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ABSTRACT 

A generalized optical-model--potential method for calculation 

of the scattering of charged particles by atoms is described. The 

method is shown to combine, in practical applications, the advantages 

of two conventional appToaches, the eigenfunction expansion method 

and the optical-potential method, and to contain these two approaches 

as limiting cases. With certain modification to allow for the Pauli 

exclusion principle expliCitly, the method is applied to the elastic 

scattering of electrons by hydrogen atoms for energies below the ex

citation of the second quantum level { l 0" 2 e V)r with 1 s, 2s, 2p hydrogen 

atomic states used in the close-coupling scheme. The resulting 

coupled set of integTo-differential equations,. \~Jith appropriately 

approximafed generalized optical potentials, was integrated numer

ically on an IBM 7090 computer, yielding phase shifts in various total 

spin and total angular momentum states. 

Results from this calculation are compared with other theo

retical predictions and available experimental-data. The short-range 

interelectron correlation effect is found to be of major importance for 

S-wave scattering in-the entire energy range except very near zero 

energy. The influences of the long-range polarization potential and 

the short-range effect become comparable for- P-waves. For D-waves, 

the long-range polarization potential beg:lns to assume a major role in 

the scattering, and for F and higher waves it becomes singula,rly 

dominant throughout. 
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Extremely nar.row resonance-type effects in phase shifts of 

various spin and angular momentum states ·are found at energies 

slightly below the ~econd quantu~ level. The resonance in singlet 

S-state is analyzed in detail, by a Breit-Wigner type fit, and is found 

to be centered at 9.51 eV with a·narrow full width of 0.067 eV. F.or the 

scattering length of singlet S-w~we, a value of 6. 520 (in unit of Bohr 

radius) is obtained, 

The method is less successful in singlet low-angular-momenturr1 

waves where short-range correlation effect is important. A modified 

trial wave-functionform is suggested for these cases, to take better 

account of the mutual repulsion between electrons. 
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I. INTRODUCTION 

A. General Remarks 

The problem of the scattering of a charged particle by an atom 

(henceforth referred to simply as atornic scattering) has been of con

tinued interest to physicists since the advent of quantum mechanics. 

For purely theoretical interest, it has been used both as a tool for 

pro bing the atomic structure and. in turn as a test of the valid,ity of 

nonrelativistic quantum mec.hanics. For practical applications, an 

understanding of the atomic-scattering process is of great importance 

in such areas as gaseous electronics, astrophysics, and, more re

cently, in the area of controlled thermonuclear reactions. 

At high energies, the first Born approximation has been known 

. ld d" . . 1 . h . 1• 2 0 to y1e pre 1chons 1n genera agreement w1t · exper1ments. · n 

the other hand. for low-energy scattering both theoretical calculations 

and experimental results have been quite inadequate. Here by low

energy we mean the relative velocity of the charged. particle and the 

target atom is of the order of that of atomic orbital electrons. or 

1 
. 3 

ess. 

The experimental difficulty lies in the fact that most atoms are 

not monatomic at room temperature. The molecules ofthese elements 

must first be dissociated. The dissociation is invariably accompanied 

by the formation of excited states ofthe atom·and free electrons, as 

well as ions- whose presence makes the experimental results very 

difficult to interpret. This is the reason. that for many years most 

experiments were limited to monatomic noble gases only. The solution 

to the difficulty mentioned above was: found in the use of modulated-

beam techniques. 
4

• 
5 

This new technique makes possible more re

fined ·experimental results. 

On the theoretical .side,. the difficulty lies not in prinCiple .. We 

know that. the particles interact with Coulomb forces and that the scat

tering process .obeys the nonrelativistic Schr8dinger equation with 

known boundary conditions.· Formal solutions can be given quite 

readily. However. the inherent complexity ofthis many-body 
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problem limits practical calculations to very crude approximations. 

More unfortunately~ various approximations often yield vastly 

different predictions. Withthe lack of experimentaL comparison, it 

is difficult to assess the merits of various approximations. 

Just as the modulated,..beam techniques have aided the experi

mentali_st~ .the recent development of high-speed electronic computers 

enables theorists, for the first time, to do calculations on a much 

larger and more ambitious scale, and to make better, though still 

quite limited, approximations .. With better experimental results 

within sight~ we are justified in using our best available means in 

.. theoretical calculations, to make systematic appraisals of different 

approximations, to assess their range of validity, and to. understand 

. bette.r the prime mechanisms involved in low-energy atomic-scatter

ing processes. 

B. · Physical Picture 

It is important to have a general classical picture of the low

energy atomic-scattering process. This physical picture will aid our 

understanding of the theoretical methods a!.1.d their various approxi

mations which we shall mention later. 

Let us assume the atom is in its init::al state while the charged 

particle comes from infinity. As the impinging particle approaches, 

the electron cloud of the,atom will be appreciably distorted by the 

field of the charged particle. If the relative velocity between the 

particle and the atom is rather small, we could reasonably assume 

thatthe atomic electrons will be able to follow the instantaneous 

motion of the incoming particle and distort adiaba-tically as a function 

. of the incoming-particle position. The charged particle in turn sees 

an average field of this adiabatically distorted atom, which in our 

classical picture would be ellipsoid- shaped. Thus.· at large distance, 

only the in~uced dipole polarization is impo:rtant; the attractive field 

experienced bythe particle is simply [- (a./2)/ r 
4
], where a. is the 

usual polarizability of the atom, and r is the distance between the 

particle andthe atom. Of course~ when the particle gets closer to 
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the. atom, higher multipole fields must be included. This is the gen

eral idea behind the so-called adiabatic theory of low-energy scat-
. 6, 7 

tenng. 

However, the incoming particle will acquire more velocity in 

this induced attractive field asit gets near the atom, and may attain 

speed comparable to that of the atomic electrons. Then the atomic 

electrons may not be able to distort adiabatkally. The field as seen 

by the charged particle will not be a .simple function of its position 

alone as described before, but will be a complicated and, in general, 

a velocity-dependent (i, e., nonlocal) field. 

The region where the breakdown of the adiabatic condition 

begins ·depends of course on the magnitude of the induced attractive 

field and'the incoming particle 1 s mass and initial ve'locity. For 

lighter particles such as electrons,. this effect may _occur and become 

important before the particle reaches the target atom; we call this a 

long,..range nonadiabatic effect. It must be kept in mind that this kind 

. of division of the scattering process into various effects are not at 

all clear-cut and only roughly defined for the convenience of dis.cussion. 
I 

No effect can be completely isolated from the others. 

As the particle gets very near or inside_ the atom, the picture 

of an ellipsoidal atom must be abandoned and replaced, assuming the 

particle to be hegatively charged, by the picture of a more complicated 

distorted .atomic' electron cloud with a 'tbubble 11 moving through it, 

. That is, the incoming particle repels the atomic electrons and creates 

a Cou~omb hole (the 'ububble 11
) around it. Furthermore, we can no 

longer assume the particle sees an average field of the atom. The 

short-range correlation between the charged particle and the atomic 

electrons in this region may have an important effect on the· .scatter-

ing process. Finally, if the particle is an electron, one must properly 
•' 

incorporate the Pauli exclusion principle to take into account the in-

distinguishability of electrons. That this is a very important effect in 

low-energy scatterings was first demonstrated by Morse and Allis. 
8 
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In .summary, the the.oretical problem for low-energy atomic 

scattering is that of making adequate allowances for .the physical 

effects mentioned above; namelys the adiabatically induced long -range 

polarization force, the nonadiabatic behavior and short-range inter

particle correlations, and the Pauli exclusion principle -if the incoming 

particle is an elec;:tron. Since various theoretical approximations, in 

effect, place d~ff,erent emphasis onthese physical effects, comparison 

with experimental results will shed light on the relative importance 

of these effects on the scattering .. We shall. always keep this in mind, 

and discussions in subsequent sections will be so oriented. 

G. Outline 

Here we give a brief outline of the general development in this 

work. In Sec. II, two general theoretical approaches commoniy used 

in atomic scattering problems, the eigenfunction expansion method 

and the optical-potential method, are described. This leads naturally 

to Sec. III where we formally derive the generalized optical-potential 

method. Its connection with the two general methods in Sec. II and 

its clear advantage over both will be shown. The method is applied 

. to the case of electron-hydrogen atom scattering. The Pauli exclusion 

principle requires certain modifications in the formalism, which is 

done in Sec. III-B. The optical potentials used in the calculation are 

also presented there. 

Phase shifts were obtained for elastic scattering at energies 

below excitation. threshold, and they are presented and analyzed in 

Sec .. IV; comparisons with other. theoretical calculations and available 

experimental results are also made. Finally, in Sec. V, some con

clusions are drawn on the basis of our results, with regard to the 

scattering process and the theoretical methods that are used. In 

addition, a modified expansion form for the singlet wave function is 

suggested. 

r-
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II. TWO CONVENTIONAL METHODS 

In the tr~atment of atomic -collision problems, various theo

retical methods, he.uristic and formal, have been used. The Born 
1 . . 

expansion approach, ,for .example, is' well known and often used, but 
I . 

is is found to be rather unsuitable for low-energy scatterings. We 

also have the variational method, whose brute -force -type approach 

has beenproven to be very powerful in certain cases. 9 However, the 

method seems to be esthetically less appealing in thatthe physical 

picture of the scattering process becomes rather obscure. 

In· this section we review two formal approaches, the eigen

function expansion method and the optical-potential method. The 

pr.esentation and the associated. discussions of these two, methods lead 

naturally to the main theoretical development ofthis work, the gen

eralized optical~pote:ntial method. The pertinent quantities and terms 

introduced.inthis section will also be used throughout the work. 

A. Eigenfunction Expansion Method 

The most widely used approach in the atomic-scattering prob

lem is the eigenfunction expansion method. Its various subsequent 

approximations represent the major research efforts in this field. l, 
2 

The method is characterized by the expansion of the total wave function 

ljJ for the scattering process as a sum ofthe product of two uncorrelated 

(separable} wave functions, the eigenfunction of the atom Cb(z} and the 

incoming-particle wave function <j>(x). The total wave function is 

written 

(t? (z)' 
n 

(2A-l) 

where x represents the coordinates (space arid spin) of the scattered 
I 

particle, and z represents all the coordinates of the atom.· The 

above expansion involves no approximations and the sum, as indicated, 

.is over the complete discrete spectrum as well as the continuum of 

the unperturbed atomic wave function (t? n (z), 

HA (t? (z) = € (t? (z), 
n , n n 

(2A-2) 
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where HA is the Hamiltonian of the undisturbed atom, and e:n .is 

the eigenenergy of the atom.in the _nth state. Since the states ~n (z) 

span the whole space of z, <j>n (x) can also be viewed as the ·expansion 

__ coefficient of:l)J,(x, z ). 

Let K be the kinetic-energy operator ofthe "incoming particle 

and V its total (Coulomb) interacti~n with the nucleus and t-he atomic 

electrons: 

V(x - z. ). 
,_. ~l 

The total wave .function lj; satisfies the nonrelativistic 

Schrodinger equation 

(2A-3) 

(HA + K + V - E) lj; (x, z) = 0. (2A-4) 

The quantity E represents the total energy of the system. If the 

atom is inthe initial state <1?
0

, and the incoming particle of mass m 

has an initial momentum Po• then we have 

2 
Po 

E = ~ () + 2m = € o + Eo. 

The asymptotic boundary condition is quite simple in this 

approach. For an incoming plane wave p
0 

we have 

lim 
X- co 

ip x/1'1 

e n l <Pn(z). 
lxl 

(2A- 5) 

The prime limits the sum to energetically open channels only, and 

p . = (2m (E.- € }] l/z. The transition amplitude to the nth channel 
n n -

f (+) (i, p ) is related to the transition cross secti_on simply_ by 
n n 

(2A- 6) 
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Substituting the form of lj;(x, z) of Eqo (2A-J) into Eq. (2A-4), . . * 
multiplying on the left by various atomic wave functions \'P n (z ), then 

'integ:r:ating over atomic coordinates z, we obtain an infinite set of 

coupl~d differential equations for <j>n (x): 

(2A-7) 

forn= 1 ··· oo, and 

.. E =E-e, 
n n 

f * . V nm = · dz \l>n (z) V(x, z) \Pro (z). (2A-8) 

Equation (2A-7) can also be variationally de:r:ived by substituting 

.the expression of ljJ in Eq. (2A-l) into 

6U<~> * <Ho + v _ E)<~> dz J = a. (2A-9) 

A few remarks on .this approach are in. order here. Because 

ofthe product-type expansion form, the asymptotic boundary conditions 

ofth.e problem are unam"Qiguously defined. The relation forthe 

asymptotic <Po and the transition rate is particularly simple [Eqs. 

