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UNIVERSITY OF CALIFORNIA 
Radiation Laborator.y 
Berkele,y, California 

June 21, 1951 · 

Information Division 

Standard Distribution -- TeChnology~Materials Testing 
Accelerator 

Subjectg Corrections to UCRirl095 

It is requested that the following corrections be made to your 

copies of the document UCRL-1095l' 11BeaJil DynaJ!lics of the Linear 

Accelerator"~ by Wolfgang Ko H. Panof'slcy, February 15, 1951. 

Pg. 4. Eq. (1) ~- right hand side ~hould be: 

[ \ { r!.) dr 0 J e E0 z(r!)z;cos_wt + P + dt B¢ sin (wt + ¢) 

Pg. 4. Eq. (2): put [after e 9 

and put J after sin ( c..J t + ¢). 

Pg~ 1.3. Two equations on top of page~ nroJ.tiply first member by t. 
Pg. 15., Eq. (.39h change sign in third term on R.H..s. of equation. 

Change ato ngn/Lno . 

Eq. (40): put ; before ~n = 1/ ~ 
Pg. 16., Eq. (42): change R.,H .. s. to - J3n-l-J3n-l, s . 

Pge 17. 

J3n-l,s 

Line above Equation (45h write: 

Eqo (45)g delete 

Eq. (4$) (N.,Ro): 

· We obtain, neglecting coupling terms: 

[ J term and add = 0., 

change nl/8 to n1/4 
0. 
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Corrections to UCRL-1095 - Cont. 

Fg• 18. Eq. (5.3): put n on (}_ 

Label (54) equation below Eq. (5.3). 

Fg. 19. Eq. (61) (E.R.): should read: 

w j\. 2 ~ c~ :~)- (2n tan fs) ¢n = 0 

Eq. (62) (E.R.): delete 2G in denominator. 

delete exponent 2 over W 

Eq. (6.3) (N.R.): multiply b,y 2. 

Fg. 20. Eq. (64): - Delete last bracket [ S. Add on line below Eq. (64): 

where couping terms have been neglected. 

Fg. 25. Eq. (79): 

:t [ m ,2 ~ + e r A¢] = o 
footnote, second equation (six lines from bottom): 
last term. 

Fg. 22;. Eq~ (72): second member: change<f'n-2 to'l)n-1 • 

Pg. 26. Eq. (87): change o n .. 2 tol)n~l • 

Fg. 27 •. Eq. (88): denominator: delete '1f"' -1. n 

exponent~ change o-' -.3 to 1) -2 n n • 

Fg. 28. Eqo (92): in bracket:: delete() n-1. 

delete last member of equation. 

2 put on 

.. 
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Beam DynBID.ic·s of the Linear Accelerator 

Wolfgang Ko Ro Panofsky 

Department of Physics 0 Radiation Laboratory 
University of California~) Berkeley0 California 

Febr'Uary 15 11 1951 

This report summarizes some of the known facts concerning the dynamics of 

particle behavior in a hea·vy particle linear accelerator" This report is not 

an originai contribution 9 but represents a compilation~f relations derived by 

several members of this Laboratory 9 notably Ro Serber 9 E., Mo McMillan 0 Lo Henrich 

and J~:~h~1 author o The graphs (Figs" ll and 12) concerning unstable operation of a 

linear accelerator are the results of' numerical integrations .Performed under 

the direction of Lo Henricho With the exception of the short section on 

unstable operation.!) this report deals only with questions which can be handled, 

by_ analytical methods o This implies that the important question of phase 

acceptance from e. very low velocity injector 9 important in the MT.A. application" 

is not given here~ This problem has been handled by numerical integration and 

on a differential e~alyzer by Lo Henrich (UCRLP866) and Ao Nordsie©ko Also the 

effect of' coupling between radial and phase motion has not been discussed in 

det;ail ·beyond giving the equations to be solvedo This is justified here since 

the phase oscillations are very rapidly damped~ aiso 11 resonancesu which are 

of importance in the theory of the circular machines are of no signi:fica.nce hereo 
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:Beam Dynw:ni.cs of' the Linear Accelerator 

Wolfgang Ko Ho Panofsky 

!}slpartmerit · iti'f Physi©s 9 Radiation Laborat.ory 
University of California11 Berke1ey11 ·California 

Februa~y 15 11 1951 

General Equations o:r Moti~IXil 

UCRL=l095 

m:n be a©ted on by b\'Jth radial and longitudinal f'or·ceso The longitudinal forces 

are dua to the longH;udinal (a:r.ial )' «:;omponent of the electri© fieldg the transverse 

components are due; to a) the transverse component of the electric field 0 ~) the 

effect I:Jf thE' ~r~,.t:lii~·,frequency magnetic field and c) e.ny external fcHm.sing means~' 

In order to detexmine the motio!.i. precisely the two eier(';tric field com:Ponents 

Ez (:r..,a;Bt) and ~(r11 &gfc;) have t;o be known .and also the RoF o magnetic field Bpf(:r 9 zgt )o 

If' the time var·iation is ,sinusoidal~ the equations to be integrated are~ 

wher~ F is any eXternal rs,dial 'fo:l'."CE~o The supersc;rip't 
0 

danote:s the amplitude 
.. ···' 

or'' t;h~ r·espectfv.e fielcL Using empirical fields the equations ca.n be integrated 

·- _ r;.ume:rical.ly8-th-~s is the only method feasible if e::ta«;;t results are desi.redo 

·~ ... :~wev~r, many general fa<0ts rcim be learned without a detailed integratieno 

rn general the motion des~ribed by Eqso. (l) a:r.i!.d (2) represent coupled 
' ' 

motions between the r e:..:Jtd Z beh:a:vioro In the case of la:rge relative drift tube 
> ' 

