + cos 6 e (Kl) s (6.21)

with a and © real and a %X O . Moreover, for this case all vectors
of . Kl rmust, when the part along el(Kl) is removed, give multiples
of this same vector w . To see this, note that the Gram determinant

of two vectors w and w' of the form (6.21) is
. t 1 2 |
G(w, w') = aa (} - cos(® - © z> s (6.22)

which is different from zero unless w' 1is a multiple of w . Thus

if two vectors w and W' of the form (6.21) can be obtained as
linear combinations of the vectors of (Kl) , then either w' is a
multiple of w or r(Kl) 2 2 . The second possibility contradicts the
assumption r(Kl) = 1. The form (6;21) can be brought to the form
(6.20) by a redefinition of the basis vectors that leaves them real

and orthonormalized.
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Tn the case r(Ki)'='O all the vectors of K, are of zero
length and they are mutually orthogonal. Expanding them in terms of
an arbitrary real orthonormalized basis eU(Ki) , each one has the

form

W =2 <e0<g> va ei(Kl) + B ée(KE,) vy @) C (62)
where a and (o, B, 7) are réal_ and | |

o + 62 + 72 = 1 . ‘ (6.24)
If w x'o , then any vector w' of the same form for which

G(w, w') = 0O i - - (6.25)

is, as before, a multiple of w . Thus for all the cases n(Kk) > r(Ki)
one can construct a real orthonormalized basis ed(Kl) such that the

vectors of Ki are real linear combinations of a zero-length vector
-0 3 6.26
v o= e (K) + e (X)) | . (6.26)
and’ the vectors
o | '
e(x) + (e=1, =, r(K) < 3). - (6.27)

A similarjbasis can be constructed for Ké . The set Ké is
related to the set ,Ki by the relation Ké = A Ki s A e, Since .
A is not necessarily real the vectors A eo(Ki) need not be real.

However for o =1, ¢« , r(Ki) these vectors must be real; the basis
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vectors ea(Kl) can be expressed as real linear combinations of vectors
of K, and hence the A 0°(K ) will be the same linear combination of
the correspondiné vectors A Kﬁ_ or A~Ké , and hence also regl. They
have a Gram determinant of rank r(Ké)‘= r(Kl) and are orthogonal

and of length minus one and hence théy can be chosen to be the corres-

‘ponding ed(Kg):
ec(Kz) - . e"’(Kl) (0 -1, e r(Kl)) ) (6.28)

The entire set of real Vectors eo(KQ) , constructed in the same
manner as tre eU(Ki) , and using (6.28)‘for o=(1, «.., r(Kl) ),

can be related to the set eG(K_L) by the equation
o : o 4 _ '
e (k) = A e (K) (6.29)
where Ab is a real Lorentz transformation uniquely defined by this
equation, once ea(Ki) and eO(KE) are picked.

All real vectors of zero length in M(Ki) , the manifold spanned

- by the vectors of Ki s &are multiples of the single vector
. .0 3 : o 6
wg) = L) v ), - (6.30)

since any real linear combination of the vectors of (6.27) is orthogonal to
w(Ki) ~and of nonzero length unless zero. Similarly all real zefo-length

vectors of M(Ké) are multiples of

W) = ) + S, . C(65)
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Since W(Kl) is a linear combination of the vectors of K.L the vector
A 'W(K_L) is in M(Kz) , the manifold spanned by the vectors of K, -
But then AW (Kl) is a real nonzero vector of zero length in M(KE) .

Hence it is a multiple W(KE)
w(K,) = chA w(K) % 0. o (6.32)

The factor ¢ can be taken to be unity. This_follows fram the
fact that a real Lorentz transformation in the (0, 3) subspace gives

si_mply a scale transformation of a vector of the form (6.31):

sinh ¢ = cosh ¢ 1 ‘

cosha - 'sinh ¢ 1\ cosh ¢ + sinh al -
® ° = (6.33)
sinh @ + cosh &

This transformation preserves the reality and orthonormality properties
of the .eo(Kl). . Thus it can, and will, be assumed thlat the basis

e’(K,) 1is chosen so that
| ¢ = 1 , | | (6.322)
or equivalently, that
(k) + 'e3(xé) = A eo(Kl) PASK) - (6.32b)
Using (6.25) one dbtainég thén, | | |
0k)) + (k) ’=A5'1A[e°<1;l) + e3'(xg')] - 63k

The general form of the lorentz transformation A;l A e i
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satisfying (6.34) is readily computed. If the rows and columns are placed

. ' o
in the order (0, 3, 2, 1), the general transformation matrix (A"2§
defined by
1" (o} E [o] " (o} ' .
AR = () | (6.35)

~and consistent with (6.3&),with A" e &i’in-place of the fixed Ay, A

can be written

1+ é. -a . c . f
a l -8 c T
(¢ cos 8 + f sin 8) -(c cos @ + f sin 8) cos 8 sin 6
(f cos & = € sin @) -(f cos & - ¢ sin ©) -sin 6 cos ©
(6.362)

where ¢, f ', and 6 are arbitrary complex numbers and
2a = ¢ + f£° . (6.36b)

The condition (6.34) imposes the constraint that the first two c;>lumns
are the negatives of each other, aside from the unit contributions on
the diagonal. This gives four conditions, only three of which are
independent of lorentz transformation condition (6.16).

| Since the relations (6.28) and (6.34) are maintained if A is

replaced by any A' satisfying A'Kl = Ké s of which one is Ab , the
o 1
A, T Gefined by (6.35), with

is given by (6.36) with the last r(Kl) rows and columns

general form of (A"zg = (Ab-

' —
A Kl = K2 ’
"~ having unity in the diagonal position and zeros eléewhere, provided

N e T
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It can be assumed that Ay e'OZf. If r(Kl) < 2 then there

is freedom in the sign of at least dne eU(Ke), and va can be made
a proper transformation. Then Ab will be a real element of (Qf?.
For the other case, 'r(K2)'= 2, the basis eU(Ke) is uniéuely specified
by the conditions that have been imposed, and one cannot ad just Ab .
However, in this case the conditions on (A")po‘ reqﬁire it to be unity
even without the condition A" € “(f, £or one then has c=f =6 = 0
from the conditions 6n ec(Kl) for ¢ =(l,b2),and condition (6.34)
then gives the unique solution Ay = A € ;Z?.

' To complete the argument for the case n(Kl) >.r(Kl) one first
notes that A is a real element of /. satisfying AKX, = K, . Thus

b
there must, by hypothesis, exist some A' € L satisfying A'Kl = K2 .

But then
1" y B .
F(K,) = (ay A7), F(K) (6.37)
is valid when A" = Ab-lA' corresponds to this A' € L . Since A is
. [ - 11
a real element of CZf either A’ is an element of L or AO lA" = Al

is,‘wherg /\O is.the PT (= CPT) trensformation. Then A" for A, ,
whichever is in L , can be parameterized as in (6.36), with the appropriate
constraints if _r(Kl) > 0 . For a neighborhood of real values of the
parameters, subject to thesé,constraints, one still has A'Kl = K2

with A' € L . But the spinor transformation

"

AlE A A" or (A AL) (A (6.28)

s bs s b 0'g l)s



-50-

is an analytic funcﬁion of these parameters, regular-in a neighborhood
of the origin of the free variables of (c, £, ©) . Since (6.37) is
true for real values of theée variables it is aléo valid for complex
values in this neighborhood. One sees by inspection of (6.36) that the

set of A" satisfying the conditions corresponding to A'Kl = '2 s
-4
)

A €L , is a connected set of transformations in' 523.- From this it
follows that any element of the set can be expressed as a product of

a finite number of elements of the set lying within any neighborhood
of the identity, and hence that (6.37) is valid for all A' ¢ Cgfi

satisfying A'Kl = K, . This validates (6.4) for this last case and

completes the proof of Lemma 1.

Lemma 1A. Real points connected by a Lorentz transformation

A ej are connected by some real A € oZ'f .

Proof: The transformation Ay constructed in the course of the proof

of Lemma 1 is the required real A € OZ? .

Lemma 2. lLet KO be a set of n linearly independent vectors. TFor

_ 5 ,
any neighborhood N of the identity in .7~ there is & neighborhood

D(N, KO) of K

such that any two points in D(N, KO) conneéted
by é Iorentz transformation are connected by a Lorentz transformation

AeN.

Proof: Suppose the rank of the Gram determinant of the vectors of the
07 |
(

set K.= Jk
0 ( )

1 is r(Ko) = r . One can arrange the vectors of KO
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such that the rank of the Gram determinant of the first r vectors of the
set is r . 'Using the'prOCédure discussed in Iemma 1 , but without the
reality conditidp; a set of T orthonormal basis vectors él(Kb);-', gr(Kb)
can be constructed as linear combinatiohs of the first r vectors of X .
Completing the éét KO to a set of foﬁr linearly independent vectors by
the addition of (4 - n) new vectors one can construct (4 - n) more
vectors en+i(KO)""’ eh(KO) that are orthonormal, and orthogonal to the
first r o% the basis vectors. For the case r =n this gives a com-
plete set of basis vectors éc(Ko) .

' For the case n=7r +1 ‘the subtraction from kg+ , of its
compongnts along el(KO),---, er(KO) leaves a vector W, = w'4'o ,
which must be of zero length, since otherwise the rank r would be
.n . For somé 0 >n one must have eo(KO) «w ¥ 0, since otnerwise

w, would be a zero-length vector orthogonal to three orthonormal vectors

0

in a four--dimensional v(nondegenerateu) space and hence zero. Take this
, _ . ~ o -1
vector ec(KO) to be eh(KO) . Then l[éu(KO) -w (eh(Kb) . w) ‘]
is a vector of unit length orthogonal to eh(KO) and to el(KO),"',er(Ko) .
Take this to be the final basis vector er+l(Kb) .
For the case r = n - 2 the subtraction of components along

el(Kb),~~-, er(KO) from the vectors lio must leave two

k
r+l ’ r+2

linearly independent orthogonal vectqrs Vo1 and Voo having zero

length; Otherwise there would be fewer than n ‘linearly independent

vectors, or the rank of the vectors of Ko would be greater than r .

The vectors w = w and w' = w

r+1 D cannot both be orthogonal to

eo<KO)' for a11 o >n , for then they wuld be orthogonal to two
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orthonormal vectors. This wouldvprovide two linearly independent zero-
length vectors in a two;dimensional space, which is impossible.h One
can order the vectors of KO and of thé ec(KO) » ¢ >n, so that
w.eu(Kb) ¥ O . Then the vector i [eh(KO) - w(gh(Ko)°§>-l] is a
vector of unit length orthogonal to the vectors el(Ko),---,er(Ko) s
and to eh(KO) . et it be called er+i(KO) . The vectors eU(KO) ,
4>9>n, éan thén be reorthonormalized following the standard
procedure so that the 'ec(KO)v for o £ r'; l and o> n becpme an
orthonorﬁal set. If the original eG(KO) , ¢>n, are appropriately
chosen the subtractions of the required vectors will not give any

zero-length vecﬁors.

—' . v— r) —' . s
From the relation w er+l(KO) = 1<w gh(Kb)> it follows
_ = Rt U e = =
that [W’ eh(Ko)(eu(Ko) . ) er+l(KO)<?r+1(Kb) wij] w is
a zero-length vector orthogonal. to eh(KO) , el(KO)""' er+l(KO) .

