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ABSTRACT

A simple case of many-chénnel scattering is investigated. The
Riemann surface is constructed, upon which the elements of the S matrix
are meromovrphic functions, The structure.ofl the S matrix near a pole is
investigated in detail, It is shown tha:t both the ‘scattering wave functions
and the elemepts of the S matrix.are dominated by the "wave function' for
the ""decaying state" in the vicinity of such a pole. The physical content -
of the Breit-Wigner formula is discussed in the framework of these ideas.

Leyinson's theorem is generalized to the case of many-channel o
scattering. As a by-product, it is shown that poles of the S matrlx close
to the positive real axis of the physical sheet cause the sum of the eigen-
phase shifts of the S matrix to increase approxxmately by W over the
width of the resonance as the energy increases.

Most of the above statements can be proved with the'help of a function
‘D, holomorphic on the entire Riemann surfﬁce. Its zeros coincide with poles
~of the S matrix, and its phase is r‘eiated to the sum of the eigenphase shifts
of the S matrix. Peierls, Le Couteur, and Newton have shown that from D,
- it is possible to determine all elements of the S rﬁatrix. All this seems to
indicate that D is a very basic function in the theory of m‘any-channel scat-

tering, and that its role is not yet entirely understood.
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’ I. INTRODUCTION

In this paper we give a detailed analysis of the pr0perfies of an exactly
soluble many-channel-scattering problem. The motivation for this investi~
gation is threefold.

In the last twenty-five yeais several general theories of nuclear reac-
tions have been developed (%). The best known of these were formulated by
Kapur and Peierls (2), Wigner and collaborators (3), Humblet and Rosenfeld

{4), ard Feshbach (5). A very characteristic feature of all these dispersion

theories of nuclear reactions is the occurrence of a Breit-Wigner formula,

which describes approximately the behavior of the S matrix in the vicinity
of an isolated resonance.

The conditioné stated in the above-mentioned papers for the occurrence
of such a resonance, as well as the expressions for the parameters describ-
ing the S matrix near a resonance, differ,. however. One may ask whether
the various definitiéns can be shown to be identical under conditions of physi-
cal relevance, as shc?uld be the case Qith theories that presumably have
general validity; if not, whether there may occur sharp peaks in the Cross

section that can be accounted for by only one of the definitions and not the
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Not all of the above~mentioned papers imply, ! fg: example, that an isolated
resonance is necessarily a pole-of the S matrix, and although it is clear that
poles 6£ the S matrix sufficiently close to the real axis do give rise to reso-
nance phenomena in the crbss section, it should be interesting to see whethe:rt
there may be sharp reson.ance—liké peaks in the cross section not caused by o
poles of the S‘ma.trix. g

In such a situatiofx;l it might be helpful to have an exactly soluble
problem available that mé.y serve as a test case _for the general theories
anc}; ‘may give some further insight into what happens at a resonance. For
such a question, a many-channel scattering problem seems much more suit-
able than a single-channe-:.l one, the former being able to give sharp resonances
under much-lesa stringént and artiﬂci'al conditions upon the potential param-
eters than the la,tte'r.

A second reason that started this.investigation is this, When one
anaiyzes‘ the structure of the S matrix in an attempt to understand what
happens at a fesona.nce. one is inevitably led to consider the analytical
continuation of the S-matrix elements to complex values of the energy.
Numerous studies of the analytical properties of the S matrix have been
undertaken for thé single-channel case (6), but relatively little is known.
about the corresponding properties in the many-channel case (7). Since we
propose to study a very specific case of many-channel scattering in this
ﬁaper, we shall be concerned only with proiaerties of a specific S matrix
-and shall not try to discuss general featurés of S matrices for m%ny—clualxnel

scattering in terms of conditions imposed upon the interaction po‘tethlia};s'.-
- In a sense, the_n, our investigation will be a natural Aextension. to the many-
- channel case, of Nussenzveig's detailed discussion (8) of the properties of

-

the S matrix for square-well poteantial scattering. We are, however, aware
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that many of our regults- can be shown to be valid for wide classes of inter-
action potentials, and we shall try to prove this statemént in a later pub-
lication. A

Finally, the simple soluble case in .which we are interested gives rise
to sharp resona;nces in the scattering cross section if the potential param-
eters that have to be specified are suitably chosen. One may try to analyze
the conditions upon the potential parameters under which sharp resonances
occur. In this way, one may hope to get some better insight into the question
whéther‘the nuclear forces have to be very specific to cause the occurrence
of many sharp resonances in low-energy nﬁélear reactions, or_whether one
would more or less expect any attractive and suffiéiently strong force to
have this effect. Whether or not one may hope to obtain an-answer to this
question by means 6f studying the preseat problem depends, of course, upon
whether one may consider this problem as typical for what M§pens in nuclei.
Later, we shall refer to this question in the appropriate place. |

In Section II, we introduce the many-channel problem we wish to studyv
and derive its general properties, including an explicit expression for the |
S matrix, the épecific form of Green's theorem, etc:. Our choice of inter-
aétion potentials has already been made (_7_, ) ‘“,‘f_)_), and the discovery that the
many-channel problem becomes exactly soluble in this simple case is not a
new one, Therefore, most of the relations we give in Section II can be found
in the literature, For purposes of definitio;l and notation we have to present
ther}x again, howe\;er. ‘We also include a proof showing that for fixed total
energy § we can always adjust the parameters in our model ifx such a way
that we can exactly repr_éduce the elements of the scattering matrix for a
muéh more general choice of interaction potentials.
h In Section IIf, we étﬁdy the Riemann surface 'upon which the S matrix

becomes a single-valued function. We discuss the topological structure of
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this surface, the general analytical properties of the S matri#. and the
significance of analytical continuation of the unitarity relationships. A
study of this kind of problem was made by Peierls (_1__(_)),. and subsequently
by Le Couteur (11}, We believe, however, that our case is the first many-
channel cééa in which we start with a many-channel Schrddinger equation
and discuss fully the analytical propexties of the S matrix as consequences
of tﬁe nature of the potentials contained in this equation.

The same remark applies to Section IV, where we turn our attention
to the poles of the'S matrix. We investigate such questions as the connec-A
tion between the occurrence of poles and c‘é‘:rtain solutions of the Schrdédinger
equation, the beha‘vio;rl of ;,he S matrix near {aoles. ."the form of the analytically
continued unitarity relationships near and at a pole, the structure of the
Breit-Wigner formﬂa. the cobnnection between total and partial widths, the
relation between compound,a;nc_l decaying states, and the single-level approxi-
mation for the § matrix, Much of the work in this section has been stimulated
by thepapers of Newton and Fonda (9), of Breit (12), and of Humblet and
Rosenfeld (4). Thé more recent paper by Davies and Barangér (13) also
deals with these problems. Still, we hope we may offer new or clearer
understanding of the structure of the S matrix near and at a resonance.

In Section V, we show that Levinson's theorem (14) can be extended
~ to many-channel scattering. We shall carxy through the proof in a way analo-
~ gous to the original proof by Levinson for the single~channel case. . The crucial
point for the generalization of the theorem is that the sum of the eigenphases
of the S matrix at each enexrgy § is given by the phase of one analytic function
D of the energy. The main difficulty is the continuation of the eigenphase
shifts through thresholds (branch points), and it can be overcome by means

[

of an analytic continuation of D in the physical sheet of the Riemann manifold
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discussed in Section ‘III. The essential part of the proof does not depend
upon the specific choice of interaction potentials considered in this paper,
and we intend to give a more general version of this préof in a subsequent
publication. |

In Section VI, we discuss the positions of the poles of the S matrix
as functions of the potential parameters. We begin with a reminder of the
single~channel case (8), and continue with the many-channel case without
and with interaction between the channels. In Section VII, we illustrate
the results obtainéd in the previous sections with numerical examples re-
lating mostly to the two-~channel case. A Sértial answer to our third question
is given. We end in Section VIiliwithithe summary and conclusions.

We finish without‘having related our results to the more general
theories mentioned‘above. We think, however, that the material presented
is sufficiently self-contained to merit separate publication and defer the
comparison between our results and the general resonance theories to a

later time.
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II. DEFINITION AND GENERAL PROPERTIES
OF THE MANY-CHANNEL PROBLEM

A. Definition of the Problem

We proceed'in close analogy to ref. 7. We consider a nonrelativistic
particle, the pésition of which shall be described by one coordinate x. The
simplification of using only one coordinate is made to avoid the complications
introduced by angular momentum and spin. This particlle, confined to values
of x with x 20, so that the wave function vanishes for x = 0, intex;a.cts with a
system that has only a finite number N of bound states. We denote the state
vector of the mth béund state by '|m> and‘its energy by e ,» and have the
states arranged in such a way that éi Se, € ey €+ Sey. For the sake of
simplicity we assume e # e for i# j. T}tis simplifies the behavior of the
scattering matrix at thresholds considerably. The system with N states is
referred to as the residual system. The total system, the particle plus the
residual system, is simply called thé system.

Let V denote the interaction between the particle and the residual system,

and let V___(x) denote its matrix elements with respect to states |n) and |m) :

V__(x) ={nlVim) . | (L. 1)

We assume that V__ (x) is finite and real everywhere, and that

Vnm(x) = 0 for x ”a. The constant a is called the interaction radius. Denot;ng
" the ;:ofnplex conjugate‘of a number by *, tl;e Hermiteanconjugate of a matrix
‘by {1, and the transpose of a matrix by T, we have

T

S v ® 2t -
nm(x) = Vnm(x) = Vnm(x). (iI. 2)

Vnm(x) =V
The total-state vector of the system, Y, can be expanded into the states
lm) :

. N
=y f ) my, {I1. 3)
m=1 :
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with fm(O) = 0 for all m. Instead of referring to ¢, we use the N-dimen-
sional vector of functions ET(x) = {fi(x). ten, fN(x)} to represent the system.
We introduce the symbols é for the N-din&ensiorﬁal unit matrix, V(x)
diagonal elements, and &l fof th.e total energy. Putting f = 1 and the mass
M of the particle with coordinate x e'qua.lvto M = 1/2, we obtain the many-

channel. Schrddinger equation of the total system ina stationary'sté.te.

| 2 :
[ -01+e+y) Em=o. , (11.4)
. dx ~ -] 4 :

¢ 4}

Equation (11.4) will be the starting point of our investigation, Although
Eq. (II.4) gives rise to inelastic scattering through the nondiagonal elements
of g(x)l. it introduces none of the difficulties encountered in actual inelastic~
scattering processes. Wi_th inelastic scaftering of t\{ro systems, rearrange-
ment collisions become p;ossﬁible'. too, in most cases. They introduce serioﬁs
geometrical difficulties into the formulation of the problem. No expansion of
the type (I1.3) having ohly bound states .lm> will be possible in such a case,
for example. In addition, in all realistic scaftering processes we encguntef
three~ or more-particle Breakupor production processes that obscure the
kinematics of the reaction severely. Having avoided these difficulties, we
find Eq. (II.4) sufficiently simple to allow an explicit solution if we further
_ specify. ;/(x).“ : N

It is, of course, questionable whether.our simplifying assumptions may
introduce sdme false features into-our results--false in the sense that they
will not be present in a more realistic treatment of inelastic scattering. We
‘believe that all the essential features of our problem are necessarily present
in any mo.re complicatec}‘ problem.. This is the basis of our conviction that it

is useful to undertake the present study. It is clear.A'of course, that many
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features possibly present ina ﬁore realistic treatment will be missing in
our problem. In particular, thg analytical properties of the S fnatrix are
likely to be very much simpler in our problem than in a'ny realistic case.
I—Iowever. the problem £ormula.ted in (II 4) is consistent with the requirements
a test case.

Returning tc; the formulatioﬁ of ou,i problem, we supplement Eq. (1I.4)
by imposirig boundary conditions at x-» ., To do this, we observe that for.
x>a, (11.4) simplifies to | |

£

[( "‘i:z -8 1t S] F(x)=0, - {il.5a)

"which is an uncoupled system of differential equations. Introducing the N

wave nurpbers k‘i_"”'kN with ‘{ki"”'kN}':

k, = (6o, /2 | o (11.6)
so that ' ki>Oif ~f,>e;l
and  Imk >0 if £< e, -

where Im stands for imaginary part, we can rewrite (II.5a) in the form

a® . 2] | |
S S ECELINEL AR . 5v)

A physical situation in which x > a and the residual system is in a state |m>

-is called a channel, and in this sense we shall refer to the wave numbers km

as the channel wave numbers. Disregarding the possibility of bound states of
the total system (which we will discuss later) we define the scattering states
as solutions of (II.4) with an incoming wave in ‘one channel, £, and outgoing
waves in allv other chénnels. If we introduée the velocities Vi by v;= 2k, and

normalize incoming and outgoing waves to unit flux we have for x > a, accord-

ing to (Il. 5b)



£ i) = a_ﬁ;m expl-ikx) 6, -S_, '(v ‘)1 7, explkx) (IL.7)

m
The upper index 1 in { (“(x) refers to the "incofning channel.!" The syatem
of equatxons (11.4) together with the boundary conditions (II.7) is expected to
define the solutions f ( )(x) uniquely.

If the energy § > e, 8o that ki > 0, we call the channel i open; otlmgr-
wise, ciosed. The physicany interesting ones among the solutions g.(“'(x) of
. {I1.4) and (11.7) are clearly those for which 2 is sopen. It will turn out to be
advantageous, | howeve;'. to consider also tl:ie E(I v)(x) for w‘hich 4 ‘)',s closed.
For the same reason, we have in (11.7) included factors. 1/(vm')i./z ‘ in front
- of eprnentiale ‘thatv for closed channe}s yield .zero‘ﬂux, and have extended the
definition of the mafrix elements sml of the svcatt.ering matrix g to closed

channels, even though cross'sections can be measured only for open channels.

“

B. Specification of the Interaction; Explicit Solution of the Problem

We now make the assumption that for x< a,

an(x) = an T (11.8)

independent of x. This assumption is equivalent to the assumption that the
interaction (1I.1) is separable and that its x-depehdent part has the form of
a square-well potential. With the help of (II 8), we can easxly solve the. Eq. .

' (11.4)'561' x< a. We define the matrix A by

é: - Xb. (11.9)

e
~
for x < a. A is real and symmetric because of Eq. (II.2); it can be diago-

nalized by an orthogonal matrix Q with 0 QT = 0%p ='1 . Denoting the N

~

~
~
~

eigenvalues of ,5. by )\-1. N )‘N and introducing the diagohal matrix A

" that has the )\i as diag‘o‘nal elem_ents. we have
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T _ .
0A0% =4, (I1.10)
When the vector of functions G(x) is defined by
G =gFW, E=0TG, (niy

it is easily seen that G (x) fulfills the equation

a4

- [(SZ+agrp]gm-o, (ir.12)
- 80 that the ith component gi(x) of g(x) has the formﬂ
- ‘ _ sin § + )\ )1/2
: = X 11.13
g; (x) T )1/2 { )

Here the Ei' are N unknown constants to be determinéd from the boundary
conditiorxs at x=a. The Jdé-nominatbr' in Eq. (II.13) has been chosen in order
to nﬁake (11.13) meafxingful even for >‘i= - £, and also in order to facilitate
an analytical continuation to (éqmplex energies.

The constants ?iT_= {5§1‘ Lo 'EN} as well a§ the elements of g can
now be determined by joining }E(x)@-as given by (II.14) and (II.iS)»-continu?
ously, and with a -;:-(-mtinuous first derivative, to E(“(x)--aé .givven by (11.7).
For each possible choice of £, &= 1‘,-- «+4N, we obtain a set of constants ;(t}(l)
. and the S-matrix elements sml form=1,+++,N., Thus we can determine the

ZNZ unknowns gn(f) and S_ ,, with 1 < (m,£) < N. Explicitly, one obtains the

“mi
equations .
: , 1/2 :
N sin(§+ N.)/ "a
. t . 1/2 .
Z gt(“ 0, <cos(f+ kt)i/za -k - 1/2_] =-i(v_) / explik a)6_ ,
t-':i - (g + t)
' (I1.14)

_rand

l—sm(f;-l- A )1/2 J}

. 1 y 2.
’Smi fx m expl(.-kaa) zosm [ {cos(§+ A ) a+ 1km o )\8)1/2
: m 8

|
L

(I1.15)
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where Eau) is the solgtion of (II.M:).- Obviously, the system of equations
(11.14) is the more £undémen£al one: Whenever it has a solution, (II.15) has
one, too, which can be trivially '6bta§ned by inserting the solution of (11.14).
The Eq, (11.14) ar§ a s)fstem of N’ inhom’ogeneous linear equations for the
unknowns Et(-“" t=4,¢+,N. By chapéing the index £, we get a different
inhomogeneity and different solutions. The solutions :_é (£) all exist and are
uniquely determined if the deterrninant of the homogeneous system does not
vanish. The matrix elements of g and the overall solutions gu)(x) aré
then uniquely determined also.

