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Schroedinger Equation for a Ct;tntral Force 

FrankS. Craw!o1·d, Jr. 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California. 

September 4, t 963 

ABSTRACT 

A str~ghtforward_ derivation is given for the Hermitian operator.· 

· t ·" ., a 
p s -- -r 

r r i &r.· 

corresponding to the. radial component of linear momentum ln the central force· 

problem. The purpose i's purely pedagogical; we believe that the ~ac:llal term 

of the Schroedinger equation in spherical coorcUnatea is more comprehensible 
. •I 

when lt appears in· the ·£orm 

·: •'cp!J2m)"' a [(!.!!.!... r) 2 
/2m'] ~ 

r i &r ' . .. .. 
than when it appears, as it does in most textbooks, in the form 

. - 112 .!... . (r2 !...) "'• 
. 2 z ar . ar , mr . . 

. I 

The latter expression is· usU&Pr arrived at by a tedious transformation of 

variables done "in the appencUxn; lnatead one may derive Pr with a minimum 
. . 

of algebra and with the focus where it belongs, on the concepts of quantum 

mechanics.·· 
' ... 

• ' .• . 

~i' ,,· ... 

. . r 

.·· 
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INTRODUCTION 

The Schroedinger equation for the stationary states q,(r) of a slngle - . 

particle. subject to a potential V(;:.) can be written in the .form 
. ~ 

.. H'l'(r) :i E"'(r). - -
··The operator H is obtained from the classical Hamiltonian function 

'· 
P..2. 

H 0 - + V(r) 2m ¥-
by substituting operators for the dynamical variables !. and .2.• The re(luire• 

ment that the eigenvalues E be real leads to the demand that the operatol' H 

be Hermitian, f.. e. • one demands 
I 
II 

(i')' 

where dT is the three-dimensional volume element. and the integral extends, 

.. over all space. .. 
l£ one is dealing with Cartesian coord.ina~s one uses the operators · 

(etc. , for y and z). 

(That Px is He:rmitian is checked by replacing H in the left side o£ Eq. (1) by 

Px and integrating once by parts, with q,· ... 0 at infinity.) Then one obtains 

the Hermitian operator 

1l2 ( 82 . 82 · 82 ) ·a·---+-+- +V(xyz), 
2m 8x2 ay2 8z2 

i.e •.• 

. . fl2 v2 
H•-- + V(xyz). · Zm -

• I 

1 
' .· I 
I 

" .: 
; 
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.r; 
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When one deals with a central potential 

V(r) = V(r) • -
one naturally uses spherical coordinates r, 6, and +• In. most textbooks one 

proceeds now to obtain the Hermitian operator c:orresponfing to the kinetic 
z . . ~ . z 

energy E. /Zm by transforming the Laplacian operator !. . [times (-'fl /Zm)] 

from Cartesian to spherical coorliina.tes. Then' L2 • the squa:re of the Hermitian . - . . 

operato:r 
\"-

. 1i 
L = rXn,• rX-v, 
-- .... A. .... 1 ...... 

. is recognized in the '"angular" part of the Laplacian, and one finds 

· "'z t a z a 
H =--...,..- r -. zm r"' ar . 8r 

-+ + V(r). 
2mr~ 

In this form the "radial" part of the kinetic energy operator is rather puzzling. 
. . . 1 . 

. 2 ' 
It corresponds to the classical radial kinetic energy P! /2m.. But one does not . r ~ . . 

easUy recognize here the square of a Hermi~ian operat9r Pr• 'ancl the. operator 
' ' ' t . 

Pr is not usually discussed at all. . · . 

I 
DERIVATION OF RADIAL' MOMENTUM OPERATOR 

A straighforward and e_lementary derivation will now be given, in which· 

the Hermitian operator corresponding to the radial momentum Pr enters 

naturally. 2 At the same time the student is (lightly) exercised in the non­

commutative algebra of operators, and finally obtains the radial kinetic energy 

operator in its most useful form. All of this can be done with somewhat less 

algebra than is expended in transforming the Laplacian to spherical coordinates. 

