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ABSTRACT

The advent of BCS calculations for deformed nuclei has brought exten;_f
: sive progress 1in undersfanding many nuclear proﬁérties; ‘With theiaidvof fast
. and versatile computer facilities a number of previously-made simplifying )
B if ~7; j 'assumPti°ns have been testéd, u(l)_ By use of deita-fdrce matrix elements

.between Nilsson_eigeﬁfunctibns, instead of a constant-G palring force, some - .

feeling for the qgture.of fluctuations in Aw valués aﬁd their variation as
the systems are filled is gained. (2) By carrying the usually-neglected
Cr E;V'
‘|;:-..levels 15 observed as the system is filled. (3)- The systematic effects én,ﬂilhui‘:

matrix elements of Belyaev a generally uniform lowering of Nilsson

:Ffi; ?variational energies and average configuration mixing caused by projectingA¢jf jj}k
:'fé, .fixed-particle terms from BCS wave functlons (PBCS) is studied and (&) the'ig ;¥3;
..f;T ;}A,variation has been performed on the fixéd-pa?ticle expresbibn (FBCS). The’i:i?ﬁiig
‘ \i:  FBCS method giVeaitﬁe lowest possible energies for'a‘vériaﬁional’solution of: 'iF;};
%(ﬁhe projected BCS form. The FBCS method is found always to iead'to non-ﬁriviai ??**

4 .74+ polutions no matter how weak the residual force strength; the abrupt transition

between superfluid and normal states of the nuclear fluid, predicfed by the

. BCS method, is thus found to be a spurious result. _Thé\FBCS'method élwaYs.‘
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V’f;;-FBCS in'the-regidniof high'pairingvcorrelation butfarévﬁorsejﬁhere pairing

" mass differences, where the PBCS method gives differences much tooulargé:in:f

to predict tothigh lévéi densities for odd-proton systems,vrelafive to the

| FBCS method.

the region of low pairing correlation. Most of the simpler methods are found -

l corrélation 1s lower. This tendency is reflected strikingly in the odd—e&én'l;‘J f
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1. Introduction
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In pursuing theoretical'calculetions'bf al?ha decay retes we have'

found results to be greatly sen31t1ve to conflguratlon m1x1ng in the shell-

model wave functlons

In the region of mass.2h2, average'decay ‘rate en- .-

hancements Qf three orders of_magnitude'are'eaused'by‘;ntroduction:of the

s ; 1
- pairing force.
nucleon-nucleon. correlations it brings about.

detailed calculdtions for spheroidal nuclei;

quantization form as

Sl

Z {v10vp0p [ B lr 1= 2)lv 02 1,7.1'>

2

1

3,4,5

- demanded the closest attention to the pairing force and the increased

©2. BCS Formulas for Ground States of Even Systems -

’

' The Hamiltonian of the problem We,treat is written in second .-

U

ot o
E S =
g . E _(bv+ 'V+ ' bv- by...) ‘

v

+

b, b
Vo) Ve"e 2 "2 :

o
V191

It was clear that refinement of the alpha rate theory -

This paper invesﬁigatee_the;

' effects on spectra and eigenfunctions of several modifications to previous -
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where b:&_ operating on the_vacuum [O) crgates'a nucleon in_statév>v01 and
.bvo .annihilates>it. The notation is that of Belyé.ev,6 where the index .v
stands for all quantum numbers specifying a given Nilsson orbitalland o for
- the sign‘(+ or -) of the projection of particle aﬁgular momentuﬁ aldng the
nuclear -cylindrical symmeﬁry axis. The sﬁbscript 1 labels the stéte-éf‘
motion of particle 1 aﬁd the 2 that of particle 2. The summation VO runs
“over all states inside an arbitrary cut-off energy.

The independent-particle scheme on which the pairing calcuiations are
based ;s that of Nilsson for nucleons moving in a spheréidal poteptiai (prolaté

for the actinide nuclei of interest to us). Thus the €, are Nilsson-state

-

eigenvalues and the basis states b:+,]O) are Nilsson eigenfunctions and -

b:_[0> ‘are conjugates.

The matrix elements of e@, (1) aré juét the mat?ii elements’éf the
residual nucleon-nucleon force. A usual approximation is to sét all the
matrix elements betwéen_paired states equal to a constant G; but we shall
ihstead be,uéing the matrix elements of a delta force between Nilsson staﬁes,

The number operator which "counts" the number of ﬁpcleons in a wave

fﬁnction is

N =»zz: (bt+b?+.+'b:— bv-)’
v
We seek simultaneous eigenfunctions of the Hamiltonian ahd the nuﬁber operator.
For systems where the number of permutations of N/2 pairs in the  Q different
ofbitals (i.e., the binomial coefficient (N?2) ) is not large it is feasible
to éolve the problem b& exact diagonalization. Fdr larger.systems it has provéd
ﬁost valﬁable to seek‘variational solutions which specifylonly thelproﬁabilities

Core ot ' )
vi that the vth orbital is occupled by a pair. In sohdoing one throws away
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13
?

some information contained in the (N?Q) different coefficients of the exact

wave function but achieves a simpler problem’in the 4 different thermo-

dynamic average occupation probgbilities vi . Formally, the variational

7

solutions'commdnly used are of the Bardeen, Cooper, Schrieffer' type

+ L+
Y= 13 (u, + v, b b )[0)

with u2 + 'v2
v v

]

i defining the u, quantities; ?he variational treatment
seeks stationary values of H - KN; The Lagréngian multipliér N, . the chemical.
potential, is adjustable to givé the proper expectation value of tﬁé number
operator. Ah alternative method of solving the problem is to introduce the
Bogolyubov8'canonical transforgatibn to quasiaparticle operators and demand-
that u, and v, all hafe values that make a certain term in the‘transfofmédA.
Hamiltonian (Hzo) vanish. 1In either case the resulting solutions afe the same
and may be found by solving a set of non-linear simultaneoué'algebraic equations

given by Belyaev6 and involving new parameters Aw and A\ .

