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A· simple case of many-channel scattering is investigated. The 

Riemann surface is constructed, upon which the elements of the S matrix 

are meromorphic functions. The structure of the S matrix near a pole is 

investigated in detail. It is shown that both the scattering wave .functions 

and the elements of the S matrix. are dominated by the "wave function" for 

the "decaying state" in the vicinity of such a pole. The physical content 

ofthe Breit-Wigner formula is discussed in the framework of these ideas. 

Levinson's theorem is generalized to the case of many-channel 

scattering~ As a by•product, it is shown that poles of the S matrix close 

to the positive real axis of the physical sheet cause the sum of the eigen­

phase shifts of the S matrix to increase approximately by 1T over the 

width of the resonance as the energy increases. 

Most of the above statements can be proved with the help of a function 

D, holomorphic on the entire Riemann surface. Its zeros coincide with poles 

of the S matrix, and its phase is related to the sum of the eigenphase shifts 

of the S matrix. Peierls, Le Couteur, and Newton have shown that from D, 

it is possible to determine all elements of the S matrix. All this seems to 

indicate that D is a very basic function in the theory of many-channel scat-

tering, and that its role is not yet entirely understood. 
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In this paper we give a detailed analysis of the properties of an exactly 

soluble many-charu•el-scattering problem. The motivation for this investi-

gation is threefold. 

In the last twenty-five years several general theories of nuclea1· reac-

tions have been developed (.!_). The best known of these were fonnulated by 

Kapur and Peierls (~), Wigner and collaborators (~_). Humblet and Rosenfeld 

(_i), and Feshbach (5). A very characteristic feature of all these dispersion 

theories of nuclear reactions is the occurrence of a Breit-Wigner for1nula, 

which describes approximately the behavior of the S matrix in the vicinity 

of an isolated resonance. 

The conditions stated in the above -mentioned papers for the occurrence 

of such a resonance, as well as the expressions for the parameters desc:rib-

ing the S matrix near a resonance, differ, however. One n>ay ask whether 

the various definitions can be shown to be identical under conditions of physi-

cal relevance, as should be the case with theories that prestt.."'"l"lably have 

general validity; if not, whether there may occur sharp peaks in the cross 

section that can be accounted for by only one of the definitions and not the 

others, and other sharp peaks for which another definition is appropriate. 
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Not all of the above•mentioned.paper;; imply, for example, that an isolated ··-·-· _, _____ . 

resonance is necessarily a pole ·of the S matrix, and although it is clear that 

poles of the S matrix sufficiently close to the real axis do give rise to reso-

. ' 
nance phenomena in the cross section, it should be interesting to see whet~er. 

there may be sharp resonance·like peaks in the cross section not caused by 

poles of the S matrix •... 
... 

In such a situation, it might be helpful to have an exacUy soluble 

problem available that may serve as a test case for the general theories 

and~ ·may give some further insight into what happens at a resonance. For 
' 

,., 

such a question, a many-channel scattering': problem seems much more suit-

able than a single ... channel one, the !ormer being able to give sharp resonances 

under much less stringent and artificial conditions upon the potential param-
. . 

eters than the latter. 

A second reason that started this investigation is this. When one 

analyzes' the structure of the S matrix in an attempt to understand what 

happens at a resonance, one is inevitably led to consider the analytical 

continuation of the S-matrix elements to complex values of the energy. 

Numerous studies of the analytical properties of the S matrix have been 

undertaken for the single-channel case (.§_). but relatively little is known 

about the corresponding properties in the many-channel case (7). Since we 

propose to study a very specific case of m~ny-channel scattering in this 

paper, we shall be concerned only with properties of a specific S matrix 

and shall not try to discuss general features of S matrices for many-channel 
··~· . 

scattering in terms o£ conditions imposed upon the interaction potentials. 

In a sense, then, our investigation will be a natural extension, to the many-

·channel case, of Nussenzveig 1 s detailed discuss.ion (8) of the prope1·ties of 

the S matrix for square-well potential scattering. We are, however, aware 
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that many o£ our results can be shown to be valid for wide classes of inter ... 

action potentials, and we shall try to prove this statement in a later pub-

lication. 

Finally, the simple soluble case in which we are interested gives rise 

to sharp resonances in the scattering cross section if the potential param-

eters that have to be specified are suitably chosen. One may try to analyze 

the conditions upon the potential parameters under which sharp resonances 

occur. In this way, one may hope to get some better insight into the question 

whether the nuclear forces have to be very sp~cific to cause the occurrence 

o£ many sharp resonances in low-energy n~clear reactions, or whether one 

would more or less expect any attractive and sufficiently strong force to 

have this effect. Whether or not one ~ay hope to obtain an-answer to this 

question by means of studying the present problem depends, of course, upon 

whether one may consider this problem as typical for what happens in nuclei. 

Later, we shall refer to this question in the appropriate place. 

In Section U, we introduce the many-channel problem we wish to study 

and derive its general properties, including an explicit expression for the 

S matrix, the specific form of Green's theorem, etc. Our choice of inter-

action potentials has already been made (7, ·, 9), and the discovery that the - ····.-

many-channel problem becomes exactly soluble in this simple case is not a 

new one. Therefore, most of the relations we give in Section II can be found 
·, 

in the literature. For purposes of definition and notation we have to present 

them again, however. We also include a proof showing that for fixed total 

energy ~ we can always adjust the parameters in our model in such a way 

that we can. exactly reproduce the elements of the scattering matrix for a 

much more ge~eral choice of interaction potentials. 

In Section IU, we study the Riemann surface upon which the S matrix 

becomes a single-valued function. We discuss the topological structu1·e of 
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this surface, the general analytical properties of the S matrix, and the 

significance o£ analytical continuation of the unitarity relationships. A 

study of this kind of problem was made by Peierls (10}, and subsequently 

by Le Couteur (.!.!). We believe, however, that our case is the first many­

channel case in which we start with a many-channel Schrodinger equation 

and discuss fully the analytical properties of the S matrix as consequences 

of the nature o£ the potentials contained in this equation. 

The same remark applies to Section IV, where we turn our attention 

to the poles of the·S matrix. We investigate such questions as the connec­

tion between the occurrence o£ poles and c'~rtain solutions of the Schrodinger 
1 1· • J J ' r • 

equation, the behavior of the S matrix near poles, the form of the analytically 

continued unitarity relationships near_'and at a pole, the structure of the 

Breit-Wigner formula, the connection between total and partial widths, the 

relation between compoWld and decaying states, and the single-level approxi­

mation for the S matrix. Much of the work in this section has been stimulated 

by the1pape:rs of Newton and Fonda (2), of Breit (_g), and of Humblet and 

Rosenfeld (4). The more recent paper by Davies and Baranger (_!l) also 

deals with these problems. Still, we hope we may offer new or clearer 

understanding of the structure of the S matrix near and at a resonance. 

In Section V, we show that Levinson's theorem (14) can be extended 

to many-channel scattering. We shall can~y through the proof in a way analo­

gous to the original proof by Levinson for the single-channel case .. The crucial 

point for the generalization of the theorem is that the sum of the eigenphases 

of the S matrix at each energy 6 is given by the phase of one analytic function 

D o£ the energy. The main difficulty is the continuation of the eigenphase 

shifts through thresholds (branch points), and it can be overcome by means 

of an analytic continuation of D in the physical sheet of the Riemann manifold 
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discussed in Section lll. The essential part of the proof does not depend 

upon the specific choice' o£ interaction potentials considered in this paper, 

and we intend to give a more general version. of this proof in a subsequent 

publication. 

In Section VI, we discuss the positions of the poles of the S matrix 

as functions of. the potential parameters. We begin with a reminder of the 

single-channel case (8), and continue with the many-channel case without 

and with interaction between the channels. In Section VII. we illustrate 

the resUlts obtained in the previous sections with numerical examples re-
(, . 

lating mostly to the two-channel case. A partial answer to our third question 

is given. We end in Section Vlli1with::the summary and conclusions. 

We finish without having related. our results to the more general 

theories mentioned above. We think, however, that the material presented 
. . 

is sufficiently self-contained to merit separate publication and defer the 

comparison between our results and the general resonance theories to a 

later time. 

\ 
I. 
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A. Definition o£ the Problem 

UCRL-11040 

We proceed in close analogy to ref. 7. We consider a nonrelativistic 

particle, the position of which shall be described by one coordinate x. The 

simplification of using only one coordinate is made to avoid the complications 

introduced by angular momentum and spin. This particle, confined to values 

of x with x ~0, so that the wave function vanishes for x = 0, interacts with a 

system that has only a finite number N of bound states. We denote the state 

vector of the mth bound state by ·1m) and 'its energy by e , and have the 
- m 

states arranged in such a way that e 1 ~ ez ~ e 3 4!t • • • ~eN. For the sake of 

simplicity we assume ei f. ej £or if. j. This simplifies the behavior of the 

scattering matrix at thresholds considerably. The system with N states is 

referred to as the residual system. The total system, the particle plus the 

residual' system, is simply called the system. 

Let V denote the interaction bet"':'een the particle and the residual system, 

and let V (x) denote 1ts niatrix elemeiltsWith-respect to states In) and I m) nm . 

