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ABSTRACT

The low-lying energy levels of odd-odd nuclei near the doubly

closed she1l (¥%0, 8i2%8, 3i%10 ang m2%) are calculated with finite-

‘range central and tensor forces to, the first order by means of the j-j

"coupled odd-group model. The two-body matrix elgments for the central

and tensor forces are expressed in the J-j representation, from which a

generalization to off-diagonal matrix elements is obtained in the limit

of zero range. .A'nucleon-nucleon Gaussian potential without a hard core
based on the free two-nucleon potentials of Blatt-Jackson and Brueckner-
Gammel-Thaler is used for the residual interaction. Eigenvalues and
eigenvectors are presented and compared with experimental spectra.

The tensor-force effects are examined in detail as a function of
210

the force range for the nucleil Y9O and Bi A tensor force with

reasonable range and strength accounts for the 1- state of the h9/259/2'

210, instead of the O- predicted
by central forces. The low-lying energy levels of Po210 are also cal-
culated with the same residual force used for Biglo in order to obtain the

RaE beta-decay matrix-element ratio i{gx)/{gxx). It is shown that the

ground-state wave functions for BiElO and Po210 are consistent with the

multiplet being the ground state of Bi

experiﬁentally determined RaE beta-deéay matrix-element ratio and the
210

measured magnetic dipole moment of Bi .. The ground-state wave function
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for Y9O

_of 0, 4 high-spin (J=11) isomeric state in 1?0'210 is predicted with

is also consistent with the measured magnetic dipole moment

an estimated gamma partial lifetime of the order of microseconds.

A 48x1 min isomeric level in Y86 was produced by irradiations
of rubidium (natural and enriched in Rb85) with alpha particles and of
strontium (natural and enric¢hed in Sr86) with deuterons. Two transitions -
with energies 10.15%0.1 keV. and 208;01003 keV were obgerved in the.
decay of Y86m. From the L sub-sheil ratios the multipolarity of the
10-keV transition was determined to be E5. The K-conversion coefficient
of the 208-keV transition is € = 0.0kx 0.01. A possible decay scheme
of Y86m is suggested. The energy of the isomeric transition in Y9Om
was measured to be 202.4%+0.% keV by use of a permanent-magnet 180 deg

spectrograph.
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I. TENSOR-FORCE EFFECTS IN THE NUCLEAR SHELI, THEORY
A. INTRODUCTION

Within the past several years detailed information on nuclear
spectra of the nuclei near the doubly-closed shell has become availlable
from nuclear spectrOSCOpy and from high-resolution nuclear reaction studies.

This. new. information called for a refined theoretical analysis of these

‘nuclear spectra. Since experimental information is rapidly increasing,

it is worthwhile to perform a theoretical calculation of these spectra,

with the hope. that it might provide useful information on the effective

“interaction between protons and neutrons in the finite nuclei. In parti-

cular, theoretical studies of the odd-odd nuclei. are very important because

the Pauli principle permits all possible components of the residual force

to be operative for the nonidentical nucleons.

We shall adopt the odd-group model with j=j coupling in which the
nuclear properties of the nucleus are assumed to be determined by the
properties of the odd-group particles. In.our treatment of odd-odd nuclei,
we assume that the residual interaction between proton and neutron is
sufficiently weak so that we can neglect excited configurations of. the
fnuclear core", and further that the wave function is a vector-coupled
product of the wave functions of two odd-grou? particles. Of course,
it is well-known thatinuclear moments and electric transition probabilities
generally are sensitive to certain core polarization phenomena, but the
energy-level spacings at energies below that of core-excited states may
generally not be seriously affected by neglect of core excitations.

In order to Jjustify the theoretical basis of ‘the well-known Nordheim's
coupling rule,l de-Shalit investigated the case of nuclei with one proton
and neutron . outside closed shells by using the zero-range force betweéh
them, and obtained expressions for the diagonal Matrix elements.> Cal-
culations for specific odd-odd nuclei have been made by several workers for
the finite-range force in which central exchange forces are included;E’u

We shall use the central and tensor parts of the nuclear force,

neglecting the spin-orbit force’enﬁirely. This practice is probably



reasonable, because 1t appears that the existencerqf thg spin-orbit force
in the nuclear force ié still>questionable;"Thé residual interaction of
nucleons outside closed shells is not well known, and there seem to be no
‘a priori reasons for reﬁaining tﬁe same strength parameters of the free
two-nucleon problem for the residual interaction. However, because of v
our ignorahce'of the exact form of the residual interaction, we shall

rely upon the free two-nucleon force parameue;s in estlmatlng the strengths

of our forces, Wthh we hOpe s1mulates the re51dua1 1nteractlon :

™

<«

3
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B. THEORY

1. J=j-Coupling Shell Model

- Before discussing the tensor-force effects in detail, we describe

the basic:assumptions that enter into our caleculation.

a. Wave function and Hemiltonian. In our odd-group model, we assume

that the doubly élosed shell can be treated as an inert core giving rise
to the central field in which nucleons outside the doubly closed shell
move. This assumption simplifies the calculation, since we treat only..
two nucleons outside the,doﬁbly closed shell. The wave functioﬁ is-then
the j-j-coupled new basis vector, which is a simple vector product. of the

wave functions of nucleons 1 and 2 coupled to a total angular momentum J

\

la) = R (r))R,(£,) 33,0,

.Where Ri(rl)RQ(rQ) is the radial part of the wave funetion, and

IJlJEJM> is the angular part. Here it is understood that the wave
function must be antisymmetrized for two identical nucleons.  In.our
J-J-coupled odd-group model, the Hamiltonian describing these nuclei at

low energy 1s assumed to be written as

where Hl.and H2 are the single-particle Hamilﬁonians, and Vi2 is the

residual interaction between pérticleS’l and 2. . It is assumed that Hi

acting on our wave function yields
i
Hi ,a> = eo ’a> J

where eé denotes single-particle energies for the particle 1i.

AN

b. Zero--and first-order approximations. In the zero-order approximation,

1 2
the sum of the single-particle energies. € and €, are the zero-order

energies. Single-particle energies have been estimated .in several works,
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but one cannot avoid arbitrariness in choosing the parameters involved.
Instead we. rely on the experimental single-particle levels of nelghboring
nucléi to eliminate the ambiguity. We trest V., as a perturbation of the

central field of the shell-model core, and evaluate the first-order per-

<

turbation term. The total energy for the state of a given J is then

approximately

for i = 1 or 2 where the higher terms are neglected. It is clear that
= : O g A
Vlgfremoves the degeneracy of the state with various J values arising
from a given configuration. The value of e, , and consequently E, is
. . i '

obtained from the eigenvalue equation

Z [Kafvplat) - (B-ey )3,

! . ,3'_} (a‘[aJM) =0

The summation ig restricted to the configurations obtained from the
experimental single-particle levels of neighboring nucleil for the

numerical calculations.

2. Particle-Hole Represenvation

s
R

In order to extend our calculations to the case of nuclei with

. 208
the doubly closed-shell core plus one particle and hole (T1 and

51708y

I ‘ _) .
Brink and Satchler{ showed that the cccupation-number representation of

, it is convenient tc use the method of the second quantizé‘cion°

Dirac8 leads to a simpler procedure than the conventional one for the
calculation of the matrix elements of operators in the shell model. The
concept. of particles and holes in the shell model in this representation
was discussed thoroughly by Brink and Satchler, and some applications _
were made by Carter et al°9 for calculations of the core-excited states 4

in Pb208o In the following,;ohly ﬁhe basic ¢oncépts leadingqu.the
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final expression for the matrix elements of the particle-hole inter-
action are presented. The more detailed description of.the operator

formalism of the second quantization many be ‘found elsewhere.lO

a. Qccupation-number representation. As a basis for a system of n
fermions, we may take the set of all antisymmetrized products of ortho-

normal single-particle states | @) with eigenvalues O:

Al ool Otg>v
(n!)-l/Q T 7 O‘al y ocg )| oc;) ~== | ai)
T R IR N0 g
LRRLAEE
[ | I
I
| I
[ oa% e o)
= (nl)‘l/2 dét [a b ¢ =--- g]

Heres A is an antisymmetrization operator defined as
-1
A = (n!) /2}_:13, | . \

where P is the permutation operator which takes either positive or
negative sign according. to whether P is an even or odd permutation,
respectively. . The superscripts refer to a set of quantum numbers
(2, 3, m, etc.) whiéh is necessary to specify a single-particle state,
and the subscripté'label n particles in an arbitrary arrangement..

" Another way of obtaining a basis function is to state the prob-
particles in an eigenstate [1) and

1

n, particles in an eigenstate [2), etc. Suppose Ny, Ny n5,.o, are the
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numbers of fermions in the:states. =, ‘Tréspec-

| a(1)> | a(2)> | 0(5))

tively. Then obviously, by definition, we have:

and eigenvalues are related to these occupation numbers by a linear equa%

tion

We treat the occupation numbers ny ; n =+ etc. as dynamieal variables

)
or Observables. FEach of these varlablis has the elgenvalue O or 1 because
only the fermions are coneidered here.l The numbers Ny Ty *c° form a
complete set of commuting variables :for the fermion assembly. The set
of states diagonal in the n's forms a basis for the occupation-number.
representation. A state in this set is determined by spe01fy1ng the values
of the occupation numbensof the 31ngle—part1cle states.

The basig for the n-fermlion system in the.qccupatioh—number repre-
 sentation can be conveniently described if we define a set of creation
operators n: and a vacuum state ]O)(representing the closed-shell con-

figuration) by the equation

NE MR . n+ [0) = nl)-l/2 det IavbAc'°°° gl

Ta M Me "7 Mg

.. Suppose we <interchange a pair of indices. -Then we’ obtain

~(ni)—l/2‘det [abc o oogl=r- (nl)ml/aldet [boa cee gl
= s My Mg Mg ﬁgml0>

.- This suggests that these creation opérators:must-have the property

I U + + _
Ng My * My n, = [0, 5m 1, =0

<

o)
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in order to maintain the proper symmetry requirement for the state.

Similarly, we define the conjugate imaginary state (0| of a.vacuum state
: Y _ py

and the annihilation operator Ny (which is the adjoint of né) by

= \-1/2 * . .
(oln e T]C T]-b na = (no) / det [a .‘b C g]

so that

Mg My * My Ny = [ng 5 my 1, =0.

Furthermore, the symmetry and normalization relations require that

+ + 4 '
(O mgu ** Moy Mgy Mge My My g =7 g |9
- E det*[a'b' ccc g'l'det [ab °*° gl dt, .-+ dzT
., nt &- 1 n
= + 1, if the sets (a b c *++ g) and (a' b' ¢' «++g') are the same

sets and differ by an even permutation,
= =1, if they are the same and differ by an odd permutation,

= 0, if they are not the same set.

These requirements can be incorporated into our formalism if we assume

that

Ny |.ro> =0,
+
<O|'na =0,
<Ol O> =1,
g \

and

Bt +
Tyt Mg * Mg Mgy = Iy omg J=8, 0



Conversely, we may state that the basic states in the occupation-number

representation can be built up from the vacuum states by introducing the
+ . o oy .- -

creation operator N, and its adjoint, H@amumJMnm1qmmmM°% 5

. e a . , R .
for each single-particle state Ja ) , and imposing the simpie anti- )
: v
commutation relation between them as described above.
Now let us consider a single~particle operator, T, which is a

symmetric sum of singie-particle operators ti 5
o= )ty o
i

where tj acts only on the ith particle. It can be shown that-in

occupation-number representation this operator has the form

+ a b -
T = Z s Ty (d ]th@) 3
a,b

where (df | t] o® ) is the matrix element of + between single-particle

states [aa) and {QP) . The two-body operator,

can be expressed as

Vo= E ﬂ+n+n n. {f ozb[v[ozc ozd),
a ‘b 'd ‘e .
abed

For a mixed system, such as in nuclei, of two different fermions,
two formalisms may be used. The first is to regard neutrons and protons &
.as different states of the same fundamental particle by adopting- the

isobaric spin formalism, and require complete antisymmetry of the wave



‘function with respect to exchange of isobaric spin as well as space

and ‘ordinary spin.variables.. Then the subscript of the operater 7.~ in-
cludes the quantum,number specifying the isobaric spin for the-state;in
addition to the space.and spin quantum numbers. . In this ﬁay,the complete
antisymmetry for the mixed system of two. different nucleons is ensured.
The second method-is the conventional one. in which protens and neutrons
are regarded as distinct particles, and no symmetry reguirement is im-
posed. on the interchange of one kind with the other..  This implies that
we must define two-different sets of creation operators, -m and £ ,
one for each kind of particle,.and'impose the . commutation relation be-
tween one. kind and. the other, while still keeping the anticommutation
relation among themselves. .

. It should bevnotéd-here that the use of the isobaric formalism
for the nucleon system does not. introduce physical conseguence any
different from the result of the treatment of protons and . neutrons as.
distinct particles. . One has to be cautious, however, when dealing:with
a mixed system of fermions that has more than two. .isebaric spin states,
_such as the sigma particles (Z , and 3 ), because the isobaric.
“formalism does not necessarlly*yleld.tne same physical results as the

conventional one.

b. Vector-coupled states. In most shell-model calculations, we are

interested in states that are eigenfunctions of the aﬁgular momenta. For
this purpose, we specify the angular-momentum quantum numbers (j,m) for

the one -particle state and write the state vector as

lJm> = M. l O) 9.

where all other quantum numbers that may be required to specify. the state
completely are not written explicitly. Because ngm has the same
transformation properties as the corresponding state me) 5 n trans-
forms under rotations of the coordinate system as the mth row of the
matrix element of finite rotation _DJ (o, B,y ). 11 Vector=-coupled.states

of two particles may then be'cohstructed.in the usual way
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+ +
. 1

s 3, JM) = N) .
319 my Iy o

where (jlmlng—ml[JM) is the usual vector-coupling coefficient. The

v
factor N is necessary to account for the normalization, and in most
cases takes unity, except that it is (2)_1/2 when two particles are in
the same orbit (jl = je)a
This procedure may be extended to .construct states for n-particle
systems. This can be done by operating with-a creation operator on the
vectors for (n-1) particles, and taking proper linear combinations. We
‘consider n particles in the same orbit Jj -in some symmetric order
B(n) with total angular momentum J. Since the occupation number of the
state [aa) is the eigenvalue of
+ . a a _
N,y 1A y=m_|d ),
the total number in the orbit j is given by
H-Z“m-Z%m“jm°
m m :
'We may expand into intermediate states of (n-1) particles in the arrange-
ment <y (n-1) to obtain '
+
nJB(n)JM>=§njm njmlB(n) JM)
i + . .
= . n-1) JM n=1)dJ . n)JM
Lo v (L) o) Gy (m-1)a ] g[8 (n)au) .
m,5,p : . -
+
= . J M J . J JM jm |IM) . o
Lomh b vy ding eI (G gm fme) . ‘

m,B,p
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The last expression is thaihed by the use of the Wigner-Eckart theorem.ll
This methed is very similar to the ordinary seniority scheme, and in fact
the reduced matrix element appeéring in the last e¥pression is related

to the coefficient of fractional parentage by12
-1/2 ' o " (s o
o v(n-1)3, Ing B ()) = <v(n-l>JpJI}B(n)u>-

©.  Particle-hole concept.. When all 2j’+-1 single-particle magnetic

substatés j >m > -j are occupied, a shell or orbit is said to be

closed. Ve fepresent this closed shell by a single vector [njmzl, all m)
or ]C) , which is a spherically symmetric state with total angular momentum
J = 0. One extra particle in the single-particle state [j'm') outside

the closed shell is repfesented by the resultant vector

. +
(c+1)3m) = nyy o)
Similarily, a shell filled by 2j particleg with a resultant angular
momentum J or the absence of a particle from the state [j—m} may be
represented by the vector v
[(C -~ 1)m) = (-1 IC).

Ul

J+m
) _ J-m

The phase factor (*l)j o and the reversal of sign for m  are necessary
‘because our basic single-particle states are spherically symmetric and
hence we require that ngm ‘and ‘njm - transform under finite rotation

in the same way. .The annihilazion.operator njm transfo?ms as the com-
plex conjugate (D;',m(a’si v))"  which is equal to (-1)" —mDim,,_m(a,B,y),
so that if we choose (—1)J o nj-m instead of njm , it will transform

under rotation as the mth row of Di, m(a,B,y ) in the same way as
+ )

tgm __ _ |

by C) plus n particles in some arrangement B(n), we may represent this

Generalizing this to a system with some closed ghells {(denoted

state.in the occupation-number répresentation as the. product vector
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o s@) = (@@ ,

where [B(n)) is to be built up from single-paftiéle vectors.
For the system of closed shells C plus n vacancies or holes, we
)j + m

may regard (-1 n. . as the hole-creation Operator with angular

momentum j, and n;_m as the ho;e—ann1h¢latlon ope tor, because any
occupation-~number vector can be equally well regarded as describing the
number of holes in.each state £0 that the Sﬁpérﬁosition of suchlvectors
describing the arrangement [6 of (C~n) partiéles één aisé bevﬁnderstood
as descrlblng the congugate suate [6) of n holes. Furthermore, we do

not need to Know the exact rblatlon between such conguga te states, since

the hole states form a comnlete set themselves and may be used uhrough—

out. The basic single-hole states are

gmy = (13 P e

With the above conventions, we may write for (C - n) particles |

IC + B(n)) = [C)[B(n)) ,
where C refers now to ali completely unoccupied shells, and g(n) is
built up from single-hole states.

d. Matrix elements of the particle-hole interaction. So far, we have

discussed the basic concept of the particle and hole inthe:shell model
in terms of ﬁhe secohd quantiéation mefhgdn“We now apply thls formalism
.to evaluate the matrix elements of the two-body- operator V = E:'V

| ' 1%3

for a system of C particles in which there is one vacancy or hole in

the closed shells, and ohe particle in an\qrbitroutside the closed shells

fC) .  The particle~-plus-hole stéie is given by operating the operators
+
n .and n  on the closed-shell vector [C) ; .

j_-m

35 _ Sl |  aren |
:[.’JlJEJM) - Z ("l)‘ n‘jlm J Mc}m’C) mJgMTm‘JM> Y
m

<

-
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where the hole quantum numbers are distinguished by a bar. We are

interested here in evaluating the matrix element

L jl—m+ji—m'
(FiaM[Tasay ()

(31 -mj Mrrm|IM)
m,m’ ‘

St ST M ]
X (Jl m' 3 M+m [J'M)Z
abed

X C]n

1, nbndn g 19)
J2

Mt J m c Jlm 32

The sum over a, b, c, and & may be divided into three sets of terms:

(a) a set in which all indices refer to states in C, so that we have either
a=c, b=d, or a=d, b=c (jl=ji and jz=jé); (o) one in which only one pair

refers to states in C, so that we have or Jj,=j, , and (c) one

31=3%
in which none refers to C, so that we have J; # j] end j, # - After
some manipulation of the creation.and annihilation .operators by using

the anticommutation relation already mentioned, these three sets of

terms' reduce to

1. . ..
<J1J M|V [3]350M)= }: 5 (I JTMIV]I 3L,
‘J)J

£) Lo (S8 MIV]3a, M), + (3 0pT V(303,00 ]

Je

+ (T, (3550,

where the subspript a refers to only like particles with the fbllowing

antisymmetrization:
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(313, [V]313500, = <ala£M v Jlj,'JM,\- - (=1) <alagm }V[agalm

The first term of these three sets of terms represents the total core
energy, and we may consider this term as our zero point o7 enefgy. The
second term represents the interaction of the core with one hole, and
the third term is the interaction of the core with the one extra particle
outside the closed shells. The minus sign of the second term can be
physically understoed if one remembers that the total core energy already
included the interaction of the particle that is migsing from the core
with all the other particles in the core. The second and third terms
are considered to be the 51ng¢e-h0Le or —p"rticle energies of the hole
or particle, respectively, and are estimated from the single-hole or
-particle levels of neighboring auclei as discussed in the Section Bi. "
The lavt termA <JlJPLMwllo!dLthM> repres sents the particle—hole
_1nte actlon and may be expressed as (for simplicity, the subscript a is
omitted in the following) | |
| | +,j¥—m'
3, J?JMlllglJlJ L= (- 1y N g gean

m,m

M) (33-m's Mm | 38)

X <31m‘02M v m g M ).

Bta
Note the minus sign in front of the summation. Tt indicates that the
particle-hole interaction may be regarded as repulsive Tor an attractive

©

jgjéJM> ig independent of M, we can write

force. Since <3iJ?JM!i12

- . . Tias oy poa=l T . et e\
<J1J2JM' '*lQIJiueJM'> = [J} Z (JlJraJMlllelJiJ'UM/ 3
' M
where M' 1is one value of the M's, and FJ] - (29 + 1). Using the
13
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(3, -mi M4m | M) (JMI{m' |iMm') = E:_ [511/?[J] W(313pdpd1 5 TK)
e ,

X (JMmiqm' [kq) (J,-mhkq |jpMam')
we obtain

. ‘ ] . ' 3 _m+j1_m1
.. Yol o oa 1) _ ]‘l (_l)ql (' -mJj M+m]JM)
(33,0M" [11p 379510 = - [ 772 - 1™
' M n,m'

X (33-m' 3o (M) (3qm’ jMem [v, o |qmd M)

1l

C 3T _
-1 1 2“1 -2 sra s )
-[7] E (51(-1) W(333131d, 5kJ)

k,@p,m‘
X (jim’j2M+m}kq)(jlmjéM+mf[kq)fjim'ng%m[vlg[3lmjéM+m9»
J1Fdp*ay s . Z | '
—_ - - .t s .t PN PRE N . . .
= ZE:(‘l) Wiy d; 3pkI) <JlJ2kqlY12JJlJékq>
k v q '
The final expression 1s
' . » oI .
o . T . : g O g L T
(313,9M[1, (3350 =-Z (-1) [IW(34d313,7KT)
k .
» 1 = ‘ ' . * 1
x {319k vy, |3 dbka) -

The matrix elements of the particle-particle interaction Vi, are dis-

cussed in the next section.
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5. Two-Body Residual Interaction

a. Explicit form of the residual interaction. Now we assume an ex-

plicit form of the proton-neutron residual interaction, and proceed to
evaluate the matrix element. The residual interaction V12 is chosen

as

v

C T, g
12 = Vlzyp) + Vilzy,)s

12’

where the first term is the central force, and the second term is the

tensor force. The explicit forms of these forces’ are

C c c 2 e o c .2
Vzyp) = g o exp (Bop” x35) + Vg™ Pop exp (B I75)
C c 2 c c o
+ 7 . . . ;
10 Pro @ (Byg  Tp) + Vg Py @@ (Bgy” )]
and
T T T 2 T T 2
Vlzgp) = Vg Ppg e (Byy rip) o+ Vgg Py exe (Bpgt 1)l
where P are the projection operators for the

e 2 Tge > Fro v 304 Pgo

triplet-even, singlet-even, triplet—odd, and singlet-odd states, res-
pecfively, and the V's are the corresponding strength parameters. The

operator S12 is the tensor-force operator defined as

3(aq " Iyp) (g " Iyp)
= - M O
512 = > 9 %
Lo
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b. Matrix elements of residual interéction, The matrix element for

the ¢entral force may be expfessed as

(a]v¥(zyp) ") = : [(VTEC Vg )
31t +J -
(U’ v (1) ° ] (2 |0%(z;) ")
- 3 [(mec - Vg * Vg - _VsoC )
. +J +J 7
* (Vs VSEC_"VTO )( l) ° ] (a |u° (r5)Pgla")

-where P is the singlet projection operator, and Pl is an exchange

S 2
operator which interchanges -2' e—azé and Jl > 32 in the primed
initial states. The matrix element (a]U (rlg)[a and (a]U lg)PS]a‘)

are given by (see Appendix A)

| J 43 td
(@ |0 (zyp) ) = (1) ([jl][jel[j’l][jé])l/g
. Z Fy (39 % Jy - % [x0) (34 % Jp - % |%0)

X
=,
N
.
'_J
Ce
'_.I —
C e
o
.
no
-
a8
~—
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i

g4 .J+l
()22 st l/z(u (211023012

il

e [0%(zyp)Bg fa)

1 S
J) w( 2535 5 5 3.

X

(11312232 55 191

. BRI e 1 t
X E:__Fk(zl ozl‘o[ko)(z 04 O]kO) W( 21212212 5 kJ)
k . .

‘and with the restriction that k + ﬁl + Ei and kf+‘£2 + fé are both
even. The symbol [a] sténds for [2a + 1] and ( [} and W are the
usual Clebsch Gordan and Racah coefflclents The Slater integral Fk

is deflned‘as

1 :
’ cos 9 ’ s Lo o
. 12 C,

-1

where U‘(rlg) takes the Caussian form exp (—3332) with different
values of P for the corresponding states. ' o

The tensor force has been evaluated in terms of spherical tensors
by ‘I‘almi.lu The tensor-force matrix element can be conveniently ex-
preséed in either the L—S“repfesentation or the j—j'representation,l5’l6
In the J-J representation, the matrix element for the tensor force is

(see Appendix B)
. . T l'l"! 1 '! .
(031 3,0M [V (ry5)8, 0 31353 M")

- iy (A3 3,M|[U Tr. s o J'M')
= 2 'R d1do mE ‘E1p/815 1973735

S
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It T .
e (1) 2 gy s gy )8 33000

i T s s .T Pstst Tiart
* 2 Vo [<aJ132JM‘UTo (r)p)81p 0" 31350 01

oyt T TRy
(1) T (e 3 MUy ()58 5 [0 35010 M |

"and

s 2 tat st Tt _ 1 . .
(GJlJEJM[UT(rlE)SlQIG 31349 M ) = :Ej (a]FXy[a ) W(lx ly; K2)
' K)X:YU

/s s (lX)K
X {373, |Ty o

Here we define

@r, jo) = 5y  falrgrgle) Xy, for 1, 5=1,2
k,i,]
5 1/2 :
Xy = (.15 [x]) (20ko]xo) ,
o 1/2
X22 = ( B [YJ) (QOkOlyO) ) :
Xip = ,([x}[y§/2<(10ko]xo)(10ko[yo)wélxygek) :
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and

{a |rlrj lot) = “(2k+1) j drl‘r Ry R’ f drerERgRerlrJ
: v/':~ . ' RS . e '. ‘ )
/.cosw \\ i UT(r )
d 1o P (co W, ) _ e
X K\ 7 /) xRl T ’
-1 | /o : 12
S N ’
where U (r12) take the Gaussian form -
Vg (rp) = e (Byg” rp )
for the triplet-even, aﬁd .
T c .2
Upy (rp) e (Bpy” ¥ )

for the triplet-odd. The angular part in terms of- the 3-; 6-, and
9-3 symbols is

Jl+32+£ +f + J

(33,77, lx)K ._gély)x jijéJ'M'>‘= (-1)" 172
J 3nd o o
S R R SRV CA G e /201, 1T 12 1112
| K d1do |
1-1 1 101
Foox 00\ (o, 2 > 2 2 22 1
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The above expressioﬁ for the tensor-force matrix element is
still sufficiently complicatéd so that it isvvery difficult to draw
any conclusions. before doing the actual numerical work. The detailed
numerical work is presented in the nekt chapter (C:l and.i2). .

