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ABSTRACT 

The advent of.BCS calculations for deformed nuclei has brought exten-

sive progress in understanding ~ny nuclear properties. With the aid of fast 

and versatile computer facilities a ·number of previously-made simplifying 

·· assumptions have been tested. (1) By use of delta-force matrix elements 

between Nilsson eigenfunctions, instead of a constant-G pairing force, some 

feeling for the nature of fluctuations in ~ values and their variation as 
\' 

the systems are filled is gained. (2) By ca:rying the usually-neglected 

Gvv' matrix elements of Belyaev a generally w1iform lowering of Nilsson 

levels is observed as 'the· system is filled. (3) The systematic effects on. 

·variational· energies and average configuration mixing caused by p:r,-ojecting : 

·fixed-particle terms from BCS wave functions (PBCS) is studied and (4) the· 

·,variation has been performed on the fixed-particle expression (FBCS). The 

/ 

.:. ': 

..... , 

FBCS method gives. the lowest possible energies for·a varia~ional solution of ,: , 

the projected BCS form. The FBCS method is found always to lead to non-trivial 
. . . I 

solutions no matter how weak the residual force strength; the abrupt 'transition 

between superfluid and normal states of th~ nu.c:tear fluid, predicted by the 
i. 

BCS method, is thus found. to be a spurious restut. The, FBCS method 8.lwaye. 
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···gives more configuration mixing than PBCS. The PBCS energies are close to .. ··.:·· .. :·, 
.;,;,· . 

. ',. 
, . ' ~ . ,;,_ .'·'"' 

··:. 

. . ; /· 
··} 



~. 

li 
II ,I 
:J 

;. './·. 

1 

~ 

··r· 

' ... · 

-:Lv-

----· FBCS in the region of high pairing correlation but are .worse ~here pairing 

correlation is lower. This tendency is reflected strikingly in the odd-even .. 
··mass differences, where the PBCS method gives differences much too large in 

the region of low pairing correlation. Most.of the simpler methods are found 

to predict too-high level densities for odd-proton systems, relative to the 

FBCS method. 
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1. Introduction 

In pursuing theoretical calculations of alpha decay rates we have 

fo~~d results to be greatiy sensitive to configuration mixing in the shell-

mode} wave functions. In the region of mass 242, average decay.rate. en-

hancements of three orders of xna.gni tude are caused by i.ntroduction of the 

. . f. 1,2 
pa~r~ng . orce. It was clear that refinement of the alpha rate theory 

demanded the closest attention to the pairing force and the increased 

nucleon-nucleon correlations it brings about. This paper inves~igates the · 

effects on spectra and: eigenfunctions of several modific9:tions to previous 

detailed calculations for sph~roidal nuclei;3, 4:,5 

2. BCS Formulas for Ground States of Even Systems 

The Hamiltonian of the problem we. treat is written in second 
\ . 

quantization form as 

. r' H - . L E)b:+ bv+ + b:_ \J- · 
v 

(l) 



, i 

-2- UCRL-10939 

where b+ operating on vcr 

b . vcr annihilates it. The 

the vacuum IO) creates. a nucleon in 

notation is that of Belyaev, 6 wh~re 
state vcr 

the index 

and 

v 

stands for all quantum numbers specifying a given Nilsson orbital and a for 

the sign_ ( + or -) of the projection of particle angular momentum along the 

nuclear -cylindrical symmetry axis. The subscript 1 labels the state of 

motion of particle 1 and the 2 that of particle 2. The summation vcr runs 

over all states inside an arbitrary cut-off energy. 

The independent-particle scheme on which the pairing calculations are 

based is that of Nilsson for nucleons moving in a spheroidal potential (prolate 

for the actinide nuclei of interest to us). Thus the are Nilsson-state 
/ 

eigenvalues and the basis states b~+ jo) are Nilsson eigenfunctions and 

b~_[o) are conjugates. 

The matrix elements of eq.. (1) are just the matrix elements· of the 

residual nucleon-nucleon force. A usual approximation is to set all· the 

matrix elements between paired states equal to a constant G, but we shall 

instead be using the matrix elements of a delta force between Nilsson states. 

The number operator which "counts" the number of nucleons in a wave 

function is 

N ( + . . + ) 
b +b + +.b b • v v v- v-

v 

We seek simultaneous eigenfunctions of the Hamiltonian and >the number operator. 

For systems where the number of permutations of N/2 pairs in the n different 

orbitals (i.e., the binomial coefficient (Nf2 ) ) is not large it is feasible 

to solve the problem by exact diagonalization. For larger systems it has proved 

most valuable to seek variational solutions which specify only the probabilities 
·.·,$ 

I 

that the vth orbital is occupied by a pair. In so _doing one throws away 

-~·. 

·' 

0 

'.I 
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some information contained in the CNj2) different coefficients of the exact 

wave function but achieves a simpler problem in the n different thermo-

2 dynamic average occupation probabilities v Formally, the variational v 

solutions commonly used are of the Bardeen, Cooper, Schrieffer7 type 

with 2 2 
uv + vv = 1 defining the quantities. The variational treatment 

I 

seeks stationary values of H - t..N. The Lagrangian multiplier t..,. the chemical 

potential, is adjustable to give the proper expectation value of the number 

operator. An alternative method of solving the problem is to introduce the 

Bogolyubov8· canonical transfo~tion to quasi-varticle operators and demand 

and v all have values that make a certain term in the transformed v 

Hamiltonian (H20 ) vanish. In either case the resulting solutions are the same 

and may be found by solving a set of non-linear simultaneous algebraic equations 

given by Belyaev6 and involving new parameters 6 and f.. • y 

,'V 

E:v = 

2 v = v 

N =I 
v 

Ev -I 
v' 

.1 

6, v 

Gvv' 
2 

vv, 

- - A. € v 

=I 
v' 

(1 - ·-2 .f.[ ( E'v A.)2 + 6 2l 
v 

) 

(2) 

(3) 

(4). 

