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- ERRATA

All recipients of UCRL-10881

" Technical Information Division

UCRL-10881, "The IBM SHARE Program D2 NU SCHR 1072 for
Solution of the Schrodinger Radial Equation, by J. W. Cooley;
Necessary and Useful Modifications for Its Use on an IBM 7090, "
R. N, Zare ‘and J. K, Cashion, July 1963,

Please make the following corrections on subject report,

Card "MOD 5'" should be changed to read
FORMAT(36H DIFFERENCE EQUATION TECHNIQUE FAILS) MOD 5

Insert between cards '"MOD 5 and MOD 6" the following card

SCHR = 1. - MOD 5.5
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Introduction

An efficient method for solving the radial Schrodinger

'equatiqn numerically has beeﬁ proposed recently by Cooley.

He has confributed a Fprtran program embodying his procedure
to'fhe IBM SHARE project, D2 NU'SCHR 1072. The authors of
the present report have fouﬂd his program extremely useful
as a means of generating eigenvalues and eigenfunctions for
diatomiéqmolecule calculations. The program was written for
an IBM 704 and must be modified slightly in order to be
compatible with an IBM 7090. (The same modifications are
necessary for its use on the 709 or 7094.) The principal
purpose of this report 1is to make this information available
to 7090 users.

A few modifications and additions which the authors have .
found useful also will be described. These in no way derogate.
from Cooley{; skill as a programmer. On the contrary his
program can Be recommended not only for its utility but also.
as an excellent example of the efficlent use of Fortran coupled .
with a clarity of presentation which makes it easy for others
to adapt his work to their own partidular needs.

Tests of the accuracy of this procedure when up to 2OO
intervals are used in the integration have been given by Cooley._l
Additional information on its use with up to 2000 intervals |
has been given elsewhere by 6ne of (J.K.C.z). Other applications
in which this prbgfam has been very useful to us include a study

of vibration-rotation interaction (J.K.C.s) and a calculation

-
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of the intensity distribution in the iodine fluorescence
spectrum based on Rydberg-Klein-Rees potentials (R.N.Z.4)

The Numerical Method

The following 1is takeﬁ largely from Cooley's summary ogt
the method as given in the.SHARE:distribution description of
this program.. To facilitafe comparison with the listing of
the symbolic deck given in Appendix B, variable_namés employed
in the progfam are also used in the folloWing equations.

The prégram calculates the elgenvalue E and the normalized

eigenfunction S of the second-order differential'équation

2 : ,
8- (v-E)S | (1)
dr ' _ -
where V '1ls a glven numerical potential function.

It is éustomary to separate the Schrodingér equation for
a diatomic molecule into its radial and angular pabrts and

express its\solution,in~ﬁhe form
¥(r,6;0) = rR(r) e(0) o(9). (2)

Eq. (l) is équivalent to the radial Schrodinger equation when
length and energy are expressed in dimensionless units. Its
solution S(r) is equal to r times R(r). S(r) provides a more
convenlent computational form since the product of any two
functions S will include the volume element of integration.

Hence, the expectation value for any quantity F is given by

— '  2 3 : ,
[Fl =7 RF, R rodr = [ SF,,S dr (3)
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‘equivalent to h Nd/8w20a

If length is measured in units of Bohr radii, a, = 0.529172 @Q

the energles V and E must be expressed in a dimensionless unét

2

oy Wave numbers, where N0 is Avagadfé’s

number (physical scale) and b, is the reduced mass in Aston
units. The numerical value of this factor is 60.2198/uA. H%nce
to convert eigenvalues generated by this program to the more "

familiar units of cm"l, multiply them by this factor. Note

" that the Aston unit of reduced mass is based on the physical

scale of atomic weight, i.e., B, = mlmz/(ml+m2) where m; and m,

16

are the atomic welghts of atoms relative to O = 16. Herzberg's5

table 39 is a convenient source for ey values.