V (x) = < n I V I m) . nm . (II. 1) 

We assume that V nm(x) is finite and real everywhere, and that 

V nm(x) = 0 for x >a. The constant a is called the interaction radius. Denoting 

the co~plex conjugate of a number by *• the Hermitean conjugate of a matrix 

by t, and the transpose of a matrix by T, we have 

T * t V (x) = V (x) = V (x) = V (x). nm nm nm nm 
(II. 2) 

The total-state vector of the system, "'• can be expanded into the states 

(II. 3) 
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Instead of referring to ~. we use the N-dimen-
T . '! (x) = {£1 (x), • • •, fN(x)} to represent the system. 

We introduce the symbols 1 for the N-dimensional unit matrix, V(x) 
~ ~ 
.r • 

for the potential matr~ (1~.2~~--- ~-- for~,~- ~~~g~al_matrix having the ei as 

diagonal elements, and G for the total energy. Putting 1'1 = 1 and the mass 

M of the particle with coordinate_ x equal to M = 1/2, we obtain the many-

. channel- Schr(:)dinger equation of the total system in a stationary s~te, 

[ ( • d
2
., • G) 1 + e + V (x)l F (x) = 0. 

~ ' dx"' ~ 1::1 $liS ~ - ' 

(II. 4) 

,-
i'"_,Jl 

Equation {11.4) will be the starting point of our investigation. Although 

Eq. (11.4) gives rise to inelastic scattering through the nondiagonal elements 

of V(x), it introduces none of the difficulties encountered in actual inelastic­
~ 

scattering processes. With inelastic scattering of two systems, rearrange-

ment collisions become possible, too, in most cases. They introduce serious 

geometrical difficulties into the formulation of the problem. No expansion o£ 

the type (II.3) having only bound states I m) will be possible in such a case, 

for example. In addition, in all realistic scattering processes we enc9unter 

three• or more-particle breakup or production processes that obscure the 

kinematics of the reaction severely •. Having avoided these difficulties, we 

find Eq. (II.4) sufficiently simple to allow an explicit solution if we further 

specify. V(x). · 
~ 

It is, of course, questionable whether our simplifying assumptions may 

introduce some false features into-our results--false in the sense that they 

will not be present in a more realistic 'treatment of inelastic scattering. We 

believe that all the essential features of our problem are necessarily present 

i~ any more complicate~ problem. This is the basis of our conviction that it 

is useful to undertake the present study. It is clear, of course, that many 
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features possibly present in a more realistic treatment will be missing in 

our problem. In particular, the analytical properties of the S matrix are 

likely to be very much simpler in our problem than in any realistic case. 

However, the problem formulated in (11.4) is consistent with the requirements 

of the general theories o£ nuclear reactions (1., 2, 3, 4•;·5) and can thus serve as 
. -----

a test case. 

Returning to the formulation of our problem; we supplement Eq. (U.4) 

by imposing boundary conditions at x .... oo. To do this~ we observe that for 

x >a, (11.4) simplifies to 

·which is. an uncoupled system of diffe~ential equations. Introducing the N 

wave numbers ki' •••• ~ with ·{k1, • • • ,~}·= KT by ... 
-. 1/2 

(II.6) k. = (~-e.) 
1 1 

so that ki > 0 if ~ > ei 

and Im ki > 0 i! s < e., ·I 
1 

where Im stands for imaginary part, we can rewrite (II.Sa) in the form 

i = 1; • • ·, N. (II. 5b) 

A physi.cal situation in which x > a and the ,r-esidual system is in a state I m) 

· is called a channel, and in this sense we shall refer to the wave numbers k 
' m 

as the channel wave numbers. Disregarding the possibility of bound states of 

the total system (which we will discuss later) we define the scattering states 

. 'as solutions of (II.4) with an incoming wave in 'one channel, £, and outgoing 

waves in all other channels. If we introduce the velocities v. by v. = 2k. and 
l 1 l 

normalize incoming and outgoing waves to unit flux we have for x >a, accord-

ing to (ll. 5 b) 
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f~>(x) = (v ~1/Z exp(•ikmx) oml -sml. 
1 I exp(+ik x). 

m (vm)1 2 . m 
(II. 7) 

Th 'nd 11 ·l·n f (.€ )(x) f. th "i · h 1 " Th e upper 1 ex K. re ers to e ncommg c anne • e system m 

o£ equations (1!.4) together w1th the boundary conditions (II. 7) is expected to 

define the solutions .£n!1) (x) uniquely. 

If the energy s > e. so that k. > 0, we call the channel i open; other-
1 1 

wise, closed. The physically interesting ones among the s~lutions Jf·(J. >(x) of 

(II.4) and (II. 7) are clearly those for which 1 is open. It will turn out to be 

advantageous, howeve~, to consider also the r<1 >(x) for which .( is closed. 

For the same reason, we have in (II. 7) included factors 1/ (v ) i/2 i~ front m . 

of exponentials that for. closed channels yield zero flux, and have extended the 

definition of the matrix elements Sml o£ the scattering matrix g to closed 

channels, even though cross 'sections can be measured only for open channels. 

B. Specification of the Interaction; Explicit Solution of the Problem 

We now make the assumption that £or x < a, 

V mn(x) = V mn (ll. 8) 

independent o£ x. This assumption is equivalent to the assumption that the 

interaction (II~ 1) is separable and that its x•dependent part has the £o1·m of 

a square •well potential. With the help of (U.S), we can easily solve the.Eq., 

(Il.4) for x < a. We define the matrix A b! 1::1 y 

A= - V •. e 
J::l :::s 1::1 

(II. 9} 

for x < a. A is real and symmetric because of Eq. (11.2); it can be diago­
~:::: 

nalized by an orthogonal matrix 0 with 0 0 T = 0 T 0 =·1 • Denoting the N 
=:: ~ ·~ ::::: :::::: ~ 

eigenvalues of t; by X;1, • • ··,AN and introducing the diagonal matrix 

that has the Ai as diagonal elem~nts, we have 

A 

.."i,'.ti 
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(11.1 0) 

When the vector o£ functions Q(x) is defined by 

G(x) = Q E (x), .... - (II. :11) 

it is easily seen that g (x) ful.£ills the equation 

[<4 + ~) 1 + ~] g(x) = 0, 
dx ' 

(ll.12) 

. so that the ith component g.(x) of g (x) has the form 
- 1 

[ 

, 1~ ,_ )1/2 ] . _ Sln \~ + ~i X 

gi (x) = gi X · 1/ z • 
. (~ + A.i) .· . 

(II.13) 

Here the gi are N unknown constants to be determined from the boundary 
.. ,, :, .,. 

conditions at x =a. The denominator. in Eq. (Il.13) has been chosen in order 

to make (ll.13) meaningful even for x.1 = .. ~. and also in order to facilitate 
'· 

an analytical continuation to complex energies. 

.. -·T 
The constants £i. . = {g1 , •. · • , gN ~ as well as the elements of 

' . 

S can 
:::: 

now be determined by joining F(x)--as given by (II. H) and (11.13)--contim\ .. ... 
ously, and with a -~-ontinuous first derivative, to F(.t)(x)--as given by (II.7). -

. II . G(£) For each possible choice of J. • .... = 1, · • • , N, we obtain a set of constants .... 

and the S-matrix elements Sm1 form= 1, • • •, N. Thus we can determine the 

2 (l.) ' 
2N unknowns gm and _sm1 i with 1 :EJ (m,.t) ~ N. Explicitly, one obtains the 

equations 
. ' 

N . { · [ . (c. A. ) 1/2 ~ . - (1) 1/2 sm '~» + t a 1/2 
\ gt . ot cos(~+ A.t) a ... ik 1 2 :::-i(v ) exp(-ik a)o n L m . . m ( S + A. ) m m mx 
t= 1 t 

(11.14) 

• and 

.Sml = i 1 
exp(.-ik a) 

(v )1/2 m 
m 

{ 

. r;. (!: \ )1/21} I. 1 2 Ism <:>+ ~ a1 
\' 0 g ( ) cos(~+ A.

8
) / a+ il< I 5 

/ j' L sm s · . m ( t. + >... ) 1 2 
s . L '=' s 

(1!.15} 



UCRL-11040 

where g (.l) is the solution o£ (11, 14); Obviously, the system of equations s 

(ll.14) is the more fundamental one: Whenever it has a solution, (II.15) has 

one, too, which can be trivially obtained by inserting the solution of (1!.14). 

The Eq. (II.14) are a system of 'N inhom'ogeneous linear equations for the 

unknowns gt (.1.), t = 1, • • • , N. By changing the index I. , we get a different 

. - (£) 
inhomogeneity and different solutions. The solutions G all exist and are 

uniquely determined if the determinant of the homogeneous system does not 

vanish. The matrix elements of S and the overall solutions F(.t )(x) ar~ = -
then uniquely determined also. 

l~~ 
It is this particular feature of our many-channel problem that greatly 

simplifie·s ~he following discussion. Instead of having to solve a coupled 

system o£ linear differential equations, we can carry through the entil·e in-

vestigation by studying the properties of (II.14) as a function of the energy ~. 

resorting to the simple and powerful methods of linear algebra. Our solutions 

as functi~ns of x are determined once and for all, and the only unknowns left 

are the G (l) and the matrix S. This proves particularly advantageous for 
= 

the discussion in Section IV. Aside from the energy ~. the Eq. (U.14) depend 

upon the parameterR. A1, • • •, >..N' the energies e 1, • • r, eN (which enter into 

the definition o(ihe k 1, • • •, ~), and the elements of the orthogonal matrix 

·g. From Eqs. (II.9) and (11,10) it is evident that this set of parameters is 

entirely equivalent to the original one, nameiy the elements of V (x) and the 
' -. ~ - ' 

energies e 1, • • •, eN. It is, however,. more advantageous to use this set 

than the original one if one wants to discuss the dependence of the solutions 

on the parameters, and henceforth ~e do so. 

