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ABSTRACT 

Tv-ro-phase flow operations are described by a generalized 

model vlhich assumes back flow~ superimposed on the net floHs 

through a colu.-•m~ 1·Ji th perfectly mixed stages in cascade. The 

diffusion model~ which is used extensively to describe longi-

tud~nal dispersion~ is derived as an extreme case of the back-flovl 

model. The perfectly mixed stage (or cell) model is ~arived as 

another extreme. It is shm·m that the dispersed phase for these 

models may be treated as a second continuous phase. The nature 

of the longitudinal-dispersion coefficient is also ex~~ined. 



-2- UCRL-11016 

Introduction 

Axial-mixing effects in agitated countercurrent equipment 

may be described by a detailed analysis of back flows between 

discrete segments of the 11 cascade 11
, frequently with greater rigor 

than by aszuming a differentially-continuous diffusion model with 

a constant axial-dispersion coefficient for each phase. For 

single-phase operations, the relations between a multicompartment 

(or mixing-cell) nonequilibri~~ model and the diffusion model 

.have been explored widely, although usually without considering 

back flow. For two-phase operations, relative to the diffusion 

model, the cell model is underdefined if back flows are neglected 

and it is overdefined if they are specified for both phases. 

Thus 'I·Ie find it 1·1orth while to explore the rna thema tical relation 

between thes~ models in some detail. 

An added justification for this work is the one of providing 

adequate background for design calculations that can take into 

account the axial-dispersion effects in countercurrent operations. 

For overall calculations under conditions of constant mass-transfer 

coefficients and linear equilibrium, integrated solutions based on 

the diffusion model are now available to describe the system. If, 

however, the parameters are not held constant, a stepl'li se numerical 

calculation must be undertal(en which inherently resembles the 

cell-model treatment. 

Figure 1 shows the 11 back-flm·l11 model schematically. It 

consists of np perfectly mixed stages with stage height L0 , each 

having the same volume. Exchange of material bet\'leen two adjacent 

stages is due to (a) net flo1·rs, F and F , of main streams, an".d X . y 
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(b) an additional back floH F of the mixed phases., which occ:·.~rs 

in each direction and is the sum of individual-phase back flo\'rs 

of F and F . 
X y Thus the total flovrs between adjacent stages are 

(F., + Fx + Fy) and (Fy -~.. F + Fx). 
.A ·.' y 

For the limiting case of F( = Fx + Fy) ~ 0., this system 

reduces to a 11 stage model 11 (of perfectly 'mixed cells in cascade) 

typified by the usual mixer-settler extractor. For another 

limiting case., vri th n >> 1., it will be shoHn later that the p . 

system reduces to the 11 diffusional model 11 which assumes mean 

diffusivities and mean velocities for both continuous and 

dispersed phases (16.,21). 

A particular case of this model has been utilized by Hill 

(1) for calculatio~s on salt-metal extraction processes. Sherwood 

and Jenny (20) and Colburn (2) have utilized a similar concept to 

treat the effect of entrainment on tray efficiency. For single-

phase flow Latinen and Stockton (~) have discussed the relation 

beti·reen the model and the diffusion model. Sleicher ( 22) has 
a 

developed a similar treatment fovmixer-settler extractor l':ith 

interstage entrainment. 

DISPERSED-PHASE BEHAVIOR 

For two-phase flow operations in a perfectly mixed stage~ 

one phase is usually dispersed into the other in the form of 

bubbles or droplets. If enough coalescence and redispersion take 

place., the concentration of each droplet is the same., and the 

dispersed phase may be considered as a second continuous phase. 

If not., the overall rate process i~ the stage should be treated 

on the basis of the residence-time distribution of droplets and 
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of their concentration distribution as they enter. 

To formulate the rate process, phase X is tal{en as con-

tinuous and phase Y as dispersed. The 

direction of mas~ transfer is from phase X to phase Y. (The 

final conclusion is independent of these arbitrary choices.) We 

consider first the limiting case of no concentration variation 

from droplet to droplet in a given stage; and later, in less 

detail, the case of no coalescence (and hence no redispersion) 

between droplets. 