It cannot vanish since w' is linearly independent of w whereas
eh(KO)<el+(KQ) . 5') + er+l<er+l(KO) . 5') is proportional to w .
For"some vector eG(KO) , & >n, one must have eU(KO) -w% 0.
Otherwise ? would be a zero-length vector orthogonal to the first
"'r + 1 basis vectors and the last L4 - n basis vectors and hence
orthogonal to 4 - n +r + 1= 3 orthonormal basis vectors. Let this
eG(Kb) be eB(KO) , since it is not eh(KO) . Then the vector

i [ ej(Kb) - W ej(Kb) . GD-lI] = e 1is a vector of unit length
orthogonal to all eo(Kb) with 0 r+1 or o >3, where .
these vectors are all orthonormal. This is impossible unless r = 0,

since a vector orthogonal to four orthonormal vectors is zero.
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Thus one can set» e (K ) = e . This completes the construction of the
orthonormal bssis e, (K ) for the case n=71 +2 . The case
n> r + 2 is not possible. | |

For K in a sufficiently small nelghborhood of Kb one can
construct a ba51s e (K) follow1ng the procedure Just described except
for the follow1ng changes: The (4 - n) vectors that are‘added to the

e
set K to make,linearly independent set will, for all K , be taken

A
to be the fixed vectors eo(KO) for ¢>n ) constuucted above. For
K in a sufficiently small neighborhood D'(Ko) of KO the augmented
set will continue to have four iinearly independent vectors, and one
can proceed with the construction; one constructs a set eU(K) , o>n,.
by subtracting in thevstaudard way the componehts along ed(K) , “c £r,
etc. and normalizings For K ¢ D”(KO), C D'(KO) the vectors arising
in this procedure w1ll have nonzero length, so that a unlform procedure
can be followed for all K e D (K ) . At the next stage the vectors

e (K) [and _er+2(K)] can be defined in the seme way as above except

r+l
that additional normalization factors | _(andf ﬁ ) must be supplied.

For K in a sufficiently small neighborhood p"'(x)) < 1;)"(Kl)' the
various factors thet are required to be nonvanishing will continue to- be
nonvanishing, since_they will depend continuously on the vectors of K .

| The only ambiguity in fhe procedure'is in'the choice of sign for the
normalization factors. This sign can be fixed}by'requiring'the normal-
ization factors to be continuous functions of K. Thus in a sufficiently
'shall neighborhood D(Kb) of K, a basis eU(K) can be defined so that

these basis vectors depend continuously on the vector K. Also, for the case
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r =n -1 the vector w obtained by subtracting from kno = kg+l
its components along eo(K) 0=1,... , T, will always have the
standard form w = (eh(K) +ive .y (X)) (w . eh(K)) . For the case
‘r=hn-2=0 this vector will have the form w =’ (eh(K) + hlel(x))
(w - eh(K))) and the other vector, w , will have the standard form
W = (eB(K) + rqge(K))(w . eB(K)) . |

For any two vectors K, and KX, in D(Kb) a Lorentz trans-

formation A (K_L, KE) € i, is defined by the equation
ey () = A (K, K) e (K). | (6.34)

If Ki and Ké are connected by a Lorentz transformation then
K’.l.r = A (x, 1{2)K2r , where K* is the set consisting of the first
r vectors of X . ?his is because the vectors eG(K) are constructed,
following a standardized procedure, as a lineaf combination of the vectors
of K , and the coefficients are given as functions only of the inner
products. of the vectors of K? . For the case r =n s K? = X' and
this transformation connects Kl to K2 . Since the transformatiop
A (Ki, Ké) is a contiﬁubus function of (Ki, Ké) the inverse image of
any open set in N containing the identity contains a'neighborhood of
the point (Kb, KO) . This neighborhood must contain a neighborhood of the
form X, € D(N, K,) , K, € D(N, K;) , with D(N, KO)¢D(KO) . This
D(N, Kb) satisfies the requirements of the lemma for the case f =n .
For the cases r <n ény points K’l~ and Ké € D(Kb) connected
by a Lorentz transformation are connected by a Lorentz transforhation of

the form
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w — AW '
K- A R K = ATy S G
where AY Kir = Kﬁr . For the sﬁbcase r=n-1 the Ki and
K differ only in the value of the vector w , and both values, -w

1

y t ‘ k.' e $
and W} , ;ie in the (eB(Kl)’ eu(Ki)) subspace. But two vectors in
a subspace connected by a Lorentz transformation are connected by a
Lorentz transformation in the subspace. This is a consequence of Lemma 2

of Hall and Wightman.

The Lorentz transformations in a two-dimensional subspace cén be
expressed as a product of possible inversions about the space or time

axis times a transformation
ay > (expIT) ax = A (T) ax PR (6.11)

Wheré ' is é complex number and the a; are components along two
orthogbnal light-cone~vectors. If two points are connected by a
transformation of the form A(I') then this transformation is unique.

If two points are in a neighborhood of the point (e, a.) = (1, 0)
that contains no point with a, = O . then if they are connected by any
Lorentz transformation they are alsb connected by & A (I') . This is
because ror the case &_ (O) x O one can transform--using a A(T')--to
a point where a_ = tTa_. . At sucha point the reflections are équivalent

either to the identity or to the particular A (I') given by

exp I’ - exp (— I‘): -1 v. As a conseciuen'ce of this any sequencé of
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feflections and proper transformations can be reduced to a single trans-
formation A (') , for this case, by the elimination of reflections.in pairs.
On the other hand if a. = 0 any product of réflections and _A (™) |

takes the point to a point with a_=0, which can be reached by

A (') alone, or to a point with a4+ = O, which by assumpti on is nét

in the original domain. Thus ﬁith the neighborhood taken small enough

so that points aji = 0 are not included all points in the neighborhood
_connected by a Lorentz tranéformation.are connected by a unique trans-

formation of the form A (I') . One can therefore define a unique

A (Kl,_ Ka) = A(T") ’UKl’ K2) that satisfigs

K o=A &y KK
This transformation is a uniquely defined and continuous function of the

1;1 end K, , provided the (Kl, K

o) 1s restricted to a sufficiently

small neighborhood of (XK., KO_) .
In case Ki and Ké are not connected by a Lorentz transformation
Eq.(6.41) can be modified by the inclusion of a

scale factor AN defined by
ag 2> A(exptT)ay, = ANA(T) ay

The A, 1is still defined to be A () A (K.l, KQ) . This A, is again
continuous in Ki and K, .
Since Al(Kl’ Ké) is continuous one can proceed just as before,

and D(N, Kb) can be takén to be any neighborhood of K. such that

0
D(N, K;)@ D(N K;) is in the inverse image of any neighborhood of
k)
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the identity contained in N . Such & D(N, Kb) must exist since the
inverse image contains & neighborhood of (K., Ko) . The neighborhood
D(N, KO) is to be restriced also by the condition that the vectors

w 'do not have a zero component along the ,ﬁ+ axis . This is possible

gince for K. this condition is satisfied (for this case r =n - 1) .

0

For the remaining case n=r + 2 =2 similar arguments

apply. The vectors of X are specified by the two vectors w

§ e : . . ! ! 3 s . K

and w . The vectors w, and W] bothvlle in the (eh(Ki), ez(Kl)) |
subspace and the vectars ﬁi and 5{ both lie in the (e5(Kl); el(Ko))

subspace. Thus the transfocr A" will bve a product of transformations in
two orthogonal subspaces. The problem separates then into two disconnected

parts each of which is treated in the same way as AY for the r =n - 1 case.

Lemma‘j. Let Kb be an arbitrary set of vectors. _Lef the first n vectors
6f. Kbr be linearly ipdependent. For any neighborhood N of the
identity in L there is a neighborhood D(N, KO) of Kd such that
if any two points K, and K, in D(N, KO) are‘connected by a
Lorentz transformation then Kln = A K2h Qith A e N, where

K' 1is the set consisting of the first n vectors of K .
Proof: This is a trivial extension of the preceding lemma. The neighbor~
hood D(N, Ko) can be the intersection of any (full) neighborhood

0
with the K= specified by Lemma 2 .

-of K. with -Dn(N, Kon) , the neighborhood in the subspace associated

Lemma 4. Let KX, be any point and D(KO) be any neighborhood of K, .

0
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Then there is a neighborhood DO(KO) of X, contained: in D(Ko) s
such that any two points K and K, in DO(KO) connected by

a Ae ;ii are connected by a continuous path K(t) = A (%) K, s
with X(0) = K, and K1) = X, , such that A (%) € ré and

K(t) € D(KO) for 0gtgl .

‘Proof: Let n be the number of linearly independent vectors of KO‘
and r the rank of their Gran determinant. Arrange the vectors
of KO so that the first n are linearly independent and tlke rank
of the Gram determinant of the first r is r . Then. according
to lemma 3 there is, for any arbitrary neighborhood N of the

identity in L, & ned ghbornood  D(N, K,) of K, small enough

0
so that if K and K, sare in D(W, KO) and are connected by a

Lorentz transformation A e Jﬁ: then there is a Al € N such that
n n - : n : n -

Ki = Al Ké , Where Ki and Ké are the subsets of Xy and

Ké ‘consisting of their first n vectors. The neighborhood N can

be taken to be a domain (i.e.,connected),and hence a path A(t)

in N can be constructed with A(0) =1,

1 1 )
AZ) = A , and A (%) €N for 0Kty . The Dy(K,) &D(N, K,)

and N can evidently be chosen small enough so that all points
A' XK, with A' eN and K, e DO(Kb) are in any preassigned

neighborhood of X, , say Dl(KO) c:D(KO) .

Consider first the case T =n . The neighborhood Dl(Ko)
will be taken small enough so that for all X € Dl(Kb) , the rank
r(X) of the (ram determinant of the first r vectors of K

remains equal to r . Thenany K¢ Dl(KO) can be uniquely
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decomposed into a sum of two terms, v K=K + V, where the vectors of
Kr are in the subspace spanned by the first r wvectors of K, and
the vectorsvof vV 1lie ih the subspace orthogonal to those r vectas.
(Note that X  is not the same as in Lemma 2 .) |

The ne.ighborhood Dl(KO) can be specified by conditions of the
form || X -eKor [l < p. and ] v]| <p, with p and P, >0,
since this i.s an arbitrarily small open set coritainihg KO = KOr . One

can use here for instance the Euclidian norms; é.g.,

[l vl =Z

- The proof will be completed, for this case, if a continuous

2 ) : :
| v, 7 = ). | v (6.42)

i iu
‘ 1 e 1y _ _ ,
A (t) for S<t<1, with A (5) =A and A (l)K2 =X , can
be found that acts only in the space ‘ orthogonal to the space spahned
by the set Kln, and keeps || \' H <p .
The Lorentz transformation‘ A= A(1) A;l € i)which takes the
point A (i) = A to A (1) = K,,can, as any A € i be expfessed
D =M K ko A() K= Keen asen :
in the form12 ‘
- A = RexpA, - (6.43)
where R is a wnimodular real orthogonal (hence unitary) tm nsformation

and A 1is Hermitian and imaginary:
A =-4A = at : : - (6.44)

(The metric tensor G has been converted to the unit matrix by the

introduction of the appropriate imaginary units.) The required.
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transformation A (t) for %~< t €1 can be taken to be defined by
exp[h(t-%)lq for%‘-gtg%
Ar(t) =A%) A;l = '
R(t) exp A for % £t . (6.46)

where R(t) for %g t €1 is any continuous curve from the identity

E to R 1in the connected space of real unimodular orthogonal matrices.
The Euclidean norm || V(t) | of V(t)-’-"z EA —(t) vi} is

the square root of

2 : *
D(t) = g | AQ:)Vi 12 = g vy at (t) A (%) vy

= o @ a > N X

In the interval %s t €1 the ||V(t)|| is constant, because of the

unitarity of R(t):

R'(¢) R(t) = R(L)R(L) = B | (6.18)
On the other hand, in the interval %.: t <$ one has, since A -at

2 2 '

& .2 d t

L ) = S5 <) ac)

dt2 ' dt2 >V

= 64 <AT(t)' A" A A(t)>v > 0 (6.49)