(5) 
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vThere the 6 are the pairing-correlation energy parameters of': the orbitals. 
v 

In the Hamiltonian of eq. (1) the sum over residual-force matrix 

elements ran separately.over all states for each of the four operators 

appearing. The choice of BCS trial function is restrictive such that matrix 

elements involving more than two different Nilsson states can make no contri-

bution. Thus, only two types of matrix elements survive. The first type which 

we denote Gvv' gives rise to the pai!ing effects and is defined after 

Belyaev as 

Gvv' = (v v[G·[vt v') = (v+ v- [vo[v'+ ·v'-) - (v+ v- [vo[v'- v'+) 

The second type, !Vhich gives rise to terms in the self-consistent field, we. 

denote G , , and is defined after Belyaev as vv . 

Gvv' = (v+ v'+[vo[ v+ v'+) - (v+ v'+ (vo[ v'+ v+) + 

(v+ v'- [vof v+ v'-) - (v+ v'- [vo[ v'- v+) 

It is usual to assume that all matrix elements· G vv' are equal a~d that the 

"' Ev = Ev The former assumption simplifies eq. (2), and there results only 

a single 6 value applying to all orbitals, hence two simultaneous equations 

in two unknowns. We have instead calculated the matrix elements between various 

orbitals using a delta force and Nilsson wave functions. The use of' a delta 

force for matrix elements means that we are using an interaction for singlet 

spin states only~ The· matrix elements are for pairs of identical fermions and .. 

the delta force only acts on s-states of relative orbital motion; hence, use 

of antis.ymmetric wave functions causes the interaction in\tripl~t spin states 

to vanish identically. The delta-force matrix elements a~e closely related to 

(4 

~'"'-' 

'J 

'.1 
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certain coefficients entering shell-model alpha decay theory, where also only 

singlet spin states contribute. The delta-force matrix elements between 

Nilsson states can be calculated by operating through with the singlet spin 

t 

projection operator p 
s = 

1-~· ~ 

7/J 
and integrating the products of four 

Nilsson orbital functions over arguments r, S,¢. The angular integrals be-

come integrals over products of four spherical harmonics, expressible as sums 

over products of four Clebsch-Gordan coefficients. The radial integrals are 

over products of fo~ associated Laguerre polynomials with an exponential factor. 

1 The same integral had earlier been worked out by Mang and Rasmussen for the 

c0 coefficients of alpha decay. The delta-force matrix element is related-to p 

its c~ coefficients oy 

(6-) 
p 

A further property of delta-force matrix elements is the identity, 

• 
3· Conservation of Particle Number 

As has often been pointed out, the BCS wave functions have the defect 

that the number of particles is not strictly conserved and this feature may 

give rise to spurious effects. Kerman, Lawson, and Macfarlane9 have suggested 

and used an approach whereby one retains from the BCS wave function just those 

terms with the number of creation operators exactly equal to the number of 

nucleons in the problem and then renormalizes. Thus, the BCS solution is only 
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an intermediate step providing an approximate prescription for obtaining a wave 

function with all possible,;terms: tha:t .. conse;r'Y~:::-t;he .. particle number. 

Performing calculations of energies and transition probabilit.ies with 

the projected wave functions is not as formidable as one might suppose. We 

10 . 
use the notation of Bayman based on the property 

f d~ z. 
= 

the contour being taken around the origin. Thus, the projected BCS solution 

with p .pairs may be written 

II 
v 

(u + sv b + b + }fo) 
v v v+ v- (1) 

with c:At? a normalization constant determined by the condition ('1/!p ['1/Jp) = 1. 

For the unprojected solutions the energy of the ground system (EBCS) 

of an even number of nucleons is just given by eva~uating Belyaev's6 eq. (12) 

without the A term 

2v2 
v 

I 
f 
! 

Q U: ! 

I 
. ! 

~ l 
I 
I 
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Dietrich; Mang, and Pradal have developed11 practical formulas for 

. the projection of proper particle-number components from solutions of BCS 

form. Their energy expression is 

~- f d(; 27Ti, . (; p+l (ofn (u + v b b +) IHIIT (u , + (;v ,b+,+b+, ) [o) = v v v- v , v v v v -v .. v 

I (Ev 
1 

Gv) 2v2 Ri (v) 
-· 2 v Ro 

v 0 

The function Rn (v •o v ) is defined as 
q 1 n. 

Therefore 

d.z 
p-q+l z 

-I Gv v 
2 

v 
1" vl 

v
1

v 

vf=v1 · 

2 2 (u + zvv ) 

2 R~(v1v) 
v v Ro 

0 

(9) 

~ ... • 
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Note now that there are different vTays of employing eq. (9) . One 

may, as done by Kerman et al. 9, solve the ordinary BCS equations first and 

use the uv and 'vv values thus obtained with eq. (9). This method we 

denote PBCS and the energy EPBCS· A more complicated but more exact 

variational procedure is to minimize the energy expression of eq. (9) with 

respect to the vv parameters, as done by Dietrich et a1. 11 We denote this 

method as FBCS, and it must give an energy value lower than that of the PBCS 

method. 

4. Formulas for Odd Systems 

For the systems with an odd number of particles there are several 

different methods of calculation within the BCS framework. The simpler 

6 . ~ 
method, outlined by Belyaev and used extensively by Kisslinger and Sorensen 

and others, is to solve the variational problem as for the BCS ground 9tate of 

an even system and operate on the eigenfunction with a quasi-particle creation 

operator. This method leads to the approximation that the excitation energies 

of the various states in an odd nucleus are simply the quasi-particle energies. 

The other methods involve "blocking" and require that the energy of each 

odd particle state be found by recomputing the variational solution as for an 

even ground state' but omitting the "blocked" orbital populated by the odd nucleon. 

There are BCS, PBCS, and FBCS solutions possible in the "blocki_ng" framework. 

Since we are retaining the usually neglected G matrix elerrents that 

contribute to the self-energies "' € , it is necessary·to consider carefully 

their contribution in the blocking calculation. ·. 
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For the odd system we have the total'.energy expression 

=I 
v f k 

·(10) 

- \ G u v u v + € - L G v2 
L v v k kv v vvl vl vl 1 1 

v,v1 -f k v1 -f k 

The BCS wave function which conserves the nucleon number in the odd case has 

the form 

where p 

'f ' 
p,k 

AIJ 
= ~ 

27Ti b~J 
is the number of pairs, 

I E(projected) (ev = 
v f k 

v f k 

II 
v f k 

(u +!;· v b ++ b + ) fo), (11) v v v v-

and the energy is 

R2 
1 2v2 (v k) 

Gv) 
1 

- 2 Rl v 
(k) 

u v 

Ri (v k) 

R~ (k) 

0 

v v 

+ ~k 

(12) 
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5· Numerical Calculations 

Since we desired eigenfunctions for alpha decay cal_culations, our 

numerical calculations concentrated on the actinide region •. We selected 

a set of 25 proton orbitals .and 40 neutron orbitals covering the actinide 

region. Our energy values were generally those of Mottelson and Nilsson13 

at an average deformation of TJ = 5 but with some upward shifting of the 

even-parity orbitals for protons and odd-parity levels for neutrons to give 

better agreement with experimental spectra. 