Calculation Using a Mean Concentration 

This case is consistent with the assumption that the 

dispersed phase behaves as a second continuous phase. When the 

equilibrium relation is linear (that is, x* = b +my), the 

material balance and the rate equation taken for the jth stage 

give the following dimensionless·relations: 

(1 + ax)(xj_ 1- xj) - ax(xj- xj+l) = NoxO~j- (b + myjU 

(l + ay)(yj- Yj+l)- ay(yj-1- yj) = Noyo[xj- (b +my)] 

where ax = F I F a = F I F N = k aL I F N = x x' y y y' oxO ox 0 x' oyO 
k aL01F; y. is the mean con6entration of dispersed phase Yin ox y J 

th (or leaving) the j stage (the mean concentration is taken on a 

volume basis); and k
0
xa is assumed constant throughout the column. 

Behavior Without Coalescence and Redisoersion 

For this case~ in any given stage, the concentration of 

each droplet is different; depending on the time it has been in 

the stage, its size, and its entering concentration. The 

/ 



-5- UCRL-11016 

(See Appendix) 
equations developed herUare a. generalization of previous \'lorl-c 

Uniform Dron Size 

Consider t;1c J.th s'--,('J'e 
l,c;.<.;;> J under a steady continuous operation 

'l·rith floloJ rates of Fx + F J and FY + F ~ Hhere the contents are 

mixed perfectly J i·ri th a U...'1iform drop diameter dp J and a uniform 

volume fraction E: for the dispersed :phase. Assume further that y 

the partition coefficient rn is constant~ and that the overall 

coefficient of mass transfer is a constant. As shovm in the 

AppendixJ any assumed concentration distribution in a stage will 

determine the mean concentration, and integration of the changes 

that occur in the input concentration-distribution leads to an 

output distribUtion which conforms to Equation 1 . If some 

coalescence and redispersion do occur~ as has been observed for 

agitated liquid~liquid systems (12,24~25), it may be possible 

to relax some of the restrictions just stated, and still apply 

Equation 1 . These conclusions apply even for the stage model 

(ay =ax= 0). Thus~ if the foregoing conditions are satisfied~ 

it is entirely permissible to treat the dispersed phase as if 

it Here a second continuous phase. 

TWO- PHASE FLOH SYSTEI>!S 

Countercurrent Back-Flow Model 

From the assumption that the dispersed phase can be charac-

t~rized by mean concentration values~ and from a material balance 
th 

around the j stage as diagra~~ed in Figure 1~ the basic rate 

equation has the for1a of Equation 1·. Solving this equation ;is 
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tedious, as the solution contains five variable parameters: ax, 

a, n, N 0 and~. A machine computation and an approximate 
y p ox 

calculation method.have been presented by Sleicher (22). Here, 

however, instead of the equations being solved, they will be 
8.11d 

used to develop the diffusion model)to sho1·1 that the node.l is 

applicable to the behavior of the dispersed phase(with some 

restriction~~ven without coalescence and redispersion of liquid 

droplets. 

Diffusion I··1ocel 

The diffusion-model equations (16,21) utilize the asslliuption 

that the dispersed phase can be treated as a second continuous 

phase. Since tl:'.is assumption has been found reasonably satisfac~ 

tory for the back-flow model, ·its use in the diffusion model will 

be particularly justifiable if the latter model can be derived 

from the general back-flow case. Such a derivation will be 

shovm in this section. 

The diffusion-model equations in dimensionless form are as 

follOI·lS: 

(1/PxB) d
2
x/dZ

2 
- dx/dZ - N

0
x [x -

(1/PYB) d
2
y/dZ2 + dy/dZ + N

0
y [x -

(b + my)l = 0 
-' 

(b + my)] = 0 
} (2) 

where N0 x = k
0

xaL / Fx a·nd N
0
y = k

0
xaL/ Fy. If lowest-order 

central differences are used, Equation 2 becomes, for phase X, 

(1/P::;(B)(xj+l- 2xj +xj_1 )/(.6Z)
2

- (xj+l- xj_ 1 )/(26Z) 

= N0 x [x - (b + my)] (3) 