Becuse the second derivative of ||V(t)l‘|2 is non-negative its maximum
' end

value must be assumed at an end point. As the/points are in Dl(KO)
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they satisfy ||Vv(t)|| <p . Thus for all 0 th 1 this-conditioﬁ
is satisfied. Consequently all points X(t) =<'A(t) X, afe in
bl(KO) é:D(KO) - This completes #hg probf for the éase that , the
rank of the Gram determinént of ‘KO sy 1is egual to‘ n ; the number‘of
linearly independenf vectbrs of Kd . | |

In the éase r <n the first part of’the transformation,
0t g % ,-caﬁ 5e perforﬁed és before. For n 2 3% this alreaay com-
-pletes the proof, since the ;oincidence of three linearly independent
vectors ensufes the coincidence of all vectors. The‘speciallform of
Dl(Kb) is not needed for this case. |

For the case r <n 2 additional arguments are required.
Suppose ﬁ =r + 1. ?heﬁ the‘vectors of Kb are a linear combination
of the first r vectofs of KO 5 plu; a linearly ind ependent yector wo,
which mﬁst, écéording to the arguments given in Lemma 2 of Hall and Wight-
man or in}Iﬁmma 2 above, have zero length. The vector L is a particular
linear combination of tfe first n vegtors of K. Let w(X) ‘be the
same linear combinétion of the same vectors of K . This w(K) is generally

of nonzero length. As before let K be the part of K formed from

vectors in the space spanned by its first r wvectors and let

_ - r — T W
XK = K +V. Also let Ky = Ky +V, = K +K)",
where the vectors of wa must all be multiples of LA Let rKy be
the vector obtained by substituting w(K) for w, in KOW. Finally,

let the neighborhood Dl(KO)' be characterized by'conditions of the form
IIIK"‘-KOI'II <P, HKW-KOVH.<pW<p and ||V - X']]| < o with

positive p's « This is evidently an arbitrarily open small set
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containing Kb .
With Dl(KO) defined in this way the same argument applies,
provided w = w(X(1)) is not a light-cone vector. For if w  w X O

the Lorentz transformation A(t) for % €t €1, as defined above,will act

in the subspace orthogonél to the subspace épanned by the first n
vectors of X(t) y since these n vectors are not changed by the
transformation A . Thus the vector X' (t) = A (t) K'(0) will ve con-
stant for <t <1 and D(t) = |[V(t) - K(&)[] = [[a (£) (v(0) - K'(0}]]
will again have,'for.% <rt<:%)a nonnegative second derivative, as before.
Thus D(t) - will assume its maximun at an end point of the interval
%-g t €1 and K(t) will be in Dl(KO) for all %t in this interval.

For the case.thaﬁ W is a light-cone vector ﬁhis argument fails
because the space does not separate into two orfhogonal subspaces, one
of ‘the dimension n SPanned by the vectors of Kln . Consequently, it is
no longer clear that the A'(t) = A(t)Ail defined in (6.46) must
leave w(t) unchanged throughout the interval % <t <1, " just because it
w (1) at the two end points.

1]

gives the same value W = w(%)

To cover the case W + w = O the neighborhoods D. (K

associated

1 O)

with other orderings of the vectors of K, can be considered. The
vector w(X) was constructed as a linear combination of the first n
vectors of K ; it is the nth element of the set vV = {V&(K)g,
the first r =>n - 1 elements of which vanish. As a general%zation,
define

wi(K) = w(x) ¢ 5;3 v.(K) , i2n,
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where the é; are fixed positive numbers chosen small enough so that

J
each wg (K) remains independent of the first r vectors of K over
some neighborhood of K, . The replacement of w(K) by a wE(K)
corresponds to replaéing kn by & certain fixed linear combination of
the k; . One can obtain, then, Dl(Kjo) l(KO)

above. And these domeins will have their images DS(KO) in the original

analogous c¢o the D

spaééa-the space in which the vectors X have their original meaning.

‘Each of the DE(KO) contains K since this point is the image of

o) )
the point K;O . Also, each D3<KO) will be a neighborhood of Kj,
since it is the image of the neighborhood Dl(Kgo) of KEO under
a nonsingular linear mapping. Thus the intersection of the finite

nunber of D§(KO) must contain a neighborhood DE(KO) of X, -

If DE(KO)_ is used in place of Dl(KO) in the definition of DO(KO)
then the lemma follows from the previous argument, unless for all

j>n the WE(K have zero length.

1)
In case of the WE(K) have zero length the vectors vi(K)
must all be orthogonal to w(K) . This follows from the equations
wHK) « wi(K) - wi(K)ews(K) =4 E. v.(K) - w=0. Now the trans-
3 3 3 3 3 |
c‘ . 3 — ‘;,: }
formation A defined by Kl = A Ké = A Al Ké leaves ’
w o= w(Kl) = w(Ké) invariant. The general transformation A € A

that leaves a multiple of the light-cone vector v, = (1, i, 0, 0O)

invariant is



/ l+a i av -b ~C \
( ia 1 ~a -1ibd -ic }
b cos 6 + ¢ sin © i(b cos ® + ¢ sin 6) cos 6 sin 6
| c cos & - b sin © i{c cos 8 - bsin ®) = sin ® cos B

where  a, b, c; and © are arbitrary complex parameters satisfying

b2 + c2 = -2 a ., Writing an arbitrary vector v in the form

v = Vv, W, + V. W. + WV + v e
+ T+ b %o c ¢

‘

*
where w_ =w, and ey and e, are the third and fourth unit vectors,

one finds, for v' = Av s that

! - - -
v, o= Vv, b Vi c v, + 2 a v_
vio= v,
vy = cos 8 v + sinev  + 2(b cos & + ¢ sin 8) v_,
and
v! = cos ®v - sin®v, + 2(c cos 8 -D sin 8)V.

¢ c b
The transformation A takes Vé = V into »Vl =V ; V' =AV. It
also takes w , which can be considered a multiple of W, into itself.
Thus A can be written in the above form. The conditionsg v, e W= 0
give Vi = 0 , and hence also vi_ = 0 . Thus for each value of i

one must have for some single set (a, b, c, 8) the equations

v! = Vv - b v, -Cc v, = v,
i+ i+ ib ib i+ -
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: cos O v, + sin 6 v,
ib ib ic ’

<¢-
i

and

sin 6 vib

<~
!

cos 8 v,
ic

But then the equations are also satisfied with b —e = 0. Thus A
cén be replaced by a A acting in a subspace orthogonal to one coh-
taining w . This consequence of the equations vy w=20 coq;d also
be obtained using ébstract arguments. Since this new' A acts in a
subspace orthogonal to one containing w , the Al(t) = A(t) Ail
constructed in accordance with (6,&6) will act in that éubspace and hence
leave w invariant. Thus as before, the non~hegativeﬁess of the
second'deri&ative of D(t) for %<t<% ensures that X(t) remains
in the domain Dl(KO) c:IKKb) for %-g t <1, and hence for all
0Lt 1. This completes the proof for the case r =n ~ 1.

The remaining case is r =n -2 = 0 . In this case there
are two linearly independent, orthogonal light-cone vectors
wov= w(Ko) .aﬁd 56 = ;(KO) . The related vecfors w(K) and w(K) are
also orthogonal and they are brought into coincidence by the first part
of the transformation, A(%) = Al(Ki’ Ké) . If the .w(Kl) and G(KE)
are not light-cone vectors then they define a subspace which together
with its orthogonal complement spansthe space. And all vectors in this
subspace are brought to their final values élreadj by Al(Ki’ KE) =FAl
The transformatiqn A definediby KH = A A1 K5 acts thergfore only in

the orthogonal subspace and hence the Alt) defined by (6.46) completes:

the path in Jf . In order to cover the case that w(K) or w(K) is a
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light-cone vector one takes D2(KO) to be in the intersection of the

. ‘ rt ti + —_ +
images of the various Dl(Kjk) , Where Kjk has wj(K) = w(K) * éajvj(K)

in place of w(X) and Wh(K) = w(K) tn‘k vk(K) in place of w(K) .

If N and DO(KO) are taken to be small enough so that Kj e DO(KO)
and A' e N impligs A K, € DE(KO) then the consequences needdfor the
lemma are satisfied unless ﬁ;(Ki) has zero length for all j Qr
Gg(Kl) has zero length for all k , since otherwise for at least one
value of J and one value of k the previous (w" w ok 0) argument
holds. If wg(xi) has zero length for all | thenv W e vj(Kl) =0

for all j and the argument still works because an appropriately

1
e
similarly for Gg(Kl) . ‘Thus the argument  for the case r =n -2 =0

chosen transformation At (t) £tg1l, leaves W invariant. It goes

is virtually the same as for the r =n - 1 case. This completes the

proof.

Definition: A function F(K) will be said to'be regular at a point K

if and only if the various functions of K corresponding to the various
combinations of the spin indices are all regular analytic functions

of the camponents of the four vectors é-ki § at the point X .

Lemma 5. Let A .be a fixed Lorentz transformation. Let FA(K) be

defined by

FA(K') = A r(A”t k) . | B | (6.50)

If F(K) is regular at the point X = At ¥ then FA(K) is.
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regular at the point X = X' .

Proof: This is an immediate consequénce of the theorem in several com-
plex variables that an-analytic function of an analytic function is
analytic. This well-known theorem is easiiy provéd using the Cauchy-

Riemann equations.

Corollary A. Let Fy (K) be defined by (6.50), where A is fixed.
Then F,(K) 1is regular at K = K’ if and only if r(A"t k') is

-1

regular at K = A x’ .

Proof: The first part of the corollai‘y is just the lemma. To .prove

the converse apply the lemma to the function

" _— -1
F" (k) = A F, (AK)

to show that F" (K) is regular at X if F,(A X) is regular at

Al
AKX . But F" (K) is just F(X) . The substitution K = A™K'
gives the desired result. The fact that the inverses A-l and

A;l exist is essential to the proof.

Corollary B. The property of being regular at a point does not depend
on the choice of coordinate system relative to which the components

. . the o
of the vectors k  are measured, provided/components in the two

systems are relafed by & Lorentz transformation.

Proof: The proof is the same as for the lemma.
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Definition: A domain in an arcwise connected open set.

Definition: A real domain is an arcwise connected real set open with

respect to the set of real points.
Lemma 6. ILet F(K) satisfy the invariance condition

R - A Ft (6.53)

for A€l ; and K and ALK in a real domain D containing the
point K, + Suppose F(X) 1is defined (single yaluedly) in a domain
D(KO) confaining KO' and is regular at all points of D(KO) .
Then for each point K in D(KO) Eq. (6.53) is satisfied for

A€ Nr(K) , where Nr(K) is some neighborhood of the identity

in L.

Proof: Let K, be a fixed arbitrary point of D(Ko) . Since D(KO)

"is a domain there exists a continuous curve X(t) , 0t <1,

from Kb

distance between two points be defined as maximum of the absolute

to K, , all points of which are in D(KO) . Let the

values of the differences of the components of the vectors i]&i% . 'Then
the distance of a point K in D(Ko) to the boundary of D(KO)

will be defined as the maximum (real) number A(K) such that evefy
point whose distance from K is less than A(K) is inside D(Ko) .
Since D(K,) 1is a domain A(K) >0 for all Ke D(Ké) . More-

over, A(K(t))>a>0, for 0Lt <1 . For if there were no

 positive lower bound a > 0 of A(K (t)) one could find a sequence
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for any flxed A € N ) N<Kl) for all K e D(A,
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t, 0<t <1 with A(K (tn)) < 2™, These t  ~would have to have
an accumulation point t , 0<t< 1. But AK (t)) = b>0 . Hence
for all t such that the distance between X(t) and K(%). is less
than b/2 one would have AK (t)) > 5/2, by the tfiangle ineqpality.
Since K(t) is a continuous curve the inverse map of the open set

[1x(t) - K(T)|] < b/2 contains an open intervél' Ot about % . But

since A(K (t)) >b/2 for t e At only a finite number of the t

can be in At . Hence t cannot be an accumulation point. This is a

contradiction. Thus there is a positive lower bound a .