Our delta-force matrix elements were calculated from eigenfunctions 

of Nilsson14 or Mottelson and Nilsson13 at deformation TJ = 6. Eigenfunctions 

are not tabulated for TJ = 5, and we wished to avoid interpolation. The 

over-all strength of the force was adjusted to match, on the average, the ex-. 

perini.ental odd-even mass difference •.. _, 

Examination of the delta-force matrix elements showed extensive 

fluctuation in magnitude, with diagonal matrix elements Gvv and off-diagonal 

elements between spin-orbit conjugate orbitals being systematically larger than 

other off-diagonal matrix elements. Table 1 lists for certain proton orbitals 

the diagonal elements G · , the average of the 24 off-diagonal e~ements, and vv ' 

the maximum and minimum off-diagonal elements. The orbitals comprise those 

tabulated by Stephens, Asaro, and Perlman15 in their comparison with experimental 

spectra, plus a few additional nearby orbitals. The matrix elements are tab-

ulated as ratios to a strength parameter ~·., . The energy units most frequently 

appearing are 0.05 ~m0 (where ~m0 ~ 41 A-, MeV). ·In the later numerical work 

we find a value of ~· = 5.0 best matches proton odd-even mass differences. 

The observation of the large fluctuation of matrix elements raised the 

possibility that the solutions of eqs. (2) and (3) might give rise to large 

fluctuation in the individual ~ correlation parameters. Such results would v 

have serious implications for the usual constant-G approximation. 

(a' 

,;. 

~ 

~ 
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Tne BCS eqs. (2) and (3) were solved by a double iterative procedure on 

the Berk~ley IBM-7094 computer. 

~ It is not practical to present the bulk of the numerical results, but 

~ we shall try to give enough examples to exhibit the differences arising from 
.. 

(a) use of non-constant G vv' matrix elements, (b) the retention of self­

consistent-field terms Gvv' , and . (c) projecting out fixed particle number, 

either after (PBCS) or before doing the variation (FBCS). 

Figure 1 plots the correlation function (6 ) values as a function of v 

proton number for even proton systems and fig. 2 is the corresponding plot of 

self-energies (€ ) and the chemical potential ~. We note for orbitals near 
v 

the Fermi surface that 6v values may scatter by as much as 20%. There· is a 

systematic tendency for:an orbital to develop its largest 6 value relative to 

neighbors just when it is nearest the Fermi surface. This tendency is an. 

obvious consequence of the especial]ylarge diagonal matrix elements noted in 

table 1. 

The general trend of overall decrease in 6 with increasing proton 

number is found here. Such a decrease was found in co.nstant..,G calculations of 

Nilsson and Prior4 and Veresh, Soloviev and Shiklos5 and it is a consequence of 

decreasing .single particle level density at the Fermi surface as one goes from 

proton number 90 to 100. The abrupt change in slope at Z = 96 is a consequence 

of the rather large Nilsson level spacing between the ~ · - (523) and the 

~ - (521) orbitals as seen in fig. 2~ We do not believe that experimental 

evidence supports any proton subshell effects at Z = 96, and therefore conclude 

that our calculations would have been more realistic with Nilsson level spacings 

not showing such a break. The plot of fig. 2 shows the effect of the retained 

field terms in G vv'" The self- energies systematically decrease as the number 
,. 

of . nucleons increases. . .. . \ .. 
Those orbitals whiCh! have::larger.;:matrix elements,· :connecting 

them with the filling orbitals may drop more than others. 
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Figures ':3: _·:5. are the corresponding',_ L\ and €v plots for the 40-

orbital even neutron systems. We see in fig. 5 that the retention of the 

matrix elements has caused not only a general lowering of €. . v with 

increasing neutron number; but also one actual c~oss-over. 

In the course of this work we came more and more to be concerned with 

the occasional situation where there existed only a "trivial" solution to the 

BCS equations. The trivial solutions, where all 6 values · equa:J.: 
v 

zero, have no configuration mixing whatsoever and contradict the perto/ba-t;ion: ·. 

theory prediction that there will always be some configuration mixihg no·matt~r 

how weak the residual force. The loss of the non-trivial solution occurs'when 

the Nilsson level spacing near the chemical potential becomes sufficiently large 

compared to the pairing-force matrix elements. Before final selection of €v 

values we found such soluti.ons for even neutron systems near the 152- ·neutron 

"sub-shell". They occurred even more frequently for odd systems with an 

additional- level blocked. Belyaev6 gave an inequality which must be satisfied 

for non-trivial solutions. The work published by Soloviev5 in 1961 shwed 

frequent occurrence of trivial solutions in the two-quasi-particle excited states 

of even rar·e earth nuclei. Clearly the projection of fixed··-p~rticle-number from 

the BCS wave function is of no aid in trivial cases, since the trivial solution 

already conserves the particle number. In the course of· comparisons o,f BCS with 

exact solutions for model systems (cf. ref. 16) some of us17,examined analytically 

the behavior of the FBCS solutions.in the region where BCS solutions go trivial. 

We found that the FBCS method always yields a non-trivial solution at any pairing­

force strength, and that' the wave .functions of FBCS were close to exact over the 

entire force range, except for some small components in the wave functions. 

Dietrich has recently been able to prove generally that for an att;r-a:ctiye, pa;!.r~ng 

force of any strength, a non-trivial solution exists with lower energy than 

the trivial solution. 18 

.. 
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TPe more sophisticated FBCS method does not. yield such simple values 

to measure the involvement of an orbital in the pairing correlation. 

