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ABSTRACT 

The low-lying energy levels of odd-odd nuclei near the doubly 

closed shell (Y9°, Bi208 , Bi210 , and Tl208 ) are calculated with finite­

range central and tensor forces to, the first order by means of the j-j 

'coupled odd-group model. The two-body matrix elements for the central 

and tensor forces are expressed in the j-j representation, from which a 

·generalization to off-diagonal matrix elements is obtained in the limit 

of zero range. A nucleon-nucleon Gaussian potential without a hard core 

based on the free two-nucleon potentials of Blatt-Jackson and Brueckner­

Gammel-Thaler is used for the residual interaction. Eigenvalues and 

eigenvectors are presented and compared with experimental spectra. 

The tensor-for_ce effects are examined in detail as a function of 

the force range f0D the nuclei y90 and Bi210 . A tensor force with 

reasonable range and strength accounts 2i~r the 1- state of the h
9

; 2f':
9

/ 2 
multiplet being the ground state of Bi , instead of the 0- predicted 

by central forces. The low-lying energy levels of Po210 are also cal­

culated with the same residual force used for Bi210 in order to obtain the 

RaE beta-decay matrix-element ratio i(J:J/(w.;;.,). It is shown that the 

ground-state wave functions for Bi210 and Po210 are consistent with the 

experi~entally determined RaE beta-decay matrix-element ratio and the 

measured magnetic dipole moment of Bi210 . The ground-state wave function 
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for y90 is also consistent with. the measured magnetic dipole moment 

. of. y90. A high-spin (J=ll) isomeric state in Po210 is predicted with 

an estimated gamma partial lifetime of the order of microseconds. 

A 4.8±1 min isomeric level in Y86 was produced by irradiations 

of rubidium (natural and enriched in Rb85) with alpha particles and of 

strontium (natural and enrHhed in sr86 ) with deuterons. Two transitions 

with energies 10.15±0.1 keV and 208.0±0.3 keV were observed in the. 
86m 

decay of Y . From the L sub-shell ratios the multipolarity of the 

10-keV transition was determined to be E3. The K-conversion coefficient 

of the 208-keV transition is EK = 0.04± 0.01. A possible decay scheme 

of Y86m is suggested. The energy of the isomeric transition in y90m 

was measured to be 202 .4±0 .3 keV by use of a permanent-magnet 180 deg 

spectrograph. 

f 
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I. TENSOR-FORCE EFFECTS IN THE NUCLEAR SHELL THEORY 

A. INTRODUCTION 

Within the past several years detailed information on nuclear 

spectra of the nuclei near the doubly~closed shell has become available 

from nuclear spectroscopy and from hi~h-resolution nuclear reaction studies. 

This new information called for a refined theoretical analysis of these 

nuclear spectra. Since experimental information is rapidly increasing, 

it is worthwhile to perform a theoretical calculation of these spectra, 

with the hope that it might provide useful information on the effective 

interaction between protons and neutrons in the finite nuclei. In parti­

cular, theoretical studies of the odd-odd nuclei are very important because 

the Pauli principle permits all possible components of the residual ::force 

to be operative for the nonidentical nucleons, 

We shall adopt the odd-group model with j-j coupling in which the 

nuclear prop.e:rt.ie:s; of the nucleus are assumed to be determined by the 

propoerties of the odd-group particles. In our treatment of odd-odd nuclei, 

we assume that the residual interaction between proton and neutron is 

sufficiently weak so that we can neglect excited configurations of the 

u_nuclear core", and further that the wave function is a vector-coupled 

product of the wave functions of two odd-group particles. Of course, 

it is well-known t-:h~tnuclear moments and electric transition probabilities 

generally are sensitive to certain core polarization phenomena, but the 

energy-level spacings at energies below that of core-excited states may 

generally not be seriously affected by neglect of core excitations. 

In order to justify the theoretical basis of .the weil-known Nordheim's 

coupling rule, 1 de-Shalit investigated the case of nuclei with one proton 

and neutron outsi.de closed shells by using the zero-range force between 

thei:n, and obtained expressions for the diagonal ;l:]Sltri~ elements. 2 Cal­

culations for specific odd-odd nuclei have been made by several workers for 
3 4-the finite-range force in which central exchange forces are included. ' 

We shall use the central and tensor parts of the nuclear force, 

neglecting the spin-orbit force entirely. This practice is probably 
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reasonable, because it appears that the existence of the spin-orbit force 

in the nuclear force is still questionable. The residual interaction of 

nucleons outside closed shells is not well known, and there seem to be- no 

g_ priori reasons for retaining the same strength parameters of the free 

two-nucleon problem for the residual interaction. However, because of 

our ignorance of the exact form of the residual interaction, we shall 

rely upon the free two-nucleon force parameters in est:ilnating the strengths 

of our forces, which we hope simulates the residua-l interaction. 

' / 

'I.! 
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B. THEORY 

1. j-j-Coupling Shell Model 

Before discussing the tensor-force effects in detail, we describe 

the basic assumptions that enter into our calculation. 

a. Wave function and Hamiltonian" In our odd-group model, we assmne 

that the doubly closed shell can be treated as an inert core giving rise 

to the central field in which nucleons outside the doubly closed shell 

move. This assumption simplifies the calculation, since we treat only 

two nucleons outside the doubly closed shell" The wave function is then 

the j -j -coupled new basis vector, -which is a simple vector product of the 

wave functions of nucleons 1 and 2 coupled to a total angular momentum J 

where R1(r1)~(r2 ) is the radial part of the wave function, and 

jj1 j 2JM) is the angular part" Here it is understood that the wave 

function must be antisymmetrized for two identical nucleons. In our 

j-j-.coupled odd-group model, the Hamiltonian describing these nuclei at 

low energy is assumed to be written as 

where H1 and H2 are the single-particle Hamiltonians, and v12 is the 

residual interaction between part-icles 1 and 2. It is assumed that 

acting on our wave function yields 

H. 
l 

H. /a) 
l 

i 
where Eo denotes single-particle energies for the particle i. 

bo Zero- and first-order approximations. 

the sum of the single-particle energies 

energies" Single-particle energies have 

In the zero-order approximation, 
1 2 

c and E, are the zero-order 
j_ - 5 6 

been estimated in several works, ' 



but one cannot avoj_d arbitra.riness in choosing the parameters imrolved, 

Instead we rely on the experimental single~particle levels of neighboring 

nuclei to eliminate the ambiguity. We treat v
12 

as a pert11rbation of the 

central field of the shell-model core, and evaluate the first-order per­

turbation term, The total energy for 'the state of a given J is then 

approximately 

for i = l or 2, where the higher terms are neglected, It is clear that 

v
12 

·removes the degeneracy of the state lt~ith vari.ous J values arising 

from a given configuration, T'ne value of El , and consequently E, is 
.L 

obtained from the eigenvalue equation 

[(a IV12 !a 1
) - (E-E ) 0 1 ] (a 1 !aJM.) = 0 

0 . a.a 
at 

a· , 

The summation is restricted to the configurations obtained from the 

experimental single-particle levels of neighboring nuclei for the 

numerical calculations, 

_) 

In order to extend OUT calculations to the case of nuclei 1vi th 

the doubly closed-shell core plus one particle and hole (Tl
208 

and 

. 208 ) 0 t 0 0 t t' th h f t' d 1-
0 

' ' • Bl. , l- ls convenlen o use e met od o ne secon quam.,lzatlon, 
7 ) . 

Brink and Satchler sho;t~ed that the cccupatlon-number representat:wn of 

Dirac
8 

leads to a simpler procedure than the conventional one for the 

calculation of the matrix elements of operators in the shell modeL The 

concept. of particles and holes in tl1.e shell model in thls representation 

·was discussed thoroughly by Brink and Satchler, and some appli.cations 

were made by Carter et al, 9 for calculations of the core--excited states f 

in Pb
208

, In the following,_. only the basic concepts leading to the 
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final expression for the matrix elements of. the particle-hole inter­

action are presented. The more detailed description of the operator 
10 formalism of the second quantization many be found elsewhere. 

a. Occupation-number representation_. As a basis for a system of n 

fermions, we may take the set of all antisymhetrized products of ortho­

normal single-particle states I a) with eigenvalues a: 

A 1 aaabac ---- ag) 

(n~)-1/2 L Pi a~) a~) I a~)---- I a~) 

= (n!)-l/2 

) ----- lab) ,n 
I 
I 
I 

) ----- Ia~) 

= (n!)-1/ 2 det [a b c ---- g] . 

\Here~ A is an antisymmetrization operator defined as 

where P is the permutation operator which takes either positive or 

negative sign according to whether P is an even or odd permutation, 

respectively. The superscripts refer to a set of quantum numbers 

(2, j, m, etc.) which is necessary to specify a single-particle state, 

and the subscripts label n particles in an arbitrary arrangement. 

Another way of obtaining a basis function is to state the proD-

. ability amplitudes for finding n
1 

particles in an eigenstate ll) and 

n2 particles in an eigenstate 12), etc. Suppose n
1

, n2 , n
3

, ... are the 
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numbers of fermions in the· states / a(l).), I a(2)), I c/3)) 

tively. Then obviously, by definit:bon, we have· 

respec-

and eigenvalues are related to these occupation numbers by a linear equa;..; 

tion 

We treat the occupation numbers n1 , n2 , · · · etc. as dynamical variables 

or observables. Each of these variables has the eigenvalue 0 or l because 

<bnly the fermions are considered here. The numbers nl' n2 
• 0. form a 

complete set of commuting variables for the fermion assembly. The set 

of states diagonal in the n 1 s forms a basis for the occupation-number 

representation. A state in this set i.s determined by specifying the values 

of the occupation numbers of the single-particle .states·. 

The basis for the n-fermion system in the occupation-number repre­

sentation can be conveniently described if we define a set of creation 

operators ~: and a vacuum state IO)(representing the closed-shell con­

figuration) by·the equation 

+ + ~+ ·· · ~+ /0) = .(n!)-1/ 2 det [abc ··· g] ~a ~b c g 

Suppose we interchange a pair of indices. Then \.Je obtain 

.. (n;) -l/2 det [a -b c •• 0 g] - '-

= 

This suggests .that these creation 

+ + + + + 
~a ~b + ~b ~a - [~a ' 

( ') -l/2. d t n. . e 

+ + + 
~b. ~a ~c 

[b a c·· 

operators' must have 
'·. 

+ 
]+ ~b = 0 

0 ~" .• 

the 

g] 

property 
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in order to maintain the 1JirOper . symmetry req_uirement for the state. 

Similarly, we define the conjugate imaginary state (OJ of a vacuum state 

and the annihilation operator ~ (which is the adjoint of ~+) by 
a a 

... ~ ~ ~ -
c b a 

(n:)-1/ 2 det* [a :b c 0 
• 

0 g] 

so that 

Furthermo~e, the symmetry and normalization relations req_uire that 

+ + + 
n n n n n n o•• n Jo) ''cL ·~~ ·~~ ·~ ·~ ''c ''g 

== _!_ J det*[a 1b 1 
••• g'] det [a b ••o g] d~1 ·· · dT 

n! • n 

+ l,. if the sets (a b c ... g) and (a' bl cl .. ·g') are the 

sets and differ by an even permutation, 

:=: -:: l, if they are the same and differ by an odd permutation, 

== 0 
' 

if they are not the same set. 

same 

These req_uirements can be incorporated into our formalism if we assume 

that 

and 

~a I / 0) == 0 ' 

( o 1 o> 

·- 0 ' 

== 1 ' 

+ 
T] a == 0 a,a I , 
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Conversely, we may state that the basic states in the occupation...:number 

representation can be built up from the vacuum states by introducing the 

creation operator + 
TJa and its adjoint, the annihilation operator TJ , 

a 
for each single-particle state /aa) , and imposing the simple anti­

commutation relation between them as described above. 

Now let us consider a single -particle operator, T, which is a 

symmetric sum of single-particle operators t. ' l 

T == I: 
i 

t. 
l 

where t. acts only on the ith particle. It can be shown8 that:in 
]_ 

occupation-number representation this operator has the form 

where < rva ,r t 1 rvb ) · -1-h t · 1 n t b t · J t · 1 '-"' u. lS ". e ma rl.x e ement or e ween slng _e -par ic e 

states /aa) and /ab) . The two-body operator, 

v I '.,r 
j_j 

; ij 

can be expressed as 

v = I TJ+ + (aa ab lv I c ad ) T]b T]d T]c a 
abed a 

For a mixed system, such as in nuclei> of two different fermions, 

two formalisms may be used. T'ne first is to regard neutrons and protons 

as different states of the same fundamental particle by adopting the 

isobaric spin formalism, and require complete antisymmetry of the wave 

-~ 



-9-
\ 

function with respect to exchange of isobaric spin as well as space 

and 'ordinary spin variables. Then the subscript of the operator T) ·in­

cludes the quantum nuinber specifying the isobaric spin for the state in 

addition to the space and spin quantum numbers. In this way the complete 

antisymmetry for the mixed.system of twodifferent nucleons is ensured. 

The second method is the conventional one in 'Which protons and neutrons 

are regarded as distinct particles)' and no symmetry requirement·is im­

posed on the interchange of one kind with the other ... This irr~lies that 

we must define two .. different sets of creation o_perators, · T) and. ~ , 

one for each kind of particle)' and impose the commutation relation be­

tween one kind and the other, while still keeping the anticommutation 

relation among themselves. 

It should be noted here that the use of the isobaric formalism 

fqr the nucleon system does not i.ntroduce pijysical consequence any 

different from the result of the treatment of protons and neutrons as 

distinct particles. One has to be cautious, however, .when dealing with 

a mixed system of fermions that has more than two isobaric spin states, 

such as the si~particles (2:+ J 2:- , and ~0), because the isobaric 

· forma.lism does not necessarily yield the same physical results as the 

conventional one. 

b. Vector-coupled states. In most shell-model calculati.ons, we are 

interested in states that are eigenf'unctions of the angular momenta. For 

this purpose, we specify the angular-momentum quantum numbers (j ,m) for 

the one-particle state andwrite the state vector as 

where all other quantum numbers that may be required 
+ completely are not written explicitly. Because 1Jjm 

to specify.the state 

has 

transformation properties as the corresponding state Jjm) 

forms under rotations of the coordinate system as the mth 

the same 
+ 

J T) ,jm trans-

row of the 

matrix element of finite rotation 
. 11 

DJ (a,~'~). Vector-coupled.states 

of two particles may then be constructed in the usual way 
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where (j
1

m
1

j
2

M-m1 jJM) is the usual vector-coupling coefficient" The 

factor N is necessary to accou.nt for the normalization, and in most 

cases takes unity, except that it is (2) -l/2 when two particles are in 

the same orbit (j1 = j
2

)" 

This procedure may be extended to construct states for n-particle 

systems, This can be done by operating with a creation operator on the 

vectors for (n-1) particles, and taking proper linear combinations? We 

consider n particles in the same orbit j in some symmetric order 

~(n) with total angular momentum J, Since the occupation number of the 

state jcxa) is the eigenvalue of 

the total number in the orbit 

m 

n 
a 

j 

rva ) 
u, ' 

is given by 

We may expand into intermediate states of (n-1) particles in the arrange­

ment 'Y (n-1) to obtain 

n / ~(n)JM) 

['Y (n-1) JM ) ('"'/ (n-l)J j TJ. /~ (n)JM) p p p Jill 

/ 
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11 The .last expression is obtained by the use of the Wigner-Eckart theorem. 

This method is very similar to the ordinary seniority scheme, and in fact 

the reduced matrix element appearing in the last e:Kpression is related 
. 12 

to the coefficient of fractional parentage by 

1:¢. Particle -hole concept, When all 2j + 1 single -particle magnetic 

sub states j > m > -j are occupied, a shell or orbit is said to be 

closed. We represent this closed shell by a single vector /n. =1, all m) 
Jill 

or /C) , which is a spherically symmetric state with totiH angular momentum 

J = 0. One extra particle in the single-particle state /j'm') outside 

the closed shell is represented by the resultant vector 

/(C+l)j'm')= 

Similarily, a shell filled by 2j particles with a resultant angular 

momentum j or the absence of a particle from the state /j-m) may be 

represented by the vector 

/(C - l)jm) (-l)j + m TJ. /C). 
J -m 

. + 
The phase factor (-l)J m and the reversal of sign for m are necessary 

because our basic single-particle states are spherically symmetric and 
+ hence we require that TJ. and TJ. 
Jill Jill 

transform under finite rotation 

in the same way. The annihilation operator TJ. transforms as the com-
j * JID m' m_j 

plex conjugate (D, (a,~,)')) which is equal to (-1) -lJ , (ex,~,)'), m ,m . · -m , -m 
so that if we choose (-l)J + m TJ. instead of TJ. , it will transform 

J-m JID 
under 

+ 
T) • • 

Jill 
· by c) 

rotation as the mth row of Dj, (ex,~,)') in the same way as m ,m 
Generalizing this to a system with some closed shells {denoted 

plus n particles in some arrangement ~(n), we may represent this 

state.in the occupation-number representation as the. product vector 
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'IC + (3(n)) -- !C) 1(3(n)) 

where 1(3(n)) is to be built up from single-particle vectors. 

For the system of closed shells C plus n vacancies or holes, we 
. + 

may regard ( --l)J m TJ. as the hole-creation operator with angular 
+ J-m 

momentum j, and T]. as the hole-annihilation ope>rator, because any 
J -m 

occupation-number vector can be equally well regarded as .describing the 

number of holes in ea.ch state so that the superposition of such vectors 

describing the arrangement lo) of ( C-n) particles can also be understood 

as describing the conjugate state Ia) of n holes .. Furthermore, we do 

not need to know the exact relation between such conjugate states, since 

the hole states form a complete set themselves and may be used through­

out. The basic single-hole states are 

j 
ljm) == ( -1) 

+m 
T] • I c > . J-m 

With the above conventions, we may write for (c -·n) particles 

1c + ~(n) > !C> lf(n)). ' 

where C refers now. to all completely unoccupied shells, and i3"(n) is 

built up from single-hole states. 

d. Matrix elements of the w rticle-hole interaction. So .far, we have 

discussed. the basic concept of the particle and hole in the:shell model 

in terms of the second quantization method. . We now apply 

to evaluate the matrix elements of the two-body operator 

this formalism 

V == ~ I vij 

i I= j 

for a system of C particles in which there is one vacancy or hole in 

the closed shells .• and one particle in an orbit .outside the closed shells 

I c) The particle-plus-hole state is given by operating the operators 
+ 

TJ . and T] on the closed-shell vector !C) , 

j -m 
=I (-1)·1 . 

m 
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where the hole quantum numbers are distinguished by a bar. We are 

interested here in evaluating the matrix element 

j -m+j' -m' 
(jlj2JM/V/J]_j2JM)=[ (-1) 1 1 (jl-mj2M+m]JM) 

m,m' 

x (j]_ -m' j2M+m' /JM) L (ab jv12 jcd) 

abed 

The sum over a, b, c, and d may be divided into three sets of terms: 

(a) a set in .which all indices refer to states in C, so that we have either 

a=c, b=d, or a=d, b=c (j1=ji and j 2=j2); (b) one in which only one pair 

refers to states in C, so that we have jl=ji or j 2=j2 , and (c) one 

in which none refers to C, so that we have jl f. j]_ and j 2 f. j2 . After 

some manipulation of the creation and annihilation operators by using 

the anticommutation relation already mentioned, these three sets of 

terms' reduce to 

1 
2 

+ ~ [- (jcjlJM/V/jcjlJM)a + (jcj2JM/V/jcj2JM)a] 

jc 

where the subscript a refers to only like particles with the following 

antisymmetriz·ation: 
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'I'he first term of these three sets of terms represents the total core 

energy, and we may consider this term as our zero point of energy. The 

second term represents tbe interaction of the core with one hole;~ and 

the third term is the interaction of the core with the one extra particle 

outside the closed shells" 'Fne minus sign of the second term can be 

p hysica.lly u.:..'lderstood if one remembers that the total core energy already 

i.ncluded the interaction of the particle that, is missL1g from the core 

·with all the other particles in the core. The second and third terms 

are considered to be·. the single -hole or -particle energies of the hole 

or particle, respectively, and. are estimated from the single-hole or 

-particle levels of neighboring nuclei as discussed in the Section Bl. 

Tb,e le.st term (j
1

,t-JM ii10 1}-
1
1 ,j),,JM) represents the particle-bole 

C L , C., 

inte.racti.on and :rnay be expressed as (:for simplicity,9 the subscript a is 

omitted in .the following) 

m.Jm 

Note the· minus sign in front of the: SimJmation" It indicates that the 

particle -hole interaction rney be regarded as repulsive for an attractive 

forceo Since 

M 

wbere W is one value of the M! s., and (,J] - (2J' + l)" Using the 

relation13 

•. 
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(jl-mj2M+mjJM) (JMj]_m' )j2M+m') = L 
k 

we obtain 

- [Jl-1 I. I 
M m,m' 

The final expression is 

Jk) 

j -m+j'-m' 
(-1) 1 1 (jl-mj2M+mjJM) 

The matrix elements of the particle-particle interaction v12 are dis­

cussed in the next section. 
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3. Two~Body Residual Interaction 

where the first term is the central force, and the second term is the 

tensor force. 

and 

T, ) v \~12 

The explicit forms of these forces·are 

where PTE , PSE , PTO , and p
80 

are the projection operators for the 

triplet,even, singlet-even, triplet-odd, and singlet-odd states, res­

pectively, and the V's are the corresponding strength parameters. The 

operator 812 is the tensor-force operator defined as 

8 12 

3(~1 . ~12) (£2 . £12) 

2 
.!:.12 

- 0 . 0 
..:1_ .:::.2 

•. 
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b. Matrix elements of residual interaction. The matrix ~lement for 

the central force may be expressed as 

1 [ (VTEC V C V C V C ) - 2 - SE + TO - SO 

where PS is the singlet projection operator, and Pi2 is an exchange 

operator which interchanges £ 1 ~ £ 1 and j 1 f--7 j 2"
1 in the primed 

1 2 c 1 c 
initial states. The matrix element (a /U (~12 ) /a 1

) and (a /U (~12 )P8 /a 1
) 

qre given by (see Appendix A) 

X I Fk(j~ ~ jl- ~ /kO)(j2 ~ j2- ~ JkO) 
k 
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l . 
J)' 2 .. 

x L · F:k(21 0210 jko)(.e2o.e20'jko) w(.e 1 .ei.e2 .e2 
.k 

kJ) ' 

·and with the restriction that k + _£
1 

+ f} and k + .e 2 + £2 are both 

even. The symbol [aJ stands for [2a + l] and ( j) and W are the 

usual Clebsch-Gordan and Racah coeffiCients. The Slater integral F~ 

is defined .as 

Fk 

00 

J 
0 

l' 

·00 

dr1 r~ R1R} J 
0 

.X J.d 
.. (cos 812 ) ( e ) c( '\ 

· · 2 · · pk cos 12· U r 12 1 ' 

-1 

where Uc(!:::.12 ) takes the Gaussian form exp ( -P£i2 ) with different 

values of p for the corresponding states. 

The tensor force has been evaluated in terms of spherical tensors 

by Talmi.
14 

The tensor-force matrix element can be conveniently ex­

pressed in either the L-S representation or the j -j representation. l5' 
16 

In the j-j representation, the matrix element for the tensor force is 

(see Appendix B) 

' 

.(1 
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and 

(aj1j2JM/UT(!:.12) 812/a' j]_j2J'M') = L 
K,x,y 

Here we define 

(aJF Ja') = -5 '\ (aJr.r.Ja') X .. xy L · 1 J lJ 
k, i, j 

2 1/2 
( 15 [x]) (20k0 Jxo) , 

2 1/2 
( 

15 
[y]) (20kO/yO) , 

(a JF Ja') W(1x 1y; K2) xy 

for i, j = 1, 2 

x12 = ( [x] [y1/
2 

(10kO Jxo) (10k0 Jyo)v41xy;2k) , 
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and 
co co 

xf 
-1 

wh~re UT (r 
12

) take the Gaussian form 

' c 2 . 
exp ( -r3T.E r 12 ) 

for the triplet-even, and 

for the triplet-odd. The angular part in terms of the 3-:; 6-, and 

9-j symbols is 

··j'+j'+2+2+J 
- ( -1) l 2 l 2 

( el X 11) r~2 y ~2) 
l l l i l 

I 2 2 2 2 I 
I 
' 

\_O o o · \o o. o · · 2]_ 21 X 
J 2' 1 2 

j 
! 

. ' j K I j• Jl l ,· 2 
I 
\ 

I 
l 

l I 
2 

I 22 y 

j2 K 

J 

Q 
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The above expression for the tensor-force matrix element is 

still sufficiently complicated so that it is very difficult to draw 

an;v: conclusions before doing the actual nunierical work. The detailed 

numerical work is presented in the next chapter (C :1. a-bdJ2). ·: . 

In the zero range, the tensor force vanishes, and the central 

force matrix element reduces to 

where (see Appendix A) 

AAI 
4J(J + l)], 

and 

{ 
jl!jl'+£1+£11 £ +£ +J 

X (-1) [l + 2(-l) l 
2 

] 
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with 

A 

The matrix element (aJv0 (r12 )~ ·_~Ja') vanishes unless both 

21 + 22 + J and 21 + £2 + J are even. _ Similarily, (a jv
0

(r12 ) Ja 1
) 

vanishes unless 21 + £]__ + 22 + .e2 is even. The Slater integral 

Fo is given by 

00 

F0 J R1 (r)R2 (r)R]_(r}R2(r)r
2
dr . 

0 

c. Choice of radial wave function. For the radial part of the wave 

function, we choose the harmonic-,oscillator wave function. It is 

generally believed that the harmonic-oscillator wave function is a 

fairly good approximation for light and medium nuclei, whereas the 

square-well potential is a closer approximation for heavy nuclei. The 

d " l f ~· h th l' •t" f l7 ra la wave unc ulOn as · e exp lCl orm 

~£ (r) 

where Nn
2 

is a normalization constant chosen so that 

The function 

as 

v (r) 
n£ 

is the associated Laguerre polynomial defined 

(2£+1)!! 2 k 
(2Hk+l)!! (.vr) 

•J 

• 
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The nuclear size parameter v-l/2 appearing in the wave function 

has to be evaluated for the numerical calculation. The harmonic­

oscillator spacing is known to be roughly 

41A-l/3 MeV , 

from.which v may be evaluated. The evaluation of the central-force 

radial integral has been simplified analytically by Ford and Konopinski. 18 

The tensor-force radial integral (a lr .r. rat) can not be evaluated 
l J 

directly, since the integral has singularities due to the r 12
2 term 

appearing in the denominator. This difficulty is eliminated by ex­

panding the integral into a linear combination of the Talmi integral.l7,lS 

(See Appendix B) For the delta-function force, the radial integral 

can be easily evaluated analytically, and the numerical values of the 
. . 6 19 

integral have been given by several workers for the diagonal case. ' 

d. Shell-model residual force and two-nucleon force. In most of the 

past shell-model calculations, the central force alone has been used, 

neglecting the tensor force. The main motivation for neglecting the 

tensor force has probably been the computational complexity involved 

in using it, but the success of shell-model calculations without the 

tensor force does not necessarily imply theabsence of the tensor 

force in the residual interaction. In fact, Visscher and Ferrell have 

shown that the tensor force is essential in explaining the ft values 
14 14 - 14 20 

of C and 0 (both 0+ states decay to the l+ ground state of N ). 