(2A- 5) and (2A-6)], making this approach the most convenient way of 

calculating reaction processes. However, the continuum part ofthe 

. atomic wave function \1> in the expansion of ljJ is extremely difficult 

to handle mathematically, and has never been included this way in 

practice .. Recently, Rotenberg 9A suggested use of an alternative 

eigenfunction-expansion basis, the Sturmian fur1ctions. These Sturmian 

functions are closely related to the original Schrodi'nger· wave functions 

but,, independent of potentials between the particles, they form a com

plete .set without a continuum in the region of physical interest. In 

this sense the contribution ()f the usual atomic -continuum states. can be 

included. While this indeed is a definite advantage,. the fact that only 

one state inthe Sturmian functions is a real physical wave function 
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seems· to limit the method 1 s practical usefulness to the elastic

scattering case only. 

In subsequent sections we shall assume the incoming particle 

is not an electron unless· specifically identified as such. ·This is to 

facilitate our general discussions. Of course whenthe .incoming 

particle is an electron we must explicitly antisymmetrize the trial 

wave function, and introduce exchange terms and other well-known 

1. t" 1, 3 comp 1ca 1ons. 

We now go on.to the va:dous approximations ofthis approach. 

The so-called closely-coupled-states approximation assumes that the 

potential matrix .elements .. V nm are zero except those between certain 

se_lected .atomic states <lin for n. = l, · · ·, ·N. Equation (2A-7) re

duces to a fin.ite set of N coupled equations: 
N 

<Pn = I V nm <Pm• (2A-10) 

m = l 

for n. = 1, · · ·, N. 

The same result can also be obtained by truncatingthe trial 

solution, 
N 

~T = L <Pn(x) <Pn(z) . (2A-ll) 

.n 

and substituting _into the variational expressions Eq. (2A-9). 

The choice of the closely coupled states N depends onthe 

problem at hand. For a particular reaction process from initial 

atomic state ~O to final atomic state <lin' we may close-couple just 

those two states and neglect all others. The resulting equations be-

come· 

[Eo- K- voo] <i>o= von<l>n 

[En - K - V nn] <l>n = V nO <l>o 
(2A-l2) 
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We may also include other atomic states in the close-coupling 

scheme, such as the degenerate states of the initial and the final 

atomic states, but the labor in solving the coupled equations increases 

tremendously with the number N. 

The physical meaning of the close-coupling scheme is clear 

from the separable -type trial wave function [Eq. (ZA-10)]. · For a 

given incident-particle position, the total wave function becomes a 

linear combination of those close -coupled atomic wave functions with 

coefficients determined by the values of their respective incoming

particle wave functions at that point. In this sense the close -coupling 

scheme means we are limiting the atom to distort only within these 

close -coupled atomic states. Thus a close -coupling scheme with 

atomic s states will only provide radial, or spherically symmetric 
11 shelP 1 type, distortion. For nonspherical distortions such as those 

giving rise to the long -range dipole polarization potential, we must" 

include atomic p state's in the scheme to simulate an ellipsoidal atom. 

A further approximation_ to Eq. 

term on the right in the first equation: 

(ZA-12} is_the omission of the 

[Eo - K - v oo] <Po = o 

[En - K - V l cp .. = V cp nn n nO 0 

(ZA-13} 

This is called the distorted wave approximation: the incident particle 

coming in the static field ofthe atom in the initial'state ~ 
0

, making 

~ interaction andexciting the atom into state ~n' and finally 

leaving in the static field of the -final atomic state. The elastic

scattering solution involves the first equation of Eq. (ZA-13} only, 

and is called, appropriately, the static approximation. 

We mention in passing here an even cruder approximation for 

Eq. (ZA-13}. Letting V 00 = 0 and V nn = 0 1 we have cp 0 = exp (i!o · ~}, 

and the second equation of (ZA-13} becomes 

(E - K) cp - V 0 exp(ik
0

' x). 
n n n - -

(ZA-14} 
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The solution of Eq. · {2A-14) can be easily obtained and it yields the 

. transition amplitude to atomic state n: 
'· .. ,_ 

' ·· 1 ( 2m1 f 0 (k0 , k } = - - - 2- v 0 exp[i{~0 - ... kn) · !] dx ·, 
n ... -n 4TI • il n ~ 

. . . 

(2A-.15) 

which .is just the familiar first Born approximation. 

The complexity ofthe calculational task in solving these 

equations is enormous and perhaps hot too apparent from the above 

presentation. We note that, up to.the present, the majority of work 
0 

on low-energy atomic scatterings has been limited to the distorted-. 
• • 0 1, 3 h . 

wave approx1mation or even,tb:e static approx1mat1on. T e most 

ambitious work has been on the close -coupling calculation of two or. 

three states. 
3 

Besides being the most general and, in particular, the most 

convenient method to calculate reaction processes,. the close -coupling

state method automatically takes into account some of the long-range 

no:i:ladiabatic ·effects albd short-range correlations, although the extent 

is quite uncertain. It has been noted by Temk:ln
1 0 

that this differential 

equation method (i.e. , to expand the solution of an {N + 1) particle 

differential equation in terms of a complete set of known N -particle 

eigenfunctions, . thus reducing the many-particle SchrOdinger.· equation 

into a set of one -particle differential equations which then can be solved 

by :r;1umerical methods) seems to be the most natural way to include 

these nonadiabatic effects. 

But the close -coupling- states method suffers on tv,:o points. 

First, it is difficult to assess the contribution of the atomic continuum 

states which must be omitted .in the method. More serious is the 

method 1 s inability to give correct long -range polarization potentials. 

As we mentioned before, a close'-coupling between spherically sym

metric states will give no polarization force at all. Even if we can 

close-couple all discrete states, the sizable contributionfrom the 

continuum state would still be missing, and we know from experience 

th~t a correct long -range potential is most important in any low-energy 

(; 
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10 
atomic scattering. In fact, the presence of the long-range polari-

zation potential even completely changes the basic form of the effec

tive -range formula for low-energy scatterings. 
1 

OA 

B. Optical-Potential Method 

The so.,.called optical-potential method was first developed in 

nuclear scatteri~g problems. 
11

. The basic idea is that we replace the 

complicated many-particle effect-which the incident particle experi

ences during the entire scattering process-by an equivalent single

body potential V, the optical potential. The elastic scattering is then 

described by the simple one-particle Schrodinge,r· ~quation 

[ E 0 K - ll_ J .p0 (x) = o. (2B-l) 

·In this approach all complicated many- body e~fects are absorbed 

in the optical potential lf, which is very hard to evaluate and is, in 

general, nor1local. Moreover, the complicated optical potential can be 

determined completely only when the scattering problem itself is com-
. . 12 

pletely solved, a vicious circle sadly noted by Lippmann and Schey. 

A formal expression for the optical potential can be obtained 

readily and for atomic scattering it was first given by Mittleman and 

Watson. 
13 

However, the optical potential is not unique. Here we show 

one version of the potential that we shall derive in the next section. 

For scattering in.the atomic channel ~ 0 • we have 

1f(x)= (olv+v 
(I - 1T 0) (I - 1T 0) (I - 1T 0) I 

+ v + v -..,...+-- v + v + . . . . 0 > ' 
a a a. 

(2B-2) 

where 

(2B-3) 

The quantity. YJ is a positive infinitesimal to insure an outgoing wave 

boundary condition. The identity ope rat or js denoted by I and 1T 0 is 

the projection operator onto the initial atomic state ell 
0

; i.e. , 

1T 0 = I 0) (o ~. The operator (I ·~ 1T 
0

) then forbids the atomic state ell 0 
to appear in any virtual intermediate states. 
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The optical-potential expression (2B-2), while exact in prin

ciple, is extremely difficult to evaluate. In practice we can only es

timate the second-order term 

' (I - TI ) 

V i . 0 : + 
a 

v o) 
and neglect higher terms. In practice one also assumes that the scat

tered particle changes very little in energy in each virtual transition 

(i.e.. EPo - K ~ 0 in a+}. Therefore we replace a+ in the propagator 

by 

+ d = ~ 0 

this is commonly called the adiabatic approximation. 

(2B-4) 

When we make this adiabatic approximation, the second-:-order 

term of the optical potential is then exactly equal to the second-order 

energy-perturbation term when the atom is under the influence of a 

static point charge. If the scattered particle is far from the atom this 

term yields.the familiar dipole polarization potential [ -(a./2)/r
4
]. 

When the particle is near the a.tom even this adiabatically approximated 

term becomes hard to evaluate. One usually introduces some kind of 

cutoff parameter inthe potentiai, such as the parameter d in the 
14 

much:-used Buckingham potential, 

(2B-5) 

We note that, in the language of virtual transitions, the close

coupled-states method differs widely from the optical-potential method. 

The former method essentially assumes that only a few of the atomic 

states (the N states in the close.-coupling scheme) are important, and 

that the effective potential allows virtual transitions to all orders only 

among these states while other atomic states do not contribute at all. 

The latter method, on the other hand, assumes that all atomic states 

are equally important and may be equally excited (virtually). The 

expression 1f in the optical equation is an iterative expansion in the 
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number of vir.tual transitions. ~or _example, in the second-order 

term in 1/, the .atom is allowed to be e:Xcited (virtually) .to any .other 

atomic state once and only once (including the continuum) before being 

deexcited back to the ground state. Inthe adiabatic limit~ however, 

this second-order term gives the correct long -range polarization 

potential, the so-called dispersion potential. 

To recapitulate: we see in practice that the optical-potential 

method givesthe correct polarization force at large distances but is 

completely incapable of accounting for nonadiabatic behavior or any 

short-range correlation effects. The close-coupled-states method, 

on the contrary$ does partially ~llow for the short-range and non

adiabatic effects, but in general is unable to give the correct long

range polarization potential. 
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III. FORMAL .·DERIVATION OF THE GENERALIZED 
OPTICAL:..POTENTIAL METHOD 

In this section we shall formally derive the generalized optical

potential method, which-as we shall show-does contain th~ advantages 

of both methods described in the· preceding sectio.n. 

A. Derivation Without the Pauli Principle 

The solution tjJ. ofthe atomic-scattering process is given, 1n 

. the Lippmann-Schwinger formalism, 
15 

by the integral equation in 

operator form: 
1 

tjJ = X + t V tjJ, (3A-l) 
a 

where X is the initial wave function before interaction, 
+ 

X = cii 0 (z} exp(iE_o · !). The symbol a is from 

+ a = E - HA - K +in, (3A-2) 

where symbols HA' K, E are as defined in previous sections, The 

positive imaginary infinitesimal term tin is used simply to indicate 

that the 11propagation' 1 1/a + under an integral sign is equivalent to 

E _q; _ K - i-rro(E- HA- K), 
A 

where (p means the Cauchy principal value. This formal device in

suresthe correct boundary condition of the scattering problem-that 

there will be an outgoing spherical wave. 

Next, we introduce a projection operator IT N which is a sum 

of projection operators 1T onto the atomic state g? ·: 
- · · n n 

N N 

IT N = L 1Tn = L In) (n I · (3A-3) 

n n 

The choice of these N states depends on which N atomic states we 

wish to close -couple. Of course it must include the initial state eli 
0

. 
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Let us define the generalized optical wave func;tion 

ljJc = IIN ljJ . (3A-4) 

Clearly, within.the N closely-coupled at9mic channels, ljJc 

describes the same scattering processes as ljJ, but it contains no 

other channels as does ljJ. Thus, if we are only interested in the 

reaction processes in.the· N channels,, we may as well solve for 

ljJ . instead of ljJ. c . 
We now seek an integral expression for ljJ : 

.c 

. (3A- 5) 

where o/ is the generalized optical potential in which we are inter

ested. 

Multipling Eq. (3A-l) by II N from the left, since 

commute (Appendix A), we get 

1 
ljJ c = X + + ·II N V ljJ. 

a 

By combining Eqs. (3A-l) and (3A-6), 

1 
ljJ = ljJ c + -:r ( 1 - II N) V ljJ. 

a 

Now, we define'the op~rator F by 

+ 
a and IIN 

(3A-6) 

(3A-7) 

(3A-8) 

Substituting Eq. (3A-8) i:nto Eq. (3A-6) and comparing the 

resulting equation with (3A"' 5),. we obtain the gen~ralized optical 

potential 

(3A-9) 

To derive the expression F, we simply substitute Eq. (3A-8) 

into Eq. (3A-.7) and obtain 

(3A-10) 
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Equations (3A-9) arid (3A-l0) completely determine the gerieraiized 

optical potential 7/. Expanding F, we hav~, more explicitly~ 

[ 

(I - IT ) (I - IT ) 
Lf= ITN V + V + N V + V +N 

a a 
v +·;. ]nN. 

(3A-ll) 

Now, lj; satisfies [from Eq. (3A-5)] the Schrodinger· equation 
c 

(a+ -lf)lj; ,::: (E - H - K - U) lj; = 0. 
c A- . c 

(3A-12) 

Since Y has the proje~tion ope.rator · TIN on both sides (L e, , it has 

nonvanishing matrix elements among the N atomic states only), the 

wave function lj; , correspondingly, is then a column matrix with non-
e 

zero elements for those N states. Thus, without losipg generality, 

we may write lj;c as 

lj; = c 

N 

L 
n 

<j> (x) \P (z) . 
n n 

(3A-13) 

Sub.stituting this into Eq. (3A-12) and integrating over the 

atomic wave functions \P , we obtain _the s·et of N coupled equations. 
n 

N 

(En - K) <j>Ii (x) = L Y nm (x) <j>m(x) 
m 

.for n :::: 0, N. \ 

. Where the matrix- element V is, more explicitly, 
nm 

lr =V + nm nm 
-1 

V . (E -E. - K + irj} · V. + 
~ ~ Jm 

for n, min N. 