For r =J 0 one can resolve the classical linear momentum E. into a 

radial component r • l?. a Pr and a transverse component that has the sa~e 

magnitude (although not the same direction) as r X 2,, where r -·is the unit 
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vector !,/r. Thus the kinetic energy can be written 

.i_ = (r • e>2 
+ (r x g,>2 

• 
2m 2m 2m 

The second term can be written 

• 
' 

where .!:1 a £.Xi is the angular momentum. · One easUy shows ~t the operator · 

L = r X (ft/1) V is Hermitian, and soh L2• At this point one pr'ofitably studJ.es ... ... ... ' .... . ' 

. the elgenfunctlon-eigenvalue problem for ~ 2 (and for ~z) and finds.. . 

One then returns to the. Sch:roedlnger equaUon and writes 

M . 
· "'(!_) = R(r) Y L (8, cp), 

thus obtaining the 11 radlal equa*ion". for R(r), namely ... 

1'12 L(L + t) J . . + V(r) ·R(r) = ER(r). 
2mr2 

I . 
·L. 

1 . 

(3) 

It is now natural to look !or the Hermitian operator corresponding to p • . r 

For .the classical. momentum ,2 we have Pr = r • E.= E," r, analogous to the 

Carte sian component Px = x • E. a E.. x . We now replace ,e·by the operator 

E. = (11/l) !: In the Cartesian ease we ba.ve Px = X. • (t-/1)!. = (11/i)!. • x = 

(11/1)(8 /8x). In the spherical case, since r is not a fixed direction. r . (fl/1) v -. . 
and (1'1/i)!. • r are not equal, and in fact neither r • E. nor E. • r is Hermitian, 

and therefore neither can represent Pr· In seeing why these operators are 

not Hermitian we wUl be natu~ally led to the correct Hermitian operator !or p .• . . . . r 
. ' 
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The Hermitian conjugate At of an operator A is defined by the relation 

(4) 
;, 

If At = A then A is said to be Hermitian, and one then !~mediately finds 

that the eigenvalues of A are real. A vector operator A f;. A x +A y +A z 
. . -· X y Z 

is Hermitian i£ its components are Hermitian. Thus r = !Jr and E.= (11/i),! 

are easUy seen to be Hermitian; I£ A and B are Hermitian operator·s, then 

(AB) t = Bt At = BA, as follow's cllr~c:tly from the defining Eq. (4). 'Therefore 
. ·~ 

AB is not in general Hermitian (unless BA = AB). However, AB + BA is 

Hermitian. For vec.tor Hermitian operators, (AXBX,t = a!A! = BXAX, etc: ... 

for y and z, so that (A • B)t = B • A. Thus A • B is not in geneX"al Hermitian, 
~....,., ... .,..., .......... . 

but !_ • ! + !. • ~ is. The Hermitian operator to be associated with Pr ls 
tl' 

then dearly 
I. 

t . . 
P,.. = - (r • .e + E. • r). 2 - .\ 

· . 1. e., 

1i . 
P ... =. - <r • v + v • ~> • 

• Zi - - · 
(S) 

This operator 1$ easily evaluated ln sp~erical c:oorcllnates. ·.-·The algebra is 

in footnote 3. We obtain 

(6) 

i.e. , 

I 
! 

i 
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The radial equation (3) becomes 

[ -
t _t (-1'1 _a )

2
..;. .+ L(L+ t)'fla · ] • + v_(r) . R(r) = E R(r). (7) 

Zm r i 8r · 2mrz 
- . 

In Eq. (7) the radial kinetic energy term has a more convenient form than· 

that in Eq. (2). For instance, from Eq. (7) one sees by inspection that if one 

multiplies the radial equation by r and defines rR(r) a -~(r), one obtains the · 

useful "equivalent one-dimensiona111 form ·, 

...... --- + [ 1 (1'1 a )2 
_ 2~ i &r 

'• 

L(L• i )1iz_ + _v(r)] u(r) = 
2mr2 

E u(r).· 

HERMITICITY OF RADIAL MOMENTUM OPERATOR I ·. 

