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_ABSTRACT |
A straightforward derlvation is given £or the Herm!tlan operator
' 1%

B e e ave

¥ r i 8r

corresponding to the radial component of linear momentum in the cenizfal force :
problem. The purpose {s purely pedagogical; we believe that the réidial term

of the Schroedmger equation in spherical coordinates is more comprehenaible V

when f{t appears inthe form S S - o 5 o

L e (5 ]

: than when it appears. as it does in moat textbooka. (n the form |

}-.‘- - #2 ,E__(rz_?_)\p -
' : ,"_Zmrz 8:__'. 8?

)

-

" The latter expression is usually arrivéd at by a tedious transfoimatiod of S

_ varisbles done "in the‘appendi "'; instead ohe'méy derivé Py with a minimum

of algebra and wlth the focus where it belongs. on the concepts of quantum

mechanics. _ ;
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INTRODUCTION '
The Schroedinger equation for the stationa.ry states tb(r) ofa aingla
-particle subject toa potential V(r) can be written in the £orm

H¢(r) a E 4'(1')

The operator I-I !s obtained £rom the claasical Hamiltonia.n function |

2 . x,.‘

-

He=gmt Ve

| by substituting operators for the dynamical var.iable's r and 2; The require~

ment that the eigenvalues E be real leads to the demand that the operator H

be Hermitian. i.e., one demanda - o | R )
I H\Pd‘r = JEp® yar o ol

-_where d'r ia the threa-dimensional volume element. and the integral extends,

.. over all space.

..

If one is dealing with Cartesi&n coordina.taa one uses the operators -

h 9 . o)
‘pxz n .5.; - (etc.. for y-and_ z).

Thmee Fror e s an T T AL LT

SELEUREA S SO S = S

as e mmogrnil

: ('I‘hat Py is Hermitian 13 checked by replacing H in the left side oi Eq. (i) by_ R

P, and mtegrating once by parts. with 4: =0 at inﬁnity.) Then one obtains -
the Hermltian 0perat<:r o | | o

"‘Ha.'.: (8_2+8 '_'+az>'+ Vixyz), .
o | \ex* - Oz S

i @, o
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When one deals with a central potential .-
V(z) = V(r),

one xiaturally uses spherical coordinates r, 6, and ¢. In most textbooks one

proceeds now to obtain the Hermitian operator vcorrespong‘ung to the kinetic

. energy az/Zm by transforming the Laplacian operator Z‘z‘ [times (-‘hz/?.m)]

from Cartesian to '_apl.xerical coordinates. Théxi& 1:2’ the square of the Hermitian o

operator

‘h
e T '

.c.

Lar)(garx

is recognized in the ’"angular" part of the Laplacian, and one finds

2mr

N R T Y U S
Hﬂ,-.—- -2'-8-;1‘ -a-f;"' -———2 + V(r). _ (2)

2m

In this form the "radial" part of the kinetic energy Operator is rather puzzling.

It corz‘esponds to the classical radial kinetic energy P, /Zm. But one does not .

easily recognize here the square of a Hermitian operator p ' and the operator _
Py is not usua.ny discussed a.t an, ‘ - o 3 N

DERIVATION OF RADIAL MOMENTUM OPERATOR

A straighforward and elementary der‘ivation.wiu now be 'givven. in which
the I_-Iermitian oper.ato’r corresponding to the radial morxientum> P, enters

naturaliy. 2 At the same time the student is (lightly) exercised in the non-

- commutative algebra of operators, and finally obtains the radial kinetic energy
‘operator in its most useful form. All of this can be done with somewhat less L

| .algebra than is .axpended‘in transforming the Loplacian' to sphérica.l coordinates. -

For r # 0 one can resolve the classical linear momentuni 2 intoa
radial component £ p= p and a tranaveree component that haa the aame

gnitude (although not the same direction) ae $ X 2. where £ is the unit
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- “wvector r/r. Thus the kinetic energy can be wfitten .

2

B_ept Exp?

2m 2m 2m . Do
 The second term can be written
wxp®  zf

. E3
2 - 2mr

Znir

where L = rXp isthe angular momentum. - One easily shows that the ope'ratorv"

e L=z X (‘h/i)v is Hermitian. and so is Lz. At this point one profita.bly studiaa ‘

~the eigenfunction-eigenvalue problem for L (and for L ) aud ﬁnds

2

L YL(G ¢) = ne L(L+1) ¥, ¢)

- One then retums to the Schroedinger equation and writes ,

thﬁs lébtainin_g the 'radial éqﬁtich"_- for Rﬁ')- nam'elyl‘ o .
| [ L 4 DLIED 4 Vi) R = ER(E). - (3)
| [ém - 2mr? R o '

It is now natural to lookt for the Hermitian operator corresponding to P,
For the classical.:riomentum\g' we have P = T B. = p+¥, analogous to the

