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ABSTRACT

A generali'zed optical-model-potential method for calculation
of the scattering of charged particles by atoms is described. The
method is. shown to combine, in practical applications, the advantages

.of two conventional approaches, the eigenfunction expansion method
and the optical-potential method, and to contain these two-approaches
as limiting cases. With certain modificatior to allow for the Pauli
exclusion principle elxpliéitly, the method is applied to the elastic
scattering of electrons by hydrogen atoms for energies below the ex-
citation of the second quanitum level (10.2 eV}, with ls;, 2s, 2p hydrogen
atomic states uéed in the close-coupling scheme. The resulting
coupled set of integro-differential equations, with appropriately '
appvroximat‘e‘d generalized optical potentials, was integrated numer-
ically on an IBM 7090 computer, yielding phase shifts in various total
spin and total angular momentum states.

Results from this calculation are compared with other theo-
retical predictions and available experimental data. The short-range
interelectron correlation effect is found to be of major importance for
S—wéve scattériﬁg in the entire energy range except very near zero
energy. The influences of thé'long—range polarization. potential and

the short-range effect Eecome comparable for P-waves. For D-waves,
the long-range polarization potential begins to assume 2 major role in
‘the scattering, and for F and higher waves it becomes singularly

dominant throughout.

’
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Extremely .‘na.r_i'ow "rie‘:sAor':l;awﬁ,ce_-typ,e” eff._ects,'in phase shifts of
various spin and lanigu'la’.i' momentum states are found at energies
slightly below thé_ .seco_nd quantum level. The resonance in singlet
S-state is analyzed in detail, by a Breit-Wigner type fit, and is found
to be centered at 9.51 eV with a narrow full width of 0.067 eV.. For the
scattering 1éngth of singlet S-wave, a value of 6.520 (in unit of Bohr |
radius) is obtained.

The method is less successful 1n singlet low-~angular-momentum

waves where short-range correlation effect is important. A modified

trial wave-function form is suggested for these cases; to take better

account of the mutual repulsion between electrons.
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I. INTRODUCTION

A. General Remarks

The problem of the scattering of a charged particle by an atom
(henceforth referred to simply as atomic scattering) has been of con-

tinued interest to physicists since the advent of quantum mechanics.

- For purely theoretical interest, it has been used both as a tool for

probing the atomic structure and.in turn as a test of the validity of -

nonrelativistic quantum mechanics. For practical applications, an

-understanding of the atomic-scattering process is of great importance

.in such areas as gaseous electronics, astrophysics, and, more re-

cently, in the area of controlled thermonuclear reactions.
At high energies, the first Born approximation has been known

to yield predictions in general agreement with experiments. Le. On

. the other hand, for low—energy scattering both theoretical calculations

and experimental results have been quite inadequate,. Here by low-
energy we mean the relative velocit‘y of the charged particle and the
target atom is of the order of that of atomic orbital electrons, or .
less. 3 _

The experimental difficulty lies in the fact that most atoms are

not monatomic at room temperature. The rmolecules of these elements

- must first be dissociated. The dissociation is invariably accompanied

by the formation of excited states of the atom and free electrons, as

well as ions— whose presence makes the experimental results very

. difficult to interpret. This is the reason that for many years most

experiments were limited to monatomic noble gases only. The solution

.to the difficulty mentioned above was. found in-the use of modulated-

beam techniques. ~’

This_n.éw(techni_que makes possible more re-
fined 'experiment_al results. | ‘

On the theoretical side, the difficulty lies not in principle.. We
know tha_t,thé particles interact with Coulomb forces and that the scat-
tering process obeys thé nonrelativistic S?:hr'édiriger equation with
known boundary conditions.. Formal solutions can be given quite

readily. However, the inherent cc‘)rn_pvlexity of this many-body



problem limits practical calculations te very crude approximations.
More unfortunately, various approximations cften yield vastly o

. different predictions. With the lack of experimental comparison, it
- is difficult to assess the merits of various approximations.

Just as the modulated-beam techniques have aided the experl- ,
mentahst, the recent development of high-speed electronic computers
‘enables theorists, for the first time, to do calculations on a much
larger and more ambitiocus Scale, and te make better, though still
quite limited, apioroximationso- With better experimental results’
within sight, we are justified in using our best available means in
.theoretical calculatiohs, to make systematic appraisals of different
a._ppr_oxifna_tions., to assess their range of validity, and to.understand
. better the prime mechanisms involved in low-energy atomic-scatter-

ing processes.

B.. Physical Picture

- It is important to have a generai classical picture of the low-
energy atomic-scattering process. This physical picture will aid our
understanding of the theoretical methods and their various approxi-
mations which we shall mention iater.

‘Let us assume the atom is in its initial state while the charged
particle comes from infinity. As the impinging particle approaches,
the electron cloud of the atom will be appreciably distorted by the .
field of the charged particle. If the relative velocity between the
particle and the atom is rather small, we could reasonably assume
that the atomic electrons will be able to follow the instantaneous
motion of the inceming particle and distort adiabatically as a function

.of the incoming—particle position. The cha.rped par rticle in turn. sees
an average field of this adiabatically distorted atom; which in our
classical ,piéture would be ellipsoid-shaped. Thus, at large distance,
only the induced dipole polarization is important; the attractive field
experienced by the particle is simply [__(Q/Z)/ré], where a is the
usual polarizability of the atom, and r is the distance betv;/een the

particle and the atom. Of course, when the particle gets closer to
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‘the atom, higher multipole fields must be.included.. This is the geﬁ-
eral idea behind the so-called adiabatic theory of low-energy scat-
‘tering. ’ ‘ |
However, the incoming particle will acquire more velocity in -
this induced attfaéti‘ve field as it lgets near the afom, aﬁd may attain
speed compafable to that of the atomic electrons. Thén‘ the atomic
electrons may not be able to distort adiabatically, The field as seen
by the charged particle will not be a simple function of its poé_ition
alone as described before, But will be a compli‘cated. and, in generaI,
a velocity-dependent (i.e., nonlocél) field.
| The fegion. where the breakdown of the adiabatic condition

begins:depends of course on the magnitude of the induced attractive
field and the incoming particle!s mass and initial velocity. For
lighter particles such as electrons,.this effect may occur and become
important before the particle reaches the target atom; we call this a

- long-range nonadiabatic effect. It must be kept in mind that this kind
.of division of the scattering process into various effécts are not at
. all clear-cut and o,niy roughly defined for the convenience of discussion.
No effect can be completely isolated from the others. / |

As the particle gets vevry near or inside the atom, the picture

of an ellipsoidal atom must be abandoned and replaced, assuming the
particle to be negatively charged, by the picture of a more complicated .
distoxted atomic electron cloud with a '"‘bubble'' moving through it. |
- That is, the incoming particle repels the atomic electrons and creates
a Coul.oi‘nb hole (the "bubble'f) around it. Furthermore, we can no
longer assume the particle sees an average field of the atom. The
_ s.hort'-range correlation between the charged particle and the atomic
electrons in this region may have an important effect on the scatter-
-ing process. Finally, if the. particle is an electron, one must properly
incorporate the Pauli exclusion principle to take into account the iﬁ—
distinguishability of electrons. That this is a very impértant effect in

low-energy scatterings was first demonstrated by Morse and Allis.
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- In summary, the fhe.oreticalvprc-»blemvfor 1ow¥energy atomic
scatteri‘ngis that of making adequate allowances for the physical
' effvects. mentioned above; namely, the adiabatically induced long-range
polarization force, the nonadiabath:béhavior and short-range.hﬁer-‘
particle correlations, and the Pauli exclusion prinéiple—if the incoming
particle is an elegtronu _Since vari_o_us theoretical aPPréximations, in
effect, place dliff/erent emphasis on,these_.physical effects, comparison
- with experimental resul’cs. will shed light on the relative importance
of these effects on the scattering.. We shall always keep this in mind,
and discussions in subsequent sections will be so orier_l;cedg
C. Outline _
Here we give a brief outline of the general development in this
- work., In Sec. II, two'general theoretical approaches commonly used"
in atomic scattering pfoblerns; the eigenfuncfion.éxpansion;nnethdd
and the_optical-potential method, are described. This leads naturally
to See. III where we formally derive the generalized optical-potential
method. Its connection with the two general methods in Sec. Il and
its clear .advanté.ge over both will be shown. The method is app'lied
_to the case of electron-hydrogen atom sc‘a‘tter'ingu The Pauli exclusion
principle requires ceftain modifications in the formalism, whichis
. done in Sec. III-B.- The optiéal potentials used in the calculafion are
also presented there.
Phase shifts wefe obtained for elastic scattering at energies
. below excitation ti’lreshdld, and they are presented and analyzed in
Sec.. Iv; compariséns with other theoretical calculations and available
éxperimental results are élso made. Finally, in Sec. V, some con-
clusions are drawn on the basis of our results, with regard to the
scattering pro-cess and the theoretical methods that are uséd, In
- addition, a modified expansion form for the singlet wave function. is

. suggested.
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- II.. TWO VCONVENTIO'NALIMETHODS

_ In'. the treatment of atomic-collision problems, various theo-
retical ‘methodsk, 4he,ur;istic and f_orrhal, have been used. The Born
. expansion approach, l,fo'r;exarﬁple, is'well known and often used, but
..is is found to be rather unsuit‘able for low-energy scatterings. We
also have the Qariat_i_onal method, whose brute-force-type approach
has been‘_p'roven to be very powerful in certéin cases. 9 However, the
method seems to be esthetically less appealing in that the physical '
picture of the scattering process becomes rather obscure.

In this section we review two formal approaches, the eigen-

- function expansion method and the optical-potential method. The
presentation and the associated discussions of these two methods lead
naturally to the main theoretical development of,thisuwork, the gen-
eralized optical-potential method. The pertinent quantities and terms

- introduced in this section will also be used throughout the work.

A. Eigenfunction Expansion Method

The most widely used approach in the atomic-scattering prob-
- lem 1is the eigenfunction expansion method. Its various subsequent
approximations represent the major research efforts in this field. 1,2
The method is characterized by the expansion of the total wave function
Y for the scattering process as a sum of the product of two unc_orrelatéd
(separable) wave functions, the eigenfunction of the atom &(z) and the
incoining-pé.rtic,le wave function ¢(x). The total wave function is

written

$(x, 2) =,<Z'+ f >¢n(x) s _(2), (24-1)
) n ' .

. Whereu X 'repi'eSents the coordinates (space and spin) of the scattered
,pa'rticle; and z/ represeﬁfs all_the coordinates of the atom.  The
above expansion involves no approximations and the sum, as indicated,
is over the complete discrete spectrum as well as the continuﬁi:n_ of

‘the unperturbed atomic wave function @n(z), .

CHy ® (2) = €, O (2), - - (2A-2)



-~ wWwhere H is the Hamiltonian of the undisturbed atom, and. €

the eige’nj:ne.rgy of the atom.in the nth state. Since the states & (z)
span the whole space of z, q> (x) can also be viewed as the expansmn o
. coefﬁclierit of . (x, z). . _‘

Let K be the kinetic-energy eperator of the incoming ';p'a'rti'c':le'
and V its total (Coulomb) interaction with the nucleus and the atomic
\ ‘electrons

Vvt T oviozg  ea
The. total wave function ] satisfies the nonrelat1v1st1c

Schrod1nger equation
(Hy + K+ V - E)d(x 2) = 0. R - )

The qﬁanfityf E "re'prese‘nts' the total energy of the system. If the
atom is in_t-heinitial state @0, and the incoming particle of mass m
has an initial momentum Py then we have

s

€t T €t Ey

E =
The asymptotic boundary condition is quite simple in this
approacha For an incoming plane wave Py Wwe have
' ' v ' iva/'ﬁ .
lim  (+) . v~ [ g x/* ) o woy € 1 ,
4’.( ! es2) = Z {e | Onot fn( 2p) —| @, (2).