I£ sin (s + \) 1/Z a f 0 for all t, we can rewrite Eqs. (U.14) and (II.15) 

as follows. We define the symmetric matrix E by ' . . = 
N 

Elm= L 
n.:::.1 

(II.16) 
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-(J.)T {-(i). . ·- (l.)l 
Introducing the new unkp.owns ~ = c 1 , • ; • , eN f by 

(ll.17) 

we obtain for (11. 14) 

(II.18) 

I! the determinant of E does not vanish, we can easily solve (11.18) for 
. ~ 

C(£) and obtain, b~ inserting into (II.15), the following expression for S: - . ~ . 
S :m1 = (km/k1 ) 1/Z [exp( -ikma - ik1 a)] I, En:! (k1, • • • , ~)XEs£ ( -k1, • • • , -~). 

. . • s . 

. . (II.19) 

Here, ;: '"
1 

is the inverse of ·~ a~ the matrix ~ ( -k1, ~ ', • , -~) is defined 

in analogy to (II.16), with the signs of all the k. 1 s reversed. Obviously, we 
. ' . 1 

have - · 

(II.20) 

Inspection of (II.19) shows that it ~emains valid even if not all sin(~+ A.t) 112a 

are different from zero, i.e. , even if (~ + X.t)a 2 
= Tl'n with n = ± 1, ± 2, · · •. 

Therefore, we shall use this expression for S throughout. The constants 
• 

c<£) become, o£ course,· ill-defined1n"'Buch-a--ca.se, and one has to refer • 
back to the G(.l). 

li the determinant of E vanishes, then the homogeneous part of Eq. 
r:::; 

{1.1.14) has a· nontrivial solution, and at these energies we encounter a bound 

state, as is shown in Section IV. Whenever this happens, at least one of the 

· elements of the S matrix as defined by Eq. (11.19) has a pole except for very 

special cases discussed in Section IV. For the time being, we assume 
' 

det E f. 0. ::::: 

·' 
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The coefficients f:(l) in (ll.17) were introduced for the following 

purpose. We define the' functions 

(II. 21) 

The functions £' (x) of Eq. (11.·11) can be expressed in terms o£ the constants 

~- and the functions xln(x) by 

f (.t)(x)::: \' c (l)X (x). 
m L s sm 

s 

The X' s have the pleasant properties that, 
~ . .) 

X 11 (a) = 6 1 , ~ x1 (x) I -ik1X1 (a) = E 1 • 
A. n n QX n x=a n n 

(11.22) ·' 

(11.23) 

In a sense, they are the correct syste.m of functions to be used for x < a if 

we formulate our boundary conditions in terms o£ the matrix E, as was done 
:::: 

in (II.18) and (II.19). The matrix E is the matrix o£ the logarithmic deriva­
s::: 

tives at the interaction radius. It is clear that, again, the X's are ill­

defined if one o£ the sin(~+ A ) i/Za vanishes. s 

Finally, the cross section for a reaction leading from channel J. (open) 

to channel m (open) is, according to the normalization used in (II. 7), given 

by 
2 

u .t-m = I S J. m ... 6 1m I 

C. General Properties of t~e Solutions 

(II.24) 

We begin with Green's theorem. Let !(i)(x) and f(Z)(x) be any two 

solutions of (II.4) belonging to energies ~ 1 and ~2 • respectively, with 

F(i)(O) = 0 = f(2.)(0), but not necessarlly subject to th.e boundary conditions .- . . . 

(II. 7). Then Green's theorem reads 

(~ -~ ) J.b F(i)(x) • F(Z)(x)dx = F(i)(b) • d F(Z)(x) I 
1 2 o ,.. · - - dx- x=Q 

(II.25) 
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The S matrix is symmetric for all channels, is unitary with respect 

to the subspace of the open channels, and has simple time-reversal prop-

erties. By combining (U.i9) and (II.20), we obtain 

o A [exp( -2ik a)]+ 2i [exp( -ik a)] (k ) i/Z E__:! (k1 ) i/Z[exp( -ikJ. a)] 
m.t. m m m . uAAC 

(U.26) 

which shows that S is symmetric because E is symmetric: 
~ . ~ 

S l. = s1 for all m and l.. m m . (II.27) 

The unitarity of S· c.an be shown in many ways. We prefer a direct cal~u­
~ 

lation that can easily be extended to the ana.lytical continuation~£ § to -
. · complex energies. We make use of the fact that, for real energies, 

(II.28) 

since 

(11.29) 

* * We notice that, according to (ll.6), -k. = -k. ·for i open, and -k. = +k. 
1 1 1 1 

for i closed. Thus, Eq •. (U.20) can be rewritten in the form 

6 , X2ik if m is open, m.t m 

or if m is closed. 
~ i. • . ;. ' . : . ~. \. t .. 

(II.30) 

(II.31) 

Replacing km by (11.30), using E
8

; ( ·!} )=,:EJst(!})<~Q:n!f> open;.tand: .uti-lizing the 

s'ymmetry of E, we find that Eq. (U.31) reduces easily to 
~\ 

~ Smi ~ t .'£' o J. t if J. and
1 

t are open. 
m open m .. (II. 32) 
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Equation (11.32) expresses the unitarity o£ the S matrix in the subspace of 

open channels, and Eq. · (11.28) denotes the behavior o£ S under time re .. 
~ 

versal. 

The behavior of the cross sections at threshold. i.e., when one of the 

k1's is close to zero and positive, can be studied in a~logy to reference 7. 

Although it is not of great physical interest, we want to give the high-energy 

limit for the cross sections, too, for the sake of completeness. Instead of 

(II.16), we define the matrix E' 
1:$ 

E' ·=' J1 onlo. {(.'g+). )1/ 2 cosfg+). )t12a·ik sin(.g+). )1/ 2a}, (II.33) 
J..m l~1 nm n . n .. ,. :m n 

and it is easy to see that smJ. may be written as 

(II.34) 

We expand 1/2 1/' 2 . 1/2 . . 
(S + ).

8
) = (S) + p .. 

8
/Z(s) ] + • • • £or large s. and do the 

same with ki=(s.;..e1)1/2::(t;)1/2.;.[e/2(s)1/2] +•··· We calculate E' to 

first order in ).
8
/s and e/s. , From this expression it is easy to calculate 

the inverse of E 1 to first order in 1/~. and making use o£ the Eqs. (II. 9) 

and (11.10), one eventually obtains for ~- oo, 

(ll.35) 

with V mi. defined in (II.8). Correspondin~ly •. 0' m-.t- IV ml 1
2

a 
2/s 

.. 

according to Eq. (11.24). 
\ .. 
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D. Connection Between Our Case and the More General Problem 
Presented in II~ A 

In Section II.B, we have specialized our interaction potential greatly. 

We can show, however, that this specialization is not as severe as it may 

seem at first sight. We can prove the .following statement: Given any po­

tential matrbc V
1

(x) that fulfills the requirements of Section II.A, and givell 
. 1:::1 . 

the corresponding scattering matrix S 1, we can always specify the param-. ~ 

eters Ai, • • •, ~·~ e 1, • • •, eNz and g in our problem in order to make the 

S matrix o£ Eq. (11.19) identically equal to _.si for fixed energy t. This 
""Ill:! 

mea~s that we can reproduce the energy dependence of a more general 

scattering matrix s1 by making the parameters in our problem energy de­= 
pendent. Therefore, a study of narro~ resonances in our specific case will 

apply to a wider class of potentials v1(x) defined by the requirement that 
1:: . . 

the energy dependence of the parameters that reproduce s1 exactly be small 
= 

over the width of the resonance. 

In order to prove the above statements we have to construct a gene1·al 

solution of Eq. (11.4) for x < a, which we join smoothly to the solution (II. 7) 

at x = a. Let G(i)(x), i = 1, • • •, N, be a basic set of solutions o£ (1!.4), de-
. - . 

fined by the initial conditions g{i)(O) = 0 and~ gji>(x) I x='o = 611 • The most 

general solution of (11.6) can then be written in the form 

N 

I: n (i>g <i><x> • 
i= 1. - ____ : -· -·- -----

- -------~-----

with the N constants "G (i) as unknowns. By equating this solution and its 

1 
firs.t derivative to (ll. 7) at x =a, one can determine the elements o! the S 

1 

matrix in analogy to the procedure in Section II.B. Again, one finds that 

S 
1 

can be written as 
_, 
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- - . -- -- -~- . -=---·--::-=.-..::..::. . 
.. ·----·· 

(II.36) 

a 

where E81 (!,<) is defined by 

(II.37) 

Here, B £ and C 1 are the matrices of the values of the fw'lc:tions . s 8 

G(i)(x) and of the derivatives of these functions at x:: a: -
B ::.g (i)(a)· C - d (i)() I 

im . m ' im - "dX gm x x=a • (II. 3 8) 

. ~j • 

:§ and ~ are real from the definition of the Q(1)(x), - - . ' 

Both and Green's 

theorem can be used to show that E is symmetric. In (U.37) we have dis­
·~ 

regarded the possibility that :§ '"' 1 does not exist. We can deal with this case, -
however, in analogy to the situation in> which sin(~+ X. ) 1/ 2 a= 0 in Section 

' s 
~.. . ' . ·, ' . 

