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ABSTRACT 

UCRL-10992 

A detailed set of "bootstrap" equations is formulated, based on a 

combination of the Njb method with the superposition of top-ranking Regge 

poles in all three channels of a two-body reaction. The contribution from 

each pole arises from a distinct strip in the Mandelstam representation so 

that double counting is avoided. Only real values of l with l ~ 1 need 

be considered in the bootstrap calculation. The amplitude emerging from our 

N/b equations is meromorphic in the right-half l plane, and theRegge poles 

approach high energy limits that are dynamically determined and which in some 

cases may lie to the right of l = 0. The reduced residues vanish in the 

high energy limit • 
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* A J\'"EW FORM OF STRIP APPROXIMATION 

Geoffrey F. Chew and C. Edward Jones 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 8, 1963 

I. INTRODUCTIOii 

UCRL-10992 

It has been proposed trmt an approximation procedure for strong-

interaction 11 bootstrap" calculations might be based on a combination of the 

Njb method with the superposition of a finite number of top~ranking Regge 

poles for all the different channels connected by analytic continuation. 1 

By "top-ranking" is meant poles whose trajectories reach or closely approach 

the right-half t plane for real values of the energy. Since it is expected 

that these leading poles make large contributions over only a finite energy 

interval (at most a few GeV in width), the approximation is designed to be 

accurate in 11 strips11 covering the low=energy resonance region and high 

energies at low momentum transfer. ~ne spirit of our scheme is similar in 

this sense to that of the strip approximation proposed earlier by Chew and 

2 Frautschi but differs through its dependence on continuation in angular 

momentum with the consequent absence of arbi.trary coupling constants. The 

first paper dealing with the Reggeized str:J.p approximation1 contains at 

least one mathematical error and certain of the assumptions need reexamination. 

In this paper we present a revised set of strip equations and analyze certain 

general features of their solutions. 

Physically the most significant features relate to the asymptotic 

behavior of pole positions and residues. The poles generated by our Njb 

equations do not necessarily all retreat to the left-half J plane but their 

reduced residues decrease with a negative power of energy outside the strip. 
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It is this behavior of the residues that is primarily responsible for the 

dominance of the strip regions and perhaps for the sharp forward and baCkw~rd 

peaking in high-energy scattering. 

II. THE SUPERPOSITION OF POLE CONTRIBT.JTIONS 

The Mandelstam representation breaks the two-body scattering 

amplitude into three portions corresponding to the three possible pairings 

of the channel variables s, t, u. For example, the (s,t) portion is3 

1 
= 2 

1( ff ds' dt' p(S I z t I) (II.l) 
{s 1 

- s)(t' - t) ' 

where subtractions if necessary are to be determined by analytic continuation 

from large l in the s and t channels. Explicitly, if one assumes an 

analytic interpolation between ~11 physical £ values as well as meromorphy 

in the right-half angular-momentlli~ plane, Ast(s,t) may be decomposed into 

4 
three parts: 

1 

:n:2 

ds
1 

s' ~ s 
dt' 

t' - t 
I ( I I) pst s ,t 

(II.2) 

where the first term needs no subtractions and the second and third arise 

from Regge poles in the s and t channels, respectively. Mathematically ·• 

speaking, only poles that reach the'right-half l plane for some real 

interval of energy need be recognized; the remaining poles may remain buried 

in the first term of (II.2). It is proposed here, however, also to separate 
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out any poles that closely approach the ri~~t-half t plane in order to make 

the remainder as small as possible. 

We shall take the following formula for the contribution from the 

ith pole in the s channel: 

with 

tl 
R. (s,t) 
~ 

1 
:If 

00 

~ 
R.(t' ,s) 
~ dt 1 

t' = t 
( II.3) 

R.(t,s) 
J. 