In the zero range, the tensor force vanishes, and the central

force matrix element reduces to

(a [0z ) o )AEm ™ (BT L0US + V") (a5 (2 - zp) fa")

- Vop ) (alo (ry - z) gy * Gole™]

where (see Appendix A)

(a&(zy - zp) [a") = Zr3T FO([Jl][JEJ[Jl]{Jg])l/2

.1 1 AP 1
X (Jl 5 dom 3 IJO)(Ji 5 dp - §]JO)
) et o1
BERCEREORES Jp Iy tdptdn aan
x [(-1) + (-1) ° Ejzj—;—j)];
and

(alo (£y- 25) 0, spla’) = sher Fo(ls, 103,005 0033 )2

Jl+Jl+f +2! Lo+ L +J

% N (-1) 1oL [1 + 2(-1) L ‘2 ]

J91t%05 aa

+ (-1) 537 + 1) )f



-22-~

with
| 3 +ip+T
A = [(23) + 1) + (1) (23, + 1)) .
L 0 , : . ‘
The matrix element (al|V (rlQ)gl _gela ) vanishes unless bqgh
Kl + £2 + J and Zi + Eé + J are even. Similarily,. (a]V (rlg)]a'>

vanishes unless‘ fl + Zi + £2 + Eé is even. The Slater integral

F is given by

0

| -
F, = ‘[. Rl(r)Re(r)Rl(r)Re(r)r dr .
0

c. Choice of radial wave function. ¥For the radial part of the wave

function, we choosé the harmonic-oscillator wave function. It is
generally believed thatvthe harmonic-oscillator wavé fﬁnction is a
fairly good approximation for light and medium nuclei, whereas the
square-well potential is a,closer approximation for heavy nuclei. The

17

radial wave function has the explicit form

Rnﬂ (r) = an

2
-(v/2)r !
ORI

where an is a normalization constant chosen so that

‘

: * . ' N 2 J
j’ an (r)RmZ (r)r“ar-= 1

The function v , (r) is the associated Laguerre polynomial defined

as

| 2 - KRy (ege1)i
O I A e I SN E I A 2 b
k=0 v
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The nuclear size parameter vil/g appearing in the wave function

has to be evaluated for the numerical calculation. The harmonic-

oscillator spacing is known to be roughly . J
2
fiw = %‘i = 31873 wey ,

from which v may be evaluated. The evaluation of the central-force
radial integral has been simplified analytically by Ford and.KonoPinski.18
The tensor-force radial integral (alrirjfa'> can not be evalugted
directly, since the integral has singularities due to the rlé term
appearing in the denominator. This difficulty is eliminated by ex-
panding the integral into a. linear combinatioﬁ of the Talmi integral.l7’l8
(See Appendix B). For the delta-function force, the radial integral
can be easily evaluated analytically, and the numerical values of the

6,19

integral have been given by several workers for the diagonal case.

d. Shell-model residual force and two-nuclecon force. In most of the

past. shell-model calculations, the central force alone has been used,
neglecting the tensor force. The main motivation for neglecting the
tenéorvforce has probably been the computational compiexity involved
in using.it, but the success of shell-model calculations without the
tensor force does. not necessarily imply the-absence of the tensor
force in the residual interaction. In fact, Visscher and Ferrell have
shown that the tensor force is essential in explaining the ft values
of ClLL and Olu(both O+ states decay to the 1+ ground state.;;‘Nlu).eo
The shell-model -residual interaction is not.expected to be
the same as the free two-nucleon force because the presence. of other
nucleons-might.modify the basic meson-exchange forces. However, the
work on the properties of nuclear matter by Brueckner and Gammel,21
Bethe’and-Goldstone,22 and others have indicated that the free two-
nucleon interaction may give rise to very satisfactory results for
many-body problem if an. approximate solution to. the many-body
Schrordinger equation can.be found. Furthermore, the shell-model cal-

23

culations of True and Ford, ~ and of Dawson, Talmi, and Weleckagbr have
indicated that the appropriate shell-model residual force may not be

very different from the free two-nucleon force.



Inclusion of the tensor with the central force in the free two-
nucleon force has thne theoretical supporti that the one-pion-exchange
potential (OPEP), which is the meson theoretic potentia’l of the lowest
order, explicitly includes the four components of the central force
and two components of the tensor force. Yukawa's original hypothesis
was that the nuclear force 1s caused by transmitting a particle, now
called the pion, between two nuc.leons.25 For the exchange of n pions, the
force range  1s expected to be of the order of (nuﬂj_l, so..that the tail
end of the ‘two-nucleon potential has its main contribution from one-
pion exchange (OPE). In the OFEP, it is assumed that the nucleons are
point particles moving with nonrelativistic velocities., This assump-
tion makes it possible to solve the field equations in the first

“approximation in which only one-meson exchange is consildered between
two nucleons. The solution of the resulting Schroedinger equation ieads
to an interaction potential between two nucleons of the form

. . T
2.2 e
(

PE) - . 3
V(OFE) = u "7 (1y+ 15) =3

[l+2—'+—_2]}}

- hﬁa(r)] + Sl2
ur (LLI‘)

Ol =

({o;-0,

where (u)ml = x =1.h F 1is the pion Compton wavelength, and S,
is the tensor-force ocperator. The coupling constant fg is the only
adjustable constant in this expression. Cziffra and Moravesik have
attempted to determine the éoupling constant fgvfrom an analysis of

26

neutron- proton scattering data. However,  the more accurate value

of - f2 = 0.08 was determined from an analysis of pion-nucleon scattering
data. Since the rest energy of the pion, ucg , is 140 MeV, the over-
811 strength of the OPEP, pcofo, is 11.2 MeV.o!

MacGregor, Moravecsik and Stapp have done some interesting work
on analysis of proton-proton. scattering at 310 MeV028 At this high
energy,'nucleon—nucléon scattering is sensitive only to the tail- of the
nuclear potential for high-{ partial waves. Assuming That the OPE is
" the only significant contribution at large distances, they analyzed the
phase shifts for 225 by using the relativistic OPE amplitudes instead

of nonrelativistic OPEP. 'The phase shifts for /< L4 are determined



¥
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phenomenologically by analyzing the data. . Their value of f2 = 0.06
agrees fairly well with the value determined from the pion-nucleon
scattering data.. |

The presence of the delta-function term, 3(r) , supports the .
introduction of a hard core in the nuclear potential, which. is: necessary
for S.states to be repulsive at the shorter distance. However, OPEP is
only valid at a large distance, i.e., at the tail of the two-nucleon static
potential, so that the delta-function term is usually.omitﬁed from. OPEP.

To serve the purpose of comparison of OPEP with.other phenomenological
two-nuclecon potentials, we write OPEP in terms of the projection operators,

neglecting the delta-function term, as

‘ -pr ,
2.2 e .
pc f e [-PTE-PSE+PTO+5PSO]

V(OPE)

3 . _ 3
+ 812(1"'5? + mrz) [—PTE+PTO]V

Here the projecﬁion operators are given by

CEE
(90
8




T

and

The tensor force was known to be essential to account for the deuteron
guadrupole moment even before the pion was discovered. The tensor force
in OPEF showﬁ above was shown to give a good acdount of the quadrupole

29

moment of the deuﬁeron.—

» We may regard OPEP as a constraint to fhe'nuclear force in addi-
tion to the experimental data of nucleon-nucleon scattering and the
deuteron properties, since all meson-theoretic derivations of nuclear
potentials agree with the result'that the nuclear potential must behave
like the OPEP at large distance. The inner region of the potential re-
mains extremely controversial, including evén the two-pilon-exchange
potential. Many different forms based on meson theory have been
derived.BO‘ However5 there are very few works that calculate the corres-
ponding properties of the two-nucleon system.51

Most of the n-p data has been analyzed in terms of phenomeno-
_ 30

logical botenﬁials such as those by Signell and Marshak, ’ Gémmel and

Thaler,53 Hamada,B)Jr and recently Glendenning and Kramer.55 The Signell-
Marshak potential,gwhile.Satisfying“the.OPEP, does not fit the deutefon
data. The Gammel-Thaler potential does not fit the deuteron data nor
satisfy the OPEP. (This potential has now been corrected to fit all

the low-energy parameters, and several sets of the parameters for the
potential have been presented in the review article by Gammel and
Thaler.56) On the other hand, Hamada has been fairly successful in re-
producing the deuteron properties and n-p scattering data with potentials
that have OPEP tails. A more detailed analysis similar to Hamada's has
been recently done by Glendenning énd Kramer to construct triplet-even
potentials that are asymptotic to the OPEP and aﬁe modified in the

inner region with ranges corresponding to the exchange of more than one

pilon in such a way as to obtain agreement with the deuteron properties

and the n-p scattering data.
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e. Choice of Force Parameters. Because we set out to make shell-model

calculations with a residual force more general than usually used, we
usually faced the problem of essentially more parameters than data.

With each of four central-force and two tensor-force- components are. two

parameters, depth and range of the Gaussian function, or twelve para-

meters in all. .We adopted the.approach that we would begin calculations
with residual forces close to.those satiéfyingvthe ffee-space two-nucleon
scattering aata and- deuteron properties.. If necessary, we would then
make a minimum of adjustments to the force to give a general fit to the
experimental—levél spectra.

It has often been pointed out that the free-space nucleon-nucleon
force may be subject to modification for shell-model.calculations, but
as yet there seems to be no strong evidence that large modifications.
necessarily occur. . In fact, there are successful shell-model calculations

of Dawson, Talmi, and Waleck.ael'L on the O18 spectrum using the Brueckner-

Gammel-Thaler (BGT) potentials21 including the tensor force and hard

cores. Their results lend encouragement to -our approach.

Apart from the success of Ol8Acalculati0nS'by Walecka et al., -
there are two additional desirable reasons for.choosing the. Brueckner-
Gammel—Thaler potential in the shéll-model caglculations, although we
do not necessarily believe that the BGT potential is the best two-nucleon
potential..,The-fifst reason is that it satisfies most of the constraints
imposed upon the two-nucleon potential, such as the two-nucleon scatter-
ing data and the deuteron properties, although the tail-en§ of -this
potential does not satisfy the OPEP constraint. The. second reason is
that- it is.successfully used in the nuclear-matter calculation: by
Brueckner and Gammel._ The force parametefs of the BGT potential are
listed in Table I. -

Introduction of a hard core along with Yukawa radial dependence
would.héve made our computational work extremely complex. This is
espécially true for a.heévy nucleus which involvesrhigher angular
momenta. For this reason we start with a phenomenological-Gaussian-

potential without a hard core, based on the free two-nucleon potentials
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Table I. Values of the force parameters: for the BGT potential. ¢ The
radial shape of the potential is Yukawa form with a hord core of radius
0.L4F. ' ) ' ' ' ' :

Force components ' o Stréngﬁh ’Rangé

: o {(Mev) o (fm)
Central ﬁriplet—even | : i -877.39 _ o 0.478
Central singlet-even , | =43l 0 | 0.690
. Cemtral triplet-odd S -mo 1.00
Central singlet-0dd ' 130.0 - o 1.00
Tensor triplet-even ;I‘ C -159.40 6.955
Tensor triplet—qdd L : 1.‘ 22.0 ) , ' 1.25
Spin-orbit triplet—even_ . _ —5060_ - - 0.270
Spin-orbit triplet-odd ) -7315 0.270

of Brueckner, Gammel, and Thaler (BGT) and of Blatt and Jackson.57 We

use the well-depth parameter and intrinsic range defined by Blatt and
Jackson in the shape-independent -approximation of the effective-range
theory to replace the Yukawa radial dependence with a hard core (thg

BGT potential) by a Gaussian form without a hard core. . If one con-
siders a nuclear potential of V(r) = sV'(r) so that V'(r) is the potential
that gives rise to zero binding energy for the ground state of the proton-
néutron system, then V(r)-for s > 1 allows bound states,yhereas‘V(r)

for s < 1 gives rise to virtual states. The intrinsic range b of V(r)

is then defined as the effective range of V'(r), and s is called the.
well-depth parameter. The Yukawa and Gaussian potentials in the shape-
independent approximation are expressed by Jackson and Blatt in terms

of s and b as

- v(r) = s(147.585 Mev)bfg(b/r)exp[—2.1196(r/b)]
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for the Yukawa potentiai, and

- V(r) = 8(229.208 MeV)b 2 exp[-2.0604(r/b)?]
for the Gaussian potentiai, where b is in units of 10—13 cm. To
reduce the number of adjustable parameters, we arbitrarily take the
intrinsic ranges of our potential to be same as the BGT potential.
From shape-independent effective-range theory, the force range 6—1/2
of a Gaussian potential is larger by a factor of 1.477 than the force
range of a Yukawa potential, such as the BGT potential. The well-depth
parameters of our potential are expected to be smaller than those of
the BGT potentiai, since the introduction of a repulsive hard core
always requires the attractive Yukawa potential t0 be deeper than for
no core.

We adjust the well-depth parameters so as t0 be consistent with
the low-energy properties of the deuteron. If we choose s = 1 in the
Gaussian formula above, the central triplet-even potential thus obtained
will itself cause the deuteron to have zero binding energy. Because
of the repulsive cores, the Yukawa.tail of the. BGT force néédds & = 2.88.
The reduction factor 2.88 is then applied to reduce all well-depth
parameters for other components of the force to go from BGT to Gaussian
without hard core. Values of the force parameters thus obtained are
listed in Table II, and hereafter this potential is called Potential I.

Kalos et al. have calculated deuteron properties and scattering
‘properties with Gaussian forces and showed that several combinations of
central and tensor strengths and.fanges could fit the data.58. The
triplet components of our Potential I are fairly close to an ihterpolation
of two of their satisfactory potentials, so we feel that our Potential I
is conéistent with free-space properties of the n-p system, although
we have not verified this supposition by actual scattering phase-shift

calculations.
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Table ITI. Values of the intrinsic range and well-depth parameters, s
and b, for the BGT and simulated BGT potentials. The intrinsic ranges
for the simulated BGT potential are assumed to be same as the BGT
potential and are not shown. . The corresponding strength and force range
parameters for the simulated BGT are also shown.

© BGT y Potential I
chtes , _ . Strength Force
s b(F) s (MeV) = range (F)

Central triplet-even 2.882 1.013 1.0 .. -223.02 .. 0.706
Central singlet-even 2.96k 1.hel 1.028 -110.03 01.018
Central triplet-odd 0.201  2.119  0.070 -3.57  1.h76
Central singlet-odd -1.867 2.119 -0.648 433,06 . 1476
Tensor triplet-even  2.078 2.019 0.721 -40.50 1.407

Tensor triplet-odd -0.495 ‘25649 -0.171 +5.58 ~1.845
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C. PARTICLE-PARTICLE INTERACTION
1. Ytitrium-90

a. Zero-order energies. Recently an isomer state in the odd-odd

90

nucleus Y has been found.59 It isvinteresting to see if this isomeric
state can be explained in terms of the j-j coupling shell model.

Several other low-energy states were reported previously. 0 It is
assumed that 38 protons and 50 neutrons form closed-shell cores. The
assumption that 50 neutrons form a closed:shell has been established
because ngo exhibits typical properties of a closed-shell nucleus.

The 38-proton closed sub-shell has been assumed by several workers,

and we make the same assumption. These assumptions simplify the cal-
culation, since there will be only one proton and one neutron outside
the doubly closed-shell core in Y9O. For the proton single-particle
levels, we choose the average values between Y89 and Ygl,-and for the
neutron single-particle levels the average between Sr89 and Zr9l. The
experimenfal single-particle levels are presented in Tables III and IV,
and the resulting zeroth-order energy levels are listed in Table V. The
assignment for the lowest state of the fifty-first neutron as the d5/2
configuration is evident from the fact that the observed ground-state
spins and parities of Sr89 and ngl are 5/2+.u5 The lowest state of

89

the thirty-ninth proton is assumed to be Py/o > since both Y 7 and

Y9l are known to have ground-state spin 1/2.'5‘ Recently the atomic-
o1

beam measurement of the ground-state spin has been made for Y77, con-

firming thefpl/2 configuration. The observed low-energy levels in
0 ' : :
Y9 are shown in Fig. 1. The ground-state spin of Y9O has been deter-
. L5

mined recently by the atomic-beam method to be two.

b. .Energy spectrum. Before introducing the tensor force, the numerical

calculations are carried out extensively with various central force

mixtures inc¢luding Serber, Ferrell-Visscher, and Rosenfeld forces and

with various ranges. Although the delta-function force may give the
90

correct sequence of the observed levels in Y7~ as shown by Pollak

I
et al., 6 th% calculations with realistic finite-range forces indicate



Table ITI. Single-particle levels of the thirty-nith proton.
Configuration Energy (keV)
a . .a b
N Sl r°
pl/2 o . 0 0
€9/2 915 551 732

. a .
Experimental dats from reference.

bAyerage betﬁeen Y89 and Y

b3
91

Table IV. Single-particle levels of the fifty-first neutron.

Energy (keV)

Configuration 3 5 é
&r09 7r y7°
d5/2 0 | N 0 -0
51 /2 1050 T 1225 1138
dB/g 2020 2070 | 2045
87/o —— .. 2205 2205

“Experimental data from B. L. Cohen, Phys. Rev. 125, 1358 (1962).

bExperimental data from Cohen (cit. supra) and reference 48.

CAverage between Sr89 and Zr9l.
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Table V. The zeroth-order levels in Y9O
Configuration (proton-neutron) ' Energy (keV)
Pyjdsjn | " , 0
8gfelsz o
pl/gsi/g | 1138
g9/251/2 | ) 1870
P, /2d3 /2 2045
Py /087/0 2205
g9/éd3/2 | 2777
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Fig. 1. Experimentally observed low energy levels in ,Y9O-



that we must introdgce a. fairly strong attractive odd. force to fit the
experimental data if we were to retain the singlet-even to triplet-even
ratio (~ 0.5) of the free two-nucleon potential. .A calculation with
one set of central force parameters with rather strong attractive odd
forces, which is chosen so as to fit both the doublet spacings of

J =2, 3- and J = 2+, T+, is shown.in Fig. 2. Although the fit with
the experiment iIs good, there is no Justification for assuming the
central force mixture of strong attractive odd force. Furthermore,
this is not the only set of parameters which gives rise to a good fit
with the experiment, since there are other. sets of the parameters which
yield equally good fits. From the free two nucleon potential, it is
known that the triplet-odd force is weak, and the singlet-odd is even
repulsive. .

. . . o7
The dlagon?} tgnsor—force matrix elements (l/})(a[PTEU (rlg)slg{a)

and (1/5)(a‘PTOET(rlE)SlQIa)Iare plotted as a function of the range
in Figs. % through 5.  As we can see from these figures, the tensor-
force matrix elements are not always a.monotonicallyvincreasing function
of the range,. and may be either positive. or negative. This is to be
contrasted with the fact that the central force matrix elements are
positive and monotonically increasing functions with increasing range
and cbnstantvdepthw- The results. of the calculation with Potentiél I
of Table II are compared with the experiment in Fig. 6.  In diagonalizing
the matrix, the off-diagonal tensor-force matrix elements are neglected,
since they are small compared to the diagonal tensor-force matrix
elements. The numerical results are also presented in Table V, and are
shown schematically in Fig. 7. In Fig. 7, notice-that the lowest and
highest J states (2+ and 7+) are separated from the other J states
arising from the -same configuration,,g9/2 d5/2, This 1s consis£$nt
with the revised "weak" coupling rule of Brennan and Bernstein..

The results of other configurations presented in Fig. 7 and
Table VI are also consistent with coupling rules Omeofdh@imL;l and
de-Shalit and.Walecka.l5 - The eigenfunctions are also computed, and the

results are shoﬁn in Tables VII and VIII. As we can see from .these
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Y
(B°) "=2.0F
| =—60 MeV ~3
| —2
_ (o) = 0.67
2 Q
= N =
' (0-,1-)
5 _ 1'8
o I 2+ 2+ ®
£ % 7+ u‘i
3- —=——=3.
. ‘ ' 2~ 2- 40
-2 —'Zi;° Diagonal.  Config. Exper
oraer matrix mix.
element
MU-29164

" Pig. 2. Calculatede9o spectrum with the central force alone.

The central-force parameters are adjusted to fit both the

doublet spacings of J = 2~, 3~ and J = 2+, T+.
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Table VI. 'Calculated energy levels in Ygo, The results before and
after diagonalization are shown in columns A and B, respectively. In
column C, the énergy scale is shifted so that the ground state lies at
zero energy. In diagonalizing, the matrix the tensor-force off-diagonal
matrix elements are neglected. :

Proton-neutron Jgm Energy (MeV)
configurations v A B C
pl/2g5/2 o- -07515 -0.516 0.0
3- -0.480 -0.487 0.029
g9/2d5/2 o+ 0.382 0.377°  0.893
, ' Bt 0.622 0.600 1.116
Lt 0.624 0.610 1.126
5+ 0.58% 0.551 1.067
6+ 0.679 0.679 1.195
T+ 0.359 0.357  0.873
P1/o%1/ 0- 0.672 0.672 1.188
| 1- 0.73k4 0.73k4 1.250
€5/2%1 /5 it 1.7%6 1,745 2.261
_ 54 1.655 1.671 2,187
pl/EdB/E ' 1- 1.815 1.816 2.3%2
2- 1.650 1.650 2.166
p1/2g7/2 _ % 2.047 2.054 2.570
b 1.927 1.927 2.443
_g9/2d5/2 34 | 2.372 2.326 2.8h2
Ly 2.609 2.686 3.202
5+ 2.677 2.671 2,187
6+ 2.487 2.663 3,179
g9/2g7/2 1+ 1.669 1.669 2.185
2+ 2.269 2.274 1.758
3 2.615 2.683 3,199
by 2.491 2.420 2.9%6
5+ 2.769 2.790 3.306
6+ - 2.470 2.295 - 2.811
T+ 2.841 2.84o 3.358
8+ 2.129 2.129 2.645
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Table VII. Calculated eigenfunctions for odd-parity states in v°.

Bigenvalues Bigenfunetions
Jm (Mev)_  Papplsie Pty Pajp¥zie Pajefyp
1- 0. 73k 0.9997 0.02k6
1.816 0.02k6 -0.9997
2- -0.516 -0.9998 0.0158
‘ 1.650 -0.0158 -0.9998
3. - -0.487 0.9987 ' 0.0500
2.054 - 0.0500 -0.9987
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Table VIII. Calculated eigenfunctions for even-parity states in Y9O°
" Bigemvalues _  Eigenfunctions
JT (MeV) - ..

8y/d5/2  Bg/e®1/o  Byjelsjo  Bgjobr/o

BTT 0.9987 - 0.0ko1

2+ 0
, 2.27h 0.0491 _ _ - -0.9987
3+ 0.600 -0.99357 0.1070. ~ 0.0332
2.%26 -0.1108 : -0.8962 - -0.420k
2.683 -0.0161 _ -0.4304 0.9024 .
g 0.610 0.9938 0.1100 0.0079 -0.0040
1,745 ©0.1101 -0.9906 -0.0736 . -0.031k
0.0 0.006k  -0.0648 ’oﬂ5l7u ' 0.85%2
2.686 0.0037 0.0k72 -0.852h 0.5206
5+ 0.551 0.9860  0.1578 -0.0466  -0.0248
1.671 0.162% -0.9871 0.0949 0.0295
2.671 - 0.0361 0.1060 0.9105 0.3980
2.790 0.0058 -0.0100 -0.3997 0.9165
6+ 0.679 0.9997 -0.0115 -0.017k
- 2.295 0.0206 0.6906  0.7229
2.663 0.00%7 -0.7231 0.6907
T+ 0.357 -0.999% 0.0263
2.842 -0.0263% | -0.9996




b5

tables, the configuration mixing is not very 1mportant for most of the
observed states The almost pure configuration of the ground state
(pl/2 5/2).' " is consistent with the measured maggetic momentT The
measured magnetic moment of the ground state of Y’  is ~1.629 nm,
whereas the calculated magnetic moment with the empirical g factors
evaluated. from neighboring nuclei is -1.609 nm if we assume that the
eonfiguration is pure.45 A level at 0.247 MeV has been sﬁggested by
Barthoiomew-et al ko to be the J=3-: state arising from the. pl/2g7/2
configuration.. They have indicated that this assignment is consistent
with their data and with the observed beta decay of Sr9o(total‘dls—
integration energy of 0.535 MeV) only to the ground state,.thus. eliminating
the possibility of this state being J = £ 0,.1%,. or 2-. However, the
87/2 neutron single—particl;llevel has been'foundu8»to be 2.2 MeV above
the greund state d5/2 in Zr”™, and it-is.very difficult to understand
.the (pl/2g7/2)J—5 state being near the ground state. This would re-
quire an extremely large matrix element. to overcome this initial neutron
single-particle spacing of 2.2 MeV. .The. low energy of 0.247 MeV suggests
that this level is probably not attributable to the.configuration:
(pl/2g9/2) nor . other configurations caused by the core excitation of

the 38-proton core. . Tt remains to be seen if the experiment can
definitely assign the spin and parity to this state.

The spin and parity of the state of 2.7 MeV have not been

determined experimentally, and\there are several calculated levels

around. 2.7 MeV. The probable states within the energy limit of
: J=3,h J=3 J=2,6,8
2.7ioi? MeV are (pl/2g7/2) o (g9/2d5/2) , and (g9/2g7/2) .

c. Discussien.. Although the. experimental spectrum is not sufficiently
resolved to test all components of our choice of the residual force,
there 1s a remarkable agreement. between. the calculated,Spectrum.and
experiment. if one notes that several shell-model approximations have
been made and the force.parameterS-are.not all adjusted arbitrarily.
Aﬂslight;increase of the triplet-even part of the central and tensor
forces is sufficient to increase .the doublet. .spacings of J = 2-, 3-,
and J = 2+, 7+ so ds to improve agreement with experiment. Furthermore,
by introducing the tensor force, we .can eliminate the need for un-

realistic strong attractive odd central forces, required for a shell-
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model force with central components only. Potential I was also applied

to Bizlo,ug(see Section C2) where most levels of the ground state-

state mﬁltiplet (a total of nine levels out of a possible ten) are re-

209

at Massachusetts

The analysis of those multiplets in Biglo

solved by the high_resblution (d,p) reaction on Bi

Instituie ofiTeChnology.5O

210

along with PO~ also indicates that the triplet-even part of Potential

I is slightly too weak to account for the overall spacings of the Biglo
grouhd-state hultipletu A slight increase of the triplet-even part of
Potential I improves the spacing of § = 2-, 3-states. It would be very
interesting to see if one can resolve the g9/2d5/2 ggd pl/251/2 ,
multiplets by high-resolution studies of Y89(d,p) Y, zx9(a,s)

| 92 ' : :

Nb92, or Zr9o(a,d) Nb”~ reactions.