. apertur·e the. energy gaiu pet' gap depend~ on radial position and in general the 
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/ 

l!'adial motion depends on the phase of the particle relative to the Ro ·F o cresto " 

In cf:l,se this coupling is not negligible/) numerical integration is requiredo 

Hcwever 0 the dependence of energy gain/gap on radial position is 1J.SUally .small 

so that 1Nith negligible enror the phase motion (ioeo the Z motion) can be 

integrated for constant ro Also owing to the rapid d~ping of the phase motions , 

toward a consta:o.t pha.se 0 reasonable approximations to the radial motions· can be 

made by assuming a constant phaseo Under these simplifying assumptions analytical 
' 

t!"eatm<9nt is possibleo 
' 

II o .Syn.chrorA<i>U., Conditions 

The basic geometry of the linear accelerator is shoWii in Figl. lo At a given 

time the electri© fields are everywhere in pha-se and the magnetic :field in quadrature 

with the electr·ire fieldso L.et Ln be the "repeat 
. . th 

"length" of the n · . · .gap and ~ 

l;e the gap lengtho Let us assume that the velocity incret:~,.ses from ~n=l tq ~n -

tlllhen p~uJsing a.cr·o s s the nth gap (Fig o 2) o Let us measure the coordinate z from 

gap3 we define the center by the condition that~ 

(
2nz'\ · 

sin T} dz "". 0 (3) 

corresponds to the geometrical centero Let us 

define the illlphase1e J'n of the particle to be the number of radians in time ,by 

which ·the particle crosses the electrical center of the nth gap ,relative to the 

time iat·-which the electric field reaches its crest valueo Let 

~4J -----
~Correspond to a particle which crosses after the crest of the field has been 

reached9 and 
(5) 

to a particle whi1f;h corosses bef'oreo . These conventions are in .agreement with 
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Th.e machine is to be designed such that there _shall be a particle ·milled 

a. synchronous particle 9 for which under a specific set of' injection conditions 

L .shall be independent of' n., This phase angle is called the synchronous phase 

angl~ ;diS and all quantities such as energyD velocityD etc.,, a.sc!D ci-ated with the 

synchronous parti<e<le· are designated by a subscript 
8

o In principle the machine 

cannot be designed to have a synchronous particle without knowing the motion3 

on the othe~ hand9 the motions cannot be integrated without knowledge of' the 

fields in a gi v<S~n machine . ., In particular if' the fractional changes .fn velocity 

expected per gap are largeD the design can only be handled by successive approxi~ 

mations., On the other hand 9 if' the velocity c~n=l before entering the gap and 

the V€lloci ty ©~n differ only by a. small amounto thEm . 

(6) 

is clearly the condition for a synchronous phase: here ~ is the free space 

wavelength., The existence of' a synchronous orbit also implies that the influence 

of ra.dia..l position on phase motion is small o · 

The synchronous particle will increase its total relativistic energy from 

W t w • • the nth th' · · · · b " · nos o l'n+los wnen cross~ng gapa . ~s ga~n 1s g1ven y. 

W .,w . =! e E
0 

. nDs n=l 9s . . z 

is the sfnchr·onous velocity.. In .genera.l 9 using .the definition (3) of' 

(z) cos <¥·'*' ·fd } dz 
. IS S 

(7) 

the ele©t:dcal center 9 we can write Eqo (7) in th(3 formg 

W,, 8-Wn-1, • ~ • 1\ T E0 (!n• • 7 2 ~-l,s) cos ~. • e' T E0 r., cos ! 8 
(8) 

· 1Nhe:rre-

(9) 

' '{.• 
't. 
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I 

is the mean 'effective field, and 

(10) 

is the tet.rs.nsit time· factor 1t" It is useful to evaluate T. in some , simplified field 

,shapes.. The simplest caseD often a good approximation»· is to consider the field 

to be uniform in the gap.~· ioeo 

(11) 

(12} 

F·or this type ,field 

(13) 

If we consider the field solution corresponding to a drift tube of bore'~· 29n., where 

the field is given by Eq .. (11) at r"" an9 then it can be shown that the transit 

time. factor for a particle at 8Ii arbitrary radius r is given byo 

I
0 

~in(n~} .. • 
Io ~ .·(n~). .·;·.: .. 

. p. . ' 

·_l 

.. ('14) 
'·:::·· 

the e:x.-tra factor~;;- being due to the penetration of th~ fie~d into. the drift 

tubeso For most purpo.ses Eq .. (14) is of sufficient accuracyo The r-dependence 

of T is a fac'j:;or which produces coupling between the radial and the phase motions" 

Let the energy gain in M
0

rc, 2 units per wavelength j. 

e E
0 

T A , 
COS }I I ,'. 

s/ (15) 

be a bas:i.e design parameter of t_he machirl;e o In the ~on=relativistic range 

Eq~ ( 8) ca.n then be 11;r:d tten as 8 

~Her~ I 0 (x)g,:,J,. (i:x:) is the zeroth order Bessel function of the first kind with 
0 > 0 .... 
,lmag~nary argumen.~o 

.. •. 
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In 'the relati.·lfi::rUc range the fractional changes per gap e:re small; we CarJ. th'l_ls 

if 6Pn 'is the momentum increase per gap we have 
9S ; 

relativistically9 using Eq., ~$): 

(16) 

Equation (16) evidently includes Eqo (16 )(NoRo )., 

These equations g:l..ve the simple relations between the momentum P 9 total n 

energy Wn 9 ki~etic energy· ~ and velocity of the particle and the number of 

drift ·tubeso Evidently the momentum will vary li;nearly with t~e number of 

drift tubeso The synchronous relations areg 

(20) 

Here r1 i.s t&lcen to. make n "' 1 the f'irst gap of the machine and n
0 

is the '6.effective 

nu.mbe:rr of' gaps~11 c;orresponding to the injector., Non=relativisticallyJ>. 