:If 
= 2 ( 

2)a.(s) ( t ) (2Ct.(s) + 1) r.(s) -q ~ p ( ) -1- --2· · .. 
~ ~ s ai s • 2q . 

s 

tl 
The quantity R. (s,t) is defined in an elementary sense by formula (II.3) 

~ 

for -1 <Rea. (s) < 0 and otherwise by analytic continuation. The 
~ 

function a.(s) is the position of the !th Regge pole and is assumed to 
~ 

be real analytic in the s plane cut from s
0 

to +oo. The 

r.(s) is the reduced residue (the actual residue divided by 
~ 

funct.ion 
2a.(s) 

~ 
qs ) 

and is assumed to have the same reality-analyticity properties as a. ( s). 
J. 

tl 
The terms R. (s,t) 

~ 
can be shown individually to satisfy the Mandelstam 

representation with double spectral functions asymptotic to s = s 
0 

and 
sl 

t = t 1 • Similarly, Rj (t,s) will be a sum of terms satisfying Mandelstam, 

but here the asymptotes are 

The displacement of 
t] 

in R. ·(s,t) and of the 
~ 

s 

and 

the t branch point from t 0 
to 

branch point from to in 
sl 

R. (t,s) 
J 

facilitates the formulation of dynamical equations in the new 

form of strip approximation, as already discussed in reference 1 where the 

physical meaning of t 1 is explained. So long as one maintains in (II.2) 

the convergent double integral, the displacement in question merely changes 
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the value of , and one of the features or the new strip approximation 

is the assumption that this convergent integral is small. 

The first step in our approximation scheme then is to represent the 

full amplitude as 

A(s,t) ~ u.. J + £. R. -'-( s,u) 
~ ~ 

+ I [ R j s 1( t' s) + u1 J sj Rj (t,u) 

j 

+ I [ sl ~ (u,s) + tl J sk ~ (u,t) 

k (II.4) 

with only the leading trajectories being included and the sign factor g i,j,k 

being ±1 depending on the signature of the trajectory in question. Each 

of the six terms corresponds to a piece of the double spectral function that 

is dominant in a particular strip in the sense of Fig. 1. Explicit formulas 

for the double spectral functions corresponding to (II.4) are given below 

in Eq. (III.6). 

We now list the obvious aspects in which the approximation (II.4) is 

satisractory. First, it contains all the poles near t~e physical region 

with the correct residues, and if all selected trajectories stay to the 

right of £ = -1 there are no spurious singularities with a strength to 

compete with poles. Near any important pole of s , in other words, for all 

values of t (or u) we are gua~anteed accuracy; a corresponding statement 

also holds near poles in t or u. At low energies, in particular, we have 

at least the accuracy of the (many level) Breit-Wigner formula in the physical 
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resonance region for low angular momentum, whereas scattering for high 

angular momentum is controlled by the low mass particles in the t and u 

channels in the manner by now experimentally verified.
6 

The correct 

threshold behavior as a function of angular momentum is guaranteed by (II.4) 

as is the general analytic structure of partial-wave amplitudes. 

What about high energies? If the only £ singularities are simple 

poles, then as is well-known (II.4) becomes asymptotically accurate for low 

momentum transfers as well as for individual partial waves. With branch 

points in l the situation is more complicated, but we know from empirical 

fits to experiment that the pole approximation at high energies does not go 

wildly vrrong. In particular, it represents the experimental behavior of 

total cross sections rather well. The use of (II.4) therefore ensures a 

more satisfactory treatment of high energies than has been achieved in any 

pre-Regge dynamical calculations. It is the intermediate energies, i.e., 

near the edge of the strip, whose description is of dubious status. 

particular, the formula (II.3) becomes logarithmically infinite at 

In 

t = t 
1 

in violation of the unitarity condition in the t channel. This deficiency 

will be remedied in the second stage of our approximation scheme when we 

apply the unitarity condition in See. IV, but its presence in (II.4) forces 

us to remember that the sharp boundary for the strip is artificial. 