II.B. Our statement will be proved if we can show that we can choose 

X-1, • • • , "-N and g such that 

~ -1 ~ ... 1/2 . 1/2 L B . c.1 = L 0. 0.1 (~+X.) cot(s+ X..) a. 
J=i SJ J J=i JS J J J 

(II.39) 

This follows from a comparison of (ll.16) and (II.37). (The e 1, · • · , eN 

rnust,rof course, be chosen so that they reproduce the correct thresholds.) 

The matrix 

L
N. ·1 

.. B. c.ll 
, SJ Jz. 

j=1 

is real and symmetric; it .can be diagonalized by an orthogonal matrix 0, 

with eigenvalues {X. 1• • • ·, X'N}. Equating 0 ::: 0 and X".=(s+ X.1) 1 / 2cot(~:A..)112a, 
' ~ ~ l l 

, ~: :{ 

. · which is always possible, we see that the required equality can indeed be 

achieved for a fixed energy s. This completes the proof. 

It should be noted that the above statement has, of course, no bearing 

on questions like the analytical continuation o£ the S-matrix elements to 

complex energies studied in Section III. 
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rU. ANALYTICAL PROPERTI,ES OF THE S MATRIX 
. 

A. Construction of the Riemann Surface (15). 
. -

The S matrix defined in (II.19) shall now be considered as a function of 

one of the ki's, say k1, and continued analytically to complex values of k 1. 

' . Two difficulties arise in this procedure: We encounter branch points when-

ever one of the k. 1 s, i = 2, • • •, N; is equal to zero, because of the square-
1 

. root dependence of the k1 on k 1 [this follows from (II.6)], and the elements 

o£ the S m.atrix will have singularities whenever .the determinant of E vanishes 
. ~ - . ~ 

and at k 1 = oo. We solve these difficulties'-~ two steps. In this subsection 

we construct a Riemann surface that removes the difficulty of the branch 

points. In the next subsection, we show that the S matrix is a single-valued 
.:. ·.: 

meromorphic function on this surface,· andin Section lll.C we extend some 

o£ the properties of S derived in Sections II.B and U.C to all points o:f the 
j::;s '· 

surface. 
. 2 2 

Let us choose the zero of the energy so that. e 1 = 0, ~ = k 1 = k2 + e 2 = • • • 
::: k~ +eN with ei < ez < ••• < EN· Introducing ki as the independent 

variable, we have 

(III.1) 

Let us consider the algebraic function 

(III.2) 

. . 
for values of k..~ di£feren~ from :1: ('e.) i/Z, i = 2~ • • •, N, and where the f3 .. 

~ l . 1 

N-1 are constants. For each of thes~ values of k 1, t(k1) is a 2 -valued 

function of k1• This is because we can independently choose a plus or minus 

sign £or. each ki' i = Z, • • •, N, in front of the square root in (III.1), and there 

., N .. 1 d · ~f t . 'bil. ti & • . k. ' ,. ' :~...~ . Th f th R. are &.. 1:.1. eren poss1 1 es OL'.ma ~ng~sucu.a:·~~.w~. ere ore. e 1emann 
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surface of the function t(k1) fu, (Ul.Z) has zN•i sheets. We can label these 

sheets in the following way: To e.ae~ sheet_we assign a. veetor z with N -1 

elements. The ith element .,.i :of;this yector shall be +1 or .. 1, according to 

j the following rules , .. 

sign Re ki+i = sign R.e_k1 

and sign lmki+i = sign lm k 1; 

then 

i! 
sign Re ki+ 1 = -sign R.oe k 1 

and sign 1m ki+i = -sign Im k 1; 

then· 7'· = -f. 
1 -

(III.3) 

This definition suffices for all cases except when k 1 is real, . 

1/2 1/2. . 
-(ei+1) < k1 < + (ei+1) •. Here, Izp k1 = 0 andRe ki+i;: 0, so that both 

definitions (Ill.3) apply. ln this particular case we shall choose -r. to be 
- . . 1 

+1 or -1, depending upon the sign attached to the neighboring points with 

. N·1 
Im k1 > 0 on the same sheet. The 2. vectors t having the numbers +1 

and -i as elements in all possible combinations correspond to the 2N-i 

sheets. 

The way the sheets are connected can be seen by an extension of the 

well-known construction for N = 2. There, we take the two sheets, labeled 
·'.' 

!t = {+1} and :tz = { .. 1.}, respectively, and.,put one onLtop of the_ other.. Each 
. . ·.'·~ ·: :... :. ' . 

sheet is a copy of the complete k1 plane. Then we cut both sheets fl·om 

k 1 = -(e2) 1/ 2 to k 1 == + (e2) 1/ 2 below the real axis, so that the real axis itself 

forms the upper shore o( the cut, and 'the points with Im k 1 < 0 form· ,the low.er 

sho1·e of the cut. The upper shore of the cut in the upper sheet is connected 

with the lower shore of the cut in the lower sheet, and vice versa. This gives 
' . 
the Riemann surface for N = 2. It has two simple branch points at k 1 = ±(e2) i/Z. 

If we follow a closed path on the Riemann surface that encloses one branch 

.·!. ~? 
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point but not the other, then we need to go around this point twice in order 

to come back to the starting point •. Having gone once around the branch 

point, we have moved !rom one of the sheets to the other one. 

For N = 3, this procedure is repeated as follows: We first carry 

. through the construction for N = 2 twice, cutting the sheets from -(e3) i/Z 

to +(e3) 1/ 2 and identifying opposite shores on different sheets, as described 

previously. This way, we get two identical samples of the Riemann surface 

for N = 2; the only difference from the previous case is that the branch points 

· · 1/2 · 1/2 are at k 1= :t:(e3) instead of k 1 = :t:(ez) • We complete the labeling for 
./;_1. 

the two sheets· in the first surface, ! :::o {+1f' and ,.2 = {-1}, by calling them 

!.i ::: {+1~-+i}<~:md I 2 = {+1, ·1}. Correspondingly, we label the sheets !. 3 

and r4 in the second surface by 13 =: {•1, +1} and :r.4 • {-1, -1}. We ~ow 

1/2 1/2 cut all four sheets from k 1 = -(ei) to k 1 = +(e 2) so that the upper shoxe 

of the cut is formed by the real axis, the lower shore o£ the cut by the points 

with Im ~k1 .< 0. We identify opposite shores on different sheets as shown in 

Table I. We see that each sheet of the f.i.rst surface is connected with a sheet 

o£ the second surface, the connection being the same as in the simple case 

N = 2: upper shore of {+1, +1} with lower shore of {-1, -1}, and lower shore 

of {+1~ +1} with upper shore of { .. 1, -i}, and correspondingly with the other 

pair of sheets. 

We can extend the construction to arbitrary N. 
N-1 We take 2 sheets 

(samples o£ the k 1 plane).. Then, we construct .zN-2 identical samples of 

Riemann surfaces for N :::o ·2, each having two sheets and branch points at 

:l: (eN) i/2 • Pairs o£ such surfaces are· conneded in analogy to the construe­

: tion !or N = 3, cutting the sheets from -~eN_ 1 ) 1/2 to +(~N- 1 ) 1/2 . We obtain 

2~ - 3 surfaces, each co~taining four shc::et~ •. ·,,These are again arranged in 

· · 1/2 · 1/2 pairs; the sheets are cut from -(eN_z) to +(eN_z) , and opposite shores 

are again identified. We continue until all surfaces are connected with each 

- -- -- ---·- .. ------~-----· ·- ;o-~,.=-~ 
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other. The surface for arbitrary N will have 2N-i sheets, and all its 

branch points will be simple. The number of branch points w(N) is given 

N .. 1 
by w(N) = (N-1)2 • This follows hom the foregoing construction. We 

take two identical surfaces of the construction for N•1, and each sheet o£ 

the two surfaces gets two new branch points that· are identified in pairs. 

Hence, . N-1 
w(N) = 2w(N-1). + 2 , (lli.4a) 

which together with w(i) = 0 and V{(2) = 2 yd.elds 

' N-1 
w(N) = (N-1)2 . • 

•i._.t.i . 
(lli.4b) 

The topologiCal.structur~i of the-Riemann-surface U(N) obtained in this 

manner can be made transparent with the following, topologically equivalent. 

construction. For N = 1, the co~plete k 1 plane is topologically equivalent • 

to a sphere. It has genus 0., For N = 2, we take two spheres each with a 

cut in its surface. They are topologically equivalent to the two cut sheets 

described in the construction !or N = 2. The two cuts are deformed into 

cylinders, and the rims of the two cylinders are identified. The result is 

still topologically equivalent to a sphere. For N = 3,. we take two pairs of 

spher.es, each sphere having two cuts. The spheres are connected in pairs, 

and the result is topologi.c_ally equivalent to a torus. (See Fig. 1). One can 

easily imagine the structures obtained by continuing this procedure, and by 

counting one finds that the genus p(N) of the' surface U(N) is for the smallest 

values _of N given by p(;1~ ::: 0, p(Z) = 0, p(3) = 1, p(4) = 5. This can be gener­

alized by the formula (,!!I 

p(N) = w~N) - 2N• 1 + t :: 1 + (N-3)2N·Z. (III. 5) 

The sheet {+1, .. ! ,+1} of U(N) is-called the physical sheet. On the 

positive real axis of the physical sheet, the original definition of the wave 
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numbers ki as given in (11.6) .applies. __ :!_'_!!_!_~_ ca_n be seen by taking a value 

of k 1 on the real axis and to the right of eN. Then by (II.6) all k. are 
1 

positive and real, and this agrees with I = {+1, • • •, +1} according to (III.3). 