X = o n
n | x{

(2A-5)
. The prime limits the sum to energetically open channels only, and
P, = [Zm (E €. )] 1/2. The transition amplitude to the nth channel

fn (+). (x, n) is related to the transition cross sect1.on simply by

- . pd “ -
o (x, pn) = _n f (+) (X, P )' ' , l(ZA-éf)

Py



Subst1tut1ng the form of Y(x, z) of Eq. (2A-1) into Eq (2A-4),
mu1t1p1y1ng on the left by various atomic. wave functions tI’ (z), then
1ntegrat1ng over atomic coordinates z, we obtain an 1nf1mte set of

coupled differential equations for ¢ (x):

[EDK] <Z f) "  o

forn=1-°+ o, and
E SE- ey
v__ = fdz e (z) Vix, 2) @ _ (2). - (2A-8)

Equation (2A-7) can also be variationally derived by substituting

the expression of ¢ in Eq. (2A-1) into

6U¢*. (Hy + V - E) U dz]~ = 0.  (2A-9)

A few remarks on this approach are in order here. Because

- of the product-type expansion form, the asymptotic boundary conditions
of the problem are unambiguously defined. The relatiori, for the
asymptotic: cpo and the transition rate is pa,rticularly simple [Egs.
(2A-5) and (2A-6)], making this approach the most convenient way of .
° calculating reaction processes. However, the continuurh part of the
-atomic wave function @ in the expansion of Y is extremely difficult

- to handle mathematically, and has never been included this way in
‘practice.. Recently, RotenberggA_suggested use of an alternative
eigenfunction-expansion basis, the Sturmian functions. These Sturmian
functions are closely related to the original Schrddinger wave functions
but, - independent of potenfials between‘the particles, they form a com-
plete set without a continuum in the region of physical interest. In

-~ this sense the contribution _of the usual atomic-continuum states can be
- included. While this indeed is a definite advantage, the fact that only

one state in the Sturmian functions is a real physical wave function
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seéms to lir'hit‘thelme_th.od‘ s practical usefulness to the elastic-
- scattering case only. '

| In subsequent sections we shall assume the.incoming particle -
is not an electron unless specifically identified as such. ' This is to
facilitate our general discussions. Of course when the incoming
particle is an electron we must explicitly antisymmetrize the trial _
‘wave function, and introduce. exchange terms and other well-known
complications. L3 o
. We now go on.to the various ap‘pro‘ximatiéns of this approach.
- The so-called closely-coupled-states. approximation assumes that the
potential matr;ix_.elerhentsu Vnrn v_are, zero except those between certain _
. selected atomic states. @nv forn=1, -+, N,. Equation (2A-7) re-

duces to a finite set of N coupled equations:
. N _
,[En - K] 6 = Z Vim (2A-10)
. -m=1
forn=1, ..., N.
The same result can also be obtained by truncating the trial .

solution, :
- . ’ . . N . v .
bp= ) e @ (2an1)

and substituting into the variational expressions Eq. (2A-9).

The choice of the closely coupled states N depends. on the
_prdblem at hand.. For a particular reaction process from initial
atomic state @0 to final atomic state _@n, we may close-couple jusbt
..those two states and neglect all others. The resulting equations be-
come | '

[Eo - K- Voo] %0 = Von n |
A | (2A-12)

.[En - K - Vnn} ¢y = Vno %0
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We may also include other atomic states.in the close-coupling
scheme, such as the degenerate states of the initial and the final"
- atomic states, but the labor in solving the coupled equations increases
.tremendously with the number N. ' o
_ The physical meaning of the close-coupling scheme is clear
from the separable-type trial wave function [Eq. (2A-10)}.  For a
given incident-particle position, the total wave function becomes a
linear combination o.f_those close-coupled atomic wave functions with
coefficients determined by the values of their respective incoming-
particle wave functions at that point. In this sense the close-coupling
scheme means we are limiting the atom to distort only within these
close-coupled atomic states. Thus a close-coupling scheme with
atomic s states will only provide radial, or spherically symmetric
""'shell" type, distortion. For nonspherical distortions such as those
- .giving rise to the long-range dipole polarization potential, we must:
include atomic p states in the scheme to simulate an ellipsoidal atom.
A further approximation.to Eq. (2A—12') is the omission of the

-term on the right in the first equation:
'[EO - K - VOO} ¢0‘ =0

‘[En -K - Vnn] ¢n"

This is called the distorted wave approximation: the incident particle

5 (2A-13)

Vn0 <t)0

coming in the static field of the atom .in the initial state iI)O, making

one interaction and.‘_exciting the atom .into state @n’ and finally
leaving in the EEL_t_i_S field of the final atomic state. The elastic-
scattering solution involves the first ‘equa'.t‘ibon of Eq. (2A-13) only,
and is called, appropriately, the. stai;ic app“r‘oxvima;tion.

- We mention in passing here an even cruder approximation for
'Eq. (2A-13). Letting V, '

=0 and 'Vnn = 0; we have ¢0 = exp (iko' 35)»
and the second equation of (2A-13) becomes ‘ '.

(E -K)¢ -~V ,explik,: x). : (2_A-l4)
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The solution of Eq. ' (2A-14) can be easily.obtained and',it yields the

. transition amplitude to atomic state n: - '

£ (110,1; y= - L <§fzn_> V_, expli (k , x] dx ,  (2A-15)
PR 4w\ ) 7 ,
which is-just the familiar first Born approximation. _

The complexity of the calculational task in solving these
eqﬁatio.f;s' is. enormous and perhaps not too apparent from the above
prese.ntationﬂ - We note that, up to the present, the majority of work
on low-energy iatomicoz scatterings has been limited to the distorted-.

»

- wave approximation or even the static approximation. The most
ambitious work has.been on the close-coupling calculation of two or.
three states.

‘Besides being the most general and, in particular, the most
convenient methbd to calculate reaction processes, the close-coupling-
- state method automatically takes into account some of the long-range
: nohadiabati-c_:.'effects_ and short-range correlations, although the extent
. 1s quite uncertain. It has been noted by Temkinlo that this differential
equation method (i.e., to expand the solution of an (N + 1) particle
differential equation in terms of a complete set of known N-particle
eigenfunctions, thus reducing the many-particle Schrédinger equation
- into a set of one-particle differential eqﬁa’cions which then can be solved
by '-n'umerica.l methods) seems to be the most natural way to include
these nonadiabatic effects.

But the close-coupling-states method suffers on two points.
First, it.is difficult to assess the co,ntr1but10n of the atomic continuum-
states which must be omitted in the method. More serious is the
method' s inability to give correct long-range polarization potentlals.
As we mentioned before, a close-coupling between spherically sym-
metric states will give no polarization force at all. Even if we can
close-couple all discrete states, the sizable contribution from the
continuum state would still be missing, and we know from experience
‘that a correct long-range potential is moét important in any low-energy

o
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- atomic scattering. 1.0 In fact, the presence of the long-range polari-
zation potential even completely changes the basic form of the effec-

. o1
~tive-range formula for low-energy scatterings. 0A

B. Optical-Potential Method

The so-called optical-potential method was first developed in

nuclear scattering problems. 11 . The basic idea is that we replace the
. complicated many-particle effectv—-which’ the incident particle experi-
ences during the ent'ife scattéring process —by an equivalent single-
body potential V, the optical potential. The elastic scattering is then

described by the simple one-particle Schradfng_e,n’ zquation
[Eo -K - ’I/_J (x) = 0. (2B-1)

‘In this approach all complicated many-body effects are absorbed
in the optical potential V', which is very hard to evaluate and is, in
general, nonlocal. Moreover, the complicated optical potential can be
determined completely only when the scattering problem itself is com- '
pletely solved, a vicious circle sadly noted by Lippmann and Schey.

A formal expression for the optical potential can be obtained
readily and for atomic scattering it was first given by Mittleman and
Watsoﬁ.'13 However, the optical pote.ntial is not uniqué". Here we show
one version of the potential that we shall derive in the next section.

For scattering in.the atomic channel @0, we have

(I = Tro) (I - Tro) (I - Tro)

Vi = (o|vev L vy 0 v vi...|oy,
(2B-2)
~where v : _ _ v '
a' = (E-K-H +in. . (2B-3)

The quantity 7 is a positive infinitesimal to insure an outgoing wave
boundary condition. The identity operator is denoted by I and T -is
‘the projection operator onto the initial atomic state @O;v'i.‘e. s

L IO> <0 l The operator (I - 170)

to appear in any virtual intermediate states.

then forbids the atomic state ,
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The Optica'l-poteﬁtial expression. (2B-2), while exact in prin-
ciple, is extremely difficult to evaluate. In practice we can only es-
timate the second-order term - ‘ n -

i(I' o) _
<0 v , T v 0>
and neglect higher terms. In practice one also assumeé that the scat-
_tered particle changes very little in energy in each virtual transition
Z- (i.,e., E
by

Py K ~ 0 in a+)., .Therefore we replace a,+ in the propagator

+

d'= €. - H, +in ; C  (2B-4)

€0~ A

this is éommonly called the adiabatic approximation.

-~ When we make this adiabatic approximation, the second-order
term of the optical potential is then exactly equal to the second-order
energy-perturbation term when the atom is under the influence of'a
static point charge. If the scattered particle is far from the atom this
term yields.the familiar dipole polarization potential [e(a/Z)/r‘L]"
Whénthe'parti‘cle‘is near the atom even this adiabatically approximated
term becomeés hard to evaluate. One usually introduces some kind of -
cutoff -parameter in the potential, such as the parameter d  in the
much-used Buckingham potential, l

y@ e ez (2B-5)

(r'2+d2)2

§ ‘We note that, in the language of virtual transitions, the close-
coupled-states method differs widely from the optical-potential method.
The former method essentially assumes that only a few of the atomic
states b(the N states in the close-coupling scheme) are important, and

_that«th.e effective potential allows virtual transitions to all orders only

. amohg_these states while other atomic states do not contribute at all.
The latter method, on the other héndn assumes that all atomic states
are equally important and may be equally excited (virtually). The

expression U/ in the optical equation is an iterative expansion in the
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-number of virtual transitions. For example, in the second-brder
term in 7V, the atom is allowed to be ekqited. (virtually).to any other
atomic state once and only once (including_‘the continuum) before being
deexcited back to the ground state. In the adiabatic limit, however,
this second-order term gives the correct long-range polarization
potential, the so-called dispersion potential.

To feca,pitulate: we see in practice that the optical-potential
method gives the correct polarization force at 1argé distances but is
. completely incapable of accounting for nonadiabatic behavior or any
short-range correlation effects. The close-coupled-states method,
on the contrary, does partially allow for the short-range and non-
adiabatic effects, but in general is unable to give the correct long-

- range polarization potential.
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II. FORMAL DERIVATION OF THE GENERALIZED
OPTICAL-POTENTIAL METHOD

- In this section we shall formally derive the generalized optical-
potential method, which-as we shall shoW—_—does contain the advantages

of both methods described in the preceding sectio(ri.,

A. Derivation Wlthout the Pauli Principle

The solution { of the atom1c -scattering process is g1ven, in
the L1pprnann SchW1nger formahsm, 15 by the integral equation in
operator form: '
_¢=x+—lTV¢“ T (3A-))
a
where X is the initial wave functlon before 1nteract1on,,
X = & (z) exp(1p0~ x) The symbol a¥ is from
+ ' .
a =E-HA—K+1n, (3A-2)
where symbols H,, K, E are as defined in previous sections. The
Ppositive imaginary.infinitesimal term +in is used simply to indicate

that the "propagation” 1/a+ under an integral sign is equivalent to

-E——_—T_Iz—':'—K - 11T6(E - HA - K)g’

where P means the Cauchy principal value. This formal device in-
~sures the correct boundary condition of the scattering problem—that
there will be an outgoing spherical wave,

Next, we introduce a projection operator HN which is a sum
of projection operators T ontpvthe atomic state 52’1;1:

N

ﬁN; Z~wn: Z ‘n><n\ - Ga-3)

The choice of these N  states depends on which N atomic states we:. -

wish to close-couple. _Of course it must include the initial state <I>0.
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Let us define the generalized optical wave function

Yo =M b | S (3A-4)
Clearly, within the N cloéely-couple_d atomic channels, .LIJC
describes the same scattering processes as , but it contains no
other channels as does .: Thus, if we are only interested in the
. reaction processes in the: N chanhels., we may as well solve for
~ y_ instead of . |

- We now seek an integral expression for ¢C:

b= ox = 7/%, - (3A-5)
where Yis, the generalized optical potential in which we are inter-
ested.
Multipling Eq. (3A-1) by M from the left, since at and My
. commute (Appendix A), we get B
_ 1
b= x b Iy Vi ~ (3a-6)
a B
By combining Eqs. (3A-1) and (3A-6),
= 1 : (3A-T
¢-¢c+?—,(1-nN)v¢. | (3A-7)
"Now, we define the operator F by
y=F 4JC. o - (3A-8)

. Substituting Eq. (3A-8) into ‘Eq. (3Av-6) and 'cc_)mparing'_the
resulting equatioh with (3A- 5$,. we obtain the generalized optical
potential ' o , o R . _