Even though (II.4) does not satisfy unitarity exactly in any channel, 

we hope that the violation is minor except near the strip boundaries and that 

by explicit imposition of unitarity in the second step of our program a 

sensibl~ smooth connection between high and low energies across the boundary 

can be achieved. As a final argument in support of the.plausibility of 

formula (II.4) we remark that it corresponds to the separation of the amplitude, 

familiar in classical nuclear physics, into "direct" and "indirect" scattering. 
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In the s channel, for example, the terms Rj and ~ arising from crossed 

poles give the "direct" or "potential" scattering that dominates high angular 

momentum and high energies. The terms Ri represent "indirect" or "resonance" 

scattering and are important only for low angular momentum and low energies. 

III. THE GENERALIZED POTENTIAlS 

As a preliminary to step two of our scheme we introduce now two new 

+ 
amplitudes A-(s,zs) , each having a cut only for positive cos e = z

6 
when 

The Mandelstam representation for the original amplitude A(s,z ) 
s 

can be written 

A(s,z ) = ~(s,z6 ) + AL(s,z
6

) , (III.l) s 

where 

00 

~(s,z6 ) 
1 J dt' 

Dt(t' ,s) = - - t(s,z) 1( t' 
to 

s 

(III.2). 

00 

AL( s, z
6

) 
1 J du' D(u',s), - u' - u(s,z ) 1( . u ' s 

uo 

Dt and Du being the absorptive parts for the t and u channels, 

respectively. We then define 

and observe that 

1 
= 2 

'J( 

J J ds' dt' 

(III.3) 

(s' - s)(t• - t) 

+ p-(s', t') 
' (III.4) 
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where 

Pst(s,t) ± p (s,t) 
' su 

+ 
p-{s,t) = 

-ptu(t,u) - Ptu(u,t) + 
. ' s < 0 • 

(III.5) 

The even part in zs of the original amplitude A(s,z
5

) coincides with the 

even part of A+(s,z ) while the odd part coincides with the odd part of 
s 

A=(s,z
5
). Note, however, that A+ and A- are individually neither even 

nor odd. 

In the approximation (II.4) the various double spectral functions 

are given by 

and 

k j 

so that after some calculation we find 

± 

J
oo V (t' ,s) 

dtv S --:'"t":""1 -=--:-t-

(III. 7) 

' 
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+ 
where the function vs-(t,s) arising from the crossed poles is given by 

+ V -(t,s) 
s = 

1 
j( 1 
1 Joo + -
j( 

ds' 
s 1 

- s 

du'· 
u' - u 

R.(s',t) 
J 

Im I ~j R}u' ,t) 

j 

± I ~(s',t)} 
k 

00 

1 f dt' \ . ± ;( t' - u Im L ~k ~ ( t' ,t) 

tl k 

+ e(t- t 1 ) I~ ~(t,u) ± G(t- u1 ) I ~j R/t,u), 

k j 

(III.8) 

and may be identified with the generalized potential defined by Chew and 

Frautschi. 7 The long-range parts of the potential including the poles in t 

8 
are contained in the first two lines of (III.8) o The third line is a short-

range part without poles. 

It is possible to evaluate the crossed pole contributions to give 

00 
1 J -
j( 

dt' 

+ V -(t',s) 
s 
t' - t 

± 

1 + -
j( 

± 1 
j( 

+ ul J s. R. (t,u) 
J J 

(III.9) 

I [ ~sl(t,s) + 
tl 

sk Rk (t,u) J 
k 

00 J dt'( 
1 - 1 

u)I sk ~(t',u') + t' - t t' -
tl k 

J '( 1 
- 1 

u)I sj R/u' ,t' ), du u' - t + u' -
ul j 

• 
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with s + u' + t = s + u + t L m2 
, the last two terms of (III.9) 

being odd functions of cos e 
s 

for A+ and even functions for A- and 

therefore not contributing to the physical amplitude A • In reference l 

these last terms w·ere erroneously omitted. They correspond to short-range 

forces and contain no poles but are needed if the left~hand cut in cos e s 

is to be completely removed. As will be seen in Sec. VI they are important 

in connection with asymptotic behavior. The essential· feature of (III.9) as 

opposed to (III.8) is that for t < 0 and s > s0 the pole positions and 

residues occur only with negative arguments and are correspondingly real. 