Regarding the potential V(r) two things should be noted.
First, its zero is taken at the dissociation limit. Therefore

a Morse potential, for'example,'must be generated from the

~relation

(4)

v(r) = D1 - e Blr-r )12 _ p
\

N

e

where the dissociation energy De 1s a positive quantity.
Secondly, V(r) is an effective potential which may include a
rotational term, [J(J+1) - A]/rz, where J is the rotational

'quantum number and A 1s the quantum number for the z-component

- of electronic angular momentum. Since this term is inherently

positive 1ts addition to the potential for the rotationless
state always ralses the potential. |

Initially, a non-normalized solution P(r) for Egq. (1) is
calculated from the integration formula

_ 2 .o
—Yi_l +2Y; - Yy 4+ h5(V,-E)P; = 0 (5)



Where
By = B(ry) | S |
v, = [1-(n%/12)(V,-E)]P | () s
1 i1 o - T
Vi = V(ri)
‘h = ri+1 - ri.

The error assoclated with the use of Eq. (5) as a predictbru
5 (vi)
1s (n°/240)P; -

Starting with the-boundary values:
P = 10730 :' | C(7)

el = ?n' exp[rn(Vn—E);/z* fn-l(vh_l4E)l/2] (8)

and a trial value of E, Eq. (5) is used to integrate inward,
giving Pn—2’ Pn_s, ey Pm’ where m 1s selected as the first
<
point for which lel S !Pm+1l. 5
approximation. ] Then,‘l?i is replaced by Pi/Pm for i = m, m+l,

[Eq. (8) 1s based on the WKB

« s, .
Starting with the boundary values

_ _ ~-20
Po = 0, Pl = 10

EqQ. (5) 1s used to integrate outwards, giving PE’ e e Pm’ after

¢
[ $

which Pi 1s replaced by Pi/Pm for i = 1,2,+«--,m. ’This yields

a trial solution satisfying EQ. (5) at all points except T

the crossing-point for the out ward and inward curves. A
correction to E 1s calculated by applying the Newton-Raphson

method to the calculation of;the zeros of the function
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F(E) = h™%(-Y__,+2Y -Y

a m+l)+(v -E)B, (9)

which is a measure of the amount by which the mth equation of

Eq. (2) 1s not satisfied. The derivatlve of Eq. (9) is
_ 2 . L '
FI(E) = - 3 B (10)
S 1=l L ;

—

The correction to E, by the Newton-Raphson method, is

DE = -F(E)/F'(E). R (11)

~ After adding this correction to E to obtain a new trial eigen-
. value the process is repeated untll DE £ €. When convergence

-.is achileved, the normalized solution 1s calculated,

N n ,\1/z2 ‘
S. = P /(h Z P ) 3 'i=l)2,".‘,n. ] . ’ (12)
1= R |

Necessary Modificatlions

The SHARE distribution includes the main program NU SCHR
either in the form of 177 Fortran source program cards or as

43 reiocatable binary cards. In addition binary cards labelled

'NU EMFT, 1-4 and NU LRT, 1-6 are also supplied. For 7090 use,

discard all ten of these binary cards. Replace them with

'Ithe‘FAP deck for subroutine EMFT which is listed in Appendix A.

When cbmpiled.this subroutine will be contained on four binary

cards.

‘Useful Modifications

Appendix B contains a listing of one Fortran source deck

‘used by the authors. Frequently a particular application will



require recompilation with an altered DIMENSION statement, :
probably the Inclusion of a COMMON card and perhaps some modifi—
cation of output control or formats. The changes to be
described below.were either foﬁnd to be generally useful or’%'
were made to remedy failures of the subroutine in particular
',applications. All -symbolic cards which have been modified are
labelled MOD 1 to 20; those labelled SCHROOO4 to 176 are |

unaltered from the original SHARE distribution.

MOD 2 - The Call Statement

The variables which must be supplied are
NI, NS: Output control parameters whose functien is explained
in the comment cards SCHRO004-007. |
RMAX,RMIN: Specify the range of r. RMIN =< r < RMAX.
V;S:' Singly—dimensional arrays containing respectively the
| numerical potential and the solution, on exit. The
3source program must contain these in a DIMENSION
etatement.

N{ The number of equally-spaced intervals used iIn the inte-'

gration. The length of each interval is h=(RMAX-RMIN)/N.