It is this particular fea‘.tur'e of our m;';y-cha;nnel problem that greatly
simplifié's the following discussion, Instead of having to solve a coupled
systexﬁ of linear differéntial equations, ‘we can carry through the entire in-
vestigatibn by studying the properties of (II.14) as a function of.t'h‘e energy &,
resorting to the simple and powerful methods of linear algebra.  Our solutions
as functions of x are determined once and for all, and the only unknowns left
are the ‘é(f) and the matrix g.. This proves particularly advantageous for
the discussion in SectionIV. Aside from the energy §. the Eq. (lI.14) depend
upon the parameters xv cee, )‘N' the energies €g0ttts e'N. (which enter into
the definition ofi'ék.x'e k1, N kN), and the elements of the orthogonal matrix
- 0. From Egs. (11.9) and (11.410) it is evident that this set of parameters is

entirely_ equivalent to the original one, namply ﬁhe evlementa of Z(?c) arid the -
energie_s e, s .>eN. It is,»however. | moré advantageocus to use this .set
than the original one if one wants to discuss the dependence of the solutions
on the parameters, énd henceforth we do so,

If sin(f + )\t)i/za £ 0 for all t, we can rewrite Eqs. (II.14) and (11.15)
as follows. We define the symmefric_: matrix E by

N

| - 1/2 1/2 . ,
Eypm = n‘él 0,0 (E+X) / cot(é-l-xn)Av/’a - ik, 6 (11.16)

Im’
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. * - T
Introducing the new unkpowns 9(2) = {'é' (1” oo .'Eléi)} by
| : ' . 1/2
~ (1) _ - (4) sin(§ + ?\t) a
we obtain for (1I.14)
> ) %) = itv ) V2 [expl-tic a)] 6, (11.18)
. m .

If the determinant of g: does not vanish, we can easily solve (I1.18) for

-

1(‘3(2) and obtain, by inserting into' (11.15), tpfa following expression for 2:
S = (km/kﬁﬁ/?- [-exp(-ikma-ikia)] ZEn;; (Rgov oo s I IXE (=kyy oo ey <Io).
- g 8

- - . (11.19)
Here, ,zIL"'1 is the inverse of E and the matrix 5 (-ki,k‘. ., -kN) is defined
in analggy to (II.16), with the )si.gr.xs of all the ki's reversed. Obviously, we
have .

E m(ki’ N k.N) + E!m(-ki’ vy, —kN) = Zikléim‘ (11.20)

" Inspection of (1I.19) shows th#t it remains valid even if not all sin(§+ )\t)1/2a
are diffeient from zero, i.e., even if (§ + Xt)az =mn with n=+1,%2,:-+.
“Therefore, we shall use this expression for g throughout. Thé constants
-g(“ become, of course, ill defined in“such-a-case, and one has to refer
back.to the §(“. |

II._ the determinant of 5. vanishes, thezn the homogeneous part of Eq.
(1.1.14) has a nontrivial solution, and at these enérgies we encounter a bound .
state, as is shown in Section IV. Whenever this happens, at least one of the
‘ elements of the S matrix as defined by Eq. (II1.19) has a pole except. for very
special cases discussed in Section IV. For the time being, wev assume
det Ef0. |
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The coefficients ;é_(“ in (I11.17) were introduced for the following

purpose. We define the functions

(, g 'l‘sin(g}-i-)\ )1/2 \
X ) = 0 . 11.21
.ﬂnx_ ' pzq mf mn | sin(E+X )1/2a ( )

'I‘he functxons E (x) of Eq. (1. 11) can be expresaed in terms of the constants
Q. and the ﬁmctmns X£ n(x) by | |

fm(z)(x) - ngmxam"‘)' S ‘ ' (11.22) |
5 : :

The X's have the pleasant properties that.

i d _ |
Xln(a) - sln' dx Xln()_‘) 'x=a ~1leln(a) - Eln' (I1.23)

Ina sevnse. they are the correct system of functions to be used for x < a if
we formulate our boundary conditions in terms of the matrix E' as was done
in (II.18) and (11.19). TheA matrix E is the matrix of the logarithmic deriva-
tives at the interaction radius. It is clear that, agam, the X's are ill-
defined if one of the sin(§+ A )1/23 vanishes.

Fmally. the ¢ross secnon for a reactxon leading from channel £ (open)

to channel m (open) is, according to the normalization used in (I1.7), given

by

Opern ™ 1Sy -8

'C. General Properties of the Solutions
We begin with Green's theorem. Let F( )(x) and F( )(x) be any two
' solutlons of (I1.4) belongmg to energxes §1 and §2, respectively, with
E‘(i)(O) = --g(z)(O). but not necessanly subject to the bounda;'y conditions

i
'

» (II.7). Then Green's theorem reads v
T (g6, f £« £ e - F“’(b) F‘Z’(x) L

d

-E(Z)(b) . - E(“(x) lx.-:b . | (H.255
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The S matrix is symmetric for all channels, is unitary with respect
to the subspace of the open channels, and has simple time-reversal prop-

erties. By combining (I1.19) and (II.20), we obtain

. . . 1/2 . -1 1/2 .
S = aml.[exp(-Z:.kma)]-&- 2i [exp(-kaa)] (k) / E (k) / [exp(-lkla)]
| (11.26)
which shows that g is symmetric because g is symmetric: -
S 4 =Spy forall m and 2. (11.27)

The unitarity of ,§' can be shown in many ways. We prefer a direct calcu-
lation that can easily be extended to the an‘a‘.lytica.'l continuation of § to

, complex energies. We make use qf the fact that, for real energies,

* : - o I # '
Sm! (kip""kN) : Sml("ki ."..."kN). . (H.ZS)
since ’
% ; 3% ’ »
E_, qci.-u.kN) = Eml(-ki“,“'.-kN) . {11.29)

“ -

We notice that, according to (11.6), -ki* = -ki -for i open, and -ki* = +ki

~for i closed. Thus, Eq. (II.20) can be rewritten in the form

* .
Eml (kio' . .kN) "Emﬁ(kio"‘okN) =
6m2 XZikm ifm is ope‘n.

or & X0 if m is closed. ' (11.30)
mf i} TEOo e L Lot ite P

‘We have, from Eq. (11.19). for £ and t open,

Z S 4S5 mt Li/(ktk) /Z}[exp(-ik a+ik a)]

_ mopen
Z Zk £t (0E,, (-RXE " (K)E LK) . 3

m~ mi
mopen i,j
Replacing km by (11.30), using Est («§)=;TE;ét(.;§):£pm$ epén;tdnd utilizing the

symmetry of E, we find that Eq. (II.31) reduces easily to
z . .

S_,S *_ s if £ andlt' are open. VII.32)
m open ml Pt = 04t v P (

+
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Equation (11.3_2.) expresses the unitarity of the S matrix in the subspace of
open channels, and Eq.‘_(ILZB) denotes the behavior of g under time re-
versal. |

The bel_mayior of the croéa sections at threshold, i. e., when one of the
ki'a is close to zero ahd positive, can be studied in ar}alogy to reference 7.
Although it is not of great physicai interest, we want to give the high~energy
limit for the cross sections, too, for the s'ake of completeness. Instead of

(I1.16), we define the matrix E'.

E' = f {( gra,) /2 cos(?é’f’\nl:}/za-ikm sin(,g-I-)\n)i/Za} , (I1.33)

Im -~ nﬁ nm
n=

and it is ea'z_ay to see that sz may be written as

g =(k /kl) 1/2 [exp(-ik a.~1kla.)] ZE"i(K)E o (- K) , (11.34)

We expand {6+ \ )1/2 (§)1/2+ [ /2(@)1/2] +++¢ for large £, and do the
same w1th k= (€ -e, )1/2* (&.)1/2 [e /2({:.)1/2] + ¢+, We calculate E' to
first order }n ‘)ss/f, and ei/ﬁ o ,F“rom this expression it is eas;lrvto calculate
the inverse of E' to first oxder in 1/&. and making use of the Eqs. (I1I.9)

and (1I.40), one eventually obtains for §-= e,
St ™ By - L/ YAV 0 w3

mi
- with 'le def‘inedT in (11.8). Corfespondingly.‘am_..e» 'sz |2a2/§

accordi'ng to Eq. (I1.24).

"
§
1
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D. Connection Between Qur Case and the More General Problem
Presented in IIL A

In Section II.B, we have specié.lized our interaction potential greatly.
We can show; howevez;'. that this specializa.tion is not as severe as it may
seem at firét sight. We can prove the following statement: Given any po-
tential_matrix» Xi(x) that £u1ﬁils the reciui.rements of Section II,A, and given
the corresponding scattering matrix gi. we can always specify the param-
eﬁers )Si‘ sev, XN?: LYTRRRNEINY and g in our problem in order to make the ‘
S matrix of Eq. (I1.49) identically equal to Q-’gi fox fixed energy §. This
means that we can reproduce the energy dependence of a more general
scattering matrix 21 by making the parameters in our problem energy de-
pendent. Therefore, a study of narrow resonances in our specific case will
apply to a wider class of pote_ntia;.ls gi(;c) defined by’the_ requirement that
the energy dependeﬁce of the parameters that reproduce gi exactly be small
over the width of the resonance. |

In order to prove the above atatements we have to construct a gene1dl
solutxon of Eq. (I11.4) for x< a, which we join smoothly to the solution (II.7)
atx = a. Le; _g( )(x), i=4,+++,N, be a basic set of solutions of (11.4), de~

d

fined by the initial conditions G'(0)=0 and -3 g{*(x) |x,_ = 5,,. The most

general solutiorx of (I1.6) can then be written in the form

N

Z @(z)G(x)(x)
=1

‘with the N constants 'C(l) as unknowns. By equating this solution and its
, first derivative to (lI.7) at x=a, one can determine the elements of the S
matrix in analogy to the procedurev in Section II.B. Again, one finds that

S1 can be written as
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= (k /ki 1/ [exp(-lk a~ik a)] Z“ -1 (+K)E z‘ K). (11.36)

~ where ESI(K) is defmed by
N

E_(K) = Z 0 =ik 8, o (11.37)

Here, -Bsi and Csl are the matricas of the values of the functions

g(i)(x) and of the derivatives of these functions at x= a:

B. (‘)(a)' C

u‘n im =

d gn.fi) (=)l g (11.38)

Both % and g are real .from the defix}itigﬁx of the g‘i)(x). and Green's
theorem can Be used to show that g is symmetric., In (I1.37) we have dis-

: regarded the possibihty that § does not exist, We can deal with this case,
however, in analogy to the situa.txon in’ which 8in(§ +\ )1/2 a=0 in Section

I1.B. Our statement will be proved 1£ we can show that we can chooae

“

11"“'>‘N and 2 such that =~
?_L‘ B..C,, - i (g+x) /2 cot(€+)\)1/2a (w39
=z 8 i = Js Jl J ‘ ‘

This follows from a comparison of (I1.16) and (I1.37). (The e,, -, en

must,of course, be chosen so that they reproduce the correct thresholds. )

N 1
J=1

is real and symmetric; it can be diagonalized by an orthogonal matrix '0',

_ The matrix

with eigenvalues {3:1.--- N} Equating 0 '0' andX' =(§+)\) 1/2 cot(E+N,) / a,
* which is alwa.ys possible, we see that the requxred equahty can indeed be
achieved for a fixed energy §. This completes the proof.

) It should be-noted‘that the above statex}'xent has, of course, no Bearing

 on questions like the analytical continuation of the S-matrix elements to

complex energiés studied in Section III.
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II. ANALYTICAL PROPERTIES OF THE S MATRIX

A. Construction of the Riemann Surface {15).

The S matrix d;zfined in (11.19) shall vnow be considered as a functic;n of
one of the ki's._ say ki » and continued analytically to complex values.of k.
~Two difficulties arise in this procedure: We encounter branch points when-
ever one of the ki's', i=2,00 + Ny is equal to zero, because of the square-
.root dependence of the k; on k, [this follows from (11.6)], and the elements
of the S matrix will have singularities whenever the determinant of E vanishes
and at k1 = o, We solve these difficultieaén iwo steps. In this subsection
we construct a Riemann surface that removes the dxffxculty of the branch
~points. In the next subsection, we show that the S matnx is a single-valued
merornorphxc function on this surface. and in Sectxon III C we extend some
of the properties of S derived in Sections II.B and I1.C to all points of the

surface.

-

Let us choose the zero of the energy so that ey = 0, £= kiz =k22_+.e2 =

= kl\?-&-erith e, < e, <+ < e, Introducing k, as the independent

variable, we have

2

E=k?i k= Z-e)VE | (111.1)

Let us consider the algebraic function

N ‘ o v'\,
Bik; = tk,), B; # 0 forall i, : : (IiI.2)

i=
for valﬁes of k, differvent. from t(é'i)izz. i=2,°*", N, and where the B.i
are constants. For each of these values of ky t(ki) is a ZN'i-valued
: ﬁunction of ki' This is because we can independently choose a plus or minus
sign for each ki‘ i=2,-++,N, in front of the square root in (III.41), and there
N-1 '

are 2

different possibilities of making'sucha:¢hoice. Therefore, the Riemann
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2N-1 sheets. We can label these

surface of the fu.nctxon t(ki, in: (III 2) has
sheets in the followmg way: To each shaet we assign a vector T with N-1
elements. The g_th element 71 .of ;thxs vector shall be +1 or -1, according to
the following rules A

sign .Re ki+i = gign Re k1

| and sign Im.ki*_1 = gign Im ki‘

if : .
sign Re ki+1

then STy =HL . (UI.3)

-sign Re ki

s

1]

and signlmk, , = -signIm ki.‘

then ‘ T; = -1,

This 'définition suffices for all cases except when k1 is real,

«(e, 1/2< k1 <t (ei+1)1/2‘- _Hére, Im k-i =0 and Re ki+1 =0, so that both

i+1)
definitions (I11.3) apply. In this particular case we shall choose 'r'i to be

+1 or -1, depending upon the sign attached to the neighboring points with

2N yectors 7 having the numbers +1

N-1

Im ki >0 on the same sheet. The

and -1 as elements in all possible combinations correspond to the 2

sheets.

The way ﬂ"le sheets are connected can be seen by an extension of the
well-known construc.ti‘on for N=2, There, we take the .two sheets, labeled :
= {+1} and g, = {-1}, respectwely. and put one onitop of the other. Each

 sheet is a copy of the complete 1(1 p).ane. Then we c¢ut both sheets from

k1 = ‘-(ez) 1/2 to’ ki =+ (ez)i/ below the real axis, so that the real axis itself
forms the upper shore of the cut, and the points with Im k1<, 0 form the lower
" shore of the cut. The uppex; shore of the cut ;n the upper sheet is conneccted
\yith the lower sfxore of the cut in the lowef. sheet, and vice_vérsa. This gives
the Riemann surface for N=2. It has two simple branch pointé at ki = &(ez)i/z.

| If we follow a closed path on the Riemann surface that encloses one branch
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poi'nt but not the other, then we need to go aroundlthis point twice in ordex
to come back to the starting point.. Having gone once around the branch
point,  we have moved from one of the sheets to the other one,

For N=3, this pmcedure is repeated as iouowa- We first carry
. through the construction for N =2 twice, cutting the shgets from --(es):[/2
to wi-(e_,‘)i/2 ahd identifying opposite shorés on different sheets, as described
. previously. This way, we get tWo identical samples of the Riemann surface
| for N =2; the only difference from the previous case is that the branch points
are at k i(e3)1/ instead of l':1 = :k(ez) 1/2 . We cornplete the labelmg for
the two sheets in the first surface, 7= {+1} and 7, = {~1}, by callmg them
T4 = f1i+1}and Tp = {+1, «1}. Correspondingly, we label the sheets T 5
and 1, in the second s.urface by 13 = {=1,+1} and Ty ® {~1, -1}. We now
cut all four sheets from k1 = -(32)1/2 to ki = +(e2)1/2 80 that the upper shore
© of the cut is formed by the real axis, the 4lower shore of the cut by the points
with Im\k1-< 0 We identify opposite shores on different sheets as shown in
~ Table I. We 8ée that each sheet of the fixrst surface is connected with a sheet
of the second surface, the connection being thg same a;s in the simple case
N = 2: upper shore of {+‘1;+i} with lower shore of {-1, ~i}. and lower shore
‘of.{+1“, +1} with upper shore of {ni". -1}, and correspondingly with the other
pair of sheets.

We can extend the construction to arbitrary N. We take ZN"1 sheets

N-2

(sample;s'of the k1 plane)., Then, we construct 2 identical samples of

Riemann surfaces for N =2, each having two sheets and branch points at
t(eN)i/z. Pairs of such surfaces are connected in analogy to the construc-

" tion for N = 3, cutting the sheets from '(eN—i) 1/2 to -!-(eN 1) 1/2 . We obtain
2N-3 surfaces, each containing four sheets.' These are again arranged in

1/2

pairs; the sheets are cut from -(eN_’Z) té +(eN 2) 1/2 , and opposite shores

are again identified. We continue until all surfaces are connected with each
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other. The surface for arbitrary N will have ZN"1 sheets, and all its

e

branch points will be simple.. The number of branch points w(N) is given

N-1

by w(N)b= (N-1)2 . This follows from the foregoing construction. We

take two identical surfaces of the construction for N-1, and each sheet of
the two surfaces gets two new branch points that are identified in pairs.