(3A-14) 

(3A-l5) 

Equation (3A-l4) represents the fundamental result of this 

generalized optical-potential method, Within those N channels, it is 

a formally correct and exact solution to the actual scattering problem. 

We will now dwell on this for a while and make several com

ments on this method.· First we would like to show here the connection 

··of this method with the two conventional approaches mentioned in Sec. II. 
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The. choice ofthe N states to be close-coupled is arbitrary. :If we 

let N become larger, in the limit N includes .. the complete set of 

atomic states· Q?ri.. Then ITN approaches the identity operator arid 

l/. becomes simply v· , the first term in Eq. (3A-15). Equation 
nm nm . 

'(3A-·14) becomes an infinite set of coupled equations, which is identical 

to the eigenfunction expansion result. On the other hand if we werE{ to 
let N contain only one atomic state <1? 0 , Eq. (3A-14) becomes a 

single, uncoupled; one -particle Schrodinger equation, which is just 

the ordinary OJ?tical-potential equation for elastic scattering: Thus 

we see that ours is a. more refined scheme, or a hybrid type, which 

contains·the two methods in the above -mentioned extreme 'limits. 

Next, we turn to the necessary approximations on optical 

potentials LTnm in solving Eq. (3A-14). If we retairi only the first' 

term on the right~hand side of {3A-15), i.e;, V = V , we find 
nm nm 

that our method yields, in. this lowest approximation, the usual method 

of close-coupled-states approximation. [Eq. (2A-9)]. 

However, we shall be able to include the adiabatically approxi

mated ·second term in (3A-l5), which may actually dominate the first 

.term in some regions: 

v -;::.y t \ 
nm nm L 

jfN 

v. 
nJ € 0 - € j 

1 
'V. 

Jm 
(3A-16) 

For example, if cl?n and <Pm are both bound and spherically sym

metbc, V nm wiU be exponentially decreasing at large distances 

while the second term will yield the long-range 1/r 
4 

polarization tail. 

In analogy tothe distorted-wave approximation, Eq. (2A-13), 
' 

we shall h'ave the optically-distorted wave approximation: 

- K - ~ _l A-. = 0 · OOj '~'O 
. . (3A-17) 

Here th,e incoming particle comes in a polarized atomic field, makes 

one "optical" transition;· and leaves in the distorted field of the exci~ed 
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atom in the. nth state -this is- much more realistic than the corre-

sponding Eq. (2A.:.l3}; 

In practical caiculations, our philosop~y of approach is as 

follows .. We shall include as many atomic states _in N as the situation 

demands, and as the capacity of the electronic c.:omputer allows. They 

may include the initial and the final states of a particular reaction 

process in which we are interested, as well as_ their degenerate states, 

if any. The contribution of the other atomic states (including the 

continuum} enters adiabatically through the generalized optical po-

-tentials. Since we shall always have the correct adiabatic long-range 

polarization potentialthrough the 7fi s, the choice ofthe optically 

close-coupled states should be such that the nonadiabatic and short

range correlation effects be best taken into account by them. 

Thus we see the generalized optical-potential method combines 

the practical advantages of both the usual optical-model-potential 

method and the close -coupled eigenfunctions approach. It also justi

fies theoretically the ad hoc potential terms used by many authors. 
6

• 
16 

We also point out here that the ensuing equations are similar to the 

usual close-coupling-approximation equations and are no more diffi

cult to solve. 

B. Modification for Electron~Hydrogen-Atom Scattering 

We now apply the generalized optical-potential method to low

energy electron-hydrogen-atom scattering. The choice is made for 

the following reasons.- First of all it is the simplest atomic-scattering 

problem of real physical interest. The complete atomic-hydrogen wave 

functions are known, so that all approximations must come only from 

the generalized optical potentials.- More important, there exist rather 

thorough theoretical investigations in the literature for this particular 

case. With more refined experimental re suits soon available, we 

will be able to compare and to assess the merits of various theoretical 

approximations. In turn, we will use them with greater confidence in 
-

_other more complicated problems. 
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However, "the incoming particle in this case is an electron and 

the Pauli principle ~C!J?.ds explicit antisymmetrization inthe trial · 

wave functions. This requires certain formai modifications in the 

derivation of the generalized optical-potential method.· For our elec

tron-hydrogen case, it is particularly simple and we shall include.the 

Pauli principie in the rest of this section. 

It is well known that when the spin-dependent force is neglected, 

the effect of the spin is only a kinematic orte. ln our two-electron 

case, it simply breaks the problem into two separate cases i:ri the co

ordinate space: the singlet (total spin zero) and the triplet (totai spirt 

one) scattering. The singlet spatial wave function 'i/ (1, 2) is sym-

. ·metric under the exchange of the spatial coordinates of the two· elec--

. trona 1 and 2, while the triplet \ltave function ljJ- (1, 2) is antisymmetric: 

:!:: :!:: 
ljJ (1, 2).=:!:: ljJ (2, 1). (3:8-l) 

When the incoming electron beam is unpolarized the total cross 

. section is given as 

1 + -
(J = 4 (0" + 3(1 ). (3B-2) 

We use an·explicit e1ynimetric or antisymmetric two-particle 

othonormal basis constructed from thT complete set of the sif1gle-

particle orthonormal hydrogen wave functions <!? • We define 
n 

where 

I ···) 1 m, n± = -.--
.· ~ 

8(m - n) = 

8(m- n) .[<I> (i) <I> (2):!:: 111. (2) ~ (1)], m n m n · 

1 m > n 

1/~ m = n 

0 m < n. 

' (3B-3) 

The ~m, n±)' s form a complete orthonormal basis in. their 

respective symmetrized or antisymll).etrized subspace: 

( p, q± I ~. n±) = o o , pm · qn 
(3B•4) 

and .the identity operator is I = I+ + I-, where 
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(3B- 5) 
n, .m~n 

± 
The total wave function tj; (1, 2) can of course be expanded on 

this basis: 

(3B-6) 

·By definition m is alway's larger than or equal to n 1n 

lm, n±) . We can then, without ambig~ity, define state I m, n±) as 

being one in whichthe atomic electron is in the state n while the 

scattered electron is in state m. The definition of 8 (m - n} also 

implies a definite ordering scheme in designating the complete set of 

hydrogehic states ~ One readily sees that the ordering within the 
m 

N atomic states to be close-coupled does not matter since they enter 

into the re suiting close -coupled equations equally. Neither does the 

ordering among other atomic states have any effect, since the other 

states enter into the resulting equation via the generalized optical 

. potentials only, and they also enter equally. 

Now, the relative position between. the N atomic states and 

the rest states in this ordering scheme is dictated by our wish that the 

real asymptotic wave of the outgoing scattered-particle in ea,ch atomic 

channel n. of N be correctly and completely projected out by the pro

jection operator 

lT 
n 

rn~n 

lm, n±) (m, n± I (3B-7} 

when operating on the complete wave function tj;±(l, 2}. This require

ment will be met as long as all continuum states are larger than the 

N .states in.the ordering. However, the most convenient choice (the 

one we shall make) is to put the N atomic states to be close-coupled 

as the lowest N states in the ordering scheme. We callthe operator 

lT .. defined in Eq. (3B-7} the projection operator onto the "atomic 
n 

state" n. 

I 

.. 
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Finally, one may also wonder whether the ordering within the 

N atomic states would have effect on the liscattered-particle state. " 

As will be shown later, there will be no restrictions on the scattered 

particle because of the ordering" 

We now turn to electron-hydrogen scattering. Let the ator.n be 

. in ground-state zero and the incoming electron with initial momentum 

Th . 1 . f h 1 f . . 1 3A p 0 . e correct 1ntegra equat1on or t e tota wave unctlon 1s 

lJ;±(l, 2) = I p 0 , o±) + + v 12 lJ;±(l, 2), (3B-8) 
a 

where vl2 is the interelectron interaction e 2/rl2 and 

a+= E- [K1 + VN(1) + K 2 + VN(2)] + ir,, 

2 
Po 

E = 2m +Eo 

(3B-9) 

Note that the definition of a+ here is different from that in SU:bs.ec. 

III-A and is symmetric with respect to electrons 1 and 2. The prop-
+ agator 1/ a is then diagonal on the basis we have just defined. How-

ever, the scattered particle's initial state is a Coulomb wave function 

and thus contab.s the associated logarithmic phase shift. We can. get 

around this trouble by considering it as a screened Coulomb wave 

function with a limit of zero screnning. In any case, these functions 

are' used to obtain the expressions for the generalized optical potentials, 

and no actual difficulty (because of the long-range nature of the Coulomb 

potentials) shall arise in the final resulting equations. We would also 

like to point out that this method works only for the electron-hydrogen 

'scattering case because of :its p&.rticular simplicity. 
\ 

Let IT N be a projection operator onto the subspace where the 

''atomic state" is. iri any of the N 
N N 

11 N = L nn = L 
n n 

states in the close-coupling scheme: 

\ 
L 
m~n 

(3B-10) 

Following the general development of Subsec. III-A, we define 

the generalized optical wave function 
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ljJ± = IT ± ljJ±. 
c N 

and seek an integral equ~tion for ljJ± : . c 

(3B-ll) 

(3B-l2) 

If we let ljJ± = F± ljlc±' Eq. (3B-8) and Eq. (3B-ll) yields 

(3B-13) 

As before, comparing Eq, (3B-12) and Eq, (3B-13) and de

manding consistency, we obtain 

V± = 11~ v
12 

F± 

(1±- IT~ ) ± 

--.-+-- V 12 F 
a 

(3B-l4) 

/ 

Equations (3B-l4) give the explicit expression of the generalized 

optical potential we desire, Since the atomic states N are bound and 

are the lowest in the ordering scheme, ljlc± contains the same asymp

totic expressions in those N atomic chann:els as ljJ±; and from Eq. 

(3B-ll) we see ljJ± satisfies the Schrodinger equation 
c 

{ E - [Kl + VN(l) + K 2 + VN(Z) + lf±l} 4;: = 0. (3B-15) 

·± 
The state . ljJ is explicitly symmetric or antisymmetric so we 

c 
can write 

N 

~:(1,.2) - [: 
. . . -

Cl + pl2) <Pn (l) ~n( 2 ), . {3B-J6) 

n 

P 12 being an operator interchanging the coordinates of electrons 1 and 

. 2. Equation (3B-l6) has the same form as the trial wave function in 

the usual close -Goupling approximation with exchange, but they differ 

in one respect: There are no restrictions on.the scattered particle 
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wav~ function .in the usual close -coupling approximation with exchange. 

But, because of the projection operators '!Tn. that are used to define 

_.the generaFzed optical wave function tJ;~,. the scattered-particle w_ave 

function <j> .in Eq. (3B-16) seems to have an additional restrictionin 
n 

that it will contain no components of the atomic wave functions ·i> for 
m 

all m lower than n. in the ordering scheme [L e. , ( <j>n (r) I Cf?m (r)) = 0 

for m < n]. By ~ettingthe N sta.tes as the lowest in the ordering 

scheme, all other states will be higher than the N _states and so may 

be contained in "' 1 s. Even so, the "' 1 s still seem to have the re-~n ~n · 
striction that (<I> I Cf? ) = 0 for n > m for m, n both .in N. This would 

n m 
still be very cumbersome if one is to solve the cpn' s numerically. How-

ever, the fact that we are summing all N .atomic states .in Eq. (3B-16) 

makes it possible to relax even this last restriction (see Appendix D). 

The dimensionless units usedthroughout this work are the atomic 

units. That is: 

1l = 1, c = 137, 

Mass unit = electron mass, or m = 1, 
e 

Charge unit = electron charge, or e = 1, 

Length unit = Bohr radius (0. 53 X l 0 -B em), 

Energy unit= 27.2 eV = 21 Eo I, 
E = 13.6k

2 
eV. 

We now turn to the generalized optical potentials in Eq. (3B-15). 

The atomic states we choose to be close-coupled are 1s, 2s, and 2p states. 

Inasmuch as the generalized optical potentials are used to give the 

correct long-range polarization potential, they will be evaluated to 

second order only for those matrix elements whose second-order direct 

term dominates the first-order term (n IV 12 1 m) at large distance. 

Th. . 1 d h . . 1 '\ ( (Z) - </(( 2 ) (~d 2 J ) d 1s 1nc u es t e matr1x e ements u. 
1 

, , u 
1 2 

, v. 
2 1 

, an 
. ( ) s, 1 s s, s s, s ' 
V 2 

Here again we resort to the adiabatic approximation by re-
2s,2s~ 

placing a by d+ = EO-· K 2 + VN(2) + ir). 