‘ 7/_: IgVvE. - (3A-9)
To derive the expression F, we simply substitute Eq. (3A-8)
into Eq. (3A-7) and obtain
Fel 4+ 4 T-m)vVE (3A-10)

N +
a
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- Equations (3A-9) and (3A-10) completely determine the ’ge"iriei"a_.l"ized
optical potential 7/- - Expanding F, we have, more explicitly,

: (IT-T) (I-T) -y
_ N N N e
/M_ HN‘ vV+V —_— V4V e v T vV + ., _HN"

a 'a a ’
(3A-11)

Now, qJC satisfies [from Eq. (3A-5) ] the Schrodmger equatmnv
‘1/)¢ [E - HA-K ’lf]Lp . (3A-12)

Since Yhas the pro’]ect1von operator I, on both sides (i.e., it has

N . .
nonvanishing matrix elements among the. N atomic states only), the
wave function . qJC, corre spondingly', is then a column matrix with non-
zero elements for those N states. Thus, without losing generality,

we may write LlJc as
Z .¢°1?1(X) Qn(z) . - (3A-13)
n o '

Substituting this into Eq. (3A-12) and integrating over the

atomic wave functions @n, we obtain the set of N coupled equations.
B, - K 4y = ) Uy () 8, () (3A-14)

,for\n'-_‘ 0’ ces, N, \

Where the matrix-elerrieﬁt' Vnm is, more explicitly,

Vo Z Vam * Z vnj (E -e_j_-K+in)‘.1_ ij+”, o
| N ' | (3A-15)
v.forn,m1nN ' o
Equat1on (3A- l—k) represents the fundamental result of this »
, generahzed optical-potential method. Within those N channels, it is
- a formally correct and exact solutmn to the actual scattering problem.
We will riow dwell on this for a while and make several com-
ments on this method,v. First we would like to show here the connection

" of this method‘vwith the two conventional approaches mentioned in Sec. IL.

A
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The choice of the N states to be close-coupled is arbitrary. If we
let N become larger, in the limit N includes the complete set of
atomic states - Qri“v Then HN, approaéhes the ide‘ptit'y opevrator and .
vnrh. becomes simply. Vﬁm’ the first term in Eq._‘.. (3A~-15).- Equati}on}
(3A-14) becomes an infinite set of coupled equations, which is identical
- to the eigenfunction expansion result. On the. other hand if we were to
let N contain only one atomic state <I>O, ‘Eq‘, (3A-14) becomes a
single, uncoupléd, one-particle Schrddinger equation, which is just

- the ordinary thic'al—potential equation for elastic scattering. Thus
we see that ours is a. more refined scheme, or a hybrid type, which
contains‘the two methods in the above —mentioned.extrerne limits.

Next, we turn to the necessary approximations on optical
potentials \/’;m in solving Eq. :((3A-14). If we retain only the first*
term on the right-hand side of (3A-15), i.e., W/nm =V We find -
that our method yields, in this lowest approximation, the usual method
of close-coupled-states approximation [Eq. (2A-9)]. :

" However, we shall be able to include the adiabatically approxi-
‘mated second term in (3A-15);, which may actually dominate the first
termm in some regions: . : )

Vam® Vnm * Z Vﬁj E—TIE— ’ij ) (34-16)
JFN °o 7
Fof exampie, if @1’-1 and ém are both bound and spherically sym-
metric, Vﬁm will be exponentially decreasing at large distances
while the second term will yield the longnrange l/r4 polarization tail.
In analogy to the distorted-wave approxirﬁatidn, Eq. (2A-13),

we shall have the optically-distorted wave approximation:

[EO‘K‘%O],%“O y

[En - K- vn.nJ *n

- Here the incoming particle comes in a polariZed atomic field, makes

(3A-17)

Vo %0

one "optical' transition; and leaves in the distorted field of the excited .
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atom in the nth state —this is much more real1st1c than the corre-
spond1ng Eq. (ZA 13). » '

' In _practlcal calculation's, our philosophy of approach is as
fglloWs, ‘We shall include as many atomic states in N as the situation
v“d'emands, and as the capacity of the electronic computer allows. They
may include the initial and_'the final states of a particular reaction
.pProceéss .in which we are.interested, va's well as their degenerate states,
if any. The coptrib‘ution of the other atomic states ‘(including,thel '
continuum) enters adiabatically through the generalized optical po-
-tentials. Since we shall always have the correct adiabatic 1ong-rang§
. polarization potential through the Vs, the choice of the optically
close-coupled states should be such that the nonadiabatic and short-
range correlation effects be best taken into account by them:.

Thus we see the gener.al'ized optical-potential method combiﬁes
the practical advantages of both the usual optical-model-potential
method and the close—coupléd eigenfunctions approach. It also justi-
fies theoretically the.ad hoc. potential terms used by many authors. 6, 16
We also point out here that the ensumg equations are s1m11ar to the
usual close- couphng approximation equations and are no more d1ff1—

cult to solve.

B. Modification for Electron—Hydrogen-Atom Scattering

We now apply the génerali'zed optical-potential method to low-
energy. electron.—hydrogen—atom scattering. The choice is made for ‘
the following reasons. First of all it is the simplest atomic-scattering
problém of real physical interést, The complete atomic-hydrogen wave
- functions are known, so that all approximations must come only from
the generalized optical'potentialsnv More important, fhere exist rather
‘thorough theoretical investigations in the literature for this particular
case. With more refined experimental results soon available, we
will be able to compare and to assess the merits of various theoretical
approximations. In turn, we will use them with greater confidence in

.other niore complicated problems.
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However; ‘the incoming particle in this case is an electron and
the Pauli principle demands explicit antisymmetrization in the trial -
_ wave functions. This requires certain formal rhodificatioqs in the .
derivation of the generalized opticai¥potentié.1 method. ~ For our elec-
tron-hydrogen case, it is pafticuiarly simple and we shall include the
Pauli principle in the rest of this section. | -
It is well known that when the spin-dependent forc.e is neglected,
the effect of the spin is only a kinematic one. In our two-electron .
case, it simply b’reaksvthe problem into two separate cases in the co-
ordinate .space: ‘the singlet (total spin zero) and the triplet ‘(tofai'a_pin'
-one) scattering. The singlet spatial wave ,funétion ¢+(-l, 2) is sym-
-metric under the exéhange of the spatial coordinates of the two elec-
~trons 1 and 2, while the triplet Wave function ¢ (1, 2) is antisymmetric:
¢t 2) = 2 62, . | @B
‘When the incoming electron beam is unpolarized the total cross
: s"e_'c.tion, is given as _ ‘
o= %(o+‘+3o'L < | - (3B-2)
‘We use an explicit symmetric or antisymmetric two- particié

othonormal basis constructed from the complete set of the smgle-

_part1c1e orthonormal hydrogen wave functlons ] n We define

‘ N L1 . ‘ _ . ,
‘m, 'n:l:> = _r\/_f_ f(m - n) .[@m(l). @n(Z) % Qm(Z) Qn(l)] ,
"(3B-3) -
where '
o 1 m>n
6(m -n)= ( I/NZm=n
0 m<n.
The lm, n:!:.> 's form a. complete orthonormal basis in their -

réspect_i_ve. symmetrized or antisymmetrized subspace:

(pQ q#l m, nt) = spm Bn | ~ (3B-4)

' and the identity operator is I ='I+ + 17, where
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Z Z lm, n:t> <m, n# ‘ . {3B-5)
n, m=n .

The total wave function LLJ (1, 2) can of course be expanded on
‘this ba'_éis: o .
(1, 2) = Z ‘m, n) <m, nt lq,*) " (3B-6)

n, mz==2n

'By definition m is always larger than or equal to n in
Im, n:k> .- We can then, without ambiguity, define state lm, n:I:> as ‘
being one in which the atomic electron is in the state n while the
scattered electron is in state m. The definition of 6{(m - n) also
-implies a definite ordering scheme in de51gnat1ng the complete set of
hydrogenic states <I>ma One readily sees that the orderlng within the

N atomic states to be close-coupled does not matter since they enter
' into the reéulting ciose—coupled equations equally. Neither does the
ordering among other atomic states have any effect, since the otherv
states enter into the resulting equation via the generalized optical
_potentials only, and they also enter equally.

Now, the relative position between the N atomic states and
the rest states in this ordering scheme is dictated by our wish that the
real asymptotic wave of the oﬁtgoing scat.té.r-ed'particle in each atomic
" channel n of N be correctly and. completely projected out by the pro-

_Ject1on operator

™ 'm, qi) <m, n+ | o “(3B-7)

n m>n
when operating on the complete wave vfunction qft(l, 2). This requife—
ment will be met as long as all continuum states are larger than the
N states in the ordering. However, the most convenient choice (the
one:.wé shall make) is to put the N atomic states to be close-coupled
as the lowest N states in the ordering scheme. We call the operator
L .define_d in Eq. (3B-7) the projection operator onto the "'atomic

state'’ n.
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Finally, one may also wonder whether the ordering within the
N atomic states would have effect on the ‘“scattered-pzirticle state. "
As will be shown later, there .Will be no restrictions on the scattered
particle because of the ordering.

We now turn to electron-hydrogen scattering. Let the atom be
-in ground-state zero and the incoming electron with initial momentum
Py The correct integral equat_ion for the total wave function is13A

1

(1, 2) = |y, 0:i:> + o v, V(L 2), (3B-8)
a .

where V12 is the interelectron interaction ez/r12 and
' +

a' = B - [Kl V() + K, +‘VN(2)J +in,
2 (3B-9)
_ Po
E = 2m + €o -

Note that the definition of at here is different from that in Subsec.
IIT- A and is symmetric with respect to eléctrons 1 and 2. The prop-
agator l/aL+ is then diagonal on the basis we have just defined. How-
ever, the scattered pérticle' s initial state is a Coulomb wave function
and thus contains the associated logarithmic phase shift. We can get
around this trouble by considering it as a screened Coulomb wave
function with a limit of zero screnning. In any case, these functions
are used to obtain the expressions for the generalized optical potentials,
and no actual difficulty (because of the long-range nature of the Coulomb
potentials) shall arise in the final resulting equations. We would also
like to point out that this method works only for the electron-hydrogen
“scattering case because of its particular simplicity.

\

Let [, be a projection operator onto the subspace where the

N
""atomic state'' is in any of the N states in the close-coupling scheme:
N N
—
I = = 3 2 , i‘ . -1
D N N R YR PR
n n m=n

Following the general development of Subsec. IlI-A, we define

‘the generalized optical wave function
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l_Lle = HNi-tlJi- o B (3B-11)

and seek an integral equation for qu :
£ V 1 * &+
o3 = Ipo, o) + = Y4l . (3B-12)
a
e & :
If welet ¢ = F q)c , Eq. (3B-8) and Eq. (3B-11) yields

+ L1 % + % -
Ty —lpo, 0:l:> + = Ty Vi Fug (3B-13)

As before, comparing Eq. (3B-12) and Eq. (3B-13) and de-

\

- manding consistency, we obtain

+ + L _x
Vv —HN Vi, F
+ * (3B-14)
(15-02 ) -
+ % N /. +
F —HN + a+ VlZF

Equations (3B-14) give the explicit expression o/f the generalized
optical potential we desire. Since the atomic states N are bdund and
are the lowest in the ordering scheme, q;ci contains the same asymp-
totic expressions in those N atomic channels as qf; and from Eq.

(3B-11) we see LIJ: satisfies the Schrddinger equation
E- K, +Vv () +K, +v_(2)+ V¥ y*=0. 3B-15)
1 N 2 N : Tc ‘ _

_ _ The state . 41: is explicitly symmetric or antisymmetric so we
can write ' ' -
Sl = ) G P e M @@, (3B-16)

, PlZ being an operator interchanging the coordinates of electrons 1 and
.2. Equation (3B-16) has the same form as the trial wave function in
the usual close-coupling approximation with exchange, but they differ -

in one respect: There are no restrictions on the scattered particle
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wave function in the usual close-coupling approximation *witl'z_exchangé°
But, because of the projection operators T that are used to define
.the generalized optical wave function LPZ.» ‘the scattered-particle: wave
function q)n..in Eq. {3B-16) seems to have an additional restriction in
that it will contain no components of the atomic wave functions '@m for
all m lower than n.in the ordering scheme [i.e., <¢n(r) |<bm(r,)>= 0
for m<n]. By setting the N states as the lowest in the ordering
scheme, all other states wiil be higher than the N states and so may
~ be contained in q)n’-s‘. Even so, the ¢n‘s still seem to have the re-
striction that (q;n [ <I>m> = 0 for n >m for m, n both in N. This would
still be very cumbersome if one is to solve the ¢n's numerically. How-
ever, the fact that we are summing all N atomic states .in Eq. (3B-16)
makes it possible to relax even this last iestrictibn (see Appendix D).
The dimensionless units used throughout this work are the atomic

units. That is: |

h=1, ¢=137,

Mass unit = electron mass, or me. =1,

Charge unit = electron charge, ore = 1,

Length unit = Bohr radius (0°53><10_8 cm),

Energy unit = 27.2 eV = 2 leol s

E = 13.6k% eV. | -

We now turn to the generalized optical potentials in Eq. (3B-15).-

The atomic states we chcose to be close-coupled are 1s, 2s, and 2p states.
Inasmuch as the generalized optical potentials are used to give the
correct long-range polarization potential, they will be evaluated to
second order only for those matrix elements whose second-order direct

term dominates the first-order term (n |V, _| m) at large distance.