Hence.' : ) N-il .
' w(N) =z 2w(N«1)+ 2 ' (I11. 4a)

which together with w(1) = 0 and w(2) = 2 yiélds

.

wiN) = (N-1)28"1 (1L 4b)

The topological structure of the Riemann-surface U(N) obtained in this
manner can be made transparent with th;a following, topologically eﬁuivalent,
construction. For N = 1, the coméleée k1 plane is topologically equivalent:'
~toa spbere. It has genus 0., For N = 2, wér take two sphe;'es each with a
cut in its surface, .They are topologically equivalent to the two cut sheets
described in the construction for N = 2. The two cuts are deformed into
cylinders,. and the rims of the two éylinders are identified. ’I‘he result is
still topologically equivalent to a sphere. For N = 3, we take two pairs of
spheres, each sphere having two cuts. The spheres are connected in pairs,
and the result is topolog‘qaliy‘ eiquivalen.t to a torus. (See Fig. 1). One can
easily imagine the Astx:uctures ‘obtained by continuing this procedure, and by
counting one finds that the genus p{N) of th;‘ surface U(N) ig for the smallest
values.of N given by p(;i? =0, p(2) = 0,’ p(3) = 1.‘ p(4) = 5. ‘This can be‘ gener-

alized by the formula (16,

p(y = AN 22Nty o g4 (N-3)2N2, (II1.5)

. The sheet {+1,°*<:,+1} of U(N) is called the physical sheet. On the

positive real axis of the physical sheet, the original definition of the wave
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numbers ki as given in (I1.6) applies. This can be seen by taking a value
of k; on the real axis and to Athe right of N Then by (11.6) all k, are
positive and real, and this agrees with 7 = {#1,+++,+1} according to (II.3).
We also call this sheet the physical ky plane. Clearly, in all physical |
a'pplica.tions--i;. e., when we are interested in the calculation of the cross
sections, folr example--we are interested‘only in the positive real axis of
the physical k, plane. (The position of the bound states of the system is
dealt with later.) . Therefore, we show in Fig. 2 the physical k1 plane with
~its cuts, and in Fig. 3, the physical ky plane for N = 2 and €, = 6. The
small bold-faced numbers bn the real and fﬁaginary axis in Fig. 3 give the
scale for the k1 plane. The large italic numbers give the values of k, in
the physica} k1 plane. The sheet {-'1} may be thained.by rever‘siﬁg all
signs in front of the encircled numbers in Fig. 3. The two sheets are con-
nected through the cut from 'u-(ea)i/2 to +(e2)i/2.

We are interested in sharp peaks in the cross sections. Such peaks
may Be caused by poles of the S matrix lying close to the real axis. As men-
tioned above, the cross sections are calculated from'the elements of g for
positive real values of ki‘ As we shall see later, §. cannot have poles in -
‘the upper half of the physical sheet except on the imaginary axis, and the

1/2 lie on the sheets

pbysicauy most interesting \poles must for k; < (ey)

adjacent to the real axis of the physical ki‘. plane, i.e., on the sheets that

one reaches by crossing the real axis of the‘ physical sheet from positive

values of Im ki.ﬁ To show these sheets, §ve display iﬁ Fig. 4 the physical

piane cut in a different fashion., (It is,- of course, irrelevant which way we
! x

_-cut the plane.) The cut connecting -«(éi)i/2 with -}(ei)i/z goes via «-ai, and

a,, i=2,*++, N, as shown in the figure. The area outside the rectangle

10
‘. 1 .
with the corners {»(eN)i/z. + (eN) /2, QN,-QI\’I"} is part of the physical ky

Vplane shown in Fig. 2, The rectangle itself has been removed from the
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physical k, plane so that one can see the next sheets adjacc;};t to the phys-

axis, The Umshé,ped areas with corners {-(ei)i/z, -(eidi)i/z,
/20 (ei)i/za a

ical k 1

&

!
om0y g0 Gyoqe (e ) i*

-n»:\} y i=3,°°¢, N, and the rectangle

" with corners {'(62)*‘ 1/2. (ez)Ai/z. Gy —o.g}_. are parts' of the sheeté one

_enters by cfossing the real 'ki a:;is comipg frorﬁ positive values of Im k,.
The vectoia T 'identi‘f.ying each sheet haw'/e b_een written into the aréas to

 ..which they belm;g. They can )easily be dei:t'e‘rbmined by the following rule,

which is a consequence of the construction of the Riemann surface. The

vector 7 = {+4,°*?, +1} denotes the physical sheet. Its ith element

3

-ri(i =4,¢++, N«1) will change sign if we cross the real axis between ~(eiH)1/2

and +(ei+1)i,/2. 1f we cross the real axis to the right of +(ei+1)1/2. oxr to the
left of m(eHi)i/z. - rémaina unchanged.

On the surface U(N), .discuissed_ at length in this subsection, the function
' t(k,) [see (1IL.2)] is a single-:valued £uﬁct10n; holomorphic everywhere except

Ne1:

“at the 2 points where k, = w, at each of which it has a‘sirx'uple pole unless

the B, have apecial properties like.

g .

BA' = 0.

=1

B. Analytical Properties of the S Matrix on the Riemann Surface

In Section III.A, we have constructed.}the Riemann surface U(N) for
the.algel'oraic function t(k,) [see (I11.2)]: On this surface, any function de-
pen‘ding on the variables ki(ki)‘ {=2,¢00 .' N, and ki' itself will be a single-~ '
Qa.lued function unless it has further b.ranch points not present in t(k,). In
" this section we show that the elements qf ‘ é(ki) are single-valued meromorphic

functions on U(N) except for a {finite number of points'. Here, S(k’i) is re-

lated to g(ki) by the relation
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-~ 1/2 ’ .
S = (kl/km) /‘.sz . (111.6)

nun

In studying instead of S, we do not have to consider further branch points

occurring at ki =0, i=4,-+.,N that can be trivial}y excluded by (I11.6).
From thle definitions of g in (II.19) and of E in (II.16), it is clear that

the elements of é are single ~valued holon&orphic functions on U(N) éxcept

for the points k, = kf’ » where det g (kf‘) =0 _;(_dét g. ‘means the determinant

of the matrix g). and for k1 = w0, where g and g have an essential singu-~
1arity.1 'No further branph points oécur,“ since the functions
. 2 w ' ' '
| (€ + )xm)i/2 cot (§ + )\m)i/a are even in ki.'i The points k;“ have ki = oo
as their only point of accumulation: det E (ki) is from (II.16) a nonconstant

meromorphic function on U(N) except at k‘1 = o, and its zeros are therefore

isolated for all finite k,. We exclude the 2N-1

" sheet) from the surface U(N) and call the resulting surface U {N). On fJ(N),

points ki = ® (one on each

: then,' the el‘ements ‘of § are meromorphic functio‘r_xs with isolated poles of
finite ord‘e'r whenever deﬁ g.‘. = 0."‘1 .19‘ tbe _ngighborhood of any point on (),
we can expand each el__ginént °£, é in a Laurent series with respect to the
parameter of local unifolrmalizat.io_n. For .1.<1 ;5 t(ei)i/z. i=2,++, N, the
variab}e ki itself may be chosen as parameter of loéal uniformalization.

= :&(ei)i/z, | i.e., ki = 0, we may choose ki as the parameter of local

1
uniformalization. If k, = (ei)1/2+ 4, then k= (kizo-ei) t/2, [2(e1)1/2A1+A12] 1z

At k

can obvi'ouély not be expanded in powers of | Ai‘ On the other hand, if we put
Ai with A,

/2

2, . 1/2 1/2 2 1/2 .
(ki+ei-e£) / = (ei-eﬁ) / ~l~[Ai /Z(ei‘-e!) /]+ for all £ #i. There-

k. small in the neighborhood of ki= 0, ox k1 = (ei)1

i , we find

i

R |
~ fore, all .kg # ki can be expanded in powers of ki' and the same statement
holds true for the quantities (§+ xm)1/2 for all m. 1Itis obvious that all

these expansions are even in ki‘ and therefore all elements of E are even

in k, except for the ith diagonal element that contains k; linearly. Hence,
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~ terms linear in Ai ;accur in é 6n1y thr§ugh its explicit dependence on ki'
We see thg; our .c'boice of tfhe pot_ent.ialvmatrix‘ X (%) in Sec_tion iI.B
ca.gses‘the matri:; é to have oﬁlY slightly more coinélicated analytical prop-
erties than an a'llge‘braic function. Its elements are meromorphic functions
on fJ(N) insltéad of U{(N). Of course, the ‘simple fprmﬁla (II1.5) applie.s ohly to ‘
the genus of U(N), not of ﬁ(_N).' However, the numbers of branch points and |
sheets are the.same on U(N) and fJ(N). Thus, the elements of é have branch
~ points only where tbey are hecéssar’y for kine‘matié.al reasons, and essential |
smgularxtxes only at k=, Our case is ?:Jﬂy slxghtly more comphcated than the
~ one studled by Pexev:.rla (1D) and LeCouteur (_1:1). ‘on the other hand, we are in
the fortunate position to be able to connect the properties of § and, in par-
ticular, its poies_%é?ﬁ properties of_the syétem of differential equations (IL.4).
In some aB'e'é{i-;.lvcaaes.ﬁ the' elements of § r'hay have the same value on
two or more different sheets“of U(N). By this, we mean that for 1<1" fixed,
7 changed, the elemeri.tsv of g do not change their values. If, Ifor example,

-~

X(x) is a diagonal matrix, then g is diagonal. Its ith elemenf depends on
E and k only., The sheets of U(N) then belong to two classes. one for
'wmch the (i-1 ~-1)st element of I ig positxve. and one for which it is negative.

On all sheets of one class, Sii has the same value. Similar things happen

if 'V(Vx.) does not co:Jple a whéle group of éhannelé to the rest. In these cases,
it should have been suffxcxent to conatruct suriaces much axmpler than U(N)
Since we want to deal w;th the most general case. however. we shall always

4

consxder S on U(N)--even xf sometimes we £a.ce unnecessary comphcatxons
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C. Other Properties of 'S and of the Solutions of (11.4) on {J(N)
1€ o

In this subsection, we want to define the solutions of the differential
equations (1I.4) on U(N) and to investigate' which of their properties and which

properties of g listed in Sections II.B and II.C remain valid on fJ(N).

Writing (11.7) in the form
£ M0 < (v, y4/2 i) = [expleik_x)) 6, -5, lexpltik_x)] (11r.7)

we see that the functions E(E)(#) are well defined on all points of ﬁ(N) for

&>

are holomorphic. The functions G(x) of Eqs. (11.13)

.G'.

~are holomorphic everywhere on U(N), with 9 constant. For any two solutions

which the element; of

’

g(i)(.}‘{) and ,g(?‘)(x) >0f }3:";1',"(11,4)lwith 13_‘“)(0) =0 =g‘(z)(0), Greeﬁ's theorem
. (11.25) remains“ valid on fJ(N).

Equation (11.20) can be genéralized to fead (G.i =dkd, i=4,°", N) :

E

PR R IR z’”" ¢ kN) “E, (+k1.+1<z,'-«o._+kN)=ikm(1~em)5£m

(111.8)

1/2

and m this form holds on U(N) except for the points where sin(E+ \ ) a=0.

The two functions S l ‘and Sz ' are, according to,(II.Z'Z) and (I1I.6), re-

'lated by .

k_8_, =18, ., ©{1IL.9)
| a;nd this holds true for all points of I}(N) for Awhich glm is.holomorphivc.
Inspection of E and g shows that Eq. (H.EB) also remains valid at these

points. Figure 3 Vs‘l}_oy_s'_‘_ e

-k (k,) = k(k), i=2,+-+, N, o (L10)

~and we can :rewtrite Eq. (11.28)‘ in the form

% , * ‘ o
Smﬁ(ki)f Smg: (—ki ) on the same sheet. N (III.11)

N

(Note that this relation holds only for S and not for §k!)
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Finally, the un}lta.rity relations can be continued analytically, as
follows: For k1 .on th:e positive real axis of the physiqaljsheet, (11.32)
_v can be written a.ls | | .‘ R

ok 8 _§ vk*[&“ —x£~—£ 't open. (II1.12)

" m open v
. s a _a Lk *,
qu@.txon ‘\III,i 1) 1mpliea. Smt (ki’_".‘ . ",kN) = St (kg » -k if
k1 is real and m and t are open. Let j be the lé.st:open channel, so that
>j.+ 1 is closed. Tlxen,- -ki*= 'ki for i< jo and ~k:'=+ki for i> j and k1

on the positive redl axis of the physical sheet, We obtain, from (III.12),

v oo , v
z ko (k) o0y ees k)5, (“ieg Koo kg gt Flyg) =k (k)
m open ’ , _ oo ,
_ for l open, ' (1I1.13)
"~ Now, sz (‘-k1_..- . k +k3+1' , +'k_1\) is the vaj.ue of S mg 2t the point

~k, of the i‘eél‘axxs of the physical sheet, Having rea.hzed this fact,” we may
contmue (I11.13) to all points of U(N) for wh1ch S is holomorphic. If, for

- example, we contmue 'k1 - along path 1, shown in Fig. 5 (which is an enlarged
’ 'copy of Fig. 4), axid take .fhe values of Sml (k1) alqng this path, thgn -k1
follows the dotted pa.th 1, Iand we have to take values of Sml (ki) along this
dotted path. This shows that if we continue the solid path 1 back to the real
 positive axis of the physical sheet where "k1>(e3)1/2. the dotted path will
hé.ve arrived at the negativé real axis of the sheef {+1, «1,+++, «1}, and for
such values of ‘ki the Eq. (III.13)--a.1thougI; still valid--will no longer estab-
lish a relationship between measurable ciuantities. The same happens as we
coht_inu;a along paths -2 or 3. Thé f‘a.ct that Eq. (UI.13) can be continued to all
' ._ points of holomorphy of é on fJ(n) meansb tl}at' there exist many relationships
between the elements of é on various points of.v ﬁ(N). From the symmetry
of g, we have NG\I+i)/2'independent analytical functions §m£ on G(N). If

n channels are open, the symmetric unitarity relations give n(n+1/2 rela-

tions between these functions, and the total numbers of relations is equal to
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N
(1/2) 2 n(n+1) = (1/6) N(N+1) (N+2). It is clear that these relations that hold
n=1 ' o .

on all points of holomorphy of S on ﬁ(N) are very strong conditions on the
. [

analytical behavior of S on fJ(N). Equations (II1.13) can be derived explicitly

in analogy to the procedure in (11.31) by making use of Eq. (III.8).
For later application, let us write down the behavior of the cross sections
(11.24) at threshold, i.e., in the neighborhood of kj =0, if detE #0. The

influence of an opening channel upon cross sections in other channels has

been studied by Newton (7) in a related case. We confine ourselves, there- |

£t

s

fore, to cross sections that have the opening channel as entrance (or exit)
channel. Let 1,¢°+, j~1 be openand j+1,+++, N be closed channels, We
expand the cross sections (11.24) in powers of kj’ for kj small and positive.

According to (I1.26), we have, for a=0, =1,+++, (.;j'+ 1),

5, o - [ox (-éik a)]}l‘-[-ex (-ik.a-ik., a)] [2i(k.k., ) 2E7L 12

@, 0 BRI PG e Firal T Ejjral 1
1 | \ (IIL.14)

Expanding E.i.i +a and the wave number kj +q 0 powers Of'. kj‘ ‘wc'a obtam

@ jjta”

- - -1 P

. ., .= 0. = k. ) 3 O k.=0)1]". 111.45
eita™ Tjrami ™ ARG 1 88 om B o (= 0 (L. 13)

' The elastic cross section at threshold is proportional to ka-.f The inelastic

'cross sections are proportional to kj unless EJ;:'CL (kJ. = 0) happens to be

zkro, in which case they are proportional to higher powers of - kj‘
. 1‘\ X - 5
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IV, 'POLES OF THE S MATRIX

We now turn our attention fo. those isolated points on O(N) whefe
det E= 0. We generauy 'asat;me that the detertﬁinant bhas simple zeros in
the parameter of local uniformalization, and we consider the case of zeros
~ of higher order only occasiqnaily. Ifa zero’ is not simple, it is in generai
~ possible to change the pot'enti#l parameters slightly so that it decomposes
i'nto simple zeros. We show thaf at least one element of g has a pole wherever
~ det I::z = 0, except 'for those points on ﬁ(N) for which“ki = 0 for oﬁe i, with
i= ‘1., s+s+s, N. In most of this section we are not concerned with these points,
which will receive special attention in the last subsect_ionr.‘ In the following

subsections, we refer to the remainder of the surface ﬁ(N) simply as ﬁ'(N)

~without haQing explicitly to exclude the branch points and k 1= 0 each iime.