!I ,, 

Next we check tha_t p 1s indeed Hermitian. In doing so we gain· more \ r . ·. ·-

insight into the way in which u(r) = rR(r) enters naturally~ 

M In spherical coordinates, ,with the separation' ~C!J • R(r~ Y L (0, ~), the 

question of the Hermiticity of p is just the question 
r . . 

(8) 

Starting with the le£t-hand si~e of Eq. (8) (and setting 1'1 = t for convenience) 

we introduce u ~ rR; we then integrate once by parts, demanding tbcit u(r) 

vanish at ·r = 0 and r = oo. (We wW later find that this condition need not 

always hold. ) . The minus. sign introduced in 'the integration by parts is 

canceled by the complex conjugation of i = tJ?f ~ ·Thus we have 

' 

.· .. , 

l 
! 
I 
i 
I 
! 
i 
I 
1 

i 
! 
l 

i 
- i 
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- .. 

. . . . . 

= -J _«> (! .!. .' !L r_ a)* R r 2 dr. 
.. r i ar 

0 . . . . - . 

and the answer to l in Eq. (8) is "ye~." 

.. 

' . 

This last demonstration is instructive in showing us that the operator 

I 
tl 

I ~ 

- (1'1/i)(S /8r) is in~ certain sense Hermitian wi~ respect to the wave function 

u(r), for which "the inverse-square law" (for a conserved flux) has been 

factored out in order to reduce the three-dimensional problem to an equivalent 

one •dimensional problem. 

EIGENFUNCTIONS OF RADIAL MOMENTUM OPERATOR 

Lastly we look at the eigenfunction-eigenvalue problem for- Pr• 

We have 

. . 

.~1 .. 
. 'i 

; 

~ 
- ·' 

. ' 
1 
l 

. ' i 

' 

i 
i 

.I 
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where Pr is aiven by Eq. (6) and p; is the eigenvalue. That is, for :r :f. 0, 

i.e., 

(~f :, r) a .. ~a, 

(~ !..) u(r) = p; u(r), 
i 8r . 

where u = rR •. This difieX"ential equation has the solutions . 
'+ 

u = 'exp (lkr) 

and 

u = exp (·ikr) 

where k is real and positive, and where 

p' = +flk (outgoing), r .. 

(outgoing wave) 

(incoming wave), 

or ·'flk (incoming) •. · 

I, 
:I. 
:: 

At first sight it may seem that we actually have .not solved the eigenfunction• 

eigenvalue problem, because bi the derivation following Eq. (8) we assumed 

u(r) - 0 at r - 0 and r - oo (in the step in which we integrated by parts), 

whereas our pr.sent solution, u = exp (:l:ikr), does not vanish at r = 0 or at 

infinity. Nevertholeos, the integrated term [in the deri~a.tion of Eq. (8)] 'still 

gives zero, becaus~ it has the same value at r = 0 and at infinity, namely 

u*u = t. Thus u = exp (d:1kr) is an acceptable eigenfWlction. Of course, these 

eigenfunctions are unnormalizable, in essentially the ·same way that the free .. 

particle eigen!Wlctions of p • namely exp (:l:ikx). are unnormalizable. 
X . 

From Eq. (3) we see that the eigen!wlctions of Pr correspond to stationary 

states (defiuite ene~gy) only £or free particles [V(r) = constant) _ln an S state 
. ' . . . . z ' . 

(L = 0); otherwise, we may not replace Pr by a constant in Eq. (3). For £ree 

particles ln an S state, flux conservation is satisfied 1f we have the linear · 

. ·-- -·---, 
! 
I 
j 

' 1 
j 

'' 
i 
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combination 

u(r) = exp (-ikr) + exp (ie) exp (ikr) .. 