‘Let the maximum value of ||K(t)]] for 0<tg 1l be A. ILet
N(Kl) be a neighborhood of the identity in OZ such that if A e N(Kl),
then ']I(Afl)“v.- BVVII < (a/4A).  Then, for At e N(Kl), it follows that
]' -1 K(t)'- K(t)|| < a, and the (contlnuous) curve K ) = A lK
remains inside of D(K ) forall 0£tg1.

» Iet Nr be a neighborhood of the 1dent1ty in . L such that A lK €D
for A-% € Nr . The existence of such a neighborhood follows immediately
from the continuity of - A-lKol in A at the identity. lFor.any fixed
Afl €N, M N(Kl) = Nr(Kl) ‘there is a real domain>'D(A, Kl) C D, with
Ky € D(A,__Kl) ’ such that for 5511_ K e D(4, K,) the points K and |
A'; K are in D 8 D(KO){ The oxistence of such a - D(A, Kl) follows
from the fact that KO and A”T Kb are in D [7 D(KO) , in conjunction
with the continuity of A lK as a function of K. Thus (6.53) is valid
l). The validity of
(6.53), for -fixéd {\ e N;nN(Kl)/, for all K in the real domain b(A‘, »Kl),
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together with the analyticity of both sides of the équation, as functions
of K, (Lemma 5), implies the validity also at the point K, , since
one can analytically continue along K(t) with the argument of the
function on the right tracing simultaneously the curve KA(t) , which

remains inside the domain of regularity D(Ko) .

Lemma 6A. Lemma 6 modified by the substitution of ch for L and of

a (full complex) domain D, for the real domain D is also valid.

Proof: .Makes these substitutions throughout the proof of lemma 6.

Lemma 7. ILet F(K) satisfy the invariance condition (6.53) for A € L

and K and A-l K in a real domain D containing the point KO .

Suppose F(K) is defined (single valuedly) in a domain D(KO)

containing Xy and is fegular at all points of D(Ko) . Then (6.55)

is also valid for all K e D(Ko) and A €. such that there is
a continuous path A(t) € L, 0 t< 1, with A(0) = E and

A1) = A , such that K(t) = A'l(t),x € D(KO) for 0Lt<1.

Proof: The assumptiohs of the lemma are the same as those of Lemma 6.

Thus the conclusions of Lemma 6 may be used; (6.53) is valid for

1

every point K e D(KO) for A~ ¢ Nr(K) , & neighborhood of the
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identity in L . Following Hall and Wightman,u and'Jost,ll the Lorentz
tnangformations A in a neighborhood N of the identity in Ji can be
parameterized by a qontinuous one-to-one mapping A(*j) in such a way
that the representations of A-l and As are regular analytic functions

of the A, for At

€ NV ; and such that for A% e W ) L the xj
are real; and such that the origin in xj mapsvinto the identity in
A . Such a_parametefization has been given by Jost.ll

Considered as a function of the xj the right-hand side of (6.53)
is an analytic function regular at all pointé for which A"l € N and
At X e D(Kb) . Butvfor AN in the real neighborhood of the origin
Nr(K)r:the right-hand side of the equétion is,'by Temma, 6)équal to the
left-hand side, which is independent of ki . Thus the right side must
be equal to the left for all A=A (t) such that A'l(t')'e-N and
A(t') X ¢ D(Ko) for 0 t' £t , since one can analytically continue
to thié point,.the right-hand side remaining regular. If for all
0<t <1 the A"Ht)  are not contained in N ’than the continuation
can be carried out stepwise by expanding A-l(t) , in the manner specified.
above, about a finite sequénce of intermediate points,. tn , and by using
the group properties. The invariance equation is in this ﬁay validated
for all points K;’A;lK .connected by a qontinuéus path A(t)K tlat
- remains always in;ide the domain of regularity D(Kb)v.' That»only a
finite number of tn are requifed follows froﬁ the Heine;Borel Covering

Theorem,
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Lemma TA. Lemma 7 is also true 1f the real D and I are replaced by

complex 'Dc and Jﬁ .

Proof: Make these substitutions throughout the proof of lLemma 7. v .

Lemma 8., Let F(XK) be defined (single valuedly) and regular for points

in a domain D(Kb) containing K, .- And suppose
F(K) = A F(A™ ) - (6.54)

for AelL and A and A K in & real domain D containing

%o

containing K1 guch that the equation

. Then for every point X ¢ D(KO)~ there is a domain DO(Kl)

F(k; Dy(K))) = A r(A™t %) | (6.55)

1 and A € £ _
with A" X e DO(K__L) / defines a (single valued) function F(K; _DO(K))

over the points X € i DO'(K__L) . This function is regular throughout

its domain of definition and coincides with F(X) in the domain

| Do(K) < D(K,) -

ifroof: The assumptions are -the same as those of Iemma 7 . Thus the
invariance equation (6.54) holds for all X and A-; K connected
by a path A(t) X, 0<t <1, that is everywhere in D(KO) .
Consider an arbitrary point K e D(Kb) . According toLemma k4,
there is a domain DO(Ki) containing Kl such that the points of‘every pair of

&

points in ‘DO(KI) connected by a Lorentz transformation are connected
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by a continuous path A (t) K, 0Lt 1, that is éverywhere in

D(KO) .

valid for all K, At ke DO(Ki) . This in turn ensures that (6.55)

Lemma 7 then ensures that the invariance equation (6.5L4) is

defines a (single valued) function F(K; DO(Ki))'.‘ To show this

-1

=1
1 K and A2 K are both

suppose for some X € j\“DO(K1> the points A

in DO(K_L) . 'Then one can write

P, (K Dy(k)) = A FATD ) O 6s6)

and -

“H

F,(X; D, (Ki))'_ A F(A;T K) . o (6.57)

That these are equal follows from Eq.(6.54) expressed in the form

-1 ' -1 -1 ;1 ' |
1K) = A, F((ASTA) ATTK) | (6.58)

F(A ls 2s

which is true because both arguments are in DO(K'l)'

Since F(X; DO<K_L)) is independent of the particular A used
on the right of (6.55), so long as ,A-l K € DO(K].) , the values of |
F(K; DO(K_L)) in some neighborhood of any X € (I: DO(K_L) can be generated
from a fixed A, as a consequehée of the continuity of A-l K as a function
of XK, for fixed A . .That is, the inverse map of the open set DO(K_L)
of AT X's is an open set D, (I%) of K's . ‘But for fixed A the
regularity of the left-hand side of (6.55) is ensured by Lemma 5, since
At ke DO(Kl) c D'(KO) . Fina}ly, that F(K3 DO(I%)) coincides with

F(K) for K e Do(Ki) is true by virtue of (6.55) with A.= I .
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Lemma 8A. The lemma remains valid if the real D and L are replaced

by a complex D and ;f,,

Some concepts from the theory of functions of several ccmplex

13

variables will now be intfoduced;

Definition: A regular function element e is a triple [ Ke; De; Fe(K)]
consisting of a base point Ke , & domain De containing Ke s
and an associated function Fe(K) defined (single'valuedly) and

regular in De'

Definition: Two regular function elements will be called equivalent
if and‘only if they have the same base point and their functions

coincide in some neighborhood of this point.

Definition: A germ is a set of regular function elements such that
(1) any two elements of the set are equivalent

‘and - .

(2) any regular function element equivalent to an element of the set

is also in the set.

Definition: A germ neighborhood N(DN, FN(K)) is the set of all germs
containing a regular function element [K; DN; FN(K)] . The
domain DN and the function FN(K) are called ihe base domain

and the characteristic function of the germ neighborhood, respectively.

Definition: The topological (Hausdorff) space with germs as points and
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germ neighborhoods as neighborhoods will be called the germ space.

Definition: The domain of regularity of a fund%ion F(X) defined

(single valuedly) and regular in a domain D is the set of all
germs connected to any germ of N(D, F(K)) by a continuous curve

in the germ space.

Definition: The unique germ g [e] containing e 1is called the gerﬁ

specified by e . (Uniqueness is easily proved.)

Definition: The base point X(g) of a germ g 1is the common base

point of the e € g .

Definition: F(g) = Fe(K(g)) , with e eg . Cf(g) is independent of-

the choice of e e g . )

Definition: Let N EVN(DN,. FN(K)) be a germ neighborhood. Then, for

K € Dy , define gN(K).Ea g [e] . where e = [K; Dps FN(K)], .

Remark: gN(K) is the unique g € N such that K(gN(K')) =K'
Restated, gN(K) is the unique inverse of K(g) , subject to the

condition that g e N .

Lemma 9. If the characteristic functions of two germ neighborhoods
N and N' coincide in & domain D C (DN 0 DN,); then

g,(K) = gN,(K) , for KeD.
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Proof: The associated function of any element e of gN(K) coincides
with FN(K) for XK in some neighborhood N(K) of K e D . Thus
it must coincide with FN,kK) in N(X) /1 D and hence in some
neighborhood of K . Thus e 1is in gN,(K) . ‘Conversely every

e e'gN,(K)‘ is in gN(K) .

Some terminology aSéociated with Lorentz invariant analytic

functions will now be introduced.

Definition: A function will be called EZi(or L)-invariant over a set

of points S if and only if it satisfies

F(K)

A 'F(/\-l K) -

for any K and A such that A is in Z: (or L) and both K

and A"l K are in S .

Definition: An orbit is a set of points K all connected to a single

point by a Lorentz transformation A ecgﬁ .

Definition: A regular orbit is a set of germs whose base points cover

exactly once the poirnts of anrorbit, and such that the image in the
germ space of any continuous curve in the orbit is a continuous

curve in the germ space.

Definition: Ilet g(K) for K euZ K., K(g(K')) = K' , be the germs
of a regular orbit. This regular orbit will be called

j -invariant if and only if the function F(K) = F(g(X)) is
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éjf -invariant over the orbit sz Kb .

Definition: A domain of regularity will be called‘cZ?-invariant if and

only if it is a union of cZf-invariant regular orbits.

Theorem 1. A function defined (single valuedly) and regular in a domain
containing a point and L-invariant over a real domain containing .

the point has an ;Zf-invariant domain of regularity.

Proof: Let Kb be the point in the real domain and let the function be

celled F(K) . There is a domain D(KO) containing K, on which
F(K) is defined and regular. Thus the set eOVEE [Kb; D(Ko); F(K)]
cpnstitutes a regular function element. Let & be the germ

specified by ey . This g, is in N = N(D(KO), F(K)) . let

0
gl' and 8> be any two germs in N . Then there is a continuous

cur&e in the germ space connecting 8y and & - In particular,

if K(t) is a continuous curve in D(KO) connecting K(gl) and K(gg)
then gN(K(t)) will_be»a.continuous curve in the germ space connecting
& and g, - Fof consider any germ neighborhood N' = N(D', F'(K))
that contains a gérm gN(K (to)), where t, 1s some fixed value of

t, 0t<g1l. Let D" be a domain in D' f7 ID(KO) containing
K(to) . Any germ of N' with base pointvin D" is identical to the |

germ of N with the same base point. For D" 1is a domain and hence
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the function F'(K) must be identical with F(X) for K € D" . This

is true becauée_ F(X) andr F'(K) are,both_régular over the domain D"

'and they coincide over some neighborhood 6f K(to)_e D", since g(K (to))

contains both [K(to); D; F] and [K(to); D'; F-'] . Since the functions

FI(K) and F(K) are identical for K € D" the germs of N' and N

with base points in D" must be identical, by virtue of Lemna 9.