Now a mathematically equivalent staterrie:nt for this adiabatic 

approximation assumption is that in virtual transitions the matrix 

elements ( q, n I V I p 0, .0) contribute mainly from those I q, n) 

states for which E - E :::::: 0, so that .we may omit the 
Po q 
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[Ep - (K
1 

+ V 
1

)) term in a+, This means that the contributing states 

·ell (~) of the scattered particle are continuum states because the. initial q 
state ell ( 1) is a continuum, 

Po 
Since the atomic states g?

0
(2) and g?n(2) 

are mostly bound and since they are quite different from the con-

tributing q? and q? ' s, the adiabatic approximation actually implies Po q . , 
.. that the exchange term ( n, q I V I p 0, 0) will be very smalL Thus, 

when the adiabatic approximation is valid, we may neglect the ex

change terms in the virtual states and :replace (I -II ) in 1f(2
) by 

N n,m 
N 

I q? (2) ~ * (2)] n n 
n 

With these approximations, we proceed to evaluate the second-
. • "11' (2) . '1 r{2) ·· ~r(2) ·Th.e l/(2) order potenhal terms u 

1 1 ,. v 
1 2 , and v

2 2 , 
1 1 s, s s, s s, s s, s 

term is the most important since it enters directly into the potential 

for our elastic scattering while the other two have second-order effect 
33 

only. The work of Delgarno and Lynn enables us to evaluate this 

adiabatically approximated y(
1
21 

1 
exactly i.f we want to. However, 

'"' s 
there is no point in doing so since the adiabatic condition itself will 

not hold when the particle gets very near the atom, Thus we shall 

only use the leading 1/r 
4 

term for the long-distance behavior, both 
__ < 2 > , r( 2 > v( 2 ) for · V 1 1 

and for u
2 2 

, In 
1 2 

we use the Buckingham-
s, s . s, s s, s 

.. type potential with_ the parameter d such that when it is expanded the 

coefficients of the 1/ r 
4 

and 1/ r 
6 

terms will agree with those obtained 

by the rnultipole expansion method, At small r-where the adiabatic 

condition is to be abc:mdoned-we introduc.e a cutoff facto:r (l _;;, e-ar) 5, 
.. 1 , . . · . . .\ ·.. . ''. ' , . ' · 17•' · , , ' I .· · .. , 

a. = 0. 5, inthe maiine·r of Allison et aL . · This factor ',¥],11 insure that 

the 1{•-·~- vanis.h'at t·= Q, lt· wasfoun~ t'h~:iit?e. re~ults ate'Ilcit very 

sensitive to the. s~allva:r.iation of the pararneter' "a" .(Table I). The 

second-order optical potentials used in our calculations are 

± (2 ) I 5 V · = (1 - e -r 2) 
1 s, 1 s 

lf ± (2) 

2s, 1 s 

V±(2) 

2s, 2s 



-25-

Table L Phase shifts with various values of parameter a. 
a 

k2 a= 0 .. 4 a= 0.5 a =· 0.6 

0.05 1.8970 1.8974 1. 8976 
00+ . 0.30 1.0255 1.0262 1. 0269 

0.60 0. 7926 0.7943 0.7955 

0.10 .0.1163 0.1165 0.1166 

0 
1-

0.30 0.2865 0.288 ~· 0.289 

0.60 0. 3988 . 0.3995 0.4001 

0.10 0.063 0.063 0.063 
02+ 0.30 0. 0327 0. 0328 0. 0328 

0.60 0. 0631 0.0633 0. 0634 

aValues of o are in radians. 

The close -coupled integro -differential equations from substitution 

of Eq. (3B-16) into Eq. (3B-l5) can be further reduced to close -coupled 

radial equations only by partial-wave theory$ as was first done by 

Percival and Seaton. 
18 

In Appendix B we give the resulting radial 

equations and other pertinent quantities of this partial-wave reduction. 

The radial equations thus. obtained are subsequently numerically inte

grated on an IBM 7090 computer, yielding partial-wave phase shifts 

directly. In Appendix C we give a brief description of.the numerical 

techniques used. Aside from minor modifications, the code we used 
21 

was that of Burke and Schey. • 
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IV. NUMERICAL RESULTS AND DISCUSSION 

By using the generalized optical-potential method" the close

coupling schemea and the generalized optical p_otentials described in 

Subsec. III-B. the phase shifts for the total angular momentum states 

L = 0 9 1, 2, 3 have been evaluated for both spin states in the energy 

range below the threshold for excitation of the second target quantum 
2 

level (k = 0.75, or 10.2 eV).- Results ofthese phase shifts {in radians) 

are presented in Table IL We encountered convergence difficulties 

near zero energya and also for energies near the second quantum-level 

threshold. where resonance-type effects seem to exist in many spin and 

angular-momentum states. 

We shall analyze and discuss the Tesults :i.n ea.ch angular

momentum and spin state separately. As has been. en1phasizeda our 

aim is to gain a better understanding of the mechanisms involved .in the 

low-energy atomic-scattering process, their relative importance, and 

their range of validity. 

A. S-Wave (L = 0) Phase ShUt 

With each particular angular momentum L is associated a 

centrifugal barrier L(L + 1 )/ r
2 

in the radial equation. This centrifugal 

barrier will keep the incoming particle farther away f:rom the atom as 

L increases. We thus expect the short-range correlation effect due to 

the interelectron interaction e
2
/r

12 
to play its largest role in_this sing

let S-wave case. In Fig. 1 we present our results as well as the 

variational calc_ulations- of Schwartz, 9 the static approximation with ex

change of John
19 

(Ls)/Jhe (ls-:2s) excha~geapproximation results of 

· · .. $mith et al?. 
2

·
0 th~ {ls.-26-·ip)- close-coupling approximation with ex-

. change by BLlrke •<ttid-'Schei; ~ 1 and the re~ults ~f Temkin' s
10 

nonadiabatic 

theory. We also ·i_~clude th~ cur~e o
0

, the ze~oth~order phase shift 

from Temkin' s calculation. 

The result of Schwartz 9 should be rather accurate si:r..ce it is 

obtained by a variational treatment where the trial \vave function has 

been adequately represented (up to 50 terms) to take into account the 

short-range correlations. That his result is trustworthy is further 



Table .II. Phase shifts. in radians, for singlet (o·L+) and triplet (oL-) L = 0, 1, 2, 3 states. 

k2 00+ . 00- 01+ 01~ 02+ 0 
2- 03+ 03-

0.01 -0.6363 c 

0.02 2:2799-

0.03· 2: 1166~ 0. 003985 

0.04. 1. 9930 

0.05 1.8974 0.016 0.0586 0.006347 0. 0067 23 

0.10 1. 562 2.485 0.1165 0.01227 0.0.1348 . 0.004270 0. 004274 

0.20 1. 215 2. 2066 -0.0201 0.~06 0. 0230 0. 02555 

0.30 l. 0262 l. 9616 -0.027 0.288 0. 0328 0.03586 

0.40 0. 9059 1. 8846 -0.035 0. 3455 ' 0. 0419 0.04497 0.01511 0.01484 
I 

0.50 0. 8363 . 1. 7766 -0.0456 0.3761 0. 0515 0. 05324 N 
-J 
I 

0.60 0. 7943 1.6915 -0.0480 0.3995 0.0633 o. 0610 

0.65 0.8020 -0.0436 0.4123 0. 0716 

0.66 . 0.8108 

0.67 0.8285 

0.68 0.8648 

0.69 0. 9754 

0.70 :::::2.3 0.4495 0.08497 0.06826 . 0.02513 0. 02559 

0. 71 o. 5440 

0. 72 0.6554 

0.73 0. 7009 

0. 74 0. 7 363 0.1442 0. 07118 

0.0 A=6.52172 
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0.6~~~~-~-~--L--,-L--L~~~ 
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MU-24786 

Fig. 1. The singlet S phase shift as a function of k
2

, as 
given by various calculations. 
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augmented by its close agreement withthe result of Temkin, 
10 

who 

used a novel and entirely different approach of nonadiabatic expansion. 

We then see .that our result makes only about half of the correction from 

the (ls) static. result toward the "correct 11 result of Schwartz. 

The differ~nce between (ls) and (ls-2s) curves.is due entirely 

to the better case of the short-range effect by the inclusion of the 2s 

state, while the difference between the (ls-2s) curve andthe (ls-2s-sp) 

curve is due to the contribution of the 2p coupling tothe short-range 

effect and also to the inclusion of 66o/o of the long- range p_<:>larization 

force by the 2p states. 
22 

That those two differences are almost equal 

suggests that the corrections are more due tothe short-range effect 

than the long-range force. This is also manifested in the small im

provElionent of our result over the (ls-2s-2p) result, which is mainly 

due to the addition of the 34o/o of the cOrrect long-range force in our 

calculation. 

It was. observed by Burke and Schey
21 

by direct calculations 

that the addition of more bound atomic states in the usual close -coupling 

scheme improve results only slowly. This ~an also be seen by the 

small difference between the (1s-2s) curve and Temkin1 s o
0 

curve. 

The o
0 

result is effectively a close -coupling approximatlon of all s 

statest so the small difference represents the contributions from 3s, 

4s, · · ·, and all the continuum s states. Since our calculation has 

included the correct long-range. force, the large difference between 

our result and Schwartz 1 s correct result is entirely due tothe short

range effect, and the major part of it must con1e-from the above argu

ment ....... from the contribution of the atomic continuum states. 

If we take the difference between our result and the (ls-2s-2p) 

close-coupling result as entirely due to the effect of 34o/o of the long

range polarization potential, we can make the following e$timates: 

In. the general energy range we are now dealing with, the long-range 

force gives about 30o/o of the correction from the (1 s) result to the 

correct (Schwartz 1 s) result. The remaining 70o/o comes from the short

range effect, the bound states contributing about 35o/o and the continuum 

states contributing about 35o/o. 
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Above k 2 = 0.65 the phase shifts increase sharply, exhibiting 
21 

a reso~ance effect similar to the results of Burke and Schey. Fol-

. lowing their work, we analyze this resonance phenomenon by decom

posing the phase shift into two parts: the slow-varying nonresonant 

potential part o t and the resonant part o , ot t = o + o t Then po res o res po 
.. the total cross section is given by 

where 

a tot = {1r/k2) Ares + Apot 12 

A res 
= exp(2i o t) ~xp(2i o ) - 1] , 

po [ res 

A = exp(2i o ) - l. 
pot pot 

(4-1) 

Next, we define the resonant part of the singletS-wave cross section 

by 

o = (.iT2 ) I A 1

2 
= (4TI/k

2
) sin

2 
o res . k res res 

(4-2) 

If we give this eros s section a standard Breit~ Wigner type fit, 
1 , 
4 r" 

0 = (4- 3) 
res 

2 
we find the resonance energy E . = 9.51 eV (k = 0.70) and the full 

res 
width r = 0. 067 eV. This is to be compared with the results obtained 

21 . 
by Burke and Schey for the similar phenomenon in their (ls"'-2s~sp) 

close-coupling approximation calculation, which gives E . = 9.61 eV · · · · • res 
(k

2 = 0. 707} and r = o~ 109 eV., 'Ou;r ·resonah.ce energy He~ slightly 

·lower· and the resonance width is narr~we:r, ThU:s,, ·{£-this resonance. 

effect .is real,: j( would be ~ve,n· hard~r to obserV'e,> · The· :resqnanc,e peak 

in the total cross section occurs, of course• at otot' = iT/2~ 'or. at 

· k
2 = 0.696 (Eres = 9.45 eV). Figure 2(a) shows the singletS-wave 

phase- shift curve in this energy range, and Fig. 2 (b) gives the corre ~ 

spending resonant part of the cross section, a 
res 

This resonant behavior in the phase shift is not limited to the 

singlet S -wave case alone but seems to exist for many spin and angular 
.· 
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Fig. Z(a). The singletS phase shift as a function of k 2 . 
(b). The corresponding resonant cross section. 
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momentum states. Similar behavior was also found in Burke and Schey's 

result, as well as in other calculations based on the eigenfunction ex

pansion approach. We leave this subject for the time being but will 

comment and speculate on the origin of this phenomenon further, in the 

final section. 

Next, we go on to the zero-energy case. We obtained for the 

singlet S-wave a scattering length of 6. 520. This is to be compared with 
21 

the value of 6. 742 obtained by Burke- and Schey, _whose method of 

(1 s -2s- 2p) close -coupling with exchange approximation is very close to 

ours except for the long-range force, as mentioned before. The best 

value of this scattering length is an upper bound of 5. 965 ± 0. 003, obtained 

by Schwartz 9 by variational approach with up to 60 parameters in the 

trial wave function. Since our method does include the correct adiabatic 

long-ra11ge potential, the still-quite -appreciable difference between our 

result and that of Schwartz seems to come from the breakdown of adia

batic conelition at midranges and, probably more important, from 

correlation effects at short ranges. 