The repeat iength is thus simplyg 

(21) 

I' 
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III o General S·tability Considerations for a uLong" Accelerator .. 

a... Types of Stability 

To obtain satisf'act,ocy operation for a "long" linear accelerator it is · 

clearly ne!C!essary that the· orbits be stable in phase and also stablE! radially., 

What length of stt<::h an accelerator would be cons ide red "long" in this sense 

·depends of course on the toleranoes on injection conditions.., .voltage gradient /I 

etco.., which can be heldo . We 'shall show lat;er that the periods of the various 

oscillations depend on the number N "" n + n00 i .. e .. the total e.ffect-ive number of 

drift tubes including the injector., A linear accelerator of this type is thus . 

"long~ ·in the sense of requiring stability if it increases the injection momentw 

by a large factoX''o A large injection voltage thus tends to make a.n acc.elerator 
I 

effectively "short"., 
\ 

Phase stabilit.y b produced in a linear accelerator if a. late particle 

receives a larget:r deg:r·ee of a.ccelerationo This in the case of a linee.r acce'lerator 

' means that the pe.rti<c:le 'Whould tr"averse the center of each gap at a time when ' 

the field is im~reasing~ Spedf"icially the condit,ion for phase stability in a 

(22) 

The conditions for radial stability are mora complicated., Focusing is 

obtained by the i'ollowing mecihiitn:i~m:B~ 1) ve~ocity focusing 0 sometimes called 

electrostatic or se<tlond order f'o~uBingo 2) phase focusingo 3) focusing 

produced by charges contained 'IJ1,1,thin the beruno 4) focusing produced by external 

means., 

bo ~he ~ir:t<compatibility'G theorem., 

If no charge :ts ·contained in the b.erun.? a particle crossing a gap off the 

*Note that this i~J the inverse of the condition ·perta.ining to phase stability 
of a. d.X'iUular S.Z\e:;eleratm:"o 
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axis will cross as many line·s of force directed toward .the· axis as away from 

the axisc A net radia.l momentum is thus produced if,~ a) the particle changes 

its velocity when crossing the gap a.nd b) if the :field varies in time.. The 

former mechanism is the one responsible for the focusing action of electrostatic 

lenseso We shall show that its effect is only important in the first gaps of 

a linear accelerator.. The second effect~ due to the time variation of the field9 

rapidly becomef> dominating further along the machineo It is .ciear that the 

condition f'or stable radial fcH':lUsing i.s essentially that the field be decreasing 
..... 

during the time of passage through the .gapo This condition appears incompatible 

with the phase ste.bility (;ondition expressed by Eq,. (22 ).. That this disagreement 

is a fundamental or.>.e and cannot be removed by any artifices of geometry has been 

shown by McMill~n.,1 The theorem was interpreted by Ginzton .. ey Hansen and Kenn~dy2 

as being simply a manifestation of Earnshawu s theorem. as effective in a frame 

moving with the charged particleo We shall here reproduce McMillan 9 s proof 

since it incorporates several useful relations to be used latero Using the 

tv•o Maxwell relations 
,_;.-> ,. -4~ 1 ()~ 
\7!i>E "' 0 a..."l.d "JxB "" ;2 at 9 valid in a charge and current 

free region 9 we cen easily show thatg 

(23) 

(24) 

are the leading terrr.s in a. Taylor expansion of the radial electric field and 

azimuthal mag:rie't;ie field in powers of the radial di~tance r., 'Accordingly for 
• J 

small r.? the radial. momentum of a particle crossing the gap is given byg 

(25) 

.A MKS m1its are used throughouto 
'/ 
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aE, -;)E; •. 
Here ~. ~md ="'·~~ represent the va.lues of the respective partial derivatives a :z .dt 

at the time of passago:; of the particle., If the particle moves with a velocity 

dEz 
v "" ~©v then the ):tate oz a:!.:; whi6h the field varies with z for this particle is 

(26) 

If we are here concerned only with the phase fo~using actionl) we may ignore the 

z dependence 1:1f' ~ and r (which give rise to the electrostatic focusing!) and put 

~Pr • '" 2~~~(~~ • fa:~) dz (27) 

We can eliminate either the partial time or space deriv~.tive in Eqo (25) 

by ·the use of Eq., (26)o ~lso since the phase .. { and ~he quantity
1

lvi> are'addi:tive 

in all casiHlv we can put =/t ::::.Wffj- o Eliminating the partial space derivativeo 

we have~ 

(28) 

In the absence of foils or grids' or other devices occluding charge within the 

beam the_ total derivative integr~al will vanish due to either the periodic end 

•condi tions or bjr extending the integral into zero fieldo ·The condition for radial 

. ' 

,r· :::, f ti)Z .J?.~ Ez; <:z 0 =y + j) dz "'- 0 of . (29) 

'I'hi s is elearly in((';ompa'!:;ible with Eq., (22)~> the condition for ·pha-se .stab:l.lityo 

Note that i:n th:is discussion only phase focusing and not velocity focusing 

has been includedo If the ,latter i.s included also,<) then there will, actually be 

a. small phJtse angle oyeir which the c;rbi ~s would both be radially stable and 

phase stableo We can' estimate this ra.."lge here .by sil!lply n0t assuming constancy 

:r 
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of ~ as was done Ui Eqo (26)o Thus re~writing Eq .. (26) with the aid of Eqo (27) 

and omitting; t:ro.a total derivative we haves .1( .. · 2) ~E0 . ' 6 ' ffi = !!.._ ~ ___:, Pl' 2~ . . ~ a z cos 

Let us estimate thi~ integral for the simple 

(30) 

"square wave" field of Eqso~ll)(l2)o 

Thi~ can be -vilritten in the fo:nng 

~)~6~ ~)j 
~-(z) Sl 0 for z ;l'o andf[(z)dz ~ l.o 

(31) 

where ~ is t-he ordinary S =function.!) 

