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Some errors \vere made in introducing the contributions of the Regge -poles 

in the crossed channels. The correct final results to replaced Eqs. (28) are: 
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In order to compute the as;ymptotic behavior of the discontinuities, one 

should take into account the contribution of the s channel Regge poles, i.e. 

A(s,t,u)-::- e(s) ra(s)(-1 s2: 4)• pa(s)(l + 

2t 

4)}•ln net{s)]-1 (E. 4) 
s -

It is to be noted, as was pointed out by E. J. Squires, that the 

asymptotic behavior of the left-hand cut discontinuity due to the Hegge poles 

vanishes for physical values of Q,, 
4 

The conclusions of the paper must be n:odified in the fact tlmt tbe 

s-wave dispersion relation needs in fact one substraction. All other conclus:i.onr; 

are maintained. 

I want to thank Dr. E. J. Squires, who pointed. out an inconsistency in 

the asymptotic behavior of A~t( 2 )(r) for an interesting correspondence, 

1 
E. J. Squires, preprint from Tai t Institute for Theoretica.l Physic&, 
Edinburgh (1964). 
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ABSTRACT 
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For infinite energies, we determfrne the asymptotic behavior of par-

tial wave amplitudes when the full scattering amplitude satisfies Mandelstam 

representation and has itself a Regge asymptotic behavior. Farticular atten-

tion is paid to the behavior of the partial-wave-amplitude discontinuities on 

their cuts. They are shown to behave as ltla{O)-l , where t is the energy 

squared and a(o) is the leading Regge pole position at zero energy. This 

result removes an old-standing diffic.ulty in the Chew-Mandelstam calculation 

of amplitudes and provides a precise justification of the nearest singularity 

technique. As an application, we show that no subtraction is necessary in 

partial-wave-amplitude dispersion relations at physical values of the angular 

momentum, even for the case of S waves. 
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In their original program, Chew and Mandelstam stressed that a r~rticle 

or a resonance in a crossed channel contributes to the forces acting between 

two particles. 1 More precisely, the partial-wave amplitudes for pion-pion 

scattering have both a left and a right-hand cut as functions of the energy, 

and the resonances in the crossed channels determine the discontinuity a,cross 

the left-hand cut o~, equivalently, the forces. Unf~rt-unately, it appeared 

that the discontinuity obtained from that mechanism increased at a rate in 

conflict with unitarity when the energy became infinite and negative, as soon 

as the spin of the resonance or of the bound state in the crossed channel 

was larger than or equal to one. As such is the case for the p-meson (and 

now also for the f 0 meson) the problem of determining the exact high-energy 

behavior of amplitudes became a necessary preliminary to the dispersion 

theory of elementary particles. 

It was i.ndeed felt that a simple solution of the problem had to exist 

since, in several cases, the simple trick of introducing a cutoff for the 

left-hand cut discontinuity leads to sensible results. This idea has been 

expressed as the nearest singularity hypothesis, by which one meant that a 

physical process was mostly determined by the effects of the singularities 

nearest to the physical region and was not affected by any misbehavior of the 

l •t d t . f" •t 2 amp 1 u es a 1n 1n1 y. 
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The clue to a solution of the problem was provided by the observation, 

due to Regge,3 that the asymptotic behavior of the nonrelativistic-scattering 

amplitudes, as functions of the angle, are determined by the singularities 

of the partial-wave amplitudes as functions of a continuous angular momentum.3 

Actually, these singularities are only poles. Chew and Frautschi
4 

and Mande~ 

stam5 pointed out that the high-energy difficulties of the S-matrix theory of 

strong interactions could be eliminated if one takes as an ans~tz that the 

asymptotic behavior of the total amplitude in relativistic theory is analogous 

to the one found in nonrelativistic theory. 

Although it was clear that the asymptotic difficulties were removed 

by that hypothesis, one had yet to exhibit a practical way of resuming the 

Chew-Mandelstam program, now enlarged to be a program for self-consistently 

computing the leading Regge-pole trajectories. Chew and Jones are currently 

\' investigating such an approach in which they work both with the full ampli-

tude and with the partial-wave amplitudes.fi'r However, it is not clear whether 

only using the partial-Wave amplitudes, which has the advan~age of leading to 

one-dimensional well-known e~uations, could not lead to simpler or more 

accurate calculations. Before we enter into such a progra~. nevertheless, 

it is necessary to solve explicitly the preliminary problem of high-energy 

divergences and to find the explicit behavior of partial-wave amplitude 

discontinuities, once the Regge asymptotic behavior is assumed for the full 

amplitude. 