Inthe analysis of low~energy nucleon-nucleon scattering data, 
'. . . . . ;· ~~ . 

the so -called effective --range theory ;has been proven to :be ~ery useful. 

According to this theory, the low~ energy behavior of the S -\vave scat

tering can be describ_ed by{he -e_ff'ective -rai).ge approximatiort formula: 

k cot 00 = -_ ~ + k 2 :a· + er '(r 4 )','< •· -.-.< . ' (4-4) 

where A isthe scattering length, o
0 

is the S-wave phase shift for 

incoming -particle momentum k, and the constant r 
0 

is the so -called 

effective range. 
- 23 

O'Malley et al. have reexamined the effective-range theory 

in detail and found that the usual simple formula as. shown above is 
'• 

actually not valid for scattering containing long-range potentials such as 

· I d f 1 1 · · · 1 ·(- R
2/2r4 ), _ln. our case. _ nstea , or a. ong-:range;po ar1zat1on. potentia t-' 

the modified eff~ctive formul~ is_ given as-2} ':, '.' :-
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k-cot 6 =- 1 + Trl32 k + 4132. k2 ln (·.134k\ 
. O A 3AZ 3A ) 

+ c:f(k4 }, (4-5) 

where 13 
2 = 4. 5 in our case and ~(3/2) = r' (3/2)/r (3/2) = 0. 0365. 

The above modified effective-range formula is rather com

plicated,. and it differs from the ordinary one mainly by the presence 
2 of the k term and the (k ln k) term. One may obtain. the scattering 

length A from Eq. (4-5) by any two sets of low-energy data. Also a 

comparison betweenthe values of A thus obtained with the result of 

6. 520 from direct numerical calculation enables one to esti~ate the 

energy region where this effective =range formula is useful. In Table 

III we give such a comparison and from that we conclude that the effec

tive.-range expansion in atomic scattering, due tothe long-range nature 

of the potential involved, is rather 11 ineffective" and its range of use-

fulness is rather limited for k 2 < 0.04 (0.6 eV). 

Table III. Comparison of extrapolated scattering length. a 

2 Sets of k values used Extrapolated scattering length A 

k2 = 0.2, 0.1 8.101 
. 2 

0.1, 0.05 7.353 k = 
k2 = 0. 05,. 0.04 7.296 
k2 = 0. 04, 0.03 6.873 

k2 = 0, 03,. 0.02 6, 767 
2 

0.02, 0.01 6.650 k = 

aNumerically integrated at k = 0, A = 6. 520, 
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For the same angular-momentum wave, the triplet equations 

differ from the singlet equations only in the sign of the exchange poter:c-
.\ 

tiaL The magnitude of this exchange integral is an e££ective r.::1easure 

of the overlapping between the two electron wave functions, When the 

overlapping (L e,, the exchange -potential part) is small, tb.e short

range correlation will be small, and the singlet and triplet ~Jhase shifts 

will tend toward each other, 

In Fig, 3, our triplet S-wave phase shifts are plotted along 
. 9 . 19 20 

w1th those of Schwartz, the (ls} static result, the (ls-2s) result, 
21 

as well as the (ls-2s-2p) result of Burke and Schey, We first note 

that the triplet result is grossly different fr:om the corresponding sing

let result; this indicates the large contribution from the exchange inte

gral (i,"e,, short-range correlation), We next note the surprisingly 

close agreement among all theoretical calculations inthis case. This 

indicates that the effect of the polarization potential is negligible away 

from threshold and, more important, that the short-range correlation 

effect has been so well taken care of by the explicit spatial antisymmetry 

in the triplet wave functions as demanded by the Pauli principle that even 

the s~atic (ls) approximation19 gives remarkably good res,ults, We 

mention here that the calculation on higher partial waves also shows 

that even the crudest approximations in the triplet case will take gen

erally satisfactory account ofthe short-range correlations, The success 

o£ these triplet calculations led us in the final section to propose an 

alternative expansion form for the singlet trial wave functions, 

Unfortunately for this triplet case-both in the zero-energy 

region and near the second quantum level-no convergent results could 

be obtained. 
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MU-24788 

Fig. 3. . The triplet S phase shift as a function of k 2, as 
given by various calculations. 
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B. P~ Wave (L = l) Phase Shifts 

We present our singlet and triplet P-wave phase shifts in 

Figs. 4(a) and 4{b), respectively. They are also compared with-in 

addition to the (ls) andthe (ls-2s) results 19 ; 20 ~the result of Bransden 

et al., 
6 

with an adiabatic variational polarization potential; the result 

of Temkin and Lamkin' s
24 

polarized-orbit method; and that of Malik 
25 

and Trefftz, who used the one -body exchange equation with an ad hoc 

pol-arization potential. 

Again, different calculation in the t:riplet case are more con

sistent than those in the singlet case. Again we have the contrasting 

behavior between the singlet phase -shift curve and the triplet curve, 

which indicates that the effects from short range are still substantial. 
. 20 

In the triplet curve, the 'iimprovement' 1 of the (ls-2s) result over the 

(ls) result 19 is rather large, while the addition of 2p states (hence 66o/o 
21 

of total long-range polarization potential} in Burke and Schey' s calcu-

lation changes the phase shifts by a lesser amounL This supports our 

view that the short~range correlation effect still exerts a major in

fluence over the whole energy range. Our result agrees well with that 

of Temkin and Lamkin' s
24 

polarized orbital method until we near the 

second quantum level, where a sharp increase of the phase shift again 

takes place, indicating a resonance effect similar to that intlie singlet 

S-wave case, 

The results ofthe singlet P-wave phase shifts are harder to 

analyze, The results of the (ls), (ls-2s), and {ls-2s-2p} calcu-

1 
0 19,20,21 . . 0 • 'f 

.. ahons, · as well as ours, generally g1ve negative phase sh1 ts 

in this energy region while other calculations yield positive phase shifts. 

This seems to indicate that we are in a region wherethe influences of 

the short-range correlation and the long-range polarization become 

comparable. It is difficult to see whether _the correct phase shifts 

should be positive or negative, However, inview ofthe small magnitudes 

of these phase shifts, it should cause Httle difference in the value of 

the total cross section. 
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( a) Broneden et ol. 
(adiabatic) 

Bransden et al. .Lamkin Malik andTrefft 
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(polarized orbital) 

IS 
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Fig. 4(a). 
(b). 

Singlet P phase shift. 
Triplet P phase shift. 
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C.· D- Wave {L = 2) Phase Shifts 

Our results for the singlet and the triplet D-wave phase shifts 

are plotted in Figs. 5(a) and 5{b). We also show the results of John 
19 

0 20 21 
(ls). of Sm1th et al. (ls-2s), of Burke and Schey (ls-2s-2p}, as 

well as the results of Temkin and Larn.ldn' s pola.rized-orbital-method
24 

1 1 ° I .h b h 6• 23 h 'f 1 . 1/ 4 0 1 ca cu ahons. t as een s own . t at 1 a ong-range r potentia 

is dominant,. the. 'phase shifts at low energies should vary linearly with 

the energy. It becomes immediately apparent, both. from the similarity 

of our singlet result and. the triplet result, and from the near-linear 
2 

behavior of the phase-shift curve as a function. of the k value, .thatthe 

centrifugal barrier has pushed the incoming-particle wave function 

sufficiently out so that the exchange potential becomes very small and 

the long-range polarization potential becomes dominant. 

Calculations with no provisions to include the long-range 

potential such as the (Is) and the (ls-2s} results 19• 
20 

give phase shifts 

grossly different from other approximations with polarizationincluded. 

Another indication of the dominance of the long-range force comes. from 

the triplet case, where the ratio of the correction of the (ls-2s-2p) 

resu1t
21 

over the (ls-2s) result
20 

to the correction of our result over 

the (ls-2s) result
20

is roughly equal to the ratio ofthe amount of the 

long-range polarizat.ion force included in the (ls-2s-2p) calculation to 

that in our calculation; L e., 0.66/L The singlet D-wave phase-shift 

curve begins to deviate from linearity above k
2 

= 0.·6 and rises sharply 

as it nears the second quantum level threshold-another resonance 

effect similar to those found in Burke and Schey 1 s calculation. 
21 

D .. · F-Wave (L = 3) and Higher-Order Phase Shifts . 

The analysis in D-wave phase shifts shows that the long-range 

polarization potential' becomes the predomiant factor in the scattering 

process for .the L = 2 waves. We then expect it would be even more so 

for higher-order partial waves. The results of our calculation onthe 

F-wave phase shifts readily confirm this. Throughout our entire energy 

range the corresponding singlet and triplet phase shifts differ by less 

than 2% (see Table I), which shows that the exchange potential is 

negligibly small. 
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Fig. S(a). The singlet D phase shift as a function of k2, 
as given by various calculations. 

(b). The triplet D phase shift as a function of k2, 
as given by various calculations. 



-40-

· For L > 0 and small values of k, O'Malley et al. 23 have given 

an approximate expression for partial-wave phase shifts: 

tan 6 = 
L (2L+3) (2L+l) (2L-l) 

'TfO. 2 k + ... (4-6) 

The polarizability a. is equal to 4. 5 in our case. The above formula 

.yields for F-wave phase-shift values 6
3 

= 0.00448, 0.01792, 0.03136; 

for energies, k
2 = 0.1, 0.4, 0. 7, respectively. A comparison with 

our results in Table I shows that they agree quite well indeed, differ

ing only from 5 to 20%. Thus Eq. (4-6) can be used to give good 

approximate values for all higher-order phase shifts in the energy 

range in which we are interested. We also :note that the magnitude of 

these higher-order phase shifts becomes so small that they will not 

contribute much to the total cross section. 

E. Comparison with Experiment 

In Fig. 6 we compare our result for the total cross section with 

the experimental results of Brackmann et al. 5 and with those of 

Neynaber et al. 
26 

We also plotted the theoretical calculations of 
27 . 23 27 . . 24 McEachran et al. , John, Geltman, Temk1n and Lamk1n, 

Burke and Schey~ 21 
and Brunsden et al. 6 The large scatter of experi

mental points of Brackmann et al. 5 is due to the uncertainties in the 

electron beam energies. Various theoretical calculat_ions do fall in 

the general region of the experimental points but no preference can be 

made with the present data. 

In Fig. 7 the experimental results of Gilbody et al. 
28 

are 

compared with our result and with other theoretical predictions. 

Again the ·experimental result is such that no prefere~ce can be made 

among theoretical predictions, which yield angular distributions gen

erally smooth and similar except at small scattering angles. Thus 

a more refined experiment is highly desirable. A spin-flip experi-
2 9 . ld . f . . . '11 d. t 1 ment . may y1e even more 1n ormation s1nce 1t w1 pre 1c a arger 

angular variation. 
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Fig. 6. Total cross section as a function of k 2, as given 
by various calculations. 
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V. CONCLUSION 

From the results of our investigation, we draw the following 

conclusions in this final section, Particular attention is given to the 

range of importance of various physical effects in the atomic ~scat

tering process and tothe generalized optical-potential method as a 

general approach in the. calculation of atomic-ca.llision problems. 

(a) The results and analysis in Sec. IV show that for S-wave 

scattering the short~range interelectron correlation effect is of major 

~mportance throughout the entire energy range 0 < k
2 

< 0. 7 5 .. Except 

very near zero energy (k
2 < 0.05), the long-range polarization potential 

plays only a relatively minor role. The singlet case and the triplet 

case yield quite different results, which ,indicates:: theda;J;ge.over

lapping between the incoming- and the orbital-ele:ctron wave functions. 

This shows the importance of taking explicit account of the Pauli 

principle.· The effect of the long-range polarization force becomes 

comparable to that due to short-range correlations in the case of 

P-wave scattering. It is here that the results become ma.st uncertain, 

and various approximations yield widely differing phase shifts. 

For D waves, the long~range polarization force is very impor-

tant in the scattering process while the influence of short-range 

correlation becomes smaller. For F(L = 3) and other higher partial 

waves, the long-range force becomes singularly dominant, and the 

centrifugal barrier pushes the incoming-electron wave function so 

far out that the exchange effect and the short-range correlations be

come negligibly smalL The phase shifts have become very small and 

the approximate formula [Eq. (4-6)] serves as a good estimate for 

the phase shifts .. Since different atoms are approximately ofthe same 

size, we expect the above conclusions to be quite general and of possible 

application in other atomic scatterings. 

(b) In atomic-scattering problems most theoretical calculations 
I . 

assume eitherthat the atom is completely polarized by the incoming 

particle (the adiabatic approximation), or that the atom remains com

pletely unperturbed throughout the scattering (the static approximation 

or the Born approximation), One might wonder whether the results 
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fromthese two approaches might be useful in serving as two "bounds" 

fo:tthe more correct result since the adiabatic approximation over

estimates the attractive long-range polarization force while the static 

approximation totally neglects it. 

The results for electron- hydrogen· atom scattering seem to 

support this view. It is seen to be gener·ally true not only for the 

total cross sections but also for each partial wave as well. 