2. Bismuth-210 and Polonium-210

8. Introduction. The low-lying energy-level spectrum of'BiglO has

-

been the object of several shell-model theoretical studies.j'1 The
-nucleus has one proton and one neutron beyond the doubly closed-shell
nucleus Pb208. The lowest proton orbital is h9/2 , and the‘lowést
9/2

levels with spins from zero to nine forrBiglq. With the experimental

neutron orbital, g Cne thus expects a low-lying multiplet of. ten
determination .eight years ago a ground-state spin of one, a difficult
problem was posed for shell-model theory, for almost any reasonable
attractive central-force mixture acting between the neutron and proton,
bring spin O lower than spin 1, whereas experimentally spin O lies L7
-keV higher. _

The‘inversioh of 0- and 1- states of the h g configuration

510 - 9/2%9/2

in Bi ig a striking exception to Nordheim's I'strong!'-coupling rule
for odd-odd nuclei. To explain this inversion, Newby and Konbpinski5l
and Kharitonov, Sliv, and_Sogomonova52 attribute the 1- state to the

configuration h Mcre recently the study by de-Shalit and

9/2*11/2 -
Walecka of the angular ordering function suggested that the inversion .

of O0- and 1- states of h_ ., .g may be.explained with a proper choice

of the central-force range. Newby andeonopinski gave .qualitative
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arguments. that an attractive tensor force would be repulsive for the
0- state and help force it up. '

The low-energy, high-resolution (d,p) reaction studies of

209

Erskine et al. on Bi present'a‘wealth of new information’on the
h9/2g9/2 multiplet5o and necessitate a thorough reexaminafion'of.the
shell—model theory. They resolve nine of the expected ten levels of
9/2g9/2 multiplet and make tentative spin assignments on the basis
that the reaction cross sections are proportional to 2J+1. Further-
more, they see higher multiplets attributable to capture of the neutrons
into d5/2 and s‘l/2 excited orbita;s. The multiplets arising from
Qapture into. ill/2 or 315/2 orbitals are weak and-not‘resolved
completely, presumably because the high orbital-angular-momentum trans-
fers are strongly discriminated against in the (d,p) reaction.

Figure 8. shows Efskine's spectrum with indicated level numbers.
The spins are assigned in sequence of J =1, 0, 9, 2, 3, 5 and & (or
5 and 7), 4, 6, and 7 (or 8) with corresponding level numbers O,-1, 2,
3,5, 6, 7, and 8. These results strongly indicate that the ground
state involves mainly the -g9/2 neutron orbital and not the‘ill/g”
Erskine made shell-model calculations with a finite Gaussian Serber
force (central-even components only) as.a function ofvrange.55 He
took a ratio of 0.66 for singlet-to-triplet strength, which free-space
two-body scattering and other shell-model work indicate is. reasonable.
At a force range of 2.7 fm he found a fairly good fit.for all except
the spin-0 and -1 levels, which are inverted from their experimental
order.

The spectrum of-PoglO was theoretically calculated by Hoff and
Holj].a-nde-:rﬁlL with a ‘delta-function force, and by Newby and Konopinski
with a central singlet-even force, which is reasonable. from the free.
two-nucleon potential. We also shall treat the-Poelo spectrum to see
the effects of a tensor force and to determine if one can explain the

spectra of both Biglo and Pog.lO with the same residual force. The ex-

perimentally observed low-lying energy levels in Biglo-and Po210 are

presented in Fig. 9. We assume that Pb208 can be treated as an inert
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Fig. 8. Spectrum of protons from the (d,p) reaction on Bi209 as
observed by Erskine et al. (Ref. 50).
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core providing a harmonic-oscillator potential well for the extra
nucleons, (i.e., harmonic-oscillator radial eigenfunctions are used,
although eigenvalues for single-nucleon states are taken from data on

08

nuclel with Pb2 pius one muelkeon. There are two nucleons outside
this doubly closed shéll in Biglo and Poglo. Sliv et al. have inciuded
~ the effects of Pb208lcore excitation of a quadrupole surface-oscillation
type. It.-generally appears from thelr work that such a refinement brings
an important enhancement of E2 transition probabilities and a general
lowering of levels, but that the relative level spaéings for low-lying
levels are not greatly altered.

The independent-particle energies are taken from the neighbor-
ing nuclel Pb209 and Bi209, and the resulting zero-order energies are
listed in Table IX. Recently seven single-particle levels for the
neutron in Pb209-have béen reported by Cohen et 31,55

If one investigates the effects of the four central-force com-
ponents separately, one finds that a central-force mixture cannot ex-
plain the inversion without lcsing the agreement on positions of other
levels. The triplet-even central force which should be attractive and
strongest of the components always brings the O- state below the 1-
state in energy. Although the triplet-odd part yields significantly
large matrix elements similar to those.for the triplet-even, we expect
the triplet-odd matrix elements to be very small compared to the triplet-
even contribution since the triplet-odd étrength is known to be very
weak from the free-space two-nucleon potential. The above arguments
are seen by examination of Figs. 10 and 11, which are plots of the
magnitude of diagonal matrix elements for h9/2g9/2 multiplet states.
From Fig. 10 and 11 it 1s clear that a reasonable central force, pre-
dominantly attractive triplet-even, can explain most of the levels of
the h9/2g9/2 multiplet except the inversion of the O- and 1~ states
and that it is very difficult to adjust the force parameters so as to
invert the O- and 1- states without disturbing the sequence of other
spin states in the h9/2g9/2 configﬁra%ion. At this point we feel it
most important to quantitatively evaluate the tensor-force matrix

elements with a realistic radisl dependence.



Table IX.

Independent-particle energiesa for Biglo'and Po2

10

Configuration
(proton-neutron)

Energy (MeV)

PO210

Configuration

(proton-proton)  fmexey (Mev)

ho/289/2
hg/eill/z
17289/
Po/2d1s5/2
P9/2% /2
f7/2111/2
B9/e%1 /2
7/2915/2
fr/2% /2
Roje87/2
Ro/2% /2
L1/251 )2
7/287/2
7/2%/2

0.

0.

0

[

.90
L1
.56
67
.03
.31
RIS
47
.52
<95
3.
3,

37
Lo

By ohg /o 0.0
By ofs o 0.90
By ply3 /o 1.62
£0 1057/ 1.8q
£ rat13/0 2.52

& The single-particle energies are taken from references sk and 55.
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Fig. 10. The matrix elements of the four central-force components

for the configuration h9/2 g9/2 in Bizlo.

1.5 fm, is taken for all cases. The symbols TE, SE, TO, and

The same range,

50 stand for triplet-even, singlet-even, triplet-odd, and

singlet-odd, respectively.
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b. Tensor-Force Effects. The previously-given expression for the

_tensor-force matrix element is still sufficieﬁtly complicated so that

it is very difficult to draw any conclusions before doing- the numerical
work. Figures 11, 12, 13, 1k, 15, 16, and 17 pfesent the results for the
diagonal contribution of the tensbr-even and tensdr-odd forces. on the
h9/2g9/2 multiplet as a function of the‘range pérameter. _These results
confirm the qualitative predictions of Newby and Konopinski; for an
attractive tensor force in that both even and_odd components are quite
repulsive for the spin-O state. At the ranges comparable to the free-
space ranges of Gammel-Thaler, the tensor force affects the spin-1 in

an *opposite sense to the spin-0 state, and it has only a rather small
effect on the states of spin 2.or higher. '

As shown in the figures,. the tensor-force matrix elements are
not alwéys a monétonically inéréaéing funetion of the range, and they
may be either positive or negative in contrast to the central-force
matrix elements. Thus the shorter-range tensor-force matrix elements
are in quiﬁe different ratios to one another than in the infinite-range
limit. This implies that the.infinite—range approximation for the

tensor force is not very realistic for shell-model caleulations.

c. FEnergy Spectra. As the first approximation, Potential I listed in

Table II was used for our. calculation. The Poglo calculations gave
somewhat too close spacing of the lowest 2+, 4+, 6+ level grouping.
Their spacing seemed relatively insensitive to details of configuration
mixing and to the tensor-force strength. Therefore, the central singlet-
even. force component seemed somewhat too weak and -was strengthened by -
about 20% in the édjusted Potential II (see Table X). It should be
noted that the Singlet-evén-part of Potential I gives zero. binding
energy for a free-space, two-nucleon system. The calculations with
Potential I on Bi?lO showed that the central triplet-even part of
Potential I .is somewhat too weak to- account for the overall spacings
of the multiplet h9/2g9/2 .. Hence, the central triplet-even strength
was increased by about 60% in Potential II. The central. triplet-cdd

part was neglected entirely in Potential II, because it was very small
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Fig. 15. Diagonal matrix elements of the tensor-odd force

[ (1/3\LPTOU%O(T12)812] (BFy) for the multiplet hg /p &g/ in
Bi%10 a5 a function of the range parameter (B%O)_l/g'
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-60-

2 -
©
o

1.0 o —

. ] ] 1 . 1

2.0 4.0 6.0 . 8.0
Range (F)
MU-29172
Fig. 17. Ratio of the diagcnal tensor-even-force matrix element

for the spin-1 state to the spin-O0 state of the configuration

h9/2 g9/2 as a function of the range.



compaéred to the other components and did.not .affect tne results very
,mmuch The qlnglet -odd force is repuis;@e, eﬁd 1t af?ects mostly the

‘ hlgher J otates, partlpularly fhe Jd =9 stace, as can be seen from .
Fig. lO, "The central singlet-odd force of Potential I was’ found to
have éﬁ éffect too strong for the J =9 levél, thus bringing the_latter
level ébove the J = 2 and 3 states in the energy spectrum, and we
arbitrarily reduced_the strength cf the central singlet-odd forece by
a factor of about three to bring the J = 9 level down near the J = 2
level. - In the next calculation, with the above modifications to the
central force, and somewhat strengthened tensor force, it was Tound
that the pOsitidns of the‘Q—:and_l—,lgvel were(incqrrect. _Thérefore,

tensor forces were further strengthened o give Potential II, listed

in Table X.
In Figs. 18 and 19, we plot the effects on the ground-state
multiplets of Bi210 and Podlo of adding successive components of our

- 210
. 2 3 b} P I ] P £ 2
residual force. The h9/2d5/2 and_hg/9 1/2 multiplets of Bi seen

in the (d,p) reaction are also plotted in Fig. 18, and the

is plotted in Fig. 19. All

210

0/2 ,7/2(J = L-, 5-) multiplet of Po
diagonal matrix elements include central and tensor forces. In dia-
gonalizing the matrix, only central-force contributions to the off-diagonal
matrix elements were used in Poglo._ For BinO the off-diagonal tensor-
force matrix elements of the lowest three configurations h9/2g9/2 )
n9/2111/2 , and f7/2g9/2 were calculated and included, but only
central-force off-diagonal elements apply to other configurations. A
complete list of the éigenvalues for our calculations is presented in
Tables XI and XII. The eigeﬁfunctions are also calculated both for
BiElo anhd Poglo and are presented in Tables XIII and XIV, respectively.
For Biglo, the eigenfunctions are listed for the eilgenvalues that
correspond to the states arising from the lowest six odd-parltv con-
figurations, and for Po” 210 the eigenfunctions only for the even parity

states are listed.
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Table X. Values of the force paramgters for Potential II. used 1n  '

Blgl and Po calculations.
Components 1 Strength ' Range
‘ _ (MeV) _(®
Central triplet-even ~355. 2k 0.706
Central singlet-even -133.20 v .1.018
Central triplet-odd 0.0 —————
Central singlet-odd ©11.01 1.476
Tensor triplet-even - 99.28 1.4o7

Tensor triplet-odd : 9.50 1.845




-63-

" [PezSiz
2.0l£ \ 5- 5-
: . 2.5
Afriz w2
hgp s,
1.5 .
-0720| h9/2d5/2>'0-6;6|f7/2'n/2> 150
2- >
1.0 2 P — LY
~ Ji5 2
2 =
s .
' Z 0699 |hgpds,2%0.640| fr t >
< ' 2
- w
2
@ 0.0 hos2 9972 .
Ll &
——0.5
537
\2-,9—9-’
|- 0.0
lero CF CF+TTE - CF+TTE+TTO CF+TTESTTO Experiment
order - 'diagonal diagonal = diagonal configuration
only -only only. mixing
MU-29668

Fig. 18. Comparison of the experimental and calculated spectra
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and tensor-odd forces,_respectively.
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Fig. 19. Comparison of the experimental and calculated spectra
of Poglo. The abbreviations CF and TTO refer to the central

and tensor-odd forces, respectively.
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Table XI. - Calculated eigenvalueé and eﬁefgy levels in Biglow In the
-last column, eigenvalues are expressed in a new energy scale in which -
the ground state lies at zero energy.'»Therindicatedfconfiguration is

taken to Ye the dominant one. ' i :

Configuréti@n v ‘” .f J | o Eigenvalﬁes - Energy
( proton-neutron) L - o (Mev) (MeV)
by /o 59/2f . o~ '40,572 0.022

- ~-0.594 0.0
o~ : -0.311 0.283
3- -0.251 0.343
- 0135 0.4:59
5~ T - 0.392
6- - -0.08L 0.510
7- - 0.218 0.376
8- . -0.062 0.532
9- -0.310 0.28k
By 1o 119 5 1- 0.076 Y 0.670
' 2- 0.53k 1.128
3- 0.573 1.167
4~ 0.688 1.282
5- 0.655 1.249
6- 0.6L46 1.240
T- 0.708 1.302
8- 0.345 0.939
9~ 0.753 1.347
10- 0.212 0.806
f7/2 8 /o | 1= 0.529 1.123
o- 0.701 1.295
3- 0.796 1.390
L~ 0.776 1.370
5- 0.818 1.h12
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Table XI.  (Continued)

Configuration Jn Eigenvalues - Energy

(proton-neutron) _ ' (MeV) (MeV)
£0/2 B9/2 6- , 0.761 o 1.3%
: - - 0.854 © 0 1.h48
8- 0.671 1..265
h9/2 dS/Z 2- 1.015 1.609
3- 1.390 . 1.984
I 1.390 1.984
5- 1.421  2.015
6- 1.483 2.077
7- 1.402 1.996
f7/2 111/2 2- 1.358 1.952
3- 1.469 2.063
I 1.529 2.123
5- 1.498 2.092
6- 1.573 2.167
T7- 1.490 2.084
8- 1.600 2.194
9- 1.324 1.918
By /o S/ ' - 1.869 2,463
5- - 1.970 2.56k4
£z dS/Z' 1- 2.066 2.660
_ 2- 2.256 2.850
3- 2.283 2.877
be 2.263 2.857
5- 2.393 2.987
6- 2.126 2.720
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Table XI. (Continued)

Configuration‘ | Jn Eigenvalues Energy
(proton-neutron) (MeV) - (MeV)
h9/2 &7/ - 1- ‘ 2.176 2.770
2- 2. bl 3.038

3- ~ 2.35L 2,948

b- ' 2.390 2.984

o= 2.h7 3.011

6- 2.235 2.829

7- 2.449 3.043

8- 2.180 2. 7Tk

h9%2 d3/2 : 3- 2.485 - 3.079
4o 2.521 3.115

5= 2.505 3.099

6- 2.476 3.070

T/ 81/ 3- © 2.800 3.3k
L- v 2.778 3.372

f7/2 &/ 0- - 2.530 3.124
1- 2.698 3.292

2- 3.034 3.628

3- 3.035 3.629

4o 3.220 3.81k

5- 3.056 3.650

6- 3.268 3.862

3.536

7- 2.94k2
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Table XI. (Continued)

Configuration Jn Eigenvalues Energy

(protoq—neutron) (MeV) (MeV)
£ /o d3/2 ' 2- 3.09k : 3.688
3- - 3.247 3.841
b 3.327 3.9z
5- 3.156 3.750
h9/2 315/2 "3+ 0.496 1.090
Lt 1.083 i 1.677
5+ 1.140 1.734
6+ 1.131 1.725
T+ 1.249 1.846
8+ >1.133 1.727"
9+ 1.290 1.88k
10+ 1.090 1.684
11+ 1.311 1.905
12+ 0.880 .47k
f9/2 315/2 by 2.051 2.645
. 5+ 2.243 2.837
6+ 2.230 2.824
T+ 2.221 2.815
8+ 2.269 2.863
O+ 2.177 2.77L
10+ 2.29L1 2.885
C 11+ 1.969 2.563
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Table XII. Calculated. eigenvalues and energy levels in P20, 1n
the lagt column, eigenvalues are expressed in a new nergy scale in which
the' ground state lies at zero energy. The indicated configuration is

- taken to be the dominant one. ‘ '

“Configuration B Bigenvalues Energy

(proton-proton) (MeV) (ev)
B9 /2 By /o | O -1.597 0.0

o -0.373 1.224

bt -0.166 1.431

6+ | -0.08kL 1.513

8+ -0.027 1.570

Ny /0 T7/2 1+ .0.303 1.900

o 0.582 2.179 -

3+ 0.792 2.389

b 0.928 2.525

oF 0.855 2.h52

0.896 2.493

T 0.86k 2.461

&+ 0.863 2.460

L2772 T1/2 | 0+ 0.868 2465

- ot 0.76k 2.361

b+ 1.66kL 3.261

68 S 1.7kl 3.338

f13/2 hi3/2 Or 2.718 k.315

et 2.903 I . 500

bt 3.050 LL6kT

&t 3.118 .75

B+ 3.158 k755

10+ 3.187 L. 78k

le+ 3.222 L.819
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Table XII. (Continued)

fConfiguratibn Jr Eigenvalues- Enérgy
(proton-proton) (Mev) (MeV)
hy o 113/ | ) 2- 1.526 3.123,
' 3- 1,645 3.2kh2
- 1.575 3172
5- 1.602 3.199
6- 1.582 '37179
T- 1.567 3.164
8- 1.583 3.180
9~ 1.510 - 3.107
10- 1.583 3.180
11- ©1.315 ‘ 2.012
Torz Lis/e 3- 2.315 3-912
b 2.4k97 L.ook
5- 2.438 4.035
6- 2.510 L.107
7- 2.47h ' Lo
- 8- 2.512 | - k109
9- 2.499 k.096
10~ 2

. 506 : 4.103




Table XITII. Calculated eigenfunctions for B.iQIO.
EBigenfunctions
Eigenvalues
(ev)  Poj2Bgz Pge i Ttz B9 Pop Oz Tee'ue Pge fie Tz Poe Bz Py Tty T fye Ty e
J=0

-0.572 -0.9999 0.0099
J=1

-0.594 0.9767 -0.1883 0.0578 0.0130 -0.0819 -0.0130
0.076 0.0893 0.6836 0.7167 0.0753 0.0232 -0.0686
0.529 0.1735 0.6925 -0.6708 0.0680 -0.0154 0.1878
J=2 .

-0.311 - -0.9727 -0.111k 0.0175 -0.10k9 0.169% -0.0010 -0.03%05 0.0073 0.0139
0.53h -0. 1654 0.9000 -0.177% 0.0038 -0.3500 -0.0480 0.0638 -0.0131 0.0233
0.701 -0.00%% . -0.207% -0.9711 0.1073 -0.0300 -0.0272 0.0017 0.0114 0.0211
1.015 . -0.156% -0.2632 0.1510 0.6690 -0.6403 ) -0.0089 0.1526 -0.0458 -0.0153
1.358 -0.0065 -0.2511 -0.0063 -0.7205 -0.6459 0.0030 0.0141 0.0015 -0.0123
J=3 )

-0.251 -0.9951 0.0212 -0.0151 -0.0593 -0.0660 -0.00%3 0.00k1 0.0272 -0.0136 -0.0006 -0.0088
0.57% -0.0145 -0.8796 -0.h721 0.0186 0.0230 ’ -0.0277 -0.0193 ~-0.0125 -0.0116 0.0286 0.0057
0.79 -0.0187 -0 73k 0.8758 0.0121 -0.0586 0.0021 -0.0002 0.0bk7 -0.0058 -0.0520 -0.0058
1.390 ~0.0909 0.0140 <. 0.0h41 0.7650 0.6245 0.0031 -0.0543 -0.0957 0.0138 0.0368 0.0213
1.469 -0.0132 -0.0181 0.0514 -0.6366 0.7657 -0.0187 -0.0641 -0.0158 -0.0048 0.0092 0.0173
J =

-0.135 0.99kk4 0.0643 0.0168 0.0ko7 -0.0606 0.0227 0.0100 0.0160 0.0124 0.0122 -0.0071 -0.0078
0.688 -0.0691 0.941k 0.3117 -0.0259 -0.0858 -0.0493 -0.0129 0.0196 -0.0221 -0.0092 -0.0106 -0.0007
0.776 -0.0040 0.3112 -0.9492 -0.0003 -0.0311 0.0026 -0.0265 0.0073 0.0101 0.0025 0.0120 0.0110
1.390 -0.0702 -0.0154 0.0116 0.8kg2 -0.4537 0.2189 0.0040 0.0981 0.0953 0.006k -0.0259 -0.0090
1.529 -0.0266 -0.0963 -0.0027 -0.4679 -0.8762 -0.0371 0.0085 0.039% 0.0035 0.0101 -0.006% -0.0088
0.869 -0.0153 0.0446 0.0173 -0.2299 0.0829 0.9519 -0.0240 0.1039 0.1395 -0.0120 -0.0225 -0.0008

-‘[L-




Table XITI. (Continued)

Eigenvalues X Eigenfunctions
(MeV) boro Bg/n hosn L1/0 2172 Bg/0 Bora d5/p f2/2 g By S1/2 L2020 95/2 By /o B7/2 h9/2 &5 /0 Tr/2 512 L/2 87/ /2 %32

i=5
-0.202 -0.9967 -0.0005 -0.0107 -0.0565 -0.0410 -0.03%26 -0.0049 -0.0081 -0.0030 -0.0136 -0.0103
0.655 -0.0020 0.9564 0.284k9 -0.0212 -0.0bkk -0.0200 0.0134 0.0119 0.0001 -0.0258 -0.0107
0.818 -0.0106 -0.2857 0.9554 0.0353 T -0.0201 0.0343 0.00k1 0.0005 0.0175 -0.0k19 -0.0022
1.hk21 -0.0715 0.0433 -0.0199 0.9h21 0.2651 0.1841 0.0067 0.0027 -0.0156 0.0204 0.0103
1.498 -0.0198 0.02k9 0.0498 -0.2624 0.9575 -0.0499 -0.0205 -0.0686 -0.0335 0.0248 0.0365
1.970 -0.0222 0.0219 -0.0213 ©-0.1952 0.0006 0.9788 0.0324 0.0339 - 0.0022 0.0111 -0.0027

i=6 -
-0.084 -0.9953 -0.07%9 -0.0334% -0.0210 0.0348 : -0.0091 -0.0197 -0.0229 0.0018

0.646 -0.0809 0.8091 0.5785 -0.0069 -0.0516 : : 0.0018 0.0149 -0.0272 -0.0164

0.761 -0.0157 0.5786 -0.81ke -0.0139 -0.0251 -0.0277 0.0110 -0.0092 0.0118

1.483 -0.0346 -0.0062 -0.0108 0.9381 -0.3194 0.0154 0.0743 0.1032 } -0.0106

1.573 -0.0226 -0.05% -0.0079 -0.3297 -0.9392 0.0309 0.0546 0.0330 . -0.0058
-0.218 -0.9960 -0.0166 -0.0087 -0.0829 -0.0207 -0.0106 0.0012

0.708 -0.0142 0.9827 0.1686 -0.0313 -0.0591 ’ 0.0072 -0.0331

0.854 -0.0090 -0.1708 0.9819 0.0488 -0.0301 0.000k - -0.0569

1.402 -0.0846 T 0.0416 -0.0404 0.9919 0.0707 o 0.0215 0.0045

1.bg0 -0.0151 0.0513 0.0k52 -0.0713 0.9924 -0.0572 : 0.0423

1=8
-0.062 0.9884 0.1138 0.0928 ~0.020% 0.0316

0.345 0.1333 -0.4186 -0.8979 0.0249 -0.0075

0.671 0.0648 -0.8991 0.4301 0.0383 : ) -0.0280

1.600 0.0176 0.0507 0.0074 0.9917 . -0.1158

J=9
-0.310 0.9993 0.0363 -0.0026

0.753 0.0364 -0.99%46 0.09%2

1.324 0.0008 -0.0963 -0.995% \

-ZL—
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: 2]
Table XIV. Calculated eigenfunctions for the even-parity states in Po loo

Eigenfunctions

Eigenvalue _
, ‘ h h , f f f i i
(eV) fo/2 Pofe Tojz Tr/z Trjzir/z hizfe ‘13z

J =0 '

-1;597 - -0.884k5 : -0.3032 ' 0.354k
1.016 -0.3697 ‘ 0.9190 -0.136kL
2.718 -0.28kk ' -0.2517 -0.9250
J=2

-0.372 -0.9895 - -0.0305 {-000873 0.1109
0.928 -0.0350 0.9989 0.0216 -0.0208
1.518 -0.0979 -0 .0269 0.9806 ~0.1013
2.90k =0.1.003 -0.0217 -0.1116 -0.988L4
J =k

-0.166 , -0.9965 -0.0369 -0.0Lk6 0.0589
0.896 -0.0390 0.9988 0.0152 -0.0224
1.664 ~0.0L7h -0.0183 0.99%69 -0,0586
3,051 -0.0553 -0.0236 - =0.0616 -0.9962

J =6

-0;084 -0.9980 -0.0433 -0.025k -0.0383
0.0863 -0.0k46  © 0.9986 0.0113 -0.0251
.74 ~ -0.0263 -0.0134 0.9989 -0.0363
3.118 -0.0362 -0.0263 -0.0376 - C-0.9982
J =8 ’

-0.027 -0.9977 -0.0622 ' 0.0260
0.76k4 -0.0630 0.9974 | . -0.0336 ¢

3.158 -0.0239 -0.0352 ~0.9900
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d. Discussion. - From the analysis of various shell-model calculations
and the study of the properties of nuclear matter, there are indlcations

that the nuclear force inside the nucleus is not very different from

" the free two-nucleon force. We have relied upon the free two-nucleon

potential in estimating the parameters of the central and tensor forces.
Our analysis of the tensor-force effect indicates that the. tensor force
behaves quite differently from the central force and, indeed, seems to
correct the order and spacing of the troublesome spln -0 and 1 levels in
Biglo. The analysis of Blel leads to the conclusion that the range

of the tensor force in the residual interaction is about 2 fm or less.
As shown clearly in Figs 12 and 14, the infinite-range approximation
for‘the tensor force is very dangerous. At the short ranges employed,
fhe tensor force acts se specifically on the,twe levels of spin O' and

1 thatit cen nétbe simulatedbby a linear combination of the four centralf.
force components. Our choice of the residual force,(Potential‘II) which -
is slightly modified from the simulattd BGT potential (Potential I) seems
to give a rather good agreement with the experimental spectra. 'Since”
 our residual force explains the ground-state multipletlof BinO very
well, it is 1nteresting to see if we can explain the‘othernbbserved'-
multiplets from our theoretical calculation Levelsbfrom'o to 0,581

MeV are clearly from the configuration (h9/2g9/2), and the spin assigns
ments shown in Fig. 9 are probably correct. Also the assignments of .