Thus the bootstrap calculation can be carried through with consideration only 

of P, real and in view of the Froissa.rt limit, 9 1- ~ l • 

IV. THE N/D DYNM-ITCAL EQUATIOiiTS FOR THE s CHAirnEL 

We assume as in reference 1 that inside each strip the two-body 

unitarity condition is adequate, leaving open the question of how many 

two-body reactions to include. For the s channel, if we suppress the (±) 

superscript, the considerations described in Sec. III of reference 1 lead 

to the integral equation (III.ll of the earlier paper) 

1 

p p 
Bn (s')- Bn (s) 

ds' x- x-

S
0 

= s 

(IV .1) 

the amplitude for the !th partial wave in the s cr~nnel being given by 

' 
(IV.2) 

where 
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D .e( s) l 
l l ds' 

P,e(s') N.e(s') 
(IV.3) 

1( s' - s ' 
so 

P,e being the phase-space factor. The dynamics is then concentrated in the 

function B.ep(s) , defined by 

p 
B.e(s) 

l r ds' B.e (s) = 
1( 

so 

so as to contain the poles of the 

Im B2(s') 

'S 1 
- S ' 

t and u channels 

£ real, 

(IV.4) 

but not those of the 
10 

s channel. The latter arise from the zeros of D.e(s) • The function 
p 

B£ (s) plays for the s channel somewhat the same role as the potential 

in a Schrodinger equation, but the analogy is not perfect. In particular 

·P 
B£ (s) is not simply the partial-wave projection of formula (III.9), 

although such an approximation is often made and was advocated in reference l. 

We shall see in the following section that B2p(s) receives a contribution 

from the s-channel pole terms even though it contains itself no poles in s • 

IV. THE CALCULATION OF B t p ( s) 

+ 
The Froissart-Gribov definition of B2-(s) for complex£ can be 

given in either of two forms. The original form involves the discontinuity 

+· + ll 
Dt-(t,s) of A-(s,t) in crossing the t cut, 

= 
l 

21( 
dt (V .1) 

while the second form, pointed out by D. Wong, 12 involves A±(s,t) itself: 13 

(; 

... 
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t 

-oo (V.2) 

+ 
In the new strip approximation, A-(s,t) is given by formula (III.7) for 

which the corresponding t discontinuity is 

= ± 

i 

~i e{t - u) J + 
+ V -( t, s) 

s 

+ 
Now vs-(t,s) has no discontinuity in s for s0 < s < s1 , so from (IV.4) 

we see that in calculating B£p(s) we are to take the entire generalized 

potential contribution, subtracting nothing away. ~~e f~rst term in (V.3) 

when substituted into (V.l) gives a function cut in s between -oo and 

s0 - t 1 , due to the s and also 

cut between and +oo due to the s discontinuity of R.(t,s) • 
~ 

we have (taking .tl = u1 and all masses equal) 

± 
= V (s) s,£ 

OJ 

l ds' If dt( 1 ± s.) Im R. ( t, s') + -
1( s' - s . ~ ~ 

Thus 

Q£(1 + t 2) 
2q I s l 2 £+1 

sl i tl 211:( qs I ) 

+( \ By V n- S) s,x.r 

contribution: 

(V.4) 

is meant the £-wave projection of the generalized potential 

+ 
e.g., formula (III.9) inserted in place of A- on the right-
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hand side of (V.2). By choosing this particular method only real pole 

positions and residues are encountered in the evaluation for s0 < s < s1 

+ 
V ,-(s) 

s,A'I 

1 
+ -

rt 

± 1 
rt 

+ 
1 -rt 

1 
0 

~t [rm Q£(1 + t/2qs
2

) J 
-oo 

ds' 
s' - s [ I R.(s',t) 