(c) At energies slightly below the second quantum level exci-

tation:, we found resonance -type effects in various phase shifts, similar· 

t-o thos.e found by Burke and Schey in the (ls-2s-2p) approximation. 
21 

These resonance-type effects are characterized by extremely narrow 

width and seem to exist in nearly all angular-momentum and spin 

states, with the effect occurring at slightly higher energies for higher 

partial waves._ One usually would expect resonance to occur when the 

- total energy of the scattering system is near an eigenenergy of the 

entire system in a bound state. This does not· seem to be the case 

here since we know that the negative hydrogen ion has only one bound 

state, 
30 

with total energy E = - 0. 5277 ~::::: - 14.460 eV), while our 

resonance effects occur in the region k
2 = 0. 7 0 to 0. 7 5 or for total 

energy -0.15 < E < -0.125. 

We suspect that these resonance phenomena may actually be 

spurious and only arise mathematically when solving a finite set of 

coupled equations. ·Indeed it may well be due, as suggested by Massey, 
31 

to the fact that in_the close-coupled equations the energy in one closed 

channel is at an eigenvalue for motion in that channel uncoupled from 

the rest channels. That is, resonance.""type effects will occur when 

the negative energy Enfor ~losed channel· n in Eq. (2A-12) is such 

that there exists a. bound state <j>n satisfying the Schrodinger equation 

- (E - K - V ) <j> = 0. n nn n 
(5-1) 

To see this, take the close -coupling equations of two states, 

Eq. (2A-l2). The wave function <Po of the incoming particle in 

atomic channel -q? 
0 

satisfies an effective Schrodinger equation: 



E 
n 

-45-

(5-2) 

The second term in the. potential is then energy-dependent 

through the operator K and En' which is, by definition, 

Eri = E - en = k 2 + (e 0 - ~!in.). When Eq. (5-1) is satisfied, the 

potential is .infinite and hence gives rise to the "resonance" effect. 

When more than one bound state is possible f_or Eq. (5-1), 

there will be "resonances 11 at energies corresponding to each eigen

energy of those bound states. Also, when a number of closed channels 

are present in the close-coupled equations, the resonance ~ffect will 

occur whenever condition (5-1) is satisfied for any one of the closed 

channels; i.e., Eq. (5-l) may be generalized to a matrix equation, 

uncoupled from the elastic channel. 

The above illustration did not take into account the effects of 

exchange and other complications in our case, but our result is 

qualitatively in general agreement with the conjecture, and no violation 

of its consequences is found. The conjecture states that the resonance 

effect occurs only when some state in the close -coupling is closed; 

the existence of a bound state in Eq. (5-l) implies that the potential 

V must be attractive overall. Both conditions are satisfied in our nn 
case, where the closed channels are 2s or 2p states. If more than 

one bound state exists for Eq. (5-1) we expect to observe more than 

. one resonance. In particular, we expect that the binding energy En 

is less for higher angular-momentum bound states, sothe resonance 
2 

energy k for higher partial waves-ifthe resonance do~s occur-

, should be correspondingly highe:r, again in agreement with our result. 

Furthermore, the 1/2 2 in ou!" calculation has an additional attrac-. s s 
tive polarization term ~£ -10,52/ r 

4 
as compared ~ith the similar 

calculation in Burke and Schey1 s (ls-2s-2p) close-coupling approxi

mation. 
21 

This should increase the binding energy i E 2 s ~ for the 

''bound state'' <l>zs in Eq. (5-l) and, by Massey's conjecture, should 

lower the resonance energy. Again this agrees with calculations. 
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~or the singlet S-wave phase shift we obtain the resonance energy 

k
2 = 0. 7 00 (9. 51 eV), while the (1 s -2s -2p} approximation gives 
res 

k
2 = 0.707 (9.61 eV). Followingthroughwiththe conjecture, this 
res 

means a shift of eigen binding energy from -0.050 to -0.043. The 

fact that the additional long-range force did not change the resonance 

energy very much seems to indicate that the cp
2

s bound state does not 

arise because of the long-range force. Of course in some cases the 

additional long-range force may create a bound state which would not 

exist otherwise. The bound state thus created would be very loosely 

bound, and the corresponding resonance would th.en occur very near 

the threshold of that closed channel. 

As we include more states in the close -coupling approximation, 

we expect a more singular behavior in the effective potential; they 
. 32 

tend to be narrower and average out. Recently Temkin and Pohle 

did a careful calculation on the electron-hydrogen phase shifts just 

below the inelastic threshold by the "nonadiabatic method." Actually 

their calculation is essentially a close-coupling calculation with all 

atomicS states and P states. They also found a very narrow res~ 

-onance in the phase shift just below the second quantum level, but at 
2 

about k = 0. 747 (10.17 eV). Thus the resonance behavior in phase 

shifts may real~y be an inherent ch;.nacteristic of the eigenfunction 

expansion approach and will vanish only when we include all atomic 

states and solve the problem exactly. 

We conclude these plausibility arguments by pointing out two 

other consequences which may be used to further- check the conjecture. 

First, in positron-hydrogen scattering, the close-coupling approxi

mation calculation should yield no such :resonance since the potenti~ls 

v are not attractive and therefore the condition for a bound state in 
nn 

Eq. (5~ l) does not exist.· Second, in electron-hydrogen scattering, 

if we close -couple the l s state with a much higher bound state, ·say 

20s, the phase shift should exhibit a resonance effect at a much lower 

k
2 

value since the field V would be more attractive and the IE I 
nn n 

in Eq. (5-l) would be correspondingly higher. As n increases (still 
. 2 

remaining bound), we expect the "resonance energy" k to approach 

z_ero. 
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Of course, _the question as to the existence. of these resonance 

. effects must ultimately.be settled by experimental verification. The 

extremely narrow width of the singlet S-wave resonance .indicates the 

need of an electron resolution much less than. 0.05 eV. 

· (d) We now turn to the problem of the close-coupling scheme .. 

In. mar1ytheoretical works, 
21 

remarks have often been made on the 

importance oft he 11 close -couplingn between two particular states in 

a reaction process, such a;s the importance of the 2s~2p coupling for 

ls to 2s or lsto 2p transition rates in a (ls-2s=2p) close-col.lpling 

approximation calculation. This, we feel, can sometimes become 

misleading; and not much physical understanding of the scattering 

process can be gained from discussion ofthis kind. Rather,_ we should 

talk aboutthe entire close-coupling scheme in.the calculation, since 

it means-in the usual eigenfunction expansion form-that we are limit

ing~ the distortion of the atom as a linear combination of those atomic 

states inthe .close-coupling.schemes only .. 

We should like to emphasize this point:. good results can not 

be obtainedif the form of the trial wave function does n~t provide ad

equate allowance for the various effects in the scattering process. 

Since the bound wave functions of atomic hydrogen have definite sym

metries, and radially are in general similar and smooth-varying near 

the origin, it simply becomes inadequate for a limited number of these 

hydrogen wave functions to simulate the highly dist.orted atom when the 

incoming particle gets near or inside the atom. ··Thus. we feel that the 

usual eigenfunction expansion approach woirld be inherently a poor way 

to allow for such distortion and it is not surprising that whenthe short= 

range corr.elation effect is important, the usual close -coupling method 

gives poor results. and converges slowly. A better allowance for such 

short-range distortion effect can be obtained. only if we include, inthe 

expansion, functions for the atomic electron that are more varying near 

the ori,gin. The Sturmian functions used by Rotenberg, 9A for exam~le, 
would be suitable in this respect as an alternative expansion basis. 
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It has been n,oted that in the calculation of electron -hydrogen 

scattering the triplet results are consistently much better tha11 the 

corresponding singlet results. Take, for instance, the simplest 

approximation of the static exchange calcuLation; i. e. , 

ljJ± (r l' r 2 ) = <1>
0 

(r 
1

) if? 
0

(r 
2

) ± <!>
0

(r 
2

} if? 
0 

(r 
1 

). The triplet results in this 

approximation agree remarkably well with those of the best calcu

lations, and the small corrections between them are more due to the 

long -range polarization force than to the short -range correlations. 

On the other hand, the singlet calculations in this case often yield 

quantitatively and sometimes even qualitatively different results from 

better calculations. Moreover, the singlet results improve only slow

ly as we increase the close -coupled states inthe scheme, as one 

readily sees in the singlet S-wave case. It is here that the eigen

function expansion approach of uncorrelated product wave functions 

becomes inherently ineffective, and one often resorts to int;roducing 

parameters such as the interelectron distance ;:12 = ;:1 - ;:2 explicitly 

into the trial wave function (thus rendering it non-separable), as is 

done in the variational calculations by Schwartz. 9 

The reason for the difference between the singlet and the trip

let results lies in the fact that the Pauli effect and the Coulomb effect 

are additive in the triplet case while they are probably opposite in the 

singlet case. That is, the spatial antisymmetrizationin the triplet 

case explicitly demands, irrespective of any approximation, that the 

trial wave function vanishes for ;:
1 

= ;:
2 

(Fermi hole). This implies a 

repulsive effect similar to the mutual Coulomb repulsion between 

electrons. On the other hand, _the Pauli effect in the singlet case is 

probably attractiv~, which is opposite to the effect of electron Coulomb 

repulsion. The poor results from the singlet calculations. might very 
·[ 

well be due to the fact that the. usual singlet trial wave functions in the 

close -coupling approximation, while they do have the required sym

metry and the simple separable product-type form, do not provide an 

explicit and adequate allowance for the most important part of the ____ 

short-range correlation effect, the effect of Coulomb repulsion between 

electrons. 
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The success of the. triplet calculations has led us to believe 

that the introduction of a spatially antisymmetrized factor in the trial 

wave function is a good way to account for the Coulomb effect while 

retaining the .separable product-type form that characterizes the 

eigenfunction expansion approach, Thus as an example, we venture 

_to suggest here-although with certain reservations-an alternative 

expansion form for the singlet wave function, In_stead ofthe usual 

static exchange approximation, the singlet wave- function in our modi

fied expansion form may be: 

.p+ (rl' r2) ~ ~ ['Po l/3(rl) '"o l/3(r2) + <l>ol/3(r2) '"o l/3(rl)] 

r 1/3 1/3 1/3 1/3 ] 
X l<Po (rl) q;O · {r2)-c <Po (r2) q;O (rl) 

r l/3 l/3 1/3 1t3 ~ 
X L c <I> 0 - ( r 1 ) q; 0 ( r 2 ) - <I> 0 (r 2 ) q; 0 ( r 1 )J 

= [<~>o(rl) q;o(r2) + <l>o(r2) q;o(rl)] 

- (c- I+~) ~02/3(ri)<POI/3(rl)<l>ol/3(r2) ~02/3(r2) 
2/3 1/3 1/3 2/3 ] -+ <Po (r2) q;o (r2><Po (rl) q;o (rl) · <5 - 3) 

It is easy to see that the modified static exchange approximation 

is s.ymmetric under the exchange of particles 1 and 2, In addition, the 

almost antisymmetrized factors in the wave function insures that, for 

values of c near 1, the wave function will have a dip as .:,
1 

approaches 

.::2; and for c ~ l it vanishes for ;:.1 = .::2 . The value of c. can perhaps 

be determined variationally but we expect c = 1 might be adequate. In 

. form, _it differs from the ordinary singlet static exchange wave function 

bythe last two terms in Eq. (5-3), The asymptotic boundary conditions 

of <j> 
0 

in this modified expansion are the same as before, For r 
1 

--+ oo, 

l)J(+} goes to q>
0

(r
1

) q;
0

(rz) and so q.gain we have the simple relation 

between the function <Po and the scattering cross section, 
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It -might be argued that the modified expansion form is no 

longer a one-state approximation, butthis is a deviation no more than 

the ordinary static exchange approximation is a deviation from a one.:. 

state approximation. The major objection would be that the resulting 

equation is nonlinear, which may yield some surprising properties 

not contained in. the physics of the problem. In Appendix E we derived 

the resulting equation to be _solved when we use this modified static 

exchange approximation. The labor involved in the numerical com

putation of the resulting equation is not much greater than in calcu

lating the ordinary static exchange approximation, and is certainly 

much lessthanthat of a (ls-2s) .close-coupling approximation with 

exchange. 

(e) In Subsec. 1-B, we give a general physical picture ofthe 

atomic-scattering process where we mentioned the possible breakdown 

of adiabatic_ condition at distances much greater than the atomic di

mension. - This effect we termed the long-range nonadiabatic effect. 

It is of interest to see whether in our electron-hydrogen case this non

adiabatic effect does become significant at distances large enough so 

that it may be separated from the short-range correlation effect. 