The shell-model residual interaction is notexpected to be 

the same as the free two-nucleon force because the presence of other 

nucleons might modify the basic meson-exchange forces. However, the 
21 

work on the properties of nuclear matter by Brueckner and Gammel, 
22 Bethe and Goldstone, and others have indicated that the free two-

nucleon interaction may give rise to very satisfactory results for 

many-body problem if an. approximate solution to the many-body 

Schrordinger equation can be found. Furthermore, the shell-model cal­

culations of True and Ford, 23 and of Dawson, Talmi, and Welecka24 have 

indicated that the appropriate shell-model residual force may not be 

very different from the free two-nucleon force. 
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Inclusion of the tensor -with the central force in the free two-

nucleon force has the theoretical support that the one-pion-exchange 

potential (OPEP), which i.s the meson theoretic potential cf the lowest 

order; explicitly includes the four components of the central force 

and two components of the tensor force. Yukawa 1 s original hypothesis 

was that the nuclear force is caused by transmitting a particle, now 
~5 

called the pion, between two nucleons.- For the exchange of n pions·' the 

force range is expected to be of the order of (nJJ. )-1
, so that the tail 

7T 

end of the ·two-nucleon potential has its main contribution from one-

pion exchange (OPE). In the OFEP, it is assumed that the nucleons .are 

point particles moving with nonrelativistic velocities, This assump­

tion makes it possible to solve the field equations in the first 

approximation in whic.h only one-,meson exchange is considered bet-ween 

two nucleons. The solution of the resulting Schroedinger equation leads 

to an inter;action potential between two nucleons of the form 

V(OPE) 
2 2 

jJ. c f (:.:J_· 2:2) 

where ( ) 
-··1 . 

jJ. = ft. = 1.41 F 

is the tensor-force operatoro 

is the pion Compton wavelength, and s
12 

The coupling constant f
2 

is the only 

adjustable constant in this expres.sion. Cziffra and Moravcsik have 
2 attempted to determine the coupling constant f from an analysis of' 

neutron­

of f
2 

proton scattering data. 26 However,· the pore accurate value 

0.08 was determined from an analysis of pion-nucleon scattering 
. 2 

pl.On, fl.C data. Since the rest energy of the 
2 2 

all strength of the 0PEP 7 JJ.C f , is 11.2 Mev. 27 
is 140 IVleV, the over-

MacGregor) Mo:ravcsik and Stapp have done some interesting work 

on analysis of proton-proton scattering at 310 Mev, 28 At this high 

energy, nucleon-nucleon scattering is sensitive only to tbe tail of the 

nuclear potential for high-£ partial waves. Assuming that the OPE is 

the only significant contribution at large distances, they analyzed the 

phase shifts for P?; 5 by using the relativistic OPE amplitudes instead 

of nonrelativistic OPEP. 'rhe phase shifts for .e ~ 4 are determined 

• 
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phenomenologically by analyzing the data. Their value of 
2 

f =· 0.06 

agrees fairly well with the value determined from the pion-nucleon 

scattering data. 

The presence of the delta -function term, o(r) ) suppqrts the 

introduction of a hard core in the nuclear potential, which is necessary 

for S states to be repulsive at the shorter distance. However, OPEP is 

only valid at a large distance, i.e., at the tail of the two-nucleon static 

potential, so that the delta-function term is usually omitted from OPEP. 

To serve the purpose of comparison of OPEP with. other phenomenological 

two-nucleon potentials, we write OPEP in terms of the projection operators, 

neglecting the delta-function term, as 

v(oPEi) 

Here the 

and 

where, 

.2f2 = f.LC e~~r {r 

projection operators are given 

PTE ~; p") 0 2p') 
PSE c ~ pcr) c ;p') 
PTO C:p")C:P,) 

Pso = 0/0 c /') 
l +a . 5!.2 p ;;.,]_ 

2 a 

by 
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and 

p 
'L 2 

The tensor force was .known to be essential to account for the deuteron 

quadrupole moment even before the pion was discovered. The tensor force 

in OPEP shown above was shown to give a good account of the quadrupole 

moment of the deuteron.
29 

We may regard OPEP as a constraint to the nuclear force in addi­

tion to the experimental data of nucleon-nucleon scattering and the 

deuteron properties, since all meson-theoretic derivations of nuclear 

potentials agree with the result that the nuclear potential must behave 

like the OPEP at large distance. The inner region of the potential re­

mains extremely controversial, including even the two-pion-exchange 

potential. Many different forms based on meson theory have been 

derived.
30 

However, there are very few works that calculate the corres­

ponding properties of the two-nucleon system.3l 

Most of the n-p data has been analyzed in terms of phenomeno­

logical potentials such as those by Signell and Marshak,32 Gammel and 
33 34 . . 35 Thaler, · Hamada, and recently Glendenning and Kramer. The Bignell-

Marshak potential, ,.while satisfying the OPEP., does not fit the deuteron 

data. The Gammel-Thaler potential does not fit the deuteron data nor 

satisfy the OPEP. (This potential has now been corrected to fit all 

the low-energy parameters, and several sets of the parameters for the 

potential have been presented in the review article by Gammel and 

Thaler. 36) On the other hand, Hamada has been fairly successful in re­

producing the deuteron properties and n-p scattering data with potentials 

that have OPEP tails. A more detailed analysis similar to Hamada's has 

been recently done by Glendenning and Kramer to construct triplet-even 

potentials that are asymptotic to the OPEP and are modified in the 
\ 

inner region with ranges corresponding to the exchange of more than one 

pion in such a way as to obtain agreement with the deuteron properties 

and the n-p scattering data. 
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e, Choice of Force Parameter$. Because we set out to make shell-model 

calculations with a residual force more general than usually used, we 

usually faced the problem of essentially more parameters than data. 

With each of four c·entral-force and two tensor-force components are two 

parameters, depth and range of the Gaussian function, or twelve para­

meters in all. We adopted the approach that we would begin calculations 

with residual forces close to those satisfying the free-space two-nucleon 
' 

scattering data and deuteron properties., If necessary, we would then 

make a minimum of adjustments to the force to give a general fit to the 

experimental-level spectra. 

It has often been pointed out that the free-space nucleon-nucleon 

force maybe subject to modification for shell-model calculations, but 

as yet there seems to be no strong evidence that large modifications 

necessarily occur. In fact, there are successful shell-model calculations 

of. Dawson,. Talmi, and Walecka
24 

on the o18 spectrum using the Brueckner­

Gammel-Thaler (BGT) potentials21 including the tensor force and hard 

cores. Their results ll:end encouragement to our approach. 

Apart from the success of o18 calculations by Walecka et al., 

there are two additional desirable reasons for choosing the Brueckner­

Gammel-Thaler potential in the shell-model calcuJa tions, although we 

do not necessarily believe that the BGT potential is the best two-nucleon 

potential. The first reason is that it satisfies most of thE; constraints 

imposed upon the two-nucleon potential,, such as the two-nucleon scatter­

ing. data and the deuteron properties, although the tail en~ of this 

potential does not satisfy the OPEP constraint. The. second reason is 

that it is 13Uccessfully used in the nuclear-matter calculation. by 

Brueckner and Gammel. The force parameters of the BGT potential are 

listed in Table I. 

Introduction of a hard core along with Yukawa radial dependence 

would have made our computational work extremely complex. This is 

especially true for a heavy nucleus which involves higher angular 

momenta. For this reason we start with a phenomenological Gaussian 

potential without a hard core, based on the free two-nucleon potentials 
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Table I. Values of the force parameters for the BGT potential. 1 The 
radial shape of tne potential is ~ukawa form with a hord core of radius 
o.4F. 

Force components 

Central triplet-even 

Central singlet-even 

Central triplet-odd 

Central singlet-odd 

Tensor triplet-even 

Tensor triplet-odd 
' ' 

Spin-orbit triplet-even 

Spin-orbit triplet-odd 

Strength 
(MeV) 

-877 ·.39 

-4)4 .o 
- 14.0 

130.0 

-159.40 

22.0 

-5000 

-7315. 

·Range 
(fm) 

0.478 

0.690 

1.00 

1.00 

0.953 

1.25 

0.270 

0.270 

of Brueckner., Gammel) and Thaler (BGT) and of Blatt and Jackson. 37 We 

use the well-depth parameter and intrinsic range defined by Blatt and 

Jackson in the shape-independent approximation of the effective-range 

theory to replace the Yukawa radial dependence with a hard core (the_ 

BGT potential) by a Gaussian form without a hard core. If one con­

siders a nuclear potential of V(r) == sV' (r) so that V1 (r) is the potential 

that gives rise to zero binding energy for the ground state of "the proton­

n€lutron system) then V(r) for s > 1 allows bound states) vhereas V(r) 

for s < 1 gives rise to virtual states. The intrinsic range b of V(r) 

is then defined as the effective range of V' (r)) and s is called the 

well-depth parameter. T'ne Yu.km.Ja and Gaussian potentials. in the shape-­

independent approximation are expressed by Jackson and Blatt in terms 

of s and b as 

- V(r) = s (14 7. 585 MeV)b -
2

(b/r )exp [ -2.1196(r/b)] 
f 
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for the Yukawa potential, and 

- V(r) 
. . 2 2 

s(229.208 MeV)b- exp[-2.0604(r/b) ] 

for the Gaussian potential, where b is in units of 10-l3 em. To 

reduce the number of adjustable parameters, we arbitrarily take the 

intrinsic ranges of our potential to be same as the BGT potential. 

From shape-independent effective-range theory, the force range ~-l/2 

of a Gaussian potential is larger by a factor of 1.477 than the force 

range of a Yukawa potential, such as the BGT potential. The well-depth 

parameters of our potential are expected to be smaller than those of 

the BGT potential, since the introduction of a repulsive hard core 

always requires the attractive Yukawa potential ~6 be deeper than for 

no core. 

We adjust the well-depth parameters so as 'to be consistent with 

the low-energy properties of the deuteron. If we choose s = 1 in the 

Gaussian formula above, the central triplet-even potential thus obtained 

will itself cause the deuteron to have zero binding energy. Because 

of the repulsive cores, the Yukawa tail of the BGT force needs 's = 2.88. 

The reduction factor 2.88 is then applied to reduce all well-depth 

parameters for other components of the force to go from BGT to Gaussian 

without hard core. Values of the force parameters thus obtained are 

listed in Table II, and hereafter this potential is called Potential I. 

Kalos et al. have calculated deuteron properties and scattering 

/properties with Gaussian forces and showed that several combinations of 
. 38 

central and tensor strengths andranges could fit the data. The 

triplet components of our Potential I are fairly close to an interpolation 

of two of their satisfactory potentials, so we feel that our Potential I 
' 

is consistent with free-space properties of the n-p system, although 

we have not verified this supposition by actual scattering phase-shift 

calculations. 
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Table II. Values of the intrinsic range and well-depth parameters, s 
and b, for the BG'I' and simulated BGT potentials. -The intrinsic ranges 
for the simulated BGT potential are assumed to be same as the BGT 
potential and are not shown. The corresponding strength and force range 
parameters for the simulated BGT are also shmm. 

BGT Potential I 

States Strength Force 
s b(F) s (MeV) range (F) 

-.--- -----
Central triplet-even 2.882 1.013 1.0 -223.02 0.706 
Central singlet-even 2.964 1.461 1.028 -110.03 1.018 

Central triplet-odd 0.201 2.119 0.070 -3.57 1.476 
Central singlet-odd -1.867 2.119 -0.648 +33.06 1.476 
Tensor triple:t;-even 2.078 2.019 . o. 721 -40.50 1.407 

Tensor triplet -odd -0.493 2.649 -0.171 +5.58 1.845 

•j-
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C. PARTICLE-PARTICLE INTERACTION 

1'. Yttriuril-90 

a. Zero-order energies. Recent.ly an isomer state in the odd-odd 

nucleus y90 has been found.3 9 It is interesting to see if this isomeric 

state can be explained in terms of the j -j coupling shell model. 

Several other low-energy states were reported previously. 40 It is 

assumed that 38 protons and 50 neutrons form closed-shell cores. The 

assumption that 50 neutrons form a closed'shell has been established 

because Zr9° exhibits typical properties of a closed-shell nucleus.
41 

The 38-proton closed sub-shell has been assumed by several workers, 
42 

and we make the same ,assumption. These assumptions simplify the cal­

culation, since there will be onlyone proton and one neutron outside 

the doubly closed-shell core in y9°. For the proton single-particle 

levels, we choose the average values between y89 and y9l, and for the 

neutron single-particle levels the average between sr89 and zr91 . The 

experimental single-particle levels are presented in Tables III and IV, 

and the resulting zeroth-order energy levels are listed in Table V. The 

assignment for the lowest state of the fifty-first neutron as the d
5

/ 2 
configuration is evident from the fact that the observed ground-state 

spins and parities of sr89 and zr9l are 5/2+. 43 The lowest state of 
. 89 

the thirty-ninth proton is assumed to be p142 , since ~oth Y and 

Y91 are know.n to have ground-state spin l/2. 3 Recently the atomic­

beam measurement of the ground-state spin has beenmade for y91 , con­

firming thep1/ 2 configuration.
44 

The observed low-energy levels in 

Y90 are shown in Fig. 1. The ground-state spin of y90 has been deter­

mined recently by the atomic-beam method to be two. 45 . 

b .. Energy spectrum. Before introducing the tensor force, the numerical 

calculations are carried out extensively with various central force 

mixtures including Serber, Ferrell-Visscher, and Rosenfeld forces and 

with various ranges. Although the delta-function force may give the 

correct sequence of the observed levels in y90 as shown by Pollak 

et al.,
46 

the calculations with realistic finite-range forces indicate 
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Table III. Single-particle levels of the thirty-nith proton. 

Configuration 

y89a 

pl/2 0 

g9/2 913 

aExperimental data from reference. 43 

b Average between y89 and y9l. 

Energy (keV) 

y 9la y 90b 

0 0 

551 732 

Table IV. Single-particle levels of the fifty-first neutron. 

Configuration 

d5/2 

8 1/2 

d3/2 

g7/2 

Sr 89
8 

0 

1050 

2020 

. . 

Energy (keV) 

Zr. 
9lb 

y 
90c 

0 0 

1225 1138 

2070 2045 

2205 2205 

aExperimental data from B. L. Cohen, Phys" Revo 125, 1358 (1962). 

bExperimental data from Cohen (cit, supra) and reference 48" 

c - 89 91 
Average between Sr and Zr . 

" 
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Table V. The zeroth-order levels in y9° 

Configuration (proton-neutron) Energy (keV) 

pl/2d5/2 0 

g9/2d5/2 732 

pl/28 1/2 1138 

g9/2 8 1/2 1870 

pl/2d3/2 2045 

pl/2g7/2 2205 

g9/2d3/2 2777 

g9/2g7/2 2937 

'-
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(0-,H--- 6.849 

/ 
MU-27413 

Fig. 1. Experimentally observed low energy levels in y9°. 



that we must intro~ce a fairly strong attractive odd force to fit the 

experimental data if we were to retain the singlet-even to triplet-even 

ratio ("" 0. 5) of the free two-nucleon potential. A calculation with 

one set of central force parameters with rather strong attractive odd 

forces, which is chosen so as to fit both the doublet spacings of 

J = 2, 3- and J = 2+, 7+, is shown in Fig. 2. Although the fit with 

the experiment is good, there is no justification for assuming the 

central force mixture of strong attractive odd force. Furthermore, 

this is not the only set of parameters which gives rise to a good fit 

with the experiment, since there are other sets of the parameters which 

yield equally good fits. From the free two nucleon potential, it is 

known that the triplet-odd force is weak, and the singlet-odd is even 

repulsive. 
·.··rr 

The diagonal tensor-force matrix elements (1/3)\a /PornU (r12 )s12 /a) 
·~ . 

(l/3)(a/PT0u (r12 )s12 /a) are plotted as a function of the range and 

in Figs. 3 through 5· As we can see fr.om these figures, the tensor­

force matrix elements are not always a monotonically increasing function 

of the range, and may be either positive or negative. This is to be 

contrasted with the fact that the central force matrix elements are 

positive and monotonically increasing functions with increasing'range 

and constant depth. The results of the calculation with Potential I 

of Table II are compared with the experiment in Fig. 6. In diagonalizing 

the matrix, the off-diagonal tensor-force matrix elements are neglected, 

since they are small compared to the diagonal tensor-force matrix 

elements. The numerical results are also presented in Table V, and are 

shown schematically in Fig. 7. In F'ig. 7, notice that the lowest and 

highest J sta~es (2+ and 7+) are separated from the other J states 

arising from the same configuration, g
9
/ 2 d512 . This is consistent 

with the revised "weak" coupling rule of Brennan and Bernstein. 47 

The results of other configurations presented in Fig. 7 and 
l 

Table VI are also consistent with coupling rules of Nor,Q,;!Aeim ,}-- and 

de-Shalit and Walecka. 15 The eigenfunctions are also computed, and the 

results are shown in Tables VII and VIII. As we can see from these 
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order matrix mix. 
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MU-29164 

Fig. 2. Calculated y9° spectrum with the central force alone. 

The central-force parameters are adjusted to fit both the 

doublet spacings of J = 2-, 3- and J = 2+, 7+· 

~-
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2+ 
3-
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Fig. 3· Diagonal tensor-even-force matrix elements for several 

observed states in y90 as a function of the range parameter. 
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Fig. 4. Diagonal tensor-odd-force matrix elements for several 

observed states in y90 as a function of the range parameter. 
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Fig. 5· Diagonal tensor-even-force matrix elements for the 

observed states in y90 as a function of the range at the 

shorter ranges. 
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6JO;I-l 

> 
Q) 2+ > :!! 7+ Q) 

2+ :!! 

>. 7+ 01 ... 
pl/2 d512 

>. Q) :o c: 
0 
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w Q) 

c: 
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-0.5 2- 2-

Zero C F CFt TTE CFt TTE tTTO CFtTTEtTTO Experiment 
Ord.er diagonal diac;fonal diagonal configuration 

only only only mixing 

Fig. 6. Comparison of experimental and calculated spectra of 

y90 with Potential r. The symbols CF, TTE, and TTO stand 

for the central, tensor-even, and tensor-odd forces, 

respectively. In diagonalizing the matrix, the off-diagonal 

matrix elements for the tensor force are neglected. 
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4 

J 

5 6 7 8 

MU-29503 

Fig. 7· Calculated energy levels in y9°. For each spin, the 

left-hand column gives the odd-parity states, and the right-

hand column the even-parity states Various J states arising 

from the same configuration are connected by thin lines. 
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Table VI. Calculated energy levels in y9°. The results before and 
after diagonalization are shown in colwnns A and B, respectively. Ih 
colwnn C, the energy scale is shifted so that the ground state lies at 
zero energy. In diagonalizing, the matrix the tensor-force off-diagonal 
matrix elements are neglected. 

Proton-neutron J7T Energy (MeV) 
configurations A B c 

pl/2d5/2 2- -0.515 -0.516 0.0 

3- -0.480 -0.487 0.029 

g9/2d5/2 2+ 0.382 0.377. 0.893 

3+ 0.622 0.600 1.116 

4+ 0.624 0.610 1.126 

5+ 0.583 0.551 1.067 

6+ 0.679 0.679 1.195 

7+ 0.359 0.357 0.873 

Pl/2 8 1/2 0- 0.672 0.672 1.188 

1- 0.734 0.734 1.250 

g9/2sl/2 4+ 1.736 l. 745 2.261 

5f· L655 1.671 2.187 

Plj2d3/2 1- 1.815 L816 2.332 

·2- 1.650 1.650 2.166 

Plj2g7/2 3- 2.047 2.054 2.570 

4- 1.927 1.927 2.443 

g9/2d3/2 3+ 2-372 2.326 2:842 

4+ 2.609 2.686 3.202 

5+ 2.677 2.671 3.187 

6+ 2.487 2.663 3·179 

g9/2g7/2 l+ 1.669 1.669 2.155 

2+ 2.269 2.274 1.758 

3+ 2.615 2.683 3·199 
4+ 2.491 2.420 2.936 

5+ 2.769 2.790 3·306 

6+ 2.470 2.295 2.811 
.._, 

7+ 2.841 2.842 3·358 
8+ 2.129 2.129 2.645 
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Table VII. Calculated eigenfunctions for odd-parity stB;tt::s ;in y9°. 

Eigenvalues 

J7T (MeV) pl/2d5/2 

1- 0.734 

1.816 

2- -0.516 -0.9998 

1.650 -0.0158 

3- -0.487 0.9987 

2.054 0.0500 

Eigenfunctions . 

pl/2sl/2 pl/2d3/2 

0.9997 0.0246 

0.021+6 -0 •'9997 

0.0158 

-0.9998 

0.0500 

-0.9987 
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Table VIII. Calculated eigenfunctions for even-parity states . y90 ln . 

_Eigenv§i.lues .·Eigenfunctions 

J7T (MeV) · 

g9/2d5/2 g9/2sl/2 g9/2d3/2 g9/2g7/2 

2+ 0.377 o. 9987 0.0491 

2.274 0.0491 -0.9987 

3+ 0.600. -0.9937 0.1070. 0 .. 0332 

2.326 -0.1108 -0.8962 . · -Oo4294 

2.683 -0.0161 -0.4304 o. 9024 ' 

·4+ 0.610 0.9938 0._1100 0.0079 -0.0040 

1. 745 0.1101 -0.9906 -0.0736 -0.0314 

2.420 0.0064 -0.0648' 0~5174 0.8532 

2.686 0.0037 0.0472 -0.8524 0.5206 

5+ 0 .. 551 o. 9860 0.1578 -0.0466 -0.0248 

1.671 0.1623 -0.9871 0.0949 0.0295 

2.671 0.0361 0.1060 0.9105 0.3980 

2.790 0.0058 -0.0100 ·0.3997 0.9165 

6+ 0.679 0.9997 -0.0115 -0.0174 

2.295 0.0206 0.6906 o. 7229 

2.663 0.0037 -O .. J231 0.6907 

7+ 0.357 -0.9996 0.0263 

2.842 -0.0263 -0.9996 
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tables, the configuration mixing is not very important for most of the 

observed states. The almost pure configuration of the ground state 
J=2-

(pl/2d5/2) is consistent with the measured magnetic moment. The 

measured magnetic moment of the ground state of y90 is -1.629 nm, 

whereas the calculated magnetic moment with the empirical g factors 

evaluated from neighboring nuclei is -1.609 nm if we assume that the 

configuration is pUre. 45 
A level at 0.24 7 MeV has been suggested by 

Bartholomew -et a1.
40 

to be the J=3-: state arising from the p1; 2g
7

; 2 
configuration. Theyhave indicated that this assignment is consistent 

with their data and with the observed beta decay of Sr9°(total dis­

integration energy of 0.535 MeV) only to the ground state,,thus eliminating 

the possibility of this state being J = ± 0, 1±, or 2-. However, the 
48 has been found to be 2.2 MeV above g

7
/ 2 neutron single-particle level 

the ground state d
5

/ 2 in zr91 , and it is very difficult to understand 

( ) J=3 b . th d t t Th" ld the . p1; 2g
7

; 2 state e1ng near e groun . s a e. 1s wou re-

quire an extremely large matrix element to overcome this initial neutron 

single-particle spacing of 2.2 MeV. The. low energy of 0.247 MeV suggests 

that this level is probably not attributable to the configuration 

(p1; 2g
9

; 2 ) norother configurations caused by the core excitation of 

the 38-proton core .. It remains to be seen if the experiment can 

definitely assign the spin and parity to this state. 

The spin and parity of the state of 2.7 MeV have not been 

determined experimentally, and there are several calculated levels 

around 2.7 MeV. The probable states within the energy limit of 

2.7±0.2 MeV are 

c. Discussion. Although the experimental spectrum is not sufficiently 

resolved to test all components of our choice of the residual force, 

there is a remarkable agreement between the calculated spectrum and 

experi;rp.ent if one notes that several shell-model approximations have 

been made an~ the force parameters are not all adjusted arbitrarily. 

A slight. increase of the triplet-even part of the central and tensor 

forces is sufficient to increase the doublet spacings of J = 2~, 3-, 

and .J = 2+, 7+ so as to improve agreement with experiment. Furthermore, 

by introducing the tensor force, we can eliminate the need for un­

realistic strong attractive odd central forces, required for a shell-
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model force .with central components only. Potential I was also applied 

to Bi210 , 49(see Section C2) where most levels of the ground state­

state multiplet (a total of nine levels out of a possible ten) are re­

solved by the high resolution (d,p) reaction on Bi
20

9 at Massachusetts 

Institute of<Technology. 50 The analysis of those multiplets in Bi
210 

along with pp210 also indicates that the triplet-even part of Potential 

I is slightly too vJeak to. account for the overall spacings of the Bi
210 

grouhd-state multiplet. A slight increase of the triplet-even part of 

Potential I improves the spacing of J:::: 2-, 3-states. It would be very 

interesting to see if one can resolve the 

multiplets by high-resolution studies of 

Nb92 , or zr9°(a,d) Nb92 reactions. 

2. Bismuth-210 and Polonium-210 

i:! •. Introduction. The low-lying energy-level spectrum of Bi
210 

has 

ueen the object of several shell-model theoretical studies. 51 The 

nuc.leus has one proton and one neutron beyond the doub.ly closed-she.ll 

nucleus Pb
208

. The lowest proton orbital is h
9

/ 2 , and the .lowest 

neutron orbital, g
9

/ 2 . One thus expects a low-lying multiplet of ten 

1 1 . th 0 f t 0 f B. 210 W 0 t·h th . 1 eve s Wl splns rom zero o nlne or . l l · e experlmenta 

determination.eight years ago a ground-state spin of one, a difficult 

problem was posed for shell-model theory, for almost any reasonable 

attractive c~ntral-force mixture acting between the neutron and proton 

bring spin 0 lower than spin 1, whereas experimentally spin 0 lies 47 
keV higher. 

\ 

The inversion of 0- and 1- states of the h
9

/ 2g
9

/ 2 configuration 

in Bi 
210 

is a striking exception to Nordheim's ~'strong" -coupling rule 

for odd-odd nuclei. To explain this inversion, Newby and Konopinski5l 

and Kharitonov, Sliv, and Sogomonova52 attribute the 1- state to the 

confi.guration h
9

/ 2 i 11; 2 . More recently the study by de-.Shalit and 

Walecka of the angular ordering function suggested that the inversion 

of 0- and 1- states of h
9

/'f_g
9

/ 2 may be explained with a proper choi.ce 

of the central-force range. 5 Newby and Konopinski gave .qualitative 
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arguments that an 1:!ttractive tensor force would be repulsive for the 

0- state and help force it up. 

The low-energy, high-resolution (d,p) reaction studies of 

Erskine et al. on Bi209 present a wealth of new information)on the 

h
9

/ 2g
9

/ 2 multiplet50 and neG!essitate a thorough reexamination of the 

shell-model theory. They resolve nine of the expected ten levels of 

the h9/2g9/2 multiplet and ma:ke tentative spin assignments on the basis 

that the reaction cross _sections are proportional to 2J+l. Further­

more, they see higher multiplets attributable to capture of the neutrons 

into d
5

/ 2 and s1; 2 excited orbitals. The multiplets arising from 

capture into i 11; 2 or j
15; 2 orbitals are weak andnot resolved 

completely, presumably because the high orbital-angular-momentum trans­

fers are strongly discriminated against in the (d,p) reaction. 

Figure 8 shows Erskine's spectrum with ind.icated level numbers. 

The spins are assigned in sequence of J = 1, 0, 9, 2, 3, 5 and 8 (or 

5 and 7)? 4, 6, and 7 (or 8) with corresponding level numbers 0, 1, 2, 

3, 5, 6, 7, and~· These results strongly indicate that the ground 

state involves mainly the g
9

/ 2 neutron orbital and not the i 11; 2 · 

Erskine made shell-model calculations with a finite Gaussian Serber 

force (central-even components only) as a function of range.53 He 

took a ratio of 0.66 for singlet-to-triplet strength, which free-space 

two-body scattering and other shell-model work indicate is reasonable. 

At a force range of 2.7 fm he found a fairly good fit.for all except 

the spin~O and -1 levels, which are inverted from their experimental 

order. 
210 The spectrum of Po was theoretically calculated by Hoff and 

Hollander54 with a delta -function force, and by Newby and Konopinski 

with a central singlet-even force, which is reasonable from the free 
210 two-nucleon potential. We also shall treat the Po spectrum to see 

the effects of a tensor force and to determine if one can explain the 

spectra of both Bi210 and Po210 with the same residual force. The ex-
. t 11 b d 1 1 . 1 1 . .210 d p 210 perJ.men a . y o serve ow- yJ.ng energy eve s J.n BJ. an . o are 

presented in Fig. 9. We assume that Pb
208 

can be treated as an inert 
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Fig. 8. Spectrum of protons from the (d,p) reaction on Bi209 as 

observed by Erskine et al. (Ref. 50). 
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Fig. 9· The experimentally observed low-lying energy levels 

in Bi210 and Po21°. 
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core providing a harmonic-oscillator potential well for the extra 

nucleons, (i.e., harmonic-oscillator radial eigenfunctions are used, 

although eigenvalues for single-nucleon states are taken from data on 
. . b208 , - Tl t nuclel Wl th P pj_us one :nuC-Leon.. nere are wo nucleons outside 

this doubly closed shell in Bi
210 

and Po
210

. Sliv et al. have included 

the effects of Pb
208 

core excitation of a quadrupole surface-oscillation 

type. It-generally appears from their work. that such a refinement brings 

an important enhancement of E2 transition probabilities and a general 

lowering of levels, but that the relative level spacings for low-lying 

levels are not greatly altered. 

The independent-parti~le energies are taken from the neighbor-

1 · Pb209 d B· 209 and the lt' - energl'eQ are ing nuc el · an l ·, resu lng zero-order ~ 

listed in Table IX. Recently seven single-particle levels for the 
209 55 neutron in Pb . have been reported by Cohen et al. 