J 
± I 

j k 

00 

J du' I ~- ( R.(u',t) Rj(u'~t')) u' - u J J 
ul j 

co 

J du' I-~~~(u' ,t) Rk(u',t')) u' - u 
tl k 

00 00 

J dt' I sk Rk c t, 'u, ) ± 1 J dt' -t' - t rt t' - t 
tl k ul 

I ~. R.(t' ~u' )} 
J J 

j 

(v .5) 

The expression (V.4) together with (V.5) is considerably more 

complicated than that for reference 1 but still contains the pole parameters 

only where they are real. The second and third terms in (V.4), arising from 

the s-channel poles, had no counterpart in r~ference 1 and may not be of 

great importance for s inside the strip since the integral over ds' is 

entirely outside. Keeping these terms, however, tends to alleviate the Njb 

conflict between threshold and asymptotic behavior that becomes severe for 

• 
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high values of t . Our Njb equations (IV.l)/and (IV.3) in any event 

minimize this conflict by avoiding an integration to infinity, but the 

solutions for t > 1, if examined as s ~co, necessarily violate the 
p+ 

unitarity condition unless terms like those in (V.4) are included in B£ -(s). 

If the partial-wave amplitude emerging from the Njb calculation were exactly 

of' the form implied by the ansatz (II.4), the conflict with unitarity would 

be entirely removed by the extra terms. To the extent that input and output 

are roughly consistent, the conflict is alleviated. 

In formula (V.5) integrations to ~oo in t occur, whose convergence 

depends on the asymptotic behavior of the pole parameters. It is not 

expected in the strip approximation that this asymptotic behavior should be 

reliable, but unless the integrals in (V.5) are strongly convergent there 

will be important contributions from outside the strip that cast doubt on 

the consistency of the whole approach. Let us nm..r consider, therefore, the 

behavior of pole parameters for large negative argument in connection with 

the evaluation of ( V. 5) • 

VI. ASYMPTOTIC BEHAVIOR OF THE POLE PARAMETERS 

It is not difficult to show that as t...., co for s fixed 
sl 

R. (t,s) 
J 

behaves like 
0: .( t) 2 14 

r.(t) t J tn t , so this combination of' factors should 
J 

vanish for large t if the strip concept is to have any validity. Such a 

vanishing, furthermore, is required if the integrals appearing in the 

expressions (V.4) and (V.5) are~"to converge for all Re It~ 0 • The 

Froissart limit9 guarantees that all poles retreat to the left of t = 1 

for negative t , so it will suffice to have rj(t) decrease asymptotically 

at least as fast as 
~1 

t . Such a decrease will now be shown to be a 

property of our N/D equations. 
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As our denominator fUnction D£(s) is constrained through (IV.3) to 

approach 1 as s ~ oo for any finite N£(s), the position in the £ plane of 

a zero of D£(s) for large s must approach an infinite fixed-£ singularity 

of the numerator function N£(s). In particular, the numerator function may 

have fixed poles arising from the solution of Eq. {IV.l), which has been 

shown to be essentially Fredholm in character. 15 For nonrelativistic potential 

scattering J. R. Taylor has shown that there are no poles in N£(s) beyond 

those already appearing in the potential and that it suffices to analyze the 

fixed singularities of the potential (i.e., the Born approximation) in order 

to deduce the asymptotic behavior of Regge pole parameters. 16 We have no 

such assurance in our case and in fact must expect Fredholm (dynamical) 