' Cartesian component ) Xep=p.X. ‘We now replace p-by the operator

_ ‘p_ = (ﬁ/i)y_. In 'the. Cartesian case we have P, = X ('h/i)xve (ﬁ/i)g_- x =

(7/1)(8 /0x). In the spherical case, since § is not a fixed direction, - (H/i)Y
and (‘h/i)g_ *¥ are not équal. and in fact neiéher ¥e+p nor p- ¥ is Hermitian,

- and therefpre neithe}x.' cah_répresent Py In seeing why these opé;a.tors are
not Heimitian we me bo;_v_ gatnxauy led to the»'cgrre'ét He_rmitién '6§erat9§ for Pu

¢
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The HermitianAconjugate' A? of an operator A is defined By the relation
Iqs*(Aq»)dv = [yt yer. (4)

i i A? s A then A is said to be Hermitxan. and one then hpmediately finds
that the e.genvalues of A are rea.l. A vector operator A = A X+ Ayy + A i :
is Hermitian if its components are Hermitian, Thus # = 5‘/3' a.nd p= (‘h/i)v
are easily seen to be Hermitian. If A and B are Hermitian operators, then
' (AB)’ = p'al = BA. as follows diréctlyv from the defining Eq. (4). ”"I“herefo‘re |
AB is not in general Hermitian (mléss BA = AB.). Howevér. AB + BA is
Hermitian. J;‘or Vecltoxv' He’rm'itian.dpevratora. v.(AxBx)"' = BLA; = ";BxAx' etc; .- | |
for y and 2z, so that (ﬁ. . _B,,)t" B+A. Thus A+ B 'is xiot-in’ general ngmitién._
but A*B+B+A '“. The Hermit_ién operator to be asspclatéd wlth pis

then clearly
Pp= gy BrIL¥ LB -

' This operator ié easily evaluated in spherical c~o'o_rdi'natevs.v-f The algebra is -

in footnote 3. We 'obtaix_x

‘Then for p{ webave

. TiE.

'1oé.-.




The radial equation (3) becomes -

}'_In Eq. (7) the radial kinetio energy term has a more oonve"nient'form than. .
' that in‘Eq. {2). For instance. from Eq. (7) one sees by inspection that if one
. multiplies the radia.l equation by r and defines rR(r) | u(r). one obtains tho

uaeful "equivalent one-dimensional“ form

inaight into the wa.y in which u(r) = rR(r) enters naturally. =~ P

question of the Hermiticity of p_ ia just the question -

Starting with the left-hand side of Eq. (8) (and aetting 1‘1 =4 for convemonce)
. we introduce u= rR. we then integrate once by parte. damanding that u(r)

~ vanishat r=0 and r s w, (We will la.ter find that this condition need not :»
| alwaya hold. ) The minua sig,n introduced in the integration by parta is -

canceled by tha complex conjugation of i= '\/ ) Thus we have

5. - UCRL-10999 Rev. 7

_‘L. .4.. P;.. 2.. r ¢ M + V(r) | R{r) = ER(r). - (7) ’
2m r \ i 8/ 2mzr? . T o

e

{ . <ﬂ 3 ) . L(L 12)1}‘ + V(r)}u(ﬂ = Eu(r). -. :

i 8’ 2mr

HERMITICI’I‘Y OF RADIAL MOMENTUM OPERATOR . '!' " -

Next we check that P, is indeed Hermitian. In doing 80 we gain more .

P S P L sreroas

In epherica.l coordmates. with the separation \l&(r) = R(r) YL (0. ¢).

?

. fo R*(p R)r dr = Io (p R)*er

ae. (8

A}
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“

&

[ I

= f L2 RR> erzdr o
o \¥ i °8r L

= f (p RI*Rréar,
o .

 and the answer to 2 in Eq. (8) ia yea.

| ' This last demonstration is instructive in ahowing us that the operator

: (ﬁ/i)(& /9r) is in a certain sense Hermitian with respect to the wave function

“u{r), for which "ths inverse-aquare law" (for a conserved flux) has been

 factored out in order to reduce the thraa—dimensional problem to an equivalent

one~dimensional problem. -
' EIGENFUNCTIONS OoF RADIAI..' .MoMENTtrM OPERATOR

B LaSﬁV we 100k at the eigenfunction-eigenvalue problem for. p . L
We have L | '

P.R(r) = PLR(x))

R N Sy & W ) ®oadr

Aoy e
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whore p, is given by'Eq. (6) and p; is the .étgenvalue. That_is. for r #0,

(’;T dr Ar) R “',pt_Rf‘_.l

. ‘ﬁva'
(T 5;) Q(r) = p u(r).