Qualitatively, the features displayed in figs. 1-5 for BCS solutions will also 

be expected to he valid for the FBCS solutions • 

6. Comparison of BCS, PBCS, and FBCS Soutions 

6.1 Even Systems 

In this ·section we wish to compare, first of all, the total binding 

energies of .even systems, calculated by three methods: the BCS, where the 

energy is of a collection of systems with differing numbers of particles; the 

PBCS, where the energy is of the central component of the collection; and the 

FBCS, where the variational para·meters v.v are adjusted to minimize the energy 

of just this component. 

Table 2 gives the FBCS total energies and the energy differences to 

the higher BCS and PBCS energies. The energy units are Nilsson's 0.05 ~ill 
. 0. 

(~ 0.330 MeV at A; 242). We do not know the exact eigenvalues for these very 

large systems, but we can certainly appreciate some of the shortcomings of 

the BCS and PBCS solutions by a study of table 2. The ordinary BCS energies are 

always higher than FBCS by from N 250 keV to ~ 600 keV. Eliminating the ·spurious 

particle numbers by the PBCS procedure usually results i~ substantial reduction of 

the energy. In general, the errors in both cases increase as pairing correlation 

decreases "\.ri th increasi.ng Z or N. The error in PBCS reaches a maximum at N = 152, 

where the Nilsson levels are spread and the pairing correlation is conse~uently 

lowest. 

In order to gain insight into the nature of the improvement of solutions 

in going from BBCS to FBCS we have calculated a q_uantity D measuring the "diffuseness" 

of the Fermi surface implied by the various eigenfunctions. This ~uantity D is 
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a sum over all orbitals of the square root of the product of the probability that 

it is occupied times the probability that it .is empty. For ordinary BCS solutions 

we bave the simple expression 

D ==I 
v 

For PBCS and FBCS this becomes 

. D' =I 
v 

with whichever set of 

u v v v 

u v and vv 

uv v v 

values is appropriate. 

(13) 

(14) 

Note that the 

"diffuseness" D goes to zero for a trivial solution. For the constant-G matrix~ 

element approximation we have 
6 

D=­G 
For ground~to-ground alpha decay rate 

calculations the average enhancement due to pairing correlations j_s approximated 

by the product of the squares of the D values for neutrons and protons. In 

fact, our unpublished detailed alpha decay rate calculations with these wave 

·functions show fairly good agreement between simple BCS and FBCS, while PBCS 

wave functions yield substantially lower rates. The plots of DP and Dn in 

fig. 6 show the systematically lower diffuseness calculated by PBCS. The 

presence of the spurious particle-number components in the BCS wave function 

makes for its greater diffuseness than PBCS, but one sees that the local "scalloping_" 

cusps of PBCS and FBCS are smeared out in BCS. The positions of the cusp-like 

minima in D correspond to especially low Nilsson level densities ovE;!r an energy 

interval comparable to 6 at the Fermi surface, as can be seen by referring 

back to figs. 2· and 5. 

That the apparently good agreement j:n D between simple BCS and FBCS 

cannot hold under all conditions becomes ·clear when we gradually lower the pairing~ 

force strength. Such a calculation has relf'Vance to real nuclei in connection 
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with the :problem of effective moments-of-inertia of high-spin members of 

rotational bands. Mottelson and Valatin19 treated the :problem in terms 

of an effective :pairing-force strength that is steadily reduced as one goes 

• to higher spin members. It is well known that below some critical :pairing-

force strength the BCS equations completely fail to give a non-trivial 

solution (cf. Belyaev's6 inequality (31) ) , and this behavior suggested an abrupt 

change in moment-of-inertia at some critical spin. Yu. T. Grin came to similar 

conclusions in his theoretical calculations. 20 In fig. 7 we :plot for two 

:particular :proton numbers the variation of D with pairing-force strength­:p 

:parameter ~· For Z = 96 we see the BCS solution rather sharply going trivial 

near gp = 3.5, whereas FBCS decreases only gradually. For Z = 90 the D:p 

values for the BCS solution stay large to much weaker pairing force since the 

~ - (530) and ~ 1" (651) level~ are almost degenerate and bracket the Fermi 

energy at low force strength, as seen in fig. 2. There are no abrupt changes 

in with :pairing-force strength when ·the variational calculation is carried 

out in the :proper manner as in FBCS. The consequences to the question of the 

nuclear :phase transition from "superfluid" to "normal" state are clear. The 

"' 

transition is a gradual and not a sudden :phenomenon. One should not expect 

to find any sudden changes in effective moment-of-inertia at any critical value 

21 of the spin, and the ~xperimental data of Diamond, Lark, and Stephens on 

rotational bands up to I = i8 fail to support the notion of a critical spin 

value. 

6.2 Odd Systems 

It is usual practice4' 12 in :pairing-force calculations to adjust the force-

strength to matcp generally the odd-even mass difference. Because the charac-

teristic ~ values vary from orbital to orbital, it could be rather misleading 
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to determine odd-even mass differences from difference formulas wtth more than 

one nucleus with odd·particle-number entering. Furthermore, if we wish to 

compare the odd-eveh mass difference •1i th 6 , we should involve only one 
v 

odd system. For interpolation of the even mass surface it is desirable to do 

better than a two-point interpolation to approximate the position of the the 

even mass surface at the odd nucleon number. We therefore use a four-p.oint 

interpolation on the four neighboring even systems and subtract this interpolated 

mass from the calculated odd-system mass for our theoretical odd-even mass 

(energy) differences. 

6Eoe (Z) [
1 9 9 1 l 

E(Z) - -g E(Z-3) + I6 E(Z-1) + 16 E(Z+l) - IE) E(Z+3)j (15) 

These differences were calculated for proton and neutron systems from results of 

each of the thre~ methods, BCS, PBCS, and FBCS. .The experi.mental differences for 

comparison were done in similar fashion, using experimental masses of Kl:3nig,, 

22 Mattauch, and Wapstra with some adjustment (cf. Appendix A). Where the four 

neighboring even,...system masses were not all known, three-point interpolations 

were used. Usually a given odd-proton.(neutron) mass difference could be 

determined independently for. several different neutron (proton) numbers, and the 

several determinations were averaged, with weighting according to the assigned 

uncertainties in the masses .. ·Figures 8 and 9 summarize the .results for protons 

and neutrons, respectively. Note that our adjusted pairing--force strengths 

(kept fixed at ~ = 5.0 and gN = ).1) give satisfactory av~rage agreement 

between experiment and the FBCS results. Our theoretical mass difference falls 

somewhat too rapidly with Z compared to experiment, an indication that the true 
. . 