To this end, we expand the propagator 1/ a+ in the adiabatic 

approximation limit: 

(5-4) 

When this is substituted into the second-order term .in the optical 

potential [Eq. (2B-2)] for electron-hydrogen elastic scattering, the 

first term on the right in Eq. (5-4), 1/d+, yields the familiar adiabati:c 

polarization potential, 
1 

which at large distance is -2.25/ r 
4

. The 

second term on the· right in Eq. (5-4) contains the :(irst nonadiabatic 

correction. In Appendix_ F this first-order nonadiabatic correction is 

__ evaluated. Neglecting the exponentially decreasing terms, we obtain 
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V NA = - [! + (8 - 3 ln 2 + 2 ln 
2 

2) ~ 3 

+ e2r ti(-2r) ~ - 4 + ~ 5 3 ) 
\ r 2r2 - 27 - ~ 

-2r[ ( 4 11 5 :r4) t e · i(t2r} ,-1 
~2 

-- + r 2r
3 

+ 2 
£i(-2r) Ci(t2r} 

~ 
r 

+ ~] a a; . r 
(5-5} 

where ~contains nonintegrable terms, 

cr= --
1 (~-~)[~s -s (~- 2 + :3) l r2 r r . 2 0 -2 

r r 

where 

· -r (A.-1) 
e ' 

+l 

Tn of_J d~ e -r(~+ J) ~n lin(! - ~~~
2 

We note that this first-order nonadiabatic correction term is 

linearly proportional to a I a r, or linearly velocity-dependent. Thus 

its contribution goes .to zero linearly as the particle's radial velocity 

approaches zero, in keeping with. the definition of adiabatic correction. 

Forits behavior at large distances, we expandthe expression (5-5) 
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in powers of 1/r andthe leading term. yields 

r-+oo I(NA=-10.75· lim a 
ar 

(5-6) 

in agreement withthe estimate of Mittleman. 
13

A Thus we may write 

the optical potential at large distance as 

lf 4 10.75 a 
= -2.25/r - --5 ·a r 

r 
(5-7) 

To find the influence of the nonadiabatic term on the scattered 

particle, we do as follows.- For very-low-energy scattering., we 

assume the electron has zero energy at infinity and falls into the 

potential of Eq. (5-7). The gradient (-ajar) is set equal to the in

comi!lg-electron momentum, and by energy conservationthis potential 

term ~ust equal the kinetic energy acquired, p
2 
/2. Thus the mo

mentum of the electron at distance r is given by_ the relation 

z1 I 4 I 5 p 2 = 2.25 r - (10.75 r )p . (5=8) 

. The corresponding expression for adiabatic potential alone is. 

z· 4 
pif2= 2. 25/ r . (5-9) 

The ratio pjp
0 

is evaluated for various values of r and is presented 

. in Table IV. · It .is seenthat the ratio pjp
0 

cioes not deviate much 

. from unity for r > 3. Thus we conclude that for near-zero energy 

in eleCtron'":hydrogen scattering., the whole nonadiabatic effect at large 

distance is quite small. 

Table IV. Evaluation of ratio pjp
0 

.at various values. of r. a 

20 0. 999 

10 0.995 

4.6 0. 951 

3. 7 . 0._904 

2.72 

. 2.15 

I. 71 

0.779 

0.623 

0.40 
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At high~r energies the above will not be valid .and we look at the 

ratio of the nonadiabatic correction term to the adiabatic potential term. 

For an iJ:?.i.tial momentum of 0.7 5 (i, e., incoming~electron energy:.= 

7.65 eV), the .ratio is approximately (10.75· r'"
5
x0.75/2.25· r-

4
) = 3.58/r. 

Thus it is already 35.8o/o at r = 10 and. is 71.6o/o at r = 5. Th~refore in 

this en~rgy range. the nonadiabatic. effect will not be small and .cannot 

be neglected. However, in. our calculation we do partiaUy include the 
. . 

nonadiapatic correction by the close-coupling of (ls~2s-2p) states. 

The contribution of 2p $tates to the long ... range nonadiabatic correction 

.. term has also been evaluated in Appendix F and is found to be 
5 

-7.9(1/r )(ajar), or 73.5o/o of the total. It is reassuring to know that 

this large portion of the nonadiabatic correction has been implicitly 

included in our calculation. 

(f) Finally, after having presented the formalism ofthe gen

eralized optical-potential method and having. applied it to the elastic 

scatt.ering of electrons by hydrogen atoms; it is only appropriate to 

give here an overall evaluation of the usefulness of the method in 

. treating general atomic -scattering problems. First of all, the gen

eralized optical-potential method retafns.the f9rm o£ the. u,sual eigen""' 
' function expansion approach, making .it particularly suitable for. the 

calculations of reaction cross sections, and also partiially taking, the 

nonadiabati.c effect into account through the differential equations. Of 

course. the special feature ofthe generalized optical-potential method 

.. in practical applications is that it will always give the correct long-

. range polarization potential. . Thatthe influence ofthe long-range in

duced potential .is of paramount importance in low-energy atomic scat

tering cannot be too strongly emphasized. In the electron-oxygen-

t t ... . T k" l O . d h l . . . 1 a om sea ~.er1ng, as em 1n po1nte out, t e po ar1zat1on potentia 

decreases the theoretical zero-energy exchange approximation cross 

section by a· factor of Rand by a factor of1 2 at energies of 10 eV. Both 

·These values seem to be confirmed by experiment. 

Thus our choice of the application to the electron-hydrogen case 

was not meant to show to the fullest the advantages ~and the virtues) of 

our method, sipce we have calculated the elastic scattering only, and 
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the 2p atomic states in our close-coupling scheme have an implicit 

and exceptionally large contribution·. to the long-range polarization 

potential, 66%. A close-couplil:ig scheme with only 1s and 2s atomic 

states would. certainly demonstrate the advantages of our method, over 

the conventional close -coupling approximation in a more .impressive 

manner. · Even- so, our calculation shows that the addition ofthe other 

34% ofthe correct long-range potential by our method still did a,lter 

the higher partial phase shifts significantly. 

As is characteristic of. the eigenfunction expan~ion approach, 

our method -is less successful in singlet low-angular-momentum states 

. where the short-range correlation effect is important. The. excellent 

results f:tom the r:ather crude approximations in the triplet case .indi

cate that the allowance for mutual repulsion, or the Coulomb hole, 

constitutes.the major effect of short-range correlations. It .also led 

us to propose an .alternative expansion form for the singlet case. It 

is our belief that this type. of modified singlet wave -function expansion, 

or a more suitable expansion basis ~such as the Sturmian functions), 

should remedy and compliment the generalized optical-potential meth

od, making it the most versatile and practical theoretical method in 

the treatment of atomic -scattering problems. 

I 
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APPENDICES 

A. 
. + 

Proof That a and II N Commute 

We want to prove that a+ and II N commute. The projection 

operator II N is def&ned to project the target wave function onto the N· 

atomic channels 4: <P .. (z), but it has no effect on the scattered-
1 l 

partiCle coordinate· x. We thus may write explicitly 

N 
II N = 0 (x - x 0 

) L 
i 

<P.(z)<P.(z' ). 
1 1 ·. 

Now a+ = E - H - K + iYJ. To the target wave functions <P. (z)' s, 
1 

the (E - K + iYJ) in a+ are effectively c. numbers while H isjust the 

eigen-Hamiltonian for the <P' s. Thus 

B. Reduction of the Partial- Wave Treatment 

to Radial Equations 

The algebraic problem of obtaining explicit radial equations 

from the partial-wave treatment for electron-hydrogen-atom collisions 

was first given by Percival and Seaton. 
18 

We give here the pertinent 

quantites of the radical equations which we numerically solved on an 

IBM 7090 computer. 

Let the hydrogen atom wave functions be denoted by, 

where. Rn.l! is a normalized radial function, and Y.l!m is a normalized 

spherical harmonic. For our scattering problem the total wave func

tion can be expanded in explicit antisymmetrized form: 
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(B-2) 

The representation is labeled r = (nkn£ 1t 2LMLSMs) where the 

total angular momentum L andthe total spin S of.the system are 

separately conserved in the scatterip.g process, The n. and f. 
1 

. are 

the principal and the angular-momentum quantum numbers, respec

tively, of the atomic electron; the £
2 

and kn are the orbital angul~r 

momentum and the wave number, respectively, of the scattered elec

tron, The sum over r in Eq, (B-2) includes the close-coupled states 

(n£ 1) of the hydrogen atom as well as the values of £
2 

consistent with 

the given L, 

The exact generalized optical-potential solution ljJc satisfies the 

· Kohn- Hulth~n variational principle: 

o[Jo~>c LS* (v) ( 3C -E) <j>
0 

LS (v') dT 1 dr 2 - ~ Ais a.~?] = O, 

(B-3) 
l 2 l 2 l 

where JC = - 2 \1 1 - 2 \1 2 - r 1 
1 

+ lr' 

LS 
The F r (v) from ljJ c (v) has the boundary conditions 

lim LS F 1 (v; r) 
v 

ALS [ l : --2 0 I Sin (k I !' - - j_ I 
2 

1T) 
k vv n 2 

ni 
r .--. .o0 

if v 1 channel is energetically open 

= 0, if v 1 is closed (B-4) 
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LS - and F , (v; 0) = 0 for all channels, Here we write r explicitly as 
11 

LSv, wherevdenot~s n
1

£
1

£ 2 , 

Carrying out the manipulations for (B- 3) with boundary condi
LS 

- tions (B-4), we find - Fv {r) must satisfy a set of close -coupled 

equations' 

r 
+ k~ 

The symbols in (B-5) are: 

V L, (r) - -
vv- -

l k 2 = 
T n· 

.!o + 
r _.vv' 

+ v (2) 
vv 1 

FLS(r) = 
V· 

(E - E )o 
n 

_.v-' 

2 (v_L_ 
vv' 

X [ o,O(E:n- E_ni - 'E)..6.(P n F. i) + y, {P n Fv i I :r)] 
1\. nx

1 
v r.. nx

1 
I 

where 

..6.(A, B) =1 00 

A(r) B(r) dr, 
0 . 

(B-5) 

(B-6) 

'P vnv (r)o-(B-8) 
n x 

1 

(B-9) 

I -- r-(A.+l) lor 
y'A. (AB r) J ( 

oO 

1\ A.l -(>..+1) A(r 1
) 'B(:::' ) r 1 dru + r A(r~ )B(r' )r' dr', 

r 

(B-10) 
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(B-11) 

i. +i. -L 
gA.(1 112 1 I1 Z;L)=(-) 

1 2
. (i./2·LipA.(~1.;2)1i.z£lL). (B- 12) 

The P~ (x) is the familiar Legendre polynomial and the lf(2
), 

1\. vv 
in (B-7) is as given in Subsec . .III- B .. 

When onlythe elastic channel is. open, RLS, in (B-4) reduces 
LS LS vv 

to a single element tan 6 , where 0 is the phase shift for the 

given state ofL and S. The elastoc-scattering differential cross 

section in either spin state is then 

as(9) "lzik L (ZL+I) [exp(ZjOLS)- I] 'pL(cos9) \
2

, 

L , 

(B-13) 

and the total cross section is 

s - 4 . 2 LS . ; L (2L + 1) Sln 0 . 
k L 

(B-14) 

For an unpola:rized electron beam the total cross section is 

total 1 I I a , = 4 a S=O + 3a S =I . 

C. Numerical Procedure for Solving the Set 

of Coupled Integral-Differential Equations 

(B-15) 

Here we describe briefly the general procedure for solving the 

set of coupled integral-differential radial equations. 

The set of equations can be written as 

00 

\ V .. (r) F.(r) + \J K. .(r 1_r') F .(r') dr', L · lJ J L lJ . J 
j 

(C -1) 

where ij. = 1, · · ·, n; n being the number of radial wave functions con-

siste11.t with our close -coupling scheme. The V .. (r)' s represent the lJ . 
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direct potentials, the energy, and the centrifugal barrier; Kij(r 1 r' ) 

represents_ the exchange_ potentials. . For a suitably chosen r a: we may 

write V .. (r) as a finite sum of the inverse power of r for r > r.; lJ · · a 
we may also consider that the exchange kernel Kij (r 1 r

1
) vanishes for 

r or r':;:::. r . 
a 

Let there be na energetically open channels and nb closed 

channels, na + nb = n. Because of the boundary conditions at infinity, 

for the region r > r a the general soiution is determined by (2na + nb) 

or (n + na) parameters -two arbitrary parameters for each open 

. channel and one for each closed channel. The boundary condition at 

origin requires Ei (0} = 0 for all i 1 thus a solution for (C-1) is deter

mined by n arbitl"ary parameters. 

To determine F. (r) for r ~ r ~ 0, we cannot take straight . .;,.· 
· 1 a 

forwar·d numericaLintegration out from the origin. This is due to the 

fact t~at in nb closed channels the increasing exponential component 

of the solution would grow to such an extent that the exponential! y 

decreasing term-:the part that satisfies the boundary condition at 

infinity- would be completely overwhelmed and lost. Nor can we start 

from r = r a and integrate inward, since this would produce irregular 

.solutions at small. r and would. not vanish at origin. To circumvent 

both difficulties 1 we take the compromising way by choosing an ad-

. justable middle point r 
0

. We shall solve the n · linecnly independent 

inner solutions for 0 < r < r 
0 

by outward integration from r = 0. We 

also solve the n + na linearly independent outer solution for r a > r > r 0 
by integrating from r = r -inward. 

a 
·The interactive procedure to obtain a continuous solution is as 

follows. Fir.st we set the kernel K to zero; the resulting homogeneous 

equations will yield n . set inner solutions F; (O)j(r) for j = 11 • ·• • , 

1 

n inthe region 0 < r < r 0 ; and for j = J., • • ·; n + na inthe region 

r 0 < r < r a· The superscript in parentheses indicates. the iteration 

number. The unique. continuous solution is obtained by linearly com

bining those solutions and demanding that the function and its derivative 

be continuous. at r = r 
0

. Let this continuous solution be denoted as 

, F~O), the zeroth-order continuous solution. 1 . . 