. G i | |
1 ! ‘
A = = A 1 = G, .., U, V_, (2)
’ c Z J—[(Evv = >\-)2 + Av,e] . v z' vy v v | - .
v v
2 A : _
JONLA | (3)
v . '
Py 2
€, = ev - z va, v, (LI-)
y‘
2 1 € | _
V'V = '2' (l \4 ) '. A | ) | (5)



o ~ UCRL-109%9

where the AW are the pairing-correlation energy parameters of.. the{ofbitais;
In the Hamiltonian of eq. (l) the éuﬁ over residual-force matrix

elements ran separatelyvover.all states for each of the four operators. o ',:ﬁ‘

éppearing. "The cﬁoice of BCS trial function is restrictive such that matrix =~ = &

elements involving more than two.different Nilsson states can make no contri-

| bution. Thus, only two types of matrix elements survive. The flrst typé which'v

we denote 'va’ gives risg to the paiying effects and is defined after

Belyaev as |

G = <V.V[G{VL v') = (vt v- [VS[y'+*v“-) - {v+ v- [VB[v'- v'H)

The second type, which gives;rise to terms in the self-consistent field, e
denote avv; , and 1s defined after Belyaev as

GVV' = <V+ V'+[V8[ v+ V'.+> - <V+ vi+ IVS[ v+ V+>+

{v+ v'- [V§[ vi V=) = {vk V- IVB[ v'e vt)

It is usual to assume that all matrix elements- va, are equal'aqd that. the

Ev = ¢ . The former assumption simplifies eq. (2), and there results only
a single .A value applying to all orbitals, hence two simultanédué equations

in two,unknowns. Wé.ha§e instead-éalculated the matrix elements between various.
orbitals using a delta force‘and Nilsson wave functibns.. Thevuse of'a delta - ou
force for matrix elements meané that we are using an interaction for singlet

spin states‘only; The matrix elements are for pairs of identical fermions and

the delta force only acts on s-states of relative orbital mdtion; hence, use

vOf antisymmetric wavé functions causes the intefaction iﬁ%triplet spin states

to vanish identically. The delta-force matrix elements are closely related to

3
2
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certain.coefficientsventering shell-model alpha decay theory, where also only

singlet spin states contribute. The delta-force matrix elements between

Nilsson states can be calculated by operating through with the singlet spin
l-0,* O

ﬁrojection operator PS = ——rgﬁrfg—- and integrating ﬁhe products of four

Nilsson orbital functioné over argﬁments r, 8,6. The angular integrals be-
come integréls over products of four spherical harmonics, expressible as sums
over products of four Clebsch-Gordan coefficients; The radial integfalé are
over products éf four associatéd Iaguerre polynomials with an.exponential factof.,
The same integral had earlier been worked out by Mang and Rasmussen1 for the

Cg coefficients of alpha decay. The delta-force matrix.element is related-to

. 0 vl E e
its Cp coefficients by

\4 p + = = :
. 0 2) o0 (M2
vav = ) Z ("l) . 2 Cp 2ﬁ> (6)

5 P

A further property of delta-force matrix elements is the identity,

3. Conservation of Particle Nuﬁber

As has often been pointed dut, the BCS wave functiéné have the defect
that the number of particles is not strictly conserved and this feature may

9

give rise to spurious effects. Kerman, Lawson, and Macfarlane” have suggested
and used an approach whereby one retains from the BCS wave function just those
terms with the number of cfeation operators exactly equal to the number of

nucleons in the problem and then renormalizes. Thus, the BCS solution is only
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an intermediate step providing an approximate prescription for obtaining a wave
. fimction with all possible terms: tha.t:,,,c.ons.e;'s}e-.::the-:.par’cicle number.
Performing calculations of energies and transition probabilities with
the préjected wave functions is not as formideble as one might suppose. We - - o
use the notation of Baymanlo based on the property
dz .
T Mm%y . , | |
Z .. o . ) . . : o [
thé contour being taken around the origin. Thus,_the projécﬁed BCS' solution
with p  pairs may be written |
047o _dat + oy o .
¥ = gP““l II (u + §v b + b,.)[0) - - (7
w1tk1¢47°a normallzatlon constant determined by the condition’ (w [¢ ) =
For the unprogected solutions the energy of the ground system (EBCS)
of an even number of nucleons is just. given by evaluating Belyaev~s6 eq. (12)

without the A term

2
=Z 2VV €
v

: MIH
<
S’

]

DI
v o
@

'A%
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Dietrichy Mang, and Pradal have developedll practical formulas for

_the projection of proper particle-number combonents from solutions of BCS

form. Their energy expression is

E(projected) = <¢?IH[wP> = <wB.CSIHWP) -
Légj,‘ ¢ ggl ‘<o[g (uV * v.bv v+) IH]H (uv' * vi,b:,;b:,_)[O)'=

. 1 _ 2,
1 > B () - 2 o Ry
(ev-- ) va) vy o - G Vo ¥ —

V.V v v ¢)
R 1 1 R
v O Vlv fo)
.vﬁvl
(9)
ZE: G u v u. v R (V V)
v,V v v
Vv 1 1 "1 Ro,
1 ’ o)

The function Rg (v:L .o vn) is defined as

Therefore
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Note now that there- are different ways of employing eq. (9). One
.méy, as done by Kerman gz_gi.g,vsolve the ordinary BCS equations first and
use tﬁe u, - and 'vv values thus obtained with eq. (9). This method we o .
vdenote PBCS and the'energy 'EPBCS‘ﬂ A more compliéafed but more exact . R » :_G
varigtional procedure is to minimize the energy expression of eg. (9) with
respect to the A pafameters, as done by Diétrichvgg.gi.ll. We'denotébthis
method as FBCS, and it must give aﬁ ehergy value lower than that of thé PBCS

[

method.
. 4. Formulas for 0dd Syétemsv

'Ebr the:systems with an odd number of particles there are ééveral '
different methods of calculation within the BCS‘ffamework.r The simpler '
method, outlined by Belyaev6 and'used ektensively by Kiésliﬁger and Sdrensenl
and others, 1s to solve the ?ariational prébiem as for the BCS ground state of
an even‘system and operate on the eigenfunction with a quasi-parficle_creation
operatorf This method leads to the approximation that the ekcitation energies -

of the various states in an odd nucleus are simply the quasi-particle energies.
E, = VI(E, -2+ 4] | B

‘The'othervmethods involve ;blocking" and reqﬁire that the energy of each:
| odd particle staﬁé be found by recomputing the variatibnal solution as for an :
even groﬁnd state, but omitting the "blocked" orbital pobuléted by the add nucleon.;uu
‘There are BCS, PBCS, and FBCS solutions possible in the “blocking“ framework. v
Since.we are retaining the usuélly neglected G matrix elements tﬁat

contribute to the self-energies € , 1t is necessary to consider carefully.