A, Zeros ;fithe Determinant of E |
'I‘l;e system of equations (II.14) has a homogeneous solution [i.e., a
‘solution where the right-ixand side of (1I.414) is identically zero] wherever. its
determinant vanishes. ’By a s..t,ra,\ightforward calculation, this &eterminant
D' canibe shown to be equal to .- | | |
|' N sin(t+ xi)‘/z a

D'=| 0
1=1 (6 + 2" °

det E . (IV.1a)

The functions sin(§ + ks)i/za can vanish only'bn "t'he‘;axes of the sheets of

U(N). Thus, except for the rare cases in which a zero of sin(§ + )\s)i/?..a

coincides with a zero of D' .[i.e., where det E remains finite even though
/2

g at least one of the functions cot(f + ks)i a becomes infinite], the zeros

of det E indicate the points ki = k‘; on G(N) for'which a homogeneous
solution of (II.14) exists. Still, for completeness, we henceforth consider

. the zeros of D! » which is obviously holomori:hic on ﬁ(N). For reasons
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that will become apparéni later, it is advantageous to consider the function
=D N exp(+ik a) | (IV.1b)
j=1 § S

‘which is also holomorphic on G ) and the zeros of which coincide with
those of D'_.. . |

If det E(k}) = 0, then det® E(K]) = det E (ki) e det E(-kg" =
according to Eq. (III.41), which holds also for E. This means tha.t whenever
there 1's a zero of D at a point k1 of a sheet of U(N)." there is also a zero
at the point (-k‘:)é on the same sheet, On all sheets of U(N), the zeros of
D lie symmetric with respect to the imaginary axis., _

Let I;_l“(x) dénote the solution of the differential equations (II,4) at
k 4 = k‘; that fulfills the homogeneous boundary cénditions resulting from
{11, 14) l;y putting the right-hand 'side equal to ze‘ro: With

I:,I,a(x}T = (h';(x)n - h;}(x) }s we have

I B0 [yep - BS@I= 0, gt N, ave2)
- which is equivalent to the homogeneous part of (II.14) if we express the
hi(x) for x <ain term‘s‘of the functions gi(x) defined in (I1.13).  Here,

k2 is fhe value of k, at k, = k® Equations (I1.4) -and (IV.2) imply that for

j , . j 1 i
‘b 2a, h?(b) is given by “
h;‘(b) = h;(a) exp[ik;.‘(b-a)} . (IV.3)

With H (x) at ki' H (x) is the homogeneous solution that must
exist at (-k% 1) " This can be seen by takmg the complex conjugate of Eq. (II.4)
- and of Eq. (IV.2) and by remembering (II1.10). We write § = (k 1) for

the energy, -put r*=.2Im €a, - and apply Green' s theorem (I1I.25) with
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F‘“(x) = g (x), and’ Fl) = 5" x ) We get for b >a, with the help

'-’_Of'(ly'.-?')p T o e o R
Z Re K- ]h“ (b)]z/j |u® (x)|a dorallbza.  (IV.4)
et R

. . et
1y H

From (IV.4). we- can see‘ tha‘t; there cannot be any zeros of D in the
upper'half of the physical sheet (Ir!n k1 > O)A.e‘xcept o_xo the imaginary axis (_fl_):i
1§ 0 and Im k, > 0, we have from I'® = - 4 Re kj Im k] that
. I‘a% 0. On the other hand, on the physical ‘sheet,. sig‘ane kj = sign Re k:l

For Re k

g ac'cording to (IiL.3), and hence from (IVV.‘4). r°s 0, which is a contradiction.-
This conclusion doée'not hold ‘an';r’wl'iefe‘else on ﬁ(N ) since the factors

1 Im k? 1’ we see
that r = 0 if ki 18 on the real and imaginary axis, I“ > O if k is in the

R.e kJ in (IV 4y have different signs. From %= 4 Re k%

second and fourth, and 1“ < O if k1 is in the first and third quadrant of any.
sheet of U(N), Hence, poles of E\‘op_shee.t.s adjacent to the positive real
axis of the physical aheet will lie in the. fourth'quadrant end will give rise
_"to resonances mth positiva widths, _a.s ahould be expected. o
, We now show that a11 bound statea of the system correspond to zeros

. of D on the positive imagmary or positive real axis of the physical sheet,
N and thet: in turn a zero of D on theae,gwo s,emiaxes ,implievs the existence of
a bodno state. .Indeed.' a bound atate has \avnor.m_ali'z;able wave function,
_Hence. from (IV.3). we muat either have kg ¢ positive imaginary, or |
hj (2) = 0, Ifall h (a) ;5 0. all k%, j= 1, +++, N, must be positive imaginary,
and the bound state corresponds to a zero of D on the positive imaginary
‘a.xis of the physical sheet. If h;(a) =0 for.j.a‘ ,11,,‘° oo, j + we must have

n <N. Otherwise H (x) vanishes identically from (IV.2) and (IL4). The

-wave numbere kj with J )4 J RAE j muat again be positive imaginary;
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the 'solution I;l‘a'(lxl) ;d’epend.e only on these wave numbers and not on the
| k; with j = 11. *+++ j;. This can be seen from (IV.2): Ifh (a) = 0, then
(Iv. 2) reads : 'd?; 113"(::)[x =a 0, a.nd kj does not enter the formulat:.on
of the problem at all. Hence‘. D vaniahes either on the poaitive Lmagmary
or on the real axia of the physical aheet. In the latter case. the channels
j with j # ji’ see, j are closed. and ‘we encounter bound states embedded
in the continuum () 9. 17) 'I'hat the zeros of D on the real or imaginary
axis of the physical sheet imply the existence of a bound state can be shown

'1£ we can prove t'hat hj(a) must be zero lf j is open. This proof is given

. ’;
&2

vm another connectwn in Section 1V, E.‘
Bound states embedded in the continuum cnuee zeros of D to occur

in paxra at points k lying on the real axis aymmetnc to the 1magma.ry

axis., Indeed, the tra.nsformation k°‘ - (-ko‘) s vki leaves ~- accerding to.

(111.40) -~ the kj with j # ji’ ;- *e j unchanged, and the same holds for

the function H (x), which is real. Moreover. if hj = 0 for one j and if

O on one sheet with label 'r. then D = 0 on the sheet with label 'r'

dxffermg from T only in the (; 1)st element. and correspondingly. if
. h (a) = 0 for more than one j Thle follows again from (IV 2). Therefore,
bound states on the real axie of the physical sheet always cause zeros of
‘:-'D to occur on the real axis of at least one more sheet. The number of
bound states is finite. Indeed. eince D hae isolated zeros on U(N). their
| only point of accumulation could be 14:1 = w0, Since bound states embedded
" in the continuum cannot occur on the real axls of the phymcal sheet for
lk | > (e 1/2 (all lci B are then real). we have only to show that there
exists a finite R > 0, so that for Im k1 >R tnere cannot be any zeros of
.- D on the'il'ne.ginary axis of the phyaicel sheet. Let R% = max {])\1 [ooeey I)‘N I}

and let k

1'be— purely iinaginary, so that Im lc1 >R. Then, § <-l xsl for
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all 8 and (§+ )\8)1/23 X cvot(€+ ka)i/za > 1 for alli 8. T.h'er} E is a real
and symmetric matrix, and it is eaaily‘&een that it is positive definite.
(This is true only on the poaiiive imaginary axis of} the. physical sheet.) The
determinant o£ I.;: thus cannot vanish for Im k 4 > Ri hence D # 0.,
All zeros of D not discussed so far do not correspond to bound states. .
For these zeros and for x a#, the homoéeneous solﬁtioix -'Ho‘(x) does not
;:onsiat only of outgoing waves, If, for example, D = 0 on the positive
imaginary axis of the sheet 7 = {+{,¢++, +1, -1} and hN(a) # 0, then, for
x > a, Hq(x) consists of purely outgoing (exponentially decreasing) waves in
_channels i, «++, N=-1 and of a purely incoming (exponentially increasing) |
wave in channel N. Therefore, the homogepeous splutiona £I (x) are distinc"t‘:
only in the sense that ih each chaﬁnél,j. there is one type of solution only,
'éxp(+ik;."x) or exp(-ik;x). |
Those homogeneous solutions Ij“(x) that do not describe bound states
are said to describe resonant or compbund states. In view of the Icomplexity
of G(N )» we do not waht to introduce the distinction between virtual and
resonant states often employed in single~channel potential«scattei'ing theory.
Not all the resonant states produce sharp peaks in the cross section, of

course, but we prefer to have a common name for a certain type of mathematical

behavibr.

B. Zeros of D and Poles of S
It is clear that the elements of S can have poles only if D has a zero. In
this subsectiou. we want to show that the reverse statement is also true. If

D has a simple zero at ki = k‘;. then at least one element of § has a pole, and
. ~

this pole is simple, too. Furthermore, the residues of all elements éil of

Satk, = kci‘ can be written as a product of two factors, one factor depending
& .

1
_only on the entrance channel {, the other only on the exit channel i, This

can be written as (4)

implies that in the neighborhood of k‘;. éi p
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\1/2

k@ a o . ..
'gﬁ SR .._f‘ . Y Ve — +‘&jl+ 8ylky = KJ)+oees (IV.5)
ky iy (Rg-keq) |

We exclude the points k:‘. where sin(§ +\ )1/ a=0 for at lea.st one s, ’
and use Eq. (11.26) for S. (Theae points are considered in Sectzon IV.E).

According to Eq. (II.18). the homogeneoua part of Eq. (II.14) can be written

Z Elm
m

Since det E has a simj:le zerd_ at k1 = kz'.v Qghe solution 9 of (IV.6) is

“as’

0

- 0. - 3 ', (1V.6)

*

- determined uniquely exéept for a factor, The constants Em are in generél

complex, and at least bne of theixx Ais_different from zero, We choose N-1
_linea.rly independent vectors Q(“ Q(N-?). so that with Q(N) = g. the

| 'N vectors Q( ) see Q(N) are linearly independent vectors with determinant

1i. Let the elements of the matrix Q be defined by -
R, =Q,"V% detQ=1, (Iv.7)
il i o o P . '

- To calculate (II.26), we consider E~! for values ki-;f k‘;, ‘and lk1 - k_:] <e,
. -

- Here, ¢ is chosen so that for all. ,lki; - k‘;"]«:e ‘and k, # k‘: the function D

.- has no zeros. Denoting the algebraic corﬁplément (18) of an element Ei 2 of

Eb E » we have . -~ .. T A
ot e ¥ . | ,

| £ ] N
‘Ef'-i)u A ogoteteh) gt =(aleT Ea| Qf
detE \"® ® B Ju \=|s ==| = fu
—
oTEQ o
& =l{a QT . e o 0 v
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Thus, instead of calculatmg the inverse of E directiy. we calculate the

inverse of Q E Q, and from it the inverse of E.
1 -

The matrix %T E % has the following propertiea. At k, k 4+ the
pol v ahioh
elementa in its last row and column arélevqual to zero. This f_ollows from
Eq; (IV.6):and from the definition of Q. :Therefore, we can write

. o N :

PR (QTEQ> =“1N x,(k akapm'{'voe.forizi‘ob'.N.
= ms/ o N |

T

and

(% E%)Ni *‘Ni"“‘

S EEE N

apNi*“.‘ fori=14, ¢ss, N,

‘where BN and .“iN are different from zerec, and ﬂi.N and pNi are positive
‘integers. Making use of the ;assumption that det E has a simple zero at

k, = k% and of the fact that det QT E Q = det E. we see that B, = 1 and "
1 i . &R NN - °

__that the determinant d ot' the matrix obtained from QT e q by omitting
B . . Crat o E1 & &

. its last row and column cannot vanish at ky = k:". Indeed, |

A AN ) ﬁNN e
_detxz:—det(%%%) p.NNXd)((k\ki) Faes, . (IV.10)

‘where, from (IV.9), it can be seen that the dots indicate terms a.tvlea‘st
quadratic in (k1 - k:‘)._ ‘Similarly, we can infer from (IV.9) that the
~ algebraic complements of all elements of ‘QTE Q are at least linear in
{k 1" ,k(;) except fer ( Q" E Q) + which by definition equals d #0at

& NN i
k, = k%. We see that the only element of (;}T EQ that hid a pole is

i 1. s o
< the N-N element, .Hence we write

ave)

-
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T
QT EqQ | | |
:— 8,y 6 1 + terms holom}orphic at k, =k§
g ), omorahic sk 7K
i ' (Iv.11)
For E'i, this gives, from {V.8),
"
Q.. Q . ' : ' '
E; ‘1 = M + terms holomorphic at k1 =k$, , (IV.42)

b (g K
and from (I1.26) .and the definition of QiN' we obtain for § the expression
{IV.5), where we have used | v & A

y;.‘ = Ej [qxp(-ik;a)] (zkg')*/ 2, C (IV.13)
According to Egs, (II.22) and (:'[L23). the ¢ j' 8 are juat the values of the
homog_éneous solution I;.I,a(x) at x = a in channel j, and we have '

: 2

y'j‘ = [exp(—ik;’a)} (zk;?‘)‘/ hg"(a).; . (IV.14)
From Eq. (IV.3), it is clear that y? will not change its value if we replace
aby b>a in (IV.14). Hence, we expect BN to have the same property.
This will be borne out soon. |

= kf;. the matrix S
~

Equation (IV.5) shows that in the vicinity of k 4
majr be approximated by a simple Breit-Wigner formula. This would not
hold if D ixad a zero of second or higher order ét k1 = k:. since then we
would in general have at leaet two lihearly’ independent solutions of (IV.6),
and by repeating the arguments one sees that the residues of 2 ‘could not be

. factorized in the form (IV.5).

It should be noted that the constants aﬂ. 4o +++ defined by Eq. (IV.5)

 are independent of the choice of Q(“ s 000, Q(Nd_). The function
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‘ : a ‘1/2 a _a :

T = § -8, =% E‘.E..... : Yj Yl -l, ) (IV.15)

1 ‘ (k —k“)_l . A
PN 175

is holomoxrphic at k1 = : and obviously independent of %(1). ceey, Q(N.i).
Its series expansion at k‘; defines the coefficients ;15 2° 3j g+ * uniquely.

The constant My €30 be expressed in terms of the homogeneous

solution by (4)

1 ) g | |
oag NN L {:Eia(x)} = ?-:1 i[h?‘a’] | Ky lg=gt v AVA16)
| &
It is defined by .
- _,,.a d T ' | ,
MNN T 2 3T {8 E 2} N 'g}: ga * | | (1v.17)

Insertin'g‘QiN = h:‘(a). which is independent of the energy, and inserting

(II.16) for E, one finds
N -

2 MNNC | ‘ ,

2
3 > (Z °mjh?‘a’}
.m Lj

feos(g®+ A )¥ 2a sin(e®+x ) %a - 8% 41 )Y 2a) L
j

62+ a )2 aind(et 4 V2%

2
-i Z {h;‘n(a)] gg‘ Ky leage - ! | (IV.18)

3

This expression is equal to (IV.16), as can be seen by inserting fja(x) from

"ﬁ,; Eq. (I1.22) into (IV.16) and carrying out the integration. The resulting
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expression is very satisfactory. Namely, MNN is quadratic in _fza(")° This
is expected in view of (IV. 5). The Y; are linear in I;'if,‘; on the other hand,
the residue of § is expected to be independent of the‘ normaliiation of
H . Furthermore. PNN does not change its value if in (IV, 16) we replace
- abyb> a. This can be shown by an explicit calculation of. [ [H (x)] dx
with the help of (IV.3); the change of the value of the first term in PNN
is compensated for by the change of value of the second term, Thus ENN

shares this property with the Yj

]

C. Homogeneous and Inhomogeneous Solutions (12)
in a Neighborhood of a Pole of 5
~

In the prgceding subsection, we have shown that poles of é are intimately
related to the nomogeneous solutions Iia(x). We now want to elucidate tne
physical and mathematical.bapkéround of this relationship. In particular,
we want to show wﬁat happens to any one of the phyai;:ally significant solutions

“)(x) defined in Section Il A if we continue it ana.lytxcally to a point

k, = k‘1 on U(N). Again, we disregard thae points where sm(gn\ )1/ a=0.

" Qur idea is the following: The differential equations (II.4) with the
‘condition F (0) = 0 have N linearly independent soluﬁons. For k, # k
the homogeneoua equations (IV.6) do not have.a nontrivial solution. Therefore,
we can choose the inhomogeneous boundary conditions (éIC§.14) to define the
" N linearly independent solutions F (“(x). In oﬁhg_r_ words, the solutions
E(“(x) d{gﬁned by Eq. (II.7) can be continued analytically on the whole
| surface i__,ﬁ(N) except fo'rvt‘ne poinfs k1 = ki (see Section III, C).

In order to discuss tne behavior of the Fu)(x‘) as k1 approaches kc;

we define a different system of lmearly independent solutions M( )(x) the

behavior of which we knowxﬁs k -~ k1 . We ahall then express the F(“(x) '

in terms of the M( )(x) and investigate the limit ki - ki .

i
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The solutions M( )(x) are deﬁned as follows: Since at k 1 ° k

Eqs. (IV.6) have a solution, the inhqmogeneous equations

will be soluble only if Z q¢ 1 = 0, We choose the N-1 linearly independent

vectors {qi' vov, qN}, t 1. ese, N~1 to be given by the first N-1 column

vectors of the matrix Q 1. where Q is as defined in (IV.7),
2 . =~

¢ = Qt'f." t=1,°°°, Net o (1v.20)
. & ' .

They will by definition.be .perpendicuiar to § . Hence, because of (IV.19) |
they define a set of N-1 linearly independent solutions ]'\vdu)(x). By keeping
the boundary con_difiona (IV.19) gonstiant. these solutions can be defined in
a neighborhood of l_c‘:. In this neighborhood and for k, # k:, they can be
made a complete system of N linearlf independent solutions by adding the
function I:i(N)(x). which one obtains from (IV,.19) by putting q, = Q&i. Now

M(N)(x) is not defined - at ki*~= -k‘;;: We-propose to show, however, that

lim (kx'k:’ L‘ém)(x)z ‘:_;;.N H%(x). N S (1v.21)

o
ky~k,

Indeed, defining the éoefﬁcients -

(N) Z Q &=, (N), o (1v.22)

(N)

/" one can, for k, # k:’. rewrite Eqs. (IV.49) for r?xj as

\ CaT o) = M) o
o };:(2 = 8),, R e
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We make the further substitution

.

w, = ﬁ.i(m for i # N, w= r'-—;xrgN)_ X (k, :k‘:). : ‘ (Iv.24)
Insertion of (17.24) into (IV.23) Qhowa that the coefficients {w g wN}

satisfy a system of inhbmbgehéous ;‘quat_ic'zns. -the. determihant of which is différe:
from zero in a neighborhoodl of k‘;, this point k‘; included. This incivzinn

1 follows from the properties (IV.9) and (IV.iO). and from Pan = 1 There{org.
these coefficients are uniquely determined and finite in this neighborhood.

In particular, after substitution of wy f;r ”ﬁ.:mi(N).‘ the ;Nth of' fhe eqﬁations (Iv.23)

Q
reads at ki = ki

by Wy = e - B (IV.25)
Therefore, we have Wi = ...1._ at ki =k‘; and, since all w, are finite, from
' - % PN :

(Iv.24). - o IPRRIE

tim (k, - k%) %fma *‘};{N' U L av.2e)
k, ~k, S . .