Now we use Fi (O) to evaluate the exchange term fKFidr', 

and solve the resulting inhomogeneous equation once more to obtain 

th~ first-order inner solution f. (l)(r) and outer solution g. (l)(r). 
1 . 1 

Again they may not be matched at r = r 
0

, so we again add li~ear . 

combinations. of the zero-order homogeneous solutions F(O)J and G (O)J 

to it and demand continuity at r = r 
0

. This gives us the first-order 

continuous solut.ion Fi (l)(r). This is, then, again used to evaluate the 

exchange term; which in .turn is used to find f. (
2

) and g. (
2

), etc. 
1 1 

Thus we have n 
F. (n) (r) = f. (n) (r) + 

1 l I 
j= 1 

= g.(n)(r) + 
1 

i = 1, 2, · · ·, n . 

The coefficients a. (n) and b. (n) are determined, of course, by 
J J 

the continuity condition at r = r 
0

, or more explicitly 

dfi (n) {r) 

dr 

fi (n)(ro) + L aj (n)Fi (O)j(ro) = gi (n)(ro) + L bj (n)Gi (O)j(ro), 

+ I 
ro j 

j j 

a. 
(n) 

J 

I 
j 

dF. {,O)j(r) 
1 = 
dr 

ro 

b. (n) 
J 

dG. (O)j(r) 
1 

dr 
+ 

dg.(n)(r) 
1 

dr 

(C -3) 
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The parameters .a 1 s and b 1 s (totalling 2n + ri.) are thus related_ by 
• . .a 

. those 2n equations. To speed the convergence we use the remaining 

na degrees of freedom by imposing na integral conditions; which 

amounts to a normalization. procedure on.the fii-st n funCtions of 
a 

·F· • (n). Th ' . at .1s, we 1mpose 
1 

F.(n)(r) dr = 
1 . . 

c., 
1 

i = l, · · · , n , .a 
(C -4) , 

where ci 1 s and r c 1 s are chosen arbitrarily. In general 0 < r c < r 
0

, 

but rc may be bigger or smaller than :r a· 

Thus the iteration goes on until convergence is obtained; i.e. , 

Fi (n) and Fi (n +J:) are equal within some predetermined amount. 'The 

. Runge-Kutta integration method is used. to solve the equivalent set of 

difference equations. 

and r 
0 

= 5 or l 0 au. 

For our calculation r = 28 au, r = 2 to 4 au, 
a c 

'The basic grid interval is 0.1 au and generally 

gives the phase shift correct to about four decimal places. 

D. Proof of Relaxation of Restriction 

on <j> 1 s in 'Eq. (3B-l6) 

The generalized optical wave function is written as 
N. 

ljl~. = L (l ± pl2) <l>n(l) ~n(2 ), 
n 

'± 
and the projection operators lTn used in defining ljJ c place the 

(D-1) 

additional restriction that the scattered-particle wave function <j> 1 s 
n 

. be orthogonal to atomic wave. functions qim 1 s. for m < n in the ordering 

scheme. That is, 

for n > m. (D-2) 

Because of the spatial symmetrization or antis.ymmetrization 

operator (1 ± P
12

) and the fact that we are summing up all N. states 
± 

together in ljJ , and because we demand that the N states be the 
c 
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lowest in. our ordering scheme, the restriction (D-2) can actually be 

relaxed in Eq .. (D-1 ). 

To prove this we peed only to show that the expression of 

Eq. (D-1) is not unique but may be rewritten as 

N 

tP~ = L (1±P12)vn(1) !Pn(2)v (D-3) 

i 

where the restriction. (D-2} does not apply to the v 1 s. 

To begin, we show the restriction on the cp 1 s explicitly by 

writing 

cj> (1) = F (1) -
n n I cnm ~m(l), 

m >:n 

where th,e nonzero coefficients C are defined to be: , · nm 

C = <~ I F ) f 0, for m < n. nm m n 

This insures the orthogonality condition (D-2) for the cpn 1 s, 

Substituting Eq. (D-4) in Eq. (D-1), we get 

(D-4) 

N 

(I± P 12) [F n(l) - o;m (I) ] o;n (Z) y;± = L L c c nm 
n m-<n 

N 

= L (1±P12) Fn(l) ~n(2) 

n 

N N 

I (l ± p12) L c ~ (1) ~ (2). (D-5) 
nm m n 

n m<n 

We now use the identity relation 

(D-6) 
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on the second. term onthe right -side of Eq. (D-5), which becomes 

"2nd term"= f ·(l±Plz)(±Pjzl[ I .. cnrn 'l?m(l) '1?~(2)] 
n . m<n 

N 

= I [ 
\_ (±) c ~ (2) ~ (1)] L nm·m n 
m<n · n 

(changing summing order) 

N 

=I I (l±P
12

)(±)C -~- (l)'J? (2) 
.. · nm n · m 

m n>m 

(now changing index) 

(1 ±P
12

) (±) c ~ (1) ~ (2). 
. mn m n 

. (D-7) 

n rn>n 

Substituting Eq. (D-7) back into Eq. (D-5). we obtain 

tj;± (lc2) = ; (1 ± P
12

) [ F (l) + \ C ~ (1)] ~-- {2). . (D-8) 
c · · L n L mn m · _n 

n .m>n 

since 

To equate Eq .. _(D-.8) to Eq. (D,-3), we need only to let 

v ( 1) = F (1) + 
n n. 

c ~ (1 ). 
mn m 

m>n 

The v' s do not have the restriction Eq. (D-2) as_ the cj>' s do, 

= c 
pn 

f o· 

I c ~ I~ ) mn m p 
m>n 

for p < n. 
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E. The Algebraic Problem ofthe Modified 

Trial Wave Function, Eq. (E-1) 

To take better account of the interelectron repulsion in the 

electron-hydrogen-atom scattering, we suggest to replace the usual 

singlet wave function in. the static exchange approximation by an 

. alternative expression 

+ - 1 [ . 1/3 / . 1/3 1/3 . 1/3 ] 
lj;(r1.r2.)- c cl>o .<rl)!Po (r2)+c!>o (r2)il>o (rl) 

[ 
1/3 l/3 1/3 .1/3 ] 

X ccj>o (rl) il>o (r2)- cl>o (r2) il>o (rl) 

= [ $o(rl) '"o(rzl + $o(rzl '"o(rl)] 

(c- 1 +~) [$oZ/3(rl) '"ol/3(rl) $ol/3(rzl '"oZ/3(rzl 

. 2/3 1/3 . 1/3 2/3 ] 
+ cl>o (r2) il>o (r2) cl>o (rl) il>o (rl) · (E-l) 

This expression differs from the usual static exchange approxi

mation bythe addition of the last two terms. These two ter.ms are 

short-ranged; i.e., they vanish for either r
1 

or r
2 

going to infinity. 

This alternative expression of lj;+ (r 
1

, r 2 ) not only is symmetric under 

the exchange of coordinates r 1 and r 2 , but also has the additional 

property of vanishing when r
1 

:: r
2

, thus giving a natural provision for 

the Coulomb hole. 

The Schrodinger equation for the electron-hydrogen-atom 

scattering is 
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(E-2) 

where. H 0 represents the Hamiltonian of the Co~lomb ~ave function 

For an incoming particle of initial energy of k
2

, the total energy E 

of the system is E = k
2 + E 

0
. ;?ubstituting Eq. (E :..1) into the 

·. Schrodinger equation (E-2), ipremultiplying by <Po (r 1) and integrating 

over the coordinate r 
1

, we derive an integra-differential equation 

for the function F(r2 ). . . 

[ H~ + ud - !z]F(rzl+ [ «o - kz)D.(l) + J(l)J~o<rzl 

~z ) + J(})] <j>l/3(r2) F2/3(r2) 

+ [.6.(-_2) (Ho - k2r+ J(~)J <1>2/3(r2) F1/3(r2)}. • 3 2 z, .. 3 (E-3) 

where 

UO = J <j>;(rl) V12 <l>o(rl) d;:,l = J(O), 

J(m)= J<j>; (rl)V12·<j>(l-m)(rl) Fm(rl) d;:,l' 

, . 

The .6.(rn) is a kind of generalized overlapping integral while· 

J(m) may be called a generalized exchange potential. Were we to let 

. the terms on the right-hand side of the equality in (E.;.3) vanish, we 

obtain just the integral-differential equation for the ordinary static 

exchange approximation. The terms onthe right-hand side of (E-3) 

thus come from our modified static exchange approximation.· 
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When. ;we use the generalized. optical-potential method, the 

wave .function t!J+(r
1

, r
2

) then satisfied.the eg.uation (3B-14), We 

then_ replace v
12 

in u0 by the generalized optical potential 1112 . For 

S-wave si11-glet scattering, our modified .static exchange approximation 

does not contribute to the polarization potentiaL We shall add the 

direct long-range polarization potential terms in the optical potential; 

the net result is the replacement U 
0 

= J(O} by 

u0 = J(O} + 

where f(r} is some function to cut off this dipole potential at small r. 

The boundary conditions for F(r) are the same as usual. For 

S-wave scattering, 

F(r) lim 
r-+oo 

1 
-- ;kT/2 sin(kr + o}, 

F(O) = constant. 

F.· Calculation of the First-Order Nonadiabatic Correction 

of the Optical Potential for Electron-Hydrogen Scattering 

Fro.m Eq. (2B-2), the second-order term of the optical potential 

for the elastic scattering of an electron by a hydrogen atom in ground 

.state is: 

(F-1} 
I 

By using Eq. (5-4), the ~diabatic e~pansion of l/ a+, ,l/(2} 

yields, along with the familiar polarization potential, the first non

adiabatic correction term VNA: 

. I (I - lT 0) 
l(NA = (o V 12 d+ 

(F-2) 
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vJ2 I a) 

(F-3) 

The function f has previously been solved by Dalgarno and Lynn. 
33 

Now 

and 

tEPa' FJ =a, 

[v1'2, .. F J = o , 
2 

K 1 = -1/2 \l 
1 

, so 

I .2 
K l F = (- 1 2 \7 1) F 

= -1/2 (\7 iT) - (~1 F)· ~l - (1/2)F \7 i . (F-4) 

Substituting this in Eq. (F-2), we have 

~A::: (a IF (K1+v 1 -EP) Fj a) ' a 

= -(a 1 F ~ 1 F 1 a) · ~1. 

_, .. >· 
- (I/2) <a I F'(\7 iF) .I a) 

. ) l 2 
+ (o IF F I a <- 2 \7 1 + v1 - EPa). , (F-5) 

Now [(I- "ol vJJ \7? F 
. 2 

= \1 1 . 1 
d+ 

(I-1Ta) 
(\7 2 v.rz) = 

d+ l 

= 
(I - 1Ta) 

6 <::.1 - ::.2 ). 
d+ 
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This shows that the second term in Eq .. (F-5) will only contribute 

exponentially decreasing terms, so we may drop it. The higher-ord~r 

terms in the optical potential will add to the third term in Eq .. (F-5) 

to. give ( 0 IF F I 0) · (-~.'Vi + 1(- Ep
0

), which will vanish identically 

when operating on the scattered-particle wave function. 

Finally» the Hrst term .in. Eq. (F- 5) contains a vector operator 
i 

;:
1

. However, from symmetry arguments» we can see that only the 

r'adial part contributes. So we. finally have 

¥ NA = - (o IF 

= - ( ( o I f ( }r f) I o ) 
(F-6) 

- ( O \ £ I o) (o I I ~ r f) I 0) ] ~ r · 

Using the function f given by Delgarno and Lynn, 
33 

expressed 

in confocal elliptical coordinates, we have evaluated the above ex

·pression. The result, neglecting the exponentially decreasing terms, 

is as given in Eq. (5-5). It gives a leadingterm 

l3A 
in agreement with the estimates of Mittleman. 

. (F-7) 

The contribution ofthe ZP atomic states at large distances is 

evaluated by multipole expansion of V, which readily yields 

[p -(o lv\2P)(~pr (2P 1 ( :r v) jo) ~r 

= ( j 1((3;8)2) [1~ 

(-2{1~ R2P(r') r' R (r
1 

) ~J ~~~) ls ~ a r · u r . ·. 

= - (:n ( -t) (F-8) 
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or usefuiness of the information contained in this 
report, or that the use of any informatio~, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

·As used in the above, ·"person acting on behalf of the 
Commission" includes ahy employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor preparesj disseminates, or provides acces~
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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