9/2 5/2 and (h /2 1/2 J_h »2 for levels at 1 577, 2,517, and
2.572 MeV seem reasonable. Erskine suggested from the central- force
.calculation—ghat levels at 0.672 and 0.912 are’ (g9/2 ll/E)J =10" ana
/2g9/2 J= , respectively 23 The relative cross sections also

appear to support these assignments. Erskine et al. ‘found that the
level at O. 672 MeV is very weak, suggesting (h /2 li/e)J:lo- If this |
is true, the other J states from /2 11/2) are not. expected to appear.
Six levels ranging from O. 912 to 1. 517 MeV are probably from the ad-
.mixture of 7/2g9/2 and /2 ll/2 the dominant part being

. f7/2g9/2 | Because of the configuration mlxing,vthe relative Cross

sectlons are not very useful for assigning the spins of these levels.



At higher energies, the various other factors such as core excitation
~and core vibration must be considered, and it is very difficult to con-
clude any assignments of spin and parity. However, six levels.at
1.577, 1.916, 2.075, 2.138, 2.173, anﬁ.ELQBSMeV have comparatively
smaller relative cross sections then four levels at 1.972 (doublet),
2.027, and 2.102 MeV, and this suggests these six levels are probably
from the admixture of»(h9/gd5/2) and (f7/2111/2), with (h9/2d5/2) being
the dominant configuration. Four other levels at 1.972 (doublet),
2.027, and 2.102 MeV seem to come from the configuration (Pg/ggq/g)
arising from the core-excitation. It appears to be very di%%ic&lt to
assign configurations to the levels above 2.5 MeV, becsuse the core
vibration and core excitation surely become more important. The
suggested spin and parity asslgnments for the levels below 2.6 MeV are
summarized in Table XV.
The B-decay properties of BinO have played an important role
in the deveIOpement of B-~decay theory, because it is one of the few. .3
known. cases. of a first-forbidden transition AI = 1(yes) showing striking
deviations from the allowed shape. The so called £ approximation can
explain the spectrum shape if certain beta-decay matrix elements bear
certain ratics to each other. As an independent check from the shell-
model theory on the value of & , which is the ratio i(r}/(gfgg , we
use the ground-state wave functions of Biglo and Pogioméresented in
Tables XITTI and XIV and find & = - 0.6%. (Cnly the lowest three con-
figurations are used for Biglo, since these three configurations are
dominant. We used the re§u1ts of Newby and Konopinski to evaluate the
R-decay matrix.elements,5i) For the pure configuration h9/2ill/2 5
the value of gﬁ is 41.0, wheress it is -0.1 forjthe pure hg/2g9/2
configurationnbpa The recent paper by’Fujita56 on %he‘beta;aecay of
RaE based vpon the conserved-current hypothesis of Peynmen and Gell-
Mann57 indicated that the value of & should‘be -l.2K &ég -0.48 in
order to fit both the beta-spectrum shape and the beta-polarization
data, whereas we have -1.2« €. 0.12 1if we consider only the spectrum
shape. OQur value of £ = —0065 is consistent with the limit set by

Fujita.
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Table XV.2 guggested spin and parity assignments for levels below 2.6
MeV in Bi 1 . Level energies and relative differential ¢ross gections
are taken T 08 ErSkige et al. (régegence 50). The igiﬁs for
(n g9/2) =009 (n de /2)°=%sand (h s Jd=4,5 nave been

2 ©5/2 ; 9/2 81/2
sug ésted by Erskine et g{. / / /

. Relative Suggested - Suggested

Energy (MeV) differential _
cross section Jn configuration
0.0 1.4 1- B
0.047 0.4 0-
0.268 9.6 9-
0.320 2.3 2-
0.347 3.8 3- £> (h9/2 89/2)
0.433 14.9 5- and T-
0.501 5.3 b-
0.547 7.0 6-
0.581 8.0 8- A
0.672 0.4 (10-) (hy/p 11 /)
0.912 1.9 (8-) R
1.172 1.2 (3~ or 5-)
1.372 1.0 (L4-) : :
1.460 1.6 (6- or 7-)
1.517 1.4 (7- or 6-) _J
1.577 6.9 2- h
1.916 21.6 (4-)
2.075 26.3 (7-) >}(h9/2d5/2)+5(f7/2i11/2)
2.138 9.3 (3-)
2.173 24.9 (6-)
2.235 23.5

(5-) A
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Table XV. (Continued)

_ Relative . Suggested = . Sﬁggested
Energy (MeV) differential ‘
S ~ cross section Jm ‘configuration
1.972 (doublet) 123. (3= and 6-))
2.102 514 (%-) -
2.517 SECTE 1} R
181 5 } <h9/2 S1/27"

2.572
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The reason we obtain the value of £(-0.63) outside the limit
of the two pure configuraticns (& = -O.l.for.hO/Qgg/g'and
£ = 1.0 for h9/2ill/2) is the large positive_Value of the off-
. . . T T
diagonal tensor-force matrix element <h9/2g9/2]V (212)812]h9/2111/2>,

which in turn yields a negative component of the eigenvector

[h To show that the off-diagonal tensor-force matrix

9/2i11/2>
N

element (h9/2g9/2)VT<£;2)312[h9/2ill/2> is positive and r;ther large

for the range we are using, we plot (1/5)<h9/2g9/2’PTEUTE (r12)812]

By rpiiy /o) and (1/5)<h9/2g9/2IPTOUTOT<£12>812'h9/2ill/2> as a

~ function of.the force range in Fig. 20. The central-force off-
‘diagonal matrix element is smaller and of the opposite sign compared
to the tensor, so we see the essential role of the tensor force in
inducing configuration mixtures of the proper phase to explain the
beta-decay phenomena.

Most recently, a reanalysis by Spector58 of RaE beta decay has
established the limits -1.6 < £ < -0.8, which aregely overlap Fﬁjita's
limits.. From a shell-model analysis (without tensor force) in which
the miXing'of.the core-excited states is taken.into account through
a delta-function force, Spector obtains & x -1 for AE = Hw.~ 4 MeV.
The strength of the delta-function force is.chose by Spector. so as
to preserve the volume energy of the delta-function potential when
compared to. the finite-range force used by Newby-and-KOnopinski.5l
Therefore, we feel that Spector's calculation may overestimate the
amplitudes of mixing of the core-excited states, because it is
known59’6o that this choice of the strength of the: delta-function
force yields larger matrix elements (by a factor of 3 to 4) than the
finite-range force used by Newby and Konopinski. We feel that. the
dominant. consideration. leading to satisfactory & values for the
shell model is the reversed sign of the configuration mixture: of the
principal two configurations, as caused by the tensor. force. The
additional smaller contribution due to..the core-excited states may
well bring our value of £ (= -0.63) within the limit (-1.6 < & < -0.8)
set by Spector. More refined analysis 1s necessary to. obtain
guantitative results with inclusion of both the core excitation and

the tensor force.
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Fig. 20. Off-diagonal tensor-force matrix elements

(1/3) (ng/2 eg/2 | Py 5129 /2 111/p ) and
(1/3) (h9/2 &9 /2 | Pro 812 |9 /2 111 /2 ) for BiO as &

function of the force range.



Another interesting quantity is the megretic dipole moment of
Biglo. Using the atomic-beam technigue, Alpert et al. have measured
. ) 51 .
this moment to be 0.04L2+0.0001 nm.~~ If one assumes pure corfigurations,
the magnetic moment in the Schmidt limit is +0.08 nm for h9/2g9/2,
«0.36 nm for h, /.1 and -4.07 nm for f . On the other hand
> 9/211/2 7/289/2 209 o
if one uses the empirical g factor for the h9/2 proton from Bi (un-
fortunately the empirical g factor for the 39/2 neutron is not known yet),

the magnetic moment of BiElO is 0.24% nm and -1.08 nm for the pure con-

figuration of h9/2g9/2 and h9/2lll/2 s respectlvelyélo
Using our wave function for the 1- state of Bi 5

¥ j210(971) = 0-9T6T g ja8q ) - 01883 [ng iy, jo) + 00581y 58050

we find the magnetic dipole moment of BinO to be 0.050 nm-iﬂ the Schmidt
limit, whereas it is 0.177 nm if we take the empirical g factor for the
h9/2 proton. Because the measured magnetic moment is small and the sign
of the moment 'is not determined by the experiment, the above calculated
results seem to be consistent with the experiment. It should be noted

that the wave function of the Biglo ground state obtained by Newby and

. . . : . . A . .
Konopinski andvpredomlnantlyhg/Qlll/2 yields the magnetic moment of

~0.75 nm. The same problem applies to the Bi 0 eigenfunction of

. , 2 P
Kharitanov et al.”  and of Leee—KrJhii',irlg.5)a

J=11-
)

) )
which could be an E3? isomeric state of detectable half life. It cannot_

210 . i e .
For Po ; we note at 2.91 MeV & predicted state(L&/2115/2

decay by dipole or guadrupole transitions but may decay into the state
J=8+ (. J=8+ ] L
(h9/2h9/2) (¢f57‘MeV) or (h9/2f7/2) (2.&6_MeV) by E3 transitions,

which then may cascade to the ground state by several E2 transitionse
This is schematically shown in Fig. 21. Calculations with our eigen-
functions predict considerable retardation below single-particle strength
for the higher energy E3. For the E3 transitions the product of the
partial gamma half life and transition energy to the seventh power should
be tl/2E7 ~ 2.3%107 sec Mev! for the 1.3h-MeV E3 and tV/2E| = 7.5%1070
sec_MeV7 for the 0.45-Mev transition. The half life of the ll-state should
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(MeV)

Energy

12

My-29671

Fig. 21. Calculated energy levels of P00, For each spin, the
left column lists the odd-parity states and the right column
the even-parity states. The various spin-J states arising
from the same configuration are connected by lines, and the
possible E3 and E2 transitions from the predicted isomeric

state (h9/2 il3/2)J=ll' are shown by arrows and dashed lines.
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thus be a few microseconds.  (Here we have used the harmonic-oscillator
radial wave functions, and an effective charge of 1.0e is assumed.)

62

- Funk et al. have recently measured the y- transition probebilities
of 46.7 keV(6+ ——> 4+) and 246 keV(b+t ——> 24) in P00, They
obtained 5.3%10 sec-l.and 35.1x10 sec-l , respectively. Our eigen-
functions for the lowest 2+, 4+, and 6+ states show so.little configuration
mixing that it is approprlate to calculate the shell—model lifetimes
between pure (h9/2) states and estimate an effective charge for the
protons. We have computed these E2 transition probabilities, using our
wave functions presented previously with the harmonic radial wave functions.
The effect of -configuration mixing was found to-be negligible, and the
ratio of the: observed to célculated transition probabilities is ..

T(E2) obis /T(EE) ~ 8 for both 46 T-keV and 246-keV transitions.. One
may attempt to explaln thls dlscrepancy by~ assumlng the effective charge
of (8e) 1/2 (= 2. 9e) for the proton. The presence of the extra protons
outside the core tends to polarize the core, thus giving rise to the
effect;ve increase of the proton charge. The effective proton charge

due tofthe polarized core is expected to be

. Z ’ o s
ere. =L +E ¥

where Yy 1is 1 for the harmonic-oscillator potential65 and vy 1s 3 to

5 for the square-well potentlal ek Our value of yA ~ 2.2 seems reasonable
if one notes that various eflects such as the core ex01tat10n and vibration

have not been taken into account in our calculation.
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D. PARTICLE-HOLE INTERACTION

In the preceding chapter, it was. shown that thé tensor force must

be included in the residual interactlon’to explain the low-energy -

90 1210 210

phenomena of . Y Bi~ 7, and Po . Since Potential II appears to give

rather good semi-quantitative agreement between theory and experiment

in. BiElO nd Pong, it 1g interesting to see-if one can.use the same.
force for- nuclel with.a particle and a hole plus the doubly closed shell
We will con51der two odd-odd nuclei, Tl 08 nd. Bi 208. The theoretical

aspects of these calculations already have been discussed in Chapter B,
Section 2. Detailed assumptions.and results of calculations are presented

in the following.

1. Thallium-208

a. Introduction. Six levels in T1208 were oObserved from the alpha-decay

of Bi 212. The alpha-gamma angular-correlation measurements of Horton

65

and. Sherr ~ and of Weale66 suggest that the angular momenta of the ground

_state and the first excited state are 5 and L, respectively, which is also

consistent with the beta.decay-of the T1208 ground state to the excited

states in Pb208. The T1 08 ground state dedays predominantly into the
20 : :

5- and 4- states of Pb 8 with log f't ~ 5.7, but very weakly to the 3-

state of Pb208.67’68

doublet has been established by Graham and Be11%9 to be predominantly ML

The Lo-keV gamma transition in the ground-state

from both the L-subshell conversion-electron intensity ratio:(Liﬁir/LIII)

and lifetime. Spin and parity assignments for the observed levels in

208

T1 are presented in Fig. 22, and are consistent with the internal-

. - . . .70
conversion-coefficlent measurements by-Nlels*on:,’7 and more recent work

by Emery and Kane..7l The most recent work of alpha-gamma angular -
correlation measurements by Cobb confirms. these assignments shown in
Fig. 22.1°

From the shell-model calculation with a delta-function force,
Pryce has interpreted the two lowest levesl to be a doublet resulting
from the splitting of the (sl/2g9/2) configuration.51 Similarily, the
four upper levels can be attributed to the various spin states arising

from the configuration -1 g ] . Pryce's calculation disagrees
9/2

s
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Fig. 22. Experimentally observed low-energy levels in T1208.
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sllghtly with the experlmental level sequence shown in Flg 22 The 3+

and 6+ states are 1nverted in his calculated results

b. Zeroth-order energles and calculated spectrum The neutron s1ngle-

particle energies are taken from.Pb 09 81ngle—partlcle levels observed

by Mukherjee and Cohen,5.5

and the proton single-hole levels are taken
from Tlgo7,73 Thé resulting zeroth—order energies are listed in Table

CXVI.

Table XVI. Zeroth-order energies'for'TlQO8.

Even—parity states . . Odd-parity'statesu

Configuration Configuration )
(proton-neutron) Energy (proton-neutron)  Energy
(nole-particle) 7 (Mev) | (hole-particle) ~ (MeV)

sl/2g9/2 0.0 Sl/2315/2 1.4

d3/2g9/2 . 0.37 : d5/2315/2 1.78

S1/2%11/2 0.1

d3/2ill/2 1.;4

Sl/2d5/2 ' 1.56

85 /535 /o - 1.93

51/251/2 2.03

-d5/2s1/2 2.4o

webre B

sl/2d5/2~ : 2.52 : . -

d5/2g7/2 o 2.8k

d5/2d5/2 2.89
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The calculated results with Potential II are schematlcally com-
pared in Fig. 25 The- elgenvalues are. presented in Table XVII, and the
corresponding eigenfunctions are presented in Table. XVIII for only the

even-parity states of the lowest three configurations.

"‘*DiscuSSion The agreement of calculated and experimental spectra

as shown in Fig. 25 1s good 1f one considers that the same potentlal
(Potential IT) used.in 1710 and po®10 was used without any modifications.
The comparison of the other calculated levels with experiment is not
feasible at'present since no further experimental information is avail-
able. Although the tensor-force effects are not large in Tl 08 the
ground-state doublet states. (4+ and 5+) have their tensor-force matrix
elements with favorable oppos1te signs, .so that the tensor force tends:to
raise. the energy of. the 4+ state and lower that of the S5+ state, as shown
lnvFlg..Eﬁ. -The tensor force also plays a specific role in correcting
the inversion of the 3+ and G+ states of the [(aB/Q..)"l(gg/é)] con-
figuration;.a strengthened tensor force would improve‘theﬂcalculation

with respect to several spacings.

2. Bismuth-208

a. ‘Experimental spectrum. Recently,'Mukherjee.and-Cohen have studied

the low-energy spectrum of.Bi208 by the (d,t) reaction on Bi209.55

- Nine-
teen levels. were resolved as shown.in Fig. 24k. Their experimental data
on‘Bi208 are summarized in Table XIX. | ’

Prior to this experiment, Duffield and Vegors found an isomeric

208

state in Bi” - with a lifetime of 2.7 msec from the (¥, n) reaction on
BJ‘.209..7LL - This isomeric state cascades to the ground state hy two .gamma
transitions of 921 and 509 keV. .Partly from the internal-conversion-
coefficient measurements and partly from Wahlborn's shell-model.cal-
culation with a delta-function force,75 they proposed the following

decay scheme:

on o BB 4 B2 5t -

921 keV 509 keV
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Fig. 23. Comparison of the experimental and calculated spectra
of T1208. The abbreviations CF and TF refer to the central

and tensor forées, respectively.
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1 ' ' 2
Table XVII. Csalculated eigenvalues and energy levels in Tl 08. In

the right column, eigenvalues are expressed.in a new energy scale in
which the ground state lies at zero energy. The indicated configuration
is taken to be dominant. .

Configuration
(proton-neutron) J Eigenvalues, Energy
(hole-particle) (MeV) (MeV)
él/z &y /2 4f 0.185 - 0.024
5+ 0.161 0.0
d3/2 g5 /2 3+ 0.698 0.537
‘ by 0.596 0.435
. S 0.459 0.298
6+ o.7Qu 0.543
51/2 ill/2 5+ | 0.878 ‘ 0.717
. . 6+ 0.94%0 . 0.779
d3/2 ill/z Lt 1.516 " 1.355
5+ 1.233 1.072
6+ 1.283 l.122
T+ 1.276 1.115
51/2 d5/2 2+ 1.718 1.557
3+ 1.791 1.630
d3/2 d5/24 1+ 2.482 2.321
o 2.115 1.954
3+ 2.135 1.974
apIE 2.379 2.218
51/2 sl/2 O+ 2.878 v 2.7TL7

1+ 2.507 2.436
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Table XVII. (Continued)

Corﬁfiguration , ,
(proton-neutron) J Eigenvalues Energy
(hole-particle) : (MeV) (MeV)
d3/2 51 /2 1+ , 2.872 2.711
: 2+ 2.61k : 2.453
sl/2 g7/2 3+ 2.601 . z.uuo
by 2.662 2.501
51/2 d3/2 1+ 2.879 2.718
2+ . 2.0k 2.543
d3/2 g7/2 2+ 3.06k4 2.903
3+ 2.965 2.80k
Lt 2.990 2.829
5>+ 1 2.992 2.831
d . 2
d3/2 3/2 O+ 3.h2k 3.263
oA 3.352 3.191
2+ 3.279 3.118
3+ 3.Q6u 2.903
51 /2 jl5/2 7- 1.580 | 1.419
8- 1.525 1.364
d3/2 315/2. 6- 2.029 1.868
7~ 1.960 1.799
8- 1.856 1.695
9- 2.105 1.944




208

Table XVIITI. Calculated eigenfunctions for Tl
Eigenfunctions
Eigenvalues )
(MeV) S1/2 Bg/2 d3/0 8g/p 1/2 h11/2 45/ 11170 81/2 %/2 45/ %5 /n 51/2 87/2 A5 /2 &1/e 4370 95/2
J=3
0.698 -0.999%6 T 0.0042 -0.0214 -0.0165 -0.0051 -0.0012
=4 .
0.185 0.9427 0.3256 0.0180 0.0153 -0.0673 -0.004T
0.596 - 0.3262 -0.9421 -0.0641 -0.0133 -0.0058 -0.0407
1.516 0.0015 0.0673 -0.993%0 -0.0635 0.0663 0.030%
J =5
0.161 -0.9984 0.0532 0.0007 -0.0122 -0. 0064
0.459 -0.0532 -0.9980 -0.0312 -0.0021. 0.0041
0.878 -0.001h -0.0313 0.998% 0.0k7% -0.0038
1.233 -0.0120, -0.0001 -0.0475 0.9982 -0.0323
J=6 .
0. 704 -0.9879 0.0801 -0.1321
0.940 -0.1266 -0.9102 0.3942
1.283% -0.0886 0.4o062 0.9094
J =7
1.276 1.0000

-0 6-
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Fig. 2. Experimentslly observed low-lying levels in Bi208.
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Table XIX. Energy levels excited in Bi209(d,t)Bi208reaction (Ref. 55)

Excitation Relative  Excitation Relative
energy : yield energy yield
(MeV) 0 at 5% (MeV) at 45°
0 0k 1.35
0.07 _ 8k 1.kg
0.29 ) 29 . 1.62 5
o.ko T2 2.14 15
0.43 . 2.20 5 2>
0.58 .19 2.2 o 6
0.68 60. 2.7 8
0.75 : 65 2.89 2
0.82 . ' 18 3.10 b
0.88 , 122 :
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As will be shown later, our calculated results indicate a possibility
of such a. high-spin isomeric state. The ground state is Clearly S,
and the first excited state M%, since the ground state has a higher

relative cross section.

b. Zeroth-order energies and results. The proton single-particle levels

209 Sk

are taken from Bi and the neutron single-hole states are taken from

Pb207.76 The resulting zeroth-order energies are shown in Table XX.

Table XX. Zeroth order energies for Bi208
Even-Parity States Odd—Parity States

Configuration , R _ Configuration | ‘
(neutron-proton) Energy (neutron-proton) Energy
(hole-particle) (MeV) (hole-particle) (MeV)

Py /b 0.0 | Lys g 1.63

f5/2h9/2 0.57 113/2f7/2 | '. 2.5%

3202 0-%0 |

Py /oT7/2 | 0-90 .

f5/2f7/2 1.h7

p5/2f7/2 1.80

RIERTE 225

f7/2f7/2 | 3.29

The particle-hole matrix elements are calculated with Potential 1T
by the method described in. Chapter B, Section 2. The resulting matrix
is diagonalized to obtain the eigenvalues and eigenfunctions, The
eigenvalues are presented in Table XXI, and the eigenfunctions for- the
even-parity states of the lowest four configurations are presented in

Table XXII.
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Table XXI. Calculated eigenvalues and erergy levels in Bi208. In the

right column, eigenvalues are expressed in a new energy scale in which
the ground state lies at zero energy. The indicated configuration is
taken to be dominant. Co ) :

Configuration _
(neutron—proton) i d Eigenvalues ~ -+ Bnergy
(hole-particle) _ o » (MeV) " _ (MeV)
Py /5 Py SR s S 0.1k6 0.080
5+ 0.066 : 0.0
: fS/Z h9/2~ | 2+ 1.009 0.943
o o 3 0.745 0.679
e 0.644 0.578
5+ 0.706 B 0.6k
6+ 0.579 1 0.513
T+ 0.727 0.661
' h I ) .992
p3/2 9/2 3+ 1.058 0.992
. : by 1.043 0.977
o+ 0.951 0.885
6+ 1.146 1.080
by 1.117 1.051
f f 2. 2.26
5/2 17/ L 2:33 3
o - 2+ 1.785 1.719
3+ 1.771 1.705
T 1.742 1.676
5t 1.630 1.564
6+ 2.057 1.991
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Table XXI. (Continued)

Configuration S
(neutron-proton) J Eigenvalues Energy
(hole-particle) - ‘ (MeV) (MeV) ‘
Py f7/2 o 2+ 2.205 ©2.139
\ 3+ 1.972 1.906
) by 1.958 1.892
S+ 2.029 1.963
f7/2 h9/2 ‘ 1+ 2.911 2.845
2+ 2.559 2.493
3+ 2.537 2.471
I 2.527 2.461
54 2.472 2.406
6+ 2.546 2.480
7 2,431 2.365
8+ 2.697 2.631
f7/2 f7/2 \ 0+ 4,348 4.282
- 1+ L.198 o k132
2+ 3.6L5 3.579
3+ 3.572 / 3.506
I 3. b4k ' 3.378
5+ 3.484 3.418
6+ 3,344 3.278
T+ 3.578 3.512
'il3/2 By /7 A 2- 2.816 2.750
3- 1.893 1.827
b 2.063 1.997
5~ 1.88k4 - 1.818
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Table XXI.. (Cbntinued)

Configuration

(neutron-proton) - J Eigenvalues .v_,-' Ehergy
(hole-particle) 4 B (MeV) ‘ (MeV)
113/2 h9/2 6- . 1.913 1.847
T- 1.898 1.832
8- 1.828 1.762
9- 1.963 1.897
10- 1.751 1.685
11-= 2.300 2.234
113/2 To/z ‘ 3- 3.086 3.020
b 2.696 2.630
5- 2.685 2.619
6- 2.650 2.584
7- 2.609 2.543
8- 2.649 2.583
9- 2.570 2.504
10- 2.735 2.669




Table XXII. Calculated eigenfunctions for Bi

208"

Eigenvalues Bigenfunctions
(Mev)  Pije oz Tsfelore Pspfge Papfre fsppfre Pzt Tgptope T Ty
J =2 B
1.009 - 0.9958 0.0316 -0.0010 -0.0850 -0.0100
J=3 . P }
0.745 -0.9982 -0.0524 0.0076 -0.0046 -0.0233 0.0033 -0.0081"
1.058 -0.0525 0.9931 0.0131 0.0317 -0.0006 -0.0988 -0.0018
1.079 -0.0089 0.0057 -0.9873 0.1541 0.0289 -0}0195 -0.0011
0.146 -0.9780 0.1814 0.0950 -0.0259 -0.0121 f -0.002k4 0.0259 0.0037
0.644 -0.1465 -0.9473 0.2515 -0.1234 -0.0179 _0.0077 0.0462 -0.00%31 -
1.043 -0.1289 -0.2186 ~0.9579 -0.0885 0.0233 0.0097 0.0969 0.0094-
1.117 -0.0531 -0.1295 -0.0539 . 0.9591 -0.1631 0.1712 -0.001k4 0.0%86
J =5
0.066 0.9813 -0.1914 0.0181 -0.0009 0.0003 0.0037 0.0023
0.706 0.1899 0.9797 0.0617 0.0028 0.0111 0.004%9 0.0052
0.951 0.0294 0.0569 -0.9971 -0.0175 0.0014 0.0357 0.0000
J = o ‘
0.579 -0.9852 0.1659 -0.0252 0.0%23 -0.0016
1.146 -0.1611 -0.979% 0.0022 0.1190 0.0153
J=7 :
0.727 0.9999 0.0119 0.0015

-L6-
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¢. Discussion. - As in T1208, we obtain.rather good agreement on the
ground-state -doublet. There has been some speculation.as to. whether
the: ground state is L+ or 5+. . The experimental relative cross sections
ebteined by Mukherjee and Cohen for the ground-state doublet.as'shbwn
in Table XIX clearly suggest that the ground state. is 5+;.since the ratio
of relative cross sections for the first excited state to the ngund state
is 8k /104 = 0. 807, and. this ratio.is theoretically expected to be
(2()+1)/(2(5)+1) = 0.818 if “the configurations-are pure. The results of
our calculation are very conslstent with this experimental information.
The other. excited states are not completely resolved, so that.relative
eross-section information isrnot yet helpful for assigning:spins:éhd
parltles to these states. » |

An explanation of the 2. T-msec isomeric state comes dlrectly from
:the results of our calculation. As shown in Fig. 25, the latter state
may be attributed to the 10- state of the [(1 i /2) ( 9 2)]_ conf;guration,
which may cascade through the T+ state of the [(f5/2)—.(h9/2)JATCOn—

figuration to the ground state.
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Fig. 25. Calculated energy levels of Bi208. For each spin
the left column lists the odd-parity states, and the
right column the even-parity states. The various spin-J
states arising from the same configuration are connected
by lines, and possible E3 and E2 transitions from the
isomeric state [(ilS/g)'l(h9/2)]vJ=lo'

arrows and dashed lines.

are shown by
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E. CONCLUSION

s
~

The tensor force has been neglected in most of the past shell-
model calculations primarily because of the computational complexity
involved, but with the hope that the tensor-force effects are small and
may be simulated by an effective central force. That this is not always
true -is clearly shown in our calculaﬁions on BiElO and Poglo. The general
success. of past central-force calculations may be due touthe tensor-force
matrix elements being small in many cases.. From the analysis of various
shell-model calculations, the central force alone seems to approximate
the residual force very well in most cases, thoughrmany of these cases
involve like nucleodns, where the Pauiivprinciple makeéAthe tensor-even
force inoperative. However, the ﬁensof-force contributions aré not -
always hegligible, and must be. taken seriously in some cases such as in
Y90, Biglo, and Po210 presented here.. Also, we see in Bielo that. con-
figurations of high J with parallel or antiparallel aldgnment of angular
momenta can éxperience appreciable tensor-force effects.