Hith another similar equation for phase ·Y. Fo:- a total number: 
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of sesmentsJ npJ the size of each segment (llZ) is equal to 1/n . . p 

With this equalityJ Equation ,3 is transformed to 

[(np/PXB) + (1/2)] (xj_ 1- x) .:. [(np/PxB)- (1/2)] (xj - xj+l) 

= N 0 [x . - ( b + rny . ) J ( 4) ox j j 

This equation is seen to be essentially the same as Equation 1 ~ 

when the following equality i~ satisfied for phase X (and also 

for phase Y; i = x or y): 

:::: 

or lim 

nT -r co 

The boundary conditions ( 16 J 21 )' at the. bm ends of the 

( 5) 

columnJ for solving Equation 2 J are derived from the end con-

di tions for the back- flovJ model J by putting 6Z ~ 0. 

For single-phase flm·J \·Iith np >> lJ Latinen and Stocl<:ton (9) 

have derived Equation ·s · from Einstein 1. s 11 random vmlk11 diffusion 

equation (2Jl8); and they thus relate a longitudinal-dispersion 

coefficient to the rate of change of a series of discrete fluid 

displacements. For a finite number of stages they adopt the 

following form for both physical transients and homogeneous 

first-order reaction: 

l 
PB = 

l + a 
[ 2 ( np - 1 )J ( np - 1 ) 

Use of the term·2(np- 1) is based upon Kramers and Alberda 1 s 

treatment for the cell model (~). 

(6) 
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Equations 5 or 6 also serve to carry out the reverse 

reduction of Equation 1 into Equation 3 , which is then con-

verted into Equation 2 vli th a sufficiently large number of 

sec;~nents ( n >> 1); this procedure justifies applying the p 

diffusion model to the dispersed phase, and also renders the 

diffusion model applicable to a stagewise system. Nevertheless, 

these two models are basically differ~nt from each other; hence 

the conversion relation vlill vary someHhat, depending upon what 

basis is taken for comparison. We note that Equation 5 applies 

only for np >> 1. The question of obtaining more accurate con

version relations is discussed below in three special cases, to 

examine the conditions under Hhich the two models behave 

identically. 

COWVERSION RELATION FOR TR~SIENT BEPillVIOR 

One workable and representative link between the two models 

is provided by comparing the variance for residence-time distribu-

tion of fluid elements. The procedure used by Van der Laan (23) 

2 gives the variance 6Di of residence times, for phase i, based on 

the diffusion model: 

(7) 

1·1i th i = x or y. 

The basic transient equations for the back-flow model are 

1·1ritten without difficulty for phase i from the material balance 

taken for·each stage .. The variance 6Bi2 of residence times, for 

phase i, is then given by solving the transient equations in a 

similar manner: 

/ 
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~ 6Bi = 2;p + ~~ - [( 2;P + ·~~)- (n~)
2

] [1 - ex{ . fc5. 1] 
(i/2np) + (a.i/np) j 

(8) 

where co 

1 + L 
k=l 

1 

(2k+l) (2a.i+1) 2k 
. . 

As a matter of definition, the mean residence time ~Ti for 

phase i is ~Ti = L/(Fi/€i) in the foregoing treatment. 

The conversion relation for phase i, based on the variances, 
. 2 2 

is obtained by setting 6Di = 6Bi . The following simple empirical 

· equations express the equality almost exactly for the entire range 

of np, ax, and a.Y: 

{9) 

For n >> 1, Equation 8' reduces to Equation 5 as expected. . p 

CONVERSION RELATION FOR THO-PHASE MASS TRANSFER 

Another workable link between the two models is provided 

by equating the extents of mass-transfer for countercurrent flow 

at infinite N
0
x. With this limiting condition th~ diffusion-model 

solution, as given by Miyauchi and Vermeulen (16) 3 is 

X ; ~ - (b + myF) 
X - (b + myF) F· = exp [ ( 1 - A) P B] - A2 oy 

. 1 J\. 1 
'"i?B ; P B :.+ P B 

oy x y 

and the back-flow model solution by Sleicher (21), originally 

(10) 
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obtained for a multistage mixer-settler extractor with entrain-

mentJ and with each stage at equilibrium, rearranges to the form: 