their contribution in the blocking éalculation.
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For the odd system we have the total energy expression

: 1 — 2,2

E = E (e. - = E : G vo ey
BCS v 2 vvl vl v
—-(10)

' o = 2
- Z Gy, Yy vleuv vy T & —Z Gy Yy

v,}vi;ék‘ vl;ék

. The BCS wave function which conserves the nucleon number in the odd case.has

the form

v - AP pF 4t il :(uJQQ'b+ vt )0y, (11)

r,k 2mi k §p+l v 74 X v vk Tv-

_where p 1is the number of pairs, and the energy is

. 2,
B = Z (e - l G ) 2v2 M
(projected) v 2 vy v gL (x)
vk o
5 .
Y e Roe o
V.V v v o 1
~ 1 1 R, (k
visv £ K .. 70 (.)
v vy - (12)
Z ,Ri (vlv k)
- G u, v u
V.V v, YV v v 1 /x
vv f K 1Y 1 1 Ry (%)
v # vy
R (v k)
- Z v2 1 + €
vk v 1 vk
vk Ko (k)_ %
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5. Numerical Calculations f'

Since we desired eigenfunctions for alpha decay calculations, our
numerical calculations concentrated on the»actinide region. .We selected = ' |

a set of 25 proton orbitals and 40 neutron orbitals covering the actinide s

3

region. Our energy values were generally those of Mottelson and Nllsson
at an average defqrmatlon ofv n= 5 but with some’ upward shlftlng of the
even-parity orbitals for protons and edd—parity levels for'neutrons-to glveV'
better agreement with experimental spectra. |

dur delta-force‘matrix elements were calculated from eigenfunctions

13

of Nilssonlu or Mottelson and Nilsson at deformation n=6. Eigenfnnetions
' are net tahulated.for n = 5, and we wished to avoid interpolation. The
over-all strength of the force mas adgusted to match, on the average, the ex-
perimental odd-even mass dlfference.a, |

:Examination of the delta-force matrixvelements showed extensive
fluctuation in magnitude, with diagonal matrix elements G,, and off-diagonal
elements between spin-orbit conjugate orbitals being S&stematically larger than
other off-diagonal matrix elements. Table .l lists fer certain proton orbitals
;thefdiagonal‘elements va‘, the averagerf the 24 off-diagonal elements, and
the maximum and minimum off-diagenal elements. The orbitals comprlse those
15

tabulated by Stephens, Asaro, and Perlman - in thelr comparison with experlmental

spectra, plus a few addltional nearby orbitals. The matrlx elements are tab-
ulated as ratios to a strength parameter ng . The eneréyennits most frequently ?0.
| appearing are 0.09 hwb (where hmh r 4] A-3 MeV). ' In the later numerical work
we find a value of gp-= 5.0 best matches proton odd-even mass differences.
The observation of the large fluctuation of matrix elements.raised the
possibility that the solutions . of egs. (2) and (3) might give rise to large

fluctuation in the individual AE correlation parameters. Such results would

have serious implications for the usual constant-G approximation-
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The BCSveqs. (2) and (3) were solved by a douvble iterative procedure on
the Berkeley IBM-709h computer. |

It is not practical to preéent the bulk of the nume¥ical results,vbuf
we shall try to give enough examples to exhibit the differences arising from |

(a) use of non-constant G syt matrix elements, (b) the retention of gelf-

1

consistent-field terms a;v, , and _(¢) projecting out fixed particlelnumber, .
either after (PBCS) or béfore doing the variation (FBCS).

Figure 1 plots the correlation function (Ab) valﬁes as a function of o
proton number for even proton systems and fig. 2 is the correspondihg plot of
self-energies (Zv) and the chemical potential X. We note for orbitals near
the Fermi surface that A% values may gcatter by as much asjzo%. There is a
systemaﬁic tendency forwemn orbital to develop its largestAA_ valﬁe relative to
neighbors just when it is nearest the Fermi surface. This tendency 1is an,
obvious consequence of the especially large diagonal matrix elements ﬁoted in
table 1.

The general trend of overall decrease in A with increasing proton
numbér is found here. Such a decrease was found in'constant7é calculatiéns of

>

Nilsson and PriorlL and Veresh, Soloviev and Shiklos” and it is a consequence of
decreasing single particle level density at the Fermi surface as one goes from
proton number 90 to 100. The abrupt change in slope at Z = 9% is a consequence

of the rather large Nilsson level spacing between the g—-— (523) and the

% - (521) orbitals as seen in fig. 2. We do not believe that experimental
evidence supports any proton subshell effects at Z = 9, and therefore conclude

that our calculations would have been more realistic with Nilsson level spacings

’

not showing such a break. The plot of flg. 2 shows the effect of the retained

field terms in G e The self energies systematically decrease as the number

of . nucleons increases. Those orbitals whith'have.- larger:matrix elements :¢onhecting

them with the filling orbitals may drop more than others.
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Figures ?3:-€5ﬂ are the correspondingﬁ"éw and Ev plofs for the 4O-

" orbital even neutroh'systems. We see 1in fig. 5 that thévretention_of the

5;v, matrix elements has caused not oniy a general lowering of Ev “with
‘increasing neutron numBer; but also one actual'cross-over._

In the course of this work we came more and more to be concérnéd with
the occasionalvsitﬁation where there exiéted only a "trivial" solution to the

BCS equations. The trivial solutions, where all A» .values.ﬁequal

zero, have no configuration mixing whatsoever and contradict the perturbation = . -

theory prediction that there will always be some configuration mixing ho‘@attér '>v;

how weak the residual force. The loss of the non-trivial solution occurs when
the Nilsson level spacing near the chemical potehtial becomes sufficiently large
véompgred to the pairing—force mafrii elements. Before final seléction of €, |
values we found such.solutionsfor even neutron éystems near the 152- meutron
"sub-shell”. They occurred evén more frequently for.odd systems with an
' additional level blocked. Belyaev6 gave an inequality which'must be satisfied'
for non-trivial soyutions. The work published by Sélovie#5 in 1961 showed |
frequent occurrence of trivial solutions in the two-quasi-particle excited states
of even rare earth nuclei. _blearly thé projection of fixed-particle-number from
the BCS wave function is of no aid in trivial céses, since'thé trivial solution
already conservés the pérticle number. In the éoursé of comparisons of BCS with

17

exact solutions for model systems (cf. ref. 16) some of us™ ' ,examined analytically
the behavior of the FBCS solutions . in the region where BCS solutions go trivial.