The characteristic of the tensor-force matrix element is that it
'maf'be either positive or.négativé,}so that in some cases the tensor-
force effects can. not be exactly simulated. by a_linear combination of four
central-force components. Also it should be noted that it is very
difficult to simulate the finite-shorter-range tensor force by adjusting
the strength parameters of the infinite-range tensor force, and that. the
infinite—range apprbkimation.for the tensor force is quite unreliable.
Furthermore, inclusion of the.tensér force may lead us to a better under-
standing of the residual force. in the nucleus, and we may hope to find a

residual force that can be used without alteration for @different nuclei.
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II. NUCLEAR SPECTROSCOPIC STUDIES OF
ISOMERIC STATES IN ODD-ODD YTTRIUM NUCLEI

A. INTRODUCTION

' 'During the past decade, much experimentél'data.has.been accumulated
(in-the.field of nuclear.specfroscopy,;and_many advances have been made
toward thevunderstanding.of.nﬁcleaf~structuie. ?Particularily; the nu-
clear shell model has béen very successful in corfelating-éhd.explaiﬁing
much of the experimental information,_and its suéceéses-iggd us to hop§
to understand the effective nuclear force inside ‘the finite nuclei from
the. detailed theoretical analysis of the experimental spectra. As the
théoretical calculatims have become more refined, the detailed information
‘of nuclear spectra has become increasingly important as a test of ‘theory.

The greatest successes of the nuclear shell—quel in its-simplest
form have been in explaining the,low;enefgy properties of nuclei near
the doubly-closed shells...This group .of nuclei 1is.the most important
~and.sultable subject for obtaining much needed infermation-on the nature
- -of the effective residual nuclear force inside the nucleus, because these
nuclei involve only a few nucleons outside the inert core which has been
assﬁmedvto,give rise'to‘ancentral'field.in which the extra nucleons move.
vSince the theoreticai.tréatmenf.is the simpleét,and most basic;-the -
detailed. experimental information of these nuclei is.extremely important
in providing a- check.to theory and. thus leading us to- better under-
standing of the effective nuclear force inside the finite nuclei. . This
experimental.study has-been undertakén to add information about. the
“decay schemes of some Suéh 0dd~odd medium weight.nuclei. The results

I

of this investigation have been published previously.



. -102-

B. EXPERIMENTAL TECHNIQUES
1. Inetruments

The various spectroscopic instruments used in this study have all
been described in previous publications, and therefore only a summary is

given below and references are cited.

78,82

a. VPermanent-magnet spectrograph. Permanent%magnet spectrographs

(180 deg) with field strength of 100 gauss were used to detect internal-

conversion electrons. This spectrograph has a resolutlon of about O. l%

ahd_a transmission of the order of 0.01%.

b. Permanent-magnet. preaccelerating spectrograph. A permanent-magnet

9

preaccelerating spectrograph

‘spectrum'of Y86m. This spectrograph has a field strength of 50 gauss.

was used to study the low-energy electron

c. Double-focusing spectrometer. For measuring conversion coefficilents

by use of the internal-external-conversion method, a flat, double-
focusing beta-ray spectrometer8O of 25-cm mean radius was used. . This
spectrometer thas 0.3% resolution and 0.1% transmission. . A special source-
holder-converter assembly was used in the spectrometer, and is described

-

elsewhere.

d. DPenco gamma. analyzer.. Photons was .detected by the use of a 100-

channel pulse—helght gamma analyzer8l coupled with a %- by 3-in. thallium-

actlvated sodlum 1od1de crystal.

2. Source Production and Chemistry

a. ,Source production.. The neutron-deficilent isotope Y 6 was produced

in the Lawrence Radiation Laboratory s 60- -in. Cyclotron by irradiating
RbCl' (natural and enriched in Rb 5) with alpha particles, and Sr(N05)2
(natural and enriched. in Sr8 ) with deuterons. The spectroscopic sample
90 '
of Y

(natural and enriched in Rb87) with alpha particles. The €rocker 60-inch

was also produced in the 60-in..cyclotron by irradiating RbCl

cyclotron was capable of accelerating protons, deuterons, and alpha

particles to energies of about 12 MeV per nucleon.

s
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“b.  Cyclotron target. - Two general types of cyclotron target are available.

The. first is the internal target, which-uses a:single foil of the. target
material.. It is.ihserted_into.the.cyclotron1tank to .intercept the beam’
‘at any desired radius. . Since our target materials were in the powdered

. form, the .internal. target was not used in our. experiment. . The other
“type is theéexternalutarget, which is isolated .from: the main cyclotron
tank.by'a,systemJof aluminum foils. An aluminum foil serves to cover
the powdered target material in the target holder, and ion currents of

as much as 20 A have been. used on the external targets for short periods
of time without apparent damage. One advantage of the external. target
over the internal. probe target. is more.precise.control»by the. experimenter
over the energy. of the incident.particles. Any. desired thickness of
aluminum'foil.can be placed on the top of the. target material to .degrade
the. beam energy to a preferred value.. This is of‘particularvimportance
in alpha-particle bombardment, in which it may be desirable to produce
one of the (¢,xn) reactions with a minimum contamination'from other

alpha-induced reactions.

c. Chemistry. In most experiments, the pure, carrier-free yttrium
sources were prepared.as follows: . The. target was dissolved.in con-
centrated ammonium hydroxide solution -and passed thfough a. filter paper,
which absorbed the yttrium activity but not the strontium nor the rubidium.
After thorough washing of the filter.paper with dilute ammonium hydroxide
solution, the yttrium was removed with 8N ﬁCl. The details are described
step by step in the following:. . »
(1) Dissolve the target in a few ml of distilled water.
(i1) Add a drop of concentrated NH) OH and adjust the con-
centration to pH 9.
(iii) Filter the target solution and wash the filter paper
with. NH) OH (pH 9) solution several times. The yttrium
. activity will stick on. the filter paper as a hydroxide.
(iv) Remove the activity with a few ml of 8N HC1l. --The
resulting -solution might containuNHZ.ions,. To re-
. .
move NHA ions, add a few drops of concentrated HNO5 s

and boil to dryness.
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.d. Sourcé preparation. Samples used in the permanent-magnet spectro-

graph and in the preaccelerating spectrograph were prepared by electro-
- deposition onto a 0.010-In.-diam platinum. wire from.a’solution of
ammonium oxalate(78’82 For tﬁe double-focusing spectrometer, the sample
was electrodeposited onto 0.01-in.-thick copper foil from the ammonium

- oxalate solution.. A plating current bf 100 to 150 mA was used for 30

. min to 1 h. These sources varied in strength from 0.1 to.50 r/h,as

measured by a ‘beta-gamma survey meter at a distance of approximately 3 in..
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C. DECAY SCHEME STUDIES
1. Yttrium-86m

a. Determination of mass and half life. Following the purification of

yttrium from a target of natural RbCl which had been irradiated with
47-MeV helium ions, a 210-keV gamma ray was observéd in the scintiallation

spectrdm, with a decay period of 48tl min. At the same time, gamma rays.

83,8L

known to occur in the decay of the Y86 ground state were observed
to grow into the spectrum and then decay with the éharacteristic 14.6-n
half life of Y86. Similar results were obtained: from targets enriched
in Rb 2 and also from bombardments of enriched Sr86 irradiated with
15-MeV deuterons. Irradiation of enriched Sr86 targets with S-MeV
deuterons.failed to producevthe activity. From this information, the
L8-min activity can be assigned definitely as 186; |

Figure 26 shows a typical decay curve.of the élO-keV peak in
the scintillation spectrum, énd Fig. 27 shows a growfh curve of the

1-MeV photon group of Y86 (ground state).

b. Energy measurement of the isomeric transition. Additional informa-

tin &bout the "210-keV" transition, obtained from measurements in a 100~
gauss,.lSO—deg spectrograph, is summarized in Table XXIII. A more
precisevvalue of the energy is chosen to be 208.01003 keV, and it was
also verified from the energy differences between the K, L, and M lines

that this transition is indeed converted in yttrium, not strontium.
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Table XXIII. Internal conversion data of ¥86m
Electron Shell Binding Transition Intensity
energy : energy " energy ratios
(keV) o (Y) (keV)
7.98 Lip 2.17 10.15 LIII/ =1.50.5
8.06 Lirp 2.10 10.16
190:9 K 17.1 208.0 K/L /M=100/8.3/1.7
'205.6 ' “LI 2.39 1 208.0
207.5 - MI 0.1 207. 9

v A transition.of o98. 5+O 2 keV was also noted which, on the basis
of its KéL electron energy separatlon, appears to be converted in
stronthm rather than yttrium. The electron lines decay with a half
life of roughly 50 min. Although these data may appear to indicate a
'direct electron-capture branch of Y86 , ve dould not observe a 98 keV
"~ photon in the scintillation spectrum, and also, no other transitions
characteristic of the Sr86 levels appeared in the spectrum untll the
daughter (1k. 6 h Y ) began to grow into the sample. Experlments with
K X- -ray-gamma 001nC1denne also failed to indicate any radiations in
c01n01dence with K X-rays. The present ev1dence on this tran51tlon is

inconclusive.

¢. Internal-conversion-coefficient measurement. The gbsoelute

K-conversion coefficient of the 208.0-keV transition was measured. in
a 25-cm double-focusing spectrometer by use of the internal-external
conversion method due to Hultberg and Stockendal.85 This method
utilizes a converter that converts the photons emitted from the source
into photoelectrohs. If the photoelectric cross section is well-known
for a‘given converter material, the photon intensity can be deduced

from the intensity of the external-conversion electrons, which can be
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measured more accurately with the same spectrometer used for measuring

the 1nternal conver51on electrons. The method has been described.

indetail elsewhere. 85,86
To accommodate the activity and the photoelectric converter, a

épecial holder assembly was used which allows us to position the converter

from outside the spectrometer. By moving a shaft, the converter could,

be placed either in front of the source or in a position where it did

not obstruct the beam of.internal -conversion electrons emitted from

the source. This arrangement of the-assembiy is shown in Fig. 28. A

5- by lO-Lmﬁz rectangular uranium converter with a surfaée thickness

of 2.19*0.02 mg/cmz was used. The source was prepared by electrb-

deposition onto a 0.0lO-in.-thick_coppér foil.from an ammonium oxalate

solution within the. 2.0- by'9._0—mm2 rectangular area.

To calculate the internal-conversion coefficient, we use

e = B
T &, it d kb

where A6 is the intensity of internal-conversion electrons, AY is the
intensity of external-conversion electrons (photoelectrons), T 1is the
gbsolute photoelectric cross section (in barns/atom) for the K-shell of
the converter, f is a correction factor dde to the photoelectric angular
distribution andvtheigeometrid arrangemenet of the source and converter,
d is the converter thickness (in,mg/emz), k is the ratio of intensities
of sources used in measurement of the external- and internal-conversion
lines, and b is the dimension conver31on factor (1n atoms - cm /barns -
mg), which equals 6.025 x 10 /M where M is the atomic weight of the
converter atoms.

The quantities d, k, and b are known prior to the experiment.
The intensitites AB and AY are measured in the experiment. The correc-
tion factor f corrects the photoelectric angular distribution which
depends upon the particular physical parameters of the.source and

" converter, such as the sizes of source and converter and their relative



- ATquesse JI93JI9AU0D~-I9PTOYS0INOG .@N - 814

CoetoanW T . om ﬁ

cziTza

"-110-




-111-

ﬂdistance apart. Ideally, if we have a point source and a converter
”which has an infinitely large area, the photoelectric f factor would be

a very simple function. This is not ‘the case in the experiment, and
therefore eveluation of the T factof is rathef complicated. Since the
method of calculating the fvfactor is described in defail by Hultberg,86
we‘state only that a computer program wes written er this purpose by
Hultberg and a courtesy service for computing f factors ie available
ffom.the BESK compﬁter in Stockholm, Sweden. A

For the external -conversion electron measurement, a l-mm
aluminum-foil absorber was used between the source and converter to
absorb the internal -conversion electrons. .The quantities used in

calculating the f factor are summarized below:

Converter half width - 0.25 cm
Converter half height 0.50 cm
Source half width 0.10 cm
Source half height 0.45 cm
Source-to-converter distance 0.15 cm
Converter-to-aperture distance 19.00 cm
Absorber thickness o 1 0.10 cm
>Z_value.(atomie_number) of absorber 13 |
Energy of gamma-transition o 308 keV

Of eourse,_the(atomic sheil must be specified._ The result obteined from
‘the‘fBESK service" was f = Oi?OS:for the source used in the experiment
and f = 0.795 for the ideal case of a point source. |

 The absolute photoelectric cross section for the K-shell of
:uranlum has been studied experimentally as a function of the energy of
incident photons and is taken to be 318 barms/atom at 208 keV from an
extrapolation of the experimental points. ' | '

The intensities of the'internal and external-electrons are

measured by a flow type methane proportional counter as a function of

electron energy, which is propertional to the magnetic field of the
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7'spectr0méter ‘The decrease ‘in 1nten51ty due to’ the short half llfe

(48 min) is corrected at each méasured p01nt. The experlmental spectra
' fof “the 1nternal— and external=conversion lines are shown”in'Figs 29
‘and 30, respectlvely The relatlve intensity, k was taken to be unlty
‘because the same source was used for both the 1nternal- and external—
*converslon eledtron measurements. o '

Final vaIues'used‘for obtaininglthe convérsion coefficient

x of the 208-keV transition are:
A /b =330
5/ r =33 _ \

% = 318 barns/atom

£ = 0.705

4 = 2.19 mg/cm2
ok = 1.0

b = 6.025 X 10 /218 atom X.cm/barns X mg.

= 0.04t0.01, which corresponds to a mixed Ml -B2

These Vdues.yield 'K
87,88

transition .(about 40% E2).

a. Preaocelerating spectrograph results.‘ Altnough only the 208.0-keV
transition could be“asSIgnéd to YO on the basis of the photon or

initial electron spectra, obvicusly the observed 48-min half life is

much too long to be compatlble w1th an E2 or ML-E2 trans1tlon Therefore
a ‘searéh was made for a low energy tran51t10n A 50 gauss preacceleratlng
fspectrograph was “used, " with an acceleratlng Voltage of 9 82 kV ‘Two
electron lines whlch decayed w1th a half life of about 50 min’ were

‘ observed w1th an energy separatlon of O 08+O ol keV (see Table XXIII

":and Flg 31) This spa01ng 1s in good agreement w1th the characterlstlc
energy dlfference of yttrlum, 0. 075 keV 89 and 1ndlcates an

II III
isomeric tran51tlon of 10 15+O 1 keV
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) . : .

' Fig. 31. Internal-conversion spectrum of 10-keV gamma-ray
in Y86, ' o ' S
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If we assume that the 10.15-keV transition is responsible for
the 48-min half life, it follows that the transition must be of multipole
order E3 or M3.9O These two alternatives are readily distinguishable
by an examination of the L-subshell conversion pattern. A straight-
line extrapolation to 10 keV on log-log paper of Rose's theoretical
L-shell conversion coefficients indicates for M3 radiation the sub-
shell pattern LI/LII/LIII= 24/2.6/100, and for E3 radiation the ratios
LI/LII/LIII= 0.9/49/100 (see Figs. 32 and 33). The experimental obser-
vation of only the L and L conversions, with the ratio L

IT -III
1.5%0.5, is compatible only with-an E3 assignment.

III/LII=

e. Discussion. The 48-min. isomeric state of Y86 decays by a 10.15-

keV E3 transition followed by a 208.0-keV E2 transition., It is inter-

esting to speculatewbriefly on the possible néture Qf the levels in

Y~ from which theée_transitions arisé;rv o _-!ffl‘ .
Yttriumégi with 39.pr0togs éﬁd;h? neuﬁronég’ﬁas a ground-state

. configuration (Pl/gzpy,(g9/2)N 3;'and.hencez according to Norheim's

“strong" rule, spin and parity k4-. This-aésignmeﬁt?ié consistent also
| . : : 551 ; an

with the recent results of Yamazaki, Tkegami, and Sakai on the decay

of 1k.6-h Y86,

The excited statgs of this odd-odd nucleus are expected to
arise as combégétibns giﬁthe néutronvsfates found in 38er$ and proton
states in 39Yu6 or 39Yh8' These are shown in Table XXIV. o

Preliminary results of a study of the decay of uozru6 being
carried on at this laboratory indicate that the 48-min isomeric state
of Y86 is not populated in Zr86 decay. This suggests that the spin of
the isomer is higher than the ground-state Spinh-° Of those states
shown in Table XXIV, a most likely choice for Y86m is the 8+ state
arising from (g9/2)P (7/2+)N. Thus, the levels of theviéomer might

be as shown in Fig. 3k.
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6
Table XXIV. Expected configurations of Y8

Proton state Neutron state Resultant spins Resultant parity

8- _ 8 v

(7N (5:°7)

Py /7 /2+ | 3,4 -
Py /2 Py /o 0,1 "
g 0,1,2..
g9/2 g9/2 )L 9 +
g /2 o T/er B ¥’2’3"f'8 o

. M- N -
€y /2 P1/2 2

2. Yttrium-90m.

86
In the course of the investigation of Y m, an lsomeric state

90

in Y7 was detected. The isomeric state was produced by irradiating
RbCl (natural and, enriched in Rb87) with 15-MeV alpha particles in the
60-in. cyclotron. An 262 keV photopeak was observed, which decayed
with a half life of/3 h. A more accurate value of the transition
energy was measured to be 202.4%0.3 keV by use of a 100-gauss permanet-
magnet spectrograph. Concurrently with this work, other investigators
studied Y8 o and this isomeric state,9179u and since several groups
reported their results on Y9Om) we did not pursue this investigation
further. We note here only that our results agree with reported data,
which is summarized in Fig. 1, and that the measured energy of the
isomeric transition, 202.4t0.3 keéV, is identical with the result ob-
tained by Bartholomew et al.%o by use of a flat crystal spectrometer at
Chalk River. The more complete decay scheme including energy levels
(a0, 1)y

populated by the thermal -neutron capture Y is presented in

Section C of part I.
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D. CONCLUSION

The experimental techniques presented here are some of the
“typical methods of nuclear spectroscopy. On fhe other haﬂd, there are
many other experimental techniquesvthat prove to be very ﬁseful in
nuclear-strucutre studies, such as the high-resolution nuclear reaction
which may be able to resolve the low-energy states of nuclei near doubly
closed shells. Accumulation of more, vefy detailed nuclear spectra
should give us some insight into the nature of the effective nuclear
force inside the finite nucleus, thus stimulating progress in the _
theory. Increased theoretical understanding, in turn, méy,suggest new
‘experiménts and new directions to explore, and help to understand
nuclear structure better. A close interplay of theory and experiments
is very essential in the development of our understanding of nuclear

structure.
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APPENDICES

'A. The Central-Force Matrix Element

Our interest here is to evaluate the spin-dependent part of the
central-force matrix element (alV(rlz)cl' azla). It is convenient to
consider the singlet projection operator PS and write the matrix element

N .
' = = - . - ° ! . .
Here, V(El- 52) can be expanded in terms of the'angle‘w between Ei and
Iy
V(Ei— 52):=§:‘vk(rl, rZ)Pk(cosw),
k

whereka(cosw) is the Legendre polynomial:of order k. We write

Halv(z, )P la') ae

(@ VPl < £), fu o - (2)
7 n)k o Co

where

£ = (-1)"(ax + 1)(3132JMl31(n)- gz(n)Pk(cosw)'l 3y tagtaM) (3)

and

_ l * * ‘ f ' 2 2 . u
Fk = 2k+l_l1[Rl (rl)R2 ﬂrz)vk(yl,rz)Rl (rl)R2 (rz)rl r, drldrz. (4)
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By addition theorem for spherical harmonics, we may'wfité

P (cosw
k( osw) as

2 (cosw) =) (1) Piye ey,

where

) (o,8),

K

Cb(k) (6,) = [ L ]1/2 Y
so that .

" Tk =Z (-1)"T (2re1)

K,Y

x gy amle e o Mee el o)

T ’
he angular part fnk

can be- evaluated by :using the'tensor-bperator
algebra developed by Racah,

95 and de-Shalit has obtained the expression
. 5

of fnk for the diagonal case in the zero-range limit, The similar

'expression including the off-diagonal case can be calculated easily

and is given in terms of the usual 6-j and 9-j symbols b& '

"+ j. '+ d

J | |
e o= ()t F aJ}J.aM}M.(zm)[J,J'11/2
x o™ 1) ey It g ) 1 et 02 ) (6)
- N rn k r ) rn k r
: o A3, da d
x) () pea) (T E (3 a0 1T 20,
r e B P 1
| z Az %2
L J
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where
[3,3'] = [(23)+ D)3, '+ 1)(234+ 1)(232'+ 1)1

and’ (2” n)” ) and (&' ”C(k)Hﬁ ') are the usual reduced matrix elements.
Here the summation over r is restricted by lk nls r £ ktn. . Obviously,

we have -

<aw(£l- r ),a') _Z Ok o ’ S /

T

L gplat)y =) 1 F (7)

(alV(r. - r)o Ld K

=1 27l
and

(alv(z 2% la’) = LL[<alV(r - r)lat) - (alV(z - z)g g, 1)),

where (alV(;lz)la’) is Just the matrix element for th¢ Wigner force

(n = 0), whereas <a,V(£1' Ez)gi-:gzla') is the contribution from the
spin-dependent force (n =1). Instead of evaluating (alV lz)cl-‘zzla')
directly, we shall find it easier to evaluate (alV(glzzPS]a ) first and
then obtain- (alV(r )0 .gzla') by subtracting the contribution due to

(a!V Eiz)la’) from (aIV(zlz)Psla').

Because n can take only two values, O and 1, we £ind it convenient

to sum over n first. We may sum over n in Eq. (6) by using

dge}llhre

. abx cd x e f x ghx
zz:(2y+l) pcb{sghb ,=§E:(2x+l) : ‘ , (8)
~ ' cap|llefallenr|labx
v af y‘ afy T«
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which is easy to verify. Summation over r can also be easily performed,

yielding a simpler expression involving the 3~j symbol:

gt g+ J+l R ’
1" - 1/2
e £, = (-1) 2(2k+1)[3,3",,2"] /v.

(o) ) o

[3,3%, & 2'] = [(25;+1)(23)+1) (23,+1)(23,+1)

1
k 12 £2

- q!
T

L)

(P ST
N -
e
N -

R

[
-
[

Here we have

o ox (20941)(20541) (22,+1)(204+1)]

The:fiﬁéi expressioﬁ for (d[V(zlngS[a'>' Cis .

+32+ Jtl o
[3,3", 4. 4]

ll

1
5%

V7

(z 0£10[0)( 2 oz'o|ko ’ % 7)

X

131 232 5

331

mrH

> Wl ads )W(zlf fgfe 5 KI)

(9)

' (20)

where the symbols ( [.)' and W are the usual Clebsch-Gordan and

Racah coefficients.

<\
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Now, we evaluate (aJV(glg)]a’).. Noting

Ok ks +j+L! e [k
s 4 = (-1) [2(2k+1)] PRI B
st 4" g
we can easlly verify
J Lo T '
2" 1/2 1 1
1y _ - ' [ foudt
(o [v(z1p) l21) = 27 (1) (3,3 315317 5 KO3 5 4, [x0)
X W(Jljijgjé SR, T (11)

with the restriction that it vanishes unless both Zl + l' + k and

PRI k are even. From Eqs.’(?), (10), and (11), we get

32“2” 12

(a|V(r. (3,3 ,fmz I ZlOZ'lO[kO) 1,02,0]k0)

12)0 9o va'. EZF (-1) 2042

X w(/z J)w (Jz

1 L
11tpdod 3 131 292 3 5 59 ”1’21’22’52 P k) e Tkt

‘where (a|v(z;p) | 2')  is given by Eq. (11).

Now. that we.have obtained the explicit forms. of the spin-
depeﬁdent matrix element. for the finite-range case, we obtain the
corresponding expressions in the limit of zero range. For the zero-
range force, we have Fk = FO for every k, so that the summation
over k can be easily carried out analytically. The final results

for the zero-range force are
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(a [v°( 12)'8 ) = 5T5%1i7“ J,j‘]l/2(jl'%'jé = % | J0)
R (ji %,jéh—‘% |30) [ ]_)J:L-‘-Jl’*-jZ fl +l+(_l)jlfji+j2+3é . E3%§%‘)
| | (13)
and
'Q 2)6 . 02’3'>l= §T%E#I> Fo .[J’Sf]l/Q' ;- 1, 1,

(Jl 53y -5 [70)

- ) : EREEY AL AT
1., 1 JytdrThy 1 171
x (33534 -z 10 (—l) [1+2(-1) ]
Rty e N o
+ - ————— 1 I
) LI(J+1) . ’ - (24)

where the superscript zero refers to the zefo-range limit,vand

Jq+Ip*d
A = (237+1)+(-1) (23,+1)

.o . . ' . - . )
In Eq. (15) (alV 12)'8 vanishes unless I ¥4 +0,*2, is even. Like
]2>EJ ]a') vanishes unless both tq * I, + J and
{3 * 15+ J are even. The diagonal cases of - both Egs. (15) and (1)

wise (a 'V

agree with the results Obtalned by de- Shallt An almostridentical

. .51 I
expression for (i)) lu_g¢yen bJ Newly and_hﬂthlnSki7?i and a similar
expression by Noya et al.? Eduatlons_(lo) and. (11) dTevdqfﬁ given by

Newby and Konopinski.
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B. The Tensor-Force Matrix Element

The tensor-force matrix element. is evaluated here in the J-J

representation.. We may express the tensor force in terms of the orbital

and spin tensors as

1 | _ (@) 1(2)

3 V‘(F_lg)slg - (g_ : E ) R

where é(g) is the irreducible tensor operator of rank 2 constructed from
the spin. operators’. Ml” and 22 , and - L( ) is a product of the scaler
V(r 2) and the irreducible operator of rank 2 constructed from the unit

vector 2/I'12 The spin and orbital tensors may be obtalned fromll

sn;(g) - (87r/15)1/ 2(gl V})(fie V?' EAPY)

and

L. (@) 1/2 V(ry,)
L - eﬂ/l5) %%ZngvQQ ?
I-'12
where g;}m (r) = rzY (9 ®) and Y(8,¢) is the spherical. harmonics.

The tensor force has been evaluated 1nto spherlcal tensors by

. 1h
Talmi. Expanding V(r 12)/r12 in terms of spherical harmonlcs,

v(r,,) ‘
‘;2 - Y Yk(rl,rg)Pk(cosa)lQ)
T ook
- AR
= L v(rr) ¥ o(-1)e, (Mo, (@),
k=0 K o

we obtain for the tensor force in terms of sphéricai tensors
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V(rle?sle =3 F'_W(lxlysKQ)fl(lX)K : Eéﬂly)K

where

K,x,¥ x
F._==-53v (r,,r ){(2/15)1/2[x]l/2(20ko|#o)r 2
Xy kN1 ' 1
- 1/2, 1/2 .
+ (2/15)_/ y1/ (20k0]y0)r22
. 1/2 ) . o
+ ([x]{y])/ = (10k01x0) (10k0 |y0)W (1llxy; 2k)rlr2} ,
and
T3(12)K = -[5(1)(i)xé(z)(i)] for i = 1 or 2.
The symbols ( | ) and W -are the usual Clebsch-Gordan and Racah
coefficients,~énd [a] stands for [2a+1] ... Now the evaluation of

the. matrix element for . V(I_'lg)S12

similar method of Appendix A: The final result is

is straightforward by using the

aflepliplat) < T (afr ) W)
' K,x,y

X '(jlngle<lX)K" E‘lY)K

~on

[31350M")

where
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“(aWFXy]a‘> = -5 E: (a'rlrj]a') Xij for: i, § =1, 2,
3 - k,1,J _ .
X, = (2/15)1/2[x]l/2 (20K0 |x0)
Yoo = (2/13)2[1Y2 (20x0)y0)
X, = ((x)iy])M/2(100x0) (1060 Jyo)w(11xy32K)
and _
(oc[rlrj ]Ot?) = (2k+1 f driry RlR'l f drérQQRQRgrlr
0 0
1
' cos V(r,,)
X f a (——-———2%2) P, (cos ®y5) ————lg

B ) A [

The angular part is given in terms of 3-, 6-, and 9-j symbols as

+j ¥l 1" J Jp d
.. (1x)K . (ly)K 31 2 J1
(313,77 22 333710 = (-1) ALY _—
: : k 3 d
/2 : P1p g 1y 1/2
x (13,113,109 Jg)l 2,10230023))
0, % 2! (AR N I S N I & 1
1% 2V 2\ |2 3 3 2
t | '
00 0 000 )¢ 4l 4y x ) Q4L Ay Y
L L
|19 K { %2 2 X




-132-

An almost identical result for the diagonal case only is given by .