KVE'vthe-numberLbfvnodes in the solution. See comments on
this below.
EO: Upon entry, EO 1s the first trial eigenvalue provided to

SCHR by the user's program.- EO must be a negative

number; At exit time it 1s replaced by the E calculated

on the last iteration. (Note: the second symbol in

this variable name is a zero, not the letter 0.)

.
L%
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EPS: The convergence critériOh is Ef - E = EPS where E' =
E + AE. One may use EPS = 0., except in rare circu@—
stances Where the mégnitude of the solution E iév %
extremely small relative to the Vi's.
MAXIT: Is the méximum.number of the iterations to be perfor@%d.
| It might be noted that frequently the iteration pro-
cedure wlll not satisfy a zero epsiion test. For
1‘e1genfunctiogs with an odd humber of nodes especially
it can osciilate'between'two values differing by only
1 unit in the last figure. ‘Hence, considerable time
can be wasted by making MAXIT unhecessarilyvlarge. In
most cases this could be prevented by making € = 2x10™8
 Etrial' A convenlient way of doing this would be to
insert the followlng statement near the beginning of
the subroutine, following MOD 2, say,
EPS = 2.0 - 8 * EO
Cooley has wrltten this subroutine as a FUNCTION with
‘the following purpose in view. At exit time, SCHR = O.
if convergence has been achieved in MAXIT iterations or 1
less. Otherwise, SCHR = 1. and EO and S ére the results
for MAXIT iterations. Therefore, i1f one wants to test
;for”convergence one’shoﬁid write in the source program
IF [SCHR(...)] N1, N2, N3. |

- When not testing for convergence, onée may write

CALL SCHR (“"),'_
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MOD 3 - The Range of Integration

Cooley's published application of his program was to»vf

the Hg.moleeule-ion. ‘The values of its eigenfunctions at r = O

25, Por mostvmolecuies the values at%

39

~ are in the range of 10~
r = 0 are much smaller than 10~ , which produces a machine 7
zZero onlﬁhe~709OL Hence theeuse’ef'r = 0 as a lower bound
needlessly extends the range of the'integration. Values of
RMIN:=.ré-2.and RMAX =.re+5 (in atomic units) will‘gife a satis-
factory range for ﬁolecules having we/weXé 5 50.4 The larger
this ratio, the more the range may be reduced. It is well to

print'the elgenvalues .at the two extremes in order to be sure

that they are sufficiently small.

MOD 4-6 -~ Trial Elgenvalue too High

szt can happen that an iteration will result in a large -
correction to the trial eigenvalue and place the new trial
eigenvalue beyond the range of bound states. Cooley's provision
- for this was\to-replace'such'a trial value by the third last
potential value, V(N—Z), and then continue with the next
iteration. _Our'experience was that when such a failure .occurred
resumption of the.iteration,through this artifice never led to
.the eigenvalue which was being sought origieally. Hence we.

preferred to terminate the procedure with a print-out to indicate

the sourcerof the failure.

MOD 7-11 - Test for Crossing Point

Cooley used three separate tests for terminating the Inward

integration} a decrease in the'eigenfunction, an increase in

",
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the potential, and, if neither of these tests did it before%

the value r, was reached, it was made the crossing-point. -w§;
have removed the test on.the potential for the following reagpn.
In deriving some RKR-type potentials Various interpolation

schemes were used. In some cases 1t waslfound that small lo&al

i
§
i

irregularities could be introduced, especially near the /

 classical .turning points or near the extremities of the potential

where various approximate forms were joinéd on to the RKR
segment. - If the inward integratioﬁ is terminated very far away
from the maximum of the eigenfuncfion, the efficiency of the
iteration procedure is greatly reduced and may result in
failure of the program. It 1s'necessapy to retain the IF(NP2)
test, for if the eigenfunction test weré never satisfied a
tight loop would result. The number of cases in which termin-
ation wags effected by this test were very few, and all were
associated with potentials-genergted in part by interpolation.
The detalled, reasons for_failure-in these cases were never
asoertained but were thought tOfbe'closely related to the small
1rregularities arising from unsatisfactory interpolation
procedures. The print-out of the crossing-point (MOD 8-11)
was made principally to investigate the difficulties encountered

in these instances.