•. I 

(32) 

It.is only necessary to evaluate this telrm. non=relativist:ically since velocity 

focusing is only of importance. at low velocities o Let us neglect terms deriving 

from the fact that the velocity Pn is 'not the synchronous velocity given by Eqo (19) .. 

The ~ dependence affects· the value of t.he radial momentum in two waysg l) since 

the. velocity is increased during passage.!) more time is spent during the focusing 
I 

part of the field tha.'l'l the defocusing parto 2)Even if the particle crosses the· 

center of ·the ga.p at the crest of the r .. f o wave.!) the times or passing the entrance 

and exit of the ga.p ar.e not· symmetrical with respe©t to the t':ime of .:passing the 
. ' . 

ceni;;e!!'3 the particle takes a longer time to 
1
approach the cent.er than to leave ito 

This causes the focusing field at. the time of entzy mto the gap to be weaker· than 

-----· 
I 

the def'o©using field at the time of departureo This second effect!> which increases 

11irith gap length.? Ctl't.m.te!!'acts the first ones in fact there will be a. critical gap 

length beyond vld:t:ir0.h the second order focusing will be negative. (defocusing)o 

In order' to evaluate approximately Eqo (32) we have to determine the times 
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+g ~ ~gn 
i~+ and ·t ... at whi.ch the particle crosses z g< -.ll. and z -

2 
o Let us assume 

2 

tb.:at the pa!"ticle travels with the veloci tYs 

~+~n=l 3~n=l+~ 
~~=-=·,.. 4 

~~ 

in the range 2 L. z '-. 0 

and the velocit.y 

Since 

gn 
in the range 0 < z <. 2 

we have.: -· 

and 

0t+ $ ~'f" 4!-~~ n~n F- 4i] 
Using Eq~, (i5) and (19~ the radial momentum becomesil 

Expanded in orders of N=1 .9 this becomes 9 carrying terms to order r 2 onlyg 

This is ©amposed of a phase defocusing termg 
·. 

nr (= sin ' i- c·l. 1 ) l~ ~ + c-=-i\ ~ · cos fbt'3 N , 2N _ 

order focusing (or defocusing term) and a .second 

. (33) 

(34) 
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The specific form .:Jf this latter term (not the formed) will depend on the 

;;;pecific shape of the fieldo 

Hence there will ba a small phase. angle of the order! 

(35) 

for which I!'J, particle is both pha.se stable and·focusiilgo In the Berkeley 40=foot' 

accelerator gx/Ln. =- 1/4 and n
0 

"" 24g therefore this angle is ver-y smallo 

Note that at gn/~a ~ .,34 the se,oond order focusing vanishesB this is the 

.. i 
point where the two effects mentioned a.bove cancelo Particularly when large 

apert\l,res are 1,;;,sed9 leading to a large uef'factive gapu 9 the velocity f:ocusing 

may easily become defocusingo 

do Radial oscillations of a grid or foil focused linear acceleratoro 

The theorem showing incompatibility of radial stability with phase stability 

is essentially bl!l.sed 1:>n the fact that a particle will cross no net radial electric 

lines of force if the field were statico Clearly if the entrance to the end 

drift tube were closed by a grid or foil (Fig .. 4) a net inward momentum would 

result.. Mathematically this corresponds to the total derivative integral in 

Eqo (28) not vanishing at its upper limit o Accordingly the first order focusing 

' 
term becomes~ 

(36) 

This is the·. genere.l fo:tmula for the radial momentuni,.gainedo 1 ,~are: ~ is t;he ·electric 

field at the ±'oil at the time o.f passage of the. particle thr~mgh the .foil (or 

grid)., 

We can eY&.luate Eqo (36) again only in terms of a specific model to give 

the field 

' 

, 
I 
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t 
~=~s . ., 

We oa.n simplif;y- this expression by only carrying .he first order' in ~ , 
lr's 

wheriSl 

{38) 

The <Correction term in F r·epresents the influence on the r-adial momentum of 

the lr~ot; at synchronous -velocity o These equations are relativistically 

We c~.ri ·convert Eq., (38) into the form of a difference equationg such an 
/ 

equation then forms a good basis: for numerical solution~ It shall be pointed 

out;, here again that this ana.lysis treats each gap effectively as a "thin" lens 0 

' ioe., IJ C8t.lculates the change in radial momentum in the lens but ignore;s raqial 

mot:Lon in. the lens itself'., Again. it will be evident by looking at the resulting 

motion tha.t this a.pproximation b justified if N is not ·too B!tle.Uo 

We can puts 

dr 1 n= 
. dt 

r 2 I 

O""'n "" 1/y 1=~ . 
ltl 

(40) 

This relation in :e:ombinatio~ with Eqs., (38) and (39h gives a. difference equation 

for lr'n.J,).Jt. in terms oi[' l'n end :rn=l if' the phase:motion has been CJbtained 0 i.,eoo if 

~:u and §t
1 

are known as a func:tion of, no We are goi.ng to write down the resultant 

\.1 ·equation only in the no:o . ..:relativistic case3 using Eqso (13 9 15 and 16) we obtain: 
), 

~gn1 ,d · sin T, ··cos p,., " 
-n. l);)_,l I - . 