" We found that the FBCS method always ylelds a non-trivial solution at any pairing-
force strength, and that the wave functions of FBCS were close to exéct over the
entire force range, except for somé small components in the wave functions.

- Dietrich has recently been able to prove generally that for an &attractive,pairing

force of any strength, a non-trivial solution exists with lower energy than

18

the trivial solution.

§ U
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The more sophisticated FBCS method does not yield such simple values
as Av to measure the involvement of an orbital in the pairing correlation.
Qualitatively, the features displayed in figs. 1-5 for BCS solutions will also

be expected to be valid for the FBCS solutions.

6. Comparison of BCS, PBCS, and FBCS Soutions
6.1 Even Systems

In this section we wish to compare, first of all, the‘total'binding
energies of even systems, calculated by three methods: the BCS, where the
energy is of a cellection of systems with differing numbers of parficles; the
PBCS, where the energy is of the central component of the collection; and the
FBCS, where the variational paremeters v, eare adjusted‘to minimize the energy
of Just fhis component.v | | a

Table 2 gives the FBCS total energies and the energy differences to
the higher BCS and PBCS energies. The energy units are Nilsson's OLO5.hd6’
(» 0.330 MeV at A = 242). We do net kpow the exact eigehvalues for these very
large systems, but we can certainly apﬁreciate some ef the shortcomings of
the BCS and PBCS solutions by a etudy of table 2. The ordinary BCS energies are
always higher than FBCS by from ® 250 keV to ® 600 keV. Eliminatieé the spurious
particle numbers by the PBCS procedure ueually results in substantial reduction of
the energy. In general, the errors in both cases increase'as pairing cerrelation
decreases With increasing Z or N. AThe error in PBCS reaches)a maximum at N = 152, -
where the Nilssen levels are spread and the‘pairing_correlation is consequently
lowest.

In order to gain insight into the nature of the improvement of solutions
in going from PBCS to FBCS we have calculated a quaﬁtity D measuring the‘"diffuseness"

of the Fermi Surface implied by the various eigenfunctione. This quantity D 1is
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a sum over all orbitals of the square root of the product of the probzbility that
it is occupied times the:probability that it is empty. For ordinary BCS solutions
 We have the simple expression - ' L

D =Z wyv, (13) ;
v ' S

Tor PBCS and FBCS this becomes

| VIS (v) BE (v)] . '
D= 2:_ Yy Vv : RO : o : (14)
14 0 ;

| with whichever set of u,, and v, values is appropriate. Note that the
ndiffusenéss" D'goes to zero'for a trivial solution. For the constént-G_ﬂatrix;;
'eleﬁént approximation we have D = % . For gfbundlto—ground’alpha decay rate "HA
calculations the average enhancement dué to pairing correlations is approximated
by the ?roddct of the'squéres of the D values for neutrons and protons. In
fact, oﬁr unpublished defailed alpha decay rate-calculations with these wave
.. ffunqtions show fairly good agreement between simple BCS and FBcs; while PBCS
wave functions yield substantially lower rates. The plots of Dp aﬁd Dn in
fig. 6 show the systematicaily lower diffuseness calculated by>PBCS. The
presence of the spurious particle-numﬁer componeﬁts in the BCS wave function
makés for its greater diffuseness than PBCS, but éne éees thét the local "scallopingfv
cusps_of PBCS and FBCS are smeared out in BCS. The positions of the cusp-like
| minima in D correspoﬁd to especially low Nilsson level densities ovef an energy
interval comparable to A at the Fermi surface, as can be seen by referring
back to figs. 2 and 5. ‘
| That the apparently good agreement in D between simple BCS and FBCS

"cannot hold under all conditions becomes -clear when we gradually lower the pairing-

force strength. Such a calculation has relevance to real nuclei in connection
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with the problem of effective moments-ofFinertia of high-spin members of
rotational bands. Mottelson andVValatin19 treated the problem in terms

of an effective pairing-force strength that is steadily reduced as one goes

to higher spin members. It is well known that below some critical pairing~
force strength thé BCS equations completely fail to give a non-trivial -
solution (cf. Belyaev's6 inequality (51)‘)‘,,and this behavior suggested an abrupt
change in mOmént—of-inertia at some critical spin. Yu. T. Grin came to similar
conclusions in his theoretical calculations.eo In’fig. T we plot for two
particular proton numbers the variation of Dp- with pairing-force strength-
parameter gp; For 7 = 96 we see the BCS solution rather éharply going trivial
nea? gp = 3.5, whereas FBCS decreases only gradually. For Z ='9O the Dp
values for the BCS solution stay‘large to much weaker pairing force sincé the

% - (53%0) and %-¢ (651) levels are almost degenerate and bracket the Fermi
energy at low force st;ength, as seen in fig. 2. There are no abrupt changes
in Qp with pairing-force strength when the variational calculation is carried
out in the proper manner as in FBCS. The consequences to the guestion of the
nuclear phase transition from "superflﬁid" to "normal" state are clear. The
transition is a gradual and not a sudden phenomenon. 'One should not expect

to find any sudden changes in effective moment-of-inertia at any critical value
of the splin, and the gxperimeﬁtal data of Diamond, lark, and Stephens_gl on
rotationai bands up to I = 18 fail to support the notion of.a eritical spin

value.

6.2 04d Systems

It is usual prac-ticeu’12 in pairing-force calculations to adjust the force-
strength to match generally the odd-even mass difference. Because the charac-

teristic A» values vary from orbital to orbital, it could be rather misleading
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to determine odd-even mass differences frcm,diffcrence formulas with more than
.one nucleus with odd~particle;number entering:“ Furthérmore, if ﬁe wish to
compare the odd-even masé différencekwith A» , We shogld involve only'one

odd éystem. For interpolatioh of the even mass surface it is desirabie to do
Abctter than a two-poict.interpolation to approximate the positicq of the t@e

even mass sufface at the odd nucleon number. We therefore use a four~point
1nterpolatlon on the fOur nelghborlng even gystems and subtract this interpolated

mass from the calculated cdd-system mass for our theoretlcal odd -even mass

(energy) differences.