~- (b + myF) A - A2 
(11) X - (b my.,) = -(np-1) A2 ~- + 

,.I;' ~ -
\'lith ~ - 1 - (1 -AV(Aax+ ay+ 1), 

and ai = Fi/Fi 

Equating the above two relations, the exact conversion relation 

for phase i ( = x or y) is 

(12) 

where 

co 

f T = ( ~ + t) ln ( 1 + ~) = 1 + kf; -( 2_k_+_l_)~~-27/l_+_l )-::2~k 
with 

'/! = [A+ (kx ~ "yTI ~l -A) 

The correction factor fT is seen to have essentially the same 

form as f 6 , and is shown in Figure·2 as a function of A and 

Aax + a . With (Aa + a ) > 0.5, fT is nearly equal to 1. y X y 

irrespective of A. 

Equation 12. may be used to compute the countercurrent

diffusion-model solution with the back-flow-model result.l> at 

finite values of N
0
x. For this comparison; calculations were 

made at the relatively severe conditions of n = 2; over the p 

range of variables of 1 < N
0

x < co , 0. 56 < (Aax + ay) 

< 32, and 0.0625 < Jl < 16. Under these conditions.~> the 

fraction unextracted usually agreed to well within ±s% in its 

absolute value. At increasing np"" ai, and N0 x.l> the 
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approximation improves rapidly. 

Agreement to within :t 10% was obtained under the same 

conditions by taking fT = 1 throughout. 

APPlication to Liauid Extraction 

He tal\:e as an exarnple the operation of pulsed perforated-

plate columns; a similar treatment should be applicable to 

rotating-shaft equip~ent such as the RDC or Mixco extractors. 

Now we let w, ~~ and ei be resp~ctively th~ pulse frequency, 

pulse amplitude, ·and volume-fraction of phase i in the column. 

The rate of interstage mixing Fi may be considered equal to a 

pulse velocity ~ei. According to experimental observations, 

a given stage is seen to behave as ~ perfectly mixed .stages in 
. . 

. series, and hence the total effective number of stages may be 

taken as ~np as a first approximation. Since np is usually at 

least eight to ten stages, Equation 9 { or Equation 12 with 

fT = 1) is applicable to give a longitudinal-dispersion coeffi~ 

cient. The following equation is obtained for "emulsion-type 

operation 11 in the sense of Sege and Woodfield (19); vJe intro

duce ai = ~ei; Fi, and ~np as the total effective number of 

stages, and neglect the terms (1/np) and (1/2) in comparison 

\·lith np; il'l f4u.~-h·o.,... 3: 

E· 
i (13) 

For ideal 11 mixer-settler11 op.eration, the restriction a.v_, = 11'. 
j_ 

is needed to give steady flovl of each phase through the colu;:::-•. 

This may be vJritten in its alternative form of w.e.e1 /F1 = e1< 1. 
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Introducing Gti = 0, with the actual number of stages as np' 

Ei is obtained as follows: 

(14) 

Figure 3 compares Equations 13 and 14 Hith experimental 

continuous-phase data calculated from extraction runs by Eguchi 

and Nagata (4) (open circles)·, and from physical-transient runs· 

by Oya ( 17). Curve NM 1 is for the· "mixer-settler" operation, 

Equation 14 ; and curves BB 1 (f3 = 1) and CC 1 (t3 = 2) are for 

11 emulsion-type 11 operation, Equation ·.13'. Point P is the upper 

limit for the former, and point Q the lower limit for the latter. 
{or" ~ ""' 1 

The ideal-pass curve should be along MPQB 1 , but the actual pass 
A 

seems to be along MPQ 1 B1 ; this suggests that the flow-mechanism 

changes gradually fror.1 the mixer-settler type to the emulsion 

type. Experimental values of. t3 are commonly between 1 and 2; 

further investigations are needed before t3 can be adequately 

correlated, particularly for the behavior of the dispersed 

nhase. 