(41) . 

. We ha.ve also omitted the terms in ~n=~no:sg these can be introduced using the 



',-· 

t . 
-.... · 

re ls:ti.on: 
~n = f3no'iil 

~n~>s 
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which expresse~ the rate of phase varia.tion as_ a fun.ction ·of deviation from 

s:~;nchronous ·velooi.ty" This coupling term is usually small.)· 

Foil or grid focl~sing thus gives rise to stable radial 9sc:illations in 

the ranges 

(42) .... 

(4-3) 

Figure _5 shows ·the :t"egi.ons of stable focusing and of phase stability for gnfl.n~-.. 25; 

the region 'Vvhe:re beth motions a.re stable iss 

Note that if' gnfl..rl "" 1/29 foil or grid focusing becomes ineffectiveo (Figo 5)o 

For large V9.h.i:.eS of N "" n+no!J we can write the_se equations as differential 

equations.. We oi:rtailc1~ 

where 

d [1 . l 
dn 

Here Ks .;B K. for! s yj~., 

cos 

K· .. 
+ . s 
~ 0 

sinffn. 

-We thus find that we iCllbtain oscillations which will be increasing in 

, amplitudeo Asymptotically the osc:Ulations ]:>ecome (see AppenP.ix I)g 

rn 
;; i 

1/2 
. , K 

(45) 

(46) 

(47) 

(48) 



,:.. ·. 

vvhich is simply; non-rel.a.tiv}: sticall~: 
+ 1;2( )1;2 - 21K n+n

0 
, 

1/8 
rncf:... n . e 

-17-

Eq., (47) can be integrated exactly non-relativistically giving: 

rn ,: fN" (A J~ ~2 'f KsN') + BY1 (.2 f KsN' )~ 
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(49) 

This equation has been plotted for n0 = 24 and various values of Jts in l~ig. 6 .. 

Its asymptotic expansion-is identical v.rith Eq .. (49)(N.,R.,)., 

In case foils of thickness N atoms/unit area and atomic number Z rathei· than. 

grids are used,\1 multiple Coulomb scattering will lose a certain fraction f of 

the beam up to the nth drift tube.. Serber5 has shown that$ approximately's 

-.363 d2/a2 

1 ... f "' 1.,6 e. 

here m :ts the electron mass .and ro is the classical electron radius. 

(50)-

If grids are used the transmission will depend on the opacity of the grids., 

The permissible transmission of the· grids is limited by the field concentration 

on the grid 1.tire s. 

5o Phase Oscillations in a Linear Accelerator e 

Let us examine the oscillations· of the phase A about the synchronous phase 

angle fts in the phase stable case, i .. e .. ¢
8 
<. o. Let us put 

~n "" f3n,s * ~n 1 

(51) 

w = w + w • n nss n 

. In general: 

W~-W,-1 • •L E~(Z) cos ("\: + ~~) dz (52) 

4 



.... , 

Us.ing Eq6 (10) we obtain~· 

(53) 

'Where: 

G s: 1 

f'or a uniform field· is a factor correlating the energy gain to the deviation from 

'synchr~nous velocityo Eqo (53) can be re=written as: 

Hence~ 

This equationn in conjunction with the equation (cf o Eqo (42) ): 

ffn..;;fln=l 
2n 

¢' 
s 

(56) 

(58) 

and the synchronous conditions Eqo {18) and (19), gives a second order difference 

equation for the phases,ry suitable for direct computationo 

' 
Written as a differential equation Eq., ·{57) becomes& 

.l 
I 

(59) 

l 



,, 

,, ... 

This is the general equation for the phase oscillations 6f a linear accelerator~ 

ao Small Os~illationso 

.. ( 2n tan Jiif.l) fin = 0 

(61) 

This can be written in the non~relativistic and extremely relativistic limits as: 

The resultant pha.se motions a.re thena 
'-'-· 

(62){EoRo) 

In the non=relati;r:itstic case the p.eriod of phase oscillations is 8 measured in 

terms of number of drift tubes~ 

For ~/L "" .,25 G § o213 and the amplitude damps as N~,o64 o 
~J. n 

In the extremely relativistic orbits 0 the phase motion becomes non=oscillatory 

' ·as demanded by the asymptotic constancy of the velocityo 

bo Large os©illa:tions o 

In the previous section we have derived the period of small oscillations about 

an equilibriwn phase angle Jds,o The co~plete phase equation (60) is not integrable 

analytically9 but we can estimate the limits of stability it representso- The 

principal interest in investigating the regiqn of stability is the problem of 
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calculat.ing; 'the range of' input phase whi<ch will be stable., Since the phase • 
oscillations are quite rapidly damped.!) we have to discuss the problem f'or low 

velod:t,ies only8 any particles phase=stable· ear'ly in the machine will remain 

well within t.he stable regiong in fa.ct it woulj be permissible to decrease =¢
8 

slightly toward higher energy o We a.re therefore justified to treat the pro't2lem 

non=relativist;:lcall;;r onlyo Tn that case Eq" (60) can be written asg 

">, ..,G N ... ~- ,J. o 

~ ~ -~ [l=.G/(2-G~ I 
2n. du u ,) 

(64) 

6 This :Ls identical to the diff_erential equation of motion of a pendulum 

of mass proporti-cmal to the 1 ~ 1/(2-G) power of the ."time" u 'Which is "biasedr~ 

by a torque Oiill its axis sttch that its equilibrium position is an angle =p/ below 
:s 

thE'! horizontal {Figo '1)o 'rhe motion can thus be described by a "potential9
t 

proportional to& 

(65_) 

which is plott.ed in~Figo ·So The last term. in Eqo (64) which sU .. g~tly _affects 

the damping only 9 has been neglectedo If particles are injected at ·the correct; 

(66) 

Sinc~S flrs,is given by cos pfs ""Vthreshold/Voperatingv this gives. immedia~ely the 

acceptance phas;s: as a function of operating voltage near thresholdo 

The !lV0Ce,ptance of a gilren particle ~Or a given value of ¢S depends O!l the 

value of the starting phase and starting velodtyo · These are defined by the 

condition tha.t the sum pf the f~pKrtantial energyir1 and "kinetic ener-gyw of the 

equiYalen'b pendulv:n1 shall not exceed ~he depth of' the potentia.lo 

I . 