Ay

 where u = rR, Thia diffexential equation has the solutlons

u = exp (ikr) ~ (outgoing waye)
and : | | |
u = exp {~ikr) (incoming wave),

where k is real and posvit‘ive. and where R : o "{: (,

P = +hk (outgoing), or fik ({ncoming)o

1

At first sight {t may geem that we actually have not sblved the eigenfunction«

B2

eigenvalue problem, because in the derivation fo).lowmg~ Eq. (8) we assumed
u(r) -~ 0 at r,» 0 and r = ® (in the step in which we integrated- by pa.rté).
whereas ouﬁ present eolutidn, u= exp (xikr), does not vanish at r = O.or at
infinity, Nevertheless. the integrated texm [in the derivation of Eq. )] stiu
vgives zero, becausa it ha.s the same value at r=0 a.nd at inﬁnity. namely

uﬂfu = 4. Thus u = exp (ikr) is an acceptable eigenfunction. of course, these

| .eigenfunctions are unnormalizable. in esaeutiaily the same way that the free~
particle eigenfunctionl of Py namely exp (tikx), are nnnormalizable. _
| From Eq. {(3) we see that the eigenfunctians of P, correspond to atationary
saatea (definite energy) only £or free particles [V(r) = constant] in an 8 state |
'(L = 0). otherwiee, we may not replace p?' by a constant in Eq. (3) For frae

particles in an S state, flux conservation is satisﬁed it we have the linear .

b
S 03 koA 4 Lt
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.' combinaﬁon | ‘

ur) = e#p (-ikr) + exp {ia) exp (ikr).}

~ There seema to be no reason to tetjqira _aﬁcpin = <1, i.e, ;to.“requi‘re. d(r) =0

"',,"a:r=0.5 P L o N - '
From Eq. (3) we sece that there is only one other case for which a stationary' A

state {definite E) may be simultaneously an eigenstate ot' p that can occur if

the poteutial is tha rather peculiar function ot’ r {and. L). '

V(r. L)’ -—-—Eﬂiiﬂ + constant.

then the actual potential V(r) is attractive and exactly cancels the efiectlve

céntrifugal poténtial,. This would correspond to a classical velocity-dependcnt
' - _ , \z

- potential - K
S {r X . : S

Vie,p) = = 22B L Constant. . .

. : 2my , : '

-

Siuca this potential does not seem to éoxrespond to any physical system aétuany
_ realized in nature. it is not surpriaing that the eigenvalues of P, have little

'} appucation. x



 1955); E. Merzbachet. Quantum Mechanics (John Wiley and Sons, Inc. .‘ S

.. (Addison-Wealey Publishing Co., Inc., Reading, M».ae. ’ 1961). V. Rojansky._

2

3.

ﬁ .' first term in t.he parentheses of Eq. (5) o
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FOOTNOTES AND REFERENCES

*Work done under the auspices of the U. S. Atomic Energy Commission.

See. for instance. David Bohm, Quantum ‘I‘heory (Prentice-Han. New. York. . .

1.4951). L. 1. Schiff, Quantum Mechanics (McGraw~Hill Book Co., New York, o

. New York, 1964); J. L. Powen and B. Crasemann, Quantum Mechanics :::

Introductory Quantum Mechanics (Prentice Hall. New York. ‘1946). and

The second term ia

: Linus Pauling and E. B. Wilson, Jz., Introduction to Quantum Mechanics - _’ o
: (McGraw-Hiu Book Co. » Inc., " Now York. 4935). '
The derivation of P, given hero is not found in the repreaentative sa.mple of

'popular toxts listed in roferences 1 and 4, No attempt was made to search

the lite ratur e of quantum mecha.nics to see whether a eimuar treat-

e

: ment has been given elsewhore. See reierence 4. howevor. -

'For clarity we include the operand wave function R(r) We ha.ve. £or the

L $ VRs-a--R.
S dr

"uﬁ-(V-r)-l-Rr.Vi-bir.VR
R g )
a»ra 3'(_';2‘ _r.»’ax
=:(.g- +9._>R, |
T

i aE AL i et e
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'Thoswehave S
v ,\" _. . AN
oV+V' —~+-—o .
(£ Iz r)R .= 2(81’ r)R Rt
= ?:-(r‘-’--«af 1>R 4
r oy

8
" (o
Gl?;'
LN
\'f/
w
-

“and Eq.. (6) follows from Eq. (5).

'P. Dirac [The Principles of Quaﬁtum Mechanlcs' (Oxford Univeravity Press. o

. 3rded., 1947), p. 152) introduces the operator pl = (#/1)(®/0r) and then

" shows that p - ifr” -1 is canonically conjugate to r. L. Landau and

5.

‘.fshitz [Quantum Mechanics (Addison-Wesley Publishing Co‘ ’ Inc. » :

Reading. Masa.. 1958), p. 108, footnote] mantion without diacussion tho"

operator p_ of our Eq. (6). 'E. C. Kemblo [The Fundamental Principles |

- of Quantum Mechanics {(McGraw-Hill Book Co., New York, 1937). PpP- 297

| and 335, footnote] diacusaes the unsatxafactory chara.cter of the operator o

(f'/i)(a/ar)

. For a discuésion of bounda.ry conditlona at r= 0, see B. H, Armstrong

: and E. .A. Power. Am. J. Phys. 34, 262 (1963)-
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