, 
Nilsson orbital energy spacings at the Fermi surface should not be as large at 

lower z as the values employed in ~he calculation. 

<,' 
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of the PBCS method is always larger than that of the FBCS. 

This behavior is easily understood, since the PBCS error of too-sharp a Fermi 

surface is more serious in odd systems with an orbital blocked than in adjacent 

even systems. At 151 neutrons the PBCS method gives a ~ which is about 
oe 

twice greater than the FBCS and experimental values. It is just in these regions 

of lowest pairing correlation that the BCS and PBCS approaches become unreliable, 

but they compare much better with FBCS in the regions of largest pairing cor-

relation. 

A common procedure in BCS calculations is to adjust the strength of the 

pairing force to make the ~ value calc~lated for unblocked systems e~ual to the 

experimental odd-even mass difference. In table 3 we give numbers to test.how 

closely the ~ values estimate the odd-even mass difference calculated by our 

best method (FBcs). The ~ values are for the theoretical ground-state orbitals v 

at the particular odd particle-number, and they are calculated by BCS without 

blocking and with the average number of particles e~ual to the odd number in 

~uestion. Evidently f:::. 
v 

usually overestimates the PBCS odd-even binding 

energy. The ratio of these energies is near unity for the first entries of both 

proton and neutron systems. Here the pairing correlation .is high. The ratio 

increases as the pairing correlation falls,though curiously the difference is 

not a maximum near the 152-neutron subshell, where pairing·correlation is the 

smallest.of all. -

Other features that can be shown from calculations on the odd systems 

are the theoretical spectra. The appearance of these spectra depend on rather 

small energy differences in the systems, and it is not surprising that the 

different theoretical methods often give rather different spectra. 

In figs. 10 and 11 are shown theoretical band-head positions for odd-

proton and odd-neutron systems, respectively, calculated by our best method 

(FBCS). A comparison with an experimental compilation, such as that of Stephens, . 
Asaro, and Perlman, 15 shows a generally correct ordering. Calculations such 
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as oux·s which allow no adjustment of deformation or Nilsson level ordering for 

various nuclei cannot fit experimental odd spectra overall; the shifts in ex-

perimental spectra in isotopic series like A
. 239,241,243 

95 m · or the berkelium 

isotopes suggest the importance of the neglected n-p interactions. In alpha 

decay rate calculations which we hope to publish in a subse~uent paper we make 

use of the wave functions from these calculations ¥hich result in the spectra 

of figs. 10 and 11. Thus, these figures may serve as a measure of the specific 

shor~comings in these wave functions) arising from non-optimum selection of 

Nilsson ·energy levels. 

Four different methods for calculating the spectra in odd-proton nuclei 

are compared in fig. 12 (essentially the same as fig. 16 of ref. 11). At the 

far. right for each Z value are the FBCS results which have been given above in 

fig. 10. The states in fig. 12 are simply labelled by numbers, but the identi-

fication with particular Nilsson states can be made by referring to fig. 10. 

The leftmost spectra for each Z-value are the simple ~uasi-particle 

energies . .f[('€ - A)2 + 6 
2 ] from BCS solutions with 'A. adjusted to give .(N) v v 

th dd Z 1 Th . th d . th db K' 1' d S . 12 d e o va ue. ~s me o ~s ·e one use y ~ss ~nger an orensen an 

many others. 

Next to the ~uasi-particle energy spectrum is the spectrum from an 

ordinary BCS blocking calculation, as first done extensi~ely by Soloviev.5 

Th.e third spectrum comes from projecting the fixed-particle components 

from the blocking calculations (PBCS with blocking). 

One sees generally that the three conventional methods. systematically 

overestimate the level density compared to FBCS. (z = 91, Pa, is somewhat ex~ 

ceptional in that there is a very high density of levels near ground by all 

the methods.) The third method (PBCS with blocking compares rather well with 

~- . 

.. . 
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FBCS except for Z ~ 95 and 97, where the pairing correlation is low, and the 

'· blocking method aggravates the PBCS underestimation of such correlation. 

7. Comparison with Other Methods 

Landt from his study of model systems with exact solutions has suggested23 

that a better approximation for odd systems is to solve the BCS equations with-

out blocking (but with (N) the odd value desired) and then project the fixed-

particle components. Our fig. 13 compares this prescription with FBCS, and it 

is seen throughout to provide a good approximation. 
I 

Lande's method is certainly 

simpler than FBCS, and it is thus of interest to try to understand the reasons 

for its success and also its limitations. We have seen earlier in graphs of 

diffuseness that the PBCS method systematically errs in giving too.;..sharp a Fermi 

surface. For the odd system, by not blocking the level occupied by the odd-

particle when solving the ordinary BCS equations we tend to correct this sys-

tematic error. The corr.ection is only a compensation of two errors and may 

fail, relative to FBCS, near closed shells or subshells where the local level· 

density at the Fermi surface falls so lowthat the unblocked systems fail or 

nearly fail to give non-trivial solutions. Figure 14 is ·the neutron analog of 

fig. 13, comparing La~de's method with FBCS. 

A good deal of insight into the ef:fects of blocking e:nd of projection 

24 of fixed-particle component,s is afforded by the analysis of S. G. Nilsson on 

the uniformly~spaced-level model. In appendix B we examine some of our solutions 

from the standpoint of his formulation. 

We have .not made calculations·:.on two-:gu.a.si~particle \states by the .. FBCS 

method. In our preliminary calculations of such states by the BCS method with 

blocking, we frequently encountered trivial solutions. It would be desirable 

to study two-quasi-particle systems by the FBCS method. 
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A new and simpler method of solutions for.constant-G systems is that 

of Mikhailov. 25 Its principal feature is the replacement of G in the BCS 
I 

.e~uations by a Geff [ = G(l + l/6N
2

) ]. 
. 2 
6N is.the mean s~uare fluctuation 

in the number of particles in the BCS solution-, Obviously this substitution 

prevents the loss of a non-trivial solution, for if f:1l- tends toward zero, __ the 

effective pairing-force strength is increased without limit. This method always 

gives greater pairing correlation than simple PBCS, and it deserves closer com-

parison with FBCS solutions. 