.,, 
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Since the effective "kinetic· .ene:tgy 11 is~ 

(67) 

and the effecti1re potential energy9 measured relative ·to its maximum ~n""+lflls I ·""~%8 
is8 

veff g "•l~G ' 211 [~"~W.in t., ~ ~2 .~• + .w'nl} (68) 

Let Lw be the. de·~T:'i.ai;ion of the injection energy 0 W
0 

from .. its synchronous value., 

We ca.n.put~ 

n"'n 
0 

Hence the phase acceptance condition is: 

n n (D· .. w)2 
+ ~.{sin(¢n1·rfs )+sin fs .., ( 2 r~ .. + " ..... )~ < 0 

\Ql w;= . cos Jlfs "b 1' ..... 'j 

(69) 

(70) 

Fig., 9 shows a. plot of ¢'n ·!.! n
0

1/ 2 6W/W
0 

for va.rious values of fd
8

• This defines. 

a set of .c.losed curves such that any particle within these curves will be s:tably 

accelerated. For small oscillations Eq., (70) corresponds to the simple harmonic 

oscillator of total energyg 

(11) 

'· 
Note that the per cent tolerance of the injection voltage becomes less critical 

as the design injls~ti~n voltage decreaseso Also note that the 00depthtt of the 

potential ·varies a~ pf6 
3 for small fl~o 

6. Unstable operationo 

It is clear ·thai:; if a linear accelerator is ·short enough it can be' operated 

without g':rids., It will then 'be either phase unstable or radially unstablec, The 

origin!.".t.l r .,f., linear accelerator of Sloan and La.wrencs3 was cleariy operated iri 

such a mannero Experiments with the 40~foot linear accelera~or without grids 

' 
he:'lre shmm.1 't;he..t one ce~n obtain an .ttunstable11 beam of essentially the same 
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magnitude as is obtainable with grids.. However~ the criticality of adjustment 

is greatly increasedo. 

Figure 10 shows sorrte possible phase motions Which might give rise to -short 

time f<HJ;used operation., Since during the time ¢n> 0 one will .obtain .a s_table 

radial restoring force~> pha.se motions which will spend a sufficient tme near the 

11hump 11 of the potential Veff at, fl{n "" +I ¢'
13 
I 'Will give radially stable orbits., 

The question is thus one of the tolerances in injection energy required to achieve 

suqh opera.ti.o:;:i., 

Several orbi·ts ha.ve been computed by first integrating Eq., (64) numerically.· 

in the form of a f"hdte difference equa·tion., Typical cur:ves are shown in Fig., 11 

for various initial values of b. W/W0 D and for ¢
8 

'"' = 10° and a starting phase of 

Ignoring the velocity dependent tenn in Eq . ., (34) we obtain the simple radial 

di-f'ference equation.~ analogous to Eqo (4l)g 

""' 0 

Using the pha.se motions of Figo 11» this equation has been integr~ted for both 

parallel and divergent injection" A typical stable orbit. is shown in Fig., 12 0 

With the parameters indicated the range of ~WJW0 ~eading to orbits passing the 

40=foot accelerator is only .,05 percento This is in fair agreement wi.th the 

performance obtainedo 

For reference let us write Eqe (72) 0 which describes the unstable,radial 

motions in complet;ely relativistic 11 but differen~ial 9 
' 

= t.:. d ( dn .. x 
drn) · 111t'n=

2 
sJ..· n ~J;· 

15 0 -dn _·+ ~N rn . cos ;S . 

d}t. 
if the ~ coupling is :ignored,. dn 

form., We obt.ain& 

(72) 
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'7., Space charge ef'fect.s., 

In the Berkeley 40~;i.'oot linear accelerator space , charge effects are total.ly 

negligible owing ·to the limitation on the beam. current by the injector., In the 

f.JITA applic:a.t:i.cn on the rot.her hand.., such ef'fects may become important .. 

Exact treatment of the space charge effect is obviously impossible since 

orAe cannot treat the orbits independen,tlyo The only practical method seems to 
be to intr•jduce a mean fi.eld correspondin&? to the expected motion as a whole and 

let each particle move in suc..h a mean field,. 

If I is the berun current.., the 'charge per bun.ch is 2ni/w and if the bunch is 

concentrated in a. sphere of radius f !) each particle will experience a radial 

field or' order of magnitude~ 

Hence a term is i:n.troduced into the radial equation which is of order~ 

charge times the current ·times 3'76 ..n.. 
measured .in rest energy units of the particle accelerated., 

Clearly the value of ':1./f will depend on the particular accelerator design.., 

and evex1 on the injectio:n conditions., This falt'it.9 :l.n addition to t.he crude initial 

ass'll!flp·t.ionsD makes an evaluation of this term meaningless excep'!' as,an estimate., 

In order to keep the transit time factor T of Eqo (14) within reasonable 
' 

limitso the drift tube radiu.s a.n has to be a reasonably small :t;raotior~; of the 

repeat length Ln.o For a practical designg· 

(75) 