MOD 12-15 - Node-Count

Frequently the normalized solutions will have values smaller
in magnitude than 10-39 near either end of the integration. On

the 7090 underflow will occur producging  a zero, but one which



Uy,
SRV

~10-

The modifications made here prevent an oscillation in the Si%ns
of these zeros from being counted as a node.- In connection §
with the node-count we might point out a danger in specifying
by a nunber rather than by a variable any parameter in a CALL
statement; Ir the parameter is changed by the subroutine its

new value will be used in any subsequent Fortran statements

_employing~thatvparameter. If one used the statement CALL SCHR

(...,..f,S,...) where 5 speclfied KV, errors could easily result

_if the node-count actuaily differed'from 5. PFor instance, 1f .

6 nodes were counted a later program statement J = J+5 would

~ be executed as J = J+6. _(A number used for EQ in the

CALL will be altered on exit.) ' In this program the input KV
i1s never used so there is_no'point‘to‘Specifying it numerically

anyway.

MOD 16-19 - Print Control

This modification'is included merely as an example of an
additional output option controlled by the parameter NS. With
NS = 10 and NI > 9 only'the,node—count and'eigenvalues are
printed. It should be noted that MOD 17 and MOD 4 are not under
the control of NI, nor have we included therption of on-line
printing for these output statements. While it is most unlikely
that a 7090 user would ever be printing results on line, the
option provided by Cooley has not been removed from this deck.
It is useful since some monitor systems interpret the PRINT
command as WRITEeOUTPUT TAPE 3. .Where this 1s the case the user

would have to replaoe'cardvaOD 4 and 17-by corresponding PRINT

-’

A,’



gram which uses SCHR, we prdvidé the‘f01lowing test case.

Guw b v 88 29 o3 2

1.

statements, but could use Cooley's output formats by setting

the appropriate control parameter equal to zero.

5 K
L

A Numerical Example < o -

~

For the convenience of anyone wishing to check out a pré-

[
f

Using the input parameters N =. 1000, RMAX = 7.5 and RMIN = 0.5

generate an array of r values in which

" R(1) = RMIN + H

where | |
H = (RMAX - RMIN)/N

and

R(J) = R(JT - 1) + H; J=2,N

' Use these values to generate the Morse potential, Eq. (4), with
‘the parameters D, = 605.559, r_ = 2.40873 and B = 0.988879.

[Note that the value of V(RMIN) 1s not used. V(1) = V(RMIN + H).]

Call SCHR after specifying the trial eigenvalue EO = -581.46902. .

On exit print out the values of R(300), V(300), S(300) and EO.

A program intended for generating vibrational-rotational

~elgenfunctions will include provision,for'aitering the rotation-

less potential to the one appropriate for any J state. Use it

. to provide the V array for J = 20, change EO to -508.62023, call

«

SCHR.and'then mdke the same print—outs as before. The values
which should be obtained are given in Table I.

The first trial eigenvalues given in the text above‘were
calculated frbm equations which may be found in reference 2.

For purposes of this test there should be no need to specify

them beyond two'figures,unless the value of MAXIT is very small.
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. Table 1. Morse Elgenvalues for the J=0 and - =
J=20 rotational states of HCl. Values of - "é;'_ «
'the-pdtentials andithe eigenfunctions at |

r=2,5999998’atomic units are also given.

J=0 - J=20

E ~581.46913 -511.65467
V(r) -587.57499 -525.44473
S(r)  1.1936730 1.4065177

For the sake of completeness the potentials and eigen-
functions obtained in the test are shown in Figures 1 and 2.
‘Finally, it might be noted that appendices A and B are

photographic reproductions of the machine listings of the
two decks. .These decks were:compiled ahdvemployed in a test
program whiéh uéed every statement with the acception of the

on-line print commands. No errors were detected.
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- Captions fOrFigures

‘1. Morse potentials for HCL with J'= 0 and J = 20." .

2 GroundStateeigenﬁlnctionsforthepotentials show’n’ -

in Fj_g_l.
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LFM
EFMT
EFM

SET

ANALY.