(2) = B(2) - [—%gm-a) + Zp B(z-1) + 35 B(z+1) - E<z+3)J (15)

" These diffcrehces were calculated for proton and neutron systems from results of
each of the three methods, BCS, PBCS, and FBCSE The experimental differences for
compérison were done invsimilar fashion, using experimental masses of Kbnig,’ '
Mattauch, and wapstra22 with some adjustment'(cf. Appendix A). Where the four

f neighborihg even-system masses wére not ail known,‘three—point>interpolations
were used. Usually a given odd;proton,(neutron) mass difference could be
determined independéntly fbf.seteral different neutron (proton) numbers, and the
several determinations were averaged, with weighting according to tﬁe assigned
uncertainties in the masses. .Figures 8 and 9 summarize.the results for protons
and neutrons, respectively. Note that.our adjusted pairing~force strecgths
(kept fixed at 'gp = 5.0 and gy = 3.7) give satisfactory average agreement

~ between experiment and the FBCS results. Our theoretical mass difference falls
someWhat too rapidly with Z compared to cxperiment, an indiccticn that the true
Nilsson orbital'energy spccings at the Fermi surface should not be as large at

lower Z as the values employed in the calculation.
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The AEoe of the PBCS method is always larger than that of the ¥BCS.
This behavior is easily un@erstood, since the ?BCS error of too;sharp a Ferﬁi
surface is more serious in odd systems with an orbital blocked than in adjacent
even systems. At 151 neutrons the PBCS method gives a AEoe which is about
twice greater than the FECS and experimental values. It is Just in these regions
of lowest pairing correlatien that the BCS and PBCS epproaches become unreliable,
but they compare much better with FBCS in the regions of largest pairiné cor-
relation.

A common procedure in BCS calculations is to adjust the_strength of the
pairing force to make the A value calculated fer unblocked systems equal to the
experimental odd-even mass difference. In table 3 we give numbers to test. how
closely the A values.estimate‘the'odd—even mass difference calculated by our
best method (gpeg). The Aw values are for the theoretical‘ground-state orbitals
at the particular odd particle-number, and they are calculated by BCS wiﬁhout
blocking and with the average number ef particles equal to the odd number in
question. Evidently AW usvally overestimates the PBCS odd-even binding
energy. The ratio of these energies is near unity for the first entries of both
proton and neutron systems. Here the pairing correlatioh is high. The ratio
increases as the pairing correlation falls,though curiously fhe di%fereﬁce is
not a maximum near the 152-neutron subshell, where pairing‘correlation is the
smallest of all.

Other features that can be shown from calculations en the odd systems
are the theoretical spectra. The appearance of these'spectra depend on rather
small energy differences_in the systems, and it is not surprising that the
different theoretical methods often give rather different spectra.

In figs. 10 and 11 are shownvtheoretical band-head positions for odd-
proton and odd-neutron.systems, respectively, calculated by our best method
(FBCS). A comparison with an experimental compilation, sgeh.as that of Stephens,

Asaro, and Perlman,15 shows a generally correct ordering. Calculations such
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as ours which allow no adjustment of deformation or Nilsson level ordering. for

various nuclel cannot fit experimental odd spectra overall; the shifts in ex-
. " . i 2%
perimental spectra in isotopic series like __Am )9,2&},2&5

. 9
isotopes suggest the importance of the neglected n-p interactions. In alpha

‘or the berkelium

decay rate calculations which we hope to publish In a subsequent paper we make

~use of the wave functions from these calculations ¥hich result in the spectra

of figs. 10 and 11. Thus, these figuresAmay serve as a measure of the specifié'

shortcomings in these wave functions, arising from non-optimum selection of

Nilsson energy levels.

- Four different methods for calculating the spectra in odd-proton nuclei -

arevcompafed in fig. 12 (essentially the same as fig. 16 of ref. 11). At the
far. right for each Z vélue are the FBCS.results which have been given above in

v fig; 10. The states in fig. 12 are simply labelled by humbérs, but the identi-

fication with particular Nilsson states can be made by referring té fig; 10.

" The leftmost spectra for each Z-value are the simple quasi-particle
energiesANF[(E; -'X)e +'AV2] from BCS solutions with‘ N adjusted to give KN)
the odd Z value. This method is the.one used by Kisslinger and Sor‘ensen12 and
many others. | ' ' |

Next to the quasi-particle energy'spectrum is the speétrum from an
ordinary'BCS blocking calculation, as first done extensi&ely by Soloviev.5

The third spectrum comes from projecting the fixed-particle components
from the blocking calculations (PBCS with blocking). ’

One sees generally that the three conventional methods systematically
o?erestimate the level density compared to FBCS. (2 = 91, Pa, is somewhat ex-
ceptional in that there is a very high density of levels near ground by all

the methods.) The third method (PBCS with blocking compares rather well with
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FBCS except for Z = 95 and 97, where the pairinglcorrélation is low, -and -the

biocking method aggravates the PBCS underestimation of such correlation.

T. Comparison with Other Methods

Teandé from his study of model systems with exact solutions has Suggested25
that a better approximation for odd systems is to‘solﬁe-the_BCS equations with-

out blocking (but with (N) the odd value desired) and then project the fixed-

particle components. Our fig. 13 compares this prescription with FBCS, and it

1s seen throughout to provide a good approximation. Iandé*s method is certainly

simpler than FBCS, and it is thus of interest to try to understand the reasons
for its success and also its limitations. We have seen earlier in graphs of
diffuseness that the PBCS method systematically errs in giving too-sharp a Fermil

surface. Tor the odd system, by not blocking the level occupied by the odd-

| particle when solving the ordinary BCS equations we tend to correct this‘sys-

tematic error. ‘The correction is only a compensation of two errors and may
fail, relative to FBCS, near closed shells or subshells where the local level
density at the Fermi surface falls so low that the unbiocked systems faii or
nearly fail to give non-trivial.solutions. Figure 14 is the neutron analog of
fig. 13, comparing Landé's method with FECS. |

" A good deal of insight into the effects of blocking &nd of prqjection
of fixed-particle components is afforded by the analysig of S. G. NilssonQu on
the uniformly-spaced-level model. In appendix B we examine some of our solutions
from the standpoint of his formulation.