In the present paper we devote our work to the solution of this prob-

lem. Our main result is that the discontinuity at infinity is determined by 

the .position of the leading Regge pole at zero total energy, a(O) , and not 

by the spin of the physical bound states or resonances. Since, as has been 

shown by Froissart, 
8 

the re~uirement of unitarity implies that a(o)..:::;; 1 , 
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it may be shown that the difficulty originally encou.n.tered by Chew and Mand.el

stam is removed. In fact, the discontinuities on the left-hand cut and the 

right-:b..and cut fit so:~well that no subtraction is needed in any physical 

partial-wave dispersion relation, even for the S wave. Therefore, no sub

traction parameters have to be introduced when one solves the Chew-:tvr.andelsta.m 

eg_uations. 

Apart from this result, which bears on the consistency of the theoryj 

it will be useful to use the asymptotic form of the discontinuities in such 

practical applications as the determination of the Regge pole trajectory 

. from N/D eg_uations. In fact, it is obvious that in the partic-olar case of 

the S wave this procedure will lead to more rapidly convergent calculations 

than those which can be obtained by introducing a cu.toff. 

The simple form of the disoontinuityJ which is not osciLiUating as 

sometimes assumedJ9 but smoothly damped, is in fact a justification of the 

nearest singularity method. 

After some :preliminaries about partial-wave amplitudes" thei:r proper

ties, and a precise statement of our hypotheses in Sees. I to III, we com-

pute the asymptotic behavior of the discontinuities in Sees. IV thro~~h vJ.I. 

Applications to the number of subtractions in 11artial-wave-dispersion relations, 

as well as the possibility of cuts in the angular momentum plane, are made in 

Sec. VIII. 

II. 

Let us consider the amplitude A(s, t) for the scattering of identi

cal neutral spinless particles with mass unity. We consider t to be the 

total c.m. energy sg_uared, and s to be the sg_uare of the invariant momentum 

transfer. The partial-wave-scattering amplitudes a.e(t) are given by 
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' (1) 

where z = 1 + 2s/(t-4) , is the cosine of the c.m. scattering angle. When 

A(t, z) is an analytic function of z in a domain that contains the segment 

(-1 , +1) , Eq. (1) can be replaced by the Neumann formula 

= 1 
2rci 1 A ( z, t) Q £ ( z ) dz 

c 
' 

(2) 

where C is a contour around -1 and +1 • In particular, when A(z, t) 

is analytic in the complex z-plane cut from z
0 

to oo , as is the case for 

any nonrelativistic amplitude satisfying the Mandelstam representation, Eq. (2) 

can be replaced by 

1 
rc 1 ' (3) 

where 2iA (s,t) is the discontinuity of A(s,t) across its s cut. Equa
s 

tion (3) was first given by Froissart. 10 Its main properties are that it 

can be extended to complex values of £ , and that the function obtained in 

this wey- is analytic in at least a half plane Re £ > N , where N is the 

necessary number of subtractions in a dispersion relation at the fixed energy 

t • Within that half plane, a£(t) is a bounded function. In accordance 

11 with a theorem by Carlson, it is therefore the unique analytic function 

that interpolates the physical amplitudes from £ integer to £ complex 

and that does not at most increase as fast as exp rcl£1 • Equation (1) does 

not verify this boundedness property and coincides with Eq. (2) only for 

positive integer values of £ • 

For a relativistic amplitude satisfying the Mandelstam representation, 

there are two cuts, and Eq. (3) has to be replaced by 
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OJ 

+ .{-l).e 1 
J! 

J ( 4) 

so that one has to deail with two different analytic functions of .e that 

coincide respectively with a.e(t) for even and odd values of .e • One 

distinguishes these two analytic functions by their signature + l • For 

simplicity, we shall only consider in this paper the simple mod~l of neutral 

spinless particles for which the odd am:pli tude \lanishes and only the ampli-

tudes with even signature play a role. 