12 )

o N (2] 2 (2) (2)
‘Th1(sz)1nc1udes the matrix elements U ls, 1s’ (U’ls, 2g* A 2s, ls)’ and
V’Zs 2s° Here again we resort to the adiabatic approximation by re-
placing a by d = €0 " K2+VN(2)+inn' B

Now a mathematically equivalent statement for this adiabatic
‘approxi.mat_ion assumption is that in virtual transitions the matrix
elements <qg n | VvV | pog ,O> contribute mainly from those | o n>

states for which E - Eq ~ 0, so that.-we may omit the
0 - -
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[Ep = (Kl + Vl)] term in at. - This means that the contributing states
® (1) of the scattered particle are continuum states because the initial
state <I>p (1) is a continuum. Since the atomic states @O(Z) and @n(Z)
are mostly bound and since they are quite different from the con- )
tributing & and & 's, the adiabatic approximation actually impliesi_
_that the excl?ange term <n,vql v Ipo, 0>> will be very small. Thus,:
when the adiabatic approximation is valid, we may neglect the ex-

change terms in the virtual states and replace (I - N) in 7f( 3n by

Z s (2) 2 "(2)
- |

- With these approximation.,, we proceed to evaluate_the second-
order potential terms 7f ls, 1s® (V(lzs)f 50 2nd VZS, 2gc The V(lzs), 1s
term is the most important since it enters directly into the potential
for our elastic scattering while the other two have second-order effect .
only. The work of Delgarno and Lynn33 enables us to evaluate this
ad1abat1ca11y approximated 7/( z ls exactly if we want to.. Hewever,
there is no p01nt in doing so since the adiabatic condition itself will
not hold when the partlcle gets very near the atom. ’I‘hus we shall
only use the leading l/r term for the long-distance behavior, both
for V(lzs) ls and for U(Z) 28 In v(lzs)9 ,g We use the 'Bucklngham—
type potential with the parameter d .such that when it is expanded the
coefﬁcientsv of the 1/r4 and l/r6 terms will agree with those obtained
by the mu1t1pole expansmn method. At small r—where the adiabatic
cond1t10n 1s to be abandoned —we' introduce a cutofr factor (l_v'-'«e ar)5’

0 5, in the manner of Alhson et al 17.’ Th1s factor W111 1nsure that

'v the V' s vanish at T 0 It was foand that the re=u1’cs are not very

sen31t1ve to the small var1at10n of the parameter ”a” (Tablev I). The

second- order opt1ca1 potentials used in our calculations are
(2)
* ~-r/2.5 0.77
Y.Is,ls-(l - e } - I 5

(2) ., (2) '
(1/‘:; ) =U:}1 5 - (1 _ e,—r/Z)S - 5 2047 5
Sy 28 Sy &8 (r° + 0.935)

=@ oL eT/2)8 <_ 10.52 )
2s,2s
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Table I. Phase shifts with various values of parameter a. a

L a = 0.4 a=0.5 a=06 .
0.05 1.8970 1.8974 1.8976
50F 10.30 1.0255 1.0262 1.0269
0.60 0.7926 0.7943 0.7955
| 0.10 0.1163 0.1165 1 0.1166
5" 0.30 0.2865 0.288 " 0.289
10.60 1 0.3988 .0.3995 0.4001
0.10 0,063 0.063 0,063
52t 0.30 10,0327 0.0328 0.0328

0.60 0.0631 . 0.0633 0.0634

a . .
“Values of & are in radians.

The close—c_oupled_integro-differéntial equations from substitution
~of Eq. {(3B-16) into Eq. (3B-15) can be further reduced to close-coupled
radial equations only by partial-wave theory, as was first done by

- Percival and Seatcn. 18 In Appendix B we give the resulting radial
equations and cherfpertinerﬁ: quantities of this partial-wave reduction.

- The radial equations thus obtained are subsequently numerically inte-
grated on an IBM 7090 computer, yielding partial-wave phase shifts (
directly. In Appendix C we give a brief description of the numerical
techniques used. Aside from minor modifications, the code we used '

21

was that of Burke and Schey. '~

t
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Iv. NUME_RICALI RESULTS AND DISCUSSION

By using the generalized optical-potential method, the close-
coupling scheme, and the generalized optical potentials described in
Subsec. IlI-B, the phase shifts for the total angular momentum states
L =0, 1, 2, 3 have been evaluated for both spin states in,the.energy
range below the threshold for excitation of the seccnd target quantum .
level (kz =.0.75, or 10.2 eV). Results of these phase shifts (in radians)
are presented in Table IL We encountered convergence difficulties
near zero. energy, and also for energies near the second quantum-level
threshold, where resonance-type effects seem to exist in many spin and
angular-momentum states. |

We shall anaiyze and discuss the results in each angular-
momentum and spin state separately. As has been emphasized, our
aim is to gain a better under,standing‘ of the mechanisms involved in the
low-energy atomic-scattering process, their relative importance, and -

their range of validity.

A, S-Wave (L=0) Phase Shift

With each particular angular momentum L is asscciated a
centrifugal barrier L(L + l)/rz in the radial equation. This centrifugal
barrier will keep the incoming particle farther away from the atom as
L increases. We thus expect the short-range correlation effect due to
‘the interelectron interaction ez/r to play its largest role in this sing-
let S-wave case. In Fig. 1 we present our results as well as the
: var1at10na1 calculatlons of Schwartz, ? the static a.bproximation with ex-

19

B change of John (ls), the (is- Zs) exchange approximation results of

- ?_I_Srruth et al. 20 the (ls 2s- Zp) close couphng approx1rnat10n with ex-

- :change by Burke and Schey,. 2l and the results of Temkm sl_.'O nonadlabauc

| theory.,‘ We also 1nc1ude the curve 60, the zeroth order phase stht
from Temkin's calculation.

The result of.Scrhwa.r’cz‘9 should be rather accurate since it is
obtained by a variational treatment where the trial wave function has
been adequately represented {up to 50 lterrns) to take into account the

short-range correlations. That his result is trustwort‘hy is further



Table II. Phase shifts, in radians, for singlet (5 ) and triplet (677) L =0, 1, 2, 3 states.

2 50t E st 51- g2t 52 53" 53"
0.01 -0.6363"
0.02 2:2799"
0.03 . 21166. - 0.003985
0.04 1.9930
0.05 1.8974 - 0.016 0.0586 0.006347  0.006723
0.10  1.562 2.485 . 0.1165 0.01227 0.01348  0.004270 0.004274
0.20 - 1.215 2.2066 -0.0201  0.206 0.0230 0.02555
0.30  1.0262  1,9616 -0.027 0.288 0.0328 1 0.03586
0.40 0.9059  1.8846 -0.035 0.3455 . 0.0419 0.04497  0.01511  0.01484 '
0.50 0.8363 . 1.7766 -0.0456  0.3761 0.0515 0.05324 N
0.60 0.7943  1.6915 -0.0480  0.3995 0.0633 0.0610 I
0.65 0.8020 20.0436  0.4123 0.0716
0.66 -0.8108 )
0.67  0.8285
0.68  0.8648
0.69  0.9754 | ‘ |
0.70 2.3 o 0.4495 10.08497 0.06826 . 0.02513  0.02559

0.71 . 0.5440

0.72  0.6554

0.73  0.7009 , |

0.74  0.7363 , e 0.1442 0.07118
0.0 A =6.52172 - | |
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Fig. 1. The singlet S phase shift as a function of kz‘, as
given by various calculations. :
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augmented by its close agreement with the result .of Temkin, lo-who

used a novel and.ehtirely different approach of nonadiabatic expansidn.

- We then see that our result makes only about half of the‘correctivon from
| . the (ls) static result toward the '"correct'' result of Schwartz.
' The difference between (ls) and (I1s-2s) curves.is due entirely

‘to the better case of the short-range effect by the inclusion of the 2s -

_ state, while the difference between the (1s~2s) curve and the (ls-2s-sp)
curve is due to the contribution of the 2p coupling to the short-range
effect and also to the inclusion of 66% of the long-range polarization
force by the 2p states. 22 That those two differences are almost equal

‘.sugge_sts that the corrections are more due to the short-range effect
‘than the long-range force. This is also manifested in the small im-
provemnent of our result over the (1s-2s-2p) result, which is mainly

. due to the addition of the 34% of the correct long-range force in our

calculation. |

It was observed by Burke and Schey21 by direct calculations
that the addition of more bound atomic states in the usual close-coupling
scheme improve results only slowly. This can also be seen by the
small difference between the (ls-2s) curve and Temkin's 60 curve,

The 60

states; so the small difference represents the contributions from 3s,

result is effectively a close-coupling approximation of all s

4s, ---, and all the continuum s states. Since our calculation has
included the correct long-range force, the large difference between
our result and Schwartz” s correct result is entirely due to the short-
range effect, and the major part of it must come~from the above argu-
ment —from the contribution of the atomic continuum states.

If we take the difference between our result and the (ls-2s-2p)
close-coupling fesult as entirely due to the effect of 34% of the long-
‘ range polarization potential, we can make the following estimates:
In the general energy range we are now dealing with, the long-range
force gives about 30% of the correction from the (1s) result to the
correct (Schwé.rtz' s) result. The remaining 70% comes from the short-
range effect, the bound states contributing abouf 35% and the continuum

states c‘o_ntributing about 35%.

N
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Above k2 = 0.65 the phase shifts increase sharply, exhibiting
. a re_sonance effect similar to the results of Burke and Schey. 21 Fol-
- lowing their work, we analyze this resonance phenomenon by decom-
posing the phase shift into two parts: the slow-varying nonresonant

potential part & and the resonant part & ; 0 =5 +6_,. Then
res pot .

pot tot res.

. the total cross section is given by

2 .
- 2 '
Ttot = (m/ k") res ¥ Apot ? , (4-1)
where
Ares = exp(2i 6pot) [exp(21 6res) - l:l R
Apot = exp(2i 6potv) - 1.

Next, we define the resonant part of the singlet S-wave cross section

by _ >
5res ~(2)| 4

\k res

If we give this cross section a standard Breit-Wigner type fit,

2, . 2 ‘
= 1 . 4-2
(4n/k") sin”. S (4-2)

1
— 2
6res - 4T2r L 2. 1_2° (4-3)
k (E - E )y + T
res 4

- we find the resonance energy Eres’ = 9,51 eV (l«:Z = 0.70) and the full
width T" = 0.067 eV, This is to be compared with the results obtained
by Burke and Schey21 for the similar phenomenon in their. (ls 2s-5p)
close-coupling approx1mat1on calculation, v wh1ch glves E res =9. 61 eV
(kz 0.707) and I‘ 0 109 eV Our resonance energy. lies shghtly
-lower and the resonance w1dth 1s narrower Thus, 1f thls resonance
effect is real, 1t would be- even harder to observe The r.e‘sonanc,e_pe_ak ‘
'in the total cToss sectlon occurs, of course,' at 6 17/2, ror;'at ;

= 0.696 (Eres 9.45 eV). Figure 2(a) shows_the singlet S-wave

phase-shift curve in this energy range, and Fig. 2(b) gives the corre-
sponding resonant part of the cross section, 0 es’
This resonant behavior in the phase shift is not limited to the

singlet S-wave case alone but seems to exist for many spin and angular
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Fig. 2(a). The singlet S phase shift as a function of k.
(b). The corresponding resonant cross section."



-32-

momentum states. Similar behavior was also found in Burke and Schey's
result, as well as in other calculations based.on the eigenfunction ex-
pansion approac.h° We leave.this subject for the time being but will
comment and speculate on the origin of this phenomenon further, in the
final section.