- With the definition (IV.22) and Q,, = h;‘(a), this yields (IV.21),"

N

Our last step consists in establishing the connection between the N

linearly independent solutior_x_a I';(_“(x),and 1!1(3)(::) in the neighborhood of

a

k:‘ but for k, # k‘; and in taking the limit k, = ki with the help of (IV.21). -

: -

By compar’ing the boundary conditions (II.18) for the E(l)(x) with the

conditions (IV.19) for the I_\_d(j)(x). one e‘a’sily sees that

F = -1z )Y % [exp(-tie,2)] ) Qy Mo, (1v.27a)

«

i

and that in particular
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Lim (k k,) F‘“’(x)= x(zk o2 (oxplik 2] h‘;(a);;- H*(x). {IV.27b)
N

-k A | - "NN | ,

With the help of (IV.3) and (IV.14), this caﬁ, for x >a, be written as

. ‘1 R

N (k ;k“)f‘“’(x)a iy Ao “ [exp(zk x). Iv.27c)
y -oki‘ 4 “’NN £, 172 I | :

and th\;;‘agrees with (IV.5) because of the definitiona (II.7) and (IIL.6).

V ‘We believe that the equations (IV.Z?) “show the Bre1t Wxgner formula
(IV 5) and its implications in a new light. In the vicinity of a pole of S at -
k‘;, the physically sxgmf:,cant solutions f (s) (x) are dominated by the
homogeneous solution H () which is the function descnbing the ""eompound
state, ne This ''state' is independent of formatxon and decay because the
prdportionahty cons;ant connecting E( 8) (x) and Ii (x) is independent of the
| pr&pérties of E(a) (x) and dependent only upon the properties of Ii“(x). If
h‘;‘(a).== 0 for one or several s s,; whi;:h is perfectly possible (for examples,’

(B),

see #éction IV, E) then according to (Iv.27b), F F ’x) will be holomorphic in
‘the neighborhodd of k“’ In this case, the peak caused by the pole of S it

', at k will not show up in the cross sections having 8 as mcoming or outgomg
channel, no mattexr how close the pole is to the real axia of the physical sheet,

Then - lim - F(s)(x) exists and is different from H® e
k -.ka . A .". ‘, . Ly Ye :“.’,‘.‘,.' v‘ Dt - t

R, .
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' D. The Bre.*t‘?,‘_*’.igner Formula
| ~In this subsectiox;. we discuss some of the consequences of the formulas
~ derived in IV, A, B; C. We are interested only in poles of é close to the real
axis of the physical sheet, If the pole is at k, = kc.,:. then the chap'rxels i for
which Re k? 2 (ei)1/ 2 shall }w called open, the other ones closed, A ?rom the
sign conventions made in (i1L. 3) we know that Re .k:n >0 if m is open, and
" Re k:n < 0 if m is closed on sheets adjacent to the positive real axis of the

physical sheet., Therefore, Eq. ({IV.4) can be written as

L

L (Re s | e 2. ) [Reid | [nim)?
% = mopen m.ow m closed - - = 0 for all b > a,

’ ’ - | (IV.4)

This eq\;ation gives the total width as a sum Aof contributions of the open and
closed channels. The latter contribute,since the energy £% is not real, and
therefore the current in these channels is not zero., The contribution of the
closed channejls“tends toward zero, of course, as k‘; approaches the real
© axis. But thenI'®is zero; too. Owing to the position of the pole, the

i contribution of the closed channels to r%is negative., However, from (IV.3)
we see that, with increasing b, the contrib‘utionvfrom, the closed channels
becorhes.amauer and sma.aller. so that we may write

Y Re K, [nge) |2

%= 1lim JSRopen . ' (IV.28)

b o b 2
j |H®(x) | © dx
o ‘ [

®

This is the usual formula for I'*, For applications in nuclear physics, we

éﬁgpect to obtain very good answers by taking b to be of the order of atomic
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distances, It must be atressed. however, ti:at the ealeela,t_ion of widths of
decaying states thh the- help of (IV, ?8),' and with b taken at the nuclear
~surface, may lead to wrong ‘.a,,r}s_wer:a,v,.; | ’
| The f\_m'c.t;.i'one I;I'a(x) 'e,;'e the true‘;ﬂ. 'feigenfun‘ctions"‘ of a ‘'decaying
state}';’ t‘he vndth ef whieh i_s-give;"x-.by (1Iv,28). ~The 'time dependenee of
Iia'(x)_ is, e{ ;con.x_'se. given by ex’p(-;-_i&%) if we eontinne ,tl;e‘ time;dependent

' Schradinger equation analytically, Therefore, . .. :

U E%et) ~ exp[-mO/2)t],

~In the study of decay brocesaes. like a de'é:ay'. one would like to deal with
a state having a purely exponential t1me dependence like H (x,t), It has
been shown (19) that this is not possible, In the framework of the present
studxes, we may rephrase this resu}t by saying that any physical state cl:‘a,-n be
describ‘ed bf a wave packet (19)- Such a wave. packet is defiﬁed as a linear
superpositmn of solutions of Eqs. (11,4) with real energiea § But H (x),
being an elgenfunction to complex energy £%, can never be expanded into such
solutxons,,: )

| In t_he eingle-channel problem, ‘.a pole of the scatfering function S(k 1) at
k, = kj i;xipliés the existence of a zero of S(k,) at k, = -kj, This follows from
: unit':a..rity.l- The generalization of this statement to the many-channel case is -

the followmg. If, in Fig. 5, we follow the solid line for path 3 down to a
| pole at ki‘ then the expansion of the é ma.tnx is given by (Iv,5), In order
| to write down the analytically continued unitarxty relationshxps (III.13). we
have to expand the elements of S at ki’ which one reaches by followmg the
broken line 3 m Fxg. 5. We know that S cannot have a pole a.t 'ki‘ hence we

wrtte. ina neighborhood of k

§:’=E+ (k ’.—' ka) ':'l-'.'.-.‘:’-'_“,"’ Srre .(IV‘.Z9).
N A | S . : 4

: . . Vo
PR [ P f



-44- ' UCR.L 11040

By using (IV 5) and (IV.29). we find that the unitarity relations @Il 13) yxeld

T el ey L o A
k, v d,, =0 or det d =0, ' - (IV.30)

jopen ' 1 ~.r openg o

where det 'pe.n means the subdeterminant with 'réspeét to the open channels.

’Other rela.tmns follow by insertmg the expanaions (IV.29) and (IV.5) into
(111.13), and comparing equal powers in (k1 - ki)' Thus, the above statement
- for the single-chapnel case can be gehera}izgd .ax.u'i requires that | detop;ané =0
at k = -k Since det é = det 2 from (111_.6); this means that if 2 has a pole
at k% 4o its subdetefminant must have zeros at -k‘; 'a‘ndvat = k‘;’)*'on the same
gheet because of (111 11) | o
This fact has some bearing on the possibility of a single-level approxx-;
mation for 2 if the pole at k1 is.isolated ‘and very close to the real axis, (In
the remainder of this subsection, we shall use the word isolated not in its
mathematxcal sense, but in the sense in which i.t is used m nuclear reaction

theories. (1).) We define "'NN by the right-ha.nd szde of (IV.16) and write in

the vicinity of ﬁ £%, a.pproxzmating (IV.S)

‘§j£sa'+i 4 — . | (IV.31)

\

A simple calculation shows that § approximated by (IV.31) does not fulfill
. . ~ < ‘ .

the \initarity relations (II1,13) i;nless the folloﬁring two conditions are fulfilled:

'.*NN and the yja, j=1, -oo._N.: are real _

, Co T ’ (Iv.32)
and Z >(V;)Z=-[; UI'I‘O‘ o T ' “
‘ j open _— C o , .

a

If (IV.32) holds, then det S 0 at k = (ki) It ié clear from the definitions

open
(IV.14) and (IV.16) that we cannot expect the first of conditions (IV,.32) to be



Ceas- UCRL’Qi-ioz&o
fulﬁlleé in general for- c.obmp’lex‘ k‘;"- | Sinularly, we' know of no rela.txonsth :
that would enable us to denve the second of the relatmne (IV 32). vIndeed, '
tne defmxtxon (IV 14) of yJ is mdependent- of the vcho:.ce of a, a.s pointed out
below thxs equation, Whereas Eq. (IV 4), the only expression for % we
have, although mdependent of b invokes quantities like lh b)l ’ wh1ch
themselves depend very strOngly upon b. This means that we cannot in
general expect the smgle -level a.pproxxmatlon (IV 31) to hold even 1£ k1
v.ery close to the real axls. Qn the other hand, the cond1t1ons {IV.32) are -
fulfilled, for exé.nﬁple, in the Wigrier-Eis:ez;bud tr'eat'fr'xeﬁt‘(_.’_i_) of nuclear
reactions, o |

) We interpret this.appar.eﬁtly contradic'cory situation as follows; If
one observes exper:mentally an 1solated resonance with negl1g1b1e background,
then the apprommatmn (IV.31) is ‘known to be good and hence (IV 32) must v |
‘be fulf;.lled approximately. Thls possibility we cannot exclude, of course,
If one obs rves an isolated resonance with nonnegligible background then
‘the approxnnation (IV.34) will not; be valid, and one shall have to consider the
next-order terms in {IV.5). Hence, the experiments can still be fitted with
all y;.l real, gince the only p’nases that enter the expressions for the éros.s
sections (11.24) are the relat:ve phases between the pole term and the next-
order terms, and by choosmg the y real, one simply redefines the phases

of dandée. A possible deviation from (IV.32) will be practlcally un-

»

Q

detectable, since with increasing background it becomes increasingly more
difficult to.ldetermine the yg" precisely. A similar situation occurs when one
i;nw}estigates the case of two overlapping resooances, and it seems thereforev
1mposszb1e to decme. on ekpenmental orounds, between the descnptxon of
rescnances Witk a set of yJ not obeying relatxons (IV.32) and with another set
of real yJ; fulfilling (IV.BZ), This, of couvrs‘e. means‘th_et the Breit-Wigner

formula in the usual treatment (_1‘1) with parameters obeying (IV.32) p'ro'vides
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for an excellent parametrization of experimentally observed resonances,
"inasmuch as they are caused by nearby lying poles of the § matrix and, in our
opinion, explains its success. In §dutiéar VII, we shall, with the help of

numerical exam‘ples. investigate how far conditions (IV.32) are fulfilled

in special cases,

E. Zeros of D on the Real Axis and at Branch Points

In Sections IV. B through IV.D, we have excluded the‘points k‘; where
at least one of thﬂé functions . sin(§+ )\x'n')i/z‘a = 0, Also, in the pi.'eyipps
part of this section we have exolude& the branch points k, = 0, i =2, -, N,
and the points ki = 0. The behavior of.é at these points shall now receive
special attention,. Furthermore, we want to study the 'conditions under
which a pole of é may lie on the real‘ axis of the physical sheet and thus
give rise to a bound state embedded in the continuum, and what form E has
at such a pole. The latter question has been dealt with in refs. 7, 9, and 17,
and we éhall pursue it only to the extent to which we need the results in .
Section V,

Let us begin with zeros of D on the real axis of the physical sheet,
| ki = c; real and such that neithgr any of the functions sin(§°+ )\m)i/za
vanishes, nor any of the kz" =0, i1, ¢, N. Writing .out inAfull the
~ condition for outgoing wave‘se only and using (Il.11), vwe_ have

\! )
(IV.33)

_ Z ojm Sj(a) "'..dm [explik_a)]
J ' C
and : z ij __%4Gj(X) |x=a = ikmdm[e.i?(ikmav)]. . (1V.34)

J
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Multiplying the complex conjugate of (IV.33) by (IY. 34), summing over m,
taking the imaginary part of the resulting expression, and using (II.13), one
obtains | | B »

. Z (-1) [dmlz Re k_ [exp(-2Im k_a)} = 0. (IV.35)
m open - — - '

This implies dm = 0 for all open channels, or- o

_ . L. d ‘ _ g - . :.‘\.
Z o_jm gj(a) = 0 and Z ij = gj(J;) Ix=a = 0 if m is open. (IV.36a).

This is the vpx'-oc')f lacking for the statement in Section 1V, A. The conditions
(IV.36a) imply that the QiN:i'n’ Section IV. B are given by

iN

-~

Qu =ha)= Yy 0, g (a)=0 ifiisopem; (IV.36b)

_hence y? = 0 for i open, and the only elements of S that will have poles are
2 _ v

- the elements §1m with 1 and m closed, i.e., the elements in the submatrix
of § relating to closed channels. This means that a pole on the real positive

axis of the physical sheet will not influence the scattering cross sections at

all. (For the phase shifts, see, however, Sec. V.)

The conditions for the occurrence of a pole on the real axis are

a
1

We see that with increasihg number n of open channels we are less and less

/2

d'et:E = 0 for real k,, and h‘;’(a) = 0=ess = hg(a). all together (n + 1) conditions,
~ H

1
N

However, it is obvious that we can a'lways»édjust our potential parameters

likely to find poles on the real axis, and they cease to exist for k1 > (e

so as to give pdles on the real axis for k1 < (eN)i/Z.v

1

previous formulae remain valid if we replace the expansions in terms of -

In the branch 'points'ki =0,1i=2, SR N, and for k, = 0, all our

A

K, - k%

Ky 1 by the expansion in terms of the parameters of local uniformalization,
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. ki‘ i=4, eoe, N. .'I‘he’ reasoh tt;at Wé have excluded iheée poiﬁts so far
is not this tri.vi.al‘j poin;:, but the‘ thres‘hold lI)ehavi’mA' of the cross sections
(111.15')4, which is changed. Let us again exclvude the points where at least
one of the functions sin (§°’+ )\m)i/za ‘==‘0‘. and let us aséunﬁe that det E

~

has a simple root in ki at ki = 0’, i=14,¢°, N, Then. Eq. (IV.5) will
hold with y? = 0 for j <i, and ‘y; ‘possibly different frqm zero for j =i,
From (IV.35) we cannot _deduce ;haf y? = 0. ;'I‘hezjefpre. ﬁq. (II1.15) has to
be modiﬁed for the elastic cross ée‘cfioﬁa. Indeed. \;sing (IV.S)V and keéping

»

only the lowest-order term in a power series expansxon in k ;o one finds,
for y )‘ 0. |

0 s 4'. (1v.37)

This follows from si = 5y from oy ——1[h (2) | [Eq. (IV.16)], and from
Eq. (IV.14), We see that under luch circumstances the elastlc cross section
at thré\shold is not zero, but reaches its maximum poss1b1_e value. This is
of import'bance‘ for understanding the‘lreéults' of Section V., If det E has a
zero of higher order than the first at ki = 0, then from the discussion in

Section IV. A it follows that h?(a) =0, and Eq. (111, 15) will apply.

1/2

Fmally. we turn to the points k where sm(& +\ ) = 0 for

at least one m, and for which det E(ki) remains finite, Let By, my
denote the set of m's for whzch sin(& + k ) /za = 0, ‘-It is clear that
mstead of workmg with the matrix E. we should in (11, 19) and (I1.26) have

employed the matrix

B Z %0 %nmtn - ik 6m1 + ik Z ij [/ (AV.38)
n j-—mi

~

where_fn = (&d-l-)\ )1/‘ cot(§ +M 1/ aifn;‘ my, cee,my, and

= )2 itnem,,

*ee, m... With the help of this matrix, we



-49- | | UCRL-11040
can agam define the- homogeneous equa.tions (IV.6). and again we can show

that (IV.35) follows. Also. we can conatruct a matnx Q to obtain the
T -3

expresazon (IV.5) with the y defmed by (IV.14). ’I‘hm ahows that a.gam

§

the S«-matnx elements tha.t are smgular muat relate to closed channels
only. Thus. the main results obtained m the previoua sectxons remain

valid in thxs case. too. The reaeon that we did not use the matnx (Iv. 38)

et [

from the very beginnmg ia, of course. that it does not have the pleasant

P L H A e L’,:‘ n . o

property (11.30)

e e+ s 2 - R e B
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V. GENERALIZATION OF LEVINSON'S THEOREM

.

Rather than stating the generalized version of this theorem at the
beginning of this section and then proving it, we prefer to start with the
proof and state the theorem at the end because we have to introduce some
new symbols and cohcepts. We shall proceed as follows: In Section V.A,
we prove what amounts to a Levinson theorem f&r the phase of lthe function
D defined in (IV. 1b). In Se/ction V.B, we shojw that for values of X on the

.positive real axis of the physical sheet, the phase of D is related to the

eigenphase shifts of the scattering matrix.;; This completes the proof.

A. A Relation for the Phase of D

We know that in the upper half plane of the physica,l‘ sheet, D can have

zeros only on the positive imaginary and on the real axis. Its zeros indicate

S

. bound states, and a zero of D on the positivéz real axis at l:c1 = kic’ implies
- 5
the existence of a zero of D on the negative real axis. Both zeros correspond

. 1 (
to the same bound state. Zeros of D at the E;ranch points correspond to

: - ! .
bound states if the zero is of higher order than the first in the parameter

"of local uniformalization, and to states that might be considered either

bound or scattering states if the zero is simple. From what was said in

© Section 1V, it is also clear that if D has a zero of nth order at k1 =kf’

" the bound state is not more than n-fold degenerate. At the end of this sub-
sectién. we show that (7) D—~+1 a8 Ikil-— o, with Im k1 20 on the physical
sheet. Finally, we have D*(k}) = D(-k,").