SAVEX

ZERO

AC
ACMQ

MQ
RETRN

ACMQO
MQO

ACO
OVER

SAVEA
THREE
TTR
HPR
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APPENDIX A

REM NU EFM,EFM AND LFM FOR FORTRAN 2

REM

ENTRY EFM
ENTRY EFMT

ocCT
TTR
CLA
STA
CLA
TX1
CLA
STO
ocCT
CLA
STO
TTR
TTR
sSxD
LxD
TTR
TTR
PZE
TTIR
TTR
TTR
PZE
TTR
TTR
CLA
TTR
CLA
TTR
LDQ
LXD
ST0
CLA
STA
CLA
TTR
ORA
STO
LLS
LDQ
LRS
TTR
ORA
STC
CLA
HPR
CLA
TTR
PZE
PZE
TTIR
HPR

476000000004
1+4

1+4

SETN+1

TTR
FFM+1ls4 -1
HPR

OVER+2
476000000002
X

8

194

ANALY
SAVEX,.1

Os1

H+1441

MQO

ACMQ
AC
MQ

ACMQO
ACO
ZERO
RETRN
ZERO
MQ .
ZERO
SAVEX,1
SAVEX
0

*42
SAVEX
%3
MAX
SAVEA
0

MAX

0
OVER+1
MAX
SAVEA
o

63
SAVEA
RETRN

03093
SETN
63

TTR ANALY

MQ OVER
SAVE XA IN DEC.sTHEN
11

10
9

AC AND MQ OVER

3

1, MQ UNDER

PAUSE OVERFLOW "
PRESS START TO CONTINUE

ACC.

EFMT
EFMT

EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT
EFMT

02
03

16
17
18
19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50

52
53

- 54

55
56

=Y
2

58
59
60
61
62
63
64
65
66



SETN

MAX

ANA
STO
TR
ocCT
END

g Jd
THREE
OVER+3
377777777777
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EFMT
EFMT
EFMT
EFMT
EFMT

67

69
70.
71
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12

30
32
34

35
899

36
38
40

44
46
48
50

52

54

55
56
58
60
62
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APPENDIX B

MODIFIED SYMBOLIC DECK FOR COOLEYS D2 NU SCHR 1072
FUNCTION SCHR(NI sNSsRMAX ¢RMINsVeNsKVEOQOsEPSsMAXITsS)
NI=0 PRINT ITER. ON-LINE

NI=1lsee39 PRINT OFF-LINE TAPE NI

NI=OTHERWISEs DONT PRINT

NS, SAME EXCEPT FOR SOLUTIONS

DIMENSION S(500)sV{500)sP(500)5Y(3)

IF(NI)6s2,1
IF(NI-10)4+646

PRINT 3

GO TO 6

FORMAT (70HO ITER E F(E)
D(E) )

WRITE OUTPUT TAPE NIs3
CALL EFMT(K)

H = (RMAX-RMIN)/FLOATF(N)
H2=H*#2

HV=H2/12,

E=EO

TEST = -1,

DE=0.

START ITER LOOP

DO 171 IT=1,MAXIT

c290eSTART INWARD INTEGRATION
P{N)=1leE-30

GN=V(N)-E

GI=V(N-1)-E

seoeeTEST IF E TOO HIGH
IF(GI) 35, 365 36

WRITE OUTPUT TAPE 3s 899

FORMAT (BlgH DIFFERENCE EQUATION TECHNIQUE FAILS MOO-S"gpp=_

RETURN

P(N-1)= P(N)*EXPF(RMAX*SQRTF(GN)—(RMAX-H)*SQRTF(GI))

Y=(1e~HV#GN)*P (N)
Y(2)1=(1e=HV¥*GI)*P(N-~1)
eoeee INTEGRATE
K=0
M=N-2
Y(3)=Y(2)+((Y(Z)—Y)+H2*GX*P(M+1))
Gl=V(M)-E
P(M)=Y(3)/(1s-HV*GI)
cseeeTEST FOR OVERFLOW
IF(K)5446T0s54
eesocOVERFLOW
K=0
M1=M+1
PM=P (M1}

DO 56 J=M1N
PtJy=P(J)/PM
Y=Y /PM
Y(2)y=Y{(2)/PM
Y(3)=Y{3)/PM
Gl= V(M+1l) -~ E

DF(E)