Because K(to) is in the domain D" , and K(t) is a continuoﬁs curve,

the in#érse image of the pointé K(t) € D" contains an interﬁal At

that contains to énd is 6pen with réspeét to'the set 0t <‘l .

The germs gNgK(t)) with t in the intefval At are all in'the_

‘érbitrary neighborhood N' conﬁaining gN(K(tO)) . Thus,.this curve
gN(K(t»gs g(t) is continuous.. Hence any two germs ip N can be connected

.by a continuous curve., This means that the word "any" in the definition

of domain of regularity cen be replaced by "every" with no éhanée in

the meaning. (Thatltwo.continuous_curves Joined ét their end points give

a continuous curve foilows easily. )

Consider now an arbitrary germ g in the domain of'regularity

of F(K)_. It is connected to g, by & continuous curve g(t) in the

germ space. Since g(t) is'contiﬁuousfthe inverse image of any gérm

neighborhood containing‘a germ g(QQ contains an interval At containing

ty that .is open with respect to the set 0t <1 . By the Heine-

Borel theorem,the closed bounded set 0 < t £ 1 .is covered by a finite-

‘nurber of these intervals, Aﬁ , with i =1, 2,..¢, n . Associated with

these intervals are corresponding germ neighborhoods Ni,with i=1, 25++4,n,



79~

such that for t € 4 , g(t) € N, . And tlere is then & sequence {ti}

so that g(ti) is in both N, and N,

The assumptions of the theorem are a paraphrasing of the

assumptions of Lemma 8 . Thus for each point K, of D(K there

o)
is a domain DO(Kl) c D(Ko) containing K, such that F(K) is
g . . \ v s : =1
ji invariant in DO(Kl’ . The first N, can be taken to be N, .
Take K = K(tl) . Then X, will also lie in the domain D, , in which
lie the base points of the germs of N2 . The germ neighborhood N2
is characterized by the requirement that each of its germs has an element
5 and the function F2(K). Also, N, contains the
germ g(tl), which is also in Nl = N , and which therefore has the

having the domain D

element [thl) ;'D(KO) ; F(Kj] . But then F2(K) and F(X) = Fl(K)

must coincide with each other in some neighborhood of Ki . But since

F(X) is éga-invariant in DO(Kl) the function Fe(K) is £ -invariant

in some domain containing _Kl . Thus the cdnditions for

Lemma BAare satisfied for FQ(K) . Hence for any point X, in D,

there is a domain containing Ké such that FQ(K) is Ji,-invariant

in this domain. Teke K, = K(tg) . The argumeﬁt may then be repeated to
f

give J~invariance in a domain about K, = K(ti) for i =3, andby

iteration, for i1 =n - 1 . In particular, there is a point Kn-l

of the domain Dn , in which lie the base points of Nn » such that
Fn(K) is eﬂi;invariant ih some domain containing Kn-l . Lemma 8A

now shows that there is a domain Dn(Kg) containing Ké , the base point

of the germ g , such that there is a function Fg(K) defined (single-
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valuedly) over cZ:Dn(Kg) , where it is regular and aZf-invariant,

and which coincides with Fn(K) in D /) oD (K ) , which contains

Kg . The germ neighporhood Ng = N ;z’Dn(Kg-, Fg(K)) contains g,
by virtue of lemma 9, since Fg(K) coincides with Fn(K) ‘in a neighbor-
hood of Kg . . |

i The set of germs g' € Ng with K(g') ec¢f7Kg constitute an

ch -invariant regular orbit containing g . Iet g(K(g')) = g' for

g' € Ng . That any continudus K(t) €.7 Kg has a continuous image
g(K(t)) follows from the .argument given earlier, since g(K(t)) € Ng .
(See lemma 10.) Theglf -invariance of the set g € Ng with K(g) ecﬁf Kg
follows from the cgf’-invariance of Fg(K) over,fmzyDn(Kg) ::Vggngg .
Thus each germ g in the domain of regularity of F(K) is on an
z?-invariant regular orbit. Since all pihts of this orbit are connected
to' g by a continuous path tﬁey are also contained in the domain of
regularity of F(K):. Thus eaéh germ g in the domain of regularity

of TF(X) is a member of an CZf-invariant regular‘orbit each of whose

members is also in the domain of regularity of F(K) . This is what was

to be proved.

Theorem 1A: Theorem 1 ‘is also true if "L-invariant" is replaced by

“>Zf-invariant", and the real domain is replaced by a (complex) domain.

!

Defipnition: A’germ neighbofhood will be said to be<}7’-invariant if and .

only if its base domain is of the form elj]) and its characteristic

‘function is ch-invariant over ,3/’D .
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Theorem 1': The domain of regularity of a function satisfying the
conditions of Theorem 1 is a union.of czfyiinvariant germ
neighborhoods.

Proof: In the course of proving Theorem 1 it was shown that each g

o

7 ~invariant

in the domain of regularity of such a function is in an ol

germ neighborhood Ng . All the points of this neighborhood are in
the domain of regularity since one is, by virtue of the following

lemma, which was also proved in the course of proving Theorem 1.

Lemma 10: The image in a -germ neighborhood of a continuous curve in

its base domain is & continuous curve in the germ space.
The converse of this lemma is: -

Lemma 10': The image XK(g(t)) of a continuois curve g(t) in the

germ space 1is continuous.

Proof: A continuous funciion of a continuous function is continuous.
But K(g) is continuous, since given any‘domain D containing
K(g) one can take a germ neighborhood Ng containing g specified
by a function eleméﬁt vhose domain D' , which contains AK(g) , 1is

contained in D . Then for all g' ¢ Ng , Klg) eD.

Lemma 11: Let D be a real domain satisfying the condition of Lemma 1
that points of D <connected by a real A € ng are connected by a

A €L . Let there be two converging segquences Ki - KO and
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Ki nd Kb whose limit points KO

K, e L X . Then K ¢ JL,KO X

and Kb are in D . And suppose

Proof: The scalar and pseudoscalar invafiants formed from corresponding
vectors of K, and Ki = K; X, are equal. Thus these points map
into the same points in the space of scalar and pseudcscalar invariants.
As the mépping~from X to the spaée of invariants is continuous,the
converging sequences Ki,.» Kb 'and ii - ib map into convergingv

sequences in the space of the invariants. Thus X

o and KO vhave

the same scalar and pséudoscalar invariants.

In case 'r , the rank of the Gram determinant of KO or fb s
is greater than two it follows from a trivial'generalizatioh of
Iemma 2 of Hall and Wightman that K, and K are connected by
a Lorentz transformation»_A € 1:; that the transformation is proper
in the case r = h» follows from the invariance of the‘pseudoscalar
invariants, and for r = 3 there is sufficient freedom to allow A |
to be made prOper.. Thus the lemma is proved for the case r > 2 .

Let n(X) be the'nuﬁber of linearly independent vectors in the
set K . And let n =‘max(n(KO),'n(ib)) . The above argument
works.equally well for all the cases r =n .' One constructé the
the orthonormalized basis vectors ec(KO)' and ec(fb) in the manner
specified in Lemma 1 above and obtains Ky = A, K, , vhere
A, 1is the real A €L defined by ec(ib) = A e (K,)

Thus Rb and X. are conneptéd by en element of ‘i;‘. This

0

'completes the proof for the case r=mn.
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Because Kb and fb are real, the only other cases are
n=r+1<Lk4, Suppose n(KO)\= r+l<h. Then, as in Temma 1,

: : .;. (
“one can construct a set el(Kb), s er(KO) N Kb) + 63(KO) , which

spans the space of the vectors of Ky + The combination eO(KO) + ej(KO)
is chosen to be equal to some vector ® of zero length formed as a linear

combination of vectors of X Such a vector must exist in this case.

0 *
It 5', the same linear combination of the corresponding vectors of

KO s

+ . (T )+
_eo(Ko) Te

is not zero then one can construct a set el(ib),‘f‘:er(ﬁb),

(Kb) ; by means of the same operations as before, but with the

3

correspohding vectors of Rb . The two T signs are independent and
will be specified by the condition that the Ab defined by
e (KO) ec(KO) is-in L . For r(KO) < 2 the sign of eB(KO) is

not determined by this condition and it can, and will, be taken positive.

o)
guantities X! = -l g K' = ATh K snd ©f = AT 3 This, in
0 Ab 0° i b i’ Ab S !

The points iﬁ , and ® can be represented by the transformed
effect, refers the barred points to the same coordinate system, e (KO) s
used for the unbarred points K, K;, and @ . In particular

o = * eO(KO)Hf eB(KO) , where the } signs are the same as the corresponding
ones in w . The vectors w (or w') are what is left after removing

from some vector of Ko (or the corresponding vector of Ké) the

parts along él(KO),"', er(Kb) . In this same way one constructs
— ' vy -
from the sets Kb'_'.gkOag and Kb {k _ the sets of light-zone
¢ = b DR % ' . :
vectors . @, g_.{aa wg and im 5 Eaa w by ?emov1gg the parts

along el(Kb),{ff, er(Ko) .
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That the vectors of these sets are cdlinear follows from_the con-

dition n=r +1 < 4 . ‘In the special case that ' =w and

n

a8

t ¥ = ; t
o = 8y ©One has again K, = A Ky with A el . Butif o o

or a, 4’3& , for some @, then Ky and K, are not comnected by a

A € L . However thése cases cannot occur. This will now be shown by an

<

examinatibn of points in D near KO and Kb . In the real 0 -3
, ‘

plane consider a set of small.circles E.C(aa)} drawn around the
points f a&.% , and & set of small circles éc(w&)g drawn around the
points {ZQ;B. A set of points with one in each C(a%x) correéponds to
a real point neér KO o And a set of points with one in éach .C@%;)
corresponds tb a real point near Kb . vBy takipg the cifcles sufficiently
small these two points near- KO and .Kb respectivelj will bé constraiped _
to lie in arbitrgrily small real neighborhooas about KO ‘and ﬁb ,'and
hence in‘ D.. | |

| The plan is to show that there is a real point arbitrarily ciose

e

but_not'by a hel. The»sets of points in the real O - % . plane

to XK. connected to a pbint arbitrarily close to KO' by a real A € ji,

connected by ‘A € L lie on the various hyperbolés having the light-
cone lines as asymptotes. The ci?cles are centered on these light-
cone lines, the C(aa) lying on the line with poéitive slope and the
C(Q&) lying either on this line or on the other one, depending on the
signs in ' = % eO(Kb) i eB(KO) .

If CO%J) and C(u&) lie on the positively and negatively
sloped light?cone lines, respectiﬁely,'then there is always a A € L

connecting some point of C&Qx) to some points of C(a&) . Moreover;
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there are then also p01nts in these c1rcles connected by any still
"larger A ¢ L The magnitude of the Lorentz transformatlon is measured
by the quotient of the 1n1t1al over the final (EuclLdean) distances of
 the p01nt from the negatlvely sloped light-cone line. .From these facts
‘1t follows that some set of points, one in each of a given set of c1rcles
along‘ﬁhe'nositiuelyzsloped light-cone line, can be taken into some

set of.points)one in each of any.given set of corresponding circles along:
the‘negatively<sloped lignt-cone line, by a single Lorentz transtrmstioni
Ael. Tnus for the cases w' = I (eO(KO) - eB(KO)) cne can find a

A€ i connecting some feal point in any real neighborhood of KO to

- some real point in any neighborhood of ﬁb B even though the points
themselves cennot'be so connected,

The-same conclusion holds if one uses instead of A € L  the
real A ect‘obtained by multiplying ﬁhe A el »by a reflection through
the origin in the 0~ 3 plane.  However, as will soon be shown, the
points connected in this way cannot be connected by any A e L. Since
by taking the neighborhoods of' Kb-_and_'io small enough the points
will be in D, one obtains a contradiction with the assumed property of
D . Thus this case wi'# * (eO(KO) - eB(Kb))h can, in fact, not occur.