We define the phase & of D by writing

D(k,) = ID{k,)| {exp[-i60k)]}. (v.1)

~

We now integrate the lcgarimmic derivative of D(ki) along the contour shown

" in Fig. 6. This contour is defined as follows: Starting at k, = Ry on the
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positive real axis of the physical sheet, wheze R = max{[(eN)i/zi-i] , R}
ﬁvith R as defined in Section IV. A, we followb a semicircle with radius Ro
around the point k1 = 0 until we corﬁe to the poinf k1 = ‘Ro', Then, we follow
tbe reail axis in thé direction‘of incx;easingf'vélues of k1. We avoiid all branc%a
points and z‘eros. of D on the real axis bys deforming the path into the upper' |
half plane. The coﬁtour is clésed whén we reach k1 2 Ry ’I‘h.e contour C

defined in this way encloses all zeros of D on the positive imaginary axis

(Im k1l> 0) and no oiher 6nes. We consider the integral (15) along C,

D(z)

1 d 1 e : A
D 51, - (v.2y
pn ﬁ [ = (z)] dzéz 1 (v.2)y

Since we have avoided the branch points, thé differential dz and the deriv-~
ative of Dké) are well defined, and‘ a simple appiica;tion of the theorem of
the residues (15) gives. | o

T=m, o (V.3)
where m is the number of bound states (zeros of D) on t;he ima;giné.fy
axis, each bound state counted n-fold if t;hg zero qf D is of _éth order.
On the other hand, since D-— 1 for lkil-* ©, we can deform C. _by letting

R, = ©, and obtain o
+o0

4 a . 1
U= [-3z D(=)] —prg) 42
or, with (V.1), :
- 2mm = §(-w) - §(+%). | | (V.4)

It is understood, of course, that both 6(~«) and 6(+%) must be multiples of

2m. The fact that D*(k,) = D(-k,) implies that on the real axis
6(-k1) + o(+ ki) = 2wv, v integer, o (V.5)

Whenever D(ki) # 0. In particular, (V.5) applies for 'ki -+ o, and we call

this particular fixed integer vo':
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8(- ) + B(+w) = 27y, . : (V.6)

We now continue (4lV.6) with the help of (V.5) towards smaller values of
!kil along the real axis. So long as we do not cross a zexo of D, ora
branch point, ‘;o cannot change its value. Thexefore, if we follow the

contour C along the real axis, it is easy to see that we will also have

5(-0) + 8(+0) = 2mv,, (V.7)
where §(#0) = lim  5(kj), the limits being taken along the real axis, If
. 1=

D does not vanish at k1 = 0, then obviousl‘y‘ &6(~0) = 6(+0). If, on the other

hand, D has a zero of ordexr o in k, at k,;=0, it is a straightforward

matter to see that

' 5(-0) = 8(+0) - o sy

according to (V.1), if we follow the contour C. Herice, 2wy, = 26(+0) - 7o,

‘and using (V.4) and (V.6), we have

B

5(+0) - §(+w) = Tm + 3 o). (V.9)

This equation is a Le\}inson theorem for the phase of D. In the derivation
of {(V.9) we have made ﬁse of the asymptotic behavior of D, D- 1. T_his can

be shown as follows: We write

: N :
. : 1/2 1
D = Hi [exp(ikia.)] ein (ﬁ-%-)\l) / a W
i= .
| X det [(E + xj)i/z cot (£ + xj)Vz a 51.2' - '};iks Ojsols]' _ O (V.10)

Now, we expand for large ki’ on the physical sheet

.‘ e .
. ) s . -
kg = Ky - 2K +ooen, (V.11a)
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and have, to lowest order in powers of ki'.i,
D= I—-{[exp(lk a)] sin (k +>s) / ' ’ > 1 17z
iy LW

i

i

x[(k12+>\i)1/ cot (k, +>.)/ a-iki]}+0(-—-) . (V.11b)

Each of the .N factors in (V.iib) has the limit +1if ‘kil — o and
Im ki 20, Thxs completes the proof of (V 9) |
. o

B. Relation Between 6 and the Scattering Phase Shifts

The unitarity relations (II. 32) are vahd on the real axis of the physical

| sheet, They imply that a subma.tnx W of S is unitary. Here W is composed
'of all elements S of S ... for which 1-.‘:m< Jif (e 1)1/2<k < ( 1/2. Hence,
all exgenvalues of W have absolute magmtude one, and their pzoduct can be

t
written as 3216 (ki)

In other words, 6s (ki) is the sum of the eigenphase
shifts o'f'the ccattering niatrix, aﬁ_d 25_'5 (ki) is equal vto the phase of det XZ .
Of course, 5:(k1) is determined onlyvmodulo m. We propose to show that
we can always add a mﬁitiple of w ‘to 6;(1(1) so that for the resulting..value

és(ki) the relation
5_(k,) = 8(k,) , for'k, 0, C(V.12)

is fulfilled for all values of ]:c1 for which neither D=0 nor ki: Q, i=2,--+,N,
nor sin(§ + )\m)i/zar-'o for any m. These points are considered later.
The proof of (V.12) is trivial for k1> (eN)i/Z. A comparispn of the

definitions of D in (IV.1b) and of '2 in (I1I1.19) shows

det W = detS det AR exp [2i§(k1)],.£or k'1>(eN)1/2, (V.13)

um»
1

=

\ .
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because of Eqs. (V.1) and (V.5). '_Wé prove (V.12) by showing that the rela-
tionship (V.13) is valid on the whole positive a:.:is.‘pf the physical sheet ex-~

cept for the points mentioned above:

%
D(k,) S
‘ i
det Wz e il > i ints. .
let W - D) for a 1~c,1. 0 except for 1so}ated points. (V.14)

By inserting the definitions (I1.19) and (IV;J.'B), one sees the proof will

be completed if we can show

open ZE (ki"“ kN)El (-kys v'"kN)}-

_det By (thyae sk bl gttt} (V.15)
det (B, (ky, v e+ o)}

Here, n is thenumber of open channels, and det open .means the determinant
of the submatrix the indices of which refer to open channels only The proof
of (V.15), although not dxffxcult. is cumbersome because it uses some of the
concepts of the theory of determinants (.1-8-)', Since it does not seem to give
new physical insight and because of its length, we defer it to the Appendix.

" Equation (V.12) then holds on the whole positive axis of the physical
sheet exéept for some points.' Among these, let us first consider the points
k:‘ where D(kf’) # O, ki # 0 for i = 2,°**,N, but where sin(i_‘,o‘-!-)»m)i/zazzo
for at least one m. Both sides of (V.14) are well defined at kf’ and are con-
tinuous functions of k1 for real k1 in a n_teighborhood of kf‘. Therefore,

" since (V.12) holds in a ne:ighborhood of kr; it also holds at k;‘ itself.

Among the branch points -«ki.z 0, i=2,***,N, we first consider those for

which D(ki= 0) #0. For k1< (ei)i/z, the matrix W has i-1 rows and

=~

columns, and for k1 >(ei)1/2, it has i rows and columns. However, the
continuity argument still applies to the right-hand side of Eq. (V.14). This
shows that we can choose the sum of the eigenphase shifts 5s(k1) so that

it is continuous across threshold, i.e., so that hm bs(kj) = lim &5(1;),

e
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where the two limits have to be taken along the positive real and positive
| imaginary axis. In order to .be able later to define our choice of phases
in -éimple terms, let us fbrmulate this choice of 6 (ki) amls[ the
Condition 1. Unléss there is a bound state a.t threshold. 5 (ki) is contmuous
at threshold | .

If we fulfill Condition 1, Eq. (V.12) ié valid on’sections of the positive
real axis of the physical sheet that have zeros of D as their énd points, Let
now kf >0 bé a o-fold zero of D not c_oin_.cidir_xg with a branch point, Then,
from Iour'definition“’of the path C it follows tfxa.t for ¢ 20 and in analogy to (V.8),

£ N .
lim 83 -) = lim 8(k¥ +¢) =m0, . . (V.16)
¢=Q e~+0 WL
Therefore, wé E:an fulfill (V.12) fdr' réa.} \}alues of k1 both in the right and
in the left neighborhood of k: if we ieqﬁire 58(k1) to Jurnp diécontinuously
by @wg at k?, acéoi:ding to (V16)T 'K—:i;ﬁﬁ_é—f??ghment applies to ?'-fold
zeros of D at the branch points. We ¢an thus formulate
Condition 2. Let a bound state occur at kf ‘with kf real, kf‘ > 0, so that
| ‘D has a ¢ -fold zero in the parameter of local uniformalization.
At ki = kf‘, as(ki) is a discontinuous function 6£ ki,i. It fulfills, .

for ¢ >0, the equation

lim & (k -€)=lim & (k + ¢) =wo ' (V.17a)
e+0 €0

if the bound state does not occur at threshold. and the equation

" lim 6§ Sk =€) = lim b (k +e) -2 (V.17b)
¢-=0 €0 2

if the bound state does occur at threshold. ,
If we fulfill both Conditions 1 and 2, Eq. (V.12) holds on the whole

positive real axis of the physical sheet, and we have, from Eq. (V.9),
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Levinson's Theorem: The sum‘éé(k{)"*of the-eigenphase shifts of the scattering
. ] s ] )
matrix is determined only modulo w. Let it be chosen so that

Conditions 1 and 2 are fulfilled, Then,

5,(0) - 6 (=) = w(m+ 5 o), . (V.18)
where m is the number of bound states not embedded in the continuurﬁ,
each counted t-fold if D has a t-fold zero, and where o= 0 for
D{0) # 0. Otherwise, if D has a T-fold zero at k; =0, ¢ =17,

The abc;ve form of the theorem is a satisfying generalization of.\
Levinson's theoremﬁ for single.channel ?otengi?l scattering. It allows us to inter-
pret the poles ofg cldse to the rea‘:l .a:éis in another way. Let 2 have a simple
- pole at kf’. where k? is positive real and ki(k?) £0,i=2,"++, N. At kfkf’,
~we have a ﬁondegénerate bound state embedded in the continuum. If'we change
the potential parameters A\ O )-\N and 2 slightly, we can make the pole of

g move off the real axis. It now gives rise to a sharp resonance, and as a

consequence of Condition 2, we obtain the

Corollary. Let a sharp isolated resonance in the cross section be caused by
a simple pole of the S matrix at kf close to the real axis so that
im k' |<< Re ky, Imk{< 0. In the limit of vanishing Imky,
we have _ - _
8 (Rek + Imkj')+ = §_(Rek] -Imk}). - (V.19)

71z This relation holdg ‘approxirmately ‘.ffor IIm k;‘ I << ;;Re kf_.

We believe that this corollary completes in a very satisfactory manner.
the description of resonant states gi’ven in Section IV, Unfortunately, we
cannot prove the reverse, namely that if 68 increases sharply by 7, we must
'have a pole of the S matrix close to the real axis. Similarly, we can under--

stand better what happens if there is a bound state at threshold, Jki = 0,

i =1,**,N. If D(ki) has a simple zero at ki = 0, then the sum of the



-57- UCRL-14040
eigenphase shifts juriqps by -;ﬁ at ki= O This is in perfect agreement
with Eq. (Iv.37). » If Diki) has a zero of higher order than the first, this

%

zero does not affect the cross section, and the sum of the eigenphase shifts

A

ixmcreaéés by a multiple of 'n‘ (it follows from our discussion i.n‘Sect;on v
thét if D(ki) has a zero of higher‘ordez} than the first at ki = .O. then tﬁe order
of this zero must necessarily be even.) One éoésible shortcoming of our
g,eneralizéd version 6f Levinson's theorem is that we cannot show that a

zero of D of highef oz;.der o than the' first in the .parameter of local uni-

' fox'mali.za£ic;n glways impliesvthe ex.istenlce.:; of a l'r -fold degenerate bound

state with ¢ =7, We can show only ¢ 27 >1. However, one may trust

. that in most cases all zeros of D are simple. .

-
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Vi. DISTRIBUTION OF THE POLES OF S ON U(N)
AND ITS DEPENDENCE ON THE POTENTIAL PARAMETERS

e

~ We want to ;Iiécuss the aistributidn of thg poles of g on fJ(N) as an
illus'trat‘ion to the foregoing sections. We are o'fl course, not able to describe:
the position of the poles completgly for arb.itrarily stxiong coupling between
the channels. In Section VI.A, the readér ‘i;'re)minded of the distribution for
single-chafmel square-well potential scattering; in Section VI.B the more
general case of N_channéls ig dealt with. - Some detailed properties of the two-

channel case are investigated in Section VII, ..

A.' Reminder of the Single-Channel Case (§_)

We remind theireaderof Fig. 1 from Nusseqzveig's paper (§) It shows
the dist;‘ibution 'bf poles of the S ‘fuxlqtion in the ki plane for scattering of an
S-wave particle by én attx;active éqﬁare-well potential; This corresponds
exactly to our s‘ifngle-channel case.4k'The povsition of thg péles is given as a
. function pf the depth of the potential well, [\,il, in units of ﬁZ/ZMaZ. If we

2

_put a ® 5 £, then f“\Z/ZMa = 1 MeV, where ‘M is the nucleon mass. This

means that k° gives the energy in umts of MeV,

o R
¥

The position of"the poles is a function of “‘1 |, and for ]}‘1' — 0 there
are infinitely many simple poles logated at k) =nm -iw, n= 0, =1, =2,:--,
With inc.reaising l)\f1 |, they move qn cuyﬂveg that are almost straight linés
parallel to the imaginary axis. The pole on the imaginary axis moves faster
than i:hé others; it stays oh the imaginary aiis for all values of |A\ 1! and,
after having crossed the real axis, corresponds to a bound state. The other
poles, which must occur in pairs since they must be situated symmetrically

with respect to the imaginary axis, move along the lines shown in Fig.1 of (8).

. Eventually, they merge into a double pole at k,1 = -i, then separate again.

,

."
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They move along the imaginary axis, one towards positive imaginary values - :,
of k,;, the other towards negative imaginary values of ki" The first of them,
after héving crossed the reil axis, becomes equivalent'to a bound state. This

way, more and more bound states appear with increasing |x1‘j l _}
‘ :

- We have calculated the phase shift 6(k1) as a function of k, for
] )‘1 laz = 50, which corresponds to a.’-po.t'entia.l depth of 50 MeV. We have
two bound states,” at k, =4.55128 i and at k,=6.51728 i, There is one pole
of S(ki) on the negative imaginary axis, at k, = ~6.,03146 i, In Table II, we

give the positions of the first six poles of S(ki) in the lower half of the k,

plane. &
'Since we have two bound states, we know fr;::m Levinson's theorerﬁ that

5(0) = 2w if';ve require '6(+w) = 0. The function 6(k1) for ki < 3Q is shown

in Fig. 7. It equals (3/2)7 and (1/2)'“ at k = 2 and k # 14.6, resbectively.

Obviously, 6(k1) is not a.ver)‘r smooth function of ki‘ and the arrows on the

real axis coincide more or less with those values of k1 for which & and

" hence the cross section sin2 6 display little bumps. The arrows indicate

the real parts of the numbers "g“iverx-'ﬁi'x;:z-"féglé"ﬁf"It is clear that the bumps
have something to do with the poles of S(ki). It is gratifying to see that
the bumps are more easily discernible if Im .ki is small than if it is larget.
according to Table II. ‘ o N
For potential scattering, Humblet (i,_Z_Q_) has shown that S(ki) is a
meromorphic function of k1 and can be writfen as an infinite sum over pole
terms plus aﬁ entire function [see Eq. (1.54) ofs"tbe_:ﬁf'r.st:c‘>fxre€e.rences 4]. In
order to see which influence the pole terms have, we have calculated the sum
over the pole terms excluding the two bound states and the state on the nega-
tive ixhaginary axi#. Unfartunately, Huinblet's'formula contains an arbitrary
p;rameter M. We have‘chosen M=1, The sum converges essentially like
i/nz. and we have calculated the first 100 terms to obtain_a.n accur‘acy better

than one part in 1074, S ’
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The result is shown in Fig. 8, Wé plot 1 - Re S(ki)" this is propor-
tional to the cross ‘sgcti'on--as a function of 14:1 (cu;'ve C). Curve A shows the
contribution to + S(ki) of the firgt resong.nce at around k1 = 3.2 (see Tablell).
We have added the contributions from tllg_pg}_e_sh_ﬁt k, and at -kf. Curve B

shows the total contribution of all resonance terms; it practically coincides

ot

. with A for k1 < 3.5, and differs from it for larger values of ki' mainly be-

cause of the influence of the second resonant state at ]zc1 =8.3. Curve D is

 the difference between curves C and B, i.e., the contribution from the entiré

function and from ‘the three states on the imaginary axis.

We see that most of the cross s‘egt;ig;';is due to the entire function and
not to the pole contributions. (The contributions from the bound states and'
the state at kizw 6.031 are very lax;ge. but monotoniq functions of ki' Yy We
also see that curve D still displays the bumps, although less pronouncedly
than curve C does. This ha'sz' to do both with the fact that M is arbitrary and

with the fact that the resonances are far from the real axis (" >1 MeV}, and

not isolated. In such a situation, it is simply not possible to decompose the

scattering function S(k1) uniquely into a resonance part and a nonresonance

part. This can also be seen from Fig. 7, where the poles do not cause
ﬁ(ki) to jump by 7 but produce only barely discernible little bumps.