CONVERSION RELATION FOR HOMOGENEOUS REACTION 

In single~phase systems, chemical reaction may provide a 

source or sink for the individual components which is analogous 

to the effect of having a second phase. It is therefore of 

interest to examine such systems here. The conversion relation 

is derived on the basis of obtaining the same extent of reac-

tion for the two models. ·For a diffusion-model reactor in 

which isotherr.1al qth~order homogen~ous reaction occurs, 
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mathematical solutions are available for q = 1 (3,26), and q = 

0. 5 and 2 (..§., 10). The basic rate equation for the bacl<:-flow model 

is given by Equation l', if the parameters x., ax. and Nox.O are 

replaced by c, a ( = F/F), and N .. 
0 

( = N
0
/np) respectively; here 

q T.j;. 

N = k c (q-l)L/F '1 q F . 

where 

The analytical solution for q = 1 is: 

_ CL n;t .X=--, = (Y1 - Y2 )(1 + 1/a) g1h2 - g2h1 ) 
. CF 
. n . 

gk ~ a(Yk~ l); hk = (Yk- l)Ykp (k = 1 and 2) 

y 1 = r +~r2 
- (1 + 1/a) i y 2 = r -Jr

2 
- (1 + 1/a) 

r = 1 + [(1 + Nl:,O) I 2a]; N1 , 0 = l<:1L/ Fnp = k1L0/F 

(15) 

For arbitrary reaction-order, the back-flm'l'-model solution 

can be obtained numerically, -starting from the outlet concentration 

cL' _ and continuing stage by stage to r.each the feed concentration 

cF. 

Equating the diffusion-model X with the back-flO~l-model X, 

the following empirical relation is found for q = 0.5, 1, and 2. 

(16) 

Under the most severe conditions tested 3 np = 2 \'lith various 

a, and a = 0 ~~i th various np; in both cases the fraction unreacted 

covers X> 0.007 for q = 2, X> 0.0007 for q = 1, and X> 0.59 for 

q = 0.5. The fraction unreacted agrees to within t 10 percent 

in its absolute value when calculated from Equation 16 , even 

at the lm·;est a and np. 
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DISCUSSION . 

Further Properties of the Relations 

When the contribution of back flow entirely dominates 

longitudinal dispersion;, the conversion relatio.ns give the follm·l

ing simple formula for higher values of np~ 

PiB ~ nplai or Ei = FiLO (i = x or y) (17) 

where the relatiori L = npLO is utilized. Equation 17· simplifies 

further when Fi ~ eiF, where F is the superficial rate of inter

stage mixing of the mixed phases: 

E 1 e ~ E I e = FL
0 X X y' Y 

(18) 

When the contribution of the cell model entirely dominates 

longitudinal dispersion, the following two equations are obtained 

from Equations s· and 16 , depending upon' the situation treated: 

For physical-transient behavior, 

Pi ~ FL0 I Ei == 2 [ 1 - (llnJ .][1 + (112 np) ] . ( 19) 

and, for homogeneous chemical reaction, 
. z 

Pi= FL0 /E = 2(1 -(llnp)] (20) 

Furthermore Equations 10 and 12 give the following exact 

conversion relations for the equilibrium-stage model and the 

equilibrium-diffusion model: 

P B = P B = ( A + 1 )( 1 n A ) ( n - 1 ) ( 21) 
X. y A-1 p 

p B = ln A . (n - 1) 
oy-~ A- 1 P 

(22) 

These two simple equations.show clearly ho~ the number of equi

librium stages and the extent of longitudinal dispersion behave 

as the lihliting factors for mass transfer in counterflow column 

operations. 
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Mathematically Equivalent Systems 

Once the conversion equation is selected, we can in principle 

equate a staged cascade described by np' ax,·ay' ~,and N0 x to a 

differentially continuous column descr~bed by PxB, PYB, and the 

sarne A ana N
0
x. No ambiguity is involved if the physicai system 

is staged, the a's hav~ bee~ .measured in some way, and we wish to 

use colunm mathematics (,ll,l6). If stepr.-;ise calculation of a 

column is required, hor.-;ever, there is a relatively free choice 

of cascades. 