To see that thefe would be points in D. connected by real
A e liz but not by A € L, consider first tne case W's -eO(KO) + eB(Kb) .
A time-like point in the circle C(w) will be carried to a time-like
point in the corresponding circle C(w') by the real A € L . Bince

these two points are in the forward and backward light -cones respectively
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they cannot be connected by an A € L . The other case,

-
w' = eO(KO

But row a space-like point in C(w) is taken to a space-like point in

y - e (K.) , occurs only if r = 2 , as previously menticned.
3'70

C{w') by the real A eoze. However, transformations invelving the first

two vectors, el(KO) and éQ(Kd)’ are not allowed, because the components

0

hence these two space-like vectors, which lie in the right and left space

t
of vectors of Kb and K. in these subspaces are fixed and equal, and

. cones, respectively, can@ot be connected by a A €L .

The remaining cases are o' = ¥ w; or zero. If w'=*w and
r < 2 then the construction used above again allows certain boints near
Ko to be conneéted to corresponding points near Ké . One first uses
a AelL in the O - 3 plane to take fhe points.of the C@%i) to ﬁoints
near the negatively sloped light-cone line, and then uses a rqtation.
through n in the 2 -« 3 plane to bring the points to the desired
positions in the O - 3 plane. In particular if w, and ! have
the same sense, certain time-like vectors qear @, can be taken to time-
like vectors near <%; . If ‘%1 and w& have opposite senses then
space-like vectors can be connected. However, if Wy and w& have the
same (opposite) sense a space-like (time-1like) point near @, can be
carried to a space-like {time-like) point near <%; by a real A € 33;. .
But these points cannot be connected by a A € L unless w=w' and
&y = a& . In that case Kg =‘Kb and Kb = Ab KO , as asserted by the

The next case is w' =w and r=2. If o' =w and

1 ' . t — )
a, = a, for all a then KO = Kb and KO = Ab Kb , which proves
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the lemma. If a X a, for some o then K, and K, are, in fact,
not connected by a A € L . In any event it is sufficient to show that

w'=w and r =2 .imply a, = a& for all « .

R v ' ' R
The conditions Ki - Ko and Ki = Ai Ki d KO are now involved,

. for the first time. Let el(K) s eE(K) , and w(K) be the linear

combinations of the vectors of K that become el(Ko) , e2(KO) , and

m(KO) = o when K becomes K. . The ei(K) are then generally not

0]

orthonormalized, and m(K) is not a null vector. The A, are specified

by the conditions A, e<gf and by the quantities el(Ki) =e,
gg(Ki) = e, and w(Ki) = o, ; and

v i ! = . = = ! = ) )
ey = oK) =eg(Ap K) = Ay eg(Ky) = Ay ey s e = Ay e,
and wi = Ai wi’, at least for sufficiently large 1 , where the

eil > ei2 , and wi are linearly independent. For these quantities
give the effect of Ai on three linearly independent vectors. But

t
. €., e,
i1’ i2 i2 ’

Lemma 3 that Ai -+ 1 . For Lemma 3 says that given any neighborhood

since eil - e and wi »w, , it follows from

N of the_identity in .5i: one can find a neighborhood N' of

(el(KO’ 'ez(Kd); @) such that any points in N' connected by a

A e(;f are connected by a A € N ., Since for the case of three
linearly independent vectors the A etdf is uniqueiy defined by these.
107 wi) and

') both to  (e,(K.) (K.), ), th
w, oth converge to (e (K,), e (XK;), @), e

points one concluded that since the sets (eil, e

' e 1 .
i1’ iz’

/\i € Qj’ connecting them must approach the identity. But if Ai~» 1

(e

0]

lemma for this case.

then Ai K, — Kb . Thus K, = A Kb ; which proves the

and Ki - 1 0 b
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If o' = -w a reflection through the origin in the 0 -3 ' <

plane takes one to the previous case ' = ® . Because of the condition

on D this case is then ruled out, &ince'.ib is comnnected to KO by
& real A € iabxrmtbya Ael .

Next there is the case @' = 0 . If all of the w! =0,
[i.e. if ﬁ(ib) = f] B then this case is ruled out by the same argument

that was used in the case ' = = eO(Kb}.+ e (KO) ; there are points of

p)
D connected by real A € L vut not by A.eL . (The possibility

n(K.) = n(ib) =r with el(Kb);"', er(Kb) all space-like is also ruled

o)
out in this way, it might be added,) If ' =0 but some @ ! is a
nonzero vector lying along the negatively sloped light-cone line one may

r ‘case '
again use the same argument as was used for the/cb‘ = - eO(KO) + e3

case; the C(w') is simply centered at the origin instead of at its

(x,)

former position.
For the case r <2, o' =0, and cg& = a& w % O for some
o , the argument'used in the case r <2, o' =t w , goes through

without any change.
. (M :
Finally there/the same case but with r =2 . Every @, and
t

w& is either zero or on the positively sloped light-cone line. For

every « elther &d or c%; is zero; otherwise it can be made into the
case @' =Tt w . And not every w! is zero; otherwise it is the
previously considered case n(ﬁb) = r , This means that the Ai are

such that the foliowing conditions can be satisfied:



ép

"fr

| the one spanned by the (eil, ei2) in such a way that
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(eil) e12) a')i) —> (el(Ko)) eg(Ko)) a)) b
A, (eil’ ey wi) — (el(KO), 62<K0)’ O) 5

n 1" 1" .
(eil) eie) a)i) — <el(Ko)) eE(KO)’ (DJ..)

and

'l 11 Hi
A (efys efp 0F) — <eJ.(Ko)’ ep (Ky), 0) .

Here the double-primed gquantities are a particular set of primed quantities,
1" 0 ] . .
the wi being aw.ab(Ki) whose limit is. wl x 0.

These two conditions on the set Ai are incompatible, The first

‘two equations imply that, for sufficiently large 1 , the points Ai w

must lie in a narrow cone-~like region about the negatively -sloped light- v
cone line, whereas the second two imply that Ai & must lie far from the
origin in some narrow cone=like .region aboﬁt the positively sloped light=-
cone line. The'incompatibility of these conditions rules out this last
possiblity. | |

The consequerces for‘the' Ai @ asserted above follow from a detéiled
examination of the cbnverging sequences. A general description of the
argunent shoulq be sufficient. Since (éil’ ei2) - <el(Kb)’ éE(K ))

one can choose basis vectors €51 and e,., in the subspace orthogonal to

31

-

. ( eOi} 63 i )

(eo(Kb),-eB(Ko)) . The (eOi’ eBi)-’ unlike the (eil’ ei2) are to be

parts of an orthonormal basis. A set (eéi, eii) similarly related to the
1 1 _ r . .

(eil’ eig) = Ai(eil’ ei2) is constructed. Then Ai is defined by

sas r = r - t 1
the conditions Ai (eil’ eiE) Ai(eil’ eiz). and Ai (eOi’eji) (eOi’ e52 .
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*

. r 1 1 1 t
Since (eil’ €00 €347 eOi) and (eil’ CHYRC Y eOi) both converge

to (e (Ky)s ey(Ky)s &5 (), eo(¥y)) it follows that A"— 1, by lemma 5.

. r _ « tha w Ty=1
Since Ai (eil’ eiQ) = Ai(eil’ ei2) it fol;owg that Ai = (Ai ) Ai
acts only in the (eOi’ e3i) subspace., Also since (eOi’ €55 wi)‘-a
(eO(Kb){ ei(Kb), w) , with o =eO(Kb) + eB(Kb), one has wi.w> (eOi + eji) .

w

v . T T -
Since Ai —> 1 and Ai = Ai Ai the condition Ai @, = 0

w w : ‘
5 0. s8i A i . -
implies Ai w, 0 Since ' acts oply in the (eol, eii) sub

space the problem is reduced now to a problem in this two-dimensional
i 7 eoi + e5i imply
that Aiw(eOi + esi)-fé 0 ; the general Lorentz transformation in

space. The two conditions Aiw wi-—% 0 and

this two-dimensional space is represented by

(eoi + e}i) —> (exp Fi) (eoi + e3i)

and

(egy = e53) —> e € r,) <e0i “eys) s

and hence‘one cannot transform a point near (eOi + eBi)
to a péint near the origin uniess Re Pi > 0 But in
this case the point (eoi + eBi) is also brought close to the origin.
. Moreover any point is brought closer to the line A (eoi - eBi) . Thus
the point ® will be brought closer to the line A (eoi - e51> . As i ~

increases, the lines )x(eOi - e i) are constrained to lie in smaller

3 .
J,

and smaller cones about the line A (eO(KO) - e3(Ko)) . Thus for

sufficiently large i the point w must be taken by Ai closer to a point

near some small cone about A (eO(KO) - eB(KO)) , the cone becoming

narrower with increasing i . Thus for sufficiently large 1 the
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Ai & are constrained to lie in a cone-like region about the
eo(Kb) - ej(KO) axis.
-1 . 1] 1" .
If,on the other hand, Ai_ takes a po;nt near the (eoi + eBi) axis
to a point-near,the origin then Re Fi >> 0 . But then under‘Ai all points are

moved further from the llne A (e ;i) and closer to the line

oi ~
A (eSi + egi) . Thus vAi ® must for sufficiently large i be far from
the origin in a narrow cone-like region about the line A (eO(EO) + eB(KO))
By taking i large enough these two cones can be made arbitrarily

narrow. Hence the allowed regions will not overlap. This gives'the

contradiction.

Theorem 2 . Let D be a real domain satisfying the conditions of
Lemma 1 . Let F(K) be defined (sing;e~valuedly)-aﬁd L-invariant
over D, and be regular at points of D , in the (weak) sense that for -
eny point X' € D theré is a domain D(X') containing X', and a
function F(X, K') that is regular at p01nts K € D(K') and which
coincides with F(K) at p01nts Dr(K') , some real'domAin contained
in D /N D(X! )v and containing X' . Let C be any closed, bounded
subset of D . Then there is an ;i-lnvarlant gern, nelghborhood whose

base domain B = Ji.B contains C and whose characterlstlc

function coincides with F(K) for K eC.

Proof: Let K. be any point of C . Let C(Kb, o) be a polysphere of

0
radius p. centered at' Kb . let 91-79 O be a monotonically decreasing

set of radii converging to zero. And let the first Py be small
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enough so that C(Kb, pi) C D(Kb) » for all i . Suppose K, isan
infinite sequence of points in 'jiC such that K, € C(Kb{ pi) and such
that F(¥, KO) X F'(Ki) , where F'(Ki) is the (single-valued) i-invariant
extension of F(K) to ZK,D , which according to Lemma 1 exists. For each
point Ki € Q;C there is a point Ki ec N QﬁKﬁ . Since C 1is closed

and bounded the Ki have a limit point Kb € C. And one can find a

subsequence Ki —> Kb € C. _ |

The point 'Rb _éannot be on diKb . If it were there woﬁld,
according to Lemma 1A  and fhe property of D, be a A é L such that
| K ehK . This A would map the real domain D _(K ) containing Kd

into some real domain>containing KB € C . The intersection of this
domain A Dr(KO) with D' contains a real domain D;(Kb) qontainiﬁg

Kb . At points of D;(Kb) the value of VF(K) is given iﬁ terms of

, F(K) at points of-Dr(Ko) by the L-invariance condition. Now according
to femma 8 there is an»'ii-invariant germ neighborhood, wiﬁh a base
domain Zf,DO(KO) , having a characteristic function that coincides

with F(X; KO) for X € DO(KO) - D(KO).. The value of F(K) at points
of D;(KO) N jiDo(Kb) must coincide with}gglue of the characteristic
function at these points, since both are given in terms of F(K) at

X e Dr(KO) by the L-invariance condition. But then F'(K) must coincide
with this characteristic.ﬁmction for all points of iDI"(KO) N iDO(KO) . .
Therefore F'(Ki) = F(Ki, Ko)‘ for all Kié i‘DI{(KO) ﬂ VDO(KO).
This precludes the possibility that é subsequence of the ii €C

cdnverge to Rb « Thus the limit point 'fb cannot lie on Qﬁ-Kb .
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0

since K, - Kb, Kﬁ-da Kb s Ky and Kb are in D, and K, echzKi .