-henceg 

( '76) 

space 
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Hence the spaes charge eff'ect will become_ important only in the very fir'st~·drift 

tube so As a numerical example we might consider an energy gain of 350 Mev for· 

deuterons in 300 meters and a beam current of 1 ampere and a wavelength of 25 meterso 

ThiS gi VEJS 1'
0 

"" 2o0· X 10='1~ W f\"" o9l37 and hences 

space charge 

r' 
'-"'lo5 7 (7'7) 

' 
Although tnu ei'f'e,ct is not serious here it must be included in a correct orbit 

.oa1cu.J.ationo Note ·that fer a ghren energy gain/wit length of machine this 

"'\=. 3 expr·easion scales as r-.. and would become a. serious current limitation at higher, 

frequencyo 

8o . Magnetic Lenses 

Magnetic fc·cusing has been suc(;essfully used for electron linear accelerators 

but its use with a heav<J particle e.ccelerator appeared impossible owing to the 

excessive magnet powers raquiredo Early calculations in connection with the 

40=foot Berkeley machine showed magnetic focusing to be totally impracticaloo 

E~ Mo McMi lla.n showed that at MTA frequencies' ma.gneti c · fo,cusing would again be 

practicaL 

T.he theory of magnetic lenses is thoroughly discussed by Zworykin,ry at a1
4 

v 

and the reader :1-s refa.rr·ed to them for a thorough discussion of the details of 

the mot;ion~ .. 
I 

Fig., 13 shatJVS a diagram of a: thin magnetic lenso Io'ns entering the fringing 

field at a radi'l;)iS r from the axis will experience a force in the azimuthal (pf) 

direction owing to the radial component of the magneti-c field., This-azimuthal _ 

motion in t·urn will i:ntera.ct wit;h the longitudinal (z) compOllent 0 resulting in a 

displacE"!ment tow<?.,rd the axis o A.s the particle crosses the central plane of. the 

lens the azimuthal motion 1'1'ill be retardedv but nev(:}r reversedg th.a radial force 

~thus retains its dire,ot:i.on toward the axiso Figo_ 14 gualit:atively shows the 



' 
. behavior of 

.. If df7f 
r!) [tf ::£, and the radia:l. force as ·.a .f'und; ion ot~ z o 

if ,? d.rz: u 
Note that a net 

rotation of the orbit is obtained; however;> if the bero:n enters with zero angular 

momentu."ll. about the axis 9 it will leave with zero angular momentumo This is simply 

a consequen.:;e of the conservation of the canonical angular momentum. g 

~ t2 , ~ er ~ • 0 .(79] 

Here A¢ is the magnetic vector potentialo A b~am with initial mechanical angular 

m9mentum bef'ore entering the lens or a beam generated in a magneti,c field with 

z;erc angular momentum will never reacl1 -the point r "" Og injectdon into the linear 

accel'erato:r with angular momentum (by injection mis-alignment) or the magnetic-

field in the ion scurce will generate a uhollowtc beamo 

Let us consider each drift t.ube to contain a magnet of the general shape 

of Figo 13 0 a.nd let B(z) be the magnetic field of induction along the axis o The· 

relat;ivist~ic diff,arential equation of motionD if the canonical angular momentum 

. 4 ,• 
of Eq" {79) is zero is given by (See Zworykin 0 et al 9 Po 656 1 ~ 

r· (aB\2 

4 r; "" 0 (80) 

ttzworykin 9 et acl~h~ir equations the potential fi through which a particle 
would have to be accelerated to hs:~re a given energy.. They also use the term 
a. "" e/2Mif;2 (Gaussie.:rti)o To convert their equations to our notati.ons we useg 

0 

. I 
I. 

_1 <{. 2 apf "" o,., l j{l---::y "" W/W
0 

ap(l ,r,- e.J?i) "" (~ o/2 )2 "" t (cPJWo) · 

1 + !/?}i "" ( fr + 1 )/2 "' (W 7 W0 )/2\1!{0 

Equation 18o19 of Zworykin~ et al ~ . 

r; ,~ becomes :in <:JUT' notation.~ 

"" 0 

l', 
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I 
wherE! W is the total relativistic ~nergy and W

0 
is the rest energy. This can be 

written as» ignoring here velocity focushlg~ 

(81) 

Since the magnets are contained in the drift tubep let us call Rn the radial 

position .in the drift tube center where the momentum is Pno Let B:n be the· root 

mean square magnetic field.' Then: 

Hence/) from Eqo (6) 9 in ,the differential limit: 

d f/·. 2. 2' 0~~ dRn~ Rn 'd:Kr I+N w\ P TN ... = I 
. ,... n~>s l+N2w2 

. ' . A. 

Let the dimensionless quantity BAbe defined by& 

BA = (e B,-, )/ (2M0 c) 

The radial equatd.on is thus: 

~\7 + B~Rn~\ = 0 
dN )J 1\_ \Pn j 

(82) 

(83) 

(84) 

(85) 

The term Pn
98

/Pn :!..s a coupling term between the derivative of the phase motion 

and the radial motion" For a synchronous orbit the radial motion under influence 

of the magnetic field only is thus: 

1 
1/2 

B »· 
( 86) 

Let us now in:vast;igate the combined effect of phase defocusing and magnetic lens 

action.; The :radial. equa.tion» when combining Eq .. (37) and Eq~. (40) 0 becomes~> 

t~:j.ng rn~~ and 1:csing synchronous orbits& 

(87) 

.I 
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The motion is thu.sg 

(88)' 

To ·maintain constant amplitude we have to grade the magnetic field such that! 