MOD 1

MOD 2

SCHRO004
SCHRO005
SCHR0006
SCHRO007
SCHRO008
SCHRO009
SCHROO10
SCHROO11
SCHR0012
SCHROO013
SCHROO14

SCHROO15

SCHROO16
SCHR0017
MOD 3

SCHRO019
SCHR0020
SCHR0021
SCHR0022
SCHR0023
SCHR0024
SCHR0025
SCHR0026
SCHR0027
SCHR0028
SCHR0029
SCHR0030

'SCHR0031

SCHR0032
SCHR0O033
MOD 4

oD 5.
grg”

"SCHRO036

SCHRO037
SCHR0038
SCHRO039
SCHRO040
SCHR0O041
SCHROO042
SCHROO043
SCHROO044
SCHROO045
SCHRO046
SCHRO047
SCHRQO048
SCHR0O049
SCHRO050
SCHR0O051
SCHR0052
SCHR0O053
SCHROO054
SCHROO055
SCHR0O056

[



70
72
81
82
84
86

90
92

94
96

NN

100
102
104
106

108
110
112
114

116
118

120
122
124
126

130
132

134

135
136
138
140

[aNaNel

142
144
146
148

149

GO TO 46

eeeee TEST FOR CROSSING PT.
IF(ABSF(P(M))-ABSF{P(M+1)) ) 90
1IF{M~2)90+90+81

Y= Y(2)

Y({2)=Y(3)

M=M-1 .

GO TO 46

PM=P (M)
MSAVE = M
YIN=Y(2)/PM
DO 96 J=MsN
P(J)=P(J)/PM

eesesSTART OUTWARD INTEGRATION _'

P({1)=1.E-20

Y=0e

GIl=V-t
Y{2)=(1e—HV*GI ) %P

K =0

DO 132 1=2.M
Y(3)=Y(2)+((Y(2)-Y)+H2%¥GI*P(I-1))
GI=v(I)-E
P(IY=Y(3)/(1le—HV%GI)
eveeesTEST FOR OVERFLOW
IF(K) 11851305118

K=0

11=1-1

PM=P(I1)

DO 120 J=1,11
P(UY=P{J)/PM

Y=Y /PM

Y{(2)=Y(2)/PM
Y{3)=Y{(3)/PM
Gl=V(I1)-E

GO TO 110

Y=Y(2)
Y{2)=Y(3)

eeses FINISHED OUTWARD INTEGRATION
PM=P (M)

IF(PM)135,149,135

YOUT=Y/PM

YM=Y(3)/PM

DO 140 J=1sM

P(J)y=P(J)/PM

eeeesCORRECTION

DF=0.

DO 146 J=1,sN

DF=DF=~P(J)*%2
F=(=YOUT~YIN+24%*¥YM)/H2+(V{(M)-E)
DOLD=DE

IF({K)149,150,149

F=94999999E+29

DF=-F \\\

72

SCHRO057
SCHR0058
SCHR0059
MOD 7
SCHR0062
SCHRO063
SCHROO064
SCHRO065
SCHR0066
SCHRO067
MOD 8
SCHRO068
SCHR0069
SCHRO070
SCHROO71
SCHROO072
SCHROO73
SCHROOT74
SCHROO75
SCHRO076
SCHROO77
SCHROO78
SCHROOT9
SCHRO080
SCHR0081
SCHR0082
SCHRO083
SCHRO084
SCHROOBS
SCHRO086
SCHRO087
SCHR0088
SCHRO089
SCHRO090
SCHR0091
SCHR0092
SCHR0093
SCHR0094
SCHR0095
SCHR0096
SCHRO097
SCHR0098
SCHR0099
SCHRO100
SCHR0101
SCHRO102
SCHR0103
SCHRO104
SCHRO105
SCHRO106
SCHROL107
SCHRO108
SCHRO109
SCHRO110
SCHRO111
SCHRO112
SCHRO113
SCHRO114
SCHRO115
SCHRO116



150

152

154
156

158

160
162

164

166
168
170
171

172
173

174

176

177
178

180
182

184
186

270

280
190
192

200
202
204

206
208
210
212
214

216
218
220
222
224
226

228
230

232
234
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DE=ABSF(,0001%*E)

GO TO 152

DE=~-F/DF

IF(NI)16451589154

IF(NI-10)162s1644164

FORMAT( 1HO 14+2X 1P4E16e7, 5X .31H THE CROSSING POINT OCCURS AT
14) .