A useful model is obtained by letting the stream with the 

larger PB correspond to a = 0. It will provide the simplest scheme 

for nw~erical computation, but will tend to describe a column less 

accurately, ah·mys with the restriction of n = PB/2. Selec:tion p 

arbitrarily of larger np's, in succession, used with the convergence 

equation, can be expected to show a convergence to concentration 

profiles that are insensitive to the particular choice. 

When packed beds are operated in the fully turbulent region, 

as may sometimes occur in gas absorption (1,13), the equivalent 

stage height L0 can be taken equal to T)dp. Equations 19 and 20 are 

then easily modified to formulas based on dp, where n is given by . p 
L/T)dp. Figur·e 4 shows P or Pi ( = FL0 / E

1
) as a function of L/L0 , 

in this case. 
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NOHENCLATURE 

2 3 a specific interfacial area of mixed phases (em /em ) 

;,) Intercept value for par 1ci tion equilibrium, in the relation 

x* = b + my (G or mole/cm3
) 

B L/d (dimensionless) 

c concentration.of reactant (g or mole/cm3 ) 

d representative length (em) 

dp packing-particle diameter (em) 

E longitudinal-dispersion coefficient (cm2/sec) 

f concentration-distribution function. based on number of 

droplets 

f 6 correction factor, Equation 8 

fT correction factor, Equation 12 

F volumetric rate of interstage mixing (cm3/cm2-sec) 

F mean volumetric flov1 rate of main (through) flow (cm3/cm2-sec) 

g,h constants in Equation 15 

1c integer, index in series summation (dimensionless) 

k
0

i overall coefficient of mass-transfer based on phase i 

(em/sec) 

rate coefficient for qth_order reaction (g or mole/cm3 )l-q 
(sec)-l 

~ pulse amplitude (em) 

L height of column (em) 

m equilibrium partition coefficient, in the relation 

x* = b + my (dimensionless) 

n
0 

total number of droplets per unit volume of dispersed phase 

(l/cm3) 

np total nur:1ber of stages (dimensionless) 

/ 
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N number of transfer units or reaction units (dimensionless) 

N q 
q -1 1-1<: CF L F 

8.' 
(dimensionless) 

P Peclet number for single phase (F:diE ); or for phase i 

(:2. d I E .. ) dimensio;.. -:;) 
l .L 

q reaction-order (dimensionless) 

r constant, in Equation 15 

volume of a single stage (cm3) 

mean volume per droplet (cm3) 

x,y concentration of transferring component in phases X and Y 

respectively (g or molelcm3) 

X ratio of X-phase concentrations out and.in, Equation 10 

z axial distance measured from the phase-X inlet (em) 

Z ziL (dimensionless) 

a F IF (dimensionless) 

p factor in Equation 11 

Y~,Y2 constants, Equation 15 (dimensionless) 

Ei volume fraction of phase i (dimensionless) 

iJ L0 I dp (dimensionless) 

.~ mean residence time (sec) 

A. extraction factor (= mF x/ Fy) (dimensionless) 

~ traveling variable for ~ (dimensionless) 

6 2 variance of residence times (dimensionless) 

T elapsed time (s~c); TTOi = superficial mean holding time 

I p 

of phase i; TTi = €i TTOi~(l + 2ai), net mean holding 

time of phase i. 

time ratio TITTy' Equation A-1 

factor in Equation 12 <;..---~ ' , . 

pulse frequcn~y (cycles/~ec) ~mensionless) 
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Subscripts 

B Bacl<:-,flo\'1 model value 

C Continuous-phase value 

D Diffusion-model value 

F Feed-end value 

i Phase i 

j Stage j 

k Index in summation 

L outlet-end value 

o Over-all 

p Plates or stages; particle (in dp)_ 

T Total; two-phase 

x Phase x 

y Phase y · 

6 Transient-behavior value 

0 Single-stage value 

* (superscript) equilibrium value 

;.· 
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APPENDIX 

We consider the jth staee under stea~y continuous ope~ation 

with flow rates of Fx + F and F + F (with F = F + F ) , \'There . y X y . 