.1
de-Shalit and Walecka. 2 The radial integral (Od]r rs [oz can be

evaluated by expandlng it into a linear combination of Talrnl integrals:

{a ’rirj ]Oé' )

> g (mm')

m,m'

1]

3 (1/2701/2 (591) 3§ (mam -2042) 13,2 (m,m )
m,m' o]

vhere T is the double integral of the form

m_ m' . 2 2y 2 2 '
f,o= ff X)Xy vk(rl,rg)exp(-xl X, )Xl dx, x,"dx,

the variable xl is defined here as. I_'i/\/ v and (v) -1/2 is the length.

parameter appearing in the harmonic oscillator radial wave functions,

: 1 o .
o ‘ ' . [ cosw ‘ v(r..)
12 S T\Vpl
v (ry,1,) = (2k+l)j a — ] P (cosw;,) - =
, -1 : 12

The Talmi integral J_éc is the singie- integral defined as

and

=]

e 2
=[ xgoexp (-g ) YEKE}L)— x dX .
%

-0

The expansion coefficient T is the Talmi. coefficient defined by Ford and .
. . 18

" Konopinski,  and the explicit expresmons along with several recursion

relatlons for the Talm1 coefflclents are glven in detail by Ford and

Konopin ski.
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C. Fortran}PrOgrams

The FORTRAN programs used in-this _paper are presented here De -
tailed information for inputs and outputs of the programs i1s summarized
whenever necessary Four separate maln programs. are described below.. All
matrix element are computed with the use of Gauss1an radlal dependence

and harmonlc osc1llator wave functlons

l. Tensocr-Force Matrlx Elements »

a. For the particle-particle interaction. This FORTRAN program calculates

the tensor-force matrix elements for the particle-particle interaction.

The FORTRAN listing is in Appendix D.

i. Input . .

The first card contains OSC (F10.5), where 0SC is the harmonic
oscillator parameter (v)_l 2 in units of fermis. :

' The second card contains, VITE, “VTITO, RTF(1), RIF(2) (4F10.5),
where VTTE and VITO are the strength parameters for the tensor triplet-
even and triplet-odd forces, respectively (in units of MeV), and RTF(1)
and RTF(2) are the ranges for the tensor triplet-even and triplet-odd
forces, respectively (in. units of Fermi). -

The third card contains MAXN {5, where MAXN is the total number
of configurations for which the tensor—force,matrixvelements are to be
computed in a single run. . ' -

The fourth card contains LLT (I5), where LLT is the number of
various spin-J states arising from afgiﬁen configuration. This number
is adjustable according to the degired number of J states of a given con-
Tiguration to be computed. | . :

- The fifth card contalns N11, Ll N22, L2 MNBB, ML3, MNMM MI&
(8I5), where these parameters correspond to the radial quantum numbers
ny; ﬁl,ng,le,nl,ll,ne,zg s respectlvely

The sixth card contains ALIF, AL2F, BLlI BI2I, AJIF, AJ2F,
BJ2I, BJ, ZERO (9F5.1, F10.5),
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where these parameters correspond to the gquantum numbers,: l’£2’11’£2 s

Jl,J2,Jl,J2, JmaX , and the zeroth~order energy in MeV, respectively.

The program.computes the tensor-force matrix elements for J
(BJ) state of a given configuration, and proceeds to compute for the
,KJma
fourth card) After a given conflguratlon is. completed, it proceeds to

- 1) state, (Jma”- 2), ete. until. it repeats LIT times (see the

-anokher configuration by going back to the fourth card, and repeats. this
process MAXN times (see the third card). . After a set-of configurations
is finished,:another set of'configruations-can be computed if more data

~cards’are added, starting from the second .card.

'ii. Output

The output consists of: _
tehsor—force direct radial integrals with various possible k-
values < oot i wLahvaa Do
‘corresponding quantum numbers
tensor;force direct matrix elements
-tensor-forCe'exchange radial integrals with various possible
k alues =
-corresponding. quantum numbers
.-tensor—force excharige matrix elements

]P ) Ja')y

T ' T
B 7@ PrgSipex (Prg

24, :
o et (2 PR

-

T

(a P OS exp ( oz T }a’)

and

T 2 .
(a]VTOPTOSlgexp (_BTE r Ylat)

for various J states of a given configuration,
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T

P

. (alPTESl2 exp (—Bgof )]at)

W, o (o, )

2
alPTOSl2exp (—Bgo r)lat) ,

and
' T 2 .
<a’VToPT0812 (- *7) f2")
for various J states of' a given configurafion.

In addition, the following output is punched on cards:

FITE, FITO, AJ (2F10.7, ¥5.1),

where

. o ,'v -
~ FTTE and FTTO are (a]VTE PreSio exp(-Br°)|a') and

( a[ TO ProSio xp'(—Brg)ja'> ; respegtiveiy, and, AJ
is the total angilar momentum J.

iii. Subprograms
The following five subprograms and- three. functions are necessary
(pages for FORTRAN listings are shown in parenthesis):.

(a) subroutine TFGRCE.which-calculates the angular part of the
tensor-force matrix elements (p. 1L5)

(v) subfoutine TENSOR which calculates the radial parts of the
tensor-force matrix elements (p. 1L9) _ |

(¢) subroutine TFMOD which calculates all the common factors for
the various J states of a given configuration (p. 151)

(&) subroutine TAIMI which calculates the Talmi coefficients defined
in Appendix B (p. 153)
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(e) subroutine RADIAT which calculates the expansion coefficients
f(m,m') defined in Appendix B (p. 15k)

(f) function VEC>which calculates the numerical values of the 9-j
symbols (p. 155) | -

(g) function RACAH which caleulates the Racah coefficients (obtained
frovaos'Alamos Iaboratory, and hence not shown here)

(h) function CLEBSH which calculates the Clebsch-Gordan coefficients
(also obtained from Los Alamos Laboratory, and hence not shown

here)

b. TFor the particle-hole interaction. This program converts the tensor-

force matrix element of the particle-particle interaction (B3) into the
matrix element for the particle—holeZEnteraction (B2). 1In addition, it
can convert the punched. output cards ofvérogram la into input data cards
- of the tensor-force matrix elements for the next program 2 and 3.

The FORTRAN listing is in Appendix E.

‘The first card contains TTEC and TTOC (2F10.5), which are
arbltrary constants that may be multiplied by the strength parametérs.
VgE and V O s respectlvely
~ ' The second card contains NE, ND, JAMIN, JAMAX (415), where:

NE is the total number of configurations under consideration. This
corresponds to the maximum dimension of the matrix. ’ '

ND is a control number. If we have ND < O, the program is for the
partlcle-partlcle case, and if we have ND > O, it is for the particle-
hole case. ' . _

JAMIN and JAMAX are (J min + 1) and (J nax + 1), respectively, where
Jmln and J k are. the smallest and largest J, respectlvely, for all
conflguratlons under consideration.

A  The third card contains BJIF, BJ2F, BJII, BJ2T (4F5.1) where
these parameters correspond. to jl, 32,ji,jé , respectively, for both

the particle-particle case and the particle-hole case.



-137 -

Starting from the fourth card, a series of cards follows as
shown below:
The fourth card: TIE(JMNC), DUM(JMNC) (2F10.7)
The fifth card: TTE(JMNC + 1), DUM(JMNC + 1):(2Flo.7)

------- I I I O O R I R R R R N B R SR R P

where

TTE(JMNC) and TTE(JMXC) are the triplet-even tensor-force matrix
elements for the J ., and J. states of a given configuration,
min max = _ - ,
respectively,. which have been calculated in 1 a, and DUM is a
dummy varigble which. doces not. enter into the calculation. This
set. of cards is followed by another similar set of cards for the

triplet-odd, i.e.

DUM(JMNC), TTO(JMNC) (2F10.7)
: ete., :
where TTO(JMNC). has the obvious meaning similar. to. TTE(JMNC).
After these two sets of cards, the input is repeated from the third

card with following sequence:

(l:l): (1;2)) L (l: NE)
(2,2), . . . (2, NE)
(NE, NE) ,

where the indices designate the configurations under consideration.
ii. Output |
The output consists of the total angular momentum J, the
initial matrix, and the final matrix. In addition, the following output

is punched on cards:
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J(I5). .

For ND = 0, A(1,1), A(2,2), ..., etc. (8F10.7), i.¢., only the

diagonal matrix elements are punched ; S -
For . ND 4 0, A(1,1), A(1,2), ..., etc. (8F10.7), i.e., the entire

matrix elements are punched.

iii. Subprogram

The only subprogram needed is FUNCTION RACAH [1 a (g)]

2. Partlcle—Partlcle Tnteraction . -

| This prOgram.computes the central-force matrlx elements for the.
'peftiele-partlcle.1nteractlon Opticnally, it can take the tensor-force
matrix elements as inputs° If the. dlmen51en of the resulting matrix is
Tgreater than 2 by. 2, thls program will automatlcally diagonalize the
'matrlx and"compute the eigenvalues and elgenfunctlonso The TORTRAN listing

is. in Appendix F.

i. Input

The Tirst card contains NTE (I5), where NTE is a control number.
For NTE. % O' the tensor-force matrix elements can be read.in .as inputm
In addltlon, for NTE < O the initial matrix w1ll be prlnted out For
NTE = O, the tensor- force.matrix elements are not read in.

The second card contains OCS, VIEN (2F10. 5), where 0SC is already
deflned in la, and VTEN- is..any arbitrary constant that can be multlpled
into the tensor-force. matrix. R T

| The third card centains VIE, SE, TO, SO, RCF(1), RCF(2), RCF(3),

and RCF(4) (8F10.5), where VIE, SE, TO, and SO are strength. parameters

“in MeV for the central triplet-even, singlet-even, triplet-odd, and singlet-
odd forces respectively.. The COrresponding force ranges in Fermi are
RCF(1), RCF(2), RCF(3), and - RCF(4).
The fourth card contains NE, ND, JAMIN, JAMAX. (4I5), where NE has been
defined in.-1lb, and ND is a control number. For .ND =.0, only the diagonal
tensor-force matrix elements-are to be read in as input. Otherwise, the

. tensor-force matrik eiements, ineiuding the off-diagonal case are to be

included.
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JAMIN and JAMAX have the same meanings as defined in 1b. -The
fifth card contains MN11l, ML1l, MN22, ML2, MN33, ML3, MN44, and MI4 (815),
where these parameters -correspond to the radial quantum numbers, )/
, :

n
R
Ny Aoy 0g 5 4 n2 » Ly » respectively.

, The sixth card contains BL1F, BL2F, BL1I, BL2I, BJ1F, BJ2F BJ1I,
BJ2I, and ZERO. (8F5.1, ¥10.5), where these parameters correspond to the

quantum numbers, %1*12’£i?£é s jl’ 32, ji,jé , and the ze?oth-order energy
‘in MeV, respectlvely°. 4

After the sixth card, input- is repeated agaln startlng from the
fifth card in the follow1ng sequence:

(l;l): (1;2): e "v . (lyNEj
(2,2), . . . . . (2,
(NE,NE) ,

where indices denote the configurations under consideration.

. -Next comes‘the input for the tensor-force matrix elements. For
NTE = 0, there is no i1nput for these matrix elements. Tor NTE % 0 , and
ND_; O, then only the diagonal tensor-force matrix elements for

J ln(JAMIN) states must be read in with the format (8F10.7) in the following

: séquence:
(1,1), (2,2), . . . , etc.

This process repeats for: succes31ve J-states until it reaches the. J
(JAMAX) states. For NIE # O, and. ND 4 0, the entire ‘tensor-force

matrix includinngff—dlagonal-elements.must.be read 1n.w;th.format

ax

(8F1007)‘in the following~triangular‘sequence:
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£ (1,1, (1,2),

v (2,2),

etc.
This process -repeats for successive J states until it reaches the J

max
(JAMAX) states. '

ii. Output
ﬂ@(mﬁmtcmmmsoﬂ
0CS, VIEN

VIE, SE, TO, SO, RCF(1), RCF(2), ﬁcr(;),’and RCF(4).

For NTE < 0, the initial matrix is printed out.

angular momentum J

central-force matrix.

For NTE = O, the tensor—force mMatrix elements are printed out.
final matrix

elgenvalues in MeV and eigenfunctions.

iil. Subprograms
(a) Subroutine CFORCE calculates the angular part of the
central-force matrix elements ' |
(b) Subroutine SLATED calculates the radlal part of the
central- force matrix elements.

‘ (c) Subroutine EIGEN dlagonallzes the matrlx and calculates
eigenvalues-%nd eigenfunctions. . IBM SHARE PBOGRAM F2 AN FO22 was slightly
modified to obtain this program. - S

In addition; subroutines TAIMI and RADIAL, and functions RACAH

and CLEBSH are necessary. All of these subprograms are described in la.

3, Particle—Hole Interaction

Thls ‘program calculates the central-force matrix élements for
the partlcle-hole 1nteractlon, The tensor force matrix elements for the
partlcle—hole 1nteractlon are to be computed separately by use of -
program 1b, and are to be read.in ss mnput in this program. Agaln, as
in the particle-particle program, the resulting matrix is diagonalized
to obtain the eigenvalues and eigenfunctions.  The FORTRAN listing~is

given in Appendix G.
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i. Input
The - input -is the same as for program 2, except that sub-

scripts 1 and 2 always refer to the hole and particlé states, res-
pectively. '
-ii. OQutput
The output is the same as for program 2.
-1ii. - Subprograms

The subprograms are the same as those for program 2.
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D. TFORTRAN Listing -(1a)

MATRIX ELEMENTS OF TENSOR FORCE (IV)
DIMENSION T(ZO);BI(ZUaZO)odIN(ZOsZO)9DBI(20;20)9P(20)1Q(20)950(20)

19DQF(20)9DF(2J)96J(20)9502‘20)QFACT(ZO)’RT(ZbSS)9VPN(ZU920)’VP(ZO)
2sVN(20) sR(20)+s3K(20)981K(20)9B2K(20)

DIMENSION COM(20)sRTF(2) »sTLLL{2092092)sTLL(20,20)

COMMON TsBLsBINsDBIsPsQoNLsN2sN3sN&sLL1sL2sL39L495Qs5Q295SQF»DF) s FACT
1’GJ’N139N249N119N229N339N44lel9L229L339L44:K1U9K2U;K3U9KlLsK2L9K3
2L KL sKUs AL1F s AL2FsAL1IsAL2I AJLIF sAJ2F s AJLI19AJ215AJ
39BKsB1KsB2K . . ) .

FORMAT(I5) ' ' ;

BI{1y1)=149

DBI(1s1)=140

DO 10 J=2,19

BI(Jsl)=1,
DBI(Js1)=1.
K=J

DO 10 M=2,K
BI(JsM)=(FLOATF(J=M+1)/FLOATF(M=1))%*81{(JsM-1)
DBI(JoM)=({FLOATF({J~M)%#24+3e)/{FLOATF(M)*24=-1eD}*DBI{JsM-1)
DO 11 J=1,19

BIN(Jsl)=1e

K=J+1.

DO 11 M=2,K

BIN(J;M)-((FLOATF(J -M+2)~045)/FLOATF { M~ 1))*BIN(J9M 1)
P(l)‘la

Qll)=1,

SQE1)=1e

DF(1)=1

SQ211)=1

SQF(1)=1

DO 12 I=1,19

P(I+1)==~1a%P (1)

SQUI+1)=-2%SQ{ 1)

SQF(I1+1)=44#SQF (1)
DF(I+1)=(2%FLOATF (1) +1+)%DF (1)
SQ2(I+11=2.%5Q21( 1)

QIT+1) ==44%Q( 1)

FACT(1)=1.

DO 129 M=2,19 )

FACT (M) =FLOATF (M-1)#FACT(M-1)

READ INPUT TAPE 25212 ,05C

FORMAT (F1045)

WRITE QUTPUT TAPE 3,211,05¢C

FORMAT ( 1X11HOSCILLATOR=F10.5)

READ INPUT TAPE2514sVTTE,VTTOs (RTF(1)sI=1s2)
FORMAT{4F1045)

WRITE OUTPUT TAPE 35145VTTEsVTTOs (RTF(I)51=152)
READ INPUT TAPE 25280 sMAXN

FORMAT (15}

DO 305 KX=1sMAXN

READ INPUT TAPE 25117sLLT :

READ INPUT TAPE 2,2,N11,L1,sz,Lz,MN33,ML3,MN44,ML4
FORMAT (815}

READ INPUT TAPE 2s1195AL1FsAL2Fs3L1I+sBL2IsAJLF,AJ2F,8J11+8J21,8J,
1ZERQ KM

FORMAT (9F5419F10e54+15)

DO 112 L=1s2

BT={OSC/RTFIL))*%2

GJ(1)y=1.
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DO 13 1=1,19
GJ(I+1)=({FLOATF(I}=0.5)%GJ(1)/(Q. 5+BT)

DO 400 II=1sLLT

AJ=BJ-FLOATF(II-1)

AL1I=BL1I

AL2I=BL2I

AJ1I=BUlI

AJ21=By21

IF (I1=1) 201+201+202

DO 205 I=1420

DO 205 J=1,»20

TLL{IsJ)=TLLL(IsJsl}

CALL TFMOD{ ETsTLL)

GO TO 203

N33=MN33

L3=ML3

N&4&=MN& 4

L4=ML4

CALL TENSOR(RT BT}

WRITE OUTPUT TAPE 3939(19RT(I¢1),I—19K1U)
WRITE OUTPUT TAPE 3,35 ([sRT(1s2)sI=1+K2U)
WRITE OUTPUT TAPE 3539(1sRT(Is3)s1=215K3U)
FORMAT (154E£20.8)

CALL TFORCE( ETsRTsTLLsTMM1 s TMM2sTMM3,C0,TLL)
DO 204 [=1920

DO 204 J=1+20

TLLL{TsJe2)=TLL(IsJ)

WRITE QUTPUT TAPE 3’35’AL1F9AL2F9AL119AL21,AJlF AJ2F sAJ1TsAJU2I9A)s
1ET -~

FORMAT (9F54144F2048)

ALLI=BL2I

AL2I=BL1I

AJlI=BJ21

AJ21=BJ11l

IF {(II-1) 5015015502

DO 505 I=1s20

DO 505 J=1920

TLL(T e J)=TLLL(TIsJs2)

CALL TFMOD(QETsTLL)

GO TO 503

N33=MN44&4

L3=ML4&4

N44=MN33

L4=M3

CALL TENSOR(RTSBT)

WRITE OUTPUT TAPE 3s3s(I1sRT(Is1l)sI=1sK1U)
WRITE OUTPUT TAPE 3539 (1sRT(152)sI=1sK2U)
WRITE OQUTPUT TAPE 3s3s(1sRT(143)s1=1sK3U}
CALL TFORCE(QETsRTsTLLs TMM1 s TMM23s TMM3,5C0OsTL1)
DO 504 [=1+20

DO 504 J=1+20

TLLL{I 9Js2)=TLL(IsJ)

WRITE OUTPUT TAPE 39359AL1F9AL2F;AL119AL21,AJleAJZFoAJlIsAJZI’AJ’
1QET

MA=AJLI+AJ2I+AJ

MM=XMODF (MA+2)

IF (MM} 71971472

QP=1,



-144-

GO TO 252
72 OP=-10
252 CONTINUE
TTE=Q«5*{ET+QP*QET)
TTO=0e5%(ET-QP*QET)
FTITE=TTE*VTTE
FTTO=TTO%®VTTO
WRITE OUTPUT TAPE 39301sRTF(L)SsTTESFTTESTTOSFTTO
301 FORMAT (1X6HRANGE=F10e54 1X4HTTE=E154891X5HFTTE=E15e891X4HTTO=E1548)
1LX5HFTTO=E15.8) : :
WRITE OUTPUT TAPE 145284sFTTESFTTOsAJ
284 FORMAT(2F10«73sF5.1)
400 CONTINUE:
112 CONTINUE
305 CONTINUE
GO TO 118
END
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SUBROUTINE TFORCE(QETsRTsTLLsTMMLs TMM2sTMM3,CO8TLL)

DIMENSION T{(201s81(20+20)s8IN(20520)sDBI(20520)sP(20)sQ(20),5Q(20)
lsSOF(ZO),DFKZO)sGJ(20)9SQZ(20)9FACT(20J;RT(2595)’VPN(20920).VP(20)
25VN(20) sR(20)

DIMENSION TLL(20920) sCOM(20)sC81(20)sCC1(20)5CD3(20520)sVX(20520)
1sVRIG) sV(9)sW(9)s AL1206)sBLI6)s X(9)sCL(6)sCAL2(20,20)sD3(6)9E3(6)

COMMON TsBIsBINsDBIsPsQaNIsN2sN3sN4sL1sL 2901391 495Q95Q29SQF yDF s FACT
1,GJsNL39N24sNLLsN229N33sNG4sL 1151225033 9L 449K1UsK2UsK3UsK1ILIK2L K3
2L KLsKUs CAL1FsAL2FsALIIsAL2IsAJIF»AJ2FsAJLIAJ2] AU
34BKsB1K$B2K

DO 666 M=1»20

666 COMIM)=SQRTF(2.*FLOATF(M=1)+14)}

LU=AJ+2.

L121=AL1F+AL2F+1.