If one investigates the effects of the fou.r central-force com­

ponents separately:· one finds that a central-force mixture cannot ex­

plain the inversion without losing the agreement on positions of other 

levels. The triplet-even central force which should be attractive and 

strongest of the components always brings the 0- staYce below the 1-

state in energy. Although the triplet-odd part yields significantly 

large matri.x elements similar to those for the triplet-even, we expect 

the triplet-odd matrix elements to be very small compared to the triplet­

even contribution s:ince the triplet-odd strength is known to be very 

weak .from the free-space two-nucleon potential. The above arglJ.:rnents 

are seen by examination of Figs. 10 and 11, ·which are plots of the 

magnitude of diagonal matrix elements for h
9

/ 2g
9
/ 2 multiplet states. 

From Fig, 10 and ll it is clear that a reasonable central force, pre.,­

dominantly attractive triplet-even, can explain most of the levels of 

the h
9
/ 2g

9
/ 2 multiplet except the inversion of the 0- and 1- states 

and that j_t is very difficult to adjust the force parameters so as to 

invert the 0- and 1- states wi.tbout disturbing the sequence of other 

spin states in the h9/ 2g
9
/ 2 configuration. At this point we feel it 

most important to quantitatively evaluate the tensor-force matrix 

elements with a realistic radial dependence" 
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T bl IX I d d t t . 1 . a f B.210. d p 210 a. e . n epen en -par lC.e energles or l an o . 

Bi210 p
0

210 

Configuration Energy (MeV) 
(proton-neut:ron) 

Configuration Energy (MeV) (proton -proton) 

h9/2g9/2 0.0 . h 
h9/2-'9/2 0.0 

h9/2ill/2 o.n h9/2f7/2 0.90 

f7/2g9/2 0.90 h9/2il3/2 1.62 

h9/2jl5/2 1.41 f7/2f7/2 1.80 

h9/2d5/2 1.56 f7/2il3/2 2.52' 

f7/2ill/2 1.67 il3/2il3/2 3.24 

h9/2 8 l/2 2.03 

f7/2jl5/2 2.31 

f7/2d5/2 2.46 

h9/2g7/2 2.47 

h9/2d3/2 2 .. 52 

f7/2 8 1/2 2.93 

f7/2g7/2 3·37 

f7/2d3/2 3.42 

8
Tne single-particJ.e energies are taken from references 54 and 55· 
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Fig. 10. The matrix elements of the four central-force components 

for the configuration ~/2 ~/2 in Bi21°. The same range, 

1.5 fm, is taken for all cases. The symbols TE, SE, TO, and 

SO stand for triplet-even, singlet-even, triplet-odd, and 

singlet-odd, respectively. 
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b. Tensor-Force Effects. The previously given expression for the 

tensor-force matrix element is still sufficiently complicated so that 

it is very difficult to draw any conclusions before doing-the numeri-.cal 

work. Figures 11, 12, 13, 14, 15, 16, and 17 present the results for the 

diagonal contribution of the tensor-even and tensor-odd forces on the 

h
9
/ 2g

9
/ 2 multiplet as a function of the range parameter. These results 

confirm the qualitative predictions of Newby and Konopinski; for an 

attractive tensor force in that both even and odd components are quite 

repulsive for the spin-0 state. At the ranges comparable to the free­

space ranges of Gammel-Thaler, the tensor force affects the spin-1 ;in 

an'Opposite sense to the spin-0 state, and it has only a rather small 

effect on the states of spin 2 .. or higher. 

As shown :i,n the figures, the tensor-force .matrix elements are 

not always a monotonically increasing function of the range, and they 

may be either positive or negative in contrast to the central-force 

matrix elements. Thus the shorter-range tensor-force matrix elements 

are in quite different ratios to one another than in the infinite-range 

limit. This implies that the infinite -range approximation for the 

tensor force is not very realistic for shell-model calculations. 

c. Energy Spectra. As the first approximation, Potential I listed in 

Table II was used for our calculation:. The Po210 calculations gave 

somewhat too close spacing of the lowest 2+, 4+, 6+ level grouping. 

Their spacing seemed relatively insensitive to details of configuration 

mixing and to the tensor-force strength. Therefore, the central singlet­

even force component seemed somewhat too weak and-was strengthened by 

about 20% in the adjusted Potential II (see Table X). It should be 

noted that the singlet-even part of Potential I gives zero binding 

energy for a free-space, two-nucleon system. The calculations with 

Potential I on Bi210 showed that the central triplet-even part of 

Potential I is somewhat too weak to account for the overall spacings 

of the multiplet h
9
/ 2g

9
/ 2 . ~ence, the central triplet-even strength 

was increased by about 60% in Potential II. The central triplet-odd 

part was neglected entirely in Potential II, because it was very small 
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Fig. 13. Diagonal matrix elements of the tensor-even force 

[ (l/3)PTEUf:E(r12)s12 ] (13:j;E) for the multiplet ~/2 &:J/2 in 

Bi210 as a function of the range parameter (13~E)-l/2. 
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Fig. 15. Diagonal matrix elements of the tensor-odd force 

[ (l/3lPT0u1o(r12)s12 J (13~0 ) for the multiplet ~/2 &:J/2 in 

Bi210 as a function of the range parameter (f:3~0 )-l/2. 
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compared to the other components and did not affect the results v:ery 

much. The. singlet-odd force is ~epulsive, and it affects mostly the 

higher <T states, particularly the J = 9 state, as can be seen from 

Fig, 10. ··The central singlet-odd force of Potential I was found to 

have an effect too strong for the J = 9 level, thus bringing the latter 

level above the J == 2 and 3 states j_n the energy spectrum, and we 

arbHrarily reduced the strength of the central singlet-odd force by 

a factor of about three tobring the J"" 9 level down near the J == 2 

leveL In the next calculation_, 1-Ji th the above modifications to the 

central force, and somewhat strengthened tensor force; it was found 

that the positions of tlJ.e 0- and 1-level v1ere inco:crect. 'Fnerefore_, 

tensor forces were further strengthened to give Potential II,, listed 

in Table X .. 

In Figs. 18 and 19, we plot the effects on the ground-state 

1 1 t Of Bl·
210 and Po210 f dd.. · t f' mu tip. e s o .. a lng successlve componen s o our 

residual force. The h
9
; 2d

5
; 2 and h

9
; 2s 1; 2 multiplets of Bi 

210 
seen 

in the (d,p) reaction are also plotted in Fig. 18, and the 

h
0

;
2
i, 7 ;

2
(J = 4-, 5-) multiplet of Po

210 
is plotted in Fig. 19- All 

71 ..L.J 
diagonal matrix elements include central and tensor forces. In dia-

gonalizing the matrix, only central-force contrj_butions to the off-diagonal 

matrix elements were used in Po
210

. For Bi 
210 

the off-diagonal tensor­

force mafrix elements of the lowest three configurations h
9
/ 2g

9
; 2 , 

h
9
; 2 i 11; 2 , and r

7 
; 2g

9
/ 2 were calcu.la ted and included, but only 

central-force off-diagonal elements apply to other configuratiom3. A 

complete list of the eigenvalues fm: our calculations is presented i.n 

Tables XI and XII. The eigenf·u.nctions are also calculated both for 
.210 . 210 

Bl and Po and are presented in Tables XIII and XIV, respectively. 
210 

For Bi , the eigenfunctions are listed for the eigenvalues that 

correspond to the states arising from the lowest six odd-parity con-

f . + . d f' p 210 th . f t. 1 f .Ll . t .lgUTa v lOns, an or o e e lgen unc· lOns on y or L. 1e even parl y 

states are listed. 
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Table X. Values of the force parameters for Potential II us~(,i in 
Bi210 and Po210 calculations. 

Com~onents Strength Range 
(MeV} (F) 

Central triplet-even ,..355.24 0.706 

Central singlet-even -133.20 1.018 

Central triplet -odd o.o 
Central singlet-odd .11.01 1.476 

Tensor triplet-even - 99.28 1.407 

Tensor triplet-odd 9·50 1.845 
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Fig. 19. Comparison of the experimental and calculated spectra 

of Po210 . The abbreviations CF and TTO refer to the central 

and tensor-odd forces, respectively. 



Table XI. Calculated eigenvalue's and energy levels in Bi 210. In the 
-last column) eigenvalues are expressed ip. a new energy scale in which ·,, . 
the ground state lies at zero energy .. The indicated configuration is 
taken to be the dominant one. 

Configuration 
(proton-neutron) 

J:rt: 

0-

1-

2-

3-

4-

5-
6-

7-

8-

9-

1-

2-

3-

4-

5-
6-

7-

8-

9-

10-

l.,. 

2-

3-
4-

5-

Eigenvalues Energy 
(MeV) (MeV) 

-0.572 0.022 

·-0. 594 0.0 

-0.311 0.283 

-0.251 0.343 

-0.135 0.459 

-0.202 0-392 
-0.084 0.510 

-0.218 0-376 
-0.062 0-532 

-0.310 0.284 

·0.076 0.670 

0.534 1.128 

0-573 1.167 

0.688 1.282 

0.655 1.249 

0.646 1.240 

0.708 1.302 

0.345 0.939 

0.753 1.347 

0.212. 0.806 

0.529 1.123 

0.701 1.295 

0.796 1-390 

0-776 1-370 
0.818 1.412 
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Table XI. (Continued~ 

Configuration Jrc Eigenvalues Energy 
(proton-neutron) (MeV) (MeV) 

f7/2 g9/2 6- 0,761 1.355 

7- 0.854 1.448 

8- o.671 1.265 

h9/2 d5/2 2- 1.015 1.609 

3- l. 390 - 1.984 

4- 1.390 1.984 

5- 1.421 2.015 

6- 1.483 2.077 

7- 1.402 1.996 

f7/2 \1/2 2- 1.358 1.952 

3- 1.469 2.063 

4- 1.529 2.123 

5- 1.498 2.092 

6- 1.573 2.167 

7- 1.490 2.084 

8- 1.6oo 2.194 

9- 1.324 1.918 

h9/2 8 1/2 4- 1.869 2.463 

5- 1.970 2.564 

f7/2 d5/2 1- 2.066 2.660 

2- 2.256 2.850 

3- 2.283 2.877 

4- 2. 263 2.857 

5- 2.393 2.987 

6- 2.126 2. 720 



Table XI. (Continued) 

Configuration Jn Eigenvalues Energy 
(proton-neutron) ·(MeV) (MeV) 

h9/2 g7/2 1- 2.176 2.770 

2- 2.444 3·038 

3- 2.354 2.948 

4- 2.390 2.984 

5- 2.417 3.011 

6- 2.235 2.829 

7- 2.449 3·043 

8- 2.180 2.774 

h I ct I 9·o2 3 2. 3- 2.485 3·079 
4- 2.521 3·115 

5- 2.505 3·099 
6- 2.476 3·070 

f 7/2 81/2 3- 2.800 3·394 
4- 2-778 3·372 

f 7/2 g7/2 0- 2.530 3.124 

1- 2.698 3·292 
2- 3o034 3-628 

3- 3.035 3.629 

4- 3.220 3.814 

5- 3.056 3·650 

6- 3.268 3.862 

7- ;:;.942 3·536 
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T"able. XI. (Continued) 

Configuration Jrc Eigenvalues Energy 
(proton,-neutron) (MeV) (MeV) 

f7/2 d3/2 2- 3.094 3 .. 688 

3- 3.247 3.841 

4- 3.327 3.921 

5- 3.156 3·750 

h9/2 jl5/2 3+ o.496 1.090 

4+. 1.083 1.677 

5+ 1.140 1.734 

6+ 1.131 1.725 

7+ 1.249 1.846 

8+ 1.133 1.727' 

9+ 1.290 1.884 

10+ 1.090 1.684 

11+ L3ll 1.905 

12+ o.88o 1.474 

f9/2 jl5/2 4+ 2.051 2.645 

5+ 2.-243 2.837 

6+ 2.230 2.824 

7+ 2.221 2.815 

8+ 2.269 2.863 

9+ 2.1fr7 2 ·771 
10+ 2.291 2.885 

11+ .. 1.969 2 .. 563 



Table XII. Calculated eigenvalues and energy levels in Po210. In 
the last column, eigenvalues· are expressed in a new nergy scale in which 
the" ground state lies at zero energy. The indicated configuration is 
taken to be the dominant one. 

· Configuration 
(proton-proton) 

J1f 

0+ 

2-t 

4-t 

6+ 

8-t 

H· 

2-t 

3-t 

4+ 

0-1' 

2+ 

4-t 

0-t 

2-t 

4-t 

6-t-

8+ 

10+ 

12-f· 

Eigenvalues 
(MeV) 

-1.597 

-0.373 

-0.166 

-o.o8h 

-0.027 

0.303 

0.582 

0.792 

0.928 

0.855 

0.896 

0.864 

0.863 

0.868 

0.764 

1.664 

1.741 

2.718 

2.903 

3.050 

3-118 

3-158 

3.187 

3.222 

Energy 
(MeV) 

0.0 

1.224 

1.431 

l-513 

1-570 

1.900 

2.179 

2.389 

2.525 

2.452 

2.493 

2.461 

2.460 

2.465 

2.361 

3.261 

3·338 

4.315 

4-500 

4.647 

4.715 

4-755 

4.784 

4.819 
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Table XII. (Continued) 

·Configuration Jrc Eigenvalues Energy 
(;proton -proton) (MeV) (MeV) 

h9/2 il3/2 2:.. 1.526 J.l23, 

3- 1.645 J.242 

4- l. 575 3.172 

5- 1.602 3·199 

6- 1.582 3·179 

7- 1.567 J.l64 

8- 1.583 3.180 

9- 1.510 3.107 

10- 1.583 3.180 

11- l. 315 2.912 

f7/2 il3/2 3- 2. 315 3·912 

4- 2.497 4.094 

5- 2.438 4.035 

6- 2.510 4.107 

7- 2.474 4.071 

8- 2.512 4.109 

9- 2.499 4.096 

10- 2.506 4.103 



• 

Table XIII. Calculated eigenfunctions for Bi210 . 

Eigenfunctions 
Eigenvalues 

(MeV) h9/2 g9/2 h9/2 i11/2 f7/2 g9/2 h9/2 d5/2 f7/2 ill/2 h9/2 6 1/2 f7/2 d5/2 h9/2 g7/2 h9/2 d3/2 f7/2 6 1/2 f7/2 g7/2 f7/2 d3/2 

J "0 

-0.572 -0.9999 0.0099 

J " l 

-0.594 0.9767 -0.1883 0.0578 0.0130 -0.0819 -0.0130 

0.076 0.0893 0.6836 o. 7167 0.0753 0.0232 -0.0686 

0.529 0.1735 0.6925 -0.6708 0.0680 -0.01)4 0.1878 

J " 2 

-0.311 -0.9727 -0.1114 0.0175 -0.1049 0.1696 -0.0010 -0.0305 0.0073 0.0139 

0.534 -0.1694 0.9000 -0.1774 0.0038 -0.3500 -o.o48o 0.0638 -0.0131 0.0233 

o. 701 -0.0094 -0.2073 -0.9711 0.1073 -0.0300 -0.0272 0.0017 0.0114 0.0211 
I 
--l 

1.015 -0.1564 -0.2632 0.1510 0.6690 -0.6403 -0.0089 0.1526 -0.0458 -0.0153 ....... 
1.358 -0.0065 -0.2511 -0.0063 -0.7205 -0.6459 0.0030 0.0141 0.0015 -0.0123 I 

J " 3 

-0.251 -0.9951 0.0212 -0.0151 -0.0593 -0.0660 -0.0053 o:oo41 0.0272 -0.0136 -0.0006 -0.0088 

0.573 -0.0145 -0.8796 -0.4721 0.0186 0.0230 -0.0277 -0.0193 --0.0125 -0.0116 0.0286 0.0057 

0.796 -0.0187 -0.4734 0.8758 0.0121 -0.0586 0.0021 -0.0002 0.0447 -0.0058 -0.0520 -0.0058 

1.390 -0.0909 0.0140 0.0441 o. 7650 0.6245 0.0031 -0.0543 -0.0957 0.0138 0.0368 0.0213 

1.469 -0.0132 -0.0181 0.0514 -0.6366 o. 7657 -0.0187 -0.0641 -0.0158 -o.oo48 0.0092 0.0173 

J "4 

-0.135 0.9944 0.0643 0.0168 0.0407 -0.0606 0.0227 0.0100 0.0160 0.0124 0.0122 -0.0071 -0.0078 

0.688 -0.0691 o. 9414 0.3117 -0.0259 -0.0858 -0.0493 -0.0129 0.0196 -0.0221 -0.0092 -0.0106 -0.0001 

o. 776 -o.oo4o 0.3112 -0.9492 -0.0003 -0.0311 0.0026 -0.0265 0.0073 0.0101 0.0025 0.0120 0.0110 

1.390 -0.0702 -0.0154 0.0116 0.8492 -0.4537 0.2189 o.oo4o 0.0981 0.0953 0.0064 -0.0259 -0.0090 

1.529 -0.0266 -0.0963 -0.0027 -0.4679 -0.8762 -0.0371 0.0085 0.0)96 0.0035 0.0101 -0.0064 -0.0088 

0.869 -0.0153 0.0446 0.0173 -0.2299 0.0829 0.9519 -0.0240 0.1039 0.1395 -0.0120 -0.0225 -0.0008 



Table XIII. (Continued) 

Eigenvalues Eigenfunctions 

(MeV) h9/2 g9/2 h9/2 111/2 f7/2 g9/2 h9/2 d5/2 f7/2 111/2 h9/2 6 1/2 f7/2 d5/2 h9/2 g7/2 h9/2 ~/2 f7/2 61/2 f7/2 g7/2 f7/2 ~/2 

J = 5 

-0.202 -0.9967 -0.0005 -0.0107 -0.0565 -0.0410 -0.0326 -0.0049 -0.0081 -0.0030 -0.0136 -0.0103 

0.655 -0.0020 0.9564 0.2849 -0.0212 -o.0444 -0.0200 0.0134 0.0119 0.0001 -0.0258 -0.0107 

0.818 -0.0106 -0.2857 o. 9554 0.0353 -0.0291 0.0343 o.oo4l 0.0005 0.0175 -0.0419 -0.0022 

1.421 -0.0715 0.0433 -0.0199 0.9421 0.2651 0.1841 0.0067 0.0027 -0.0156 0.0204 0.0103 

1.498 -0.0198 0.0249 o.0498 -0.2624 o. 9575 -0.0499 -0.0205 -0.0686 -0.0335 0.0248 0.0365 

1.970 -0.0222 0.0219 -0.0213 -0.1952 0.0006 0.9788 0.0324 0.0339 0.0022 0.0111 -0.0027 

J = 6 

-0.084 -0.9953 -0.0739 -0.0334 -0.0210 0.0348 -0.0091 -0.0197 -0.0229 0.0018 

0.646 -0.0809 0.8091 0.5785 -0.0069 -0.0516 0.0018 o.o149 -0.0272 -0.0164 

o. 761 -0.0157 0.5786 -0.8142 -0.0139 -0.0251 -0.0277 0.0110 -0.0092 o.o118 

1.483 -0.03h6 -0.0108 0.9381 -0.3194 o.OlY> 0.0743 -0.0106 
I 

-0.0062 0.1032 -..1 
1.573 -0.0226 -0.0594 -0.0079 -0.3297 -0.9392 0.0309 0.0346 0.0330 -0.0058 N 

I 
J = 7 

-0.218 -0.9960 -0.0166 -0.0087 -0.0829 -0.0207 -0.0106 0.0012 

o. 708 -0.0142 0.9827 o.l686 -0.0313 -0.0591 0.0072 -0.0331 

0.834 -0.0090 -0.1708 0.9819 0.0488 -0.0301 o.oo04 -0.0569 

1.402 -0.0846 0.0416 -0.0404 0.9919 0.0707 0.0215 o.oo45 

1.490 -0.0151 0.0513 o.0452 -0.0713 0.9924 -0.0572 o.0423 

J = 8 

-0.062 0.9884 0.1138 0.0928 -0.0204 0.0316 

0.345 0.1333 -0.4186 -0.8979 0.0249 -0.0075 

0.671 0.0648 -0.8991 0.4301 0.0383 -0.0280 

1.600 0.0176 0.0507 0.0074 0.9917 -0.1158 

J = 9 

-0.310 0.9993 0.0363 -0.0026 

0.755 0.0364 -0.9946 0.0962 

1.324 o.ooo8 -0.0963 -0.9953 
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Table XIV. Calculated eigenfunctions for the even-parity 210 states in Po . 

Eigenvalue Eigenfunctions 

(MeV) h9/2 h9/2 h I f I 9/2 7 2 f7/2 ~7/2 il3/2 il3/2 

J = 0 

-l. 597 -0.8845 -0.3032 0.3544 

1.016 -0.3697 0.9190 -0.1364 

2. 718 -0.2844 -0' 2517 -0.9250 

J = 2 --
-0.372 -0.9895 -0.0305 -0.0873 0.1109 

0.928 -0.0350 0.9989 0.0216 -0.0208 

l ·518 -·0 .0979 ·-0 .0269 0.9896 ·~0 .1013 

2.904 '-0.1003 -0.0217 -0.1116 -0.9884 

J = 4 
--· 

-0.166 -0 ·9965 -0.0369 -0.0446 0.0589 

o.896 -0.0390 0.9988 0.0152 -0.0224 

1.664 -0.0474 -0.0183 0.9969 - -0.0586 

3·051 -0.0553 -0.0236 . -'0.0616 -0 ·9962 

J = 6 --
-o .o84 -0.9980 -0.0433 -0.0254 -0.0383 

o.o863 -o .o446 0.9986 0.0113 -0.0251 

1.741 -0.0263 -0.0134 0.9989 -:0 .0]63 

3.118 -0.0362 -0.0263 -0.0376 - ' -0 ·9982 

J = 8 ---

-0.027 -0 ·9977 -0.0622 0.0260 

0.764 -0.0630 0.9974 -0.0336 

3·158 -0.0239 -0.0352 -0.9900 
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d. Discussion. From the analysis of various shell-model calculations 

and the study o:f the pr:::·perties of nuclear matter, there are indications 

tre t the nuclear force inside the nucleus is not very different from 

the free two-nucleon force. We have relied upon the free two-nucleon 

potential in estimating the parameters of tne central and tensor forces. 

Our analysis of the tensor-force effect indicates that the tensor force 

behaves quite differently from the central force and, indeed, seems to 

correct the order and spacing of the troublesome spin-0 and 1 levels in 

Bi210 . The analysis of Bi210 leads to the conclusion that the range 

of the tensor force in the residual interaction is about 2 fm or less. 

As shown clearly in Figs 12 and 14, the infinite -range approximation 

for the tensor force is very dangerous. At the short ranges employed, 

the tensor force acts so specifically on the two levels of spin 0 and 

1 that.i.t. cru not be simulated by a linear combination of the four central-­

force components. Our choice of the residual force (Potential .II) which 

is slightly modified from the simulated BGT potential (Potential I) seems 

to give a rather good agreement with the experimental spectra. Since 
. . . 210 

our residual force explains the ground-state multiplet of Bi very 
' 

well, it is interesting to see if we can explain the other .observed 

niultiplets from our theoretical calculation. Levels from 0 to 0.581 

MeV are clearly from the configuration (h
9

/ 2g
9
; 2}, and the spin assign-· 

ment s shown in 
J-2 

(h9/2d5/2) -
2.572 MeV seem 

Fig. 9 are prdbably correct. Also. the assignments of 

and (h
9
; 2s1; 2

)J=4, 5 for'leveisatl.577, 2.)17~ and 

reasonable. Erskine suggested fromthe central-force 
.·•· · J=lO calculatio~=~hat levels at 0.6~2 and 0.912 are (g

9
; 2i 11; 2) . and 

(f
7

; 2s9
; 2 ) , respectively. 5 The relative cross sections also 

appear to support these assignments. Erskine et al. found that the 
· . · J=lO 

level at 0.672 MeV is very weak, suggesting (h
9

/ 2i],l/2) · . If this 

is true, the other J states from (h
9

/ 2i 11; 2 ) are not.expected to appear. 

Six levels ranging from 0. 912 to 1. 517 MeV are probably from the ad­

mixture of (f
7

/ 2g
9

; 2 ) and (h
9

/ 2i 11; 2 ), the >dominant part being 

. (f7; 2g
9

; 2 ). Because of the configuration- mixing, the.· relative cross 

sections are not very useful for assisning the ~pins of these levels. 
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At higher energies_, the various other factors such as core exeitation 

and core vibration must be considered, and_ it i.s very difficult to con­

clude any assignments of spi.n and parity. However, .six levels. at 

1.577) L916, 2.075, 2.138, 2.173, and 2.235MeV have comparatively 

smaller relative cross sections than four levels at l. 972 (doublet), 

2.027, and 2.102 MeV, and this suggests these six levels are probably 

from the admiXture of (h
9

/ 2d
5

; 2 ) and (f
7 

; 2 i 11/ 2 ), ,_,_~J.th (h
9

/ 2 d
5

; 2 ) being 

the dominant. configuration. Four other levels at L 972 (doublet), 

2.027: and 2.102 MeV seem to come from the configu.rat.i.on (PA;
2

g 0 ;
2

) 
jl ;'/ -· 

arising from the core-excitation. It appears to be very difficu.lt to 

assign configurations to the levels abo-ve 2. 5 MeV, because the core 

vibration and. core excitation surely become more important. The 

suggested spin and parity assignmenf~s for tb.e levels below 2.6 MeV are 

summarized in Table Y:lf. 
210 h - d . t t l The ~-decay properties of Bi ave p.laye an lrrrpor an ro. e 

in the developement of f> -decay theory, because it is one of the few . -: 

known cases of a first-forbidden transition 6I ;:=. l(yes) showing striking 

devj_ations from the allowed shape. The so called s approximation can 

explain the spectrum shape if ce:rtain beta-decay matrix elements bear 

ce:rtain ratios to each other. As an independent check from the shell­

model theory on the value of ~ , '.vhi.ch is the ratio i {r) / (axr) ) we 
0 • • 210 .. . ' :210'""' - -

use the gr01md-state wave functJ..O.LJ.s of B1. and .E-o presented in 

Tables XIII and XIV and find. ~ ~ - 0.6;3. (Only the lov1e3t three con-
. .210 

figurations are used for Bl. , since these three conf:i.gu:rations are 

dominant. We used the resl..Llts of Ne1·iby and Konopins1d to evaluate the 
h4 

~-decay matrix elements .. "J..L) For the pure configuration h
9

; 2 i 11; 2 , 

the value of ~ is +LO, whereas it is -·0.1 for the pure n
9

; 2 g
9

;? 
')~ 56 • . - I .. I --

COnfigurat.:i.On.-)a 'rhe recent paper ·by Fu,jit.a on the beta-decay of 

RaE based upon the com;erved-current hypothesis of Feynman and_ Gell­

Mann57 indicated that the value of ~ shou1c1 be --1.2--< i; ~ --0.48 in 

order to fit both the beta-spectrum shape and. the beta-polar:Lzation 

data, whereas we have -1.2-<; f;/.:(0.12 i.f we consider only the spectrum 

shape. Ourvalue of ~ :-= -0.63 i.s cons:l_f3tentwiththe limit set by 

Fujita. 



Table XV. Suggested spin and parity assignments for levels below ~.6 
MeV in Bi210 . Level energies and relative differential cross qections 
are taken fJ~m Erskine et al. (ref;rence 50). The sp~ns for . 

(h9~2 g9/2) o, .... ,9,(h~2 d5/2)J 2Jand (h9/2 ~l/2)J~4,5 have been 
sug ested by Erskine et . . 

Relative Suggested Suggested 
Energy (MeV) differential 

cross section J1l configuration 

o.o 1.4 l-

0.047 o.4 0-

0.268 9.6 9-

0.320 2.3 2-

0.347 3·8 3- (h9/2 g9/2) 
0.433 14.9 5- and 7-

0.501 5·3 4-

0.547 7·0 6-

0.581 8.0 8-

0.672 o.4 (-lo-) (h9/2 ill/2) 

0.912 1.9 (8-) 

1.172 1.2 (3- or 5-) 

l. 325 0·9 ( 5- or 3-) a(f7/2 g9/2)+f3(h9/2 ill/2) 
1.372 l.O ( 4-) 

1.460 1.6 (6- or 7-) 

1.517 1.4 ( 7- or 6-) 

1.577 6.9 2-

1.916 21.6 ( 4-) 

2.075 26.3 ('7-) r(h9/2d5/2)+o(f7/2ill/2) 
2.138 9·3 ( 3-) 

2.173 24.9 (6-) 

2.235 23.5 ( 5-) 



Energy (MeV) 

1.972 

2.027 

2.102 

2.517 

2.572 

(doublet) 
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Table X:V. 