26 . 27 
The.methods of Chasman and of Richardson and Sherman also circum-

/ 

· vent the poor behavior of ordinary PBCS in the low-pairing-force limit. Chasman' s 

method can probably give better variational solutions than FBCS by introduction 

of a few additional variational parameters, and Richardson's method in principle 

can give exact solutions. These methods are not applicable to the general prob-

lem with non-constant, non-factorable G , matrix elements. vv It will take 

further development to see whether these new methods will be superior t~_ the 

BCS-type methods for practica:·l calculations. Certainly the BCS-type variational 

methods are clumsy for determining excited 0+·. states of even systems, and better 

methods are desirable. 

i 
\ 
·. 

i 
\ 

.• 
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Table I. 

Orbital 

rm(N nzA) 

. 3/2+ (532) 

1/2+ (660) 

11/2 ... (505) 

3/2+ (402) 

1/2+ (400) 

3/2+ (651) 

. 1/2- (530) 

5/2-- (523) 

5/2+ (642) 

3/2- (521) 

7/2+ (633) 

7/2- (514) 

Matrix elements for protons (in:units of 0.05 firu
0

) 

G vv G 
~~(ave) Gvv' (max) 

gp 

0.1897 

0.2801 

0.2461 

0.2458 

0.3692 

0.1980 

0.2925 

0.1818 

0.1731 

0.1970 

0.1643 

0.1908 

~ 

0.0826 

0.0710 

0.0965 

0.1040 

0.1029 

0.0750 

0.0797 

0.0852 

0.0772 

0.0846 

0.0790 

0.0883 

\ 
\ 

~ 

0.1597 

0.2363 

0.2399 

0.1938 

0.1881 

0.1959 

0.1576 

0.1567 

0.1597 

0.1918 

0.1447 

0.1736 

UCRL-10939 

Gvv' (min) .. 

~ 

0.0421 

0.0361 

0.0417 

0.0464 

0.0407 

0.0349 

0.0381 

0.0464 

0.0361 

0.0493 

0.0398 

0.0507 
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Table 2. 

z 

88 

90 

92 

94 

96 

98 

100 

N 

132 

134 

136 

138 

140 

142 

144 

146 

148 

l·""' 150 

Jl52 

154 

156 

158 

-25'- UCRL-10939 

Total energies of the valence nucleon systems (in units 0.05 ~ru ) 
0 

Even Proton Systems (25 orbitals outside Z = 76 Core): 

-~BCS EBCS- EFBCS ~BCS- ~CS 
277.0711 0.7998 0.0057 

321.2267 1.0000 0.0836 

364.6673 1.2108 0.1098 

407.0065 1.2930 0.1546 

448.3517 1.6747 0.2169 

487.3604 1.4963 0.2534 

524.8801 1.5038 0.2339 

Even Neutron Systems (40 orbitals outside N = 106 core): 

-~BCS EBCS- ~CS ~BCS- ~BCS . 

. 650.0979 0.9840 0.0661 

691.5384 1.0014 0.0714 

732.4847 1.0472 0.0811 

772.9128 1.270 0.0954 

812.7555 1.2499 0.1116 

851.8462 1.3937 0~1352 
~ 

889.7387 1.3002 0.1589 

926.7140 .1.3044 0.2003 

962.7512 1.4561 0.2692 

997-2782 1.3624 0.3288 

1030.802 1.728 0.443 

1067.575 1.211 0.246 

1091.6522 1.0947 0.779 

1120.9400 0.9982 0.152 
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Table 3· Comparison of theoretical odd-even binding energy differences wit~ 
6. of the ground state. 

v 

z LSE
0
e(FBCS) 6. 6. Ground State -~ 

v v 
(keV) (keV) LSE oe 

-.. 
91 987 898 '0.910 5/2+ (642 ) __ 

93' 710 839 1.182 5/2+ (642) .· 

95 707 799 1.130 5/2- (523) 

97 572 738 1.290 3/2- (521) 

99 ' 531 706 1.330 7/2+ (633) ' 

N 

135 762 ' 792 1.039 13/2+ (606) 

137 765 803 1.050 1/2- (501) 

139 747 749 1.003 1/2- (501) 

141 661 744 1.126 5/2+ (633) 

143 515 660 1.282 7/2- (743) 

145 514 629 1.224 ' 1/2+ (631) 

147 '4'25 557 1.311 5/2+ (622) 

149 402 556 1.383 7/2+ (624) 
.. 

151 372 463 1.245 9/2;_ (734) . 

153 442 489 1.106 1/2+ (620) 

155 450 536 1.191 7/2+ (613) . .. 
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Appendix A 

Calculation of Experimental Odd-Even .Mass Differences 

As a further test for realistic values of our pairing-force strengths 

~ and gN , it was desirable to compare the theoretical odd-even mass 

differences with experimental values. Since our calculations do not take into 

account proton-neutron interaction, it is necessary to average over as many 

odd systems as possible in order to delete effects caused by the even nucleons. 

The mass data were taken from K5nig, et a1. 22 with some adjustment, described 

later in this appendix, ·.to correct for an apparent systematic error in the mass 

table. 

The odd-even mass difference was calculated for all odd-mass nuclei in 

the region of interest for which the odd mass and the mass of at least three 

adjacent members of the even system were tabulated. Where four even masses were 

available, the four-point interpolation illustrated by eq. (l)) was used. The 

three-point interpolation is illustrated by the equation 

~0\?J) = E(N) - [- ~ E (N-3) + ~ E (N-1) + ~ E (N+l)] (A.l) 

For each. odd-even mass difference ~ the number of the even nucleons is oe 

kept fixed. As an example, we list in table A.l the experimental ~ oe for 

odd-mass nuclei of neptunium. The fourth column lists the number of data points 

used in interpolating the even system. Error limits of the mass data in ref.(22) 

were squared and summed with appropriate interpolation factors, all signs being 

taken positive. The reciprocal square root of this sum was multiplied by the 

number of data points used in interpolating the even system to obtain the weighting 

factors in the last column. This gives heavier weighting to the four-point inter-

polations. 
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Examination of table A.l immediately reveals a systematic difference between 

the 4n+l and the 4n+3 mass families. The weighted av~age of the 6E values , oe 

for the 4n+3 mass family is about 200 keV higher than that of the 4n+l family. 