We also call this sheet the physical 'k1 plane. Clearly, in all physical 

applications--i.e., when we are interested in the calculation of the cross 

sections, for example .. •we are interested only in the positive real axis of 

the physical k 1 plane. {The position of the bound states of the system is 

dealt with later.) . Therefore, we show in Fig. Z the physical k 1 plane with 

. its cuts, and in Fig. 3, the physical k 1 plane for N = Z and e 2 = 6. The 

small bold -faced numbers on the real and fmaginary axis in Fig. 3 give the 

scale for the k 1 plane. The large italic numbers give the values of k2 in 

the physical k 1 plane. The sheet {·_1} may be obtained by rever.sing all 

signs in front of the encircled numbers in Fig. 3. The two sheets are con-

. 1/2 1/2 nected through the cut from ·(e2) to +(e2) • 

We are interested in sharp peaks in the cross sections. Such peaks 

may be caused by poles of the S matrix lying close to the real axis. As men-

tioned above, the cross sections are calculated from the elements of S for 
:::: 

positive real values of k 1• As we shall see later, ~. cannot have poles in 

·the upper half of the physical sheet except on the imaginary axis, and the 

' 1/2 
physically most interesting poles must for k 1 < (eN) lie on the sheets 

adjacent to the real axis of the physical ki.. plane, i.e., on the sheets that 

one reaches by crossing the real axis ·of the physical sheet from positive 

values of Im k 1• To show these sheets, we display in Fig. 4 the physical 

plane cut in a different fashion. (It is,· of course, irrelevant which way we 
. .. . . i/2 . . 1/2 . ~:c -

.c, cut the plane.) The cut connectmg ·(ei) · with t(ei) goes v1a -a.i and 

a., i = 2, • • ·, N, as shown in the figure. The area outside the rectangle 
1 

' { 1/2 1/2 * } . with the corners .. (eN) • +(eN) f aN,_ ~N is part of the phys1cal k 1 

plane shown in Fig. z. The rectangle itself has been removed from the 
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physic~l k 1 plane so ·that one can see the next sheets adjacent to th.e phys. 

ical k1 axis. The U ·shiped areas with corners {-(ei) 1./2, ·(ei•i) 112, 

·:c 1/2 1/2. * } . •a. i-t, a.i .. t' (e1_1) , (e1) , o.1, •a.i, , i = 3, • • •, N, and the rectangle 
. 1/2 1/2 * ' . . 

with corners { ... (e2), , (e2) , a. 2• -a.2}. are parts of the sheets one 

enters by crossing the real · k 1 axis co~ing from positive values of Im k 1. 

The vectors .,. identifying each sheet have been written into the areas to - . . . . 
I ' 

·which they belong. They can easily be determined by the following rule, 

which is a consequence of the construction of the Riemann surface. The 

vector 7 = {+1, · • t, +1} denotes the· physical sheet. Its ith element - -
.,. 1(i = 1, • • •, N ·1) will change sign if we cr~;~s the real axis between ·(ei+i) i/2. 

and +(ei+i) i/2• If we cross the real axis to the right o£ +(ei+ 1) 112, or to the 

left o£ -(ei+ 1) 
1

/ 2 , 'T i. remains unchanged. 

On the surface U(N), discussed at length in ·this subsection·, the function 
'• 

t(k1) [see (lli.2)] is a single-valued function, holomorphic everywhere except 

N-1· 
at the 2 points where k 1 = e10, at .each of which it has a simple pole unless 

the !3. have special properties like. 
1 

N 

I: ~'·1 = 0• 
i=i 

B. Analytical Properties of the S Matrix on the Riemann Surface 

In Section III.A, we have constructed .. the Riemann surface U{N) for 
I . 

the algebraic function t{k1) (see (Ill.2)] • On this surface, any function de-

pending on the variables ki(k1 ), i·= 2., • • • • N, and k 1 itself will be a single­

valued function unless it has further branch points not present in t(k1). In 
A 

this section we show that the elements of ~(k1 ) a~e single-valued meromorphic 
... 

f~nctions on U(N) except for a finite number o£ points. Here, g (k1) is re-

lated to g (k1 ~ by the relation 

.. ! . .e 
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(IU.6) 

In studying S ins~ead of S, we dcf~ot have to· consider further branch points 
1:::: 1:::: 

occurring at ki = 0, i = 1, • • • • N that can be trivially excluded by (III.6). 

From the definitions of S in (II.19} and of E in (II.16), it is clear that 
:::: $:;: 

A 

the elements of S are single-valued holomorphic functions on U(N) except 
1:::: 

for the points k 1 = kf, where det ~ (kf) = 0 .(det ;g: means the determinant 
\. ...., . 

of the matrix E), and for k 1 = oo, where E and S have an essential singu-:::s . $:;: . 1:::: 

larity.
1 

· N~ further bran~h points occur,· since the functions 

t 1/Z c: 1/l ·.::; . Cl 
(~p + ~m) cot ("" + >..m) a are even in k1 ; The pomts k 1 have k 1 = oo 

as their only point of accumulation: det ~ (k1) is from (1!.16) a nonconstant 

meromorphic function on U{N) except ~t k 1 = oo, and its zeros are therefore 

isolated for all finite k
1

• N-1 · 
We exclude the Z . points. k 1 = oo (one on each 

sheet) from the s'urface U{Nfand call the resulting surface U (N). On U(N}, 

' 
then, the elements of 

~. . . 
§ are meromorphic functions with isolated poles of 

det E = 0 •. 1. In the neighborhood of any point on U(N), 
:::s . . . 

finite order whenever 
~ A 

we can expand each element of S in a Laurent series with respect to the 
. . :::s 

. ·. 1/2 . 
parameter of local uniformalizat~on. For k 1 -f :i: {e1) , 1 = 2, • • · , N, the 

variable k
1 

itself may be chosen as parameter of local uniformalization. 

. 1/2 
At k 1 = :i: (ei) , i.e. , ki = 0, we may choose ki as the parameter of local 

• I 1/2 2 1/2 1/2 2 1/2 
uniformalization. If ki = (ei) + 61, thet ki = (k1 wei) = [2(ei) .6.1 +.6.1] 

can obvi.ously not be expanded in powers of .6.1• On the other hand, if we put 

k. = t::.. with. A. small in the neighborhood of k. = 0, or k 1 =(e.) i/Z, we find 
l 1 1 1 l 

k~ = (k~ +e. - e 11 ) 
112 = (e.- en) i/Z +(A. 2/Z(e. -e1 ) i/Z] + • • • fo1· all I. f i.. There-

.t l l X. 1 ... 1 l . . 

fore, all k 1 f ki can be expanded in powers of ki' and the same statement 

holds true for the quantities (~ + h. ) 112 for all m. It is. obvious that all 
~ . . m . 

these expansions are even in k., and therefore all elements o£ E are even 
1 $:;: 

in· k. except for the ith diagonal element that contains k
1
. linearly. Hence, 

1 -
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.. 
terms linear in A. occur in S only through its explicit dependence on k .. 

1 = 1 .• 

We see that our choice of the potential matri~ V (x) in Section II.B . . . . = . 
.... 

causes the matrix S to have only slightly rnore complicated analytical prop-= 
erties than an algebraic function. Its elements are meromorphic functions 

on U(N) instead of U(N). Of course, the simple formula (ll1.5) applies only to 
.... 

the genus of U(N), not of U(N), However, the numbers of branch points and .. ~ 

sheets are the same on U(N) and U(N). Thus, the elements of S have branch 
= 

points only where they are necessary for kinematical reasons, and essential 

singularities only at k 1 = oo, · Our case is only ~lightly more complicated than the 
t.-J . . \ 

one studied by Peierls (!E.) and LeCouteur (.!.!.); on the other hand, we are in 

the fortunate position to be able to connec,t the properties of ~ and, in par-

ticular, its poles wi.tli properties of the system of differential equations (li.4). 
/~ . . . 

In some spe-~ial cases, the. elements of ~ may have the same value on = 
two or more different sheets of U(N). By this, we mean that for k 1 fixed, 

I changed, the elements of ~ do not change their values. 1£, for example, .. 
V (x) is a diagonal matrix, then S is diagonal. Its ith element depends on = . = ~ .. 
E and k. only. The sheets of U(N) then belong to two classes, one for 

l 

which the (i-1)st element o£ t ifi(.positive, and .one· for which it is negative. 
. .. 

On all sheets of one class, Sii has the same value. Similar things happen 
. i 

if V(x) does not couple a whole group of channels to the rest. In these cases, = . 
• A 

it should have been sufficient to construct ~urfaces much simpler than U(N). 