From this example, we learn that maxima of the cross section need

- not have anything to do with poles of S(kvi). . The maxima at k= 2 and

k1 = 14.6 are consequences of Levinson's theorem, and are not caused by

nearby poles of S(ki)‘ Poles too far away from the real axis cannot be dis-

cerned very well, and we shall henceforth concentrate on narrow resonances

* in the cross sections,i. e., resonances for which Im ki < —%—0 or I' £10 keV.

We may hope that these are indeed caused by nearby poles of the S matrix,
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"B. The Case of N Channels

We study this cas; by first depicting the position of the poles for vanish-
ing coupling between the channels and by later adding a few remarks about the
more general case. In the limit of vanishing coupling between the channels,
the S matri:; i; %iagdnal, ;;.nd the _i_th diagonal element of 2 contains the ex-
pression for elastic scattering in channel i. Theieiore. it would s:ufﬁce to
study the problem on N different cdmplex élanes-‘—one for each ki' There,
tﬁe poles of § would be situated just as described in Section VI.A, The
distribu.i;ion of the'pbles on {T(N) can thus l::e obtained by mapping the complex
planes for the N wave numbers k, onto t;x‘e Riemann surface fl(N). |

Since each sheet--exéept for its:cuts and the poiﬁt k1 = 0=--ig an exact
copy of the k1 plane, the distribution of poles of the Syy element on each
sheet of U(N) is the same as described in Sectzon VI.A. To see how the
poles of the element S i i ;4 1 are distributed, we divide the ZN -1 sheets
of the surface into two classes. All sheets for which the (3."_9“ element,

T 1 of the labeling vector T is positive belong to one class, the other ones
to the ot};er class., The way the ki plane is mapped onto all sheets belong-
ing to the first class was indicated in a special case in Fig. 3. From this
mappin.g, one sees that poles on the:positive imaginary axis of the k.1 plane
are mapped onfo the positive. imaginaﬁ_ry or the real axes of all the sheets in
‘the first class. If they are on the real axis‘_,' they appear symnﬁetrically with
respeét to the origin. A simple pole a.t ki= i(ei)i/2 appears at k, = 0, where
it will _be'a twofold pole in ki' the parameter of local uniformalization. This
| can be understood from the arguments ’presenyed in Section IV.B. A pole on
g the negative imaginary axis of the ki plane will, for Irnki <= (ei)1/2, be
mapped onto the negative imaginary axis of all sheets of the first class. The
~image of the piece of the imaginary ki axis with -(ei)i/zslm kis 0 lies, by defi-

nition of the sheets, on the part of the real axis of the sheets of the second class

[

.
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for which - (ei) 1/2 < Re k1 < (ei)i/z. Again, each pole has two images,
which lie symmetric with respect to the origin. Finélly. resonant states
at kc;‘, so that neither Re k.lo' nor Im k‘.:‘ vanish, a.re. mépped into the lower
half plé.ne of the sheets of the first class, where they lie symmetric wit.h
respect to the irﬁaginary ki axis. The mapping of the poles onto the sheets
of the second class is obtained by taking a sheet ofltﬁe first class, reflecting
it around its real axis, and e;xchanging the poles on the real axis with ki
between -(ei)il/z and + (ei)i/z, as described above. Since all sheets differ
in at least one ele;nent Ts of their labeling vectors from the physical sheet,
we see that the physical sheet is indeed th:‘!only sheet in the upper half plane
of which there are no poles of any element of S (except on the imaginary axis).

| It i3 helpful to investigate the motion of the poles as functions of the )\i,
.still with no coupling between thé‘channels. and for )‘i - e;, 80 thét according
to (I1.9) and (II.10) we deal w.ith‘ attractive potentials. We shall be interested
only in tixe physical sheet and the sheets adjacent to it (see Fig. 4). We begin
with channel 1. Let us assume we have two bound states. They correspond to
two poles on the positive imaginary a.:;is of the physical sheet. As )\1 de-
creé.ses, they move towards the real axis. Simultaneously, the one pole that
must exist on the negative imaginary axis of all sheets does the same. For
a particular value of )\1, the first pole cersses\the peoint k1 = 0 and then
enters the sheet {-1,:++, -1}, moving dowlr} on the negative imaginary k,
axis. Simultaneously, a pole enters the neéative imaginary axis of the phys-
ical sheet fz"om the éd_ja.cent sheet {~1,+++, -1}, and moves down. At k, =-i,
iwo poles coming from larger é.ngl smaller values of Im k, merge on each
sheet, and from here on the mofion of the pair is confined to one sheet, and
is as described in Section VI. A. For sufficiently small values of )\1, the

second pole leaves the positive imaginary k, axis, too, and moves toward
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smaller values of Im’ ki’ staying on the xmagmary axis aﬁd moving on
whichever sheet is adjacent to the one on which 1t was before it crossed
the point k,1 = 0. |

This simple pattein of motion is considerably more complicated for
i# 1. For éufficiehtly large k.. two poles lie oﬁ the positive imaginary
k axis 'of all sheets with 7;.4 = +1, and on the negatzve imaginary axis of
- all sheets with 7, , = -1, One of the two causes one pole to lie on the
negative imaginary axis cf all sheets W1th Ting = +i, or positive imaginary
axis of all sheets wx_th Ting = 1. As )‘i' dgcreases, the pair of poles on
the positive imaginary axes of the sheets thh Tt =+ii'.imoVes towaxrd the
réal axis until one of them reaches the point k, = 0 on the real axié. There,
it is joined by the pole Selonging ‘to the pair on the negative imaginary axes of
the sheets with ;(‘i-i = ~1. We have a double pole in the.ZNf2 points k, =0,
with ;"'i-.i = +1, When we dec"rease )‘i further. the two poles separate and
move in ;)pposite directions on the rea{l axis until they reach the points

ky =%{e, ) /2 = +1.-5- The pair of poles belonging to the physical sheet

¢ Tietg
leaves th1s sheet and enters the real axls of the sheet with 'rk-+1 for k< i-1,

of -1 for k>i-41. We now have pairs of poles on the real axis of vall sheets with

Tiq = -1. In the meantime, the pole .on the negative imaginary axis of the

~sheets with Tilq® +1 has moved towards the real axis, too. At ky = 0,

Tinq = -1, it was joined by the pole on the pgsitive imaginary axis of the sheet

with 7, , = =14, Aga.m, the two poles have separated and moved in oppontn

i-1 "
| directions along the . rea.l axis of the sheets with Ti4= -1. At k i(e ~1) 1/2 .
Tinq = -1, they merge with the poles dxscussed above and form pairs of
',double_ poles. As )"i decreases £urther. they separate again, one pole 'vof
ea:ch pair leaving the regl axis towards positive values of Im ky, the othﬁer :

one towards negative values of Im ki‘ This way, finally two poles situated .

symmetrically with respect to the imaginary axis emerge below the points

A
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k1 = :l:(ei - 1)1/2 onto the lower half of the physical sheet and move on this
half plane toward . f‘o; very small potential strength their paths become
asymptotically équal to the ones described in Section VI.A,

We have seen that the only poles ever to be on the positive real axis
of the physical sheet are the ones 'corresponding to a bound state, as it should
be. This is not true for any other shéet. Furthermore, if all )\J are suf-

ficiently large, there will be -1-\-1-1-';-1- {{e 1/2 --(ei)i/z] bound states between

i+1)
any two neighboring thresholds for zero coupling between the channels. (This

is because the asymptotic distance between two poles is w.) Thus, with in-

Il
A

creasing numbers of open channels the dens{ity of bound states becomes more
and more reduced. Wer expec:i;~ the same statement to apply to the denéity of
narrow resonances, unlesvs the interaction between the channels changes
things drastically. This is suppbrted by the fact that for arbitrarily strong
coupligg between the channells, thg éonditions for the existence of a bound
state em.‘bedded in the continuum become more nﬁmerous with 'increasing

- numbers of open channels, according to Section IV.E.

' With Qanishing interaction between the channels, we could treat all
sheets on the same footing. This is no longer true as we turn on the coupling.
In particular, a pole {bound state) at kf’ on the positive real axis of the
. physicavl‘ sheet in general mo;/es into the'sheet_z adjacent to the real axis at
this particular point, when the coupling is"t“i..trned‘ on. Since we knowti_:hat poles
-always occur symmletrically on each sheet with respect to the imagina‘ry k,1
axis, the __saﬁae holds for its mirror péle at -kf’. This way, two poles“iheave
the physical sheet simultaneously and become resonant states, and the {Sym-

" metry among the sheets is destroyed.

~
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VII. NUMERICAL EXAMPLES: THE TWO-CHANNEL CASE

Several authors (e.g., references (7,9, 12, 13) have investigated
various aspects of this case, and we re'atric't ourselves to those aspects
that seem to Be‘ of,intgrést in the framework of the present investigation,
These are the. motion of the poles on the Riemann surface as a function of
the interaction strength between the channels (with particular emphasis
upon poles close to the real axis of the physzcal sheet), the demonstratxon :
of Levmson's theorem, and p;opertxes of a single resonance as mentxoned
in Sectiéﬁ IV. We begin with a suitable paf;métrization of the two—chanﬁei |

case,

A. Parametrization

Let the symmetric matrix A n of Eq. (II.9) with m, n €2 be given by

A = | - , | - (VIL. 1)

where bi’ b,, and ¢ are real numbers. Let the eigenvalues of this matrix

be )\1, )gz where

= ...(b +by) & = [(b -bz) + 4c ]1/2 - O (VIL2)

M, 2

N
i

The elements of the orthogonal matrix omn defined in Eq, (II.10) are then

igivenby o | | .
Ayby @ L
0 = L S : .  (VIL3)
mn Al/2 ‘ .
. < RVRLS
where

A=(bf et . (VIL.4)
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We introduce the abbreviation

z; = (§+ xi)ﬁ/z cot (€ + xi)‘/z a, fori=1,2, (VIL.5)

and have, for the matrix .Eim of Eq. (1I1.16),

2 "\, 4by)e
. c AN A
2, -m1+1—-(z2-z1) T(Zi'zz)
Eﬁm = . o . ; : (VII.é)
(X, -b)c T 2
1 72! . c
i (21-22) 2, -1k2+ yy (s:.1 2'2)
so that ’ N
, , 2 €4 . L
B . . c "y .
det Elm = (z1 - 1k1) (z2 -1k2) oy (zi - zz) (l.k1 - 1k2); (VII.?)

The elements of the S matrix are given by
-1 ' _ CZ : :
) [(z1+ik1)(z2-ik2)+ Y (zirzz)(i;<1+i'k2)] ,

N

S, =e ik 4ot £

11 1

Im

2

'S (detEﬂm)'?[(sz -iki)(zz+il;;) - Sx-(z1;zz)(ik1+ilcz)] . (VILS)

-2ik.a
= 2
22=°

0 y=byle z,-z,

S .
A detE‘cm,

o W 1/2 .
12 =S4 = =2ilkk;) / [exp(-ikia-xkza)]

From Eqs. (VIL7) and (VIL.8) it is obvious that it is useful to introduce

C 2 :
)‘1‘ )\2 and a = '%K— -with 0 €a <1 as the independent parameters by means
“of which we characterize our problem. In terms of these parameters (and

the threshold parameter e, = e) the physically relevant parameters are given

by
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"(? -a) )‘1 +u)\zo

b, = ax1'+ (1-a)\,,
- [a(1 POEATY “Ap)
c(xA-bz) - & o 1_4)] 12,
Vi = by
sz = -bz-e.'
Vi = -c. - : S (vILY)

It is also useful to realize that Eqs. (VII.7) and (VII.8) are invariant under

l

the substitution

A,/ \

1 2 .
)\2""“"" )\1» ‘ - ' ’ .
- Qq —— 1"“- . . (VII. 10)
so that in many cases it suffices to have a vary in the range 0<a < %— .

In the following, we shall put a = 1 throughout,

B. Resonances and Levinson's theorem

We have calculated thé cross sections 9410 Too0 and 42 defined by
Eqgs. (VII.8) and (11.24) for various values of the parameters. As an example,

we show in Fig. 9 the function G(ki)wi, e. ,~‘= the phase of the function D as

defined by Eq. (V.1)~-and in Fig. 10 the various cross sections for 0< k, < 20.

We have chosen e = 100, )\i = 40, )\2 = -50. For vanishing coupling between

ks
a4
o

~ the channels-~i.e., a = O~~we have two bound states in channel one, correspond-

" ing to two zeros of D on the positive imaginary axis of the physical sheet, and

two bound states in channel two. The latter ones imply, according to Section

' -VI A that D has zeros at k (1) =4,554281 and k (2) =6,51728i. This corre~

sponds to values of k = (kz +100) 1/2 given by k(i)) 8.904260 and
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ki(z) = 7.584527, ret;pectively. As a consequence,Levinson's, theorem
requires 6(0) -~ &{+ ) = aw, if 5v increases by 7 at _k,éi) and at kfz).
Forx,a=0, 6 will simply be i;i'xe sum of the phase shifts __i,n the two channels,
and for a potential depth Vs == bZ 8= ~k,ve= -50, one of the two terms -
adding up to give 6 was displayed in Fig. 7. For channel one, where

Vg = «40, the corre;sponding figure will be very similar. Curve A in

Fig. 9i illustrates wha.f happens when we choose a=0.005, leaving 7\1, )\2,
and e unchanged. The very weak coupling between the two channels

caﬁses the poles ;f the S matrix origina.llx{;situated at ki(i) and at ki(z) to
mové off the real axis. Thus, G(ki) becomes a continuous function which
increases rapidly by almost w at ki(i) and Iki(z). Except for these two
points .and theirl neighboxhoods, 6(k1)' decreases monotonically with increas-
ing k1 and displays the little b\;mps that were discussed in Section VI.A,
Curve B of Fig. 9° .shows ﬁ(ki) for the same values of xi, A, and e, but
- with a = 0.5, This value of a corresponds to the maximum coupling
possible between channels 1 and 2, and to o::,/b:t = c/b2 = +9, Still, the over-
all beha.x;ior of é(ki) is not changed appreciably. At ki(i) and kfz), 6(k,1)
rises by somewhat less tﬁan w, it displays a conspicuous cusp at threshold,-
k1 = 10, and from there on it falls off monoténically @til it eventually reaches
the value ~27, as required by Levinson's theorem. It is surely surprising
that the laige change in a produces sQ little effect., We have also calculated
G(ki) for values of a between 0.005 ana 0.5, and have obtained a gradual
transition between the values displayed in curves A and B of Fig. .9, ({The
same holds true, incidehtally. for the .croés sections shown in Fig. 10).

In the upber p&rt of Fig., 10, we show 0,4 382 function of ki for the

same set of parameters. Again, curve A refers to a=0.005 and curve B to
a=0.5. Curve A displays a cross section that has two broad maxima. This

corresponds to Levinson's theorem, applied to channel one individually for
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a = 0: The phase 6;1 decreases from zero to -2r« an‘d thus the cross sectidn '
given by 4 tsmzé1 must twice assume its maxxmum. Interruptions of this
smooth pattern occur because a % 0 at ki( ) and ki( ), where we find very
narrow resonances. These are shown with a different scale for k1 in the
inserts on the lower left part of Fig. 10, [As a consequence of a theorem -
by Wigner (21), the cross section must vanish in the vicinity'of a resonance
if only one channel is open. AThis can easily be seen from the relation
o'“ = .4 sinz 6(k1). Whenever 6(k1) increases by w, O‘“ has a zero.] A
further i_nterruption occurs at threshold, where k1 = 10. 6 Furthermore,
does not actually assume its maximiir'n value 4 for k, 2 10. owing to

944

inelastic processéa. For-a = 0.5, the resonances at ki(i) and ki(z) Secome

broader, the behavior above threshold and for k1 < 14 changes drastically

owing to melastic processes (see 0, Which is shown on the bottom of

Fig. 10), and a little bump develops at k 1 = 5. Still, the overall behavior

of O‘i.i"is similar to that with a = 0, except for the occurrence of resonances,
In the cent'ral part of Fig., 10, we show G, which of course is

defined only for k1 > 10. Curve A, again showing 0,5, for a = 0.005, is

very similar to curve C in Fig. 8 (except for a scaling factor that was

omitted in Fig. 8). The similarity becomes even closer if one remembers

that the scale on the abscissa is different in both figures, Whereas in

Fig. 8 the absciaga shpws what should now be called kZ in a linear scale,

the abscissa of Fig. 10 shows .1.<1 in a'line;s.r scale. Curve B again shows that

choosing a = 0.5 does not have a very great effect upon 0o The changes

are, of course, most marked where '0‘12 (Curve B at the bottom of Fig. 10)

is largest. For ¢,,, we have not shown the case a = 0.005 because 0,, <0.1

for 10 <k, < 20.

| it is clear ﬁom Fig, 10 that we are dealing with two resonances at

-kiu)vand k1(z) that are fairiy well isolated. Therefore, we give in Table III

a few quantities relating to our discussion in Section IV. We have kept the
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parameters )\1, .)"Z'. and e fixed (their values are the same as given above)
and have calcuia.ted the position of the pole of S originally at k 1(2) é.s a
function of a. In the first column of Table III, we givé the values of a, and

in the second and third the values of Re k, and Im k

i 4 that define the position

of the pole. Column 4 gives T = -4 Re k

/

~and p by the right-hand side of (IV.16). It is these quantities that enter

g X Im ki' In columns 5 and 6,

we give yi/(ﬁ.)i/z and \(Z/(ﬁ)1 Z. where y, and y, are defined by (IV.14),
into the expansion of the S matrix (IV.31) and into the relations (IV.32). In
order to displaythe second of relations (IV.32), we give in column 7 also
(yi)z/ﬁ. which should be real and equal to -I" if (IV.32) were correct. The
numbexs in column 7 show clearly that this is not the case. In terms of
our discgssion in Section IV this means that a single-pole approximation for
S with no background termé is not permissible. In the last column we give