IIL 

The function a_e(t) has a branch point at the two-body threshold 

t = IJ. and it is convenient to define, with V. l\T. Gribov,
12 

the new function 

¢.e(t) = a.e(t)/(t - ~-.~.).e, which l1as only a second-order branch point at the 

two-body threshold. The function ¢.e(t) satisfies the dispersion relat1on, 

for Re .e large enough and we have 

l 
:n: 1 

4 

Im ¢ .e ( t 1 
) d t' 

t' - t 
l 

0 

J J 

-en 

where it is understood that the necessary number of subtractions ha\,e been 

(5) 

made. When Re .e becomes small enough, it is necessary to add to Eq_. (5) 

the contribution of the poles of ¢.e(t) (which are at the position of 

bound states when .e is a positive integer or zero). 

The discontinuities on the cuts are given, for t positive, by 

4 l ds 
Ast(s.,t) .e l 

(s - 4) + 
(6) 

Here, Ast is the Mandelstam weight function p(s,t) For negative t , 

one has 
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(2) 
+ 6 ¢£ (t) ' (7a) 

(1) 
4;..t 

I P£(4~~ t - 1) As(s, t - i€) 
ds 

6 ¢£ (t) = 2 
(4 - tl+l 

J (7b) 

and s
2 
(t) 

(2) 4 f 2s ds 
6 ¢.e ( t) - Q£ (4 - t - i€ ·-· -1:) Asu ( s, t) 

( 4-t )£+l ' (7c) 
:rr 

s1 (t) 

where s
1

(t) and s
2

(t) are the boundary of the third spectral region for 

fixed .t (see Fig. 1). Note that, while 6 ¢.e(t) is real, this .is not true 

of 6¢£ (l) and 6 ¢£ (2 ) separately. It.has been shown by Gribov and 

PomeranchUk13 that, due to the existence of poles of Q£ as functions of £ 

at £ = -1 ' -2 ' ... 
' 

Eq. (7c) implies the existence of an essential singu-

larity of ¢.e(t) at £ = 1 

Our problem is to investigate the behavior of the three discontinuities 

given by Eqs. (7) when t tends towards ± oo • To do this, we make the 

following assumptions: 

(a) The amplitude A(s, t) satisfies the Mandelstam representation. 

(b) When.one of the variables s, t or u tends to infinity, the 

14 asymptotic behavior of the amplitude is of the Regge type. More precisely, 

if t tends to infinity at a fixed value of s , one has 

A(s, t) 

·,, 2t 2t 

L P: ( ) (-1 - ----r:- ) + P ( )· (1 + ----r:- ) a.: s s - '+ a s s - '+ 
~ r (s) --r~----------------~r ____________ _ 

r r sin :rr a (s) 
r 

' 
(8) 

where the sum goes over the indices r of the Regge-poles trajectories. We 

assum~ explicitly that there are no cuts in the angular-momentum plane. For 

simplicity, we make all the subsequent considerations by taking only. into 

account one Regge pole. 
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(c) We suppose tr~t a (s) 
r 

is an analy~ic function of s in the 

complex s-plane cut from s = 4 to + ro , and that it has a limit when 

a tend.s to infini~y so that by the formal transformation defined by o:r (s) , 

it transforms the s plane into the kidney-shaped region indicated in Fig. 2. 

In fact, it would be easy to trace out the modifications of the 

following arguments if some of these assumptions were to fail. They are just 

made here for the sake of simplicity. 

Again, for more clarity, we do not cons ide· the Regge poles of the 

u channel, bpt only those of the s channel as they are exhibited in Eq. (8). 

This is equivalent to putting the residues of the u-cmnnel Regge poles 

identically equal to zero and taking into account only the s~channel Regge 

poles, and then exchanging the role of s and u and addiP~ the results. 

That simply makes the equations shorter and when we reestablish the u-channel 

Regge poles contributions at the end_ of the argumentJ we slJ.all only ll..ave to 

multiply in some places by a factor of two. 