Since we want to deal with the most general case, however, we shall always 
. . ~ 

·' 

consider s on U(N)--eve~ if,sometimes '·we/face unnecessary complications. 
= 

.. 
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A A 

C. · Other Properti~s of S and of the Solutions of (II.4) on U(N) 
t::l 

In this subsection, we want to define the solutions· of the differential 
... 

equations (II.4) on U(N) and to investigate which of their properties and which 
... ... 

properties of S listed in Sections II.B and II.C remain valid on U(N). 
t::l 

Writing (U. 7) in the form 

I <1 ><x> ; (vn) 112r<1 ><x> = [exp(..:ik x)) a ~~- smJ. [exp(+ik x>J m x. m m mx. . m {III. 7) 

we see that the functions f (.t)(x) are well defined on all points of U(N) fol· 
m . . ... 

which the elements of S are holomorphic. The functions G(x) of Eqs. (II.13) .. · =:= -A"- ~ ... ~::~ 

are holomorphic everywhere on U(N), with G constant. For any two solutions - . 

F(i)(~) and F(2)(x) o£ E~ .. (11.4) with F(i)(O) = 0 =.f(2)(0), Green's theorem 
tw fiW • ,_ 

. .... 
(1!.25) remains valid on U(N). 

Equation (11.20) can be generalized to read (G i:: 1, i = 1, · · ·, N) .. . 

(III. 8) 
• • A • • e 1/2 

and m tlus form holds on U(N) except for the pomts where sm("'+ A. ). ·. a.=O. . . . m 
A A 

The two functions Smi and s1 m are, according to~II.27) and (III.6), re-

lated by 

(III. 9) 

A A 

and this holds true £or all points of U(N) for which Slm is holomol·phic. 

Inspection of E and S shows that Eq. (11.~8) also remains valid at< these 
• . t::l = 

points. Figure 3~~o~_s ___________ _ 

(III. 1 0) 

and we can :r.e.write Eq. (11.28) in the form 

(III. i1) 

... 
{Note that this relation: holds only for g and not for g 1) 
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Finally, the unitarity relations can be continued analytically, as . ' 

follows: For k 1 .. on the positive real axis of the physical·sheet, (II.32) 

can be written as 

L ... · ... * .,' •' . 
~ -- k · S ··- S =·-k--~·o --i£--1. -. t open. 

m mi .mt. · .l. i~ ·. · -. . 
m open 

(III.12) 

... * .. ' ) .... )" 
Equation (III •. 11) implies Smt (k1, • • •. '· ~) ~ Smt ( ·k{, • • •, -~) if 

k 1 is real and m. and ·.t are open. Let J be the last 'open channel, so that 

j + 1 is closed. Then• -k~ = -k. for i ~ j, and -k~ = + k, for i > j and k
1 1 1 1 1 

on the positive real axis of the physical sheet. We obtain, from (III.12), 

[ km (ki) sm1 \lfu. . . • • ~) sml ( ~k~. ; •• •kj' +kj+i ••••• + ~) = kl (ki) 
m open · 

for J. open. (III.13) 
... . . 

Now, smi ( -ki, .••• -kj, + kj+1' • ..• I + krJ is the value of sml at the point 

-k1 of the re~l axis of the physical sheet. Having realized this fac_t, ·we may 
.... ' "' 

continueJI!l.13) to all points of U(N) for which S is holomorphi~. lf,.·for 
' ~ 

example, we continue :k1 , along path 1 1 shown· in Fig. 5 (which is an enlarged 

copy oi Fig. 4)1 and take the values of Sm£ (k1) along this path, then -k1 

follows the dotted path 1, and we have to take values of Sml (k1) along this 

dotted path. This shows that if we continue the solid path 1 back to the real 

positive axis of the physical sheet where 'k1> (e3) 1/ 2 , the dotted path will 

have arrived at the negative real axis of the sheet {+1 1 -1, · · • 1 -1}, and for 

such val';les of k 1 the Eq. (III.13)--although still valid--will no longer estab­

lish a relationship between measurable quantities. The same happens as we 

continue along paths 2 or 3.· The fact that Eq. (III.13) can be continued to all 
... ... 

points of ho~omorphy of S on U(n) means that there exist many relationships 
/ ~ 

between the elements of S on various points of U(N). From the symmetry 
~ 

of ~~ we have N¢'-J+i)/~ 'independent analytical functions sml on U(N). If 

n channels arc open,. the symmetric unitarity relations give n(n+i)/2 re~a­

tions between these functions. and the total numbers of relations is equal to 



. : ', 

. ·28-

N 

(1/2) L n(n+i) = (1/6) N(N+i) (N+2)., It is clear that these relations that hold 
n=1· · , I· 

A A 

on all points of holomorphy of S on U(N) are very strong conditions on the 
:::;: 

. . . . 
analytical be~avior of g ·on U(N). Equations (III.13) can be derived explicitly 

in analogy to the procedure in (ll.31) by making use of Eq. (Ill.8). 
. ' 

For later application, let us write down the behavior o£ the ~ross sections 

(ll.24) at threshold, i.e., in t]le neighborhood of ~ = 0, if det ~ f. 0, The 

influence of an opening channel upon cross sections in other channels has 

been studied by Newton (7) in a related case. We confine ourselves, there-
. - . (j 

fore, to cross sections that have the opening channel as entrance (or exit) 

channel. Let 1, • • • , j - 1 be open and j + 1, · • • , N be closed channels. We 

expand the cross sections (ll.24) in powers of k., for k. small and positive. 
J J 

According to (11.26), we have,· for a.::: 0, -1, • • ·, ( ... j + 1), 

a· 't- = 16 0 {1- [exp( -2ik.a)]} .. [exp( -ik.a-ik.+ a)] (2i(k.k.+ ) 1/~E ~.1+ ] 12
. J- J a. a., J J J Q. J J Cl.; .· ' JJ a. 

·-1 
. (III.14) 

Expanding E.'+ and the wave number k.+ in powers of k., we obtain 
JJ (l, J Q. J 

(III.15} 

The elastic cross section at threshold is proportional to kj 
2

. The inelastic 

·cross sections are proportional to k. unless E.~+i (k. = 0) happens to be 
.· J JJ a. J 

zero, in which c.c:tse they are proportional t,o higher powers of. k .• 
" 'i. J 
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IV. POLES OF THE S MATRIX . 
We now turn our attention to those isolated points on 0(N) where 

det E = 0. We generally assume that the determinant has simple zeros in 
Ill! 

the parameter of local uniformalization, and we consider the case of zeros 

of higher ordei' only occasionally. If a zero is not simple, it is in general 

possible to change the potential parameters slightly so that it decomposes 
... 

into simple zeros. We show that at least one element of S has a pole wherever 
. . s= ·. . .. 

det E = 0, except for those points on U(N) for which ki = 0 for one i, with ·= . • 
i = 1, • • •, N. In most of this section we ~re not conc;erned with these points. 

which will receive special attention in the last subsection. . In the following 

subsections, we refer to the remainder of the surface U(N) simply as U(N) 

without having explicitly to excl~de the branch points ~nd k 1 = 0 each time. 

A. Zeros of the Determinant of E 

The system of equations (11.14) has a homogeneous solution [i. e. , a 

solution where the right-hand f!l~de of (11.14) is identically zero J wherever. its 

determinant vanishes. By a -.t~-.,ightforward calculation, this determinant 

D' can\.be shown to be equal to .····-

D' =[· ~ 
i = 1 

(IV.ia) 

The functions sin(e + }\ )1/Za can vanish only on the;;axes of the sheets of s . . ... 
U(N). ·Thus, except for the rare cases in. which a zer~ of sin(~ + X. ) i/2.a 

s 

coincides with a zero of D' ·[i.e., where det E remains finite even though . s= 

' at least one of the functions cot{~ + ~ ) 1/ 2a becomes infinite J, the zeros s ' 

C?f det ~ indicate the points k 1 = k~ on ti(N) for which a homogeneous 

solution of (II.14) exists. Still, for completeness, we henceforth consider 

the zeros of D', which is obviously bolomorphic o11 U~). For reasons 

.!.J!' 
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that will become apparent later, it is advantageous to consider the function 

N 
D =: D 1 n exp(tikja) 

j=t . 
(IV.ib) 

·which is also holomorphic on 0(N) and the·zeros of which coincide with 

those of D'. 

. '· .. . ~ .... 
a. . * Cl * a. . . . .. . a.* 

I! det E (k1) = 0, then det E (k1) = det E {k1,). == d.et ··~J -k1 ) = 0, 
= It: = ,.._. :~1" .•· ..... \ . 

according to Eq. (III. it), which holds also for E. ~h*s means that whenever • .. = .. 
there i.s a zero of D at a point k~ of a sheet of U(N),.'there is also a ze.ro · 

a.' . . A 

at the point (-k1) on the same sheet. On.~ll sheets of U(N), the zeros of 

D lie symmetric with respect to the imaginary axis., 

Let :fl'l(x) denote the solution of the differential equations (II,4) at -a. . . 
k

1 
= k 1 that fulfills the homogeneous boundary conditions resulting from 

(II.14) by putting the right-hand side equal to zero: With 

lja.(x) T ~= {h~(x), • • •, ~(x)}, we have 

j = 1, • • •, N, (IV.Z) 

which is equivalent to the homogeneous part of (II.14) if we express the 

hi (x) for x <a in terms of the functions g1 (x) defined in (II.13). · Here, 

· kja. is the value of k. at k 1 == k~. Equations (II.4) and (IV.Z) imply that for 
' J 

b ~a, hj(b) is given by. \ 

a. a. [a. ] h. (b) = hj (a) exp ik. (b-a) 
J J 

(IV. 3) 

Cl ) Cl •a. With I;! .<x. at k 1, !!_ (x) is the. homogeneous solution that must 

~ * ! . . 
~xis~ at ( .. k 1) _. This can be seen by taking the complex conjugate of Eq. (II.4) 

t:O. a. z and of Eq. (IV.Z) and by remembering (W.10). We write .. = (k1) for 

the energy,- put ra. = .. z 1m ea., .. and apply Green's theorem (II.25} with 
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. . . 