Relative 
differential 
cross section 

12;3 

58·9 

51.4 

.125 

181 

(Continued) 

Suggested 

J7T 

(3" and 6-)~ 
(5~) ' 

(4-) 

4-

5-

I 
j 

Suggested 

configuration 

(p3/2 g9/2) 
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The reason we obtain the value of ~(-0.63) outside the limit 

of the two pure configuratio'ns (~ == -0.1 for h
9
; 2g

9
; 2 'and 

~ = 1.0 for h9j2i11j2) is the large positive value of the off­

diagonal tensor-force matrix element (h
9

; 2g
9
; 2 /VT(.:J2 )s12 )h9

; 2i 11; 2 ), 

which in turn yields a negative component of the eigenvector 

jh
9

/ 2i 11; 2 ) . To show that the off-diagonal tensor-force matrix 

' 
element (h9/2g9;2 /VT(~12 )s12 jh9/2 i11;2 ) is positive and r;ther large 

for the range we are using, we plot (l/3)(h
9
; 2g

9
; 2 /PTEUTE (~12 )s12 / 

h9/2ill/2) and (1/3) (h9/2g9/2/PTOUTO T(!J_2)Sl2/h9/2ill/2) as a 

function of the force range in Fig. 20. The central-force off­

diagonal matrix element is smaller and of the opposite sign compared 

to the tensor, so we see the essential role of the tensor force in 

inducing configuration mixtures of the proper phase to explain the 

beta-decay phenomena. 

Most recently, a reanalysis by Spector58 of RaE beta decay has 

established the limits -L6 < ~ < -0.8, which aregely overlap Fujita 1 s 

limits. From a shell-model analysis (without tensor force) in which 

the mixing of the core-excited states is taken into account through 

a delta-function force, Spector obtains ~ ~ -1 for 6E = nm ~ 4 MeV. 

The strength of the delta-function force is chose by Spector so as 

to preserve the volume energy of the delta-function potential when 

compared to the finite-range force used py Newby and Konopinski.5l 

Therefore, we feei that Spector 1 s calculation may overest}mate the 

amplitudes of mixing of the core-excited states, because it is 

known59, 60 that this choice of the strength of the delta-function 

force yields larger matrix elements (by a factor of 3 to 4) than the 

finite-range force used by Newby and Konopinski. We feel that the 

dominant consideration leading to satisfactory ~ values for the 

shell model is the reversed sign of the configuration mixture of the 

principal two configurations, as caused by the tensor force. The 

additional smaller contribution due to the core-excited states may 

well bring our value of ~ (= -0.63) within the limit (-1.6 < ~ < -0.8) 

set by Spector. More refined analysis is necessary to obtain 

quantitative results with inclusion of both the core excitation and 

the tensor force. 
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Fig. 20. Off-diagonal tensor-force matrix elements 

( l/3) ( ~ /2 &) /2 I PTE S12l~ /2 ill/2 ) and 

( l/3) ( ~ /2 &j /2 I PTO S12l~ /2 ill/2 ) for Bi 210 as a 
function of the force range. 
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Another interesting quantity is the r.:agr..etic dipole moment of 

Bi210 Using the atomic-beam technique, Alpe:::-t et al. have measured 
'4 6l this moment to be 0.04 2±0.0001 nm. - If one assumes pure cor:.f'icurar,j.on::.;, 

the magnetic moment in the Schrnidt limit is .c0.08 nm for h
9

; 2g
9

; 2 , •. 

~0.36 nm for h
9

/ 2i 11; 2 , and -4.0[ nm for fr/ 2g
912

. On the other hand, 

if one uses the empi.rical g factor for the h
9

/ 2 proton from Bi209 (un­

fortunately the empirical g factor for the g
9

/ 2 neutron is not lmown yet), 

the magnetic moment of Bi
210 

is 0.24 nm and -1.08 nm for the pure con-

figuration of h
9

/ 2g
9

/ 2 and h
9

/ 2i 11/ 2 , respectively. 

Using our wave function for the 1- state of Bi
210 

, 

we find the magnetic dipole moment of Bi210 to be 0.050 nm in the Schmidt 

limit, whereas it is 0.177 nm if we take the empirical g factor for the 

h
9

/
2 

proton. Because the measured magnetic moment is small and the sign 

of the moment'is not determined by the experiment, the above calculated 

results seem to be consistent with the experiment. It should be noted 

that the wave function of the Bi210 ground state obtaiped by Newby and 

Konopinski and predominantly h
9

/ 2ill/2 yields the magnetic moment of 

-0.75 rum. The same problem applies to the Bi
210 

eigenfunction of 

Kharitanov et a1. 52 and of Lee-Whiting.55a 
210 . ~· )J=ll-

For Po , we note at 2. 91 MeV a predicted state \' 1g
1
/ 2 i

13
; 2 1 

which could be an E.3 isomeric state of detectable half life. It cannot 

decay by dipole or quadrupole transitions but may decay into the state 

(h
9

; 2h
9
; 2 )J=B+ (1. 57 MeV) or (h

9
/

2
f
7 
;

2
)J=B+ (2 .46 MeV) by E3 transitions, 

which then may cascade to the ground state by several E2 transitions. 

This is schematically shown in Fig. 21. Calculations with our eigen­

functions predict considerable retardation below single-particle strength 

for the higher energy E3. For the E3 transitions the product of the 

partial gamma half life and transition 

be t 1; 2E7 = 2.3xlo-5 sec Mev7 for the 

sec Mev7 for the 0.45-MeV transition. 

energy to the f?eventh power should 

1.34-MeV E3 and t
1

/ 2E7 = 7.5x10-6 

The half l.ife of the 11-state should 
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Fig. 21 .. Calculated energy levels of Po21°. Por eacn spin, the 

left column lists the odd-parity states and the right column 

the even-parity states. The various spin-J states arising 

from the same configuration are connected by lines, and the 

possible E3 and E2 transitions from the predicted isomeric 

state (~/2 i 13; 2)J=ll- are shown by arrows and dashed lines. 
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thus be a few microseconds.· (Here we have used the harmonic-oscillator 

radial wave functions, and an effective charge of l.Oe is assumed.) 
62 Funk et al. have recently measured the ~- transition probabilities 

of 46.7 keV(6+ · > 4+) and 246 keV(4~ -----,> 2+) in Po
210

. ~ey 
4 -1 8 -1 

obtained 5.3x10 sec and 3.1XlO sec , respectively. Our eigen-

functions for the lowest 2+, 4+, and 6+ states show so little configuration 

mixing that it is appropriate to calculate the shell-model lifetimes 

between pure (h9/2 )~ states and estimate an eff~ctive charge for the 

protons. We have computed these E2 transition probabilities, using our 

wave functions presented previoU:sly with the harmonic radial wave functions. 

The effect of configuration mixing was found to.be negligible, and the 

ratio of the observed to calculated transition probabilities is 

T(E2) b' /T(E2) 1 ~ 8 for both 46.7-keV and 246-keV transitions. One · o s - ca c 
may attempt to explain this discrepancy by-assuming the effective charge 

of (8e2}
1/ 2 (-;;: 2. 9e) for the proton. The presence of the extra protons 

outside the core tends to polarize the core, thus giving rise to the 

effective increase of the proton charge. The effective proton charge 

due to the polarized core is expected to be 

eeff. ~ e(l + i ~ ) ' 
where ~ is 1 for the harmonic-oscillator potentia163 and ~ is 3 to 

5 for the square-well potential. 64 Our value of~ ~ 2.2 seems reasonable 

if one notes that various effects such as the core excitation and vibration 

have not been taken into account in our calculation. 
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D. PARTIClE-HOLE INTERACTION 

In the preceding chapter, it was shown that the tensor force must 

be included in the residual interaction to explain the low-energy 
90 .210 210 phenomena of Y , Bl , and Po . Since Potential II appears to give 

rather good semi-quantitative agreement between theory and experiment 
. .210 210 
1n Bl and Po.. , it is interesting to see if one can .use the same 

force for. nuclei with a particle and a hole plus the doubly closed she 11. 

We will consider two odd-odd nuclei, Tl
208 

and. Bi208 . The theoretical 

aspects of these calculations already have been discussed in Chapter B, 

Section 2. Detailed assurnptionsand results of calculations are presented 

in the following. 

1. Thallium_;208 

a. Introduction. Six levels in Tl208 were observed from the alpha..:decay 

of Bi212 . The alpha-gamma angular-correlation measurements of Horton 

and Sherr65 and of Weale66 suggest that the angular momenta of the ground 

state and the first excited state are 5 and 4, respectively, whi.ch is also 

consistent with the beta-decay-of the Tl
208 

ground state to the excited 
. 208 .208 

states 1n Pb . The Tl ground state de8ays predominantly into the 
208 

5- and 4- states of Pb with log ft"' 5.7, but veryweakly to the 3-

state of Pb208 .67, 68 The 40-keV gamma transition in the ground-state 

doublet has been established by Graham and Bell69 to be predominantly Ml 

from both the L-subshell conversion-electron intensity ratio (Lfl1r)LIII) 

and lifetime. Spin and parity assignments for the observed levels in 

Tl
208 

are presented in Fig. 22, and are consistent with the internal­

conversion-coefficient measurements by Niels<m:,-7° and more recent work 

by Emery and Kane. 71 The most recent work of alpha-gamma angular­

correlation measurements by Cobb confirms these assignments shown in 

Fig. 22. 72 

From the shell-model calculation with a delta-function force, 

Pryce has interpreted the two lowest levesl to be a doublet resulting 
I 

configuration.5l from the splitting of the (s1/2g9/2) Similarily, the 

four upper levels can be attributed to the various spin states arising 

from the configuration [(d3/2)-l(g9/2)] Pryce's calculation disagrees 
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-- 0.759 

6+ -- 0.619 

3+ -- 0.492 
4+ -- 0.473 

5 + -- 0.328 

1 , { 4 + -- 0.040 
(s 1 12l~ (gg/2ln 5 + __ 0 · 

T.R 208 

MU .JJ097 

Fig. 22. Experimentally observed low-energy levels in Tl208 . 



slightlY with the expe:dmental level sequence shown :ln Fig. 22. The 3+ 

and 6+ states are inverted in his calculated results. 

b. Zeroth-order energies and calculated spectrum .. The neutron single­

particle energies are taken from Pb
20

9 single-pa~ticle levels observed 

by Mukherjee and Cohen)55 and the proton single-hole levelr:; are taken 

from Tl207 .73 Thlo resulting zeroth-orde~ energies are listed in Table 

XVI. 

Table XVI. Zeroth-order energies for Tl
208

. 

Even-parity 

Configuration 
(proton-neutron) 
(hole-particle) 

sl/2g9/2 

d3/2g9/2 

sl/2ill/2 

d3/2ill/2 

sl/2d5/2 

d3/2d5/2 

sl/2sl/2 

d3/2sl/2 

sl/2g7/2 

sl/2d3/2 

d3/2g7/2 

d3/2d3/2 

states 

Energy 
(MeV) 

0.0 

0.37 

0.77 

1.14 

,1.56 

l. 93 

2.03 

2.40 

2.47 

2.52 

2.84 

2.89 

Odd-:pari ty states: 

Configuration 
(prbton-neutron) 
(hole-particle) 

sl/2jl5/2 

d3/2jl5/2 

Energy 
(Mev) 

1.41 

l. 78 
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The calculated results with Potential II are schematically com­

pared in Fig. 23. The eigenvalues are presented in Table XVII, and the 

corresponding eigenfunctions are presented in Table XVIII for orily the 

even-parity states of the lowest three configurations. 

c; · Discussion. The agreement of calculated and experimental spectra 

as shown in Fig. 23 is good if one considers that the same potential 

(p t t . 1 II) d . B· 210 d P 210 d ·t·h t d'f' t' o en la ·· use . ln l an o was use .Wl ou any mo l lCa lOns. 

The comparison of the other calculated levels with experiment is not 

feasible at present since no further experimental information is avail­

able. Although the tensor-force effects are not large in Tl208 , the 

ground-state 'doublet states (4+ and 5+) have their tensor-force matrix 

elements with favorable opposite signs, so that the tensor force tends to 

raise.the energy of the 4-t state and lower that of the 5+ state, as shown 

in·Fig. 23. -The tensor force also plays a specific role in correcting 
-1 . 

the inversiOIJ: of the 3+.and 6+ states of the [(d
3

; 2} (g
9

; 2)J con-

figuration; a strengthened tensor force would improve the calculation 

with respect to several spacings. 

2. Bismuth-208 

a. Experimental spectrum. Recently, Mukherjee and Cohen have studied 

the low-energy spectrum of Bi208 by the (d,t) reaction on Bi209.55 Nine­

teen levels_were resolved as shown in Fig. 24. Their experimental data 

on Bi208 are summarized in Table XIX. 

Prior to this experiment, Duffield and Vegors fou,nd an isomeric 

state in Bi208 with a lifetime of 2.7 msec from the ('y, n) .reaction on 
Bi209. 74 This isomeric state cascades to the ground state by two gamma 

transitions of 921 and 509 keV. Partly from the internal-conversion­

coefficient measurements and partly froin Wahlborn's shell-model cal­

culation with a delta-function force, 75 they proposed the following 

decay scheme: 

10- E3 > 
921 keV 

7+ _ _;;;.E_2_---:> 

509 keV 
5+ . 
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0.8 6+ 0.6 
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MU-31098 

Fig. 23. Comparison of the experimental and calculated spectra 

of Tl208. The abbreviations CF and TF refer to the central 

and tensor forces, respectively. 
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Table XVIr'. Calculated eigenvalues and energy levels in Tl 
208 . In 

the right column, eigenvalues are expressed in a new energy scale in 
which the ground state lies at zero energy. The indicated configuration 
is taken to be dominant. 

Configuration 
(proton-neutron) 
(hole-particle) 

4+ 

5+ 

3+ 

4+ 

5+ 

6+ 

5+ 

6+ 

4+ 

5+ 

6+ 

7+ 

2+ 

3+ 

l+ 

2+ 

3+ 

4+ 

0+ 

l+ 

Eigenvalues,. 
(MeV) 

o.698 

0.596 

o.459 

0.704 

1.516 

1.233 

1.283 

1.276 

1.718 

1.791 

2.482 

2.115 

2.135 

2.379. 

2.878 

2.597 

Energy 
(MeV) 

0.024 

o.o 

0.537 

0.435 

0.298 

0.·543 

0.717 

0·779 

1.355 
1.072 

1.122 

1.115 

1·557 
1.630 

2. 321 

1·954 

1-974 
2.218 
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Table XVII. (Continued) 

Configuration 
(proton-neutron) J Eigenvalues Energy 
(hole-particle) (MeV) (MeV) 

d3/2 81/2 l+ 2.872 2.711 

2+ 2.614 2.453 

8 1/2 g7/2 3+ 2.601 2.440 

4+ 2.662 2.501 

8 1/2 d3/2 l+ 2.879 2.718 

2+ 2.704 2.543 

d3/2 g7/2 2+ 3.064 2.903 

3+ 2.965 2.804 

4+ 2.990 2.829 

5+ 2.992 2.831 

) 

d 3/2 d3/2 0+ 3.424 3.263 

l+ 3·352 3·191 
2+ 3·279 3.118 

3+ 3.064 2.903 

8 1/2 j~5/2 7- 1.580 1.419 

8- l. 525 l. 364 

d3/2 j15/2 6- 2.029 1.868 

7- 1.960 1.799 

8- 1.856 1.695 

9- 2.105 1·944 



Eigenvalues 

(MeV) sl/2 g9/2 d3/2 g9/2 sl/2 ill/2 

J = 3 

0.698 -0.9996 

J = 4 

0.185 0.9427 0.3256 

0.596 0.3262 -0.9421 

1.516 0.0015 0.0673 

J = 5 

0.161 -0.9984 0.0532 0.0007 

0.459 -0.0532 -0.9980 -0.0312 

0.878 ~0.0014 -0.0313 0.9983 

1.233 -0.0120( -0.0001 -0.0475 

J = 6 

0.704 -0.9879 0.0801 

0.940 -0.1266 -0.9102 

1.283 -0.0886 0.4062 

J = 7 

1.276 

Table XVIII. Calculated eigenfunctions for Tl208 . 

Eigenfunctions 

d3/2 ill/2 sl/2 d5/2 d3/2 d5/2 sl/2 g7/2 

O.Oo42 -0.0214 -0.0165 

0.0180 0.0153 -0.0673 

-0.0641 -0.0133 -0.0058 

-0.9930 -0.0635 0.0663 

-0.0122 

-0.0021 

0.0473 

0.9982 

-0.1321 

0.3942 

0.9094 

1.0000 

) 

d3/2 g7/2 

-0.0051 

-0.0047 

-O.o407 

0.0303 

-0.0064 

0.0041 

-0.0038 

-0.0323 

d3/2 d3/2 

-0.0012 

I 
~ 
0 
I 
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Bi208 

MU-31099 

Fig. 24. Experimentally observed low-lying levels i~ Bi208. 
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Table XIX. Energy levels excited in Bi209(d,t)Bi208reaction (Ref. 55) 

Excitation Relative Excitation Relative 
energy yield energy yield 

(MeV) at 45° (MeV) at 45° 

0 104 1.35 6 

0.07 84 1.49 5 

0.29 29 1.62 5 
0.40 72 2.14 15 

0.43 53 2.20 25 

0.58 19 2.25 6 

0.68 60. 2.47 8 

0.75 65 2.89 2 

0.82 18 3.10 4 
0.88 122 
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As will be shown later, our calculated results indicate a possibility 

of such a high-spin isomeric state. The ground state is clearly 5+, 

and the first excited state 4+, since the ground $tate has a higher 

relative cross section. 

b. Zeroth-order energies and results. The proton single-particle levels 
.209 54 are ta.ken from Bl , and the neutron single-hole states are taken from 

pb207.76 The resulting zeroth-order energies are shown in Table XX. 

Table xx. Z th d . f B. 208 ero or er energles or l 

Even-Parity States Odd-Parity States 

Configuration Configuration 
(neutron~proton) Energy (neutron-proton) Energy 
(hole-particle) (MeV) (hole -particle) (MeV) 

pl/2h9/2 o.o .il3/2h9/2 1.63 

f5/2h9/2 0.57 il3/2f7/2 2.53 

p3/2h9/2 0.90 

pl/2f7/2 0.90 

f5/2f7/2 1.47 

p3/2f7/2 1.80 

f7/2h9/2 2.35 

f7/2f7/2 3.25 

The particle-hole matrix elements are calculated with Potential II 

by the method described in Chapter B, .Section 2. The resulting matrix 

is diagonalized to obtain the eigenvalues and eigenfunctions 1 The 

eigenvalues are presented inTable XXI, and t(he eigenfunctions for the 

even-parity states of the lowest four configurations are presented in 

Table XXII. 
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Table XXI. Calculated eigenv'alues and energy levels :in Bi 208 . In the 
right column) eigenvalues are expressed in a new energy scale ~n which 
the ground state lies at zero energy. The indicated configuration is 
taken to be dominant. 

Configuration 
(neutron-proton) 
(hole-particle) 

J 

. 4+ 

5+ 

2+ 

3+ 

4+ 

5+ 

6+ 

7+ 

3+ 

4+ 

5+ 

6+ 

3+ 

4+ 

1+ 

2t 

3+ 

4+ 

5+ 

6+ 

Eigenvalues 
(MeV)··. 

0.146 

o.o66 

1.009 

0.745 

0.644 

0.706 

0.579 . 

0.727 

1.058 

1.043 

0.951 

1.146 

1.079 

1.117 

' 2.335 

1.785 

1.771 

1.742 

1.630 

2.057 

Energy 
(MeV) 

0.080 

o.o 

0,943 

o.679 

0.578 

o.64o 

0.513 

0.661 

0.992 

0.977 

0.885 

1.080 

1.013 

1.051 

2.269 

1. 719 

l. 705 

1.676 

1.564 

1.991 
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Table XXI. (Continued) 

Configuration 
(neutron-proton) J Eigenvalues Energy 
(hole-particle) (MeV) (MeV) 

p3/2 f7/2 2+ 2.205 2.139 

3+ 1.972 1.906 

4+ 1.958 1.892 

5+ 2.029 1.963 

f7/2 h9/2 l+ 2.911 2.845 

2+ 2.559 2.493 

3+ 2.537 2.471 

4+ 2.527 2.461 

5+ 2.472 2.4o6 

6+ 2.546 2.480 

7+ 2.431 2.365 

8+ 2.697 2.631 

f7/2 f7/2 0+ 4.348 4.282 

l+ 4.198 4.132 

2+ 3.645 3·579 
3+ 3·572 ) 3.506 

4+ 3.444 3·378 

5+ 3.484 3.418 

6+ 3·344 3·278 

7+ 3·578 3·512 

il3/2 h9/2 2- 2.816 2.750 

3- 1.893 1.827 

4- 2.063 1.997 

5- L884 1.818 



Table XXI .. ( c'ontinued) 

' Configuration 
(neutron-proton) J Eigenvalues Energy 
(hole -particle) (MeV) (MeV) 

il3/2 h9/2 6- 1.913 1.847 

7- 1.898 1.832 

8- 1.828 1.762 

9- 1.963 1.897 
1.685 

'\ 

10- 1.751 
ll;_ 2.300 2.234 

il3/2 f 7/2 3- 3.086 3.020 

4- 2.696 2.630 

5- 2.685 2.619 

6- 2.650 2.584 

7- 2.609 2.543 

8- 2.649 2.583 

9- 2. 570 2.504 

10- 2.735 2.669 



Table XXII. Calculated eigenfunctions for Bi208 

Eigenvalues Eigenfunctions 

(MeV) pl/2 h9/2 f5/2 h9/2 p3/2h9/2 pl/2f7/2 f5/2 f7/2 p3/2 f7/2 f7/2 h9/2 f7/2 f7/2 

J = 2 

1.009 0.::;1958 0.0316 -0.0010 -0.0850 -0.0100 

J = 3 

o. 745 -0.9982 -0.0524 0.0076 -O.Ob46 -0.0233 0.0033 -0.0081 

1.058 -0.0525 0.9931 0.0131 0.0317 -0.0006 -0.0988 -0.0018 

1.079 -0.0089 0.0057 -0.9873 0.1541 0.0289 -0.0193 -0.0011 

J = 4 

0.146 -0.9780 0.1814 0.0950 -0.0259 -0.0121 -0.0024 0.0259 0.0037 J· 
-.D 

0.644 -0.1465 -0.9473 0.2515 -0.1234 -0.0179 -0.0077 0.0462 -0.0031 . 
-..] 
I 

1.043 -0.1289 -0.2186 -0.9579 -0.0885 0.0233 0.0097 0.0969 o.oo94 

1.117 -0.0531 -0.1295 -0.0539 0.9591 -0.1631 0.1712 -0.0014 0.0386 

J = 5 

0.066 0.9813 -0.1914 0.0181 -0.0009 0.0003 0.0037 0.0023 

0. 706 0.1899 0.9797 0.0617 0.0028 0.0111 O.Oo49 0.0052 

0.951 0.0294 0.0569 -0.9971 -'0.0175 0.0014 0.0357 0.0000 

J = 6 

0.579 -0.9852 0.1659 -0.0252 0.0323 ,..0.0016 

1.146 -0.1611 -0.9796 0.0022 0.1190 0.0153 

J = 7 

0. 727 0.9999 0.0119 0.001:) 
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c. Discussion. As in Tl208 , we obtain rather good agreement on the 

ground-state -doublet. Th~re has been some speculation as to whether 

the ground state is 4+ or 5+ .. The. experimental relative cross sections 

obtained by Mukherjee and Cohen for the ground-state doublet as shown 

in Table XIX clearly suggest that the ground state is 5+, since the ratio 

df relative cross sections for the first excited state to the ground state 

is 84/194 = 0.807, and this ratio is theoretically expected to be 

(2(4)+1)/(2(5)+1) = 0.818 ifthe configurationsrare pure. The results of 

our calculation are very consistent with this experimental information. 

The other excited states are not completely resolved, so that relative 

cross-section information .is' riot yet helpful for assigning spins and 

parities to these states. 

An explanation of the 2.7-msec isomeric state comes directly from 

.the results of. our calculation. As shown 

may be attributed to the 10- state of the 

which may cascade through the 7+ state of 

figuration to the ground state. 

in Fig. 25, the latter state 

[(il3/2)-1 (h~{2)] configuration, 

the [ (f
5

; 2 ) (h9; 2)J - con-
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Fig. 25. Calculated energy levels of Bi208. For each spin 

the left column lists the odd-parity states, and the 

right column the even-parity states. The various spin-J 

states arising from the same configuration are connected 

by lines, and possible E3 an~ E2 transitions from ~he 

isomeric state [(i13;2)-l(~/2 ) J J=lO- are shown by 

arrows and dashed lines. 
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E. CONCLUSION 

The tensor force has been neglected in most of the ~ast shell­

model calculations primarily because of the computational complexity 

involved, but with the hope that the tensor-force effects are small and 

may be simulated by an effective central force. That this is not always 

t . l l h . l l t· B· 210 d P 210 Th l rue -J_s c ear y s own ln our ca cu a lOns on l an o . _ e genera 

success of past central-force calculations may be due to~·.the tensor-force 

matrix elements being small in many cases. From the analysis of various 

shell-model calculations, the central force alone seems to approximate 

the residual force very wel-l in most cases, though many of these cases 

involve like nucleons, where the Pauli principle makes the tensor-even 

force inoperative. However, the tensor-force contributions are not· 

always negligible, and must be taken seriously in some cases such as in 

y9°, Bi
210

, and Po210 presented here. Also, we see in Bi
210 

that con­

figurations of high j with parallel or antiparallel alignment of angular 

momenta can experience appreciable tensor-force effects. 

The characteristic of the tensor-force matrix element is that it 

may be either positive or negative, so that in some cases i;;he tensor­

force effects can not be_ exactly simulated by a linear combination of four 

central-force components. Also it should be noted that it is very 

difficult to aimulate the finite-shorter-range tensor force by adjusting 

the strength parameters of the .i'nf'ini te -range tensor force, and that the 

infinite-range approximation for the tensor force is quite unreliable. 

Furthermore, inclusion of the tensor force may lead us to a better under­

standing of the residual· force- in the nucleus'- and we may hope to find a 

residual force that can be used without alteration for <different nuclei. 
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li. NUCLEAR SPECTROSCOPIC STUDIES OF 
ISOMERIC STATES IN ODD-ODD YTTRIUM: NUCLEI 

A. INTRODUCTION 

:nuring the past decade, much experimental data has been accumulated 

.in the field of nuclear spectroscopy, and many advances have been made 

toward the understanding of nuclear structure. Particularily, the nu­

clear shell model has been very successful in correlating and expiair'.ling 

much of the experimental information, and its successes :lead us to hopr 

to understand the effective nuclear force inside ·the finite n)lclei from 

the detailed theoretical analysis of the eXperimental spectra. As the 

theoretical oaJ.:culaticns have become more refined, the detailed information 

·of nuclear spectra has become increasingly important as a test of theory. 

The greatest successes of the nuclear shell-model in its simplest 

form have been in explaining the low-energy properties of nuclei near 

the doubly-closed phells. This group of nuclei is the most important 

·.and .. suitable subject for obtqining much needed information on the nature 

· of the effective residual nuclear force inside the n~cleus, because these 

nuclei involve only a few nucleons outside the inert core which has been 

assumed to give rise to a.£entral field in which the extra nucleons move. 

Since the theoretical treatment is the simplest and most basic, the 

detailed experimental information of these nuclei is extremely important 

in providing a check to theory and thus leading us to better under­

standing of the effective nuclear force inside the finite nuclei. This 

experimentalstudy has.been undertaken to add information about the 

decay schemes of some such odd-odd medium weight.nuclei. The results 

'of this investigation have bee~ pubiished previously. 77 

) 
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B. . EXPERIMENTAL TECHNIQUES 

1. Instruments 

The various spectroscopic instrliments used in this study have all 

been described in previous publications, and therefore only a summary is 

given below and references are cited. 

a. Permanent-magnet spectrograph. 78,82 ' Permanent:..Omagnet spectrographs . 