Lastly, we insist on the reality of L:#J f (t) for £ real by wri ti:ng, 

in place of Eqs. (7) , 

L.¢,£(t) 
?l ''2 

= 6¢.£ (t) + L¢~ (t) ' 
(9) 

where 
yl (1) v2 (2) 

N/J_e (t) = Re ~£ (t) 6. ¢p,. (t) = Re 6. ¢£ ( t) . (10) 

Let us first find the asymptotic behavior of the discontinuity on the 

right-band cut. Tt1is behavior may be found in a variety of ways and the 

result is already well known since it is the behavior of the phase-shifts 

when the diffraction peak is determined by a Regge pole. However, we derive 

it in a way that is a good illustration of the method to be employed for the 

other discontinuities. 
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As we do not take into account the u-channel Regge poles, which when 

t tends to infinity, is equivalent to considering the Atu discontinuity as 

zero, Eq. (6) reads now: 

(l) 

Im ¢,e(t) 
2 J Q£(1 + t ~\) A t(s, t) 

ds 
1( s (t - 4/+1 

4 

(11) 

Let us write it as a contour integral 

Im ~~(t) 1 J Q£(1 + t ~\) At(s, t) 
ds 

ire - 4 )£+1 (t 
(12) 

c 

where the contour C goes around the cut of At(s,t) from s = 4 to 

s = m (See Fig. 3). The integrand in Eq. (12) has this cut and also has 

the cut of the Legendre function which goes from s = - m to s = 0 . If 

we make the conformal transformation from the s plane to the a plane, Eq. (12) 

remains true as an integral over a on the contour C shown in Fig. 4. The 

contour C can be reduced to C1 , which encloses the Q£ cut. It is clear 

fr.omT'F;tg. ;:.4 that an integral over C' cannot increase more strongly than 

ta(o) when t tends to infinity. 

For the part of C' that is in the physical region (i.e., for 

4 - t < s < 0 ), one can compute the discontinuity of C' by using the 

relation15 

= , (13) 

which is true for -1 ~ x ~ 1 • However, it is clear from Fig. 4 that, as 

t tends to infinity, the part of the integration over C' for s < 4 - t 

behaves as If we neglect such corrections of the order 

we thus g~t 
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0 

J 
-oo 

At(s, t) ds £ 
( t - 4) +l [ 

a(m )-£-~ 
+ 0 t J (14) 

Obv~ously, this result can be obtained without using the conformal 

transformation. However, this transformation is extremely useful in the next 

two cases, It shows immediately what the asymptotic ber~vior is of any con-

tour integral just by indicating up to what point in the a-plane the contour 

can be pushed to the left, as well as indicating the asymptotic behavior of 

any term to be neglected. 

v. 

Let us now look for the asymptotic form of t./>£ (l)(t) • If we take 

into account only the s cut, Eq, ('Tb) reads 

= 

4-t 

1 
4 

Pn(4 ~\ - 1) As(s, t) ds £ 
X/ ( 4 - t) +l 

(15) 

The same argument as for Im¢£(t) can now be given, F'irst transform Eq. (15) 

into 

= 
1 

2i 
A ( s .• t ) _ _:.d;.;;.s___,,......,.. 

(4 - t)£+l ' 
(16) 

where the r;ath C~ goes from 4 - t - iE to 4 - t + iE and encloses the 
.1. 

branch point at s = 4 • Here again we can push the transformed path c
1 

to the left in the a plane (see Fig. 5) and replace c
1 

by the preceding 

contour cv • The error committed is caused by tr~t part of the integration 

path in Fig. 5 going from a(4- t) to a(co); which gives terms of the order 

Of t a(m) for t large enough. B · th 1 t• 15 y us~ng now • e re a ~on 

(17) 

( whi.ch is -valid for x < -1), to compute the integral on C v j we get 
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(l) 
~£ (t) = - sin £~ .(18) 

VI. 
(2) 

The calculation of IY/J£ ( t) is exactly of the same type as_ .in 
~~- .: 

the preceding section, although more involved. As a first step we define the 

new fWlction 

B(s, t) l 
= -

~ 

A (s ', t) ds' su 
s y - s (19) 

It is important to observe that B(s, t) behaves asymptotically as 

A ( s, t) when t tends to -oo , s being kept fixed and negative. In 
u 

order to show this, we observe that A (s' t) behaves, when 
su ' 