But according to Lemma 11 the point K must lie on clf KO s

Thus there can be no infinite sequence of Ki with the specified properties.
In particular for some p, > O there can be no pointsKie(C(Ko, po){w b4 C)
with F'(Ki) % F(Ki,'Ko)- ’

Take some P} with pQ> Py > O .such that C(KO, pé) < DO(KO) .
Then the restriétion of the Ziﬁ-invariant germ neighborhood over

:ii'DO(Kb) tovthe gi.~invarianf germ heighborhoodvover Zi.C(KO, pé)
is an Zf_-invariant germ neighborhéod_whose characteristic function
coincides with F'(K) for K e ( ;i,c N <1€C(Kb, pé)) .

The point Kb was an arbitrary point of C . This construction
can be carried through for every point XK' ¢ C ., Let the radius
corresponding to pé,, but for the general KXK' € C, be denoted by
p(K') . _One can take .p(K') <A, some positi&e-upper bound .

Let 'ri —» 0 be an infinite sequence of positive numbers that

decrease monotonically to zero. Let KO be an arbitrary point of C

and let C(Kb, r(Kb)) be a polysphere of radius r(KO) _about the point

K, . Let ri(K') > 0 be less than p(K ) and less than r, . Let

0]

K; ©be a nev set of points such that for each K, there isa K/ eC

| . . , ' |
such that K € C(KO,‘ ri(KO)) N .;[p,c(Ki, ri(Ki)) and such thgt the
characteristic functions construdted above for Kb and Ki fail to

coincide at X = Kﬁ . Either an infinite seQuence of Ki can be fouhd

or there is some a(Kb) such that for r, < a(Kb)' no such X, exists.
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Suppose there is an infinite sequence of Ki . Fpr each Ki there is

a K e o‘fxi that is in C(K] , r,(K!)) . Since the wnion of the

.C(K'J p(K')) , X' € C, is a bounded set the Ki must lmve an accunmulation
point KO . This point must be in C , since the ri(K.’) —> 0 . This

i

point I_{- is a limit point for a subsequence of the K. . The other

1—{. can be omitted. This limit point must, according to Lemma 1 lie on

i K .. By virtue of the property of D there must then bea A €L

such that KO = A K, . Thus KO is in "iC(KO‘, p(KO)) . Bgt since

K — K and X! —> Ei , also K! —> io” and the X! e C must be

in i_C (K ) p(K ) ; except for a finite féw which can be omitted,

‘Then also the. C(Ki’ s ri(K:i)) will be completely inside .JL[_/.C(KO, p(Ko)) ,

except for a finite few,which can be omitted. But theh fhe' charaéteristic

functions over :[‘,C(KO , p(KO)> and- ;{:C(K' , P (K‘)) must coincide

at the points ;'Ln C(K' , T, (Ki)) since they .coincide over points of C

contained in trné polysphere, whose intersection with GK,C(}\ p(KO))

is a domain, C(K' , T (K')) . Put then the two c‘maracterlstlc functions

must coincide at K ; and hence also at points of iK 5 and hence at

Ki . This contradicts the assumption concerning the Ki . Thus there

cannot be an infinite sequence of K. satisfying those conditionsi , and

hence there is an a(K ) such that for. r, < a(K ) +the characteristic

function over iC(KO ) p(K )) comc1des with the characteristic

function over iC(K' B p(K')) for all K' e C, at allr points

K e C(K, , Ty ; (%, NN L;{,C(K', r.(K')) and hence at all points |

Ke i, O’ I‘ (K )) N i i(K')), where ri(l{ ) < min (ri,’ p(K))
The po:Lnt KO was an arbitrary point of C . Thus there is |

for every K'e C acharacteristic radius a(X') > 0 . If there is no

i
‘an
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lower bowid & > O such that a(K')>a >0 for all K' ¢ C then

"one can find a sequence of . Ki € C such that a(Ki)—) 0 . These Ki

must have an accumulation point Kec ,. though a(X)>o0. But such an
abrupt jump in a(K) at K = K is not possible, for if

b(X) = min { a(X) , p(ﬁ)% then certainly a(X) > % b(K) > 0 for
| L
P

in C{X, b(X)) , where the various characteristic functias coincide

X e ¢(X, %b(f{))nc, since far these K all points of C(X, = b(K)) are
even with the weaker limit a(K) on the r, , and hence certainly for

ri <% b(X) . Thus there must be an a > 0 such that a(X') >j§

for all "K' € C . Thus the union of the i-minvariant germ neighborhoods
over the base domains iC(K‘, b'(K')) , with X' € C and

p'(K') = min (E, p(fK')), satisfies the required conditions; its base domain
contains all poi_nts K' e C, it has an »iI-invariant characteristic

function defined (single valuedly) over its base domain B = 7B s

and this characteristic function coincides with F'(K) for X e Bf)OtC .

Definition: An enlargement of a germ neighborhood N 1s a germ neighborhood

containing'_ N but not contained in N .
Definition: A germ neighborhood N will be called maximal if and

only if no enlargement of N exists.

Lemma 12 . Every germ neighborhood is contained in a maximal germ

neighborhood.
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Proof: Let N %be an arbitrary germ neighborhood. A maximal germ
neighborhood -NM = N can be constructed as follow§: Let
‘é Kﬁ; be afdenumerable sequence of points that is everywhere
~dense in the space in which lie the base points of the germs of
the germ space. Let the Ki be enumerated. If a point Ki is
reached that is in the base domain of an enlargement of N then
réplace N by this enlargement (pfdbably one of many possiblé
enlargements) and proceed iteratively with the enumeration of the
points of the sequence [ Ki} . . Because the union of a (finite
or infinite) set of open sets is an open set the result of this
denumerable sequence of operatidns is a gérm neighborhood Na B
since the base domain Da is certainly cpnnected and the function
_ Fa(K) is defined (single valuedly)‘over D, and is regular at any
point in Da .
Let 5; be the set of accumulation points of the points Ki € Da .
No enlargement of Na can contain a point whose base point X is not
in 5; . For any such point K must be an accumulation point of
points Kﬁ not in Da . Hence any enlargement containing a point.
with such a base point K would also contain a point with base
point Ki not in Da . This is impossible, for if there were such
a Ki then when this Ki was reached in the enumeration it could
have been inecluded in thé base domain of an enlargement of the then
current germ neighborhood, since enlargements of enlargements are

themselves also enlargements. But the construction was such that
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if any Ki. can be included in the base domain of any enlargement_of the’

v then~-current germ néighborbood'then it is in Tact included in the enlarge-

ment associated with this Ki « Thus this Kﬁ would be in Da . Thus
no Ki not in Da 'énd no accumulation point f- of these Kﬁ caﬁ
be the base point of a point in any enlargement of Na ; the base points

of all points of évery enlargement of Na are in Da .

If a point with base point K e 5; is in an enlargement of Na

then the value of the characteristic function of the enlargement at

K=K is unique; it is the same for any enlargement. For in order that
a point with base point K e 5; be in an enlargemenfvof Na the

corresponding characteristic function must be defined (Single valuedly)

‘and regular in a neighborhood N(XK) of X, and it must coincide with

F, (K) for K eD /N N(K) . Thus it must coincide with F (K) at

the points Kﬁ €D, N N(X) , which are dense in a neighborhood of K

 But the value of Fa(K) at these points then determines the function

at K=K by virtue of the continuity requirement implied by the
regularity at K» of the characteristic function of the enlargement.

 Let DM -be the subset of 5; consisting of all the points of

Da c 5; and of all the base points of the points of any enlargement of

Na . Since the DM is a union of domains each of which has a point
in common with D_ the set 'DM is'a domain. Since the value of the

characteristic function of any enlargement of Na is uniquely defined

for every K € D one may denote it by FM(K) . This function is

regular at every K € QM becéuse it is defined for K € DM by an

enlargement of Na' Thus one may define a germ neighborhood
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Ny = N(QM, EM) . This germ neighborhood contains N, and hence X .
Moreover, this germ neighborhood NM is maximal., For any enlargement of
NM would also be an enlargement of Na" But no enlasrgement of Na

exists that is also an enlargement of NM because NM contains every

-point of every enlargement of Na .

Lemma, 12A . Every E{L-invariant germ neighborhood is contained in a

maximal germ neighborhood that is ?ii-invariant.

Proof. ‘Let N = N(D, F) be an jiFinyariant germ neighborhoo&. If
an enlargement of N exists then an j:-invariant enlargemént also
exists. To prove this, note first that any enlargement of N is a
domain containihg é point of N and some point not in N . By
connecting these with a‘continuous'curve one can, by avsimple conStruc;
ﬁion, find?in the enlargement, a point 'PO not in N .such that any
meighborhood of Pb contains a point of N . Let the base point
of Py be K, . According to the Corollary to lemma 8 there is a
domain DO(KO) containing K, such that the function defined in

DO(Kb) as the characteristic function of the enlargement of N can

be extended to a function F'(X) that is;flinvariant-throughout;ZfDo(Ko) and

and regular there. It must coincide with the characteristic function
I X

of the original ;wainvariant germ neighborhood, wherever both are

defined, since both functions are :f:-invariant over their domains

of definition and they coincide in DO(KO)f)D, which contains a point

of every orbit common to both domains. Thus the union of the original
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;il-infariant giveri neighborhood N with the ';i;-invariaht germ neigh;

borhood N' = N(;ﬁDO,vF') constitutes an enlargementvof'the original

one, and this enlargement is ;Zi-invariant. Thus if an ?C-invariant

germ neighborhéod has an enlargerent it has aﬁ ‘1i;invariant enlargement.,
By virtue of this, one may proceed just as in Lemma 12, using however

onlyl ji-invariant'enlargements. After running through the denumerable

set K, one has an ji-invariant germ neighborhood N, = N(Da’ Fa) .

- Now, no point not in 5; can be the base . point of an Xi—invariant

enlargement. The set DM'C: 5; is defined by using only af-invariant

enlargements. Thu NM = N(QM, FM) is'a germ domain that is maximal

o

4

. with respect to J_ -invariant enlargements. But then according to the first

paragraph NM is algo maximal, Thus it is a maximal germ neighborhood

that is A -invariant.

Definition: The base domain of a maximal germ neighborhood will be

.called a sheet.:

Theorems 1A and 2 , in conjunction with Lemma 12A jare summarized in

Theorem 3. Let F(X) be a function defined .(single valuedly) over a
real domain D . For every A in the real proper orthochronous
homogeneous Loréntz group L and every K such that X and AKX

are in D let F(K) satisfy the Lorentz invariance condition

F(K) = A;l F (A K)
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If F(K) is regular at some point K € D then the analytic continuation
of. F(X) from the neighborhood of this point is defined over a manifold
covered by a set of sheets each of which maps onto itself under any
element of the proper homogeneous complex Lorentz group Eii . And for
any sheet thg associated function defined (singie valuedly) and regular
at all points of this sheet satisfies.the Lorentz invariance condition
for all A € ;{”.