fixed poles in the numerator function. The point is that.there are neighbor-

hoods in the complex £ plane where the kernel of the integral equation 

(IV .• l) is unbounded in normalization. The most apparent such neighborhoods 

are near the Gribov-Pomeranchuk fixed poles at £ = -1, -2, ·•• of formula 

(III.9) for the s-channel generalized potential. These poles necessarily occur 

in Btp(s) through the first term of (V.4), a straightforward calculation 

showing that they cannot be cancelled by the second term of this formula. 17 

Near one of these poles the kernel of (IV.l) can achieve an almost arbitrary 

normalization without much change in the (s,s 1 ) dependence. It follows that 

an infinite number of eigenvalues of the homogeneous equation will be 

accessible. In other words, each fixed-£ pole of the generalized potential 

will produce a swarm of Fredholm fixed-£ poles in the numerator function, 

and each of the Fredholm~-£ poles then will serve :as a possible terminal 

point for a Regge trajectory. The novel feature of this situation is that 

our terminal points are dynamically determined and will vary according to 

the force strength. 
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Let us now examine the possible additional fixed-£ singularities 

contained in formula (III.9) for the generalized potential of the s channel. 

There are two types of terms, corresponding to the two distinct double 

spectral regions in (III.5): 

(a) 

(b) 

1 
1f 

1 
1C 

()) 

R.(s',t) 
1 
s' = s 

J dt' { Rj( t' ,u' rL --:--1~ I t'- t 

tl 

(VI.l) 

R . ( t i ' t) I 1 u }· 
J t -

The asymptotic behavior for large t determines the location of the leading 
-€. 

singularity in the £ plane. By assuming that 7 j ( t) ""' t J the leading 

singularity in (a) occurs at .2 = a.(oo) ~· E:. o 

J J 
On the other hand, te~s of 

the type (b) have the Gribov~Pomeranchuk pole at t = -1 for even signature 

and t -2 for odd, as well as a sin@llarity at 
18 

ft= o:.(co)- e .• 
J J 

Now suppose that E.> 2 
J 

so the contributions outside the strip 

are really small. Terms of the type (b) then dominate the t asymptotic 

behavior of the generalized potential at least for positive signature and 

correspondingly should play a controlling role in the asymptotic behavior 

of Regge poleso In particular, for positive signature we anticipate a cloud 

of fixed-£ Fredholm poles in the numerator :function to surround the point 

t = -1 (where there must be an essential singularity, as emphasized by 

Gribov and Pomeranchuk), the maximum displacement o:f the poles from their 

"source" depending on the force strength. Assuming no trajectory inter-

sections, the Fredholm pole standing farthest to the right must be the 

terminal point of the leading Regge trajectory, and without a numerical 
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calculation all we can say about its position is that it w~st lie between 

£ = -1 and £ = +1 •
19 

Of course, once the possibility is raised that with 

very strong forces this terminal point may lie to the right of £ = 0 , one 

is tempted to see here a means of avoiding the well-known awkwardness with 

the Pomeranchuk trajectory when the point £ =· 0 is crossed at negative 

energy. 

Next, what about the asymptotic behavior of reduced residues? For 

a particular Regge pole this depends on the residue r.(s) of the fixed-£ 
1 

pole in N£(s) that serves as terminal point for the trajectory.· In the 

neighborhood of £ = a. ( oo) 
1 

£-+ a.(oo) 
J. 

£-a.{oo) 
1 

+ f.(s) , 
1 

r (s) being a solution of the homogeneous equation 
i 

sl 
p 

Ba (m )(s') 
r. ( s) 1 J ds' i 

1 l1: s' 
so 

and f 1(s) for large s approaching 

forward in terms of (IV .3) to show that 

where 

a.(s) ---~ 
1 

= 
l 
l1: 

s -+ OJ 

a. (oo) 
1. s 

p 
Bai (oo )( s) 

s 

p 14 
Ba. (co) ( s) 

J. 