We have not madé calculationsion two-quasi-particle "states by the FBCS

method. In our(preliminary calculations of such states by the BCS method with

blocking, we frequently encountered trivial solutions. It would be desirable

to study two-quasi-particle systems by the FBCS method.
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A new and simpler method of solutions for,conétant-G systems is that
of Mikhailov.25 Its principal feature is th? replacement of G in the BCS

.equétions by & G_cp [ =c(1+ l/ANg)']. ANQ

is.the mean square fluctuation
in the number of particles in the BCS‘solutionu Obviously this substitution

prevents the loss of a non-trivial solution, for if ANE tends toward'zero,mfhe}

/’

effective palring-force strength is increased without limit. This method always =

gives greater pairing correlation than simple PBCS, and it deserves closér com~

parison with FBCS solutions.

27

The methods of Chasman26 and of Richardson and Shermen '.also circum-

" vent the poor behavior of ordinary PBCS in the low-pairing-force limit. _Chasman;s

method’cgn probably give better variational solutions than FBCS by introduction
of a few additional variational|parameters, and Richardson's method ‘in p;incible
- can give exact solutions. These metho@s are not applicable to thevgeneral prob-
.lem.with non-constant, nonjfactorable. va, matrix elemeﬁtsf: It will take .
further development to see whether these new methods will be superior‘tq_the
BCS-type methods for practical calculations. Certainly the BCS-type variational
methods a?e clumsy for deﬁermining excited O+ states of even systeﬁs, and better

methods are desirsble.
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Table I. Matrix elements for protons (in units of 0.05 ’flwo)

Orbital . Gy Cov' (ave) Gyt (max) Cov' (min)
am(N nZA) g;‘ é;— | fg;’ . —é;—_
3/2+  (532) 0.1897 . 0.0826 , 0;1597 : 0.0421
1/2+ (660) ©0.2801 - 0.0720 - 0.2363 0.0%61

~11/2+ (505) 0.24A1 0.0965 - 0.23%99 . -‘0.6417
3/2+  (h02) a 0.2h58 0,100 .:_ . 0.1938 b.'_ 0.0kGk
1/2+ (L00) | 0.36%2 '»‘0.1029' .. 0.1881 0.0407
3/2+ (651) S 110.1980 0.0750 | 0.1959 - - o.05h§

- 1/2- (530) 0.2925 'i\ 0.0797 - 0.1576 o 0.0581“
s/e- (s23) 0.1818  0.08% 0.1567  0.0h6k
C5/2+ (6h2) 0.1731 | 0.0772 | 0.1597  0.0361
3/2-  (521) ©0.1970 ' 0.0846 © 0.1918  0.0493
7/2+  (633) L 0.1643 0.0790 0.1k47 0.0398

7/2-  (514) 0.1908  0.0883 L 0.17%6 0.0507
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Table 2. Total energies of the valence nucleon systems (in units 0.05 ﬁmb)

88
90

p2

%

100

132
134
136
138
140
1ho
bk
146
148
150
152
154
156
158

“Erpes

S 277.0711

321 .2067

364.6673

L07.0065

LL8.3517
L87.360k
524 .8801

“Erpes

| . 650.0979

691.5384
732.4847
772.9128
812.7555
851.8462
889.7387
926:7140
9%62.7512
997.2782
1030.802
1067.575
1091.6522

1120.9400

E, o~ E

BCS™ “FBCS
0.7998

1.0000
1.2108
1.29%0
1.6747
1.4963
1.5038

Epos™ Eppeg

0.9840

1.001k

1.0k72 .

1.270

1.2499

1.3937
1.%002
1,304k

| 1.4561
1.362k

1.728

1.211
1.0947
0.9982

Even Proton Systems (25 orbitals outside Z.= T6 Core):

“Eppes™ Frmes

0.0057
0.0836
0.1098 .
0.154€
0.2169
0.253k
0.2339

Even Neutron Systems (40 orbitals outside N = 106 core):

"prcs” Frmcs
0.0661
0.071k
0.0811
0.095k
0.1116
0.1352
o.158§'
0.2003
0.2692

- 0.3288
0.443
0.246
0.779

0.152
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eoretical odd-even binding energy differences with

A
v

of the ground state.

91

93

%
o7
99

135

157
129
L3

b3

15 |
147 |

1k9

vl5l

153

155

Aﬁoe(FECS)
(keV)

87
710

o7

o712

531

762
765
.747'

661

515
51k ”
25

102

372

b2
1450

A
v

. (keV)

898
839
799
738

706

7%

803
749

R

660
629

557

556

463
1489
536

A
v

oe

-0.910

1.182

1.130

1.290

1.33%0

" 1.0%9

1.224h

1.050
1.003%

1.126

o 1.282

'.1.311
1.383
1.245

1.106

1.191

Ground State

5/2+

5/2+

5/2-

3/2-
7/2+

-13/2+

1/2-

ve-

_5/2+.
e

- 1/2+

5/2+
T/e+

9/2-

B 1/2+

7/2+

(6h2).
(o)
(523)
(521)
(633)

(606)
(500)
(501)
(633)

- (743)

(631)
(622)
(62&)'
(734)
(620)
(613)
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Appendix A

Calculation of Experimental 0dd-Even Mass Differences

As a further test fof realistic values of our pairing-force strengths
gp and 8y > it was desirable to compare the theoretical odd-even mass
differences with experimental values. Since our calculations do not take ieto ,
account proton—neutron interaction, it is necessary to average over as many
0dd systems as possible in order to delete effects caused by the even nucleons.
The mass data were taken from Kbnig, et 35,22 with some adjustment, described
later in this appendix, ' to correct for an apparent systematic error in the mass‘
tabie.

The odd-even mass difference was calculeted for all odd—mass nuclei inv
the region of-interest for which the odd mass and the mass of at least three
adjacent members of the even system were tabulated. Where four even masses were

available, the four-point interpolation illustrated by eq. (15) was used. The

three-point interpelation is 1llustrated by the equatidn

AEO%N) = E(N) - [-% E (N-3) + ?; E (N-1) + %E (fo-l)‘] (A.1)

~

For each.odd-even mass difference AEoe the number of the even nucleons is

kept fixed. As an example, we list‘in table A.1l the experimental AEoe- fo?
odd-mass nuclei of neﬁtunium. The fourth column lists the number of dafa poiﬁﬁs
used in interpoleting the even system. Error limits of the mass data in ref.(22)
were squared and summed with appropriate interpolation factors, all signs being .
taken positive. The reciprocal sguare root of this sum was multiplied by the
number of data poiﬁts used in interpolating the even system to obtain the weighting
factors in the last column. This gives heavier weigﬁting to the four-point inter-

polations.
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Examination of table A.l immediately reveals a systematic difference between .
" the Yn+l and {che lmﬁ vma‘ss families. The Weyi‘ghted: average of the AEoe valuesi
for the 4n+3 nass family is about 200 keV higher than that of the bntl family.
Indeed this systematic difference was encountered in all‘the‘odd—mass systeﬁs
studied, and can probably be attfibuted to an errer in the relative masses of the fe -
~ two odd-mass families. | | o o |
The average difference between mass famllles was feund to be 196 keV
for odd—proton systems and 179 keV for odd-neutron systems A,correctlon factor
of half the average dlfference was therefore applled to the AEoe_ Maiues (fifth'}.
column of table A. l) in computlng the average AE ' values plotted in figs. 8 B

~and 9. The correction was added to the bn+l members and subtracted from the

Ln+3 members.