Indeed this systematic difference was encountered in all the odd-mass systems 

studied, and can probably be attributed to an error in the relative masses of the 

two odd-mass families. 
/ 

The average difference between mass families was found to be 196 keV 

for odd-proton systems and 179 keV for odd-neutron systems. A. correction factor 

of half the average difference was therefore applied to the 6E v,alues (fifth oe 

column of table A.l) in computing the average 6E
0

e values plotted in figs. 8 

and 9· The correction was added to the 4n+l members and subtracted from the 

4n+3 members. 
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Table A.l. Experimental odd-even mass differences for Np (Z = 93) 

A 

231 

233 

235 

237 

239 

241 

mass 
family 

4n+3 

4n+i 

4n+3 

4n+l 

4n+3 

4n+l 

weighted average: 

weighted average 

weighted average 

N 

138 

140 

142 

144 

146 

148 

728 keV ' 

of 4n+3 family: 

of 4n+l family: 

· difference: 

number of 
even-mass 
points 

3 

3 

4 

~ 

3 

3 

828 keV 

609 

219 

bE oe weight 

(keV) 

1000 0.0309 

585 0.0373 

789 0.0614 

596 0.0580 

720 0.0399 

683. 0.0224 

. 
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Appendix B 

Additional Detailed Properties of the BCS Solutions 

It is of some interest: to decompose some of the ordinary BCS solutions 

into their various components. In so doing one may hope to gain a better under-

standing of the fixed-particle projection procedure (PBCS). 

Nilsson has developed and explored a useful expansion for estimating the 

energy lowering with projection of fixed~particle number. Writing the expansion 

in more detail and including additional terms his eq. (2) becomes 

(<J~Bcs\ 1 
dp J (J 

Here n is the average number of pairs in the BCS wave function, and p is the 

number of pairs in a particular component of the BCS function. The i cr are the 

~th moments of the pair number probability distribution about the average n. The 

partial derivatives are to be evaluated at (n, p = n). The projected energies 

~BCS which we have compared in the ma.in article are always ~BCS ~(n, p = n); 

that is, the BCS equations are solved to give the right average number of pairs 

n and the central component with p = n is projected. In fact, n may be re-

. garded as a continuous variable, and we shall see that lower , E:PBCS energies 

could in general be obtained by minimizing with respect to n. The variable p 

is not a continuous variable but may take integral values only. Expansion (B.l) 

then is based on the assllirrption that the discrete values(···, ~BCS(n,n-1); 

EPBCS(n,n), ~BCS(n,n+l),···) define a continuous function. There is in Nilsson's 

eq. (2) the further approximation which he has discussed, that the partial deriv-

atives with respect to p may be replaced by derivatives with respect to n. The 
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first-derivative term in expansion (B.l) vanishes because 1 cr is zero when 

the expansion is taken at .p = n. Nilsson assumes that 'higher derivative terms 

than the second may be ne.glected. It is a purpose of this appendix to evaluate 

the various partial derivatives and moments of the number distribution for our 

proton systems and to test eq. (B.l). To be sure, we will not be testing directly 

the "homog~neous model" (constant-G matrix elements, uniformly-spaced E ) which v 

Nilsson treats but we may gain a better notion of the validity of the expansion 

for real nuclei than if we had treated only the homogeneous model. 

Let us denote the probability of the component with p pairs in the BCS 

wave function of n average pairs as (JJ (n,p}. 

then 

cri = L (p-n)i (} (n,p) 

p 

The formal definition of i cr 

(B.2) 

The identity which expansion (B.l) approximates is 

~BCS = I EPBCS (n,p) @ (n,p) 
p 

(B.3) 

is 

The set of <JD (n,p) values peak at p = n and fall off on either side. 

In fig. B.l we have plotted the probabilities for two even systems, n ~ 7 and 10, 

and for th~ odd system (~ + (642) blocked) with n = 8 .. The points have been 

connected by a smooth curve, appearing rather Gaussian..;like in form. 

Now consi.der the other factor in eq. (B.3), the energy ).l'alu~s of the 

projected and renormalize:d components, ~BCS (n ,p) . Table B .1 lists these energy 

values for our even-proton systems for several values of n and p. Note that 

the EpBCS(n,p) values in the n-p plane define a sloping surface slightly convex 

upward in both dimensions. 

/ 
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'The expansion (B.l) results when the summations of eqs. (B.2) and (B.3) are 

approximated by integrals and ~BCS (n,p) is e)cpanded in a Taylor series in powers 

of (p - n). 

~2E/~n2 ~ ~2E/~2 .. One may first check the assumption that o o ·- o u~ Table B.2 gives 

second differences of the energies of table B.l in the vertical and in the horizontal 

directions, and also gives entries for the case of blocking the ~ + (642;-orbita~. 

The derivatives are of the same order of magnitude but it is clear that there is 

~2E/~n2 a systematic difference... Thus, the substitution of o o in eq. (B.2) may 

underestimate the second-derivative term by about 30%. Actually Nilsson proposes 

the derivative ·of the chemical potential 2dA/<Jn be substituted for the second 

derivative.. The chemical potential t- strictly speaking is <JEBCS/<Jn. We give 

the first differences of t- for;odd values of particle number, and they also 

undershoot the desfred second deriv'ative. Let us now look at numerical values 

of various terms in expansion (B.l),using for the second and fourth derivatives 

the second and fourth differences with respect top. ·For the third derivatiYe 

we use the average of the two third differences adjacent top'= n.· For the moments 

i 
rJ· , we use values determined from eq. (B.2) with the sum over all terms 

0 ~ p ~ 25, there being 25 orbitals in the system. 

Table B.3 lists the moments, the values of the various derivative t@rms 
w 

of eq. (B.l), their sum through the fourth derivative, and the actual rigo~6us 

values o.f EBCS - E._ for comparison. The third-derivative term is insignl.ficant ··· rBCS 
:1 

throughout, but the fourth-derivative term may enter with ei~her sign and cart be 

significant. The failure to obtain exact agreement between the.last two columns 

is probably due to the approximation of replacing a sum by an integral. The simple 

I 2· 
approximation (dA dn)cr . for E:Bcs(n) - ~BCS(n,n) is for our examples fairly good, 

with systematic underestimation of ~ 25%· 

It shou~d be pointed out that the energy derivatives higher than the secona ,, ~ . 
I I 

l 
should vanish i~.the homogeneous model with a large number of levels. 