2 nWo 
B.;\ "" Nifr". (= tan Ids) + constant (89) 

The value of the constant depends on the excess stability required at injection?f" 

.. A remark might be made here as to the order of the various kinds df focusingl) 
- . 

expressed in terms of the. dependence on NP ·the total number of drift tubes. ·This 

dependence is given in the following tableo 

Order of radial term 

Space charge N""3 

Veiocity Focusing 1("'2 . 

Phase Defocusing 
.. . =i N 

_Magnetic Focusing 
No for constant W.A 

Note also that other than for the magentic term0 all non~relativistic equations 

depend only on the ordinal number N of drift tubes~ the gradient and the nature 

of the particle are not contained explicitly in the equations describing the motions,. 

The relativistic motions and the action of the magnetic lenses can be described 

in tenns of the two .dimensionless cqnsta11ts W A and BA., 

9. Output Beam Shape 

The details of the shape pf the beam emerging from a linear accelerator 

depend of course on the injection conditions., Howeverv lf the_machine is long, 

the radial· osci nations Wi 11 become es~e-ntially random in phaseg in that case 

*Detailed ca;J.~mla·tions based on this equation are given in UCRIP10738 Engo Note 
303..;60, M3., 
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general things can be said without detailed integr~tiono 

Let A be the amplitude of a given radial oscill~tion., ·The probability of a 

particle emerging at a radius r is thens 

(90) 

The output beam density ()(r) is then gi v:en by: 

(J(r)_... 

r: 
1£ max N (!.) 2nAdA . 
r~ / A2 ., 2 r - r 

(91) 

\ 
Here N(A) is the initial probability distribution per unit area for a given 

amplitude., N(A,) will of course depend on the injection conditions.. Qualitatively 

the beam profile will be well represented by taking N(A) constant.. The resultant 

beam shape is shown in Fig .. 15.. The r=l singularity is due to the "crossing over" 

of rad.ial oscillations of various azimuthal orientationso This singularityD which 

is independent of the location of any actual foci has been demonstrated to occur 

in the 40~foot linear accelerator both for grid and no grid operation .. 

The actual value of the central maximum is limited byg a) space charge~ 

b) asymmetry of the acceleratorp and c) angular momentum of the beam .. 

Space charge limiting of the singularity can easily be shown to be very 
\ 

small at reasonably high output energies.. The e-ffect of angular momentUm ha_s 

been studied* and in effect produces a 11hollow beam'~ o 

' 

The angular divergence of the outgoing·beam depends on the wavelength of · / 

-the radial oscillations o 'fliis wavelengths i11. the case of magnetic focusing 9 /is 

given bya (See Eq .. (88)) 
\ 

2 7J ~-RI ~ (A A)-~ =1 UB2 = !. . t>n n . ~ N 
. ' 

""' · 1\0,. ,.;l :x: constant 13n n . 

(92) 

for a magnet system designed for const_ant amplitude of radial oscillation .. 
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\ 

If rmax is the maximum radius at the machine propero the beam envelope as a function 

of the distance y from the machine will spread as: 

r 
- ·= r max 

/ .. 

The beam shape will not-deviate in its general behawior from that discuss~d 

previously as a function of the distance £rom the machineo 

\ . 

(93) 

. ' 
/ 
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Appendix Io 

The Adiabatic Theorem 

The differential equations governing the oscillations in ~n anP. rn (if 

coupling is neglected) can always be put into the forma 

~+ ~) + kx ~ 0 (I-1) 

where m 8l'l m(n) and k=k(n)o Let us assume that m(n) and k(n) are slowly vary-ing;· 

ioeot> let 

~ <.< ~and ~~<· rf' 
m Y~ k Y;n 

Let us try a. solution of the forma ir w(n)dn 
x = A(n) e 

Substituting into I-1~ 

(m«At +m A"=· m AW2 + k_A) + i(2t.vm A' + Wm 9 A+ w• m A)= o (I ... 4) 

ignoring higher< order terms this gives: 

e,mAW 2 +kA=O 

2 W m A' + · W m 1 A + W' m A = 0 

. HenceZ 

1 
A = -4r.;:==:-

'· -J k m 

\ 

(I-5) 

(I-6) 

(I-7) 

(I-8) 

I 
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!l,g;ure C~tions 

Figo 2. 

Figo ':t vo 

Figo 4. 

Fig a 5o 

Fig~ 6., 

Figo 9o 

Schematic diagram of drift tube geometry. The lines AB and CD denote 

division into unit cells. 

Diagram indicating notation used for the geometrical parameterso 

Lines of force between drift tubas. 

Grid or foil geometry-.. 

Diagram indicating range of foil (grid) focusing and phase stability 

Radial oscillations of foil focused linear accelerator for various 

synchronous phase angles. 

Peudulum model representing phase oscillations of linear accelerator. 

The sign conventions for.in are indicated. ' 

Effective 11potential'1 applying 'to pendulum model. Note the rapidity 

of potentia,! depth increase with synchronous . phase angle. 

Diagram showing tolerance of the injeC?tion conditions. All parti,cles . 

starting inside the indicated curves will be' stably accelerated. 

D.vt "" deviation in injection energy from synchronous value. 

'Fig .. 10 0 Possible mode of phase unstable operation of a "short" linear· accelerator o 

Ffgo llo Phase motion of particles in a phase unstable. accelerator for. various . 1 

:\.njection energies o 

. Figo 12o Radial motions for typical phase unstable motions. 

Fige 13o. Magnetic lenso 

Figo 14o Behavior of radius (r )~ azimuth angle (¢) 11 angular velocity (!), 
radial force (Fr) as a function of axial distance. 

J?igo 15o Output beam profile of a long acceleratoro It is assumed that radial 

oscillat:tons ·are random in phase • 

. • 
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