Next, we go on to the zero-energy case. We obtained for the
singlet S-wave a scattering length of 6.520. This is to be compared with
‘the value of 6.742 obtained by Burke -and Schey, 21. whose method of
(1s-2s-2p) close-coupling with exchange approximation is very close to
ours except for the long-range force, as mentioned before. The best
value of this scattering length is an upper bound of 5.965+0.003, obtained
by Schwa.rtz9 by variational approach with up to 60 parameters in the
trial wave function. Since our method does inc}ude the correct adiabatic
long-range potential, the still-quite-appreciable difference hetween our
result and that of Schwartz seems to come from the breakdown of adia-
batic. condition at midranges and, probably more important, from
correlation effects at short ranges.

In the analysis of low-energy nucleon-nucleon scat}ering data,
the so-called effective-range the'offy :has'-been proven tofbe :}ery useful.
According to. thls theory, the low- energy behav1or of the S- wave scat-

-tering can be descrlbed by the effectlve range approx1mat10n formula:

¥ l
k cot 60 + k. 2 (4-4)
where A is the scattering length, -60 1s,the S-wave phase shift for
.incoming-parti_cle momentum k, and the constant Ty is the so-called

.effective range. _

O' Malley et al. 23, have reexamined the effective-range theory
. in detail and found that the usual simple formula as:- shown above is
actually not valid for scattering containing long- range potentials such as
in our case. Instead, for a long-range; polar1zat1on potent1al (- B /Zr s

the modified effective formula.is given P
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where. 52 = 4.5 in our case and Y(3/2) = I'' (3/2)/T'(3/2) = 0.0365.

- The abeve modified. efféc_tive—rang.e formula is rather ‘com-
plicated, .and it differs from the ordinary one mainly by the presence
‘of the k term and the (k In k) term. One may obtain the scattering
“length A from Eq. (4-5) by any two sets of low-energy data. Also a
comparison between the values of A thus obtained with the result of
- 6.520 from direct numerical calculation enables one to estimate the
energy region where this effective-range formula is useful. In Table
I1I we give such a comparison and from that we conclude that the effec-
tive-range expansion in atomic scattering, due to the long-range nature
of the potential involved, is rather "ineffective'' and its range of use-

fulness is rather limited for k% < 0.04 (0.6 eV).

Table III. Comparison of extrapolated séattering length. 2

Sets of k2 values used - Extrapolated scattering length A
k=02, 0.1 | 8.101
k% =0.1, 0.05 7.353
k% = 0.05, 0.04 \ | 7.296
k% = 0.04, 0.03 - 6.873
K% = 0.03, 0.02 ‘ 6.767
k% = 0,02, 0.01 o 6.650

aNumerically'integrated at k=0, A= 6,520,




For the same angular-momentum wave, the triplet equations

differ from the singlet equations only in the sign of the exchange poten
ti;l, The magnitude of this exchange integral is an sffective measure
of thé overlapping between the two electron wave functions. Wher 2 the
overlapping (i-e., the exchange-potential part) is small, the short-
range cofrelation will be small, and the singlet and triplet phase shifts
will tend toward each other,
| In Fig. 3, our triplet S-wave phase shiits are plotted along

with those of Schwartz, ? the (ls) static result, 19 the (ls-2s) result, 2
as well as the (1s-2s-2p) result of Burke and Schey. 21 We first note
that the triplet result is grossly different from the corresponding sing-
let result; this indicates the large contribution from the exchange inte-
gral (i.'e., short-range corrélation)o We next note the surprisingly
close agreement among all theoretical calculations. in this case. .Th_is
indicates that the effect of the polarization potential is negligible away
from threshold and, moreAimportant, that the short-range correlation
effect has been so well taken care of by the explicit spatial anti.sy'mfnetry
in the triplet wave functions as demanded by the Pauli principle that even
the static (ls) aLpproXimaﬂ:ion119 givés_ remafkably good resvlults,- We
mention here that the calculation on higher partial waves also shows
that even the crudest approx1mat10ns in the triplet case will take gen-
erally satlsfactory account of the short-range correlatlonso The success
of these tr1p1et,ca1cu1at19ns led us in-the final section to propose an
alternative expansion form for the singlet trial wave functions.

v Unfortunately for this triplet case—both in the zero-energy
region and near the second quantum level-—no‘convergent results could

be obtained.
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Fig. 3. ‘The triplet S phase shift as a function of kz, as
given by various calculations.
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B. P-Wave (L =1) Phase Shifts

We present our singlet and triplet P-wave phase shifts in

Figs. 4(a) and 4(b), respectively. They are also compared with—in

. addition to the (ls) and the (ls-2s) resultslg"zomthe result of Bransden

et al., 6 with an adiabatic variational polarization potential; the result
of Temkin and Lamkin' '524 polarized-orbit method;r and that of Malik
and Trefftz, 25 who used the one-body exchange equation with an ad hoc
polarization potential. | o ‘

Again, different calculation in the triplet case are more con-
sistent than those in the singlet case. Again we have the contrasting -
behavior between the singlet phase=shift. curve and the triplet curve,
which indicates that the effects from short range are still substantial.
In the triplet curve, the "improvement' of the (ls-2s) resultzo bver_the
(1s) resu11:19 is rather large, while the addition of 2p states (hence 66%.
‘of total long-range pblarization potehtial).’i.n Burke and Schey' 521 calcu-
lation changes the phase shifts.by a lesser amount. This supports our
view that the short-range correlation effect still exerts a major in-
~ fluence over the whole energy range. Our result agre.es well with that
of Temkin and Lamkin' sZ_ bolarized orbital method until we near the
second quantum level, where a sharp increase of the phase shift again
takes place, ,indicating a resonance effect similar to that in the singlet
S-wave case. ‘

- The results of the singlet P-wave phase shifts are harder to
-analyze. The results of the (ls), (ls-2s), and {ls-2s-2p) calcu-

19, 20,21 as well as ours, generally give negative phase shifts

- lations,
in this energy region while other calculations yield positive phase shifts.
This seems to indicate that we are in a region Where_the influences of

- the short-range correlation and the long-range polarization become
comparable. It is difficult to see whether the correct phase shifts

- should be positive or negative. However, in view of the small magnitudes
- of these phase shifts, it should cause little difference in the value of

the total cross section.
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C. D-Wave {L = 2) Phase Shifts

Our results for the singlet and the triplet D-wave phase shifts
19

are plotted in Figs. 5(a) and 5(b). We also show the results of John
(1s), of Smith et al. 20 (1s-2s), of Burke and Schey21 (l1s-2s-2p), as

well as the results of Temkin and Lamkin's pola rized- orb1ta1 method24

3

~calculations. It has been shown 23 that if a long-range 1/r potential
is dominant, the phase shifts at low energies should vary linearly with
-the energy. It becomes immediately apparent, both from the similarity
. of our singlet result and:the triplet result, -and from the near-linear
. behavior of the phase-shift curve as a function of the kZ value, that the
centrifugal barrier has pushed the incoming-particle wave function
.sufficiently'out s0 that the exchange potential becomes very small and
the long-range polarization potential becomes dominant.

Calculations with no provisions to include the long-range

19,

potential such as the (1s) and the (l1s-2s) results 0 give phase shifts
grossly different from other approximations with polarization.included.
Another indication of the dominance of the leng=range force comes from
the triplet case, where the ratio of the eorrection bo.‘f_th'e {ls-2s-2p)
resultZI, ovei‘_the (l_s-Zs) res.ultz'O to the correction _o..f our result over
the (ls-2s) re»sultzo.-is roughly equal to the ratio of the amount of the
long—range pcjlarizat}on force included in the (ls-2s-2p).calculation to
that in our celculation; i. e., O‘,66/1° ~The singlet D-wave phase-shift
curve begins to deviate from linearity above k2 = 0.6 and rises sharply
as it nears the second quantum level threshold—another resonance

effect similar to those found. in Burke and Schey s calcu]atlon

- D.. F-Wave (L = 3) and H1gher Order Phase Shifts . -

The analys1s in D-wave phase ShlftS shows that the long-range.
polarlzatmn potent1a] becomes the predomaiant factor in the scattering
process for.the L = 2 waves.- We then expect it would be even more so
for higher-order partial waves. The results of our calculation on the

- F-wave phase shifts readily confirm this. Throughout our entire energy
range the corresponding singlet and triplet phase shifts differ by less
than 2% (see Table I), which shows that the exchange potential is
negligibly small.
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"For L > 0 and small values of k, O'Malley et al. 23 have given

an approximate expression for partial-wave phase shifts:

tan 6. = a K4 ee. . (4-6)

L 2L+3) eL+1) 2L-1)

The polarizability a is equal to 4.5 in our case. The above formula
yields for F-wave phase-shift values 53, = 0.00448, 0.01792, 0.03136;
for energies, kz =0.1, 0.4, 0.7,. respectively. A comparison with
our results in Table I shows that they agree quite well indeed, dlffer-'
ing only from 5to 20%. Thus Eq. {(4-6) can be used to give good
approximate values for all higher-order phase shifts in the energy
range-in which we are interested. We also note that the magnitude of
these }higher-order phé.s_e .shifts_.be.comes so small that they will not

cvontr‘ibvufe -_rr}uch to the total créss ‘secti’on.

E. Comparison with Expenment

In F1g 6 we compare our result for the total cross section w1th
the _expenmer_ltal results of Brackmann et al. 5 and with those of

Neynaber et al. 26 We also plotted the theoretical calculations of

McEachran et al., et John, 2,3 Geltman, 27 Temkin and Lamkin, 24
Burke and Schey, 21 and Brunsden et al. 6 The large scatter of experi-
mental points of Brackmann et al. S.is due to the uncertainties in the
electron beam energies. Various theoretical calculations do fall in
the general region of the expefimental points but no preference can be
made with the present data. ' '

In Fig. 7 the experimental results of Gilbody et al. 28 are
corripared with our result and with other theoretical predictions;
Again the 'expérimental result is such that no preference can be made
among theoretical prediction_é, riavhich yieid angular distributions gen-
erally smooth and similar except at small scattering angles. Thus
- a more refined experiment is highly desirable. A spin-flip expefi-
rnentz'_9 may yield even more information since it will predict a larger

angular variation.
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V. CONCLUSION

From the results of our in\}estigation,, we draw the following
cdnélusions in this final section. Particular attention is given to the
rangé of.importance of various physical effects in the atomic-scat-
tering process and to the generalized optical-potential method as a
general approach in the calculation of atomic-collision problems.

(2) The results and analysis in Sec. IV show that for S-wave
scattering the short-range interelectron correlation effect is of major
importance throughout the entire energy range 0 < kz, <0.75.. Except
very near zero energy (kz < 0.05), the long-range polarization potential
plays only a relatively minor role. The singlet case and the triplet
case yield quite different results, which indicates:the.large.over-
-lapping between the incoming- and the orbital-electron wave functions.
This shows the importance of taking explicit account of the Pauli
principle.: The effect of the long-range polarization force becomes
comparable to that due to shortm;“ange correlatiéns in the case of
P-wave scattering. It is here that the results become most uncertain,

- and various approximations yield widely differing phase shifts.

- For D waves, the long-range polarization force is very impor-
-tant in the écattering process while the influence of short-range
correlation becomes smaller. For F(L = 3) and other higher partial
waves, the long-range force becomes singularly dominant, and the
centrifugal barrier pushes the incoming-electron wave function so
far out that the exchange effect and the short-range correlations be-
come negligibly small. The phase shifts have become very small and
the approximate formula [Eq. (4-6)] serves as a good estimate for
the 'ph.ase shifts.. Since different atoms are approximately of_thé sarﬁe
size, we expect the above conclusions to be quite genéral aﬁd of possible
application in other atomic scatterings. ' )

(b) In atomic—scattelring problems most theoretical calculations
assume either that the atom is completely polarized by the incoming
particle (the adiabatic. approximation), 'Qr_that the atom remains com-
pletely unperturbed throughout the scattering (the static approxindation .

or the Born approximation). One might wonder whether the results
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from these two approaches might be useful in serving as two '‘bounds"
- for the more correct result since the adiabatic approximation over-
estimates the attractive long-range polarization force while the static
approximation totally neglects it. -

The results for electron- hydrogen atom scattering seem to -
support this view. It is seen to be generally true not only for the

total cross sections but also for each partial wave as well.