‘w'
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Table A.l. Experimental odd-even mass differences for Np (2 = 93)

A mass N number of A weighﬁ
family ' _ e;gigﬁzss (keV)
231 bn+3 138 3 1000 0.03%09
2%3 bntl 140 3 585 0.0373 i
235 un+5 142 b 789 0.061k .
237 bn4l 1k L 596 . 0.0580
2%9 4n+5 1&6‘ 3 720 0.0399
ohl  hnil 148 3 683. 0.022k

weighted average: 728 keV ]
weighted average of 4n+3 family: 828 keVv

weighted average of Ln+l family: 609

" difference: 219
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Appendix B

Additional Detailed Propefties of the BCS Solutions

It is of some.inﬁerest.tovdecompose some of the ordinary BCS'solutiOns
‘into their various componente. In S0 doiﬁg one may hope to gain a better.under--
standing of the fixed-particle progectlon procedure (PBCS) ' | f t
Nilsson has developed and explored a useful expan51on for estlmating the
' energy iowering with projection of fixed—particle number. Writing the expansion

in more detail and including additiohal terms his eq. (2) becomes

. - 2 \
aEP O°E 0 EP
Bos) 1 . 1 PRos) 2, 1 BCS
Epos(®) = Bppog(mplyon * | 55 - 302 + 3 ( )
o (B.:L)j

Here n 1s the a?erage number of pairs in the BCS wave fuoction,Tand p 1is the
number of pairs-in a particular component of the BCS fﬁnction. The oi are tﬁe‘
ith moments of the pair numbef probabilit& distribution about the average n;- The
partial derivatives are to be evaluated at (n, P = n). The projected energies
EPBCS which we have compared in the main_articlelare always EPﬁCS‘(n’ P = n);
that is, the BCS equations are solved to give the right average number of pairs

n and the central component with p=n is projected. In fact, n may be re-
~garded as a contlnuous variable, and we shall see that lover EPBCS energies
could in general be obtained by mlnimlzing w1th respect to n. The variable p T
is not a continuous varisble but may take integral values only. Expansion (B.1)
then is based on the assumption that the discrete values {*°-, EPBCS(n,nfl)g
EPBCS<n’n){ EPBCB(n,n+1),---) define a continuous function. There is in Nileson’s
eq. (2) the further approximation which he has discussed, that the partial deriv-

atives with respect to p may be replaced by derivatives with respect to n. The
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first-derivative term in expansion (B.l) vanishes because c} is zero when
the expansion is taken at .p = n. Nilsson assumes that “higher deriyative terms
than the second may be neglected. It is a purpdse of this appendix to evaluate
the various partial derivatives and moments of the number diétribution for our
proton systems and to test eq. (B.1). To be sure, we will not be testing directly
the "homogeneous model” (constant-G matrix elements, uniformly-spaced ev):ﬁhich
Nilsson treats but we may gain a better notion of the validity of the expansion
for real nuclei than if we had treated only the homogeneous model.

Let us denote the probability of the comﬁonent with-p pairs in the BCS.
wave function of n average pairs as (Ep(n,p). The formal definition éf ci is

then

. v‘ . . . »
ot =) o) @Prp)  (s.2)
. 5 _ .
The identity which expansion (B.l) approximates is
:FJBCS = )_ EPBCS (n,p) @(n,p) o . -_ (B.3)

D : '

The set of <3>(n,p) values peak at p = n and fall off on either side.
In fig. B.1 we have plotted the pfobabilities for fwo even s&stems, n = 7 and 10,
and for thé odd system (g + (642) blocked) with n = 8. The points have been
connected by a smooth éurve, appearing rather Gaussian-like i? form.

Now consider the other factor in eq. (B.3), the energy values of the
projected and reﬁormalizad components, EPBCS(n,p). Table B.l lists these energy
values for our even-proton systems for several values of n and p. Note that

the EPBCS(n’p) values in the n-p plane define a sloping surface slightly convex

upward in both dimensions.
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- of eq. (B 1), their sum through the fourth derlvatlve, and the actual rlgofous
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‘The expansion (B.l) results when the summations of egs. (B.2) and (B.3) are
approkimated by integrals and _EPBCS(n,p) is expanded in a Taylor series in powers
of (p - n). o o E . - ]

One may first check the assumption that 8 E/Bn B2E/ap2.' Table B.2 gives |
éecond differences of the energies of table B.l in the vertical aﬁd in the horizontél;“

2

directions, and also gives entries for the case of blocking the 5 + (642) orbital.
The derivaﬁives are of the same order of magnitude but it is clear that there is'
a systematic difference. Thus, the substitution of BEE/Bn2 in eq. (B.2) may

underestimate the second-derivative term by about'BO%. Actually Nilsson proposes

the derivative of the chemical potential 20)\/dn be substituted for the second

derivative. The chemical potential X -strictly speaking 1s

BCS/Bn We give

the first differences of A for:odd values of particle number, and they also

undershoot the desired second derivative. Iet us now look at numerical values
of various terms in expansion (B.l),using for the second and fourth derivatives
the second and fourth differences wiﬁh respect to p. “For the third der1vat1Ve

we use the average of the two third differénces édjacent to p = n. For the moments
s

. o , we use values determined from eq. (B.2) with the sum over all terms

0 <p <25, there being 25 orbitals in the system.