There seems to be no reason to require exp io. = .1. • i.e. ,to require u(:r) = 0 

at r == o. 5 
t; 

From Eq. (3) we aee that there is only one other ca~e for which a stationary· 
• 

state (definite E) may be simultaneously an eig~~state o£ pr; that can occur U · 

the potential is the rather peculiar !unction of r (and:.L). 

' 

V(r,l.) •'1'\,
2 L(L + t) = - --.-.... -~.--- + constant; 
2mr2 

then the actual potential V(r) is attractive and exactly cancels the e££ectlve 

centrl£ugal potential. This would correspond to a classical velocity..;clependent 

potential 

V(r,p) + constant. 

Since this potential does not seem to correspond to any,physical system actually 

realized in uture. it is not surprising that the· eigenvalues o£ Pr bave little · 
I 

appllc~tion. 

.. 

~ ........ 
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FOOTNOTES AND REFERENCES 

0 Work done under the auspices of the U. S. Atomic Energy Commission.-· 

.. t. ·. See, for instance, .David Bobm,_ Quantum Theory (Pr~ntice-Hall, New. York,.· 
. . . l 

·ll 
. t 951. ); L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co •• New York, 

! 
1.955); E. Merzbacher, ;Quantum Mechanics (John Wiley and Sons, Inc., .. ,: ·l 

.New York, 1.96ih J. L. Powell and. B. Crasemann, Quantum Mechanics :<. 

(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1.96i); V. Rojansky, 
.·. 

Introductory Quantum Mechanics (Prentice-Hall, New York, t 946); and 

Linus Pauling and. E. B. WUson, Jr., Introduction to Quantum Mechanics 

'(McCiraw-HiU Book Co. • Inc.,' New York, t935). 

· 2~ The derivation o! P,_. gi~en here is not found in ~e repres~ntative sample of 

3. 

. . ! 

popular texts Usted in references 1. and 4. No attempt was made to search 

t:h e ''1 iter at ll"l" e of quantum mechanics to see whether a similar treat­

ment has been given elsewhere. See reference 4, ·however. 
.... 

For clarity we include the operand wa.vo function .R(r). We ·have, for the 

· .~h'st ~erm ln the pa~enthese~ o£ Eq. (5), · 

i • VR a c -R. - ar ' 

·The second term is 

V•rR = !_ • (~ R) -
'. 

R . i 
= --(V• r) + Rr • v-
r-- - -r 

R. (.i) = -;_3·+ Rr\-'?" 

= (~ + ~)R .... 
r ar ... · 

., . 

+ 
{ 
-r. VR 
r- -
1 a + -r-R 
r Clr 

;_ . ; ' 

·, 

. i.' 

·l 

. I 
I 
I 
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Thus we have 

~ - ... 

= ~(r!..+ t) .B. 
{ 

r 8r 
v 

2(8· ) = - -r R,· 
r 31" · 

' 

and Eq. (6) follows lrom Eq. (5). 

4. P. Dirac:: [The Principles of Quantum Mechanics· (Oxford University Press, 

3rd ed., 1.947), p. 15Z]1ntroduces the operatol' p' • (fl/i)(8/&r) and then 
1 • • r . 

. .. shows that p~ • 1'flr·1 is canonically conjugate to _r. L •. Landau and 

E. L!!shitz [Quantum Mechanics (Adc:lison-Wesley Publishing Co., Inc., 
, I 

' 1,[ 

Reading, Mass., 1958), p. 108, footnote] mention without discussion th~~ 

oJ)el'atol' p" of our)'Cq. (6). E. C. Kemble [The Fundamental Principles , 

of Quantum Mechanics (McGraw-Hill Book Co •.• New York, t937), pp. Z97 .. 
and 335, footnote] discusse's the unsatisfactory character 'of the operator 

(1'1/1)(8 /& r ). 
5~ . For a discussion of boundary condi_tlons at r = O·,· see B. H. Al'mstrong 

and E. A •. Power, Am. J. Phys. 3t, Z6Z (t963). '-
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