It I ~ oo , as 

A ( s, t) '· "'· Im r ( s) It I a ( s) , su 

and we write the asymptotic form of B(s, t) as 

l 
~ 

co 

I + 

00 

a(s') 
Im r (s') It I 

s' - s 

It is easy to show that the last integral behaves as 

ds' • 

tends to -co· and that the second integral behaves as 

It la(oo )-l when t 

It Ia( 4 )-3/2 [the 

integrand behaves as ltla(4) , the integration interval from 4 to 

(20) 

(21) 

-1 is proportional to t , and a more careful examination of the effect of the 

branch point of a(s) at s = 4 leads to the last ltl-1 / 2 factor.] There

fore, up to powers of t smaller than a(4)- 3/2 or a(co)- l, B(s, t) 

is given asymptotically by the first integral, which can be written as 

l 
2~i J r ltla(s') 

( S I) 

c s' - S 

ds' 
' 
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where..? again, C is a contour surrounding the cut of ·a(s) and y(s) f:rom 

4 to oo • By the Cauchy theorem..? this is precisely y(s) ltla(s) ; i.e., 

we have shown 

B(s, t) ~ A (s, t) 
u [ 

Max a(oo )-1..? a(4)-3/2] 
+ 0 ltl (22) 

when t tends to -oo • We rewrite Eq. (7c) as 

4 
2:rri J Q ( 2s 

£ 4 - t - iE (23) 

where the contour rl has to surround the cut of B(s..? t) from s
1

(t) to 

s,.., (t) and must avoid'the cuts of the Legendre functions. The Legendre 
c:. 

function has two logarithmic singular points at s :::: 0 and s - 4 - t = iE 

and it is customary to join these two points to s = =OO by a common cut as 

shown in li'ig. 6. As for the contour r
1 

, we shall choose it as shown in 

Fig. 6 by making it go from +oo and back by turning armmd s = 4 • 
(2) 

To find the asymptotic behavior of ~¢.8 (t) , we proceed by the 

following steps: 

(a) Make the conformal transformation from s to a(s) (See Fig. 7). 

(b) Split the Q£ cut into its two component cuts from a(oo) to 

a(4 - t) and from a(oo) to a(o) • 

(c) Apply the contour r
1 

against these cuts. 

(d) Deform the cut which goes from a(oo) to a.(4 - t) J alo:rJ.g with the 

contour which encloses it~ to push the whole pattern as much as possible 

to the left. One is then led to the situation showr1 in Fig. 8. 

(e) The contour around the cut from a(oo) to a(4-t) gives a con-
(2) 

tribution to ~ ¢.8 , which behaves asymptotically as j we drop 

j 

it, keeping only the contour which encloses the cut from a( oo ) to a( 0) , 
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(f) Making the conformal transformation from a to s , we see that, 

asymptotically, 

(2) 
/::; ¢t ( t) = 

¢ 
(2) 

6. t 

4 
21ti 

is equal to 

2s ds 
- t - iE - 1) B(s, t) t)t+l ' 

(4 -
(24) 

;,;~:.:where r
2 

encloses the cut of the Legendre function from s = -a:> to 

s = 0 _, as shown in Fig. 9. Therefore, taking Eq_s" (10) and (22) into 

account, we get 

I (2) 4 
~ ¢ (t) = Re -. .£_ 21tl J 2s ds 

Q.£(...-4--,--t---i-E - 1) B(s, t) (4 ).£+1 
- t r2 

(25) 

To find the discontinuity of the Legendre function along the cut of inter-

est one uses Eq_. (13), which gives the discontinuity of Q£ across the other 

cut, one also uses15 

and 

Q ( -z) 
£ 

= e+Lerc p· (z) 2 ( ) .£ - ; sin rc.£ Q.£ z 

(26a) 

' 
(26b) 

where Eq_. (26a) gives the discontinuity across the merged cuts and (26b) serves 

to evaluate the right-hand member of Eq_. (13). Finally, we have 

I (2) 
~::;¢ .£ (t) = cos .ire 

0 

J Pn(l - 42st) A (s_,t) ds.£ l 
XJ - u (4 -t) + [ 

a(ro )-.£-~ 
+ 0 t . 