PRINT 156sITsEsFsDF sDE

GO TO 164 i

WRITE OUTPUT .TAPE NIs 1569 ITsEsFsDF sDEs+MSAVE

EOLD = E

E=E+DE

TEST=MAX1F (ABSF(DOLD)~ABSF{(DE)sTEST)

IF(TEST)171+1705170

IF({ ABSF( E-EOLD) - EPS ) 17249172,171

CONTINUF

SCHR=1,

GO TO 173

o0eeoCONVERGED~COUNT NODES

SCHR=0e

KVv=0

NL=N-2

DO 192 J=3,sNL

IF(P(U))I1IT8B1T7T717T7

IF(P{J-1))180+192+192

IF(P(JU=-1))11924+270+184

POSe NODE

IF(P{J+1))192+182+182

IF(P(J-2)11905192+,192

NEG. NODE

IF(P(J+1))18691924192

IF(P(J~2))1925190,+190

IGNORE FALSE NODE DUE TO UNDERFLOW

IF(P{J+1))280+9192,192

IF(P{J=-2))192+192,190

KV=KV+1

CONTINUE

eoee e NORMALIZE

SN=SQRTF (-H#DF)

DO 204 J=1N

- 5(J)=PLJ) /SN

seeeePRINT SOLUTION

IF(NS)236+2105208

IF{NS~101210+2369236

DO 234 JF=1sNs300 -

IF(NS)2364+2165218

FORMAT (47H1SCHR~ SOLUTION OF RADIAL SCHRé EQUATION FOR V= I35 7H
E= 1PE15.7 /20HO I S(I) 5(20H I 'Sl

PRINT 2144,KVsE ’

GO TO 220 )

WRITE OUTPUT TAPE NSs214sKVHE

JL=XMINOF (JF+49sN)

DO 234 J=JFsJL

IL=XMINOF ( J+250N)

IF{NS)23652309232

FORMAT(6(1551PE15.7))

PRINT 2284(14S(1)sI=JslLe50)

GO TO 234

WRITE OUTPUT TAPE NS4228s(I1sS(I)sI=JsIL+50)

CONTINUE

SCHRO117
SCHRO118
SCHRO119
SCHRO120
SCHRO121
MOD 9

MOD 10

SCHRO123
SCHRO124
MOD 11

SCHR0126
SCHRO127
SCHRO128
SCHR0129
SCHRO130
SCHRO131
SCHRO0O132
SCHRO133

'SCHRO134

SCHRO135
SCHRO136
SCHRO137
SCHRO138
SCHRQO139
SCHRO140
MOD 12

SCHRO142

SCHRO143

SCHRO144
SCHRO145
SCHRO146
SCHRO147
MOD 13

MOD 14

MOD 15

SCHRO148
SCHRO149
SCHRO150
SCHRO151
SCHRO0152
SCHRO153
SCHRO154
SCHRO155
SCHRO156

. SCHRO157

SCHRO158
SCHRO159
SCHRO160
SCHRO161
SCHR0162
SCHRO163
SCHRO164
SCHRO165
SCHRO166
SCHRN167
SCHRO168
SCHRO169
SCHRO170
SCHRO171
SCHRO172
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% 236 £0=Et SCHRO173
- IF(NS-10)2504+8754250 : : MOD 16
875 WRITE OUTPUT TAPE 3, 876 KVsE: MOD 17
876 FORMAT(54H0 SOLUTION OF THE RADIAL SCHRODINGER EQUATION FOR V = MOD 18
1 I13,8H E = 1PE15.,7 ) , ) MOD 19
250 RETURN SCHRO174
FREQUENCY 52(0+190)370(05091)s72(05s091)+94(100)s55(50)+108(100)s11 SCHRO17S
X 6(09150)5138(100)2144(200)9152(150+0)9154(09151)5202(200) SCHRO176

END MOD 20
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