{(c) At energies slightly below the second quantum level exci--
tation, we found resonance-type effects in various phase shifts, similar
to those found by Burke and Schey in the {ls-2s-2p) approximation. 21
These resonance-type effects are characterized by extremely narrow
width 'and seem to exist in nearly all angular-momentum and spin
states, with the effect occurring at slightly higher energies for higher
partial waves.. One usually would expect resonance to occur when the
-total energy of the scattering system is near @n eigenenergy of the
entire system in a bound state. This does not'seem to be the case
he,.lfe since we know that the negative hydrogen icn has only one bound '
state, 30 with total energy E = - 0.5277 (= - 14.460 eV), while our -
res‘onance‘ effects occur in the region kZ. = 0,70 to 0.75 or for total
energy -0.15<E < -0,125..

We suspect that these resonance phenomena may actually be
épuri‘o_ué and only arise mathematically when solving a finite set of
coupled equations. 'Indeed it may well be due, as suggested by Massey, 3l
to the fact that in the close-coupled equations the energy in one closed
channel is at an eigé'n'vaiue- for motion in that channel uncoupled from

:the réSt chanhels,' _Ihat is; resona.nce,atypé eifeéts will occur when
the negative energy E for f:losed channel n in Eq. (2A-12) is such

that there exists a boimd state ¢, -éati_sfying the Schroédinger 'éqﬁation

| »(En—K=Vnn) 4)n=0° N | (5-1)
To see this, take the close-coupling equations of two states;

Eq. (2A-12). The wave function by of the incoming particle in

atomic channel "<I>0 satisfies an effective Schrédinger equation:

»



.

.vn(> $olx) = 0. _ _;5-2)

" The second term in the potential is then energy-dependent
through the operator K and E ' which is, by definition, _

En,_=-E - €, k + (eo - €. ) When Eq. (5-1) is satisfied, the
potential is infinite and hence gives rise to the ''resonance' effect.

.. When more than one bound state is possible for Eq. (5-1),
there will be '""resonances'" at energies corresponding to each eigen-
‘energy of those bound states. Also, when a number of closed channels
are present in the close-coupled equations, the resonance effect will
occur whenever condifcion (5-1) is satisfied for any one of the closed
channels; i.e., Eq. (5-1) may be generalized to a matrix equation,
uncoupled from the elastic channel, '

‘The above illustration did not take into account the effects of
exchange and other complications in our case, but our result is
qualitatively.in general agreemeriﬁ-with the conjecture, and no violation
of its consequences is found. The conjecture states that the resonance
effect occurs only when some state in the close-coupling is closed
the existence of a bound state in Eq. (5-1) implies that the potential
V.nn must be attractive overall. Both conditions are satisfied in our
case, where the closed channels are 2s or 2p states. If more than
. one bound state exists for Eq. (5-1) we expect to observe more than
.one resonance. In particular, we expect that the binding energy En
is less for higher angular-momentum bound states, so the resonance
energy k2 for higher partial waves-if the resonance does occur-- .
should be correspondingly higher, again in agreement with our result.
Furthermore, the (VZS, 2s in our calculation has an additional attrac-
‘tive polarization term of -10.,52/1"4r as compared \fvith the similar
calculation in Burke and Schey's (ls-2s-2p) close-coupling approxi-
madtion. 2l This should increase the binding energy H.Ezsﬂ'for,_ the
. ""bound state" b5 in Eq. (5-1) and, by Massey's conjecture, should .

lower the resonance energy. 'Again this agrees with calculations.
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For the singlet S-wave phase shift we obtain the resonance energy
kies = 0.700 (9.51 eV), while the (1s-2s-2p) approximation gives

kies = 0.707 (9.61 eV). Following through with the conjecture, this

means a shift of eigen binding energy from -0.050 to -0.043. The
fact that the additional long-range force did not change the resonance
enefgy very much seems to.indicate that the 4)25 bound state does not
arise because of the long-range force. Of course in some cases the
additional long-range force may create a bound state which would not
exist otherwise. The bound state thus created would be very loosely
 bound, and the corresponding resonance would then occur very near
the threshol_d of that closed channel.

As we include more states in the close-coupling approximation,
we expect a more singular behavior in the effective potential; they
tend to be narrower and average out. Recently Temkin and Pohle 2
did a careful calculation on the electron-hydrogen phase shifts just
below the inelastic threshold by the ''nonadiabatic method." Actually
_ their calculation is essentially a close-coupling calculation with all
atomic S states and P states. They also found a very narrow res-
-onance 1n the phase shift just below the second quantum level, but at
about k = 0.747 (10.17 eV). Thus the resonance behavior in phase
shifts may really be an inherent characteristic of the eigenfunction
: expansion- approach and will. vanish only when we include all atomic
- states and solvﬂe the problem exactly.

We conclude these plausibility erguments by pointing out two
other consequences “which may be used to further check the conJecture.
F1rst, in pos1tron hydrogen scatterlng, the close couphng approxi-
mation calculatlon should y1e1d no such’ resonance since the potentlals
1 Vnn are vnot attractlve andvtherefore,the condition for a bound state in
- Eq. (5-1) does not exist.  Second, in electron-hydrogen scattering,

- if we close-couple the ls state with a much higher bound state, ‘say

4 ZOS, the phase shift should exhibit a resonance effect at a much lower
k value since the field V n would be more attractive and the IEnI

in Eq. (5-1) would be correspondingly higher. As n . increases (still
remaining bound), we expect the '"resonance energy" k2 to approach

zero.
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‘ Of course;. the Que._stion as to the eyxistenvce, of these resonance
. effects must ultimately be settled by experimental verification. The
extremely narrow width of the singlet S-wave resonance indicates the
need of an electron resolution much less than 0.05 eV.
(d) We now turn to the problem of the close-coupling scheme.,

- In. many theoretical works, »Zl_remar‘ks have often been made on the
_irnp.ortance of the ”!él,osge—coupling” between two.particular states in
- a reaction process, such as the importance obf the 2s-2p coupling for
lIs to 2s or ls to 2p transition rates in a (ls-2s-2p) close~coupling
. approximation calculation. This, we feel, can sometimes become
misleading; and not much physical understanding of the scattering
process can be ‘gained from discussion of this kind. Rather, we should
talk about the entire close-coupling scheme in the calculation, since
it means—in the usual eigenfunction expansion form-that we are limit-
ing the distortion of the atom as a linear combination of those atomic
states in the .close—_coupling.,séheme s only. k

- We should like to emphasize this point: good results can not
_ be obtained_,if,the form of the trial wave function does not prov'ide ad-
-equate allowance for the various effects in the scattering _process..
- Since: the bound wave functions of atomic hydrogen have definite sym-
" metries, and radially are in general similar and smooth-varying near
the origin, it simply becomes inadequate for a limited number of these
hydrogen wave. functions to simulate the highly distorted atom when the
incoming particle gets near or inside the atom. -Thus we feel that the
usual eigenfunction expansion approach would be inherently a poor way
to allow for such distortion and it is not surprising that when the short-
. range corﬁr-,elation effect is impertant, the usual close-coupling method
gives poqr' results -and converges slowly. A better allowance for such
short-range distortion effect can be obtained. only if we include, in the
expansion, functions for the atomic electron that are more varying near
‘the ori/gin,_ ‘The Sturmian functions used by Rotenberg, A ,for: examﬁle,

would be suitable in this respect as an alternative expansion basis.
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~ It has been noted that in the calculation of electron- hydrogen
scattermg the tr1plet results are consistently much better than the
correspon_chng singlet results. Take, for instance, the simplest .
approximation of the static exchange calculation; i.e.,
Unle r,)=do(r)8,(r,) 2, (r,) &5(r ). The triplet results in this
approximation agree remarkably well with those of the best calcu-
lations, and the small corrections between them are more due to the
long-range polarization forCe,than_to the short-range correlations.
On the other hand, the singlet calculations in this case _oftén_ yield
quantitatively and sometimes even qualitatively different results from
better calculations. Moreover, the singlet results improve only slow-
ly as we increase the close-coupled states in'the scheme, as.one
readily sees in the singlet S-wave case. It is here that the eigen-
function expansion approach of uncorrelated product wave functions
becomes. inherehtly ineffective; and one often resorts to introducing

parameters such as the interelectron distance r explicitly

- T
into the trial wave function (thus rendering it nonl~zsep;iab§a§, as is
done in the varié.tional calculations by Schwartz. 9
The reason for the difference between the singlet and the trip-
let results lies in the fact that the Pauli effect and the Coulomb effect
are additive in the triplet case while they are probably opposite in the .
' singlet case. That is, the spatial antisymmetrization in the triplet
case explicitly demands, irrespective of any approximation, that the
trial wave function vanishes for I;sx, (Fermi hole). This implies a
. repulsive effect similar to the mutual Coulomb repulsion between
electrons. On the other hand, the Pauh effect in the 51ng1et case is
probably attractlve, which is opposite to the effect of electron Coulomb
repulsion.. The poor resultsv from the singlet calculations might very
well be due to the fé.ct that the,vu‘sual singlet trial wave functions in'the
close-coupling approximation, while they do have the required sym-
-metry and the simple separa’ble product-type ,form,‘ do not provide an
explicit and adequate allowance for the most important part of the _ -
short-range correlation effect, the effect of Coulomb repulsion between

" electrons.
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_The success of the triplet calculations has led us to believe
thaf,,the introduction of a spatially antisymmetrized factor 1n the trial
wave function is a good way to account for the Coulomb effect while
retaining the .separable product-type form that characterizes the
eigenfunction expansion approach. Thus as an example, we venture
. to suggest here—although with certain reservations—an alternative - -
expansion form for the singlet wave function. Instead of the usual
static exchange approximation, the singlet wave function in our modi-

fied expansion form may be:
Wy x,) = %[%1/3_@1)@01/3(1«2) EIRACRER S (rl)}
X [¢0‘1/3(r1) 3, 2t )-c 8, 3 (x,) @01/3_-(1«1)]
- [C¢ol/3(r'1)@ol/3(rz) - q’01/3“.2)'‘I’ol/}(r]i}
- [‘*’o(%) 3, (r,) + 4’0(1‘2)%“1)}
- (c 14 >k02/3( 1)¢01/3<r1>¢01/3(r2>§02/ (x))
t 0 2 2, 21,0, 2 8,2 (rl)]  (5-3)
It is easy to see that the modified static exchange approximation

- 1is syrn‘metric under the exchange of particles 1 and 2. In addition, the

. almost antisymmetrized factors in the wave function insures that, for

values of ¢ near 1, the wave functlon will have a dip as T approaches
I and for ¢ = 1 it vanishes for Iy =, The value of c¢.can perhaps

‘be determined Varlatlonally but we expect ¢ = 1 might be adequate. In
form, it differs from the ordinary singlet static exchange wave function
by the last two terms in Eq. (5 3). The asymptotic boundary conditions
of ¢O in this modified expansmn are the same as before, For Ty,
'lJJ( ) goes to cpo(rl) ® ( 2) and so again we have the simple relatlon

between the functlon ¢0 and the scatterlng,cross section.
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It might be argued that the modified expansion form is no
longer a one-state approximation, but this is a deviation no more than
the o‘rdinary static exchange approximation is a deviation from a one-
state approximation.  The major objection would be that the resulting
. equation is nonlinear, which may yield some surprising properties
not contained in the physics of the problem. In Appendix E we derived
the resulting equation to be solved when we use this modified static =~
exéhange approximation. The labor involved in the numerical com-
putation of the resulting equétion_is not much greater than in calcu-
lating the ordinary static exchange approximation, and is certainly
- much less than that of a {(Is-2s) close-coupling é,_pproximation with
exchange. ’

(e) In Subsec. I-B, we give a general physical picture of the
atomic-scattering process where we mentioned the possible breakdown
of adiabatic condition at distances much greater than the atomic di-
‘mension. - This effect we termed the long-range nonadiabatic effect.

- It is of interest to see whether in our electron-hydrogen case this non-
adiabatic effect does become significant at distances large enough so
that it may be separated from the shdrt=range correlation effect.