" the ratio I'(b)/T for b = 1.0. Here I'(b) is defined by

a a 2
Re km ]hm (b)]

['(p) = rnopen , : (VIL 14)
b

|oE e 1? ax
o X .

in analogy to Eq. (IV.28), but without the limit b~ », We see that in
this particular case the error caused by é’alcula.ting I without using the
sum over closed channels in Eq. (IV.4) is less than 2 per cent. With in-

creasing b, this error decreases rapidly, and for b = 2.0 it is less than

{4 part in 10'5 for all the cases considered in Table III.
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' C. Motion of the Poles Close to the Real Axis;
Speculations About Nuclei -

One of thé most spectacular results of the numerical calculatiéns
ehowx;x in Section'*'VII. B is that even for strong coupling between the channelé,
the poles that were (for a = 0) on the real axis remain so close to the real :

axis that they cause resonances with widthas much smaller thad in the case
- of single~-channel (potential) scattering. By integrating the d'ifferential
equations for the motion of the poles as functions of X\ e )‘2.‘ and a
numefically, we have studied this behavip;‘ further and have found in all
cases that the poies have an astounding t;;xdency to stay close to the real
ﬁxis for values of k i below threshold. (Exce;;t in the vicinityv of the
threshold, we have never found poles close to the real axis above threshold. )
Speaking more quantitatively, in the many cases investigated numerically
IIn;J k 1] (indicating the pos;.tion of the pole, as in the third column in
Table iII) never became iarger than 0.3, Unfortunately, we have not been
able to find an exact proof for the assertion that poles that were originally
on the real axis cannot move far from it as a increases, aﬁd there may
well be cases for which such an assertion is wrong. Still, it seems that
in the majority of all cases the polesg do have this tendency, and if one
extrapolates this statement to many channels one is led to some curious
speculatioﬂs about nuclei., In the light of these results, the fact that nuclei

have many sharp resonances need not be attributed necessarily to a weak

couéling between the open and the closed channels, It also does not seem

~ to be a particular property of the nuclear forces. It seems possible that

any attractive, sufficiently strong two-body force will lead to many sharp

' .resonances in the cross sections. In fact, sharp resonances may be
~ produced even when the diagonal terms of the interaction (V 14 and V,, in

_ “our example in Section VIIL B) are too weak to lead to any bound states at all.

e



<72« | UCRL-41040
Examples for this are not hard to find (see _reference 9). This is the
reason why §ve preferred to discuss our ;'esults ifx terms of the eigenvalues
A 4 )‘2 and the coupling strength a rather than in terms of the original
matrix elements 'an. Whethe» our results permit one to make éuch
| speculations depends, of course, largely upon the generality of the case
under investigation. We must leave this question to the judgment of the

reader.
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VIII. SUMMARY AND CONCLUSIONS
We believe to have gi§en a fairly complete 'description of the properties
of a particularly simple many-channel scattering proi)lem. We can summarize
oﬁr results as follows: |
The Riemann surface U(N) updn which the elements of the S matrix
are meromorphic functions is the surface of an algebraic function from
which a finite number of points has been removed. The poles of the S
matrix correspond to the zeros of D, which is holomorphic on G(N).
Whenever 2 has a pole there exists a solution of the_ Schrodinger equation
which has only ’6utgoing' 'waves in all channels. In the neighborhood of such
a pole, the physically interesting scattering solutions are dominated by
this (homogeneous) solution, and as a conéequence. the residues of 2 at the
poles factorize and thus yield the Breit-Wigner formula. However, the
total width need not be equal to thel sum of the individual widths relating to
| the op;n channels. This is }ég}_‘;}g out by the numerical calculations. If,
" however, the single-level approximation for the S matrix is valid it is
clear that a relationship between total and channel widths must exist.
The numerical calculations show that the poles of the S matrix that
correspond to bound states embedded in the continuum in the limit of
vanishing coupling between the channels have a most remarkable tendency
~ to remain in the vicinity of the real axis for almost arbitrary strength of
thi.sv coupling. This and the fact that the density of such poles decreases
rapidly with increasing number of open channels gives rise to sox.'ne speculations
about nuclei discussed m Section VIL |
The éeneralization of Levinson' s theorem to many-channel scattering
. yieldé as a consequence a further satisfactory characterizatiox; of a resonance
| caused by a pole of fhe S matrix. The sum of the eigenphase shifts increases
by n over the width of the resonance as the enérgy increases. So far, we

have not made any attempt to find out whether this sum is armeasurdble
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quantity, since we are interested in the formal propertiés of resonance
scattering in this paper. If, however, it should turn out that it is measurable
we would have an interestiﬁg means of classifying narrow resonances in
' measured cross sections. If: is surely #egrettable at this point that we can-
not ghow that if the sum of the \eigenphase shifts increases by v we are
indeed dealing with a pole of the S matrix.

Most of the above sta.temenfs follow frém the propérties of thé function

D. It seem§ fhat this function plays a fundamental role in the theory of
many-channel gcattering, in much the same way as the Jost function does

in potential-scattering theory. In £é.ct. Newton (7) has shown that D is the
determinant of what might be called the Jost matrix of many-channel scattering
In addition, by a generalization of pz_'oofs given by Peierls (10) and LeCouteur
| (}_1_) he was able to show that all elements of ,2 can be' expfessed in terms

of the values of D on the various sheets of the surface. This fits in very
‘ nicely with the equality between vthe phase of D and the sum of the eigenphase
shifts of the S matrix derived in Section V. Therefore, one is tempted to
believe that many‘ of the theorems valid in potential scattering theory as
~ reviewed recently by Faddeyév (22) can be generalized appropriately to

'many-channel scattering wifh the help of D. Also, the role piayed by D
~in the disperéi:on relations for many-channel scattering seems worth while
investigating. On the whole, we feel that much more work should be done
to 'coméletely elucidate the properties -of ;'nany-channel scattering and in
particular the significance of the function D.
.Fixllally. a word about the generality of our results may be appropriate. -
It se'ems'that \‘r}e can extend most of our results to the case in which the
potentiai:ma;trix an(x) = 0 for x >a. Whenever the potentials do not
| fall qi{f sufficiently fa.;st as X - © we encounter more complicafed analytical

"str\z'étures. like logarithmic branch points. Even in this case, however,
fv : s . -

/
[

M
[
i
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the main results of Section IV seem to remain valid, and probably also the
characterization of a resonance close to the real axis by the fact that the .
sum of the eigenphase shifts increases by m. Also," the introduction of
angular momentum and spin should not afiect the results appreciably. In
the framework of many-éharmel scatfering. then, many of our results seem
quite general. As soon as we allow break-up processes of the residual
system to occur, however, this is probably changed. It would certainly bé
most interesting if one were able to study the analytical properties introduceid
by a three-body breakup in a somewhat general case, and doubtlésa the
Riemann surface is much more complicaééd under such circumstances.

We feel that the artificial suppression of this mode of decay in this paper
is the most serious handicap in trying to apply our results to a realistic

ascattering process.

~—
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APPENDIX

Proof of Equation (V.15)

We introduce the following notation. Let I’; be an arbitrary matrix
of N rows and N columns. Let ry and 8 i=14,+°+,n, n<N be two sets :
of poaitiw)e integers, so that 1 < r, & N and 1 € 8; SN, with r, < rk and
: i‘< 81 for i <k. The minor L(r oo, Y lsi;-- s 8 ) of L is the determmant'
of the matrix obta.med from L by omxtting all but the rows labeled Ty ’ r'n
and all but the c?lumns labeled 80" 08, The algebraic complement

i(ri.--°,rn[s1,---.sn) of L(ri,---,rnlgi.---.sn) is the determinant

n
ryteeetrptggte. .ty

of the matrix obtained from L by omitting the rows labeled r gt T

~

and the columns labeled Bgscte 8, multiplied by (-1)

A special form of Laplace's theorem [see ref. (18), p. 34] can theh be -

written as ‘ N
N : '
'*det 2 = Z “ L(i.toonlsi. o“ow-v. sn)ﬁ(i.oco.n si'ooo.sn)._-, rer
8y <8< K8, = '
(A.1)

We now apply these definitions to tﬁe matrix E and its inverse. In

~
~

order to show the dependence of the k1 . --"‘.- kN we write the minor of E,
for example. as E{(ri. cee, T ]si. cee,8 )'ki’ .o .kN}, etc. The left-

hand side of Eq. (V.45) can be written as

open Z E " kN)EM.( ki' k)

because of the symmetry of E We now apply Theorem 26 on page 66 of

ref, (18) and obtain, with n= numbervoffdpen channels,

!
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_~

RN |
det o {E (K) £(- 5)} .

i

s

N "‘, _ S
Z : E-i {(10"‘0‘1]31:“’05n)0£{}'X.'E‘: {(1»"':03'51:"" »sn)a 'K}.

<, Lo 0 0L - o~
182 h 1

(A.2) _f

From page 90 of the same reference, it follows that

F

E""l {(1, se s, nl 81.' oo "an)‘ 15} = [det E(I’“{)

~

-4
E{(io"'anlﬁi:"’tsnLK}-

{A.3)
Hence, we have '
. ) ' -t
d.etopen E (15) S(- K)) = |det E(IE) _
N .
X Z E{(i."'.nlai.°'{.8n)5-K}E{i, )1.nlsi. t S ),K¥
e - ~J
88y - <8 =1 |
(A.4)

From the definitions of E [see Eq. (II.16)].of the minor and of the algebraic
. complement, it follows that E{(4,+++,n]| ITRRRY sn)} depends explicitly
only on k'.l”' ey kn and not on kn+1‘ ooey kN The reverse is trge for

E {45+, n} CFORRE , sn)}. Hence, we have, using (A.i).



| ;f
=79~ o 'UCRL-11040;,
det E(’ki‘..‘.-.kn. +‘kn+i.0u..+1.(N)‘g
Z o E (1.....:1!'31...._'811)...15 ﬁ l(ii.....nlsi'...’en)’lf}‘
Si<$2<ooo‘<snzi‘ ) . .
{A.5)

‘From (A.4) and (A.5)," we obtain (V.15)." " .



-80- . | UCRL-14040

REFERENCES
i. For a review see,; for instance, A. M. Lane and R. G. Thomas,
'Rev. Mod. Phys. 30, 257 (1958), - w
2. P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (Ldrdos) A{665:277 (1938
3. E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947); T. Teichmann
and E. P. Wigner, Phys. Rev. 87, 123 (1952); and references quoted
, in référence 1. | |
“3;. J. Humblet and L. R. Rosenfeld, Nucl. Phys. g_{:_, 529 (1961);
' L. Rosenfeld, Nucl. Phys. 26, 579 (1961); J. Humblet, Nucl. Phys,
34, 544 (1962). A
5. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958) and Ann. Phys, (N.Y.)
19, 287 (1962).
6. See, for instance, the review article by R. G. Newton, J. Math. Phys.
1, 319 (1960).
7. R. G. Newton, Ann. Phys. (N.Y.) 4, 29 (1959); R. G. Newton, J. Math.
Phys. 2, 188 (1961).
8. H. M. Nussenzveig, Nucl. Phys. 11, 499 (1959).
9.. - L. Fonda ;nd R. G. Newton, Ann. Phys. (N. Y.) 10, 490 (1960).
10. ~R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (1959).
14. K. J. Le Couteur, Proc. Roy. Soc. (London) A256, 115 (1960).

12. G. Breit, Harndbuch der Physik, Vol. 41/1 (Springer, Berlin, 1959);

- {n particular Chap. BII, Sec. 6.
13. K. T. R. Davies and M. Baranger, Ann. Phys. (N.Y.) 19, 383 (1962).
14, N. Levinson, Kgl. Danske Videnskab, Selskab, Mat. -Fys. Medd. 25,
No. <l9(1}94‘}); J. Jauch, Helv. Phys. Actag_g. 4143 (1957); A. Martin,
| Nuovo Cimento 7, 607 (1958).

15, H, Behnké and F. Sommer, Theorie der analytischen Funktionen einer

komplexen Verinderlichen, V(prv'inger. Berlin, 1962) Second Edition,

Chap. 5.



16,
17.
18.

19.
20.

21,

22. .

-81- | UCRL-11040
See reference 14, page 514, _ '
L. Fonda, Ann. Phys. (N.Y.) 22, 123 (1963).

G. Kowalewski, Einﬁihrung in die Determinaﬁtenﬁheorie. {Chelsea

Publishing Company, N. Y., 1948) Third Editioﬁ. especially Chap. 7.
J. Petzold, Z. Physik 157, 122 (1959).
J. Humblet, thesis, University of Lidge (1952). Mém. Soc. Roy. Sci.

de Li2ge (8°) 12, No. 4, (1952)% 2. '

" E. P. Wigner, Phys. Rev. 70, 15 (1946).

L. D, Faddeyev, J. Math. Phys. 4, 72 (1963).
o . . . .r‘ . ) 63,:3 . . v



-82- UCRL-11040
FOOTNOTES
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Heidelberg, Philosophenweg 16, Heidelberg, West Germany.
1. We should‘ also exclude the points where at least ofxe of the functions
sin(g‘-i- )\m)i/za vanishes and for which det E does not have a pole.
Here, é may ha;ve'polés',htaoﬁ. ﬁﬁfihé?é“p"dints are isolated for all
finite values of k;. They are considered further in Section IV. E.
2. It should not be necessary to point out that the terms "wave function' and.

""state'' are not applicable for complek kf.

However, the word "com;- .
pound state" is equally meaningless--if one is strict about it--and very "
helpful. ‘

3, Davies and Baranger (13) succeed in deriving a relation similar to the
second of conditions (IV.32). They do this be decomposing the S matrix
.into a pole term and a background matrix B and by assuming that B
for real energies is constant over the width of the resonance. One can
easily see, howéver. that without this rather drastic assumption about
B (drastic in view of the analytically continued unitarity relatioiships)
it is no£ possible to a;rrive at their results.

- 4. In the following, we shall cohsider only attractive potent.ials,_ since 6n1y
.they seem to give rise to sharp resonané:es in the many-channel problem.

5. bn their way from the origin ki =0 to the points k,1 = :i:(ei)i/z, i> 2, these

points pass through a number of branch points. At each of these branch

points, they are double poles in the parameter of local uniforn”'xalization.

At k{1 = t(ei)i/z, they are simple poles in the parameter of locl;:al uni-

s . . : . ; !
formalization, ki’ From considerations of this type one can understand

VY
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how the generalized version of Levinson's theorem in Section V
works for the case of vanishing coupling between the‘ channels,

and f_.hat it agrees 'with the same theorem applied to écattering |

in the N unéoupled channels individuallf.

At thre’shold. 944 must display a cusp or a similar type of behavior
w}nch can be predxcted from the knowledge of B(ki) This has been

{

discussed by Newton (7).

-

',
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Table I. Construction of the Riemann surface for N=3

1

Upper shore ° {+#1, +1} {#1, <1} {-1, +1} = {-1, -1}

Lower shore ° {-4, =4} {-1, +1} {+1, -1}  {+1, +1}

Table II. Position of the poles in the lower half of the k, plane

Rek, 3.238 = 8.306 12,144 15.673 19.072
Imk, 1.066 1,316 " 4.549 1.689 1.836

22.395
1.963




i

Table IIl. Properties of the Residues of the Elements of S at a Pole

o Rek, Imk, T v, /@? v,/ @2 v, /5 T=1.0)/r
0.005 7.5842  -0.0010 0.030  -0.4411-0.4026i  10° (-0.8867+0.8780i)  +0.009+0.029i  1.020
0.400  7.5784  -0.0214 0.648  -0.6113-0.5450i 10 (-0.9609+0.7782i)  +0.108+0.6301 1.049
0.200 7.5776  -0.0454 1.377  -0.7959-0.8420i 103 (-1.0138+0.63581)  -0.026+ 1.292i 1.018
0.300  7.5773  -0.0746 2.69  -0.9248- 1.1077i 10 (-1.0520+0.4835i)  -0.372+2.049i  1.015 .
0.400  7.5849  -0.0984 2.985  -0.9400- £.3904i 107 (-1.0327+0.3045i) -1.050+2.614i  1.013 ,
0.500  7.5991  -0.4235 3753  -0.8744-4.6444i  10°(-0.9526+0.13141) = -1.945+2.8661 1.041 |

i

-58-.

O%0¥I-"T¥ON
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Figure Legends

Fig. 1, The topological structure of the Riemann surface for N=3,

Fig. 2. The physical k1 plane with its cuts.

Fig. 3. The physical k1 plane for N=2, e,= 6, witijx the values of
k2 in italics.

Fig. 4. The physical k, plane and the sheets adjacent to the real axis.

1

Fig. 5. Analytic continuation of the unitarity relationships.

Fig. 6.  The corltoﬁr C for-the integral in V.1,

Fig. 7. 8(k,) as a function of k, for [\, la®=50, k, <30,

Fig. 8.. Cross section and pole contributions as functions of ki'

| Fig. 9. The phase of D as defined by Eq. (V.41) as a function of k1
for 7\1 =40, 7\2 = =50, and e-= 100, Curve A corresponds to
a= 0.005, curve Btoa =_0.5. |

Fig. 10. The various cross sections as functions of k, for )\1 =40,
)‘2 = «50, and e=100. Curve A corresponds to a=0.005,

curve B to a=0.5. The inserts show 044 (curve A) with an

enlarged scale for k1.
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