! . i 
These higher 
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derivatives in our exa~ple are a consequence of non-uniform level spacing. 

It might at first appear that projection of fixed-particle number should 

systematically increase the calculated odd-even mass difference compared to BCS 

with blocking, since 
.2 
d is greater for the unblocked even systems. However, we 

have seen iri figs. 8 and 9 that .6E oe(PBCS) 
and .6Eoe(BCS) are usually about 

the same. The energy lowering of the blocked odd system is comparable to the 

even system because its greater 'dA./'dn approximately compensates its smaller 

2 cr ; the energy lowering by projection of the blocked odd system is in some cases 

greater and some cases less than neighboring even systems. However, in going 

to the FBCS method there is a systematic lowering of .6E
0

e because FBCS lowers 

the energy more for the odd systems than for.the even systems. 
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Table B.l 
PBCS Energies of proton BCS components with different numbers 

a n 

p-n 7 8 9 
·'' 

+3 446.5884b 485.3804 522.3448 

+2 406.5678 447.4843 486.2739 

+1 364.6239 406.9145 448.0846 

0 321.1431 364.5575 406.8516 

-1 ' 276.7780 320.8255 364.1137 

-2 231.8681 276.3483 320.2611 

-3 18?·5584' 231.4113 275-7735 

', 

a is the average number of pairs of the BCS wave function n 

p is the number of pairs in the projected component. 
b 
All energies are negative in sign. 

.• 

UCRL-10939 

of pairs. 

... 

10 
~-

558.0288 

523.3800 ' ' 

486.8174 

448.1346 

406.3198 

363.3117 

319.4712 



-35- UCRL-10939 

Table B.2. Some second differences of energies 

n C:;BC~ p=n (~?Bcs)p=n 2 (J;x_odd 
dn 

No blocking 

7 0.7221 0.8843 0.7358 

8 1.1200 1.3750 0.9628 

9 1.0118 1.5049 1.2732 

10 2.3101 3.1320 

5/2~ (642) blocked 

7 0.9472 

8 2.8221 . 

9 4.4400 

\ I 



Table B.3. Moments of the particle number distribution and terms of the projected energy series expansion. 

n 

No blocking 

7 

8 

9 

10 

5/2+ (642) blocked 

7 

8 

9 

2 
cr 
2 

0.974 

0.845 

0. 702 

0.557 

0.740 

0.492 

0.333 

~-

()3 
6-

- 0.0347 

- 0.0388 

- 0 .. 0252 

- 0.0122 

- 0.0575 

- 0.0317 

+ 0.0001 

4 
cr 
2"4'"" 

l (cPEPBCS \ 2 

2 ~ 2 J cr Op. 

. 
0.476 0.860 

0.366 .. 1.162 

0.258 1.057 

0.171 1.744 

0.282 0.702 

O.;t35 . 1.388 

0.068 1.480 

. 1 (~3E \ cr3 
6 o-p3] 

- 0.017 

- 0.020 . 

- 0.024 

- 0.006 

- 0.079 

- 0.058 

0.000 

1 ·(d4Ej 4 .24 :::-4 cr . 
. dp . 

+ 0.150 

- 0.080 

+ 0.297 

- 0.505 

;_..,~ 

. +·0.435 

- 0.106 

- 0.346 

: 

sum 

0.993 

1.062 

EBCS -

~BCS 

0.916 

1.101 

··~ . 
1.330 c • 1.138 

1.233 1,!~58 

1.058 0.872 
c' 

1.224 1.226 

1.134" 1.287 

.. 

I 
\.>1 
0\ 
I 

?3 
;;u 
t"i 
I 

1-' 
0 

~ 
\.{) 
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FIGURE CAPTIONS 

Plot of proton correlation functions 

UCRL-10939 

~ as a function of proton 
V. 

number. The energy is indicated in units of 0.05 nro on the left 
0 

and in keV on the right. 

Figure 2. Plot of proton energies Ev in the self-consistent field (abbreviated, 

Figirre 3· 

Figure 4. 

self-energies) as a function of proton number. 

Plot of neutron correlation functions 

number for some neutron orbitals. 

~ as a function of neutron v 

Plot of neutron correlation functions ~ as a function of neutron 
v 

-number for some other orbitals. 

Figure 5· Plot of neutron self-energies Ev as a function of N. 

Figure 6. Plots of diffuseness of the Fermi surface for proton and neutron 

systems. The three variational methods are plotted with the following 

symbols: (_) BCS, 8 PBCS, GJ FBCS. 

Figure 7. Plots of diffuseness of the Fe~t surface for proton systems as a 

function of decreasing pairing force strength. Open symbols denote 

7 pairs (Z = 90), and closed symbols 10 pairs (Z = 96). Circles are 

for the BCS method, triangles for PBCS, and squares for ~CS. 

Figure 8. Odd-even mass differences for proton systems ( 0BCS, b. PBCS, 

GJ FBCS theoretical and ,& experimental). 

Figure 9· Odd-even mass differences for neutron systems ( ~ BCS, ~ PBCS, , 

EJ FBCS theoretical and A experimental). 

Figure 10. Theoretical (FBCS) energies of various bands in odd-proton nuclei. 

Figure 11. Theoretical (FBCS) energies of various bands in odd-neutron nuclei. 

Figure 12. Comparison of four theoretical methods for calculating energies of 
~ .. 

bands in odd-proton nuclei. From left to right the methods are: 
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Q = quasi-particle energies from unblocked odd-number BCS solutions; 

B = BCS with blocking; P .= PBCS, fixed-particle projection from 

BCS with blocking; F = FBCS. 

Figure 13. Comparison of FBCS spectra (odd-Z), labelled F, with Lande's method· 

(fixed~particle projection from unblocked BCS with (N) odd). 

Figure 14. ·comparison of FBCS Spectra (odd-N), labelled F, with Land~'s method 

(fixed-particle projection from unblocked BCS with (N) odd). 

Figure B.l. Probability of components with p pairs in a BCS ground state wave 

:function with average pair number n. (@) n = 7, wave :function :for 

Z = 90; [] n ~ 10, wave function Z = 96; Ia n = 8, wave function for 

Z = 93 ~ith 5/2 + 642 orbital blocked). 

' . 

·; 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the·use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commis~ion, or his employment with such contractor. 
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