27) -a:> 

VIL;: 

Let us now summarize the asymptotic values of the discontinuities when 

due care is taken of both the s and u Regge poles. This leads to 

0 
[ a( co )-£-l] I ~.£(1 + t2:4) At(s,t) 

ds 
Im ¢.£(t) = 

- 4).£+1 
+ 0 t . . , (28a) 

(t 
-a:> 
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and 0 

. 6 ¢.e(t) = 2 cos .ere J 
-co 

-13-

ds 

-2 sin .err Re 

0 

f ds ~ a(co )-£-~ 
P n (l - 42

-st) A(s, t) --=-:-n- + 0 It I · . 
h (4-t).KJ+l 

-CD 28"b J 

Replacing the Legendre function by its limit (e~ual to 1 when t tends to 

infinity), we get the less accurate result 

0 

=. J ds 

and 
0 

~:::,¢.e(t) 2 cos .e:rr J A ( s., t) 
u (4 

0 

J ds X Re A(s, t) 
(4 - t/+l 

[ 
a(o)-£-2] 

+ 0 t 

ds 
- 2 sin 

- t)£+1 
..err 

+ 0 
[ a(o)-£-2] 

It I 

It is now obvious that both discontinuities behave as a(o)-.e-r t , up to 

logarithmic factors, and that they are both damped without oscillations. 

(29a) 

(29b) 

In fact, it is clear that the same method may be applied directly to 

the Froissart formula [E~. (3)] and that the whole f~~ction ¢,e(t) itself 

behaves as a(o)-£-1 
t when It! tends to infinity, 

VIIIo 

An important application of E~s. (29) is to show that all dispersion 

relations for physical partial-wave amplitudes can be -written without any 

subtraction. In fact, as can be seen from the Froissart. theorem, one has 

a(o) .:;:;; 1 , so that it is clear that both integrals in the dispersion relation 

(5) converge when .e > 0 

The case of .e = 0 has to be treated more carefully. Actually, an 
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immediate consequence of Eqs. (29) is 

(30) 

when we have t ~ oo • Therefore, if we write the dispersion relation in the 

form 

= 
1 
1( ] 

0 

_ c, ¢0 ( -t') } 
t' + t 

it is clear that this integral is rapidly convergent. 

dt 
' 

This result shows that, in fact, calcul~tions invoiliving the exact 

asymptotic behavior of partial-wave amplitudes will converge more rapidly 

than calculations where the left-hand cut contribution is cut off. 

(31) 

Another application <f!.emonstrates the rele.vance of partial-wave asymp-

totic behavior in the discussion of angular-momentum cuts, One can easily 

show, by introducing the asymptotic behavior 

At (s·, t) 

Au(s, t) ~ ~(s) ta(s) 

and 

Re A(s, t) ~ ~(s) ta(s) 

j 

(1 + cos rca) 
sin rr a 

(32a) 

(32b) 

(33b) 

into Eqs. (28), and then intr-oducing the discontinuities into the dispersion 

relation Eq. (5), that each of the dispersion integrals in Eq. (5) is an 

analytic function of t with a cut going from t = - oo to t = a(O) - 1 . 

However,if we examine the singularity at a(o) - 1, using Eqs. (32), we find 

that the singularity is cancelled if both dispersion integrals are considered 

together. This is another example where a correct account of the left-hand 

cut discontinuity at infinity gives much better results than a cutoff. 
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FIGURE CAPI'IONS 

Fig. l. 
(2) 

Bound of the integral for 6 ¢. • 

Fig. 2. Image of the cut s plane by the a(s) conformal transformation. 

Fig. 3· Singularities of the in~egrand in Eq. (11). 

Fig. 4. Deformation of a contour leading to the asymptotic behavior of 

Im ¢.t(t) . 
(l) 

Fig. 5· Deformation of contour for 6 ¢. . ·t 
(2) 

Fig. 6. Singularities of the integrand for 6 ¢. t , s plane • 
(2) 

Fig. 7· Singularities of the integrand for 6 ¢ t , a plane • 

Fig. 8. Deformation of cuts and contours for ¢. (2) 6 . t , a plane • 

Fig. 9· Deformation of cuts and contours for 6 ¢t 
(2) 

J s plane. 
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