the contents are mixed perfectly, with a uniform drop size dp for 

the dispersed phase. The operational condition is the same as 

shoTtm in Figure 1. Let yj be the concentration of a droplet in 

the jth stage, yj the mean value for all the droplets in 

that stage, and n
0 

the total. number of droplets per unit volume 

of the dispersed phase. With these notations, the number of 

droplets per unit time is given as follows for each stream: 

{From (J-l)th to 

(From ( j+l) th to 

The fraction of droplets leaving the.Jth stage during any 

time interval from T to T + dT (with T measured from the time of 

their introduction), relative to the number of drople~s introduced 

in this stage during the interval T = 0 - 0 + dT 1 is given by 

n0 [(FY + ~) + ~ e-P dP • d~ 
where ~ = T/TTy = T( 1 + 2ay)·/ E::y TTO ; 

(A-1) 

. "';( 

TTy= E::YVe/ (Fy + 2F) ICI eYVo/ Fy(l + 2ay) = £yTToy/(l + 

F /a~d ay = Y Fy • 

. th 
For the droplets coming.in from th~ (j-1) stage, the 

concentration distribution· may be quite random in y 1 {feed 

concentration of phase Y) and YJ1 (concentration of droplets in 

equilibrium with phase X at. the final or jTth stage) as their 

2a ) · y , 



-22- UCRL-10116 

lo'I'Ier and upper limits respectively, as shown in Fig. s. This 

condition is a natural result of the back flow. We define this 

concentration distribution for tha droplets from the (J-l)th 

stage as fJ_ 1 (yj_1), such that 

YjT 

~ fJ-1(yJ-1)dyJ-1 
yl 

a 1 (A-2) . 

Then the fraction of the dispersed phase leaving from the Jth 

stage, which originally had a concentration between yj-l and 

yj-l + d(yJ_1), is given in the time interval ~to T + dt after 

the lapse of time by · 

(A-3) 

The concentration of this fraction changes from the initial value 

yj-l to the final value (yj)J-l during ~ravel through the Jth 

stage. Since the stage is mixed perfectly, the rate of total 

solute leaving the Jth stage (accompanied by the dispersed phase 

from the ( J-1) th stage) is given by · 

YjT . oo 

n0 (F~ + Fyl ) fJ_1(yJ_1)dyJ_1 ~· (yJ)J_1exp(-PldP 
y 0 

This amount of solute returns partly to the original (J-l)th 

r stage, and the rest of it goes ·to the ( J+l) th stage. 

*The integral.with.respect to time is written exactly as 
¢ . . . . . 

\ (y.1) N e~ [ -(H)]d~ > 
-oo 

(A-4) 

' 

* 

.(footnote continued) 
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The rate of droplets leaving the jth stage, corresponding 

to the same stream, is 

y*jT oo 
n

0
(FY + FY) ) rj_1(yj_ 1 )dyJ-l ( exp(-~)d~ 

yl 0) 
(A-5) 

·where the double integral is obviously equal to 1. 

For the droplets, entering from the (j+l)th stage and 

departing from the jth stage to the (j+l)th and (j-l)th stages, 

a similar consideration gives Equation A-6 corresponding to 

Equation A-4, and simply n
0

Fy in place of Equation A-5. .Thus, 

nF· 
0 y. 

YjT ·(oo 
~ fJ+l(yj+l) dyJ+l.) (yj)j+l 

yl 0 

exp (A-6) 

where fj+l(yj+l) is the concentration distribution for the droplets 

from the (j+l)th stage. 

The mean concentration yj for the dispersed phase going from 

the jth stage to the upper and lower stages is given by 

Equation A-7. The total rate of solute leaving is the sum of 

(footnote) 

HO\'lever, this express~on is formally equivalent to the integral 
used in Eq.(A-4). The.same formal simplification is utilized in 

I 
the follo\':ing steps. . 
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00 

oyj-l ~ . (..-J) J-l exp (-sli) dpi 

0 

m· 

dy j+1 ~ (y j) j+1 -exp (-pi) dpi 

. 0 

where~ as indicated before~ (y
3

)
3
_1 is the concentration or 

droplets leaving the jth stage at ~ a ~~ after ~ntroduction 

from the (j-l)th stage at ~·= 0. Also, (yJ)j+l is a similar 

concentration~ relative to the ·(j+l)th stage. 