(180-deg) with field strength of 100 gauss were used to detect internal­

conversion electrons. This spectrograph has a resol~tion of about 0.1% 

and a transmission of the order of 0.01%. 

b. Permanent-magnet.preaccelerating spectrograph. A permanent-magnet 

preaccelerating spectrograph79 was used to study the low-energy electron . 8~ . . 
spectrum of Y . This spectrograph has a field strength of 50 gauss. 

c. Double-focusing spectrometer. For measuring conversion coefficients 

by use of the internal-external-conversion method, a flat, double­

focusing beta-ray spectrometer
80 

of 25-cm mean· radius was used .. This 

spectromei:;er .has 0. Y/o resolution and 0 .1% transmission. A special source-

holder-converter assembly was used in the spectrometer, and is described 

elsewhere. 

d. Penco gamma analyzer. Photons was detected by the use of a 100-
.· 81 

channel pulse-height gamma analyzer coupled with a 3- by 3-in. thallium-

activated sodium iodide crystal. 

2. Source Production and Chemistry 

. 86 a. .Source production.. The neutron-deficient lSOtope Y was produced 

in the Lawrence Radiation Laboratory's 60-in. cyclotron by irradiating 

RbCl· (natural and enriched in Rb85) with alpha particles, and Sr(No
3

)2 
(natural and enriched in sr86 ) with deuterons. The spectroscopic sample 

of Y90 was also produced in the 60-in. cyclotron by irradiating RbCl 

(natural and enriched in Rb87) with alpha particles. The erocker 60-inch 

cyclotron was capable of accelerating protons, deuterons, and alpha 

particles to energies of about 12 MeV per nucleon. 
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b. Cyclotron target. ·Two general types of- cyclotron target are available. 

The first is the internal target, which-uses a single foil of the target 

material. It is inserted.into.the C!yclotron tarik to intercept the beam 

at any desired radius. Since our target materials were in the powdered 

. form, the inte:T'nal. target was not used in our experiment. The other 

type is the external .target, which is isolated from the main cyclotron 

tank by a system of aluminum foils.. An aluminum foil serves to. cover 

the powdered target material in the target holder, and ion currents of 

as much as 20 ~ have been used on the external targets for short periods 

of time without apparent damage. One advantage of the external target 

over the internal probe target is more precise control. by the experimenter 

over the energyof the incidentparticles. Any desired thickness of 

aluminum foil can be placed on the top of the target material to degrade 

the-beam energy to a.preferred value. This is of particular importance 

in alpha-particle bombardment, in which it may be de-sirable to produce 

one of the (a,xn} reactions with a minimum contamination from other 

alpha-induced reactions. 

c. Chemistry. In most experiments, the pure, carrier-free yttrium 

sources were prepared as follows: Thetarget was dissolved in con­

centrated ammonium hydroxide solution and passed through a filter paper, 

which absorbed the yttrium activity but not the strontium nor the rubidium. 

After thorough washing of the filter-paper with dilute ammonium hydroxide 
( 

solution, the yttrium was removed with SN HCl. The details are described 

step by step in the following: . 

(1) Dissolve the target in a few ml of distilled water. 

(i~) Add a drop of concentrated _NH4 OH and adjust the con­

centration to pH' 9· 

(iii) Filter the. target solution and wash the filter paper 

with NH40H (pH 9) solution several times. The yttrium 

activity will stick on the filter paper as a hydroxide. 

(iv) Remove the activity with a few ml of SN HCL The 

resulting solution might containNH: ions. To re-
+ move NH4 ions, add a few drops of concentrated HN0

3 
, 

and boil to dryness. 
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d. Source preparation. Samples used· in the permanent-magnet spectro­

graph and in the preaccelerating spectrograph were prepared by electro­

deposition onto a 0.010-in. -diam platinum wire from a· solution of 

ammonl. um O""'.·lat·e. 78 ' 82 
F th d bl f · t · t th l .1\.'-' or e ou e- ocuslng spec rome er, e samp e 

was electrodeposited onto 0.01-in.-thick copper foil from the ammonium 

oxalate solution. A plating current of 100 to 150 mA was used for 30 

min to l h. These sources varied .in strength from 0.1 to 50 r/h as 

measured by .a ·beta-gamma survey meter at a distance of approximately 3 in .• 
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C. DECAY SCHEME STUDIES 

1. Yttrium-86m 

a. Determination of mass and half life. Follow,ing the purification of 

yttrium from a target of natural RbCl which had been irradiated with 

47-MeV helium ions, a 210-keV gamma ray was observed in the scintiallation 

spectrum, with a decay period of 48±1 min. At the same time, gamma rays 

known to occur in the decay of the Y
86 

ground state83 , 84 were observed 

to grow into the spectrum and then decay with the characteristic 14.6-h 

half life of Y
86

. Similar results were obtained from targets enriched 

in Rb 
85 

and also from bombardments of enriched Sr
86 

irradiated with 

15-MeV d·euterons. Irradiation of enriched Sr
86 

targets with 5-MeV 

deuterons failed to produce t,he activity. 

48-min 

From this information, the 
86 activity can be assigned definitely as Y . 

Figure 26 shows a typical decay curve of 'the 210-keV peak in 

the scintillation spectrum, and Fig. 27 shows a growth curve of the 
86 

1-MeV photon group of Y (ground state). 

b. Energy measurement of the isomeric transition. Additional ~nforma­

t:irn about the "210-keV" transition, obtained from mEasurements in a 100-

gauss, 180-deg spectrograph, is summarized in Table XXIII. A more 

precise value of the energy is chosen to be 208.0±0.3 keV, and it was 

also verified from the energy differences between the K, L, and M lines 

that this transition is indeed converted in yttrium, not strontium. 
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Fig. 26. Decay of the 210-keV photopeak of y86m. · 
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Time (hr) 

Fig. 27. Growth and decay of the 1.08-MeV photon group of 

14.6-h y86 from a sample containing y86 and y86m. 

M U- 24505 
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Table XXIII. Internal conversion 
86m 

data of Y 

Electron Shell Binding Transition Intensity 
energy energy energy ratios 
(keV) (Y) (keV) 

7·98 LII 2.17 10.15 LIII/LII=1.5±0.5 

8.06 LIII 2.10 10.16 

i90;9 K 17.1 208.0 K/LI/MI=lOQ/8.3/l-7 

205.6 ':L 
I 2.39 . 208.0 

207·5 MI 0.41 207·9 

A transition of 98.5±0)2 keV was also noted which, on the basis 

of its K-L electron energy separation, appears to be converted. in 

strontium rather than yttrium. The electron lines decay with a half 

life of roughly 50 min. Although these data may appear to indicate a 
. 86m ' 

direct electron-capture branch of Y ) we could not observe a 98-keV 

photon in the scintillation spectrum) and also) no other transitions 

characteristic of the sr
86 

levels appeared in the spectrum until the 

daughter (14.6-h Y
86

) began to grow into the sample. Experiments with 

K X-ray-gamma coincidence also failed to indicate any radiations in 

coincidence with K X-rays. The present evidence on this transition is 

inconclusive. 

c. Internal-conversion-coefficient measurement. The absolute 

K-conversion coefficient of the 208.0-keV transition was measured in 

a 25-cm double-focusing spectrometer by use of the internal-external 

conversion method due to Hultberg and Stockendal. 8 5 This method 

utilizes a converter that converts the photons emitted from the source 

into photoelectrons. If the photoelectric cross.section is well known 

for a given converter material, the photon intensity can be deduced 

from the intensity of the external-conversion electrons) which can be 
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measured more accurately with the same spectrometer used for measuring 

the internal-conversion electrons. The method has been described. 

indetail elsewhere. 85 , 86 

To accommodate the activity and the photoelectric converter, a 

special holder assembly was used which allows us to position the converter 

from outside the spectrometer. By moving a shaft, the converter coul¢i 

be placed either in front of the source or in a position where it d~d 

not obstruct the beam of-internal-conversion electrons emitted from 

the source. This arrangement of the assembly is shown in Fig. 28. A 

5- by 10-;, mni
2 

rectangular uranium converter with a surface thickness 
2 

of 2.19±0.02 mg/cm was used. The source was prepared py electro-

deposition onto a 0.010-in.-thick. copper foil.from an ammonium oxalate 
2 

solution within the 2.0- by 9.0-mm rectangular area. 

To calcul.ate the internal-conversion coefficient, we use 

l 
A 
r 

'!"- f d k b K .. :_, L ;) J 

where A~ is the intensity of internal-conversion electrons, A
1 

is the 

intensity of external-conversion electrons (photoelectrons), TK is the 

absolute photoelectric cross section (in barns/atom) for the K-shell of 

the converter, f is a correction factor due to the photoelectric angular 

distribution and the geometric arrangemenet of the source and converter, 

dis the converter thickness (in,mg/cm
2
), k is the ratio of intensities 

of sources used in measurement of the external- and internal.-conversion 

lines, and b is the dimens~on conversion factor (in,atoms- cm
2
/barns-

-4; mg), which equals 6.025 X 10 M, where M is the atomic weight of the 

converter atoms. 

The quantities d, k, and b are knoWn prior to the experiment. 

The intensitites AA and A are measured in the experiment. The correc-
~ . r . 

tion factor f corrects the photoelectric angular distribution which 

depends upon the particular physical parameters of the source and 

converter, such as the sizes of source and converter and their relative 
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, d~stance apart. Ideally, if we have a poin~ .source and a converter 

which has a'n infinitely large area, the photoelectric f factQr would be 

a very simple function. This is not the case ~n the experiment, and 

therefore evaluation of the f factor is rather complicated. Since the 

method of calculating the f factor is described in d~tail by H~tberg, 86 

we state only that a computer program was written for this purpose by 

Hultberg and a courtesy service for computing f factors is available 

from the BESK computer in Stockholm, Sweden. 

For the external-conversion electron measurement, a 1-mm 

aluminum-foil absorber was used between the source and converter to 

absorb the internal-conversion electrons. The quantities used in 

calculating the f factor are summarized below: 

Converter half width 

Converter half height 

Source half width 

Source half height 

Source-to-converter distance 

Converter-to-aperture distance 

Absorber thickness 

Z_ va:J_ue (atomic number) of absorber 

Energy of gamma-transition 

.0. 25 em 

0. 50 em 

0.10 em 

0.45 em 

0.15 em 

19.00 em 

0.10 em 

13 

208 keV 

Of course, the atomic shell must be spec if;ied. The result obtained from 

the "BESK service" was f = 0.705 for the source used in the e:xperiment 

and f = 0.795 for the ideal case of a point source. 

The absolute photoelectric cross section for the K-she:J_l of 

uranium has been stud;ied experimentally as a function of the energy of 

incident photons and is taken to be 318 barns/atom at 208 keV from an 
. 86 

extrapolation of the experimental polnts. . 

The intensities of the internal anQ. external electrons are 

measured by a flow-type methane proportional counter as a function of 

electron energy, which is proportional to the magnetic field of the 
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· spectrometer. The decrease in intensity due to' the short half;i.ife 

( 48 min) is corrected at each measured point. The experimental Bpectra 

for the internal- and external;.conversion liries are shown irt.Figs. 29 

and 30) respectively.' The relative intensity; k) was tab:in to be unity 

·because the same.source was used for both the internal- and external­

-~onversion-eledtron ~easurements .. 

Final values used for obtaini~g the conversion coefficient 

EKO~ the 208-keV transition are: 

A /A 
t?- '( 

33.0 

TK = 318 barns/atom 

f = 0.70! 

.d 2.19 mg/cm 
2 

k 1.0 

b = -4; 6.025 X 10 218 atom X em/barns X mg. 

These vaLues yield EK = 0.04±0.01) which corresponds to a mixed Ml-E2 

transition (about 4o%.E2) .
8

7)
88 

d. Preaccelerating spectrograph results. Although only the 208.0-keV 

transition could be assigned to t
86

m on the basis of the photon or 

initial electron spectra) obviously the observed ~8-min half life is 

much too long to be compatible with an E2 or Ml-E2 transition. Therefore 

a 'search was made for a low-ene'rgy transition. A 50-gauss preaccelerating 

spectrograph was used) with an accelerating voltage of 9.82 kV. · Two 

electron 1 ines which 'decayed with a hal:i: life of ~bout 50 min' were 

observed with an energy s~paration of 'o .08±0 .01 keV {see Table XXJ;II 

and Fig. 31). This spacing is in good agreement with the characteristic 

LII-LIII energy dif'feren~e of yttrfum) :0 ;075 keV) 89 and indicates an 

isomeric transition of 10:15±0.1 keV. 



-113-

<.> 
a> 
VI 500 ' VI 
c 
"' 0 
u 

400 

I (amp) 

MUB-1939 

Fig. 29· Internal-conversion spectrum of 208-keV transition 

in y86. 
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Fig. 30. · External-conversion spectrwn of 208-keV transition 

in y86. 
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Fig~ 31. Internal-co'nversion speCtrum of lO,:.keV gamma-ray 

in y86. 
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If.we assume that the 10.15-keV transition is responsible for 

the 48-min half life) it .follows that the transition must be of multipole 

order E3 or M3. 90 These two alternatives are readily distinguishable 

by an examination of the L-subshell conversion pattern. A straight-

line extrapolation to 10 keV on log-log paper of Rose 1 s theoretical 

L-shell conversion coefficients
88 

indicates for M3 radiation the sub­

shell pattern L
1
;tii/LIII= 24/2.6/100) and for E3 radiation the ratios 

L 1/LII/LIII= 0.9/49/100 (see Figs. 32 and 33). The experimental obser­

vation of only the L11 and LIII conversions, with the ratio LIII/LII= 

l. 5±0. 5, is compatible only with an E3 as.signment. 

e. ·Discussion. The 48-min. isomeric state of Y
86 

decays by a 10.15-

keV E3 transition followed by a 208.0-keV E2 transition, It is inter­

esting to speculate briefly on the possible nature of the levels in 

y
86 

from which these transitions arise.· 

Yttriwm•SS_, with 39 .protons and 47 neutrons, ·:has a ground-state 

configuration (pl/22P; ( g9/.2)N- 3 ,~ and hence, acco~ding to Norheim Is 

"strong" rule, spin ~nd parity 4-. This a~signment: is consistent also ' . . .' . . . 84 
with the recent results of Yamazaki, Ikegami, and Sakai on the decay 

of 14.6'-h Y
86

. 

The excited states of this odd-odd nucleus are expected to 
. .. 85 

arise as combinations of the neutron states found in 
38

sr
47 

and proton 

states in 39Y~~ or 39Y~J· These are shown in Table XXIV. 

Preliminary results of a study of the decay of 40zr~~ being 

carried on at this laboratory indicate that the 48-min isomeric state 
86 86 

of Y is not populated in Zr decay. This suggests that the spin of 

the isomer is higher than the ground-state spin4-. Of those states 

shown in Table XXIV, a most likely choice for Y86m is the 8+ state 

arising from (g
9

/ 2)p (7/2+)N. Thus) the levels of the isomer might 

be as shown in Fig. 34. 
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Fig. 32. Straight-line extrapolations to 10-keV on log-log 

paper of Rose's theoretical E3 L-subshell conversion 

coefficients. 
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Table XXIV. . . 86 Expected conflguratlons of Y 

Proton state Neutron state Resultant spins Resultant parity 

(Y87) (Sr85) 

pl/2 g9/2 4,5 

pl/2 7/2+ 3,4 

pl/2 pl/2 O,l + 

g9/2 g9/2 0,1,2 ... ·9 + 

g9/2 7/2+ 1,2,3 .... 8 + 

g9/2 pl/2 4,5 
... 

2. Yttriwn-90m. 

In the course of the investigation of Y
86

m, an isomeric state 

in Y
90 

was detected. The isomeric state was produced by irradiating 

RbCl_(natural an~ enriched in Rb
8

7) with 15-MeV alpha particles in the 

60-in. cyclotron. An 202 keV photopeak was observed, which decayed 

with a half life of 3 h. A more accurate value of the transition 

energy was measured to be 202.4±0.3 keV by use of a 100-gauss permanet~ 

magnet spectrograph. Concurrently with this work, other investigators 

t d . d y86m d . . . t t 91~94 d . s u le an thls lsomerlc s a e, ·· an slnce several groups 

reported their results on y90m, we did not pursue this investigation 

further. We note here only that our results agree with reported data, 

which is summarized in Fig~ l, and that the measured energy of the 

isomeric transition, 202.4±0.3 keV, is identical with the result ob­

tained by Bartholomew et a1.
40 

by use of a flat crystal spectrometer at 

Chalk River. The more complete decay scheme including energy levels 

populated by the thermal-neutron capture Y89(n, r)Y90 is presepted in 

Section C of part I. 
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Fig. 34. Suggested level scheme of y86m. 
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D. CONCJLUSION 

The experimental techniques presented here are some of the 

·typical methods of nuclear spectroscopy. On the other hand, there are 

many other experimental techniques that prove to be very useful in 

nuclear-strucutre studies, such as the high-resolution nuclear reaction 

which may be able to resolve the low-energy states of nuclei ne~r doubly 

.closed shells. Accumulation of more; very detailed nuclear spectra 

should give us some insight into the nature of the effective nuclear 

·force inside the finite nucleus, thus stimulating progress in the 

theory. Increased theoretical.understanding, in turn, may suggest new 

experiments and new directions to explore, and help to understand 

nuclear structure better. A close interplay of theory and experiments 

is very essential in the development of our understanding of nuclear 

structure. 
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APPENDICES 

A. The Central-Force Matrix Element 

Our interest here is to evaluate the spin-dependent part of the 

central-force matrix element (a /V(r 
12

)_2
1 

· !:2 / a). It is convenient to 

consider the singlet projection operator P
8 

and write the matrix element 

of V(r.12)P S, 

(l) 

Here, V(r.
1

- £
2

) can be expanded in terms of the angle ·m between r.
1 

and 

r : 
-2 

V(£
1

- E.
2

) =[ vk(r
1

, 'r
2

)Pk(cosm),. 

k 

'Y[here.Pk(cosm) is the Legendre polynomial·of order k. We write 

· ( 8./V ( r 
12

) P s / a ' ) · as 

where 

and 

(a V(E.l2)Ps /a'),; lL fnk Fk, 

n,k 

( 2) 

Fk = 2k~lfJRl*(rl)R2*(r2)vk(.:rl'r2)Rl'(rl)R2'(r2)rl2r22drldr2. (4) 
' . 
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By addition theorePJ for spherical harmonics, we may write 

P (cosill) as 
k 

where 

so that 

Pk (cosill) = L 
.K 

c ( k) (e.) 
K l 

= [~J l/2 y (k) 
2k+l K 

f nk =[ ( -1) n+K+f ( 2k+l) 

K,r 

(e.,¢.), 
l l 

X ( j j JM I cr ( n) ( 1) C ( k) ( l) · cr ( n) ( 2) C ( k) ( 2) I j ' j 'J 'M ' ) • ( 5) 
1 2 r K · ·r ~K 1 . 2 

The angl)].ar part f k can be evaluated by ·using the tensor-operator 

algebra developed ~y Racab, 95 and de-Shalit has obtained the expression 

off k for the diagonal case in the zero-range limit~ 2 Th~ similar n . 

expression including the off-diagonal case can be calculated easily 

and is given in terms of tne usual 6-j and 9-j symbols by 

(6) 

n k r n k r 

XL (-l)k+r(Jr+l) {;l 'j2 ,J} l 
.£1 jl 

l 
.£2 j 

2 2 2 
r J2 Jl r 

l l 
.£1 f jl 

f .£ f 0 f 

2 2 2 J2 
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whel7e 

and·(~l/cr(n)l/~) and (t'//C(k)/1.£') are the usual reduced matrix e;t_ements. 

Here the summation over r is restricted by /k-n/~ r ~ k+n. Obviously, 

we have· 

and 

(a /V(r_l- E.2) /a') = [ fOkF k' 

k 

where (a/V(E_
12

) /a') is just the matrix element forth~ Wigner force 

( n = 0), whereas (a /V(E.
1

- E.
2

),g
1 

· .. ,g
2

/ a') is the cont:ribution from the 

spin-dependent force ( n = l). Instead of evaluating (a /V( r 
12

),2
1 

· 12 / a') 

directly, we shall find it easier to evaluate (a/V(E.
12

)B
8 

/a')' first and 

then obtain· (a /V(E_
12

),£.
1 

d ~2 / a') by subtracting the contribution due to 

(a/V(E.12) /a') from (a/V(E.
12

)P8 /a'). 

Because n can take only tw.o values, 0 and 1, we find it convenient 

to sum over n first. We may sum over n in Eq. (6) by using 

d q e h r e 

L (2y+l) pe b. s g b = 'L (2~+1) 
y 

a f y a f y 
.x 

{a b x} {c d x} {e f xU g h xl' (B) 

c d p e f q g h r flab x 
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which is easy to verify. Summation over r can also be easily pe:d'qrmed, 

yielding a simpler expression involving the 3-j symbol: 

j'+ j + J+l . . 
L: f == (-1) 

1 1 
2(2k+l)[j,j',£,£']

112 
nk 

n 

Here we have 

[ .. , £,£'] J,J ) 

The final expression for (a· [V(!:,12)'P 8 fa') is . 

X 

~ J) 
2 

.::, ... 

(9) 

(10) 

where the symbols ( 

Racah coefficients. 

f ) and W are the usual Clebsch-Gordan and 

.. -
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Now, we evaluate Noting 

f: '~ ~} 
lSI p_1 j I 

== 

k+s+J' + P. I / { J. I J. k } 
(-1) · [2(2k+l)]-l 2 · P.. p_1 ~ . · \,r , 

we can easily verify 

jl+j +J 
( ( ) I 1 ) _ '\'F (-l) 2 2 (' . 1 ]1/2(. 1 l. l lkO)(J.

2
, l . l lkQ) 

a IV 1:12 a - L · k . J ' J · J l 2 J 1- 2 2 J 2 - 2 
k 

(ll) 

with the restriction that it vanishes unless both £1 + £1 + k and 

£2+ £2 + k are even. From Eqs. (7~), (10), and (11), we get 

j +j 1 +J 
2 L Fk ( -1) 

2 2 
[ j ' j I ' P. ~ P. .1} ~;. 2 

( t l 0£10 I k 0) ( P. 20 P. 2 0 I k 0) 
k 

where (a IV(~12 ) I a 1
) is given by Eq. (11)'. 

Now that we. have obtained the explicit forms of the spin­

dependent matrix element for the finite-range case, we obtain the 

corresponding expressions in the limit of z.ero range. For· the· zero­

range force, we have Fk = F0 for every k, so that the summation 

over k can be easily carried out analytically. The final results 

for the zero-range force are 



l 
2(2J+l) 

and 

+ 
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1 
2(2J+l) Fo 

AA' 
4J(J+l) 

(13) 

[
• '·. 1 ]1/2 (, ! , _ ! jJI"'I) . 
J,J Jl 2 J2 2 y 

(14) 

where the superscript zero refers to the zero-range limit, and 

In Eq. (13) (a jv0 (~12 ) Ia') vanishes unless £1+£]_+£2+£2 is even. Like­

wise (a jv0 (~12 )£J_ · ---221a 1
) vanishes unless both £1 + £2 + J and 

el + 22 + J 3re even. 'rhe diagona~.cases of-both Eqs. (1::')) and (14) 

agree with the results obtained by de-Sha1it. 2 An almost j_dentica1 

. f (" 7.) . . . h ' ' . 1 .. 51 '·d . . 1 express:LOn · or J) J.s [!;].ven . y Nev1by and Kcmop1ns n,- r an .. a sJ.nn .. nr 
6 expression by Noya et (:11. Equations (10) and .. (11) are alfiO g:iYen by 

Newby and Konopinsk~ .. 
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B. The Tensor-Force Matrix Element 

The tensor-force matrix element is evaluated here in the j-j 

representation:. We may ex:press the tensor force in terms of the orbital 

and spin tensors as 

.• (2) 
L ) -

where s(2 ) is the irreducible tensor operator of rank 2 constructed from 

the spin operators· !J_ ana. ~· , and 1:(2 ) is a product of the scaler 

V(r12 ) and the irreducible operator of rank 2 constructed from the.unit 

vector ~2/r12 . The spin ana· orbital tensors may be obtained from11 

and 

L (2) = 
m 

The tensor force has been evaluated into ·spherical tensors by 

Talmi.
14 

Expanding V(r12)/r12
2 in terms of spherical harmonics, 

we obtain for the tensor force in terms of spherical tensors 



/ 
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V(rl2)sl2 = 3 L, F W(lxly;K2):t_(lx)K . .:S(ly)K ' 

K,x,y xy _ 

where 

and 

The symbols ( / ) and W are the usual Clebsch.,.Gordan and Ra<;ah 

coefficients, and [a] stands for [2a+l] . Now the evaluation o:f 

,_ the matrix element for V(r
12

)s
12 

is straightforward by using the 

similar method of Appendix A; The final result is 

(a /V(rl2)Sl2/a t) = L (a )F jcx(1
) W(lxly;K2) 

xY 
K,x,y 

where 
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.. .. 

.,,(ajF Ja') = -5 L (a jr1rj jcx') X .. for i, j = l·, 2, xy lJ 
k,i,j 

xll = (2/15)1/2[x]l/2 (20kO)xO) 

I 

~2 = (2/15)1/2[y]l/2 (20kO)yO) 
' I 

. l/2 
= ([x][y]) (10kOjxO)(lOkOJyO)W(llxy;2k), 

and 
00 00 

(ex [r1r j [a') = (2k+l) J dr1r 1
2

R1 R]_ f dr2r 2 
2~J<2r ir j 

0 0 

X 

-1 

The angular part is given in terms of 3-, 6-, and 9-j symbols as 

j I +j +2 +£ +J 
( . . JM IT ( lx) K . T ( ly) K / . , . 1 J 1 M, , _ ( _1 ) 1 2 1 2 6 0 fl __ 
J1J2 l 2 · J1J2 I - JJ1MM 1 - - . 

X ([j ][j )[jl)[j']\l/2((2 )[ 2 )[ 2,)[ 2'])1/2' 
1 2· 1 2~ 1 2 1 2 

X ('1 X. 

21_) (·.2 y 
22) 

0 0 0 0 0 0 . . 

1 1 
2 2 1 ! ! 1 

2 2 

22 22 y 

j2 j2 K 
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An almost identical result for the diagonal case only is given by 

de -Shalit and Walecka: 15 The radial integral (a Jr. r. ja') can be 
l J. ' 

evaluated by expanding it into a linear combination of Talmi integrals: 

(a jr.r .Ja') 
l J; L 

m,m' 

= (l/2n)l/22-(m+m~) ~3 [ (m+m' -2cr+l)! !Tk 2cr (m,m' )J2cr 
m,m' cr 

where ,fk is the double integral of the form 

the variable x. is defined here as r.~ and (v)~l/2 is the length 
l l 

parameter appearing in the harmonic oscillator radial wave functions, 

and 

The Talmi integral 

()() 

J 2cr is the singie integral defined as 

2cr 2 

=J x exp (-~ ) 
v(-Jv x) 

2 vx 

2 
xdx 

0 

V(r12 )'_ 

2' 
rl2 

The expansion coefficient Tis the Tal.mi.coefficient defined by Ford and 
. . k. 18 d th 1' . t Konoplns 1, an e exp lCl expressions along with several recursion 

relations for the Talmi coefficients are given. in detail by Ford, and 

Konopinski. 
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c. Fortran Programs 

The FORTRAN programs used in this paper are presented here. De­

tailed information for inputs and outputs of the programs is summarized 

whenever necessary. ~our separate main programs are described below. All 

matrix element are computed with the use of Gaussian radia'l-dependence 

and harmonic.-oscillator wave functions. 

1. Tensor-Force Matrix Elements 

a, For the particle.;.particle interaction. This FORTRAN program calculates 

the tensor-force matrix elements for the particle-particle interaction. 

The FORTRAN listing is in Appendix D. 

i. Input 

The first card contains OSC (Fl0.5), where OSC is the harmonic 

oscillator parameter (v)-1/ 2 in units of fermis. 

The second .card contains, VTTE, "V:TTO, RTF(l), RTF(2) (4Fl0.5), 

where VTTE and VTTO are the strength parameters for the tensor triplet­

even and triplet-odd forces, respectively (in units of MeV), and RTF(l) 

and RTF(2) are the ranges for the tensor. triplet-even and triplet-odd 

forces, respectively (inunits of Fermi). 

The third card contains MAXN (IB), where MAXN is the total number 

of configurations for which the tensor-force matrix elements are to be 

computed in a single run. 

The fourth card contains LLT (15), where LLT is the number of 

various spin-J states arising from a given configuration. This number 

is adjustable according to the desired number of J states of a give.n con­

figuration to be computed. 