Moreover, if every point of D is a regular point of F(K) and
_ D has the propérty, specified in Lemma 1, that any points of D
connected by a real A€ &g areconnected by a A € L , then any closed
bounded subset C of D can be completely contained in a single.dﬁ-invariaﬁt
sheet, with F(X) Qoihciding with the function defined over that

sheet for K e C .

Definition: The restricted mass shell is the subset W 'in the space

of points Kasgdﬁj°", kn% that satisfy the n mass constraints

2 ‘
2 § u e .
ki = (ki ) = my (1 =l)"'}.n> 5
m :

+he four conservation laws

Zkip’=0v w=20,1,2,53

i
and the condition that the set X € W have more than one linearly

independent vector. The m, are fixed positive numbers and n > k4 ,
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Lemma 13 . The restricted mass shell W is a (3n - 4) complexw

dimensional manifold.

Proof: Consider any point Kew. Let the ki ‘be ordered so that the
last two are linearly independent. Let A (X) ve a Lérentz trans-
formation that is such that the energy compcnents of the vectors of
K (K)‘EE-A {(K) X are all nonzero. Such a A(f) surely exists
since the f are a finife set of nonzero vectors. Let the compqnents
1, 2, 3, be numbered so that Er'l(_)l/ir'lo % Ezl/i;f This is

possible because k

-1 and E; are linearly independent. By a

small change in A (K) that does not upset the above inequalities

2
» . . 1 N '3 13 .
one can also ensure that (kn_1 + kn # (kn-l + kn ), since

kﬁ-l + kﬁ $ 0. _
With A(K) fixed in this way the set of vectors X'(X, K)
is defined by X'(%, K).:—; A (K) K. The set z(K, X) is then
defined as the set of (3n - 4) complex variables consisting of the
three space components of the first (n - 2) vectors of X'(X, K)
and the first two components of the (n - 1)st vector of K' (X, X).
The set of functioné Z(X, K) are analytic functions (in fact linear
functions) of the vectors of K . They define a set of mappings
of X space onto Z épace.
Sy virtue of the conditions thét have been imposed on the
vectors of K' the inverse transformation, K'(X; Z) , that maps Z

back into XK' € W is uniquely defined for Z € U(X), a domain

containing Zz = Z(X, X), and is an analytic function of Z there.



-102-

_ ' ' 14
this follows from simple algebra or from the implicit function theorem,

the conditions of which are easily verified.

The set W can be made into a topological (Hausdorff) space by
defining the open sets in W to be the restriction of open sets in X
space to W . The topology in X space and 2 spacé will be taken as
the usual one induced by the Euclidian norm. With the topology of W
defined in fhis way the continuity of ﬁhe functions K(K; Z) and
7(X; X), considered as mappings between K space and Z space, which
follows from their analyticity, impiies that these mappings are continuous
mappings between U(K) and its image uEcw . For if & neighborhood
of a point Z € U(K) maps into a XK-space neighborhood of its image

X = KiK; 7) +then it must also map into a W-space neighborhood of

K

I

K(E, Z)‘ ;since it maps into W . And conversely, if a neighborhocd

of X ¢ W in X space maps into a neighborhood © in..Z space,then its
restriction to W also maps into this neighborhood. Thus the transformation
K(K; 2) defines a one-to-one continuous mapping of neighborhoods of

K € W contained in Uw(f) onto n'e'vighborhoods of Z contained in

U(f) . Since the inverse is-_also‘contir.mous the transformation is,

by definition, a hémeomorphism and the open sets in Uw(f) land U(k)

are homeomorphic images of each other. Since K was an arbitrary point

of W the set W has an open covering by sets homeomorphic with open

3n-4)

sets of C( , and hence W is a (3n-4) (complex)-dimensional

15
manifold.
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Definition: The functions K(K; z) and z(K4{K) will denote the
functions introduced in the proof of Iemma 13. The function

2(X; X) 1is defined for K € W and for all X , and for each

X e W it is an analytic function of X The function X(X; Z)
is defined for K € W and Z ¢ U(K) , a domain containing

z =2(X, K), and for each K € W it is an analytic function of
2 for Z e UK) . The function K(K; 2) maps points Z ¢ U(K)
into- .Uw('ﬁ) W . Its reciprocal is Z(X, X) in the sense. that
z(K; K(X; 2')) =2' for z' e U(K) and K(K; z2(X; K-‘)) = K' for

X' € Uw(f) C W.
Remark: The set UW(K), as a homeomorphic image of the domain U(K), is a domain.

Definition: The mapping (b(f) is a mapping of K € UW(-K) to

z ¢ U(K) defined by ¢O(K) K =2(K; K) for K € W and K ¢ UW(K)

Definition: The restricted mass shell .W together with the complex
structure induced by the collection éUW(K) s ¢)(i)}, KeW, is

called the complex analytic manifold W of W

Definition A: A function M(X) defined on a restricted mass shell W
will be called regular at X € W if and only if M(O-l(f) z) =

Mod~1(k)) z is a regular function of  Z at z = §(K) K .

Definition A': A f{mction M(K) defined on a re'stricted mass shell W

will be called regular at K eW if and only if Mo 4)_1 is regular
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et Z = b K for every one-to-one mapping ¢ , such that ¢-l Z=

K(Z) € W is an analytic function at Z = ¢ K .
Lemma 14. Definitions A and A’ aré equivalenﬁ.

Proof: If M(K) is regular (A') at K e W it is certainly regular (A)

at K ¢ W since ¢(K) is a particular ¢ . If M(K) is regular (A)

I

at KeWand § is a one-to-one mapping such that ¢-l Z = K(Z) ew
is an analytic function at Z = $ X, then (MO ¢-1)Z = Mk(z)) =
M(¢-1(K) Z(K; K(Z))). But Me ¢-1(K) is an analytic function of
its argument Z for Z = Z(K; X), and Z(K; X) is an analytic
function of K for K =K , and K(Z) is an analytic function at

- -1 . . -
Zz=¢ K. Thus MO is an analytic function of Z at ¢ K,
since it is an analytic function of an analytic function of an

énalytic function.

Theorem 4. The preceding theorems and lemmas remain valid if F(K)
is replaced by M(K) defined on a restricied mass shell W , and

all domains are taken to be domains relativé to W .

Proof: The mass shell contains all points having the same scalar invariants
as any point on it, and in particular all points on any orbit inter-
secting it. This is the only global property of the K space that
was used in any of the above proofs. For local properties one
repiaces the topology of K space by the topolqu of W space.

Some of the proofs become vastly simplified because for real

KeW one has n=1r .
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Remark 1. Any real domain of W satisfies the condition of Lemma 1;
two real points of W connected by a real A € aZf that is not a -
A € L must have opposite energy components and hence they cannot
both be in a real domain in W . The Mc functions have been shown
to satisfj the L-invariance . condition at regular physical points.
Thus if Dr is a real (physical) domain of regularity of M,
(defined over W) then, by Theorem 3, any closed_bounded set C C Dr
ié éontained in a sheet S that maps onto itself_under any A ec,ZfJ
and the function MC ‘has é single-valued analytic continuation
throughout S , and is ,\; invariant there.

Remérk 2. One consequence of the above remark is a slight weakening of
the assumptions needed for the S-matrix proof of CPT invariance.
In the original pr’obf3 the‘postulate of minimal analyticity required
fhe existenqe of a physical sheet that was bounded by cuts defined
by equations involving only scalar invariants. This condition on
the boundary was imposed specifically to eliminate problems

associated with a possible multivaluedness in the continuation to

the CPT image point. However, conseguence of Theorem 3 drawn in

)
-

the above remark is the existences of the single-valued , ~-invariant
continuation to the CPT—image point. The proof of CPT invariance

in this way is similar to the field-theoretic proof of Jost;ll that
proof reSfed heavily on Lemma 1 of Hall and Wightmaﬁ, which is

rather analogous to Theorem 3.

Remark 3. In the construction of the decomposition of the analytic Mc

functions into analytic functions of scalar invariants time standard
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(polynomial) invariants,l6’l7 the CZf:invariance of the domains

of regularity is a basic ingredient. A fundamental result that

can be drawn from this paper (Theoreﬁs 1 and 3, and the L-invariance

at physical points established in previous sections) is fhat any

domain of regulérity of Mc containing a physical point ié
cj?-invariant. Since Mc is @efined by analytic continuation

from physical points, any domain of regularity of MC is

”7& -invariant.
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APPENDIX A. GENERALIZED SPINOR CALCULUS

The Lorentz transformations AHV(A, B) are defined by the

equation
Ag,B = o A“v(A, B) , | (A.1)

where g“ = (go, 2) are the usual Pauli matrices, and A and B are
unimodular two-by-two matriées. The unimodular two-by-two matrices
fofm a group. The canonical irreducible representations of this group

of dimension (2a. + 1) are generated by the recursion relation

(a) o' . ' L .o (B) B (o) 7
‘ A o = Cbc(a’a; 6)7) Cbc(a"a ; B'.:7 )A 5 A y )

(A.2)

where the coefficients C are the usual.Clebsch-Gordan.coefficients.
The A2 ig jdentified with A .

Generalized spinor indices of order (2a + 1) are introduced.
They can be either upper or lower and either dotted or undotted. The
distinction between indices of these various types is with respect to
the effect upon them of the operator As . The action of this operator

is defined as follows:

(a) o
AS ga = A o ok
 (a)g'
As Ea = §d B 4
s e @)

. -1 8 . _ ‘
A .ga - <B\a)) aé' ga (A-B)
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Here B(a) is defined by the analog of (A.2) with B's in place of
A's. If a function has several spinor indices then As acts individually
on each in the manner given by (A.3).

let f(V) be'a function of a set V= { vorev % of four-

vectors. Let AV = { Avl,---,Avn} where

N A“V(A, B) v’ . ‘ ' (A.4)
If f£(V) carries spinor indices and satisfies the equation

Ay £(v) = g(av) . ' (A.5)

Then £ will be called an invariant spinor function. The Paull matrices

Uu will be considered to have matrix elements o : - Then the function

pap
gv) = aq-v B ‘ (A.6)

is, by virtue of the conventions adopted, an invariant spinor function.

+  to higher dimension is

Sleots

A generalization of the Pauli o

defined by the recursion formula

<? 2 ) - = C a,va; B, &) ¢, (a, d'; é', ;')(F ® > <c ¢ )

(w) ad | be be (u') Ba ! (n") 77!
(£.7)

where a = b + c. Here (u) = § pl,"',pea'% is a set of 2a vector

indices and (p) = (u') + (u") . The (g(a;> is symmetric and
: )

traceless in each pair of tensor indices.17



-109-

The projection operator on the spin staté,of quantum number
m with respect to a spin direction (axis of quantlzatlon) s -1is

given in terms of these (o )> by the equatlon

m '~,‘_—‘ a vr+ '_r“a‘a | _'
P(s) = Zﬂ G(u) jgg ( éhj s ) | E - (A.8)

.where the summation over h 1is subject to the constraints

thj=m R

h

where
m, | - 3
™3 2

The srqand',vr are rest frame values of s and v‘5 where v 1is
the covariant velocity. The projection operator Pm(s) is the rest

frame value of the general invariant spinor function

Pk, s,) Z () le (v v mye) ,(5.9)

The multiple,continuum.of matrices P"(s) span the (2a + 1)

dimensional space in which they are contained. In particular, if

Tr P(s) M = O

for all m and s , then M= 0. 'Taking st to be along the z axis
one 1mmed1ately flnds that the diagonal elements of M are zero. A
consideration of infinitesimal rotations of sr then,shows that the first

off-diagonal elements vanish énd one can proceed in steps to show that

M=Oo
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