L341=AL1I+AL21+1,

L13=AL1F+AL1I

L24=AL2F+AL2I

L131=013+1

L132=L13+2

L241=L24+1
L242=L24+2

L133=L13+3

L243=124+3

LUF =XMINOF{L121sLU)

LUI =XMINOF(L341sLU}

KL1U=XMINOF(L2415L133)

KL2U=XMINOF(L2435L131)

KL3U=XMINOF(L2425L132)

KLU =XMINOF(L133sL243)

ML24=XMODF (L2492}

ML13=XMODF (L1352}

AJ121=(2e#AJ1I+1e)*(2e#AJ21+14)

AJI2F=(2¢%*AJ1F+1le) #(2e%AJ2F+14)

ALL2I=(2e#AL1I+1e)#(2e%#AL2I+14)

TL1=0.0

DO 61 1=1,20
" DO 61 J=1,20

61 TLL(Js1)=040 ,

T IF(ML24-ML13) 71572571
71 GO TO 200

72 IF(ML24) 15151519152

151 KL1L=1
KL3L=2
XP=1e
GO TO 73

152 KL1L=2
KL3L=1
XP==1.

73 DO 425 IX=KL1L»sL131,2

' Bl(1l)=IX~-1
Bl(2)=ALL1I
B1(3)=AL1F
B1(4)=0.0
B1(5)=040
Bl1(6)=0e0

425 CB1(IX)=CLEBSH(81)
DO 245 IX=KL1LsL24152
Cl(1y=1x-1
C12)=AL2I
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Cl{3)=AL2F
Cl{4)=040
C1(5)=040
C1(6)=040

CCl(IX)‘CLEBSH(Cl)

" DO 445 K= KLlLoKLUoZ

K2=K+2 ' -
KLUU=XMINOF (K29KLU)-

< TF(K=3) 401+4015402

KLLL=KL1L

GO TO 403

KLLL=K~-2

DO 445 IX=KLLLsKLUUs2
Al2{1)=K~1

Al2(2)=2

Al12(3)=1IX~1
Al2(4)=0.0 .
A12(5)=040

A12(6)=0.0
CA12(KsIX)=CLEBSH(A12)
DO 145 K=KL3LsKL3U»2
Kl=K+1
KLUU=XMINOF(K1sKLU)
IF(K=2) 501,501.502
KLLL=KL1L :

GO TO 503

KLLL=K-1

DO 145 IX=KLLLs KLUU;Z'
D3(1)=K~1 :

.D3(2)=1

D3(3)=IX~-1

D3(4)Y=040

D3(5)=040

D3(6)=00

cD3 (K,IX)—CLEBSH(D3)
DO 41 I=1,LUI

12=142
LUFF=XMINOF(I2sLUF)
IF{I-3) 51351452 ’
LLF=1

GO TO 53

LLF=1=-2

DO 41 J=LLFsLUFF

DO 345 K=KLILsKL1U»2
K2=K+2

KLUU=XMINOF (K2sKL2U)
IF {K=3) 81+81,82
KLLL=KLI1L

GO 7O 83

KLLL=K=2

DO 345 IX= KLLLyKLUU,Z
X(1)=AL1lI

X{2)1=AL21
X{3r=I-1
X{4)=1X-1
X({5)=K~1
X(6)=2

X{T)=AL1lF
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X(8)=AL2F
X(9)=J=1
345 VX({IXsK)=VEC(X)
VR(1}=y-1
VR(2})=1~1
VR(3})=1
VR{4)=1
VR(5)=2
VR(6)=AJ
VI1)=AL1I
vi2)=AL21
V(3)=1~1
V(4)=045
V(512045
V(612140
VIT)=AJ11
V(8)=AJ21
V{9)=AJ
W{1l)=ALLF
W(2)=AL2F
wi(3)=d=-1
W(4)=045
W(51=045
W(6)=140
W(T)=AJLF
W(8)=AJ2F
W(9)=AJ
VI=VEC(V)
VF=VEC(W)

RVR=RACAH{VR}
ALI={2#FLOATF({I=-1)+1e}
ALF=(2+#FLOATF{J=1)+1e)
JJ=AY '
MJ=JJ+J
MJJI=XMODF (MJs2)
IF (MJJ) 42942943
42 PHASE=1l.
GO TO 44
43 PHASE =-1,.
44 CQO =PHASE#* ALF*ALI* RVR#VF#y]
TMM1=0,0
DO 110 K=KL1lLsKL1Us2
K2=K+2
KLUU=XMINOF (K2sKL2U)
IF (K-=3) 101,101,102
101 KLLL=KLI1L
GO TO 103
102 KLLL=K=2
103 DO 110 IX=KLLLsKLUUs2
113 EXK=({2¢*FLOATF(K~-1}+1s)
TTML=XP*COM( IX)*CAT2(Ks IX)#CBLIIX)*#CCLIK)#VX{IXsK)#RT(Ks1l)#*EXK®SQR
1TF(26/30)
110 TMM1=TMM1+TTM1
TMM2=040
DO 120 K=KL1LsKL2Us2
K2=K+2
KLUU=XMINOF (K2sKL1U)
IF (K=3) 2015201,202
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201 KLLL=KL1L
GO TO 203
202 KLLL=K=2
203 DO 120 IX=KLLLsKLUUs2
123 EXK=(2+*FLOATF(K-1})+1s)
TTM2= XP*COM(IX)*CA12(K’IX)*C81(K)*CC1(IX)*VX(K;IX)*RT(K:Z)*EXK*SQR
1TF{24¢/30)
120 TMM2=TMM2+TTM2
'TMM3=000
DO 130 K=KL3LsKL3U,2
Ki=K+1
KL1IUU=XMINOF (K1lsKL2U)
IF (K=2) 9159192
91 KLI1LL=KLI1L
GO TO 93
32 KLILL=K~-1
93 DO 130 IX=KLILLsKLiIUUs2
IX2=1X+2
KL2UU=XMINOF ( IX2sKL1U}
IF (IX-3) 30143015302
301 KL2LL=KL1L
GO TO 303
302 KL2LL=IX-2
303 DO 130 Iv=KL2LLsKL2UU»?2

E3(1)=1
E3(2)=1
E3(3)=1IX~1
E3(4)=1Y=-1
E3(5)=2
E3(6)=K=-1

RE3=RACAH(E3)
133 EXK=(2¢*¥FLOATF(K=1}+1e)
TTM3=XP#COM{ IX)I*COM(IY)#CD3(KsIX)*CD3(KsIlY}*CBL(IX)*#CCL{IY)*RES*VX
I{IXsIY)*¥RT(Ks3)*EXK*SQRTF(54)
130 TMM3=TMM3+TTM3
TLL{Js1)=TMM1+TMM2+2.#TMM3
41 TLI=TLL1+TLL(Js1)*CO
200 QET= TLl*é.*SQRTF(AJlZF*AJlZI*ALlZI*S.)
RETURN
END
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SUBROUTINE TENSOR(RTsBT)

DIMENSION T(20)sB1(20920)9BIN(205s20) +sDBI(20+20)sP(20)+Q(20)4+5Q(20)

19SQF{20) sDF(20)9GJ(20)+5Q2120) sFACT(20) sRT(2555)sVPN{20520),VP(20)
ZvVN(ZO)

COMMON T9BI’BIN!DBI9P9Q9N19N21N3$N49L19L29L39L49SQ9SQZ9SQF,DF;FACT
19GJUsNL3sN24sNLI1sN229sN339NGGs L1190 2293331 44sK1UsK2UIK3UsKIL9K2L K3
2L KL 9KU

N1=N11l=1

N2=N22~1

N3=N33=-1

N&=N4&—1

L1l=L1+1

L22=L2+1

L33=L3+1

L44=L4+1

N13=N1+N3+1

N24=N2+N4+1

NLI=NI+L1+1

NL2=N2+L2+1

NL3=N3+L3+1

NL4=N4+L4+1

L112=L11+2

1L222=L22+2

L332=L33+2

La42=144+2

RNL1l= SQRTF((SQZ(LllZ)*DF(NLl))/(SQZ(Nll)*FACT(Nll)*(DF(Lll)**Z)))

RNL2=SQRTF((SQ2(L222)#DF(NL2))/(SQ2(N22)#FACT(N22)*(DF(L22)%%2)})

RNL3=SQRTF((SQ2(L332)#DF(NL3))/(SQ2(N33)#FACT(N33)*(DF(L33)%%2)))

RNL4= SQRTF((SQZ(L442)*DF(NL4))/(SOZ(N44)*FACT(N44)*(DF(L44)**2)))

RNL=RNL1*¥RNL2*RNL3*RNL4

L24=L2+L4

L241=L2+L4+1

L242=L2+L4+2

L243=L2+L4+3

L13=L1+L3

L131=L1+L3+1

L132=L1+L3+2

L133=L1+L3+3

CALL RADIAL (VPNsVPsVN)

KIU=XMINOF(L241sL133)

K2U=XMINOF(L131»L243)

K3U=XMINOF(L132s0L242)

ML24=XMODF( L24s2)

ML13=XMODF{ L13s2)

DO 101 [=1s20

DO 101 J=193

101 RT(IsJ)=0.0
IF (ML24~ML13) 71972471
71 GO TO 200
72 IF (ML24) 51951952
51 K1L=1 .
GO TO 73 : : |
52 KiL=2"
73 DO 111 K=K1lLsK1lUs2

TRR=040

DO 121 M=1sN13

DO 121 N=1sN24

IT=045%FLOATF(LL13+2#M—(K~1})+1e

JT=0e5%#FLOATF (L24+42% (N=1)—(K=1))+1.
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KT=K '
MT=045%FLOATF(L13+2%M+L24+2% (N=1))+1s
CALL TALMI (TsITsJTsKT yMT)

TTR=0.0 :

DO 131 I=1sMT

MTT=MT=I+1

TT =DF(MTTI#*#T(1)*GJ(1I)

TTR=TTR+TT
TR=TTR#¥VPN{MyN)/ {SQF (MT ) #SQRTF(2+%(0e5+BT) )} #164)
TRR=TRR+TR

RT(Ks1)=TRR#*RNL

IF (ML24) 61961962

K2L=1

GO TO 63

K2L=2

DO 112 K=K2LsK2Us2

TRR=0.0

DO 122 M=1»N13

DO 122 N=1sN24 .
IT=0e5%FLOATF(LL13+2%(M=1)~(K=1))+1
JT=0eS5#FLOATF(L24+2¥N~(K~1})+1e

KT=K
MT=0¢5%FLOATF(L13+42¥N+L24+2%(M=1))+1.
CALL TALMI (TsITsJTsKTsMT)

TTR=0e0 . - .

DO 132 I=1MT

MTT=MT=-1+1

TT =DF(MTT)*T(1)*GJ(1)

TTR=TTR+TT

TR=TTR*VPN(M, N)/(SQF(MT)*SQRTF(Z«*(O 5+BT))%16s)
TRR=TRR+TR

RT(Ks2)=TRR*¥RNL

IF (ML24) 91591992

K3L=2

GO TO 93

K3L=1

DO 113 K=K3LysK3U»s2

TRR=0e0

DO 123 M=1,sN13

DO 123 N=1sN24
IT=0e5%#FLOATF(L13+2%#(M=1)+1-{K-1))+1o
JT=045#FLOATF(L24+2%(N=1)+1~(K=1))+1.

KT=K

MT=0,5%FLOATF{L13+2 +L24+2% (M- 1)+2*(N 1))+l
CALL TALMI (ToITsJTsKToMT)

. TTR=0«0

DO 133 I=1.MT

MTT=MT=1+1

TT =DF(MTT)*T(1)*GJ(1)

TTR=TTR+TT

TR=TTR#*#VPN(MsN)}/ (SQF (MT)#SQRTF(2+%#( 0 5+BT))*16.)
TRR=TRR+TR ‘

RT(Ks3)=TRR#RNL '

RETURN

END
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SUBRQUTINE TFMOD{QETsTLL)

DIMENSION T(ZO)981(20920)’BIN(20’20)’DBI(20920)9P(20)9Q(20)’SQ(ZO)
19SQF(20)9DF(20)9GJ(20)9SQZ(20)9FACT(ZO),RT(25;5)’VPN(20920),VP(20’
25VN{20) sR(20)

DIMENSION TLL(ZO;ZO):COM(ZO)’CBI(ZO)sCCl(ZO);CD3(20)9VX(20020)
1sVRI6)sVIF)IsW(9)s AL2(6)9BLI6)s X(9)sCLl(6)9sCAL2(20+20)+D3(6)9E3(6)
“COMMON TsBIsBINsDBIsPsQsNLsN2sN3sN4sL 1oL 2sL39L495Q55325S5QFsDFsFACT
19GJsN13sN24sNL1IsN22sN33sN44s1L1191229L335L449K1UsK2UK3UsKILsK2L K3
2L KLsKUs AL1F sAL2F9sALLI sAL2IsAJLF»AJ2FsAJITsAJ2] Al
3,8KsB1K9B2K

LU=AJ+2.

L121=AL1F+AL2F+1.

L341=AL1I+AL2]I+]1.

L13=AL1F+AL1I

L24=AL2F+AL21

L131=L13+1

1L132=L13+2

L241=L24+1

L242=L24+2

L133=L13+3

L243=1.24+3

LUF =XMINOF({L121sLU)

LUI =XMINOF(L341sL U}

KL1U=XMINOF(L2415L133)

KL2U=XMINOF(L.243,L131)

KL3U=XMINOF(L242,L132)

KLU =XMINOF(L1339L243)

KL33U=XMINOF(L131sL241)

KMAX=XMAXQOF(LL131sL241)

ML24=XMODF{L24s2)

ML13=XMODF(L13,2)

AJ121=(2. *AJlI+1.)*(2.*AJZI+1a)

AJ12F=(2 *AJ1F+10)*‘20*AJ2F+1¢)

AL12I=(2. *ALlI+l-)*(2 #AL21+1.)

TL1=0e0

DO 41 I=1sLUI

12=1+2

LUFF=XMINOF (12sLUF)

IF(I-3) 5195152

LLF=1

GO TO 53

LLF=I-2

DO 41 J=LLFsLUFF
VRI1)=y-1

VRI(2)=1-1

VR(3)=1

VR(4)=1 _
VR(5)=2 ' N
VR(6)=AJ.

V(1)=AL1l

Vi2)=AL2]

Vi3)=I=1

V(412045

V(512045

V(612140

VI7)=AJ1l

V(8)=AJ21

VI9)=AJ

W(l)=AL1lF
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W(2)=AL2F
W(3)=J=1
W(4)=0,5
W(5)=045
W(6)=140
W(7)=AJLIF
W(8)=AJ2F
W(9)=AJ
VI=VEC(V)
VF=VEC(W)

RVR=RACAH(VR)
ALI=(2#FLOATF(I=-1)+1e)
ALF=(2«*FLOATF (J=1}+1e)
JJ=AJ

MJ=JJ+J

MJIJ=XMODF (MJ,s 2)

IF (MJJ) 42+42543
PHASE=1,

GO TO 44

PHASE =-1. :
CO =PHASE#* ALF#ALT#
IF{ML24=-ML13) 71972571
GO TO 200

CONTINUE

TL1l= TL1+TLL(J91)*CO

RVR*VF#*VI

QET= TL1*6.*SQRTF(AJlZF*AJlZI*ALlZI*So)

RETURN
END -



(v R wiv]

-153-

SUBRQUTINE TALMI(TelsJeKsM) .

DIMENSION T(20)9BI(20’20)9BIN(20;20)9DBI(2092009P(20)9Q(20)oSQ(ZO)
195QF(20)9DF(20);GJ(ZO)9DQZ(20)9FACT(ZO)9RT(2595)9VPN(20;20)9VP(20)
29VN(20)

COMMON T’BI’BIN’DBI9P’Q9N19N2’N39N4’L19L2’L3,L4QSQQSQ2QSQF’DFQFACT
19GJsNI39N24sNLILsN22sN33sN44s L1191 229033401 449K1UsK2UsK3USKIL$K2L 9K3
2LeBT9BsKLoKU
DO 8 IS5=1sM

TE=O.O

TJ=XMINOF(IsJ)

DO 9 IQ=ls1J
DO 9 IP=14K ,

TT7=2040
N=IS~1Q-IP+2

L=M~-K-1Q-1Q+3

IF (N) 49445

4 T7=0,0
GO T0O 3

5 IF (L=N) 19242

1 TT=040
GO To 3

2 TT= DBI(MoIS)*P(IP)*Q(IQ)*dI(IyIQ)*BI(JsIQ)*BI(KoIP)*BI(LyN)/BIN(M,
11Q)

3 CONTINUE

9 TF=TF+TT

8 T(IS)=TF

RETURN
END
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SUBROUTINE RADIAL(VPNsVPsVN)

DIMENSION T(ZO))BI(ZO,ZO)9BIN(20920)9DBI(20,ZODoP(20)00(20)050(20)
1’SQF(20)9DF(20)’GJ(2U)’SQZ(ZO)’FACT(ZO),RT(ZSQS)’VPN(ZOQZO)’VP(ZO)
29VN(20)sV1(20)sV2(20)sV3(20)9Va(20)sV13(20+20),v24(204+20)

COMMON TsBIsBINsOBIsPsQsNL1sN2sN3sNGsL 1ol 29L39L495QsSQ25sSQFsDFsFACT
lvGJ’Nl39N249N119N22:N33’N44sL119L229L33,L445K1UoK2U’K3U)K1L9K2L9K3

2LsBTsBsKLKU

DO 14 I=1yN11
Ji=1+L1 i
'Vl(I)—SQ(I)*BI(N119I)*DF(Lll)/DF(Jl)
DO 15 T=1sN22
J2=1+L2
V2(I)"SQ(I)*BI(N229I)*DF(LZZ)/DF(JZ)
DO 16 I=1yN33
J3=1+L3
V3({I1)=SQ(I)*BI{(N33,1)%DF(L33)/DF(J3)}
DO 17 I=1yN44
Ja=1+L4
Va{I)=SQUII*BI(N44s 1) %DF(L4&4)/DF(J4)
DO 18 I=1sN11

DO 18 M=1yN33
V13(IsM)=V1I(I)#V3(M)
DO 19 K=1sN13
VPP=0s0

DO 20 I=1sN11

DO 20 J=15N33
NP=(I=-1)+(J=1)+1
IF(NP=K) 19291

GO TO 20
VPP=VPP+V13(1ysJ)
CONTINUE

VP (K)=VyPP

DO 22 I=1sN22

DO 22 M=21sN4s
V24(IsM)=V2(1)%*V4(M)
DO 23 K=1sN24
VNN=0e0

DO 24 [=1sN22

DO 24 J=1sN44
NN=(I=1)+(J=1)+1

IF (NN=K) 35453

GO TO 24 :
VNN=VNN+V24(TsJ)
CONTINUE

VN (K )=VNN

DO 25 M=1,sN13

DO 25 N=1sN24
VPN(MsN)=VP (M) #VNI(N)
RETURN

END
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FUNCTION VEC(X)

DIMENSION X(9)sR(61sS(6)sT(6)
A=SX(4)+X(8) :
B=X{2)+X(6)

C=X(1)+X(9)

D=MIN1F(AsB»C)

L=2e#(D+14)

VECTOR =0.0

Y==0e¢5
DY=0e5 .
DO 10 K=1l,L
Y=Y+DY
R(1)=X(1)
R(2)=X(4)
R(3)=X(9)
R(4)=X(8)
R(5)=X(7)
R(6}=Y
S(1)=X(2)
S(2)=X(5)
S(3)=Y
S(4)=X(4)
S{5)=X(8)
S5(6)=X(6)
T(1)=X(3)
T(2)=X(6])
T(3)=X(1)
T{4)=Y
T(5)=X(9)
T(6)=X(2)
RR=RACAH(R)
RS=RACAH(S)
RT=RACAH(T)

i VECT=(2¢%#Y+1s ) ¥RR#RSHRT
10 VECTOR=VECTOR+VECT
NAZ2 ¢ # {X{1)+X(4))+X{2)+X(3)+X(5)+X(6)+X(8)+X(9)
NM=XMODF (NA»s2)
IF (NM) 19192
1 VEC=VECTOR
GO 70 3
2 VEC=-VECTOR
3 RETURN
. END
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E. FORTRAN Listing (1b)

MATRIX ELEMENTS OF THE TENSOR FORCE FOR THE PA=-TICLE-PARTICLE OR
PARTICLE~HOLE INTERACTION »
DIMENSTION X(6)s CF(16)sFME(20520s16)sTTE(16)sTTO(1619A(20520)
15DUM(16)

READ INPUT TAPE 239 TTECsTTOC

FORMAT (2F1045)

READ INPUT TAPE 2570 sNEsNDs JAMINs JAMAX

FORMAT (415) -

DO 31 JJ=1s16

DO 31 M=1,20

DO 31 L=1+20

FME (LsM»JJ) =040

DO 32 M=1,20

DO 32 L=1+20

Al(LsM) =040

DO 33 L=1,16

CF(L)=040

IF (ND) T1s72s72

CONT INUE

DO 276 L=1sNE

DO 272 M=LsNE :

READ INPUT TAPE 25119 CBJLF,BJ2F,8J11,8J21
CJFL=BJ1F-BU2F

CJIL=BJlI-BJ21

.CJFU=BJ1F+BJ2F

CJ1U=BJ11+BJ21

CJFA=ABSF{CJFL)

CJIA=ABSF(CJIL)

JMCX=XMINLF (CIFUsCJIIU)

JMCN=XMAX1F(CJIAsCJFA)

JMNC=JMCN+1

JMXC=JMCX+1 _

IF (JMCX=JMCN) 16151624162

GO TO 272

CONTINUE : ‘

READ INPUT TAPE 258s (TTE(J) 9sDUM(J) s J=IMNC s JMXC)
READ .INPUT TAPE 258s (DUM(J)sTTO(J) s J=IMNCsIMXC)

0. DO 174 JI=IMNCH»IMXC .. .

174
272
276

72

118
119

CF{JU)=TTE(JI)*TTECHTTO(JJI*TTOC
FME(LsM»JJ)=CF(JJ)
FME(MsL o JJ)=FME(L My JJ)
CONTINUE '

CONTINUE

GO TO 277

CONTINUE

DO 176 L=1sNE

DO 172 M=L,NE .
READ INPUT TAPE 2+119» ’ BJ1F,BJ2FsBJ11sBU21
FORMAT (4F541)

AJFL=BJ11-BJ2F
AJIL=BJ1F-BJ2I
AJFU=BJL1I+BJ2F
AJIU=BU1F+BJ21
AJFA=ABSF(AJFL)
AJTA=ABSF(AJIL)
JMAX=XMINLF(AJFUSAJIU)
JMIN=XMAX1F(AJFASAJIA)
JMN=JMIN+1

IMX=UMAX+1
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CJFL=BJL1F=-BJ2F

CJIL=Bull-BJ21I

CJFU=BJULF+BJ2F

CJIu=BulI+BJ2!

CJFA=ABSF(CJFL)
CJIA=ABSF(CJIL)
JIMCX=XMINLIF{CJFUsCJIU)
JMCN=XMAX1F({CJIALCUFA)
JMNC=JMCN+1

JMXC=JMCX+1

IF (JUMCX=JMCN) 61962562

GO TO 172

CONTINUE

READ INPUT TAPE 298y (TTE(J)sDUMIJ) s J=IMNy IMX)
READ INPUT TAPE 2+8s (DUM(J)sTTO(J) s J=IMNyJIMX)
FORMAT (2F10.7) ‘
DO 173 JJ=IMNsJIMX
CF{JJ)=TTE(JJ)¥TTEC+TTO(JJ)*TTOC
DO 177 JJ=IMNCs»IMXC
MAP=AJFU+AJIU

MAM=XMODF (MAP 2}

IF (MAM) 77147719772

AP=1e

GO TO 773

AP=<1.

CONTINUE

PHME=U 60

X{(1)=8J21

X{2)=BJ1F

X(3)=8BU1Il

X{4)=BJ2F

X(6)=JJ-1

DO 51 K=JMN»s»JIMX

X{5)=K~1

RAC=RACAH(X)

PHM= AP*FLOATF(Z*(( 1)+l)*RAC*CF(K)
PHME=PHME+PHM
FME(LsMsJJ)==PHME
FME(MoLyJJ)—FME(L9M;JJ)
CONTINUE

CONTINUE

CONTINUE

DO 20 JJ=JAMIN»JAMAX

JA=JJ-1

WRITE QUTPUT TAPE 35301 sJA
WRITE OQUTPUT TAPE 14+301,JA
FORMAT ( 1X2HJ=12)

WRITE OUTPUT TAPE 3469
FORMAT ({ 1X14HINITIAL MATRIX)

DO 68 M=1sNE

WRITE OUTPUT TAPE 35303 (FME(LsMsJJ) sL=1sNE)
CONTINUE

K=0

DO 30 L=1sNE

IF (FME(LsLoJJ)) 25526425
K=K+1

GO TO 30

N=0
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DO 29 M=LsNE

IF (FME(MsMsJJ)) 39422439
N=N+1 ’
GO TO 29

LL=L=-K

MM=M~-K-N
A{(LLIMM)=FME(LsMsJJ}
A{MMsLL)=A{LL»MM)
CONTINUE

CONTINUE

NK=NE-K

IF (NK) 60196015602

GO T0 603

CONTINUE

FORMAT (13F1045)

WRITE OUTPUT TAPE 3, 378

FORMAT (1X12HFINAL MATRIX)

DO 333 J=1sNK ‘

WRITE QUTPUT TAPE 393035 (A(1lsJ)sl=1sNK)
IF (ND) 10191025101 ]

WRITE OQUTPUT TAPE 144284 (A({Is])sI=1sNK)
GO TO 20 v

WRITE QUTPUT TAPE. 145284 ( (A{L M) s M=LsNK)
FORMAT (8F1047}

CONTINUE

CONTINUE

GO TO 80
END

sL=1sNK)
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F. FORTRAN Listing (2)

EIGENVALUES AND VECTORS FOR THE PARTICLE-PARTICLE INTERACTION

DIMENSION T{(20)sBI(20s20)sBIN(20520)sDBI1(20520)sP{20)+Q(20),5Q(20)
1sSQF(20)sDF(20)9GJ(20)5SQ2({20)sFACT(20)9sRT(2555)9VPN(20+20)sVP(20)

29VN(20)sR(20)sBK(20)sB1K{20)+B2K(20)

DIMENSION RR(205254) sRCF(4)sX{6)sVALU(20) ,A(ZO,ZO)’t(4)¢OV(4)o

1VPS(4)sQVPS(4) sATEN{20920) s TENS(20929) sFME(20+20516)+CF(16)

“COMMON T+sBIsBINsDBIsPsQsN1sN2sN3sN4sL1sL29L3sL4s»SQsSQ29SQFsDFFACT
19GJsN13sN24sN11sN229N33sN44sL1191.229L339L4495KLU9K2USK3UsK1ILIK2L9K3

2L KLsKUs AL1F 9 AL2FsALLI sAL2 1 9sAJLF»AJ2FSAJLIsAJ21 Al
3,BKsB1lKsB2K . .

READ INPUT TAPE 29280sNTE

FORMAT (I5)

READ INPUT TAPE 25202 »0SCsVTEN
FORMAT (2F10.5)
WRITE OUTPUT TAPE 3+201s0SCsVTEN

FORMAT (1X11HOSCILLATOR=F1045910X5HVTEN=F10 5)

READ INPUT TAPE 294> VTIEsSEsTOsSOs (RCF{ L) s I=1s4)
FORMAT (8F1045) ‘ :
WRITE QUTPUT TAPE 34> VTES»SEsTOsSOs (RCF(I)sI=1s4)
BI(1ls»1)=1.0

DBI(1s1)=1.0
DO 10 J=2,19

BI(Jsl)=1,
DBI(Jsl)=1e
K=J

DO 10 M=2,K
BI(JsM)=(FLOATF(J=-M+1)/FLOATF(M=1))*B81(JsM=1)
DBI(JsM)=( (FLOATF(J=M)#24+34)/ (FLOATF (M)*24=14D)*DBI(JsM=1)
DO 11 J=1,19

BIN(Js1)=1o

K=Jd+1

DO 11 M=2,K

BIN(JsM)=( (FLOATF(J=M+2)=04,5)/FLOATF (M~ 1))*BIN(JsM 1)
P(1)=1s

Q(l)=1s

GJ(1)=1.

SQil)=1.

DF(1)=1.

SQ2(1)=1.

SQF(1)=1.

DO 12 1=1,19 .

P(1+1)==1e%P (1)

SQUI+1)=-24%SQ(I)

SQF (1+1)=44#SQF (1)

DF (1+1)=(2e*FLOATF(I)+1¢)*DF (1)
GJ(I+1)=(FLOATF(I)=0e5)%GJ(I1}/(0e5+BT)
SQ2(1+1)=24%#5Q2( 1)

QUI+1)==44%Q(1)

FACT(1)=1.