The fifth card contains Nll, Ll, N22, 12, MN33, ML3, MN44, ML4 
(815), where these parameters correspond to the radial quantum numbers 

n1 , £1,n2 , £2 ,n]_, £]_,n2, £2 , respectively, 

The sixth card contains AL1F, AL2F, J3Ll:I, BL2I, .f\JllF', AJ2F, 

BJ2I, BJ, ZERO (9F5.l, Fl0.5), 
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where these parameters correspond to the quantum numbers, £1 , £2 , £]_, £2_ , 

j
1
,j2 ,j_i,j2_, Jmax , and the zeroth-order energy in MeV, respectively. 

The program computes the tensor-force matrix elements for J 

(BJ) state of a given configuration, and proceeds to compute for the 

(J - 1) state, (J - 2)., etc. until it repeats LLT times (see the . max. . · max . . 
fourth card) .. After a given configuration is completed, it proceeds to 

' 
another configuration by going back to the fourth card, and repeats this 

process MAXN times (see the third card) .. After a set. of configurations 

is finished, another set of configruations-can be computed if more data 

· ca·rds are adQ.ed, starting from the second .card. 

and 

ii. Output 

The output .consists of: 

tensor-force direct radial integrals with various possible k 

values ·· 

corresponding quantum numbers 

tensor-force direct matrix elements 

·tensor-force exchange radial integrals with various poss.ible 

k :Values 

corresponding quantum numbers 

tensor-force exchange matrix elements 

T p S ( _P. T . r2) )a , ) 
(a IV TE l2exp ~TE · 

TE . 

. ( I T P S ( _P.TET r2) I a ' ) a VTO TO l2exp ~ 

for various J states of a given configuration. 
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and 

for various J states of'a given configuration. 

In addition, the following output is punched on cards: 

FTTE, FTTO, AJ (2Fl0.7, F5.l), 

where 
T . 2 

FTTE and FTTO are (a /VTE PTEs12 exp( -r'3r ) ja') and 

T · 2 · 
( a JVTO P TOs12 exp ( -r'3r ) ja') , respectively, and AJ 

is the. total angular momentum J. 

iii. Subprograms 

The following five subprograms and three functionp are necessary 

(pages for -FORTRAN listings are shown in parenthesis): 

(a) subroutine TFORCE which calculates the angular part of the 

tensor-force matrix elements (p. 145) 
(b) subroutine TENSOR which calculates the radial parts of the 

tensor-force matrix elements (p. 149) 
(c) subroutine TFMOD which calculates all the common factors for 

the various J states of a given configuration (pe 151) 

(d) subroutine TALMI which calculates the Talmi coefficients defined 

in Appendix B (p. 153) 
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(e) subroutine RADIAL which calculates the expansion coefficients 

f(m,m') defined in Appendix B (p. 154) 
(f) function VEC which calculates the numerical values of the 9-j 

symbols (p. 155) 
(g) function RACAH which calculates the Racah coefficients (obtained 

from Los Alamos Laboratory, and hence not shown here) 

(h) function CLEBSH which calculates the Clebsch-Gordan coefficients 

(also obtained from Los Alamos Laboratory, and hence not shown 

here). 

b. For the particle-hole interaction. This program converts the tensor­

force matrix element of theparticle-particle interaction (B3) into the 

matrix element for the particle-hole \nteraction (B2). In addition, it 

can convert the punched output cards of program la into input data cards 

of the tensor-force matrix elements for the next program 2 and 3· 

The FORTRAN listing is in Appendix E. 

i. ·Input 

The first card contains TTEC and TTOC (2Fl0.5), which are 

arbitrary constants that may be multiplied by the strength parameters 
T · T VTE and VTO , respectively. 

The second card contains NE, ND, JAMIN, JAMAX (415), where: 

NE is the total number of configurations under. consideration. This 

corresponds to the maximum dimension of the matrix. 

ND is a control number. If we have ND < 0, the program is for the 

particle-particle case, and if we have ND ~ O, it is for the· particle­

hole case. 

JAMIN and JAMAX are (Jmin + 1) and (Jm~;>x + 1), respectively, where 

J . arid J are the smallest and largest J, respectively, for all mln max 
configurations under consideration. ' 

The third card contains BJ:JF, BJ2F, BJJI, BJ2I (4F5.1) where 

these parameters correspond to j1 , .)2 ,j]_,j2, respectively, for both 

the particle-particle case and the particle-hole case. 
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Starting from the fourth card, a series of cards follows as 

shown below: 

The fourth card: TTE(JMNC), DUM(JMNC) (2Fl0.7) 

The fifth card: TTE(JMNC + 1), DUM(JMNC + 1). (2Fl0.7) 

The last card: TTE(J~), DUM(JMXC) (2Fl0.7) 

where 

TTE(JMNC) and TTE(JMXC) are the triplet-even tensor-force ma~rix 

elements for the J . and J states of a given configuration, m1n max · 
respectively, which have been calculated in 1 a, and DUM is 9 

dummy variable which does not enter into the calculation. This 

set. of cards is followed by another similar set of cards for the 

triplet-odd, i.e. 

DUM(JMNC), TTO(JMNC) (2Fl0.7) 

• o ·• • • • • • • • • • • e • • • • • • • • • • • e • • • 

etc., 

where TTO(JMNC) has the obvious meaning similar to TTE(JMNC). 

After these two sets of cards, the input is repeated from the third 

card with following seq_uence: 

(1,1), (1,2), 

(2,2), 

(1, NE) 

(2, NE) 

(NE, NE) , 

where the indices designate the configurations under consideration. 

ii. Output 

The 0utput consi:::Lts of the total angular momentum J, the 

initial matrix, and the final matrix. In addition, the following output 

is punched on cards: 
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J(I5). 

For ND = 0, A(l,l), A(2,2), ... ,etc. (8Fl0.7), i.e., only the 

diagonal matrix elementsare punched. 

For ND :f: O, A(l,l), A(l:,2), etc. (8Fl0.7), i.e., the entire 

matrix elements are punched. 

iii. Subprogram 

The only subprogram needed is FONCTION RACAH [1 a (g)] 

2. Particle~Particle Interaction 

This program computes the central-force matrix elements for the 

·particle-particle interaction. Optionally, it can take the tensor-force 

matrix elements as inputs. If the dimension of the resulting matrix is 

· greater than· 2 by. 2, this program willautomatically diagonalize the 

matrix and compute the eigenvalues and eigenfunctions. The FORTRAN listing 

is in Appendix F. 

i. Input 

The first card contains NTE (I5), where NTE is a control number. 

For NTE t 0, the tensor-force matrix elements can be read in as input . 
. . 

In addition, for NTE < O, the initial matrix will be printed out. For 

NTE = 0, the tensor-force.matrix elements are not read in. 

The second card contains OCS, VTEN (2Fl0:5), where OSC is .already 

defined in la, and VTEN is any arbitrary constant that can be multipled 

into the tensor-force matrix. 

The third card contains VTE, SE, TQ, SO, RCF(l), RCF(2), RCF(3), 

and RCF(4) (8Fl0. 5), where VTE, SE, To, and SO are strength parameters 

in MeV for the central triplet-even} singlet-even, triplet-odd, arid singlet­

odd forces respectively .. The correspo11ding force ranges in Fermi are 

RCF(l), RCF(2), RGF(3), and RCF(4). 

The fourth card contains NE, ND, JAMIN, JAMAX (4I5i), where NE has been 

defined in lb, and ND is a control number. For ND =. 0, only the diagonal 

tensor-force matrix elements are to be read in as input. Otherwise, the 

tensor-force matrix elements, including the off-diagonal case are to be 

included. 
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JAMIN and JP)AAX h9. ve the same meanings as defined in lb. ·. 'I'he 

fifth card contains MNll, MLl, -MN22, ML2, MN33, ML3, MN44, and ML4 (815), 

where these parameters correspond to the radial quantum numbers, n
1

, £1 , 

n2 , £2 , n]_ , £]_ , n2 , £2 , respectively. 

The sixth card contains BLlF, BL2F, BLII, BL2I, BJlF, BJ2F, BJli, 

BJ2I, and ZERO (8F5.1, Fl0.5), where these parameters correspond to the 

quantum numbers, ~£1 ,£2 , £]_, £2 , j 1 , j 2 , j]_,j2 , and the zeroth-order energy 

in MeV, respectively. 

After the sixth card, input is repeated again starting from the 

fifth card in the following sequence: 

(1,1)' (1,2)' (l,NE) 

(2,2)' (2,:NE) 

(NE,.NE) ' 

where indices denote the configurations under consideration. 

"Next comes the input for the' tensor-force matrix elements. For 

NTE == 0, there is no input for these matrix elements. For :NTE f. 0 , and 

ND = 0, then only the diagonal tensor-force matrix elements for 

J . (JAMIN) states must be read in with the format (8Fl0, 7) in the following mln 
sequence: 

(1,1)' (2,2), . ' . ' etc. 

This process repeats for successive J-states until it reaches the J 

(JAMAX) states, ·For . NTE f. 0, and ND f. 0, ·.the entire tensor-force 

matrix including off-diagonal elements must be read in with format 

(8Fl0.7) in the following triangular sequence: 

max 
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' (l~l)' (1,2)' . . 

c (2,2), 

etc. 

This process-repeats for successive J states until it reaches.the 

(JAMAX) states . 
. , 

ii. Output 

The output cons~s of: 

OCS, VTEN 

VTE, SE, TO, SO, RCF(l), RCF(2), RCF(3), and RCF(4). 

For NTE < 0, the initial matrix is printed out. 

angular momentum J 

central-force matrix. 

For NTE = 0, the tensor-force niatrix elements are printed out. 

final matrix 

eigenvalues in MeV and eigenfunctions. 

iii. Subprograms 

J max 

(a) Subroutine CFORCE calculates the angular part of the 

central-force.~matrix e,lements. 

(b) SUbroutine SLATED calculates the ra~ial part of the 

c.entral-force, matrix elements. 

(c) Subroutine EIGEN diagonalizes the matrix and calculates 

J · eigenvalues and eigenfunctions ... IBM SHARE P~OGRAM F2 .AIIJ F022 was slightly 

modified to obtain this program. 

In addition 3 · subroutines TALMI. and RADIAL, and functions RACAH 

and CLEBSH are necessary. All of these subprograms are described in la. 

3· Particle-Hole Interaction· 

This ·program calculates the central-force matrix· elements for 

the particle''-hole interaction. The ten~·or-forde matrix elements for the 

particle-hole interaction are to be computed separately by use of 

program lb, .and are to be read ih irS· :bnput ·in ·th.is program. Again, as 

in the particle-particle program, the resulting matrix is diagonalized 

to obtain the eigenvalues and eigenfunctions .. The FORTRAN listing ·is 

given in Appendix G. 
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i. Input 

The input is the same as for program 2, except that sub­

scripts l and 2 always refer to the hole and particle states, res­

pectively. 

ii. Output 

The output is the same as for program 2. 

iii~ . Subprograms 

The subprograms are the same as those for program 2. 



l 
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D. FORTRAN Listing .(la) 

C MATRIX ELEMENTS OF TENSOR FORCE IIVl 
D DIMENSION TI20l,Bii20,20l•diN120,20l•Dt:3II20•20),PI20),QI20ltSQI20l 
D 1, SQF I 2 0 l , DF I 2 0 l , GJ I 2 0 l , SQ2 I 20 l • FACT I 20 ) , RT I 2 5, 5 l • VPN I 2 0 • 2 0 l t.VP I 2 0 l 
D. 2, V N I 2 0 l , R I 2 0 l , B K I 2 0 l • B l K I 2 0 l , B 2 K I 2 0 l 

DIMENSJON CO~I20l,RTFI2l •TLLLI20,20,2l~TLLI20,20) 
COMMON T•Bl•BlN•DBl•P•Q•N1•N2,N3•N4•L1•L2,L3•L4,SQ,SQ2,SQF,DF,FACT 

1•GJ,N13•N24•N11•N22•N33,N44•L11•L22,LJ3,L44•K1U,K2U,K3UtKlL•K2LoK3 
2Lt KL,KU, AL1F,AL2F,AL1I,AL2I,AJ1F,AJ2F,AJ1ItAJ2I,AJ 
3 .• BK•B1K•B2K 

117 FORMAT I I 5) 
D BII1,1l=1.0 
D DB I I 1 • 1 l = 1. 0 

DO 10 J=2.19 
D BIIJ.ll=1. 
D DBI1Jtll=1• 

K=J 
DO 10 M=2,K 

D B I I J, M l =I FLOAT F I J-M+ 1 l I FLOA TF I M-1 l ) * t3 I I J, M-1 l 
D 10 DBIIJ•Ml=l IFLOATFIJ-Ml*2•+3ol/IFLOATF1Ml*2•-1·Dl*DBIIJ,M-1) 

DO 11 J=1,19 
D BINIJ.•ll=l• 

K=J+1 
DO 11 M=2, K 

D 11 BINIJ•Ml=IIFLOATFIJ-M+2)-0.5)/FLOATFIM-1ll*BINIJ•M-l) 
D Pl1l=1o 
D Ql ll=lo 
D SQ I 1) = l• 
D DFI1l=l• 
D SQ21ll=1• 
D SQF1ll=1• 

DO 12 I=1,19 
D Pii+1l=-1.*Piil 
D SQII+1)=-2·*SOIIl 
D SQFII+1l=4•*SQFIIl 
D DFII+1J=I2o*FLOATFIIJ+1.J*DF1Il 
D SQ21I+1l=2·*SQ21IJ 
D 12 Q(~+1l=-4o*Oill 
D FACTill=l. 

DO 129 M=2tl9 
D 129 FACTIMl=FLOATFIM-1l*FACTiM-1l 

READ INPUT TAPE 2,212 ,osC 
212 FORMATIF10o5l 

WRJTE OUTPUT TAPE 3•211tOSC 
211 FORMAT11X11HOSCILLATOR=F10.5) 
118 READ INPUT TAPE2•14•VTTE,VTTO,IRTFI!lti=1•2l 

14 FORMAT14F10.5l 
WRITE OUTPUT TAPE 3•14,VTTE,VTTOtiRTFII),I=1•2) 
READ INPUT TAPE 2,280tMAXN 

280 FORMAT I 15) 
DO 305 KX=1•MAXN 
READ INPUT TAPE 2.117•LLT 
READ INPUT TAPE 2,2,N11.L1,N22•L2,MN33•ML3•MN44,ML4 

2 FORMAT18I5l 
READ INPUT TAPE 2•119•AL1F,AL2F,BL1I•BL2I,AJ1F,AJ2F,BJ1I,BJ2I•BJ, 

1ZERO,KM 
119 FORMAT1.9F5.1,F1U.5,I5l 

DO 112 L= 1, 2 
BT=IOSC/RTFIL) l**2 

D GJI1)=1• 

.• 
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DO 13 I=ltl9 
D 13 GJ(I+l)=(FLOATF(IJ-0.5J*GJ(!)/(0.5+8Tl 

DO 400 II=l•LLT 
AJ=BJ-FLOATF(II-ll 
ALl I =BLl I 
AL2I=BL2I 
AJll=BJll 
AJ2I=8J2I 
IF (Il-l) 201,201,202 

202 DO 205 I=lt20 
DO 205 J=lt20 

205 TLL( I ,J) =TLLL( I .Jd) 
CALL TFMOD( ETtTLLI 
GO TO 203 

201 N33=MN33 
L3=ML3 
N44=MN44 
L4=ML4 
CALL TENSOR(RTtBTJ 
WRITE OUTPUT TAPE 3,3,(I,RT(I,ll•I=l•KlU) 
WRITE OUTPUT TAPE 3,3,(I,RT(I,2Jtl=l•K2UJ 
WRI.TE OUTPUT TAPE 3•3•(I,RT(lt3lti=l•K3UJ 

3 FORMAT(I5,E20.8J 
CALL TFORCE( ETtRT,TLL,TMMl,TMM2•TMM3,CO,TLll 
DO 204 1=1•20 
DO 204 J=lt20 

204 TLLL(I,Jdl=TLL(I,JJ 
203 WRITE OUTPUT TAPE 3•35,ALlF,AL2FtALli,AL2I,AJlF,AJ2F,AJli,AJ2ltAJt 

lET . 
35 FORMAT(9F5.1,4F20.8) 

AL1I=BL2I 
AL2I=BL1I 
AJll =BJ2 I 
AJ2I=BJll 
IF (Il-l) 501,501,502 

502 DO 505 I=l•20 
DO 505 J=lt20 

505 TLLll•Jl=TLLL(ldt2l 
CALL TFMOD(QET,TLL) 
GO TO 503 

501 N33=MN44 
L3=ML4 
N44=MN33 
L4=ML3 
CALL TENSOR(RT,BTl 
WRITE OUTPUT TAPE 3.3t(I,RT(l,lJ,I=ltKlUJ 
'wRITE OUTPUT TAPE 3.3dltRT(I,2J.I=l•K2UJ 
WRITE OUTPUT TAPE 3•3•(I,RT(!,3J,I=l•K3UJ 
CALL TFORCE(QETtRToTLLtTMMl•TMM2•TMM3,COtT~l) 
DO 504 !=1•20 
DO 504 J=lt20 

504 TLLL(!,J,2J=TLL(l.J) 
503 WRITE.OUTPUT TAPE 3•35tALlF•AL2F,ALli,AL2ItAJ1FtAJ2FtAJl!tAJ2ItAJt 

lQET 
MA=AJ1I+AJ2I+AJ 
MM=XMODF(MAt2l 
I F ( MM ) 71 , 71 , 7 2 

71 QP=lo 



GO TO 252 
72 QP=-1• 

252 CONTINUE 
TTE=0.5*(ET+QP*OETI 
TT0=0.5*(ET-QP*OETI 
FTTE=TTE*VTTE 
FTTO=TTO*VTTO 
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WRITE OUTPUT TAPE 3t30ltRTF(Ll•TTEtFTTEtTTOtFTTO 
301 FORMAT(lX6HRANGE=F10.5,1X4HTTE=E15.8tlX5HFTTE=E15o8t1X4HTTO~El5o8t 

llX5HFTTO=E15.8l 
WRITE OUTPUT TAPE 14t284,FTTE,FTTO,AJ 

284 FORMAT!2F10.7,F5.1l 
400 CONTINUE 
112 CONTINUE 
305 CONTINUE 

GO TO 118 
END 
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SUBROUTINE TFORCE!QETtRTtflltTr~MltTMM2tTMM3tCO,TLll 
D DIMENSION T!20),BI!20,20)tBfN!20,201 •D8I!20t20),P!20ltG!20),SQ!20l 
D 1 , S Q F ( 2 0 I , D F ( ;2 0 I • G J ( 2 0 ) , S Q 2 ( 2 0 I • FA C T ( 2 0 ) t R T ( 2 5 ' 5 ) • V P N ( 2 0 , 2 0 ) , V P ( 2 0 ) 
D 2•VN!ZO),R!20) 

DIMENSION TLL!20•201 •COM!20) ,(81(20) •CCl!20) •CD3(20,20) •VX!20,20) 
!oVR!61 ,V(9) ,W(9), A12!6) ,81(6), X!9l tCl!61 ,(A12!20,201 tD3!6) ,E3!6) 

COMMON T,BitBlN•D8ItPtQtN1tN2•N3•N4tl1tL2,L3tl4~SQ,SQ2,SQF,DFtFACT 
1,GJtN13·•N24tN11tN22•N33•N44•L11tl22•L33tL44•K1UtK2U,K3UtK1LtK2LtK3 
ZL• KL,KU, AL1F•AL2FtAL1ltAL2ltAJlF•AJ2FtAJlitAJ2I,AJ 
3tBK•BlK;B2K 

DO 666 M=1t20 
666 COM!Ml=SQRTF!2o*FLOATF(M-ll+lol 

LU=AJ+Zo 
Ll2l=ALlF+AL2F+1o 
L341=AL1I+AL2!+1o 
Ll3=AL1F+AL1I 
L24=AL2F+AL2I 
Ll31=L13+1 
Ll32=Ll3+2 
L241=L24+1 
L242=L24+2 
Ll33=L13+3 
L243=L24+3 
LUF =XMINOF!L121•LUl 
LUI =XMINOF(L341tLUI 
KL1U=XMINOF!L241tl133) 
KL2U=XMINOF!L243,L131l 
KL3U=XMINOF!L242tL1321 
KLU =XMINOF(L133•L2431 
ML24=XMODF(L24,2l 
ML13=XMODF!L13,2) 
AJ121=(2o*AJ1I+1o)*(2o*AJ21+1o) 
AJ12F=(2o*AJ1F+1o)*(2o*AJ2F+1ol 
AL12I=!2o*AL1I+1.)*(2o*AL2I+1ol 
TL1=o.o 
DO 61 I=1,20 
DO 61 J=1•20 

61 TLl.!Jdl=OoO 
IF!ML24-ML131 71,72,71 

71 GO TO 200 
72 IF!ML24l 151,151•152 

151 KL1L=1 
KL3L=2 
XP= 1o 
GO TO 73 

152 KL1L=2 
KL3L=1 
XP=-1• 

73 DO 425 IX=KL1L,L131,2 
Bl!1l=IX-1 
B1!2l=AL1I 
B1(3l=AL1F 
B1(4)=0o0 
81(5)=0.0 
81(6)=0.0 

425 C81!!X)=CLE8SH(o1) 
DO 245 IX=KL1L•L241,2 
C1!1l=IX-1 
CU2l=AL21 
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C1 I 3) =AL2F 
(1(4)=0·0 
(1(5)=0.0 
cu'6>=o.o 

245 CCl I I X·l =CLEBSH I C 1l 
•. DO ·445 K=KL1L,KLU•2 

K2=K+2 
KLUU=XM l'NOF IK2 • KLU )· 

'IFIK-31 401,401,402 
401 KLLL=Klll 

GO TO 403 
402 KLLL=K-2" 
403 DO 445 IX=KLLL,KLUU,2 

A1211l=K-1 
A1212l=2 
A1213l=IX-1 
A1214l=O.o. 
A1215l=Oo0 
A12(6l=Oo0 

445 CA121K,IXl=CLEBSHIA12l 
DO 145 K=KL3l•KL3U,2 
K1=K++ 
KLUU=XMINOF!K1,KLU) 
!FIK-21 501.501,502 

501 Klll=Klll 
GO TO 503 

502 KLLL=K-1 . . 
503 DO 145 IX=KLLL~KLUU,2 

D311l=K-1 
"D3(2)=1 
D3!3J=IX-l 
D3!4l=O.O 
D315i::o.o 
D3!6)=0•0 

145 CD3 !K,!X)=CLEBSH!D3l 
DO 41 I=l,LUI 
!2=1+2 
LUFF=XMINOF!I2,LUF) 
IF! l-31 51•51.52 

51 LLF=i 
GO TO 53 

52 LLF=I-2 
53 DO 41 J=LLF•LUFF 

DO 345 K=KLll~KllU•2 
K2=K+2 
KLUU=XMINOF!K2,KL2Ul 
IF !K-31 81.81,82 

81 KLLL=Klll 
GO TO 83 

82 KLLL=K-2 
83 DO 345 IX=KLLL•KLUU•2 

X!ll=Alll 
X!2l=AL2l 
X!3l=I-1 
X!4l=IX-l 
X(5l=K-l 
X!6l=2 
X!7l=AL1F 



X(8l=AL2F 
X(9)=J-l 

345 VX(lX•Kl=VEC(X) 
VR( l)=J-1 
VR(2)=I-l 
VR(3)=1 
VR(4)=1 
VR(5)=2 
VR(6)=AJ 
V( ll=ALli 
V(2l=AL2I 
V(3)=l-l 
V(4)=0o5 
V(5)=0,5 
V(6)=lo0 
V(7J=AJ1I 
V(8l=AJ2I 
V(9J=AJ 
W( ll=ALlf 
W(2l=AL2F 
W(3)=J-l 
W(4)=0o5 
W(5)=0o5 
W(6l=l.O 
W(7)=AJ1F 
W(8J=AJ2F 
W(9l=AJ 
VI=VEC(V) 
Vf=VEC(W) 
RVR=RACAH(VR) 
ALl=(2o*fLOATF(l-l)+lo) 
ALF=(2o*fLOATf(J-l)+lo) 
JJ=AJ 
MJ=JJ+J 
MJJ=XMODF(MJ,2) 
IF (MJJ) 42•42,43 

42 PHASE=l• 
GO TO 44 

43 PHASE =-1. 
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44 CO =PHASE* ALF*ALI* RVR*Vf*Vl 
TMMl=O,O 
DO 110 K=KL1L•KL1U,2 
K2=K+2 
KLUU=XMIN0f(K2,KL2Ul 
IF ( K-3) 101 dOl .102 

101 KLLL=KLlL 
GO TO 103 

102 KLLL=K-2 
103 DO 110 IX=KLLL•KLUU,2 
113 EXK=(2o*FLOATF(K-1)+1o) 

TTM1=XP*COM(IXJ*CA12(K,IXl*CBl(lXl*CCl(K)*VX(IX,Kl*RT(K,ll*EXK*SOR 
1 T F ( 2 .• 13 • J 

110 TMMl=T~Ml+TTM1 
TMM2=0o0 
DO 120 K=KL1L•KL2U,2 
K2=K+2 
KLUU=XMINOF(K2•KL1UJ 
IF (K-31 201,201,202 



201 KLLL=KLlL 
GO TO 203 

202 KU.L=K-2 
203 DO 120 IX=KLLL•KLUU•2 
123 EXK=(2o*FLOATF(K-1)+1ol 
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TTM2=XP*COMIIXl*CA121K~lX)*CB11Kl*CC11lX)*VXIK,IXl*RTIK•2l*EXK*SQR 
lTFI2.13o) 

120 TMM2=TMM2+TT~2 
TMM3=0.0 
DO 130 K=KL3L•KL3U,2 
K1=K+1 
KL1UU=XMINOF(K1•KL2U) 
IF IK~2) 91•91,92 

91 KLlLL=KLlL 
GO TO 93 

92 KLlLL=K-1 
93 DO 130 IX=KL1LL•KL1UU•2 

IX2=IX+2 
KL2UU=XMINOFI IX2,KL1Ul 
IF IIX-3) 301,301.302 

301 KL2LL=KLlL 
GO TO 303 

302 KL2LL=IX-2 
303 DO 130 IY=KL2LL•KL2UU•2 

E311)=1 
E312l=1 
E313l=IX-1 
E314)=IY-1 
E315l=2 
E316l=K-1 
RE3=RACAHIE3l 

133 EXK=I2o*FLOATFIK-1)+1.l 
TTM3=XP*COMIIXl*COMIIYl*CD31K,IXl*CD31K,IY)*CB11IXl*CC11IYl*RE3*VX 

1 I I X • I Y l *RT I K-, 3 l * EXK * SQRTF I 5 • ) 
130 TMM3=TMM3+TTM3 

TLLIJ,Il=TMM1+TMM2+2o*TMM3 
41 TLl=TLl+TLL(J,Il*CO 

200 QET=TL1*6o*SQRTFIAJ12F*AJ12I*AL12I*5•l 
RETURN 
END 
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SUBROuTINE TENSORIRTtBTJ 
D DIMENSION T ( 2 0 J • B I ( 20 • 2 0 l • BIN ( 2 0 • 2 0 l • DB I ( 2 0 • 2 0) • P ( 2 0 l • Q ( 2 0 l • SQ ( 20 l 
D 1, SQF ( 2 0 ) • DF ( 2 0) • GJ ( 2 0 ) , SQ2 I 20) • FACT ( 20) , RT ( 2 5 • 5) • VPN ( 2 0 • 2 0) , VP ( 20) 
D 2tVNI20) 

COMMON T,BltB!NtDBI,P•Q•Nl•N2•N3•N4•Ll•L2•L3•L4•SQ,SQ2,SQF,DF,FACT 
l•GJtN13,N24•Nll•N22,N33,N44•Lll•L22•L33,L44•KlU,K2UtK3U,K1L,K2L,K3 
2L•KL,KU 
Nl=Nll-1 
N2=N22-l 
N3=N33-l 
N4=N44-l 
Ll1=Ll+l 
L22=L2+1 
L33=L3+1 
L44=L4+1 
Nl3=Nl+N3+1 
N24=N2+N4+l 
NLl=Nl+L1+1 
NL2=N2+L2+1 
NL3=N3+L3+1 
NL4=N4+L4+1 
Lll2=Lll+2 
L222=L22+2 
L332=L33+2 
L442=L44+2 

D RNLl=SQRTF!(SQ2(L112l*DF(~Ll))/(SQ2(Nlll*FACT!Nlli*IDF!Lll)**2) )) 
D RNL2=SQRTF((SQ2(L222l*DF(NL2))/(SQ2(N22l*FACTIN22)*(DFIL22)**2l )) 
D RNL3=SQRTF((SQ2(L332l*DF(NL3) )/(SQ2(N33)*FACTLN33J*(DF(L33l**2l )) 
D RNL4=SQRTF((SQ2(L442l*DF(NL4))/(SQ2(N44l*FACT(N44l*(DF(L44)**2l )) 
D RNL=RNLl*RNL2*RNL3*RNL4 