To-this end, we expand the propagator 1/a+.in the adiabatic

approximation limit:

+ T T+ T4 +

-l le x-vl 4., (5-4)
a d av Po d :

When this is substituted into the second-order term in the optical
potential [Eq. (2B-2)] for electron-hydrogen elastic scattering, the
 first term on the r_ight in Eq. (5-4), l/d+, ,yieldé the familiar adiabatic
polarization potential, 1 which at.largé distance is -20.2-5/1'4., The

- second term on the right in Eq. (5-4) contains the first nonadiabatic
correction. In Appendix F this-first-order nonadiabatic correction is

.evaluated. Neglecting the exponentially decreasing terms, we obtain
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V- =--+(8-31n‘z+21n22)l |
"NA T ' r3'
2r .. _ 4 11 5 3
+e 81(-2r)<1-?+———2 - '—-3‘ - —z)

"=-.2r e 4 11 5 3
te €1(+2r) <==1 -2 - =, - __3.;.._4)

+ -—2-3 ei(éZr) éi(+2r)

r

*2]% | ©(5-5)

where %contains nonintegrable terms,

%«.: m%glﬂl){l s, GIISO (l_ _2.,2+ .7:3
. r r r r T r

where

6!
1

,
f dxxnllm(n.:\)l e TA-1),

1

+1

Tn :j
-1

- We note that this first-order nonadiabatic correction term is

' 2
dp emr(H'i'l).Hn |1n(l—p)‘_ ,

. linearly proportional to 8/0r, or linearly velocity-dependent. ' Thus
its contribution goes to zero linearly as the particle's radial velocity
approaches zero, in keeping with the definition of adiabatic correction.

For its behavior at large distances, we expand_thev expression (5-5)
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in powers of 1/r and the leading term yields

T 1lim _ | L _l_ 0 5.6
 r->w {V.NA =-10.75 5 5r (5-6)
: r
. . . . - 13A 4 .
in agreement with the estimate of Mittleman. - Thus we may write
-the optical potential at large distance as
| 4 10.75 @ ’
= . - . — 5-7
Vo= -2.25/x S (5-7)

r

To find the influence of the nonadiabatic term on the scattered
particle, we ’do as follows. For very-low-energy scattering, we
assume the electron has zero energy at infinity and falls into the

potential of Eq. (5-7). The gradient ( (-8/8r) is set equal to the in-

coming-electron momentum, and by energy conservatlon this potential
term must equal the kinetic energy acquired, p /2 Thus the mo-

mentum of the electron at distance r is given by. *he relation

P /z;=z.25/r - (10.75/x )p° - {5-8)
. The corresponding expressidn for adiabatic. potential alone.is.

p(z)/_2=- 2,25/r4. : (5-9)
The: ratio p/p0 is evaluated for var1ous values of r and.is presented
-in Table IV. - It is seen that the ratio p/p0 does not deviate much
~from unity for r >3, Thus we conclude.that for near-zero energy
. in electron-hydrogen scattering,. the whole nonadiabatic effect at large
-distance is quite small. '

Table IV. Evaluation of ratio p/p, at various values of r. @

ro | /Py
20 C0.999
10 - ‘ 0.995
4.6 - S - 0.951
3.7 _ ' ©.0.904
2.72 - 10,779
. 2.15 ' 0.623
171 , 0.40

ap/po— —5067/r3+ (1+25.7/19)1/2,
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At higher energies the above will not be valid and we look at the
ratio of the nonadiabatic correction term to the adiabatic potential term.
For an initial momentum of 0.75 (i. e., incoming-electron energy =
-7.65 eV), the ratio is approximately (10.75- r?5><0._,75/2.2.5° r"4) =3.58/r.
Thus it is already 35.8% at r = 10 and is 71.6% at r = 5. ‘Therefore in
this energy v.ran'ge._th.e‘ nonadiabatic. effect will not be small and cannot
be neglected. However, in our calc-ula-tio’ﬁwe do :partially include the
nonadiabatic correction by the clo_se!=-couplling_of‘(ls~25=2p‘) states.

The contribution of 2p states to the 10ng~=range nonadiabatic correction

..term has also been evaluated. in Appendix F and is found-to be

—7.9(1/r.5)(8/8r), or 73.5% of the total. It is reassuring to know that

. this _lé.rge portion of the nonadiabatic correction has been vimplic_itlyv

..included in our calculation.

(f) Finally, after having presented the formalism of the gen-
eralized optical-potential method and having applied it to the elastic
scattering of electrons by hydrogen atoms; it is only appropriate to

.give here an overall evaluation of the usefulness of the method in
..treating general atbmicsscattering problems. First of all, the gen-
eralized optical-potential methcd ¥etains the form of the usual eigen-

' fun.cti:on expansion approach, making it particularly suitable for the
calculations of reaction cross sections, and also partially taking the
nonadiabatic effect into account through the differential equations. _Of
course the special feature of the generalized 6ptical=potentia1 method

.in practical applications is that it will always give the correct long-

- range pola.rizétion potential. That the influence of the long-range in-
duced potential is of paramount importance in lowe—energy atomic scat-
‘tering cannot be too strongly emphasized. In the electron-oxygen-
atom scattering, as Temkin]‘O pointed out, the polarization potential
decreases the theoretical zerosenerg‘y exchange approximation cross
section by a factor of 8 and by a factor of 2 at energies of 10 eV, Both

"These values seem to be confirmed by experiment.

Thus our choice of the application to the electron-hydrogen case

- was not mearnt to show to the fullest the advantages ((a'ndvthe virtues) of

our method; since we have calculated the elastic scattering only, and
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‘the Zp'_atdrﬁic states .in our .cloSeécoupling scheme have an implicit
‘and eXcept'iohaﬁlly large. contribution to the long =‘rangé’ polarization
potential, 66%. A close—cduplin’g scheme with only Is and 2s atomic
states would certainly demonstrate the .'a.d\"fa_mtagés of our method over
the conventional close—couplihg a_p_pféximationa in.a more Aimpressivé
manner. - Even. so, our calculation shows that the addition of the other:
34% of the correct long-range potential by our method still did alter
the higher partial phase shifts significantly. »

As is ch,aract_eris't.icv of,_the eigenfunction. expan_'s_i.on épprdach,

, our method is less successful in singlet lowangular—mome,ntufn- states
. where the short-range correlation effect is important. The excellé_nt
results from the rather crude approximations in the triplet case indi-
-cate that the allowance for mutual repulsion, or the Coulomb hole, '
constitutes the major ._effe_ct of shqrt—ra.ngé c»o_rr_erlations, It _aléo led
us to propose an alternative expansion form .for-,thue singlet case. It v‘

- .is our belief that this type of medified vsi.ngl_et \}v,aveéfunétion.expa’nsidn,

. or a mofev suitable expansion basis (such as the Sturmian .funct_idnS),_

- should. remédy and cbm_pliment the genéralizéd. optical-potential met};-;
od, fnakirig it :the most versatile and practical theoretical method in

. the.treatment of atomic=srcattéring, problems.
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APPENDICES
A. Proof That a+ and H’N Commute
We want to prove that at and HN commute. The projection

operator Il is def&ned to project the target wave function onto the N

N
atomic:channels 2 @i,(z), but it has no effect on the scattered-
T .

-particle coordinate x. . We thus may write explicitly

N
H'N = »,6(x—x“ ) z @i(z)@i(zf ).

i _ _
-Now at = E - H - K+ in.: To.the target wave functions ii(z)' S,
the (E - K'+_i_'q)bin a+ are. effectively c¢.numbers while H vis_rjust the

eigen-vHamiltonian for the ®'s. Thus

. +1 _
{HN’ aj| = 0.

B. Reduction of the Partial-Wave Treatment

to Radial Equations

The algebraic problem of obtaining explicit radial equations
from the partial-wave treatment for electron-hydrogen-atom collisions
was first given by Percival and Seaton. 18 We give here the pertineﬁt
quantites of the radical equations which we numerically solved on an
IBM 7090 computer.

Let the hydrogen atom wave functions be denoted by,

® (r)= = R, (r) Y () , . (B-1)
nf 1™y r nf 1 yJ 1™
~where. Rnﬂ is a normalized radial function, anél Yﬂm is a_ndfmaliz,ed _
spherical harmonic. For our scattering problem the total wave func-

tion can be expanded in explicit antisymmetrized form:
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1 . Fplry)

be (210 1,0,) = LY 20, T,0,) =
: N2 T : 2

(r,) ‘
pir, 0,0 Flog) S (B-2)

The. representation is labeled I" = _(nknl lIZLMLSMs) where the
total angular momentum L and the total spin- S of the system are
separately conserved in the scattering process. The n.and 11 .are
the principal and the angular-momentum quantum numbers, respec-

tively, of the atomic electron; the £, and kn are the orbital angular

momentum and the wave number, rezspectively, of the scattered elec-
tron. The sum over I' in Eq. (B-2) includes the close-coupled states
(n4 -1) of the hydrogen atom as well as the values of 12. consistent with
the given L.

| The exact generalized optical-potential solution qJC satisfies the

- Kohn- Hulthén variational principle:

| G[ILIJCLS*(V)(SC.—E) 0. PP wrydrar, <2 AL RLS] = 0,

_ 1 2 1_2 1 1 v
Wheref}C—~-z-Vl_.2_v2_;T__2.+ .

The Fl" (v) from qJCLS {v) has the boundary conditions

. A
lim LS, o ‘LS . .
r > o Fvﬂ (v;r) = E——Z [6vv' s1n(kn, r - 5 2 2 ) .
. nf
| \ LS . 1,
~ +va, cos(kngr - E122‘17)]5 k
if v' channel is energetically open

=0, if »' is closed (B-4)
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LS
v
LSv, where v.denotes n,f,4,.

-and F 7 {v;0) = 0 for all channels. Here we write I explicitly as

Carrying out the manipulations for (B-3) ‘with boundary,condi—

<
~tions {B-4), we find- F];“v’v_(r) must satisfy a set of close-coupled

equations'’
2 £ (L, + 1) '
- 2 P ) 2 (vE oW ) P .
w2 V3 . v vy v
r T v ’
(B-5)
- The symbols in (B-5) are:
Loxlimo ey, \ | (B-6)
>S5 n- o . - En)s . : -
vEm = - ts  + S f w0 Ly (P, P |x)
vyp! '/ r ve' . TN w271t N nd, n.‘f‘l
8 . {B-7)
A
LS _LS 1-8 :
= (.1 { 1 [
CWUDLE LY (@) = (-]) Z gy (00,0000 L)

S

X [ §X0(€n i} E_.n" ~EJAP nd 1 FW b Ix (Pnﬁ 1 Fv“ \ r)} 'Pn" ,Q'I(lvﬂ)." (B-8)

where
[+ o)

A(A, B) = A(r) B(z) dr, : - (B-9)

-{A+1) by

A Bl ) e Mart + 2| A B ) "M g

yX(AB r)y=r

(B-10)
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N3N (B-11)

gy 40085 1) = (=)

PR LY (2,4 Llpgr LT |25 1) (B-12)

The P, (x) is the fam111ar Legendre polynomial and the '\/1(’%)),
in (B-7).is as given in Subsec. III-B.

When only the elastic channel is open, RLS, in (B-4) reduces
. to a single element tan SLS, where 6LS is the pﬁla}.se shift for the
given state of L and S. The elastoc-scattering differential cross

~ section in either spin state is then

) LS 2
9) —| = Z (2L +1) [exp(z_ia ) - 1] P, (cosf) | , (B-13)
T . |
- and the total cross section is
'S = 372_‘ 2L+ 1) sin’ 6™ . (B-14)
K® & ,

For an unpolarized electron beam the total cross section is

gtotal . |o + 30 , (B-15)

C. Numerical Procedure for Solving the Set

of Coupled Integral-Differential Equations

Here v:ve describe briefly the genéré.l procedure for solving the
set of coupled integral—ciif.ferential radial equations.

The set of equations can be written as
o0 .
: - 1 l ! ‘ -
,ZviJ.(r) () +ZJ Kyj0r ') Fy(r') dr', (C-1)
] .

where ij.= 1, -+, n; n being the number of radial wave functions con-

sistent with our close-coupling scheme. The Vij(r)' s represent the
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direct potenfials, the energy, and the centrifugal barrier; K‘ij(rlr')
represents the exchange potentials. For a suitably chosen r_ we may
write Vij'(r) as a finite sum of the inverse power of r for 1 > T
- we may alsol consider that the exchange kernel Kij (rlr" ) vanishes for
rorr'= r, . ) v
Tet there be n_ energetically open channels and n, closed
.channels, n_+n, =n. Because of the boundary conditions at infinity,
for the region r > r the general solution is determined by '(Zna + nb)
or (n + na) parameters—two arbitrary parameters for each open
* channel and one for each closed channel. The boundary condition at
origin requires F;‘i(O) = 0 for all i, thus a solution for.._(,C-.ly) is deter-
mined by n arbitrary parameters.
To det.ermine Fi(r) for r >r 2 0, we cannot take straight- .. .
forward numerical'integration out from the origin. This is due to the

fact that in n, closed channels the increasing exponential component

of the s.olutio}:;x. would grow to such an extent that the exponentially

: décreésing term—the part that satisfies the boundary conditioh. at
infinity — would be completely overwhelmed and lost. Nor can we start
fr:om'.r =r, and integrate inward, since this would produce irregular
solutions at small. r and would. not vanish at origin. To circumvent

. both difficulties, we take the compromising way By choosing an ad-
Jjustable middle point. rO, "We shall solve thhc_:—: n - linearly independent

inner solutions for 0 <r <r by o'utward,inte‘grationv from » = 0. We

0
also solve the n + n, linearly independent outer solution for r, 2T >r,
by integrating from r = T, inward.