DO 129 M=2s19

FACT (M) =FLOATF (M-1)*FACT(M-1)

READ INPUT TAPE 2570 sNEsNDsJAMINs JAMAX

FORMAT (415)

ME=1

DO 171 I=1,20

VALU(1)=0,0

DO 77 J=1,20

DO 77 1=1,20

AlIsJ)=040
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DO 31 J=1s16
DO 31 M=1,NE
DO 31 L=1sNE

31 FME(LsMsJ) =040
DO 32 J=1y16

32 CF(J)=040
DO 174 L=1sNE

118 DO 172 M=LsNE
READ INPUT TAPE 2s2sMN11sMLLsMN225ML2sMN33ML3 s MNG4 sMLA
READ- INPUT TAPE 2,119,BL1F,BL2F,BL11,BLZI,BJlF.BJZF.lel,anl.
1ZERO

119 FORMAT (8F5¢15F1045)

2 FORMAT (815)

CJIFL=BJ1F-BJ2F
CJIL=BJlI-BJ21
CJFU=BJULF+BJ2F
CJTU=BJLI+BJU21
CJFA=ABSF (CJFL)
CJIA=ABSF(CJIL)
JMCX=XMIN1F(CJFUsCJIIU)
~JMCN=XMAX1F(CJTIAsCJUFA)
JMNC=JMCN+1
IMXC=JUMCX+1
IF (UMCX—JMCN) 6156262

61 GO TO 172

62 CONTINUE
DO 210 N=1s4
B=(OSC/RCFIN))#*2

BK{1)=10
B1K(1})=1e0"
B2K(1)=1e0

DO 231 1=1,19
BK(I+1)=8%8K(1)
BIK(I+1)=(1e+B)*BlK(I)

231 B2K(I+1)=(1le+B*24)%B2K(I)
N11=MN11
L1=ML1
N22=MN22
L2=ML2
N33=MN33
L3=ML3
N&4=MN&44
L4=ML4 _
CALL SLATED(R,8)
DO 41 I=1,20

41 RR(Is1sN}=R(I)
N33=MN44
L3=ML4
N&44=MN33
L4=ML3 ,
CALL SLATED(R'sB)
DO 42 1=1,20

42 RRUTs24N)=R(1)

210 CONTINUE

DO 173 JJ=JMNCsJIMXC
Ad=JJ-1
DO 177 N=1s4
DO 115 1=1520
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115 R(I}=RR(Is1sN)
AL1F=BL1F
AL2F=BL2F
AL 1I=BL1I
AL21=8L21
AJ1F=BJILF
AJ2F=BJ2F
AJ1I=BJ1ll
AJ21=BJ21
CALL CFORCE( EwWFs ESFsR)
E(N)=EWF
VPS{N)=ESF
DO 116 1=1+20

‘116 R(I)-RR(I’Z;N)
AL1I=BL2I
AL2I=BL1I
AJli=BJ21
AJ2I=BJ11
CALL CFORCE(QEWFsQESFsR}
QV (N} =QEWF
QVPS(N})=QESF

177 CONTINUE
MA=AJLI+AJ2I+AJ
MM=XMODF (MAs2)
IF (MM) 7197172

71 QP=1.
GO TO 252
72 QP=~1.
252 CONTINUE
FTE =0e5% (E(1)+QP*QV(1)-VPS(1)=-QP#-VPS(1})
FTO =045% (E(3)-QP*QV(3)-VPS(3)+QP*~VPS(3})
FSE =0e5% (VPS(2)=QP#QVPS(2))
FsSO =0e5% : (VPS(4)+QP*QVPS(4))
CE=(FTE*VTE +FSE#SE+FTO*TO+FSO*S0)
CF(JJ)=Ct

FME(LsMsJJ)=CF(JJI+ZERO
173 FME(MsLsJJ)=FME(LsMsJJ)
172 CONTINUE
174 CONTINUE
DO 20 JJ=JAMINsJAMAX
IF (NTE) 66267567
66 WRITE OUTPUT TAPE 3,69
69 FORMAT {1X14HINITIAL MATRIX)
DO 68 M=1,NE
68 WRITE OUTPUT TAPE 3,3039(FME(L,M9JJ)9L 1sNE)
67 CONTINUE -
K=0
28 DO 30 L=1sNE - L
IF (FME(LsLsJJ)) 2592625
26 K=K+1
GO TO 30
25 N=0
DO 29 M=LsNE
IF (FME(MsMsJJ)) 39522539
22 N=N+1
GO TO 29
39 LL=L=K
MM=M=K =N
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A(LLsMM)=FME(LsMsJJ}

A(MMsLL)=A(LL sMM)

CONTINUE

CONTINUE

NK=NE-K

IF (NK)} 601+601+602

GO TO 603

CONTINUE

JA=JJ=-1

WRITE OQUTPUT TAPE 3+301+JA

FORMAT (1X2HJ=12)

WRITE OUTPUT TAPE 3, 374
FORMAT { LX20HCENTRAL FORCE MATRIX]

DO 302 J=1sNK

WRITE OUTPUT TAPE 3s303s(A(1sJ)}s1=1sNK)
FORMAT(13F1045)

IF (NTE) 281,282,281

GO TO 283

IF (ND) 551956555

READ INPUT TAPE 25284 ( (ATEN(LsM) sM= L!NK),L 1sNK)
GO TO 57

READ INPUT TAPE 29284 (ATEN(LsL)sL=1sNK)
FORMAT(8F1047)

CONTINUE

DO 285 L=1sNK

DO 285 M=LsNK

" TENS(LsM)=VTEN®ATEN{LsM)

TENS{MyL)=TENS(LsM)
A(LsM)=A(LsM)I+TENS(L M)

A(MsL)=AlL M)

WRITE QUTPUT TAPE 34 377
FORMAT { 1X19HTENSOR FORCE MATRIX)

DO 309 J=19sNK

WRITE OQUTPUT TAPE 35303 (TENS(IsJ)sI=1sNK)
WRITE OUTPUT TAPE 3y 378 )
FORMAT ( 1X12HFINAL MATRIX)

DO 333 J=1eNK

WRITE QUTPUT TAPE 353039 {A(IsJ)sI=1sNK)}
CONTINUE

IF (NK=1) 75975576

GO TO 20

CALL EIGEN(AsVALUsNKsME)

WRITE QUTPUT TAPE 3,305

FORMAT (11HEIGENVALUES 2X12HEIGENVECTORS)
DO 304 J=1sNK

WRITE OUTPUT TAPE 3,303,VALU(J)’(A(I’J)91~19NK)
CONTINUE

CONTINUE

CONTINUE

GO TO 80

END
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SUBROQUTINE CFORCE(EWFsESFsR)

DIMENSION T(20)sBI(20s20})93IN(20s20)+DBI(20+20}sP(20)5Q(20)+5Q(20)
1sSQF(20) sDF(20)sGJ(20) 93Q2(20)sFACT(20)sRT(2555)sVPN(20520),sVP(20)
29VN(20) sR(20)sBK(20)+81K{(20)sB2K(20)
34CKI(20) s S(6)sD(6)sU(B)sVIE)sW(O)sX(6)sY[6)sZ(6)sEW(1EIIESI16)
49F(34)y VF{100)sAM(100)sVFF{100)sWA(100)sBA(100),54(100)sHA(100)

COMMON TsBI»BINsDBIsPsQasNLsN2sN3sNasL1sL29L39L495Q9SQ29SQFsDFsFACT
1sGJsNLI3aN24sNLIsN22sN33sNGGs 1190 229L33sL44sKLUsK2UIK3UsKILK2L K3
2L KLsKUs ALIF 9 AL2FsALLII sAL2IsAJLIFsAJ2FsAJLITsAJU2I A
3sBKsB1KsB2K . ‘ )

CI=SQRTF((2e#AJIF+1e ) ¥ (2 ¥AJLI+1 e ) ¥ (24 ¥AJ2F+1e)#(2e%AJ2]+14))

CL=SQRTF((2¢%AL1F+1e )% (24 %¥AL1I+10a )% (2e*AL2F+1e)*(24%AL21+10))

V(1)=AL1F

VI(2)=AJLF
V(3)=AL2F
VI4)=AJ2F
V(5)=0.5
V(6)=AJ
W(l)=ALLI
W(2)=AJll
W(3)=AL2]
Wi(4)=AJ21
W(5)=055
W(6)=AJ
RV=RACAH(V)
RW=RACAH (W)
EWS=0.0
ESS=040

LA=AL2F+AL2I
LB=ALL1F+ALLlI
L=XMINOF(LAsLB)

K=L+1

DO 101 M=1sK
I=M-1
S(1)=AJll
S{2)=AJ1F
S{3)=1
S{4)=045
S(5)=-045
S(6)=0,0
D(1)=AJ21
D(2)=AJ2F
D(3)=I
D(4)=045
D(5)==045
D(6)=040
Ull)=AJlF
Ut2y=AJll
U{3)=AJ2F
Ul4r=A021
uisl)=1
Uié)r=AJ

EWI(M)=R(M)*CLEBSH(S)*CLEBSH(D) *RACAH(U)
EWS=EWS+EWI(M)

X{1)=ALlF
X(2)=AL1ll
X(3)=1
X(41=040

X(5)1=040
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X{(6)=0s0
Y(1)=AL2F
Y{(2)=AL2]
Y{3)=1
Y(4)=040
Y{5)=040
Y(61=0.0
Z(1)=AL1lF
Z{2)=AL1I
2(3)=AL2F
Z(4)=AL21
2(5)=1

S Z(6)=AJ

ES(M)=R{M)*CLEBSH(X)*CLEBSH(Y)*RACAH(Z)
ESS=ESS+ES(M) .
NA=AJ2I+AJ2F+AJ

NM=XMODF (NA,s2)

IF (NM) 3153151

EWF=CJ*EWS

ESF=2e #CU*CLA*RVH¥RW*ESS/ (=4 )

GO TO 251

EWF=(—-1e¢)*CJU*EWS

ESF=(=26 ) #CUXCLH¥RVXRWHESS/ (~4a)

CONTINUE :

RETURN

END
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SUBROUTINE SLATEDI(R»sB)
DIMENSION T(20)sBI(20520)sBIN(20520)sDBI(20520D5sP(20)9Q(20)+5Q(20)

19SQF (201 sDF(20)sGJ(20)sSQ2(20) sFACT(20)sRT(2555)sVPN(20+20),VP(20)

2sYN(20) sR(20)sBK(20)sB1K(20)982K(20)

COMMON TsBIsBINsDBIsPsQaNLsN2sN3sN4sL1sL2sL3sL4sSWsSA2»SQF»DFsFACT
19GJIsNL3sN24sNI1sN229N33sNG4s L1191 229L339L44sK1UsK2UsK3UsK1L9K2L K3
2L KLsKUs AL1IF s AL2F sALII sAL2I sAJLIFsAJ2FsAJLITsAJ2I sAY
39BKsBLK sB2K

N1=N11l-1

N2=N22=-1

N3=N33-1

N4=N44=1

L11=L1+1

L22=L2+1

1L33=L3+1

Lab= 4+1

N13=N1+N3+1

N24=N2+N4+1

NL1=N1+L1+1

NL2=N2+L2+1

NL3=N3+L3+1

NL4=N&4+L4+1

L112=L11+2

L222=L22+2

L332=L33+2

L&442=L44+2

RNL1=SQRTF({SQ2(L112)*DF(NL1))/(SQ2(N11)*FACT(NL11)*(DF(LL11)**2)})

RNL2=SQRTF((SQ2(L222)%DF(NL2))/(SQ2(N22)*FACT(N22)*(DF(L22)%%21}))

RNL3=SQRTF({SQ2(L332)%DF(NL3))/(SQ2(N33)%FACT(N33)*(DF(L33)%%2)})

RNL4=SQRTF((SQ2(L442 ) ¥DF(NL4) )/ {SQ2IN44 ) #FACT (N&4 ) *{DF(L4L)x%2) ) )

RNL=RNLI#RNL2*RNL3*RNL4 ¢

L24=L2+L4 -

L241=L2+L4+1

L242=L2+L4+2

L243=.2+L4+3

L13=L1+L3

L131=L1+L3+1

L132=L1+L3+2

L133=L1+L3+3

CALL RADIAL (VPNsVPsVN)

KU=XMINOF(L241,L131)

ML24=XMODF( L24s2)

ML13=XMODF( 1132}

DO 101 1=1,20

R{11=0.0

IF (ML24=-ML13) 71e72,71

GO TO 200

IF (ML24) 5155152

KL=1

GO TO 73

KL=2

DO 111 K=KLsKUs2

TRR=0De0

DO 121 M=1sN13

DO 121 N=1sN24

IT=05#FLOATF(L134+2%(M=1)=(K~1))+1.

JT=045%FLOATF(L24+2%(N=1)—(K=1))+1s

IM=05#FLOATF(L13+2%{M=1)+(K=1))+1.

MT=0e5%#FLOATF(L1342%(M=1)+L24+2%#(N=1))+1.
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MUSXMINOF(IT,JT)
D TTR=040
© DO 131 I=1sMU
MTI=MT=1+1
JT1=UT=-1+1
KI2=K+2%1=2 .
D TTSD=P(I)% BI(IToI)*BIN(MTI,JT1)*BK{K)*#BIKIMTIMB2K(1)/(BLIK(KI2)*B2
1K (MT))
131 TTR=TTR+TTSD
TR=TTR*VPN(MsN)¥DF (IM)#FACT(JUT)/{SQ2(IM)*(1e+2,%#B)%¥SQRTF (1a+24%B)*
1164 )
D 121 TRR=TRR+TR
D 111 R(K)=TRR*RNL
200 CONTINUE
RETURN
END

[vRw)

\
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SUBRQUTINE EIGEN(AsVALUsNsM) .
DIMENSION A{20520)s B(20520)s VALU{20)s DIAG(20)»

SUPERDI(.19] »

V(19)s VALL{20)s S{19)s C(19)s D(20)s IND{(20)s U(20)>

DUMMY (478)

EQUIVALENCE (DIAGsDUMMY ), (SUPERD;DUMMY(ZI))o {(VALLsDsDUMMY (40) )
' {VsSsDUMMY ( 60))s (BsDUMMY( 79))s (INDsU)s (IIsMATCHI)»
(TAUSBETA)s (WsPRODS)s (XsSMALLD)s (ANORMsANORM2)

CALCULATE NORM OF MATRIX

ANORM2=040

DO 6 I=1sN

DO 6 J=1sN
ANORM2=ANORM2+A( 1sJ)*%2
ANORM=SQRTF ( ANORMZ2)

GENERATE IDENTITY MATRIX

IF (M) 10s 454 10
DO 40 I=1sN

DO 40 U=1sN
IF(I=J) 35 25 35
B(IsJ)=1le0

GO TO 40
B(I’J)=0.0
CONTINUE

PERFORM ROTATIONS TO REDUCE MATRIX TO JACOBI FORM

IEXIT=1

NN=N=-2

IF (NN) 890s 1704 55
DO 160 I=1sNN

11=1+42

DO 160 J=II1sN

T1=A(1s1+1)

T2=A(1sJ)

GO TO 909

DO 105 K=IsN
T2=COS*#A{Ks[+1)+SIN*A(KsJ)
AlKsJ)=COSH¥A(KsJ)=SIN*¥A(KsI+1)
A(KsI+1)=T2

DO 125 K=IsN
T2=COS#A(1+1+K)+SIN¥A(JsK)
A{JsK)=COS*A(JsK)I=SIN*¥A(I+1sK)
A(I+1sK)=T2

IF (M) 130, 160s 130

DO 150 K=1sN
T2=COS*¥B(KsI+1)+SIN*¥B(KsJ)
B(KsJ)=COS*#B(KyJ)=SIN*¥B(KsI+1)
B(KsI+1)=T2

CONTINUE

MOVE JACOBI FORM ELEMENTS AND INITIALIZE EIGENVALUE BOUNDS

DO 200 I=1sN

DIAG(1})=A(Is1])
VALU({1)=ANORM
VALL(I)=-ANORM
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DO 230 1=2sN
SUPERD(I-1)=A(1-1s1)

V(I-1)=(SUPERD(I-1))*%2

DETERMINE SIGNS OF PRINCIPAL MINORS

TAU=00

[=1

MATCH=0

T2=0,0

T1=1e0

DO 450 J=1sN
W=DIAG(J)~-TAU

IF(T2) 300y 330s 300
IF(T1) 310s 370 310
X=WkTl=V{J=1)%T2

GO TO 410

IF{T1) 335, 350, 350
Tl=-1e0

X=~W

GO TO 410

T1=1e0

X=W

GO TO 410

IF(V(J=1)) 380s 350 380
IFtT2) 400y 390, 390

X==140
GO TO 410
X=1e0

COUNT AGREEMENTS IN SIGN

IF(T1) 425y 4205 420
IF(X) 440y 430, 430
IF(X) 430, 4405 440
MATCH=MATCH+1

T2=T1

T1=X

ESTABLISH TIGHTER BOUNDS ON EIGENVALUES

DO 530 K=1sN

I[F (K-MATCH) 470s 470, 520
IF(TAU=-VALL(K)) 530s 5305 480
VALL(K)}=TAU

GO TO 530

IF{TAU=-VALU(K)) 525, 530, 530
VALU(K)=TAU

CONTINUE

IF(VALUCT)=VALL{I)-5+0E-8) 570s 5705 550
IF(VALU(I)) 560, 580s 560
IF(ABSF(VALL(I)/VALU(I)=1.0)=5.0E-8) 5705 5705 580
[=1+]1 .

IF(I-N) 540y 540, 590

TAU= (VALL(I)+VALU{(I)) /240

GO TO 2690

JACOBI EIGENVECTORS 3Y ROTATIONAL TRIANGULARIZATION
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IF (M) 593 890, 593

1EXIT=2

DO 610 I=1sN

DO 610 J=1sN

A{IsJ)=0e0

DO 850 I=1sN

IF (1-1) 625, 6255 621

IF (VALU(I-1)=-VALU{I)=540E=7) 730, 730s 622
IF (VALU(I=-1)} 623y 6255 623

IF (ABSF(VALU(I)/VALU{I=1)-140)=5,0E~7) 730, 730s 625
C0S=1«0 . .
SIN=0e0

DO 700 J=1sN

IF(J=1) 680 680s 640°

GO TO 9900
S{J-1)=SIN
CtJ-11=C0s

D(J=~1)=T1*COS+T2*SIN
T1=(DIAG(J)=VALU(I))#COS~BETA*SIN
T2=SUPERD(J)
BETA=SUPERD(J) ¥COS

DINY=T1

DO 725 J=1sN

IND(J) =0

SMALLD=ANORM

DO 780 J=19sN

IF (IND(J)=1) 750s 780, 780
IF {ABSF{SMALLD)~ABSF(D(J)))780s 7805 760
SMALLD=D(J)

NN=J

CONTINUE

IND{NN) =1

PRODS=1.0

IF (NN=-1) 810, 850, 810

DO 840 K=2sNN

IT=NN+1-K
A(II+1,1)=C(II)*PRODS
PRODS==PRODS*S(11)
A{1ls1)=PRODS

FORM MATRIX PRODUCT OF ROTATION MATRIX WITH JACOBI VECTOR MATRIX

DO 885 J=1sN

DO 865 K=1»sN

U(K)I=A{KsJ)

DO 885 I=1sN

All9J)=0e0

DO 885 K=1»sN
A(LsJ)=B(1sK)*¥U(KI+A(T D)
RETURN

CALCULATE SINE AND COSINE OF ANGLE OF ROTATION

IF (T2) 910, 940, 910
X=SQRTF (T1#%#2+T2#%2)
COS=T1l/X

SIN=T2/X
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930 GO TO (905650)s IEXIT
940 GO TO (1605910)s IEXIT

950 END
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G. TFORTRAN Listing (3)

EIGENVALUES AND VECTORS FOR THE PARTICLE-HOLE INTERACTION
DIMENSION T(20)sBI(20520)sBIN(20+s20)sDBI{20,201,P(20)+Q(20),5Q(20)
1,SQF(20)’DF(ZO):GJ(ZO)9$QZ(20)9FACT(20)’RT(ZSaS)9VPN(20:20);VP(20)

25VN(20)sR(20)+BK(20)+B1K(20)+B2K(20}

DIMENSION RR(20s234) sRCF(4) s X(6) s VALU{20)
1VPS(4)9QVPS(4),ATEN(20,20),TENS(ZO,ZO)9FME(20,20,16),CF(16) .

COMMON T’BI9BIN9DBI9P9Q’N19N29N3’N49Ll’LZ;L3!L4!SQ!SQZvSOF’DF’FACT
1sGJsNL3sN24sNLI1aN22sN33sNsbyL115L229L335L44sK1U»K2UIK3UIKILK2L K3

2L KLsKU» AL1IFsAL2FsALA T sAL2 T sAJLIFsAJ2FsAJLIIAJ21,AU
39BKsB1KsB2K

READ INPUT TAPE 2,280sNTE

FORMAT(15)

READ INPUT TAPE 2,202 ,0SCsVTEN
FORMAT (2F10.5)
WRITE OQUTPUT TAPE '3+201,0SCsVTEN

FORMAT (1X11HOSCILLATOR=F1045910X5HVTEN=F1045)
READ INPUT TAPE 294s VTEsSEsTOsSOs (RCF{1)sl=1s4)"
FORMAT (8F1045) ’

WRITE OQUTPUT TAPE 354, VTE9SE9TOsSO,(RCF(I)¢I=1:4)

BI(1ls1)=1.0
DBI(191)=1e0
DO 10 J4=2,19

BI(Jsl)=1e
DBI(Jsl)=1e
K=J

DO 10 M=2,K

BI(JsM)={FLOATF(J-M+1)/FLOATF(M=1))%*31{JsyM-1) :
DBI(JsM)=( (FLOATF{J=- M)*2.+3o)/(FLOATF(M)*Z.—I D)*DBI(JoM 1}

0O 11 J=1+19
BIN(Js1)=1e

K=J+1

DO 11 M=2,K

BIN(JsM)=({FLOATF(J-M+2)=0.5)/FLOATF (M- l))*BIN(JoM l)
P{l)=1e : -

Q{l)=1. -

GJ(1l)=1e -

SQ(l)=1.

DF(1)=1.

SQ2(1)=1-

SQF(1)=1. .

DO 12 1=1,19

CPUI+1)==1e%P(])

SQUI+1)=~24%5Q(1)

SQF(1+1)=44*SQF (1)
DF(T+1)=(2e%FLOATF(I)+10}%*DF (1)
GJI1+1)=(FLOATF(1)~045)%#GJ(1)/(045+3T)
SQ2(1+11=24%5Q2(1)

QUI+1)==442Q(1)

FACT(1)=1. )

DO 129 M=2,19 .

FACT (M) =FLOATF (M—1)%FACT (M-1)

READ INPUT TAPE 2570 sNEsNDsJAMIN s JAMAX
FORMAT (415)

ME=1

DO 171 1=1520

VALU(1)=040

DO 77 J=1,20

DO 77 1=1,20

A(1,J)=040

,A(20920)9E(4)00V(4)9
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DO 31 J=1,16
DO 31 M=1sNE
DO 31 L=1sNE
31 FME(LsMsJ}) =040
DO 32 J=1s16
32 CFLJ)=0.0
’ DO 172 L=1sNE
118 DO 172 M=LsNE
READ .INPUT TAPE 292sN11sL1sN22sL2sMN339sML39aMNLG4sMLL
READ INPUT TAPE 25119sAL1FsAL2FsBL1IsBL2IsAJIF,AJ2FB8J11,4BJ2I,
1ZERO .
119 FORMAT(8F5e19F1045)
2 FORMAT(815)
AJFL=AJLIF-AJ2F
AJIL=BJU11-BJ21
AJFU=AJ1F+AJ2F
AJIU=B8UlI+BJ21I
AJFA=ABSF(AJFL)
AJIA=ABSF(AJIL)
JMAX=XMIN1F{AJFU-,AJIU)
JMIN=XMAX1F(AJFASAJIA)
COUMN=UMIN+L
JMX=UMAX+1]
IF {UJMAX~UMIN) 61962962
61 GO TO 172 .
62 CONTINUE
DO 210 N=1ls4
B=(OSC/RCF(N)) ¥%2

BK(11=140
B1K(1)=1e0
B2K(11=1e0

DO 231 I=1,19
BK(I+1)=8%BK(I)
B1K(I+1)=(1e+B)*B1K(1)
231 B2K(I+1)=({1e+B#24)#B2K(1I)
N33=MN33 '
L3=ML3
N&44=MNG4
L4=ML4
CALL SLATED(RsB)
DO 41 1=1,20
41 RR{TIs1sN)=RI(TI)}
N33=MN&44
L3=ML4
N44=MN33
L4=ML3 .
. CALL. SLATED(RsB)
DO 42.1=1,20
42 RR{Ls2sN)=R{I)
210 CONTINUE -
DO 173 JJ=JUMN s IMX
AJ=JJ-1
DO 177 N=1ls4
DO 115 I=1s20
115 R{I)=RR(Is1sN)
AL1I=8L11
AL21=BL21
AJl1I=BJll
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AJ21=BJ21

CALL CFORCE( EWFs ESFsR)
E(N)=EWF

VPSIN}=ESF

DO 116 1=1,20
R{I}=RR(Is2sN)

AL1I=8L2I

AL2I=BL1I

AJl1=BJ21

AJ21=BU1ll

CALL CFORCE(QEWFsQESFsR)
QV{N)=QEWF

QVPS(N)=QESF

CONTINUE
MA=AJLI+AJ2I+AJ

MM=XMODF (MA,2)

IF (MM) 7157172

Qp=lu

GO TO 252

QP=—1e

CONTINUE '

FTE  =0e45% (E(1)+QP*QV(1)-VPS(1)-QP¥*=VyPS( 1)}
FTO  =0e5% (E(31-QP*QV(3)~-VPS(3)+QP%~VPS(3})
FSE  =0e5% (VPS(2)=-QP*QVPS(2))

FSO  =0e5% (VPS(4)+QP*QVPS(4)) |
CE=VTE%*(FTE +FSEXSE+FTO¥TO+FS0%S0)

CF(JJ)=CE

DO 172 JJ=IMNsIMX
MAP=AJFU+AJIU
MAM=XMODF (MAPs2)

IF (MAM) 771,771,772

AP=1,

GO TO 773
AP=-1.
CONTINUE
PHME=0,0
X{1)=AJ21
"X(2)=AJ1F
X{3)=AJll
X(4)=AJ2F
X{6)=JJ~-1
DO 51 K=JMNsJMX
X(5)=K~-1

RAC=RACAH{X)
PHM=AP#FLOATF (2% (K=1)+1)*RAC#CF (K)
PHME=PHME+PHM ’

FME(LsMsJJ)=PHME+ZERO

CONTINUE

DO 20 JJ=JAMINsJAMAX

JA=JJ=1 '

WRITE OQUTPUT TAPE 3,301sJA

FORMAT (1X2HJ=12)

WRITE OUTPUT TAPE 3,69

FORMAT { LX14HINITIAL MATRIX)

DO 68 M=1sNE

WRITE OUTPUT TAPE 353035 (FME{LsMsJJ) sL=1sNE)
CONTINUE

DO 30 L=1sNE
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DO 29 M=LyNE

A{LsM)=FME(LsMyJJ)

A{MsL)=A(LsM)

CONT INUE

CONTINUE

NK=NE )

WRITE QUTPUT TAPE 3, 374
FORMAT ( LX20HCENTRAL FORCE MATRIX)

DO 302 J=1sNK

WRITE OQUTPUT TAPE 393039 (A(IsJ)sI=1sNK)
FORMAT (21F643)

IF (NTE) 2812824281

GO TO 283

IF (ND) 553956455

READ INPUT TAPE 292849 ({ATEN(LsM)sM=LsNK}sL=1sNK)

.GO TO 57

READ INPUT TAPE 2+284s (ATEN(LsL)stL=1sNK)
FORMAT (8F10e7)

CONTINUE

DO 285 L=1sNK

DO 285 M=LsNK

TENS(LesM)=VTENHATEN(L M)
TENS{MsL)=TENS(L M)
A(LaM)=A(LsM)+TENS(L M)

A(MsL)=A(L M)

WRITE OUTPUT TAPE 3s 377
FORMAT ( 1X19HTENSOR FORCE MATRIX)

DO 309 J=1sNK

WRITE OUTPUT TAPE 353035 (TENS(IsJ)sI=1sNK)
WRITE OUTPUT TAPE 3, 378

FORMAT (1 X12HFINAL MATRIX)

DO 333 J=1sNK -

WRITE QUTPUT TAPE 35303s(A(IsJ)sl=1sNK)}
CONTINUE .

IF (NK~=1) 754754576

GO T0 81

CALL EIGEN(AsVALUINKsME)

WRITE OUTPUT TAPE 3,305

FORMAT (1 1HEIGENVALUESs2X12HEIGENVECTORS)
DO 304 J=1sNK

WRITE QUTPUT TAPE 39303sVALU(J) s (A(TIsJ)sI=1sNK)
CONTINUE . .
CONTINUE

GO TO 80

END
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