L24=L2+L4 
L24l=L2+L4+1 
L242=L2+L4+2 
L243=L2+L4+3 
Ll3=Ll+L3 
Ll3l=Ll+L3+1 
Ll32=Ll+L3+2 
Ll33=Ll+L3+3 

D CALL RADIAL (VPNtVP,VN) 
KlU=XMINOFIL24ltL133) 
K2U=XMINOF!Ll3l,L243) 
K3U=XMINOF(Ll32,L242) 
ML24=XMODF( L24;2) 
ML13=XMODF( Ll3•2) 
DO 101 I=lo20 
DO 101 J=1t3 

D 101 RT(I,JJ=O.O 
IF (ML24-ML13) 71,72,71 

71 GO TO 200 
72 IF (ML24) 51,51•52 
51 KlL=l 

GO TO 73 
52 Kll=2. 
73 DO 111 K=KlL,KlU•2 

D TRR=OoO 
DO 121 M=ltN13 
DO 121 N=ltN24 
IT=0.5•FLOATF!Ll3+2*M-(K-lll+l• 
JT=O • 5*FLOAT F ( L24+2* ( N-1)- ( K-1) ) + 1. 
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KT=K 
MT=0.5•FLOATF~L13+2*M+L24+2*(N-1ll+1• 
CALL TALMI (T,ITtJTtKTtMTl 
TTR=O·O 
DO 131 I= 1 , M T 
MTT=MT-I+1 
TT =DF(MTTl*T(Il*GJ(Il 
TTR=TTR+TT 
TR=TTR•VPN(M,NJ/(SQF(MTl*SORTF(2o*(Oo5+BTl !*16.) 
TRR=TRR+TR 
RT(K,1J=TRR*RNL 
IF 0·1L24l 61t61t62 
K2L=1 
GO TO 63 
KZL=Z 
DO 112 K=K2LtKZU;2 
TRR=O.O 
DO 122 M=1 tN13 
DO 122 N=1•N24 
IT =0 • 5•FLOAT F ( Ll3+Z* ( M-1 l- ( K-1 l l + 1• 
JT=J.5•FLOATF(L24+Z*N-(K-1ll+1• 
KT=K 
MT=vo5*FLOATF(L13+2*N+L24+2*(M-1ll+1o 
CALL TALMI (T,ITtJT,KT,MTl 
TTR=O·O 
DO 132 I'=1tMT 
MTT"=MT-I+1 
TT =DF(MTTl*Tlil*GJ(!J 
TTR=TTR+TT 
TR=TTR•VPN(MtNJ/{SQF~MTl*SQRTF(2o*(Oo5+BTJ J*16ol 
TRR=TRR+TR 
RT(K,ZJ=TRR*RNL 
IF li'-1L24) 91t91t92 
K3L=2 
GO TO 93 
K3L=l 
DO 113 K=K3LtK3Ut2 
TRR=O.o 
DO 123 M=1 tN13 
DO 123 N=ltN24 
IT= 0 • 5 •FLOA T F ( L 13+ 2 * ( M-1 l + 1- ( K -1 l l + 1 • 
JT = 0 • 5*FLOA T F ( L24+2* ( N-1) + 1- ( K -1 l l + 1 • 
KT=K 
MT=0.5•FLOATFlL13+2 +L24+2*(M-ll+2*(N-ll !+1• 
CALL TALMI (T,ITtJT,KTtMTl 
TTR=O.O 
DO 133 I=1tMT 
MTT=MT~I+1 
TT =DF(MTTl*T(Il*GJ(I) 
TTR=TTR+TT 
TR=TTR•VPNlMtNl/(SQF(MTl*SORTF(2o*(Oo5+BTl )*16.) 
TRR=TRR+TR 
RT(K-t3l=TRR*RNL 
RETURN 
END 



-151-

~UBROUTINE TFMOD!QETtTLLl 
D DIMENSION T!20)tBI(20t20ltBIN!20t20) tDBI!20t20J,P(20ltGf20J~SQ(20l 
D l•SQF(20l ,DF!20J ,GJ(20) tSG2!20J ,FACT( 20) tRT(25,5l tVPN!20t20l ,VP(20l 
D 2tVN(20JtR(20) 

DIMENSION TLL ( 20 • 20 l • COM ( 2.0 l • CB 1 ( 2 0) 'CCl ( 2 0 h CD3 ( 20 J • V X ( 20 t 2 0 l 
ltVR(6J,V{9)tW(9l• Al2{6JtB1(6J• X(9)tCl!6J,CA12!20t20l•D3(6l•E3{6) 

COMMON Tt8I,BIN,DBitP•Q•NltN2tN3tN4tll•L2tL3tL4tSQ,SJ2tSQFtDFtFACT 
l•GJ•Nl3tN24•NlltN22tN33tN44•LlltL22tL33,L44tK1UtK2U,K3UtK1LtK2LtK3 
2L• KLtKU, ALlF,AL2F,ALli,AL2I,AJ1FtAJ2F,A)li•AJ2I,AJ 
3,BK•BlKtB2K 

LU=AJ+2• 
Ll2l=AL1F+AL2F+l. 
L34l=AL1I+AL2I+l. 
L13=AL lF+ALl I 
L24=AL2F+AL2I 
L13l=Ll3+1 
Ll32=Ll3.+2 
L24l=L24+1 
L242=L24+2 
Ll33=Ll3+3 
L243=L24+3 
LUF =XMINOF!Ll2l•LU) 
LUI =XMINOF!L34l•LUl 
KLlU=XMINOF!L24ltL133J 
KL2U=XMINOF!L243tll31) 
KL3U=XMINOF!L242•Ll32J 
KLU =XMINOF(Ll33tL243J 
KL33U=XMINOF!Ll3ltL24l) 
KMAX=XMAXOF(Ll3ltl24ll 
ML24=XMODF(L24,2l 
ML13=XMODF!Ll3,2l 
AJ121=(2o*AJ1I+l.l*!2o*AJ2I+i.J 
AJ12F=!2o*AJ1F+l.l*(2.*AJ2F+l.l 
AL12!=(2o*ALll+lol*(2o*AL2I+lol 
TLI=o.o 
DO 41 I=ltLUI 
I2=1+2 
LUFF=XMINOF(.l2oLUFJ 
IF!I-31 5lt51,52 

51 LLF=l 
GO TO 53 

52 LLF=I-2 
53 DO 41 J=LLFoLUFF 

VR(lJ=J-1 
VRf2J=I-l 
VR(3)=1 
VR(4)=1 
VR(5)=2 
VR ( 6 l =AJ. 
V( 1J =ALl I 
V!2l=AL2I 
V!3l=I-l 
V(4l=Oo5 
V(5J=Oo5 
V(6J=l.O 
V!7l=AJ1I 
V!8l=AJ2I 
V(9l=AJ 
W(lJ=ALlF 
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Wl2l=AL2F 
Wl3l=J-1 
W(4)=0o5 
Wl5l=Oo5 
W(6l=1o0 
Wl7l=AJ1F 
Wl8l=AJ2F 
W19l=AJ 
VI=VECfVl 
VF=VECfW) 
RVR=RACAHfVRl 
ALI=I2o*FLOATFfi-1l+1o) 
ALF=I2o*FLOATFIJ-1)+1ol 
JJ=AJ 
MJ=JJ+J 
MJJ=XMODFIMJ,2) 
IF fMJJ) 42•42,43 

42 PHASE=1. 
GO TO 44 

43 PHASE =-1. 
44 CO =PHASE* ALF*ALI* RVR*VF*VI 

IFIML24-ML13) 7lt72t71 
71 GO TO 200 
72 CONTINUE 
41 TL1=Tll+TLL(J,Il*CO 

200 QET=TL1*6o*SQRTFIAJ12F*AJ12I*AL12I*5•l 
RETURN 
END 
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SUBROUTINE TALMl!TtltJtKtMl 
D. ~IMENSION T!20J,BI!20t20l•BIN!20,20l •DBI!20,20DtP!2~r,a!20ltS0!20l 
D 1• SQF ( 2 0 1 • DF ( 2 0 l • GJ ( 2 0 l , SQ2 ( 20 l • FACT ( 20 l , RT ( 2 5, 5 1't VPN ( 2 0, 2 0 l , VP ( 20 1 
D 2tVN!20J 

COMMON TtBitBINtDBitPtOtNltN2tN3tN4tLltL2tL3tL4tSOtS02tSOFtDF,FACT 
1tGJtN13tN24tN1l•N22tN33•N44tL1ltL22tL33,L44tKlU•K2U,K3UtK1~tK2L•Kj 
2LtBTtBtKLtKU 

DO 8 IS= 1, M 
D Tf=O.O 

IJ=XMINOF( I.Jl 
DO 9 IQ=1,IJ 
DO 9 I P= 1, K . 

D TT=O.O 
N=IS-IQ-IP+2 
L=M-K-IQ-IQ+3 
IF !Nl 4t4t5 

D 4 TT=OoO 
GO TO 3 

5 IF (L-Nl 1t2t2 
D 1 TT=U.O 

GO TO 3 
D 2 TT=DBI(MtiSl*P!IPl*Q(!Ql*i:li!ItiOl*Bl!Jt!OJ*BI(KtiPl*Bl!i...tNl/i3!N(fv1, 
D 1101 

3 CONTINUE 
D 9 TF=TF+TT 
D 8 T!ISJ=TF 

RETURN 
END 
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SUBROUTINE RADIAL(VPNtVP,VNJ 
D DIMENSION T!20J,BI!20t20Jt8!N(20t20l•DBI!20t20DtPI20ltQ(20)tSQ(201 
D l•SQF(20l•Df(20),GJ(20ltSQ2(20ltFACTC~OltRT(25t5)tVPN(20t20ltVP(201 
D 2•VN(20J,V1(2Q),V2(20),V3(20ltV4(20),V13(20•20)tV24(20t20) 

COMMON T•Bl•BIN•DBI•P•Q•N1•N2,N3•N4•L1•L2tL3•L4,SQ,SQ2,SQF,DFtFACT 
1 , G J • N 13 , N 2 4 , N 11 • N 2.2 • N 3 3 , N 4 4 • Ll 1 • L 2 2 ·• L 3 3 t L 4 4 , K l U • K 2 U ,"K 3 U • K lL , K 2 L • K 3 
2LtB'r,B,KL·,KU 

DO 14 I=1,N11 
J1=I+Ll 

D 14 V 1 ( I ) =;s Q ( I l * 8 I ( N 11 , I I * D F ( Llll I D F ( J 11 
DO 15 I=1,N22 
J2=I+L2 

D 15 V2(I)=SQ(Il*BI(N22•Il*DF(L22l/DF(J2) 
DO 16 I=1,N33 
j3=I+L3 

D 16 V3( I l=SQ( I l*BI (N33ti l*Df(L33)/Df( J3) 
DO 17 I=1,N44 
J4=I+L4 

D 17 V4(Il=SQ(Il*8I(N44tii*DF(L44l/DF(J4) 
DO 18 I=1•Nl1 
DO 18 M=1,N33 

D 18 V13( ItMI=Vl( I l*V3(Ml 
DO 19 K=1tN13 

D VPP=OoO 
DO 20 I=l.tN11 
DO 20 J=1,N33 
NP=!I-1l+(J-11+1 
IF ( NP-K) 1 • 2, 1 

1 GO TO 20 
D 2 VPP=VPP+V13(I,J) 

20 CONTINUE 
D 19 VP!Kl=V.PP 

DO 22 I=ltN22 
DO 22 M=1tN44 

D 22 V24(ItMI=V2(Il*V4(Ml 
DO 23 K=1tN24 

D VNN=O.O 
DO 24 I=1•N22 
DO 24 J=1tN44 
NN=!I-1l+(J-11+1 
IF (NN-Kl 3t4.3 

3 GO TO 24 
D 4 VNN=VNN+V24(I,J) 

24 CONTINUE 
D 23 VN!Kl=VNN 

DO 25 M=1,N13 
DO 25 N=1tN24 

D 25 VPNIM•Nl=VP(Ml*VN!Nl 
RETURN 
END 
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FU.NCTI ON VEC! Xl 
DIMENSION X!9ltR!61•Sl6),T!6l 
A=X(4l+X!8l 
8=X!2l+X!6l 
C=X(ll+X(9) 
D=MIN1f(A,B•Cl 
L=2•*(D+1ol 
VECTOR =OoO 
Y=-Oo5 
DY=0.5 
DO 10 K=1•L 
Y=Y+DY 
R!ll=X!1l 
R!2l=X!4l 
R!3l=X!9l 
R!4l=X(8) 
R! 5 l =X ( 7) 
R!6l=Y 
S ( 1 I =X! 2 l 
S!21=X!5l 
S!3l=Y 
S!4l=X!4l 
S!5l=X!8l 
S!6l=X!6l 
T! 1 l =X ( 3 l 
T!21=X!6J 
T!3l=X!1l 
T!4l=Y 
T!5l=X!9l 
T!6l=X!2l 
RR=RACAH!Rl 
RS=RACAH!Sl 
RT=RACAH!Tl 
VECT=!2.~Y+1.l*RR*RS*~T 

10 VECTOR=VECTOR+VECT . 
NA=2.*!X!1l+X(4) I+X!2l+X!31+X(5l+X!6l+X!8l+X!9l 
NM=XMODF!NA•2l 
I F ( NM I 1 • 1 • 2 

1 VEC=VECTOR 
GO TO 3 

2 VEC=-VECTOR 
3 RETURN 

END 
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E. FORTRAN Listing (lb) 

C MATRIX ELEMENTS OF THE TENSOR FORCE FOR THE PA-TICLE-PARTICLE OR 
C PARTICLE-HOLE INTERACTION 

DIMENS10N X{6lt CFt16JoFMEt20o20t16ltTTEt16loTTOI16JoA{20t20J 
1tDUM!16J 

READ INPUT TAPE 2t9tTT£CtTTOC 
9 FORMAT!2F10o5J 

80 READ INPUT TAPE 2t70tNEtND,JAMINtJAMAX 
70 FORMATt4I5J 

DO 3i JJ=1•16 
DO 31 M=1t20 
DO 31 L=1t20 

31 FME<L•M~JJJ=O.O 
DO 32 M=1t20 
DO 32 L=1t20 

32 A{LoMJ=OoO 
DO 33 L=1o16 

33 CF<LJ=o.o 
IF <NO J 71 '7 2, 72 

71 CONTINUE 
DO 276 L=1tNE 
DO 272 M=L•NE 
READ INPUT TAPE 2t119t 8J1F,BJ2F,BJ1I,BJ2I 
CJFL=BJ1F-BJ2F 
CJIL=BJ1I-BJ2I 
CJFU=BJ1F+BJ2F 
CJ I U=B.J 1 I +BJ2 I 
CJFA=ABSFtCJFLJ 
CJIA=ABSF!CJILJ 
JMCX=XMiN1F{CJFU,CJIUJ 
JMCN=XMAX1F4CJIA~CJFAJ 
JMNC=JMCN+1 
JMXC=JMCX+l 
IF (JMCX-JMCNJ 161,162,162 

161 GO TO 272 
162 CONTINUE 

READ INPUT TAPE 2•8• <TTE(JltDUM(JJoJ=JMNCtJMXCJ 
READ .INPUT TAPE 2t8t (DUM(JJoTTO(JJoJ=JMNCoJMXCJ 

• .DO 174 JJ=JMNC,JMXC 
CF!JJJ=TTE!JJJ*TTEC+TTO!JJJ*TTOC 
FME<L•M•JJJ=CF!JJJ 

174 FME<M•L•JJJ=FME(LtMtJJJ 
272 CONTINUE 
276 CONTINUE 

GO TO 277 
72 CONTINUE 

DO 176 L=l•NE 
DO 172 M=LtNE 

118 READ INPUT TAPE 2t119t BJ1F,BJ2F,BJ1I,BJ2I 
119 FORMAT(4F5o1J 

AJFL=BJ1I-BJ2F 
AJIL=BJ1F-BJ2I 
AJFU=BJ1I+BJ2F 
AJIU=BJ1F+BJ2I 
AJFA=ABSF(AJFLJ 
AJIA=A8SF(AJILJ 
JMAX=XMIN1F!AJFU,AJIUJ 
JMIN=XMAX1F(AJFA,AJIAJ 
JMN=JMIN+1 
JMX=JMAX+1 



CJFL=BJ1F-BJ2F 
CJIL=BJ1I-BJ2I 
CJFU=BJ1F+BJ2F 
CJIU=BJ1I+BJ2I 
CJFA=ABSF(CJFL) 
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Cj I A=ABSF ( CJ I L) 
JMCX=XMINlF(CJFUtCJIU) 
JMCN=XMAXlF(CJIA,CJFA) 
JMNC=JMCN+l 
JMXC=JMCX+l 
IF (JMCX-JMCN) 6lt62t62 

61 GO TO 172 
62 CONTINUE 

READ INPUT TAPE 2t8t fTTEfJltDUM(J)tJ=JMN,JMX) 
READ INPUT TAPE 2t8t (DUM(JltTTO(J)tJ=JMN,JMX) 

8 FORMAT(2Fl0.7) 
DO 173 JJ=JMNtJMX 

173 CFfJJ)=TTE(JJ)*TTEC+TTO(JJ)*TTOC 
DO 177 JJ=JMNCtJMXC 
MAP=AJFU+AJIU 
MAM=XMODFlMAPt2) 
IF (MAM) 771,771,772 

771 AP=l. 
GO TO 773 

772 AP=-1• 
773 CONTINUE 

PHME=u.O 
Xfll=BJ2I 
X(2l=BJ1F 
X(3)=BJ1I 
X(4)=BJ2F 
X(6)=JJ-l 
DO 51 K=JMN.JMX 
X(5)=K-l 
RAC=RACAH(X) 
PHM=AP*FLOATF(2*(K-l)+l)*RAC*CF(K) 

51 PHME=PHME+PHM 
FMEfLtMtJJ)=-PHME 

177 FMEfMtltJJ)=FME(L,M,JJ) 
172 CONTINUE 
176 CONTINUE 
277 CONTINUE 

DO 20 JJ=JAMIN,JAMAX 
JA=JJ-1 
WRITE OUTPUT TAPE 3t30ltJA 
WRITE OUTPUT TAPe 14,30l,JA 

301 FORMAT(lX2HJ=I2) 
66 WRITE OUTPUT TAPE 3t69 
69 FORMAT(1Xl4HINITIAL MATRIX) 

DO 68 M=ltNE 
68 WRITE OUTPUT TAPE 3,303t(FME(L,MtJJ) tl=ltNE) 
67 CONTINUE 

K=O 
28 DO 30 L=ltNE 

IF (FMEfl•L•JJ)) 25t26t25 
26 K=K+l 

GO TO 30 
25 N=O 
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DO 29 M=L,NE 
IF (FME(M,MtJJ)) 39t22t39 

.22 N=N+l 
GO TO 29 

39 LL=L-K 
MM=M-K-N 
A(~L,MM)=FME(LtM,JJJ 

A(MMtLL)=A(LLtMM) 
29 CONTINUE 
30 CONTINUE 

NK=NE-K 
IF (NK) 601t601t602 

601 GO TO 603 
602 CONTINUE 
303 FORMAT(13F10.5) 

WRITE OUTPUT TAPE 3, 378 
378 FORMAT(1X12HFINAL MATRIX) 

DO 333 J=1•NK 
333 WRITE OUTPUT TAPE 3t303,(A(I,J) ,I=l,NK) 

IF (ND) l0ltl02,101 
102 WRITE OUTPUT TAPE 14t284,(A(I,I),I=1•NK) 

GO TO 20 
101 WRITE OUTPUT TAPE 14,284,( (A(LtM) ,M=L,NK),L=1,NK) 
284 FORMAT (8f10.7) 
603 CONTINUE 

20 CONTINUE 
81 GO TO 80 

END 



.,. 
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F. FORTRAN Listing (2) 

C EIG~NVALUES AND VECTORS FOR THE PARTICLE-pARTICLE I~TERACTION 
D DIMENSION T!20)tBI(20t20)tB!N(20t20J •DBI!20,20),P(20lt0!20JtSOI20J 
D ltSOF(20JtDF(20JtGJ(20J,SQ2120J•FACT!20JtRT!25t5)tVPN(20t20JtVPI20J 
D 2tVN!20ltR(20)tBK!20JtB1K(20JtB2K!20J .. 

280 

202 

201 

4 

D 
D 

D 
D 

D 
D 10 

D 

D 11 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 12 
D 

D 129 
80 
70 

171 

77 

~IMENSION RR(20•2•4l tRCF14JtX!6JtVALU(20J tAI20t20J,E(4JtOVI4Jt 
1VPS14J,QVPSI4l•ATEN!20t20J,TENS(20t20),FME(20,20tl6J•CF!l6J 

COMMON T•BltBIN•DB!tPtOtN1tN2tN3tN4tLltL2tL3tL4tSOtS02tSOFtDFtFACT 
l•GJ~Nl3•N24•Nl1tN22tN33tN44tL11tL22tL33tL44tK1UtK2UtK3UtK1LtK2LtK3 
2Lt KLtKUt AL1FtAL2FtAL1ItAL2l,AJ1FtAJ2F,AJ1ltAJ2ItAJ 
3tBKtB1KtB2K 

READ INPUT TAPE 2t280tNTE 
FORMAT ( I 5 J 
READ INPUT TAPE 2t202 tOSCtVTEN 
FORMAT(2F10o5J 
WRITE OUTPUT TAPE 3t201tOSCtVTEN 
FORMAT(1X11HOSCILLATOR=F10o5t10X5HVTEN=F10o5l 
READ INPUT TAPE 2t4• VTEtSEtTOtSOtiRCF(IJ,I=1t4l 
FORMAT(8F10o5J 
WRITE OUTPUT TAPE 3•4• VTEtSEtTOtSOt!RCFIIJ,I=1t4) 
BI!1t!J=1.0 
DB I ( 1 • 1 J = 1 • 0 
DO 10 J=2t19 
Bl!JtlJ=1. 
DB I ( J • 1 J = 1• 
K=J 
DO 10 M=2tK 
BI ( J,M J =( FLOATF! J-M+1 J /FLOATF( M-1 J J *t:li ( JtM-1 J 
DBIIJ•Ml=!!FLOATF!J-Ml*2•+3oJ/(FLOATF(MJ*2•-l•Dl*DBI!JtM-1J 
DO 11 J=1t19 
BIN!J•ll=1o 
K=J+1 
DO 11 M=2tK 
BIN<J•MJ=((FLOATF(·J-M+2J-0.5J/FLOATF!M-1ll*BIN(J,M-1J 
P(1J=1o 
Q(lJ=1o 
GJ(1J=1• 
SQ ( 1 J = 1 • 
DF!1J=1• 
SQ2(1J=1o 
SQF(1J=1• 
DO 12 I=1t19 
P!l+1J=-1o*P!IJ 
SQ(I+1J=-2o*SO(IJ 
SQF!I+1J=4o*SQF!IJ 
OF ( I+ 1 J = ( 2. *FLOA TF ( I J + 1o J *OF! I J 
GJ( I+1 J =<.FLOATF! I J-0.5 l*GJ !I J I! Oo 5+8T J 
SQ2 ( 1+1 J-=2•*502 (I J 
Q( I+1 J =-4.*0U J 
FACT(1J=lo 
DO 129 M=2tl9 
FACi!MJ=FLOATF!M-1J*FACT(M-lJ 
READ INPUJ TAPE 2t70tNEtND,JAMINtJAMAX 
FORMAT(4I5J 
ME=1 
DO 1 71 I = 1 , 2 0 
VALU(IJ=O.O 
DO 77 J=1,20 
DO 77 1=1,20 
A!ltJJ=OoO 



.I 

D 
D 
D 

D 
D 

DO 31 J=1.16 
DO 31 M=1,NE 
DO 31 L=1,NE 

31 FME(L•M•J)=OoO 
DO 32 J=1,16 

32 CF(J)=OoO 
DO 174 L=1•NE 

118 DO 172 M=L•NE 
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READ INPUT TAPE 2,2,MN11•MLl•MN22,ML2,MN33,ML3,MN44•ML4 
READ INPUT TAPE 2•119•BL1F;BL2FJBL1I,BL2J,BJ1F,BJ2F,BJ1I,BJ2I, 

!ZERO 
119 FORMAT(8F5o1,Fl0.5) 

2 FORMAT(8I5l 
CJFL=BJ1F-BJ2F 
CJIL=BJ1I-BJ2.I 
CJFU=BJ1F+BJ2F 
CJIU=BJ1l+BJ2I 
CJFA=ABSF(CJFLl 
CJIA=ABSF(CJILl 
JMCX=XMIN1F(CJFU,CJIU) 

,JMCN=XMAX1F(CJIA,(JFAl 
JMNC=JMCN+1 
JMXC=JMCX+1 
IF (JMCX-JMCNl 61~62,62 

61 GO TO 172 
62 CONTINUE 

DO 210 N=1•4 
B=(OSC/RCFINl l**2 
8K(1)=1o0 
B1K(1l·=lo0 
B2K(ll=1o0 
DO 2 3 1 I = 1 , 19 
8K(l+1)=B•BK(Il 

D 231 
B 1 K ( I+ 1 ) = ( 1. +B)* B 1 K ( I ) 
B2K( !+1 l= ( 1o+B*2• l*B2K( I) 
N11=MN11 

D 

D 

L1:::ML1 
N22=MN22 
L2=ML2 
N33=MN33 
L3=ML3 
N44=MN44 
L4=ML4 
CALL SLATED(R,i3) 
DO 41 I=1,20 

41 RR(I,!,Nl=R(!) 
N33=MN44 
L3=ML4 
N44=MN33 
L4=ML3 
CALL SLATED(R,Bl 
DO 42 !=1,20 

42 RR(I,2,Nl=R(I) 
210 CONTINUE 

DO 173 JJ=JMNC,JMXC 
AJ=JJ-1 
DO 177 N=1•4 
DO 115 I= 1 '2 0 



115 R(l l=RR(!,1,Nl 
AllF=BllF 
AL2F=BL2F 
Alll=BL1I 
AL2l=BL2I 
AJ1F=BJ1F 
AJ2F=BJ2F 
AJli =BJli 
AJ2I=BJ2l 
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CALL CFORCE( EWF• ESF,Rl 
E(Nl=EWF 
VPS(Nl=ESF 
DO 116 I = 1 , 2 0 

116 R(I1=RR(l,2•Nl 
Alll=BL2l 
AL2l=BLll 
AJll=BJ2I 
AJ2I=BJll 
CALL CFORCE(QEWF,QESF•Rl 
QV(N)=QEWF 
QVPS(N)=QESF 

177 CONTINUE 
MA=AJ1I+AJ2I+AJ 
MM=XMODF(MA,2l 
I F ( Mi'-1 ) 71 , 71 , 72 

71 QP=1. 

72 
252 

GO TO 252 
QP=-1• 
CONTINUE 
FTE =0•5* 
FTO =0•5* 
FSE =0•5* 

(E(1)+0P*QV(1)-VPS(1)-QP*-VPS(1)) 
(E(3)-0P*QV(3)-VPS(3)+QP*-VPS(3)) 
(VPS(2l-QP*OVPS(2)) 
(VPS(4)+QP*QVPS(4)) FSO =0•5* 

CE=(FTE*VTE 
CF(JJl=CE 

+FSE*SE+FTO*TO+FSO*SOl 

173 
172 
174 

FME(L•M,JJl=CF(JJl+ZERO 
FME(M•L•JJ)~FME(L,M,JJ) 

CONTINUE 
CONTINUE 
DO 20 JJ=JAMIN,JAMAX 
IF (NTEl 66•67,67 

66 WRITE OUTPUT TAPE 3,69 
69 FORMAT(1X14HINITIAL MATRIX) 

DO 68 M=1,NE 
68 WRITE OUTPUT TAPE 3•303,(FME(L•M•JJl•L=1•NEl 
67 CONTINUE 

K=O 
28 DO· 30 L=1,NE 

IF (FME(L•L•JJ)) 25~26,25 
26 K=K+l 

GO TO 30 
25 N=O 

DO 29 M=L,NE 
IF (FME(M,M•JJ)) 39,22,39 

22 N=N+1 
GO TO 29 

39 LL=L-K 
MM=M-K-N 



AILL,MMl=FMEIL•M•JJ) 
AIMM,LLl=AILL•MMl 

29 CONTINUE 
30 CONTINUE 

NK=NE-K 
IF INK! 601.601,602 

601 GO TO 603 
602 CONTINUE 

JA=JJ-1 
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WRITE OUTPUT TAPE 3,301,JA 
301 FORMAT11X2HJ=I2l 