F(i)(x) = Ho.(x), ~d· F(2.)(x) == H*o.(x). We get for b ~·a, with the help ,_ ,., ,., ,,.., 

; ... of (IV. 3), . • I , . ' L , 
f , .• 

r"' = : . 

. ' N . ',, .. : ,· .. b ·. 

L Re kj ·I hj (b) I Z / J · I ~a. (x) I Z dx (IV.4) 

j=i. 0 ,. \ I ; ~ 

From (IV.4), we can see that there cannot be any zeros of Din the 

upper. half of the physical sheet (Im k1 > 0) ·except on 'the imaginary axis (4): 

~ 0. 0. a. For ~e k 1 :>: 0 a~d Im k 1 > 0, we have from r = • 4 Re k 1 Im k 1 that 

'> ra. < o. On the other hand, on the physic~l sheet, sign. Re kj = sign Re k 1 
'" . '.· •, o.<' ., .·. 

ac.cording to (III.3), and hence from (IV.4), r > 0, which is a contradiction.· 
. . • .. ' ' ' ' ' A I ' .. ' ' • 

This conclusion does ·not hold anywhere else on U(N), since the factors 
(\ ' .. ··Q.' '.:'(\'a.· 

Re kj in (IV.4)' have different signs. Fro~ r = - 4 Re k1 Im k 1, we see 

that r 4 = 0 if k~ i~ on the r.eal and .imaginary axis, 17, > 0 if k~ is in the 
. ,, . 

' . . Cl: ' " ~ \· .• . .. 
second.and fourth, and r < ·o if k1 ia in the first and third quadrant o£ any 

• • sheet of U(N). Hence, poles o£ S on sheets adjacent to the poSJJitive real 
111:1'' ', . . :' •, . • '. '. 

axis of the physical. sheet will lie in, the. fourth quad:J;"ant. a.nd wil~ give rise 
' ' 'I •' ' ' ; 

to resonances with positive widths, a~;~ should be expected., . 
, 1, ,! ' • 1 , '/ '1' ' 1 ., , • 

0 
, • • , , • I .I • 1 

. · We n.ow sho.w that all.bo~d. states ;~f_the .. system corre~pond to zeros 
' • ' • 1 ' • ' • ' • • ' ' •• • • • • ' 

of D on the positiv:e, imaginary 017 p()~i~~v~ re.al axis of th.e physical sheet; 

and that' in turn a zero oi D on the.se two senliaxes implies the existence of 
: ' ; : ; . ' . . . ' . : ' . ·. ' . ~ . .. . 

.a bound state. Indeed, a bound state .has.~ normali~able wave function. 
' l! ' 'I • : : 1 • '. ' ' ' ' . 

... 

1 I ~ j 

. ' ' a. 
Hence; fr~m (IV.3). we ~uat ~ithe~.lla~~ ,.~j positive imaginary, or 

hj(a) = 0. U all hj(a) f 0, all kj, J.=.i, .• • .... N; must be positive imaginary, 

and the bound state corresponds to a zero oi D on the positive imaginary 

axis of the physical sheet. If hj(a) = 0 for j ~j 1, • • • • Jn• we must have 

' I·. Q. 
n < N. Otherwise ~ (x) vanishes identically from (IV.Z) and (II.4). The 

.wa'{e numbers kj with j l Ji~ ! ·• ~ • jn mus~. again be positive imaginary; 

\ :, • •'I ; 1 ' r ' 
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the solution HCl(x) depends only on these wave nwnbers and not on the 
"""', ' ' . ' . . . 

k':'- with j = J1, • • •, f. This can be seen from (IV.2): U h~(a) = 0, then 
J .. . . n . . . . .. ·. . . . . J ' d . . . . . . 

(IV. 2) reads . <IX hj (x) I x=a =. 0, and kj does not enter .the formulation 
• ' ' ' ! ' 

of the problem at all. Hence, D vani~hes either on the positive imaginary 

or on the real .a.xis of the physical sheet. In the latter case, the channels 

j with j f. J1, • • •, jn are closed, and we encounter bound states embedded 

in the continuum <.!.• .2.• 17). That the zeros of Don the real or imaginary 

axis of the physical sheet imply the existence 9f a b?und state can be shown 
' . . Cl 

if we can prove tbat lij(a) must be zero ~~. j is open. . This proof is given 
' o I : ~• • ' ~ 

in another connection in Section IV~ E. · 

Bound states embedded in the continuum cause zeros of D to occur 

in pairs at points k~ lying on the real ~xis symmetric to the imaginary 

· · a · e1* Cl · . 
axis. Indeed, the transformation k 1 - (-k1) = :•k1 leaves .. _ acc~rd1ng to . 

. ' ' a. . . 
(III.1 0) -- th~ kj with j f. J 18 . • • • , Jn unchanged, and the same holds for 

.. Q. . ' . • Q. . 

the function . },:! (x), which is real. Moreover, if hj = 0 for one j and if 
. . ' 

D = 0 on one sheet with label .,., then D = 0 on the sheet with label 7'1 , 
- N .... ···--- .. . . ---:---:-:.o·-=- - -- - ----

differing from 7' only in the {J-i)st element; and correspondingly, if 
•' ,., -

Q. . 
li.(a) = 0 for more than one J• This follows again from (IV.2). Therefore, 

J 
bound states on the real axis of the physical sheet always cause zeros of 

. ·n to occur on the real axis of at least one more sheet. The number of ··' 
.. 

bound states is finite. Indeed, since D has isolated zeros on U(N), their 
l 

only point of accumulation could be k 1 = o0. Since bound states embedded 

in the continuum cannot occur on the real axis of the physical sheet for 

lk
1

1 > (eN)i/2. (all ki'~ are th~n ~eal),· ~e .have only to show that there 

exists a finite R > 0, so that for Im k 1 > R there cannot be any zeros of 

. ,D on the imaginary axis.o£ the physic~l sheet. Let R 2 =max {I x. 1 j, · · ·, I~ I} 
andlet k 1 be purely imaginary, so that 1m k 1 > R. Then, g <-1 ~s I for 



-33 .. UCRL-11040 

t/Z · t/Z 
all sand {s+ X.s) a X cot(s+ ~s) a > t for all s. The~~ is a real 

and symmetric matrix; and it is easily seen that it is positive definite. 

(This is true only on the positive imaginary axis of the physical sheet. ) The 

determinant of E thus cannot vanish for Im ki > R; hence D 'f 0. 
1:::: 

All zeros of D not discussed so far do not correspond to bound states •. 

0. . . 
For these zeros and for x 'ar. a, the homogeneous solution H {x) does not -
consist only of outgoing waves. U, for example, D = 0 on the positive 

. . . -- .. -- ~--- .,___ ·----··--·---·-
. 0. 

imaginary axis of the sheet ! = { +t, • • •, +1, -t} and bN(a) f 0, then, for 

x ~a, l;:!,'!<x> consists· of purely outgoing (exponentially decreasing) waves in 
.·-··· . ' . 

_channels 1, • • •, N-t and of a purely incott.ling (exponentially increasing} 

wave in channel N. 
. 0. ~ 

Therefore, the homogeneous solutions H {x} are distinct 
. -

only in the sense that in each channel. J, there is one type of solution only, 

0. 0. exp(+ikj x) or exp(-ikj x). 

Those homogeneous solutions Ho.(x) that do not describe bound states -
are said to describe resonant or compound states. In view of the complexity 

... 
of U(N), we do not want to introduce the distinction between virtual and 

resonant states often employed in single-channel potential-scattering theory. 

Not all the resonant states produce sharp peaks in the cross secti~n, of 

course, but we prefer to have a common name for a certain type of mathematical 

behavior. 

.... 
B. Zeros of D and Poles of S 

.... 
It is clear that the elements of S can have poles only if D has a zero. In 

. 1:::: 

this subsection, we want to show that the reverse statement is also true. If 
0. .... 

_ D has a simple zero at k 1 = k1, then at least one element of ~ has a pole, and 
.... 

this pole is simple, too. Furthermore, the residues of all elements Si.i of 

~-at k 1 = k~ can be written as a product of two factors, one factor depending 

. only on the entrance channel 1., the other only on the exit channel i. This 

implies that in the neighborhood of k~, • Su can be written as (!) 



UCRL-11040 

··~ ~z . 
We .exclude the pointe k 1• where sm(e + ~ ) a = 0 for at least one s. 