Table B.3 lists the moments, the values of the varlous derlvatlve térms
f_t’

values of EBCS f.EPBCS for comparlson. The third-derivative term is 1n51gn1ficant -

~ throughout, but the fourth-derivative term may enter with either sign and caﬁ be

significant. The failure to obtain exact agreement beﬁween the last two colunns
is probably due to the approximation of replacing a sum by an integral. The siMple'

approximation BK/Bn)de for n) - n,n) 1is for our examples fairly gobd,
Baes Epres

‘with systematic ‘underestimation of ~ 25%

It should be pointed out that the energy derlvatives higher than the second,
|

should vanish 1n.the homogeneous model with a large number of levels. These hlgher
e ) i '



derivatives in our example are a consequence of non-uniform level spacing.

It might at first appear that projection of fixed—particleAnumber should
systematically iﬁcrease the calculated odd-even mass difference compared to BCS
with blocking, since 62 is greater for the unblocked even systems} Howe#er, we
and - AF |

have seen in figs. 8 and 9 that AE re usually about

oe (PBCS) oe(BCS) . 2
the same. The energy lowering of the blocked odd system is comparable to the
even system because its greater BX/Bn approximately compensates its smaller
02; the energy lowering by projection of the blocked odd system is in some cases
greater and some cases less than neighboring even systems. However, in going

to the FBCS method there is a systematic lowering of AEoe because FBCS lowers

the energy more for the odd systems than for the even systems.
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. Table B.1
. PBCS Energies of proton BCS components with different numbers of pairs.

UCRL~-109%9

n 1is the average number of pairs of the BCS wave function

P is the number of pairs in the projected component.

bAll energies.are negative in sign.

n?.
p-n 7 8 9 10
+3 uug.ssaub 185,380k 522.3448 558.0288
+2 406.5678 47,4843 : u86.2739} 523%.3800 '_
+1 36L.6239 L06.9145 L48.08L44 1 u86.817u>‘..'u
0 321.1431 364.5575 406.8515?,' 4h8 .13k
-1 276.7780 | 320.8255: - 364, 1137 © 406.3198
-2 231.8681 276. 3483 320.2611 363.3117
-3 186558k 231.4113 - 275.7735 319.b712
a
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Table B.2. Some second differences of energies o

3°E
“PBCS
n ——

3n°

b=n
No blocking

7 0.7221
8 1.1200
9 1.0118
10 . 2.3101

5/2¢ (642) blocked
7 -
8 -
9 -

2
° Eones
3p°

0.8843
1.2750

1.5049

3.1320

0.9472

2.8221 .

4. 4400

p=n
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Table B.3. Moments of the particle number distribution and terms of the pro,jected energy series 'expa‘n's'ion‘.

- o T - - | ; , -
N gé gi_ cLL 1 o EPBCé\ 2 1 X\ 3 1 BAE 4  sum Epeg -
2 6 ‘ EE— 2 -apg g ap3 ] c §E a‘_&— g . 5] _ - .
| op. NC o P - Epncs
No blocking o
7T . 0.97h 0.0347 'o.h76 ~ 0.860 - 0.017 + 0.150° 0.99% 0.916
8 | 0.845 0.0388 0.366 5 1,162 - 0.020 - - 0.080 1.062  1.101
9 0.702 0.0252 0.258 1.057 _0.00h + 0.297 1.3%0 ¥ ©1.138
10 - . 0.557 10.0122 o.i71 174k - 0.006 - - 0.505 1.2%3 1.458
5/2+ (642) blocked
7 0.740 0.0575 0.282 0.702 - 0.079 + 0.435 1.058 _0.872_
8 | © 0492 0.0317 | 0.135 - 1.388 - 0.058 - 0.106 1.224 fi.226
0.0001 0.068 1.480 .000 - 0.346 .287

9 0.533

O

1.134

T

-9¢-

6CH0T-THON
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FIGURE CAPTIONS

Figure 1. Plot of proton correlation functions Ab_ as a function of proton

‘number. The energy is indicated in units'of 0.05 ﬁab on the left
. and in keV on the right.

Figure 2. Plot of proton energies Ev in the self-consistent field (abbreviated,
self-energies) as é function of proton number.

Figure 3. Plot of neutron correlation functions Av as a function of neutron
number for some neutron orbitals.

Figure 4. Plot of neutron correlation functions A» as a function of'neuﬁron

-number for some other orbitals.

Figure 5. Plot of neutron self-energies Ev as a function of N.

Figure 6. Plots of diffuseness_df the Fermi surface for proton and neutrbn
systeﬁs. The three variational methods are plotted with the following
symbols: (=) BCS,/\ PBCS, [+]FEBCS. | |

Figure 7. Plots of diffuseness of the Fermi surface for protén systems as a
function of decreasing pairing force stfength. Open symbols denote
7 pairs (Z = 90), and closed symbols 10 pairs (Z = 96). Circles are
for the BCS method, triangles fof PBCS, and squares for FBCS.

‘Figuré 8. 0dd-even mass differences for proton systems ((:)BCS, zﬁ; PBCS,

El FBCS theoretical and &experimental).
Figure 9. 0Odd-even maés differences for neutron systems ( C:IBCS, Zﬁ PBCS,
E] FBCS theoretical and & experimental).

Figure 10. Theoretical (FBCS) energies of various bands in odd-proton nuclei.

Figure 11. Theoretical (FBCS) energies of various bands in odd-neutron nuclei.

Figure 12. Comparison of four theoretical methods for calcglating enefgies of

bands in odd-proton nuclei. From left to right %he methods are:
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Figure 12.
(Cont.)

Figure 13.

Figure 1&.

- Figure B.1.
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Q

H

quasi-particle energieé from unblocked. odd-number BCS solutions;

B

BCS with blocking; P,= PBCS, fixed-particle projection from
BCS with blocking; F = FBCS.
Comparison of FBCS speétra (0dd-z), labelled.F, with Landé's method

(fixed-partlcle progectlon from unblocked BCS with () odd).

‘Comparison of FBCS Spectra (odd-N), labelled F, with Tandé's method

(flxedﬁpartlcle projection from unblocked BCS with () odd).

Probability of components with p pairs in a BCS ground state wave

function with average pair number n. (6%11 T, wave function for

Z

i

90; [J n = 10, wave function Z = = 8, wave function for -

]

Z = 93 with 5/2 + 642 orbital blocked).
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Odd-even mass difference, AE . (keV)
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- This report was prepared as an account of Government
’ . ) sponsored work. Neither the United States, nor the Com-

. mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or

implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the-use of,
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with .such contractor.
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