(VI.2) 

Pa (oo)(s') r 1(s') 
i 

(VL3) 

It is then straight-

(VI.4) 

(VI.5) 



UCRL-10992 

-17-

whereas the reduced residue /i(s) has a behavior 

/i(s) ----7 ri(s) + fi{s)[o:i(s)- o:i(oo)] 
S...,. CD 

l 
:1( s ds' 

that vanishes at least as fast as 1/s o We have not demonstrated as strong 

a tendency to vanish asymptotically as is indicated experimentally or as 

was assumed above, and if €. 
J 

is actually equal to 1 , the potential terms 

would have a. fixed singularity at £ = o: .( oo) ~ 1 for both signatures vrhich 
J 

might be more important than the Gribov-Pomeranchuk singularity. The above 

arguments vTOuld not thereby be altered in any important way, but in any event 

there is no reason to trust our equations outside the strip. If the rate 

of change of /i(s) near s = 0 is successfully described we shall be 

satisfied. 

VII o SUMMARY P..ND CONCLUSION 

We have presented a set of d~1amical equations suitable for bootstrap 

calculations with low-spin external particles. The scattering amplitude is 

represented in two alternative ways, the pole superposition (II.4) and the 

N/D prescription of Sec. IV, neither of which is exact but both of which are 

supposed to be reasonably accurate at low energies and low angular momentum 

where bound states and resonances occur. The bootstrap calculation consists 

of a matching of the pole parameters in the two forms for real t..:::; 1 a.nd 

low energies. The pole superposition then gives the high angular-momentum 

components at low energy and hopefully the low momentum-transfer behavior at 

high energy. 
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The spirit of this paper is the same as that of reference 1, and the 

!{/D prescription has not been changed in any 1t.<ay :from that of the earlier 

paper. We have proposed here, however, an explicit and simple exp:ression 

for the pole superposition that conforms term by term to the Mandelstam 

representation. The clarity thereby achieved has allowed the correction of 

an error in reference 1 involving the 11 third" double spectral region. We 

are also proposing now to augment the "inputn function Bf)_p(s) 
"" 

for the N/D 
I 

. equations by a contribution from the direct~channel poles. 

An analysis of our bootstrap equations tJ.S.s revealed tvro physically 

important features absent in ordinarJ potential scattering (and which do not 

accord with conjectures made in reference 1: (a) Tb.e term.inal point for our 

Regge trajectories is dynamically deterlllined and for strongly attractive 

forces may lie to the ri.ght of 
20 

.£ = 0 • (b) Our reduced resic1.ues vanish 

for large energy at least as fast as 1/s . Both these features h.ave 

immediate relevance to the problem of f'J.tt:i:.ng high-energy data '1:¥ith Regge 

poles. 

There remains the problem raised by Mandelstam of cuts in angular 

21 momentum. This difficulty has had no chance to arise here because vre have 

not attempted explicitly to impose unitarity beyond the two-body region. 

qonceding the correctness of Man:lelstam's conclusion, there is still room for 

belief that our bootstrap scheme is sensible if the cuts are weak in importance 

compared to the poles. In. energy and momentum-transf'er Yaria.bles the domina,.J.t 

role played by poles has been the striking feature of strong=interactiozl 

physics; the same may well be true for an~1lar momentum. 

Put another t.>~ay, in reference 1 it i<las pointed out trrat experimentally 

the bulk of resonance decay seew~ to occur in two-body channels if unstable 

particles are considered. This circumstance, coupled with the assumption 
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that stable and unstable particles eventually will achieve equivalent status 

in the dynamics, suggests that conclusions based on the t¥TO-body unitarity 

condition have a wide range of validity. Our approximation scheme can 

handle any finite number of t¥ro-body reactions, with the choice of the 

parameter s1 depending on hm-r many channels are included. Hopefully, when 

a sufficiently large number of channels is incorporated into the N/D 

calculation, the precise value of s1 will become unimportanto Were that 

to happen, the goal of a parameter-free dynamics would have been achieved. 
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FIGURE CAPTIONS 

Fig. 1. ~he Mandelstam diagram, showing the strip regions where the double 

spectral functions are dominated by Regge poles. 
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