. * To express yj as an explicit function of NoyO' yj, y3_1 , 

and yj+l' further relations are needed to combine (yj)j-l and 

(yj)j+l with ~~ yj-l' and yj+l" Conside~ a single droplet with 

·the concentration y3_1 , .introduced from the (j-l)th stage to the 

jth stage at T = 0. Its concentration yj changes during travel 

through the j th stage, according to the rel.ation: 

(A-7) 

v0 d yj/dT =- k0 ya0 (y; ~ yj) (A-8) 

with the conditions that yj = yj-l at T = O, and yj = (yj)J-l at 

T = T. Integration of the equation under the given conditions 

yields 

(yj) j-1 = Y; - (y; - Yj_ 1 ) ex{ [Noy0/(1+ 2ay~ pi} (A-9) 

i·lhere NoyO is equal to £y(a0 / v0 )k0 yTToy· It is easily sho\'m to 

be equivalent to N
0

y0 given in Equation 1, except for a slight 
... 

(yj)j+l modification. Similarly, for we get the equation: 
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(y j) J+1 = y; - (y; - y J+1 ) exp { -[ N0 Y0)1 + 2ay8 91} 
To derive Equations A-9 and A-10, k

0
y is assumed to remain 

constant. 

(A-10) 

Integration of Equation A-7, introducing Equations A-9 and 

. A-10 into it, yields exactly Equation 1 1 where the follo\·ling 

obvious relations have been utilized. 

* yjT 

Yj-1 =) Yj-~ tj-1(yJ-1) dyj-1; 

yl 

* yjT 

YJ+1 = ~1 . YJ+1 tj+1(yj+1) dyj+l 

y 

Thus it has been proved entirely permissible and exact to 

treat the dispersed phase as a second continuous phase, in so far 

as the fo1lm·;ing four conditions are satisfied: (a) drop-size is· 

uniform; (b) overall coefficient of mass transfer is constant; 

(c) volume-fraction (holdup) of the dispersed phase is constant 

throughout the column; and (d) a linear equilibrium holds. 

These restrictions may be relaxed, depending upon how fast 

coalescence and redispersion of the dispersed phase take place 

in the systemo There is a positive indication of coalescence and 

reoispersion of liquid droplets for agitated liquid-liquid systems~ 

making the restrictions less necessary in such instances. 

Since ~or the limiting case of ay ~ 0 the back-flov; model 

is reduced to the stage model, the statement given above is also 
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true even for this model. For example, it is permissible to say 

that the dispersed phase in mixer-settler. extractors can be 

treated as a second continuous phase. In addition~ it is riot 

necessary· that the dispersed droplets be separated into a 

homogeneous phase before entering .the next stage. 

·The basic relation for the stage model, corresponding to 

Equations A-7 and A-~ i~ 

co 

~ 
.with 0 

(A-ll) 

(A-12) 

As stated before,~ Equation A-12 ·is derived under the premise of 

a constant Noyo· 
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F~(!~-~Fy ,_ ~-rx I Fy 
XF I yl 

! 
XI yl -} t -r- \. t Fy'! f !t! Fy LO -, 2 

_l_ ) f 
2 L0 

...[_ 
~ Fx+Fx r~ '6 

CD I .· x1 1 

j - I 
Fx+F (~ Fy+F 

' Xj y· J I 

" 
n -1 p 

) .d 
1-
\ 

L 
np Xn np Ynp 

_J 4 
p 

"---

Fx Fy 
xn p lYF 

( a ) (b) 

1. Back-flo\'1 model for cow~tercurren~ operation--

(a) Mult1co~partment-contactor; (b) Ident~f16ation 

of flo\'ls.,~ \'lith :tntcrn<ll flo\'/ F = Fx + Fy. 

S.ISJ-1 

f 
I 
: 
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Qs~--~--._~~~~----2~~~~ 

0.1 0 .. 2 0.5 1 .. 0 5 
A ax + a.y for ·A < _ 

(ax+ cty I A for A > I ) 

2. Correction factor fT in E.quat1on 12, computed from. 
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