The interactive procedure to obtain 2 continuous solution is as

. follows. First we set the kernel K to zero; the'resuiting homogeneous

equations will yield n set inner solutions Fé(O)q(r) for j=1, =~ -,
n.,ih,the region 0 <r < 1‘0; and for j=1l,°°°; n+ o, in the region
o ST <r_. ‘The Superscript in parentheses indicates the iteration

T
number. The unique, continuous solution.is obtained by linearly com-
bining those solutions and demanding that the function and its derivative

. be continuous at r = r Let this continuous solution be denoted as

o
0 ’ . .
. Ff _), ‘the zeroth-order continuous solution.
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‘Now we use FB(O) to evaluate the exchange term fKF,dr' R
and solve the resultlng inhomogeneous equation once more to obtain

the first-order inner solution f (1 )(r) and outer solution g; (1 )(r)

Again they may not be matched at r = Ty SO we again add linear ‘
combinations of the zero-order homogeneous solutions F(O) and G(O)
to it and demand continuity at r =T This gives us the first-order
continuous. solution F (1 )(r). This is, then, again used to evaluate the
exchange term; which in turn is used to find fi(z) and gi(z), etc.
Thus we have n
| )y = (0)
F,(r) = ) + Z (r) 0<r<r,
. ,_J=l
), . S0, () g (0)
= n : n J
g (r)+z -bj G1 (r) rogSrsr
=1
i=1,2, -°,n. A{C-2)

The coefficients aJ( ) and bJ( n) are determined; of course, by

. the continuity condition at r = roe Or more explicitly

o) + ) ?j(n)Fi(o)j(ro) = n)(ro) ¥ Zb ;e
]
dfi(n)(r) dF, ‘O)J< )
—_— + z a. =
dr r dr »
J "0
{0); (n)
5 o a6, P | g )
J dr o dr
J o To
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The parameters a's-and b'" s.(tetalling 2n +'@é) are thus related ‘by
. those 2n equations. To speed the convergence we use the remadining
o, degrees of freedom by .imposing n_ integral conditions, which - |
amounts to a normalization procedure on:the first n_ functions of’
£, )

. That is, we impose -

r
C

Fi(n?(r,) dr=c, i=L,n, . . .- {C-4).
0
where ci' s and rc"' s are chosen arbitrarily. In genéral 0< r. < T
but T, may be bigger or smaller than T
Thus the iteration goes on until convergence is obtained; i.e.,
F,®) g g, 24 D)

: Runge-Kutta,integration method is used to solve the equivalent set of

are equal w_ithin some predetermined amount. "‘The

difference equations. For our calculation r = 28 au, r. = 2 to 4 au,
and Ty T 50r 10 au. The basic grid interval is 0.1 au and generally

gives the phase shift correct to about four decimal places.

D. Proof of Relaxation of Restriction

on ¢'s in Eq. (3B-16)

The generalized optical wave function is written as

N |
W) (2P e (1) 2 ), -y
n

and the projection operators L used.in defining wc place the
additional restriction that the scattered-particle wave function cpn' s
. be orthogonal to atomic wave functions @m' s for m <n in the ordering

‘scheme. That 1S: '
<¢n ‘ .@m> =0 forn>m. (D-2)

Because of the spatial symmetrization or antisymmetrization
operator {1 = PlZ) and the fact that we are summing up all N states

. +
. together in LIJC, and because we demand that the N states be the
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lowest in our ordering. scheme, the réstri,ction (D-2) can actually be
relaxed in Eq (D 1). ‘
To prove this we need only to show that the expression of .
Eq. (D-1) is not unique but may be rewritten as
+ & e '
= Z (1£P,)v (1) &_(2), , (D-3)
b
where the restriction {D-2) does not apply to the v's.
To begin, we show the restriction o‘nvthe $' s explicitly by
. writing '
b= F - ) C e ), (D-4)

m >n

where the nonzero coefficients Cnm are defined to be:

C = <'~P l F >,£ 0, form <n.
nm m n
This insures the orthogonality condition (D-2) for the ¢ '8

Substituting Eq. (D-4) in Eq. (D-1), we get

T Z (1=P )| F_(1) - Z c e (1) |2_(2)

m-<n
N
= Z (1£P,,) F_(1) 2_(2)
n
N . ‘ N
- Z (1£P ) Z C__®_(1)&_(2). (D-5)

n m<n

We now use the identity relation

(1+P (1£P (D-6)

12) © 12) &Pp))
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on the second term on the right side of Eq. (D-5), ‘which becomes

"2nd term!" = Z (1P 5) &Py ,) Z o Cnm'q’m(l) <I)Nri(z)

Lm<n
- }: (1£P ) Z @wc e _(2)e (1)
n m<n

{(changing "s'ummingv order)

Z z (1£P),) &) C @ (1) 2 (2)

. n>m

(now cha}.ngingﬂindex)
. N . »
Z z (1=P,) ) C @ (1) _(2). (D-7)
n m>n

4 Substituting Eq. (D-7) back into Eq. (D-5), we obtain
N .

¢ (1e2) = z 1=P) | F (1) z c_,e (1)@ (2). (D-8)

m>n

To equate Eq. (D-8) to Eq. v(D’?’)" we need only to let

v () =F_(1)F Z Com T (D-9)

m>n
The v!s do not have the restriction-Eq.. (D-2) as the ¢' s.do,
'<'V"®>=<F$ Zc o 'q>>'
n| p n mn m | p

since

pn‘
# 0 for p €n.
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E. The Algebraic Problem of the Modified
Trial Wave Function, Eq. (E-1)

To take better account ofvth-e interelectron repulsion in the
electron-hydrogen-atom scattering, we suggest to replace the usual
singlet wave function in the static exchange approximation by an

.alternative expression
-

Viepr) s Lo, 3w e 2+ 0 30, 8, 30 )

! - 0
X an'(,l/?(rl) 2,3, - e 0y 3x,) 2, 30 )
x| cto /3w 2, 30, - 8, 3, 8, 20
L : | J

L

l .

e -1y o 30 8 3y 60 2y 8,2 Pir,)

1/3,

(rz) @0 . (E-1)

r,) ¢01/3.(r1) EI’02/3(1‘1)

This expression differs from the usual static exchange approxi-
mation by the addition of the last two terms. These two terms are
short-ranged; i. e., they vanish for either r, or ré going to infinity.
This alternative expression of Lpf(rl,_rz) not only is symmetric under
the exchange of coordinates Ty and Tos but also has the additional
property of vanishing when Ty =T, thus giving a natural provision for
the Coulomb hole. '

The Schrddinger equation for the electron-hydrogen-atom

scattering is
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[H‘l) + Hg,+ Vi, - El¥ (rpr,) =0, (E-2)

~ where . H° repres"en't's the _Harhiltonian of the Cotilemb'vs}ave ftinctic_m

- K e 05 = » &

= 'Kl + V.l’ H .<Dn, 'Gn"cbo .

. For an incoming part1c1e of 1n1t1a1 energy of k ,. the. total energy. E
of the system is E = k + €0 Substltutmg Eq. (E- l) 1_ntovthe

. Schrddinger equation (E-2), premu1t1p1y1ng by ¢0(r1)_ and integrat_ing.
~over the coordinate T we derive an integro—differential_equatio_n

for the function. F(rz) _
5 _
[Hg + U -é‘_] F(rz) + [(e - k5)a) + J(l)}po(rz)

| L __
= (c-142) {[A(%).(Hg . 'I;—HJ(—;-)] PRAITRE AT

2 . y -
' {A(%) (HY - =)+ 36 )} 3 (x) VF-»I/?’(r.Z)}, (E-3)

where

Yo zfq’(;;(rl)'v'lz bglry)dzy = JO)
ey o (1-m) m,
m)= [% () Vg ¢ (ry) F(ry) dzys
| % (1-m) m, A-

‘The A(m) is a kind of gener:elized ov_erlajpping _infegral while -
J(m) may be called a_,gene_ralized exchange pbtent’ial., Wevre we to let
_the terms on the right-hand side of the ‘equality in (E-3) vanish, we
obtain just the integral-differential equation for the ordinary statie
exchange approximation. The terms on the right-hand side of (E- 3)

thus come from our mod1f1ed static exchange approximation.
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When we use the generalized optical-potential method, the
wave function 4J+(rl, rz),then, satisfied the equation (3B-14). We
then replace Via in U, by the generalized optical potential 7/.-12" For
S-wave singlet scattering, our modified static exchange approximation

does not contribute to the polarization potential. We shall add the
direct long-range polarization potential terms in the o‘pt‘ical potential;

the net result is the replacement Uy = J{0) by

o0 = J(0) + "_“;.4_ f{r),

U
: 2r

. where f(r) is some function to cut off this dipole potential at small r.
The bouﬁdary conditions for F(r) are the same as usual. For

S-wave scattering,

1 1 :
F(r) lffw = —172 sin(kr + ),

F({0) = constant.

F.  Calculation of the First-Order Nonadiabatic Cor.rection

of the Optical Potential for Electron-Hydrogen Scattering

From Eq. (2B-2), the second-order term of the optical potential
for the elastic scattering of an electron by a hydrogen atom in ground

state is:

V@) <o V4, ﬂézo). v, |o> : (F-1)

a (

By using Eq {(5-4), the adiabatic expansion of l_/a+, ﬂ/(z)
~ yields, along with the familiar polarization potential, the first non-
adiabatic correction term .U/NA:

. (- {I-.) _
) o . . o .
Vina* <0 Vie —F WtVicEp ) —5 Vi l °>

-

- <o F(K; + V) - Bp ) F| o> : (F-2)
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where -

F‘ °> Via l °>
'= fA|0>H- (o [‘f'|o>"|p>., o ‘. - (F_-‘3?

The function f has previously been solved by Dalgarno and Lynn. 33

Now

(V,lz"__ F J =0 ,
and

2
K1.=‘-1/2V1, so

K, F= _(-1/2«v'§) F

= -1/2 (W2F) - (9 F)Y, - (/OF VS (F-4)
. Substituting this in Eq. (F-2), we have

_NA.é='"<o IF(K +V, )F|O>
<0|F v ,F|o/>- v,
; 1/2)<0|F(v F) |o>

4 o |FFlo) '(_.;:vi‘ Vv -_E‘ (F-5)

)e
1 ‘ P‘O ;
. N ) i ' .
ow 2 _ . 2 (I - TTO) .
o v 1 ) F =V 1 —————— V_]_ 2

=
(I-7p)
0 2
.= (Vi Vv,,)
- d+ : 1 12
(I-mp)
7 8z - Ip)
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This shows that the second term in Eq. ,(F'-S) will only contribute
exponentially decreasing terms, so we may drop it. The higher-order
terms in the optical potential will add to the third term in Eq.. (F=-5)

to. give <O lF F | 0> - V "+ V- E Pq }s which will vanish identically
when operating on the scattered -particle wave function.

' Finally, the first term in Eq. (F-5) contains a vector operator
Zl" However, frem _symrr;etry arguments, we can see that orily the
. radial part contributes. So we finally have

ClF G P10 5

(F-6)

[<0|f £l o)
110 ¢ | 15501955

Using the function f given by Delgarno and Lynn, 33 expressed
_in confocal elliptical coordinates, we have evaluated the above ex-
-pression. The result, neglecting the exponentially decreasing terms;

is as given in Eq. (5-5). It gives a leading term

Vs = - 6300/ 2 (®-7)

in agreement with the estimates of Mittleman. 134

The contribution of the 2P-atomic states at large distances is

evaluated by multipole expansion of V, which readily yields

Z: @|v¢2P>< > <2p|(u~'v)o> o~

o

=L ( ! > R, ()¢ R, (r')
(-2) L ) Nﬂiri—Ka)
0 X ¥

_ 7.9 8
= . ( z ) < ) . ‘ (F-8)
\r or
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