WRITE OUTPUT TAPE 3, 374 
37~ FORMAT11X20HCENTRAL FORCE MATRIX) 

DO 302 J=1•NK 
302 WRITE OUTPUT TAPE 3•303•1AII,J),I=1•NK) 
303 FORMATI13F10o5l 

IF INTEl 281,282.281 
281 GO TO 283 
282 IF IND) 55.56,55 

55 READ INPUT TAPE 2•284•IIATENIL•Ml•M=L,NK),L=1,NKl 
GO TO 57 

5& READ INPUT TAPE 2.284• IATENIL•Ll•L=1oNK) 
284 FORMAT18F10~7) 

57 CONTINUE 
DO 285 L=1,NK 
DO 285 M=L•NK 
TENS~L,Ml=VTEN*ATENILoM) 
TENSIMoLl=TENSILoM) 
AILoMl=AIL•Ml+TENSILoM) 

285 AIMoL)=AlL•Ml 
WRITE OUTPUT TAPE 3o 377 

377 FORMAT11Xl9HTENSbR FORCE MATRIX! 
DO 309 J=loNK 

309 WRITE OUTPUT TAPE 3o303•ITENSil,Jl•I=1oNKl 
WRITE OUTPUT TAPE 3o 378 

378 FORMATI1Xl2HFINAL MATRIX! 
DO 333 J=1•NK 

333 WRITE OUTPUT TAPE 3o303oiACI,Jlol=1oNKl 
283 CONTINUE 

IF INK-11 75,75.76 
75 GO TO 20 
76 CALL EIGENIAoVALUoNKoMEl 

WRITE OUTPUT TAPE 3o305 
305 FORMATI11HEIGENVALUESo2X12HEIGENVECTORS) 

DO 304 J=l•NK 
WRITE OUTPUT TAPE 3•303oVALUIJloiAIIoJ),I=1•NK) 

304 CONTINUE 
603 CONTINUE 

20 CONTINUE 
81 GO TO 80 

END 
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SUBROUTINE CFORCE(EWF,ESF•Rl 
D DIMENSION T(20),13!(20o20)•3IN(20•20l•DBI(20•20ltP(20J,Q(20),SQ(20l 
D 1• SQF ( 2 0 ) , DF ( 2 0) , GJ ( 2 0 l , SQ2 ( 2 0 l , FACT ( 20 l , RT ( 2 5, 5 l • VPN ( 2 0, 2 0) , VP ( 20) 
D 2 , VN ( 2 0 l , R ( 2 0 l , B K ( 2 0 ) , B 1 K ( 2 0 l , B 2 K ( 2 0 l 

3, C K ( 2 0 ) , S ( 6 ) • D ( 6 l , U ( 6 ) • V ( 6 l • W ( 6 l • X ( 6 l , Y ( 6 l • Z ( 6 l • E \~ ( 16 l 'ES ( 16 ) 
4, F ( 34 l , VF ( 100 l tAM ( l 0 0) 'VFF ( l 00 ) tWA ( l 00 l , BA ( l 0 0 l , SA ( l 00 l t HA ( l 00) 

COMMON ToBioB!NtOBioPtQtNloN2oN3oN4•LltL2oL3oL4oSQoSQ2oSQF,DFtFACT 
loGJ•Nl3•N24oNlltN22oN33oN44tLlltL22oL33tL44•KlUoK2U,K3UoKlLtK2LoK3 
2L• KL,KU, AL1FtAL2FtAL1I•AL2IoAJlF,AJ2F,AJ1I,AJ2I,AJ 
3tBK•BlK•B2K 

CJ =SQI~ T F ( ( 2 • * AJ l F + 1. l * ( 2 • * AJ l I+ l• l * ( 2 • * AJ 2 F + 1. l * ( 2 • *AJ 2 I+ le ) l 
CL =SQR T F ( ( 2. *ALl F + 1• l * ( 2 • *ALl I+ l• l * ( 2 • * AL2 F + 1. l *'( 2 • *AL 2 I+ 1. l l 
V(ll=ALlF 
V(2)=AJlF 
V(3l=AL2F 
V(4l=AJ2F 
V(5)=0o5 
V(6l=AJ 
W(ll=ALli 
W(2l=AJli 
W(3l=AL2I 
W(4)=AJ2I 
W(5)=0o5 
W(6l=AJ 
RV=RACAH(Vl 
RW=RACAH(W) 
EWS=O.O 
Ess=o.o 
LA=AL2F+AL2I 
LB=AUF+ALli 
L=XMINOF(LAtLBl 
K=L+l 
DO 101 M=1•K 
I =M-1" 
S(ll=AJll 
S(2l=AJlF 
S(3l=I 
S(4)=0.5 
S(5)=-0.5 
S(6)=0.0 
D(l)=AJ2l 
D(2l=AJ2F 
D(3l=I 
0(4)=0.5 
D(5)=-0.5 
0(6)=0.0 
U(ll=AJlF 
U(2l=AJll 
U(3l=AJ2F 
U(4l=AJ2I 
U ( 5 l =I 
U(6l=AJ 
EW(Ml=R(Ml*CLEBSH(Sl*CLEBSH(Dl*RACAH(Ul 
EWS=EWS+EW(Ml 
X(ll=ALlF 
X(2)=Alll 
X ( 3 l =I 
X(4)=0o0 
X(5l=O.O 
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X!6l=O.O 
Yl1l=ALZF 
Y!Zl=ALZI 
Y! 3 l =I 
Y!4l=O.O 
Y!5l=Oe0 
Y!6l=Oo0 
Z!1l=AL1F 
Z!Zl=ALll 
Z!3l=AL2F 
Z!4l=AL21 
Z!5)=1 
Z!6l=AJ 
ES!Ml=R!Ml*CLEBSH!Xl*CLEBSH!Yl*RACAH!Zl 

101 ESS=ESS+ES!Ml 
NA=AJ21+AJ2F+AJ 
NM=XMODF!NA,Zl 
IF ! NM l 31 d 1 , 51 

31 EWF=CJ*EWS 
ESF=Z·*CJ*CL*RV*RW*ESS/!-4ol 
GO TO 251 

51 EWF=I-1•l*CJ*EWS 
ESF=!-2•l*CJ•CL*RV*RW*ESS/!-4ol 

251 CONTINUE 
RETURN 
END 
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SUBROUTINE SLATEDIR,BI 
D DIMENSION TI20J,BI120•20J•BIN120,20J•DBII20•20D,PI201t0120),SQI201 
D l•SOFI201 tDFI20) oGJ(20) tS02120) tFACTI.ZOI tRTI25•5) tVPNI20o20) ,VPI20) 
D 2•VNI20) •R(20),BK(20hB1KI201tB2K(20) 

COMMON T,BI,BIN,DBI,P•Q•N1•N2tN3•N4•L1•L2tL3oL4•SQ,SQ2,SQF,DF,FACT 
1•GJ,N13•N24•Nl1,N22,N33•N44•L11•L22,L33,L44,K1U,K2U,K3UtK1LtK2L~K3 
2L• KLtKU, AL1F,AL2F•ALll•AL2IoAJ1F,AJ2F,AJ1l•AJ2I,AJ 
3•BK•B1K•B2K 

N1=N11-1 
N2=N22-1 
N3=N33-1 
N4=N44-1 
Ll1"Ll+1 
L22=L2+1 
L33=L3+1 
L44=L4+1 
N13=N1+N3+1 
N24=N2+N4+1 
NLl=Nl+Ll+l 
NL2=N2+L2+i 
NL3"N3+L3+1 
NL4=N4+L4+1 
Lll2=L11+2 
L222=L22+2 
L332=L33+2 
L442=L44+2 

D RNLl =SQRTF I ( SQ2 ( Lll2 I *DF ( Nll) I I I SQ2 IN 11 I *FACT ( N 11) * ( DF ( Lll) ** 2) I ) 
D RNL2=SQRTF( (SQ2(L2221*DF(NL2) )/ISQ21N22l*FACTIN221*1DF(L221**21 I I 
D RNL3=SQRTF((SQ2(L3321*DFINL3))/(SQ21N331*FACTIN33l*IDFIL331**21 II 
D RNL4=SQRTFIISQ21L4421*DFINL41 J/(SQ21N441*FACTIN441*1DFIL441**21 II 
D RNL=RNLl*RNL2*RNL3*RNL4 

L24=L2+L4 
L24l=L2+L4+l 
L242=L2+L4+2 
L243=L2+L4+3 
l13=Ll+L3 
L13l=Ll+L3+1 
Ll32=Ll+L3+2 
Ll33=Ll+L3+3 

D CALL RADIAL (VPN•VP,VNI 
KU=XMINOF(L24l,L131J 
ML24=XMODFI L24,2) 
ML13=XMODFI Ll3,2) 
DO 101 I=1•20 

D 101 RIII=O.O 
IF IML24-ML131 71•72,71 

71 GO TO 200 
72 IF IML241 51,51,52 
51 KL=1 

GO TO 73 
52 KL=2 
73 DO 111 K=KL•KU,2 

D TRR=O·O 
DO 121 M=l•N13 
DO 121 N=l•N24 
IT= 0 • 5 *FLOAT F I L 13+ 2 * ( M-1 I- ( K-1 I I+ 1. 
JT =0 • 5 *FLOAT F ( L 2 4+ 2* I N-1 I- I K-1 I I+ 1. 
IM=Oe5*FLOATF(L13+2*1M-1J+(K-lll+l. 
MT = 0 • 5 *FLOAT F ( L 13+ 2 * ( M-1 I +L24+ 2 * ( N-1 ) I+ le 



MU=XMINOF! IT,JTJ 
D TTR=O.O 

DO 131 I = l , MU 
MTI=MT-1+1 
JT1=JT-I+l 
KI2=K+2*I-2 
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D TTSD=P!ll* BI!IT,Il*BIN!MTI,JTll*BK!Kl*B1K!MTlMB2l<.!Il/!BlK(Kl2l*i32 
1K ( MT l l 

D 131 TTR=TTR+TTSD 
0 TR=TTR*VPN!M,Nl*DF!IMl*FACT(JTl/!SQ2!IMl*!1•+2.*6l*SORTF!1o+2o*Bl* 

116.) 
D 121 TRR=TRR+TR 
D 111 R!KJ=TRR*RNL 

200 CONTINUE 
RETURN 
END 
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SUBROUTINE EIGEN(A,VALU•N•Ml 
DIMENSION A(20,20), B(20,20), VALU(20), DIAG(20h SUPERD(19h 

1 V(19h VALL(20)• S(19l• C(19l• D(20), IND(20), U(20)t 
2 DUMMY(478) 

EQUIVALENCE (DIAG,DUMMYlt (SUPERDtDUMMY(21)l• (VALL•DtDUMMY(40ll• 
1 (VtS,DUMMY( 60)), (BtDUMMY( 79Jl• (INDtUl• (!ItMATCHlt 
2 (TAU,BETA)t (W,PRODSl• (X,SMALLD), (ANOR,\1tANORM2l 

c 
C CALCULATE NORM OF MATRIX 
c 

c 

3 ANORM2=0.0 
4 DO 6 I= 1, N 
5 DO 6 J=1tN 
6 ANORM2=ANORM2+A( ItJl**2 
7 ANORM=SQRTF(ANORM2) 

C GENERATE IDENTITY MATRIX 
c 

9 IF (M) 10, 45t 10 
10 DO 40 I=1tN 
12 DO 40 J=1•N 
20 IF ( I-J) 35• 25• 35 
25 B(I.Jl=1·0 
30 GO TO 40 
35 B(!,Jl=O.o 
40 CONTINUE 

c 
C PERFORM ROTATIONS TO REDUCE MATRIX TO JACOBI FORM 
c 

c 

45 IEXIT=1 
50 NN=N-2 
52 IF (NNl 890, 170, 55 
55 DO 160 I=1•NN 
60 II=I+2 
65 DO 160 J=l!tN 
70 Tl=A(l.I+1l 
75 T2=A(!,J) 
80 GO TO 900 
90 DO 105 K=I•N 
95 T2=COS*A(Kti+1)+SIN*A(K,J) 

100 A(K,Jl=COS*A(K,J)-SIN*A(K•I+1) 
105 A(Kt!+1l=T2 
110 DO 125 K=l•N 
115 T2=COS*A(l+1tKl+SIN*A(J•Kl 
120 A(JtKl=COS*A(J,K)-SIN*A(I+1tKl 
125 A(I+ltKl=T2 
128 IF (Ml 130, 160, 130 
130 DO 150 K=1•N 
135 T2=COS*B(Ktl+1)+SIN*B(K•Jl 
140 B(KtJl=COS*B(KtJJ-SIN*~(Ktl+1) 
150 ~(Kt!+1l=T2 
160 CONTINUE 

C MOVE JACOBI FORM ELEMENTS AND INITIALIZE EIGENVALUE BOUNDS 
c 

170 DO 200 1=1tN 
180 DIAG(ll=A(!,Il 
190 VALU(ll=ANORM 
200 VALL(I)=-ANORM 



-168-

210 DO 230 1=2•N 
220 SUPERD( 1-l)=A( 1-1,1 l 
230 V( 1-l)=(SUPERD( I-ll l**2 

c 
C DETERMINE SIGNS OF PRINCIPAL MINORS 
c 

c 

235 TAU=O.O 
240 I= 1 
260 MATCH=O 
210 T2=0;o 
275 Tl=1.0 
277 DO 450 J=1 tN 
280 W=DIAG(Jl-TAU 
290 1F(T2l 300, 330, 300 
300 IF(Tl) 310• 370, 310 
310 X=W*T1-V(J-1l*T2 
320 GO TO 410 
330 IF(Tll 335, 350, 350 
335 Tl=-1·0 
340 X=-W 
345 GO TO 410 
350 T1=lo0 
355 X=W 
360 GO TO 410 
370 !F(V(J-1) l 380, 350, 380 
380 1F(T2l 400, 390, 398 
390 X=-1.0 
395 GO TO 410 
400 .X=1·0 

C COUNT AGREEMENTS IN SIGN 
c 

c 

410 !F(Tll 425• 420, 420 
420 IF(Xl 440, 430, 430 
425 !F(X) 430, 440• 440 
430 MATCH=MATCH+1 
440 T2=Tl 
450 T1=X 

C ESTABLISH TIGHTER BOUNDS ON EIGENVALUES 
c 

c 

460 DO 530 K=1•N 
465 IF (K-MATCHl 470, 470• 520 
470 lF(TAU-VALUKll 530• 530, 480 
480 VALUKl=TAU 
490 GO TO 530 
520 !F(TAU-VALU(Kll 525• 530, 5·30 
525 VALU(KJ=TAU 
530 CONTINUE 
540 !F(VALU(!J-VALL(ll-5oOE-8l 570• 570, 550 
550 !F(VALU( Ill 560, 580, 560 
560 !F(AEISF(VALUll/VALU(Il-l·Ol-5·0E-8l 570, 570, 580 
570 1=1+1 
575 !F(I-Nl 540, 540, 590 
580 TAU=(VALUll+VALU(l)l/2oO 
585 GO TO 260 

C JACOBI EIGENVECTORS BY ROTATIONAL TRIANGULARIZATION 



, .. 
c 

c 
c 
c 

c 

590 
593 
595 
600 
610 
615 
620 
621 
622 
623 
625 
628 
630 
635 
640 
650 
66lJ 
670 
680 
690 
700 
710 
720 
725 
730 
735 
740 
750 
760 
770 
780 
790 
800 
805 
810 
820 
830 
840 
850 

IF (Ml 593, 890, 593 
IEXIT=2 
DO 610 I= 1•N 
DO 610 J=1•N 
A{ItJl=OoO 
DO 850 I=1•N 
IF (I-ll 625, 625, 621 
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IF (VALU( I-ll-VALU( I J-5.0E-7l 730, 730• 622 
I F ( VAL U ( I -1) l 6 2 3 , 6 2 5·• 6 2 3 
IF (ABSF(VALU(I)/VALU(I-l)-1.0l-5.0E-7l 730, 730, 625 
COS=1•0 
SIN=OoO 
DO 700 J=1•N 
IF(J-1) 680, 680• 640 
GO TO 900 
S(J-1l=SIN 
C(J-1l=COS 
D(J-1l=T1*COS+T2*SIN 
T1=(DIAG(JJ-VALU{l) l*COS-dETA*SIN 
T2=SUPERD(J) 
BETA=SUPERD(Jl*COS 
D(NJ=T1 
DO 725 J=1•N 
IND(JJ=O 
SMALLD=ANORM 
DO 780 J=1•N 
IF (IND(JJ-ll 750, 780, 780 
IF (ABSF(SMALLD)-ABSF(D(Jlll780, 780, 760 
SMALLD=D(J) 
NN=J 
CONTINUE 
IND(NNJ=1 
PRODS=1.0 
IF (NN-1) 810• 850, 810 
DO 840 K=2•NN 
II=NN+1-K 
A( I 1+1• I l=C( I I )*PRODS 
PRODS=-PRODS*S(lll 
A(1tll=PRODS 

FORM MATRIX PRODUCT OF ROTATION MATRIX WITH JACOBI VECTOR MATRIX 

855 DO 885 J=1•N 
860 DO 865 K=1•N 
865 U(Kl=A(KtJl 
870 DO 885 l=1•N 
875 A(l,Jl=OoO 
880 DO 885 K=1•N 
885 A(ltJl=B(I,KJ*U(KJ+A(l.JJ 
890 RETURN 

C CALCULATE SINE AND COSINE OF ANGLE OF ROTATION 
c 

900 IF !T2l 910, 940, 910 
910 X=SQRTF(T1**2+T2**2l 
920 COS==Tl/X 
925 SIN=T2/X 
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930 GO TO (90,650), !EXIT 
940 GO TO (160,910), !EXIT 
950 END 



.. 

(1, 
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G. FORTRAN Listing (3) 

C EIGENVALUES AND VECTORS FOR THE PARTICLE-HOLE INTERACTION 
D DIMENSION T(20)tBI(20t20l•BIN(20t20) tDBI(20t20l,P(20)t0(20ltS0(20) 
D ltSOF(20ltDF(20),GJ(20l,S02(20ltFACT(20ltRT(25t5)tVPN(20t20)tVP(20l 
D 2tVN(20l ,R(20),BK(20ltBlK(20ltB2K(20l 

280 

202 

201 

4 

D 
D 

D 
D 

D 
D 10 

D 

D 11 
D 
D 
D 
D 
D 
D 
D 

D 
D 
D 
D 
D 
D 
D 12 
D 

D 129 
80 
70 

171 

77 

DIMENSION RR(20t2t4l tRCF(4)tX(6)tVALU(20l tA(20t20ltE.(4ltOV(4lt 
1 VPS ( 4 l , QVPS ( 4 l • A TEN ( 2 0, 20) , T.ENS ( 2 0, 20 l • FME ( 2 0 • 2 0 • 16 l • C F ( 16) 

CQMMON Tt~I.BINtDBitPtOtN1tN2tNjtN4tL1tL2,L3•L4tSGtSU2tSQFtDFtFACT 
1tGJtNl3tN24tNl1tN22tN33tN44tLl1tL22tL33tL44tK1UtK2UtK3UtKlLtK2LtK3 
2Lt KLtKU, AL1FtAL2FtAL1ItAL2I,AJlFtAJ2FtAJ1I,AJ2I,AJ 
3tBKtB1K•B2K 

READ INPUT TAPE 2t280tNTE 
FORMAT (I 5) 
READ INPUT TAPE 2,202 ,osC,VTEN 
FORMAT(2Fl0.5) 
WRITE OUTPUT TAPE·3,201tOSC,VTEN 
FORMAT(1X11HOSCILLATOR=Fl0e5t10X5HVTEN=F10e5l 
READ INPUT TAPE 2•4• VTEtSEtTOtSOdRCF( I l ..I=1t4l 
FORMAT(8F10e5) 
WRITE OUTPUT TAPE 3•4• VTEtSE,TO•SO,(RCF(I),I=1,4l 
BI(1tll=1.0 
DBI(1dl=1•0 
DO 10 J=2tl9 
BI(J,l)=l. 
OBI ( Jtl l =1• 
K=J 
DO 10 M=2tK 
BI ( J,M) = ( FLOATF ( J-M+.1 l /FLOATF ( M-1 l) *o I ( J,M-1 l 
DBI(JtMl=((fLOATF(J-Ml*2o+3ol/(FLOATF(Ml*2·-1.Dl*DBI(J,M-1l 
DO 11 J=1t19 
BIN(Jtll=1• 
K=J+1 
DO 11 M:2 • K 
BIN(JtMl=((FLOATF(J-M+2l-0.5)/FLOATF(M-ll l*~lN(J,M-1) 
P(ll=1• 
0(1)=1. 
GJ(l)=l• 
S0(1)=l• 
DF(1)=1• 
S02(1)=1·. 
SOF(ll=l. 
DO 12 I= 1, 19 
P(l+.ll=-l.*P(I) 
SO( l+ll=-2•*SO(I l 
SOF( 1+1) =4e*SOF( I) 
DF( I+l)=(2o*FLOATF( I l+l•l*OF( I l 
GJ ( I+ 1 ) = (FLOAT F ( I ) -0. 5 l *GJ ( I ) I ( 0 • 5 +3 T) 
S02(I+ll=2•*S02(!) . 
0( I+U=-4.*0( I) 
FACT(1)=1. 
DO 129 M=2tl9 
FACT(M)=FLOATF(M-ll*FACT(M-1) 
READ INPUT TAPE 2,70tNE.ND,JAMINtJAMAX 
FORMAT(415l 
ME=l 
DO 171 I=1•20 
VALU( I) =0.0 
DO 77 J=l,20 
DO 77 I=lt20 
A(I,Jl=O.O 



DO 31 J=1.16 
DO 31 M=1tNE 
DO .31 L=1,NE 

31 FME!LtMtJ)=OeO 
DO 32 J=1t16 

32 CF!J)=O.O 
DO 172 L=1•NE 

118 DO 172 M=LtNE 
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READ I~PUT TAPE 2t2tN11tL1tN22•L2tMN33tML3tMN44tML4 
READ INPUT TAPE 2t119tAL1FtAL2FtBL1ItBL2I,AJ1F,AJ2FtBJ1I,BJ2It 

1ZERO 
119 FORMAT!8F5o1,Fl0o5J 

2 FORMAT!8I5) 
AJFL=AJ1F-AJ2F 
AJIL=BJ1I-BJ2I 
AJFU=AJ1F+AJ2F 
AJIU=BJ1I+BJ2I 
AJFA=ABSF!AJFL) 
AJIA=ABSF(AJIL) 
JMAX=XMIN1F(AJFU,AJIU) 
JMIN=XMAX1F!AJFA,AJIA) 
JMN=JMIN+1 
JMX=JMAX+1 
IF (JMAX-JMIN) 61t62t62 

61 GO TO 172 
62 CONTINUE 

DO 210 N=1•4 
B=!OSC/RCF(N) )**2 

D BK!1)=1·0 
D B1K!U=1o0 
D B2K!U=1.0 

DO 231 I=1tl9 
D BK!I+1)=8•BK(I) 
D B1K!I+l)=(1o+Bl*B1K(I) 
D 231 B2K!I+1)=(1o+B*2•)*~2K(l) 

N33=MN33 
L3=ML3 
N44=tv1N44 
L4=ML4 

D CALL SLATED(R,B) 
DO 41 1=1,20 

41 RR!l.ltNl=R!I) 
N33=MN44 
L3=ML4 
N44=MN33 
L4=ML3 

D ~ALL SLATED!RtB) 
DO 42.I=1t20 

42 RR(I,2,N)=R!l) 
210 CONTINUE 

DO 173'JJ=JMNtJMX 
AJ=JJ-1 
DO 177 N=l•4 
DO 115 I= 1 • 2 0 

115 R!I l=RR(l,1tN) 
All I =Bll I 
AL2I=BL2I 
AJll=BJ1I 
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AJ2I=BJ2I 
CALL CFORCEI EWF, ESF,Rl 
EINl=EWF 

116 

VPSINl=ESF 
DO 116 I= 1 • 2 0 
R1Il=RRII,2•Nl 
AL1I=BL2I 
AL2I=BL1I 
AJll=BJ2I 
AJ2I=BJll 
CALL CFORCEIQEWF,QESF,Rl 
QVINJ=QEWF 

177 
QVPS(NJ=QESF 
CONTINUE 
,\1A=AJ1 I +AJ2 I +AJ 
1\1M=Xt~ODF I MA, 2 l 
I F I MM l 7 1 • 7 1 , 7 2 

71 QP=1. 

72 
252 

GO TO 252 
QP=-1• 
CONTINUE 
FTE =0•5* 
FTO =0•5* 
FSE =0•5* 
FSO =0.5* 

IE11l+QP*QVI1J-VPS(1J-QP*-VPS11ll 
IE13l-QP*OVI3J-VPS(3)+QP*-VPS(3ll 
IVPS12l-QP*QVPSI2l l 
IVPSI4l+QP*QVPSI4l l 

CE=VTE*IFTE +FSE*SE+FTO*TO+FSO*SOl 
173 CFIJJl=CE 

DO 172 JJ=JMN,JMX 
MAP=AJFU+AJIU 
MAM=X~10DF ( fv1AP, 2 l 
IF IMAM! 771.771•772 

771 AP=1o 
GO TO 773 

772 AP=-1• 
773 CONTINUE 

PH,\1E=J.O 
Xlll=AJ2I 

·X(2l=AJ1F 
X13l=AJll 
X(4l=AJ2F 
X16l=JJ-1 
DO 51 K=JMN.JMX 
X(5)=K.-1 
i~AC=RACAH I X l 
PH\1=AP*FLOATFI2*1K-1!+1l*RAC*CF(Kl 

51 PHf~E=PHME+PHM 

FMEIL•M•JJ!=PHME+ZERO 
172 CONTINUE 

DO 20 JJ=JAMIN,JAMAX 
JA=JJ-1 
WRITE OUTPUT TAPE 3,301,JA 

301 FORMAT(1X2HJ=l2l 
66 WRITE OUTPUT TAPE 3.69 
69 FORMAT11X14HINITIAL MATRIX! 

DO 68 M=1,NE 
68 WRITE OUTPUT TAPE 3.303,{FMEIL•M.JJ) •.L=1•NEl 
67 CONTINUE 
28 DO 30 L=1,NE 



DO 29 M=L,NE 
A(LtMl=FME(L,M,JJ) 
A(M,L)=A(LtM) 

29 CONTINUE 
30 CONTINUE 

NK=NE 
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WRITE OUTPUT TAPE 3, 374 
374 FORMAT(1X20HCENTRAL FORCE MATRIX> 

DO 302 J=loNK 
302 WRITE OUTPUT TAPE 3t303t(A(l,Jltl=1•NKl 
303 FORMAT(21F6o3) 

IF (NTE) 281t282t281 
281 GO TO 283 
282 IF (NDl 55t56,55 

55 READ INPUT TAPE 2t284t((ATEN(LtMltM=L,NKltL=ltNK) 
GO TO 57 

56 READ INPUT TAPE 2t284t (ATEN(L•Ll•~=1,NK) 
.284 FORMAT(8F10.7) 

57 CONTINUE 
DO 285 L=l•NK 
DO 285 M=L•NK 
TENS(LtMl=VTEN*ATEN(L•Ml 
TENS(MtLl=TENS(L•Ml 
A(L,Ml=A(L,M)+TENS(LtM) 

285 A(MtLl=A(LtM) 
WRITE OUTPUT TAPE 3• 377 

377 FORMAT(1Xl9HTENSOR FORCE MATRIX) 
DO 309 J=l•NK 

309 WRITE OUTPUT TAPE 3o303,(TENS(I,Jl.I=1,NKl 
WRITE OUTPUT TAPE 3, 378 

378 FORMAT(1Xl2HFINAL MATRIX) 
DO 333 J=l•NK 

333 WRITE OUTPUT TAPE 3,303,(A(I,J),I=l•NKl 
283 CONTINUE 

IF (NK-11 75,75,76 
75 GO TO 81 
76 CALL EIGEN(A,VALUtNK,MEl 

WRITE OUTPUT TAPE 3,305 
305 FORMAT(11HEIGENVALUES,2Xl2HEIGENVECTORSl 

DO 304 J=ltNK 
WRITE OUTPUT TAPE 3•303,VALU(J),(A(I,J),I=1•NK) 

304 CONTINUE 
20 CONTINUE 
81 GO TO 80 

END 
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