' .• . 6 ' . ' 

and use Eq. (II.Z6) for S. (These points are considered in Section IV.E). 
. 11$. 

According to J',:q. (ll. 18), the homogeneous part of Eq. · (11.14) can be written 

as 

(IV.6) 

~ f· 
Since det ~has a simple zero. at k 1 = k 1, the solution ~ of (IV.6) is 

determined uniquely except for a factor~ The constants em are in general 

complex, and at least one of them is _different from zero, We choose N -1 

linearly independent vectors aU>, ••• , o<N-1>, so that with o<N> = C:, the 
. . ,... fiiiW ' ,., ,., 

N vectors Q(i), • • •, Q(N) "llre linearly independent vectors with determinant 
. . , ,._, ... . ,N , ., . . ' . 

i. Let the elements of the matrix Q be defined by . 
. '.l. . . . : . . 11::1 . ·' ·.· 

·:: . . '. (.f) ' . 
Ou = Qi • det ': = 1. (IV. 7) 

-t J. C1 I Cll To calculate (11.~6), we consider E for values k 1 r ki• and k1 - k 1 <E. 
1:11 

, Here, . c is chosen so that for all I k 1 .... k~ I·< 11 ·and k1 1 k~ the function D 

\ ' ; has no zeroso 'Denoting· the algebraic complement C.:!!) of an element Eu of 

. I, I 

-E by Eu, we have 
=s 

\ 
i 

.. 

-
(E-i) = EU 

· · U det E 
Ill! 

= (~ 

=~ o·1 d cOT}-1 o~)· · ·· jo [o~· E oJ -~ oT) \= 1:11 ... f:ll . ' ~ u. \= =s: = .:::: .. =s . u 
I ' 

----- '' 
Q.T E Q 

0 T) =s =s All • ••;'11' • : . 

det E 11::1 u 
= 

;: 

(IV.8) 
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Thus, instead of calculating the inverse of E directly, we calculate the 
• • 0 • 0. • • ~ 0 0 

T . 
inverse of Q E Q, and :from it the inverse of E. 

11::.$11:1 ~~ 0 0. 0. ·=:s ... 0 • • 

T . 
The matrix S ~ S has the following pl"operti.~s •. At k 1 = k~, the 

elements in its last row and column are; equal to zero.· This .follows from 

Eq. (IV.6) :and from the definition of Q.~ :Therefore, we can write 
Ill$ 0 •• 

•. i ! ' ' ~ • ' ' 

' I\', 

.. and 

( 
T ) . ~Ni ,.ti;, 

Q E Q · -= ~~ X (ki • k~) . 't ;~~ ·• ; for i = 1, 
~:~~ -=:: s:= Ni 

•. •' N, 

. . ( .. : . ::·. 1 
.' ... 

. -
where ~i and .,._iN are different from :zero, .and ~iN and ~Ni are positive 

'integers. Making use of the.as·sumption that det E has a simple zero at 
. . . 11:: 

k 1 = .k~ and of. the !act that .det ~ T ~ ~ ::i det ~· we see that r;NN = 1 and . 

that th~determinant d of the .matrix obtained from QT E Q by omitting 
,. 

Q. its .last row and column c~ot v~ish at k1 =; kt. Indeed, 

' 'I . :··. -

... <let ~ :.Jet( cl ~ ~) ~· ~ >< d >< tk1, ~ k~liiNN f • •• • (IV.iO) 

·where, from {IV.r9). it can be seen that the dots indicate terms at least 
. ' 

quadratic. in (k1 ~ k~). Similarly, we can .. ~nfer from (IV.9) that the 

algeb?:aic complements of all elements of . Q T E Q are a.t least linear in 
,......__..,...) ·.·= ll:lll:: 

a. . T 
{k1 • k 1) except :fer (a E Q , whic.h G definition· e .. quals.· d f 0 at = 11$. = . NN · . ) 
ki = k~. We aee that the only element. o£, QT E Q ·i. ihi\t1: ha.i i pole is 

. . · .· AI SICI 1:1 

·· the N -N element, . Henae we .write 

.·!.~ 
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(

QT E Q) = 1111 1:1: 

det E 
1111 u 

= 

(IV.11) 

-1 
For E , this gives, fro~ ~V.8), 

1:1: 

(IV.iZ.) 

and from (II.Z.6) .and the definition of QiN, we obtain for ! the expression 

(IV.5), where we have used ~ 

(IV.13) 

Accor~ing to Eqs. (II.2.Z.) and (ll.2.3), the cj' s are just the values o£ the 
. 0. 

homogeneous solution H (x) at x = a in channel j, and we have 
- -

o. [ ( ika, )] (.,k41J. )i/2. hjo.(a). , y j = exp - j a r... 

. 0. 
From Eq. (IV.3)D it is clear that yj will not change its value if we replace 

a by b >a in (IV.14). Hence. we expect ~N to have the same property. 

This will be borne out soon. 

Equation (IVo5) shows that in the vicinity of k
1 

= k~, the.matrix s 
~ 

may be approximated by a simple Breit-Wigner formula. This would not 

hold if D had a zero of second or higher order at k 1 = k~, since then we 

would in general have at least two linearly independent solutions of (IV.6), 

and by repeating the arguments one sees that the residues of S could not be 
= 

.. factorized in the for~ (XV.5). 

It should be noted that the constants aj.t' ~j.€' • • • defined by Eq. (IV.5) 

.. are independent ofthe choic·e of gU>, •" • • g<N·i). The function 
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(IV.15) 

is holomorphic at k 1 = k~ and obviously independent of ~( 1 ), • • •, g<N·t). 

a • 
Its series expansion at k 1 defines the coefficients dj.f' 

.. 
e .

1
, • • • uniquely. 

J . 

The constant ~N· c.an be·e.xpressed 'in terms of the homogeneous 

solution by (~) - · 

1 
a. , ........ , ... ,.,., ....... ,2k1 Ja 2 N r 12 
~N = .. 0 r_l,!a(x)] dx • L i lhj(a)J 

t j=i 

It is defined by 

'"NN • Zk~ a\ {rl;: ~} NN It • tG • · (IV.17) 

Inserting .oiN = hr(a), 

(II.16) for E, one finds 

... . 
which is independent of the energy, .and inserting 

~N= 

1 
2 

= 

\ 
I 

(IV.18) 

This expression is equal to (IV.16), as can be seen by inserting I;t(x) from 

, Eq. (II. 22) into (IV.16) and carrying out the integration. The resulting 
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expression is very satisfactory. Namely. ~N is q,uadratic in IZQ.(x). This 

is expected in vt,ew of (IV.S). The yj are linear in ~~;.on the other hand, 

the residue of sj.t is expected to be independent of the normali~ation of 

f!.o.. Furthermore. ~N does not change its value if in (IV .16) we replace 

a by b >a •. This can be shown by an explicit calculation of Jb [B.<l(x)] 2dx 
a -

with the help of (IV. 3)i the change of the value of the first term in ~N 

is compensated for by the change of value of the second term~ Thus ~N 

shares this property with the yj. 

C. Homogeneous and Inhomogeneous Solutions (_!!) 
... 

in a N eighborhooa of a Pole of S 
II:: . . 

In the preceding subsection, we have shown that poles of S are intimately 
= 

. (1 
related to the homogeneous solutions H (x). We now want to elucidate tn.e .... 

physical and mathematical. background of this relationship. In particular, 

we want to show what happens to any one of the physically significant solutions 

!i'') (x) defined in Section ll. A if we continue it analytically to, a point 

k
1 

= k~ on U(N). Again, we disregard the points where sin(g+.f..:, ) 1/la = 0 • 
.l ' tth 

Our idea is the following: The differential equations (II.4) with the 

condition !: (0) = 0 have N linearly independent solutions. For k1 F k~, 

the homogeneous equations (IV.6) do not have.a nontrivial solution. Therefore, 

we can choose the inhomogeneous boundary conditions {ll.14) to define the 
I. .I 

N linearly independent solutions F (.t) (x). ' In other words, the solutions ... ,. 

F(.t) {x) defined by Eq. (ll. 7) can be continued analytically on the whole 
,.,., - 1·, ' ... . 
surface ·.Jl{N) ~xcept for the points ki = k~ (see Section 111. C). 

In order to discuss tne behavior o£ the t(.t)(x) as k 1 approaches k~. 

we define a different syste~ of linearly inde~endent solutions M (.t) (x), the 
- - --·-· . ---· - ----.---- ,.., 

behavior of which we knowx~s k
1 

-~k~,~~ We ;h~ll then express the ¥-:(.t)(x) 

. ~-n terms of the ~(.t)(x) anc{inv~stigat~ the limit ki- k~. 
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Th.e solutions ¥(1.) (x) are defined as follows: Since at k1 = k~ 

Eqs. (IV .6) have\ a solution, the inhomogeneous equations 

(IV.19) 

will be soluble only if L q.l cl = o. We choose the N-1 linearly independent 

vectors {q~, •••,q~}, t=i, ····, N-i to be given by the first N-1 column 

vectors of the matrix a·1, where Q is aa defined in (IV.7), 
= -= 

t -i·' q1 = Ou , t = 1, • • •, N -1. __ 
. <t 

(IV.20) 

They will by definition be perpendicular to C. Hence, because of (IV.19) -
they define. a set of N .. { linearly independent solutions M (l) (x). By keeping 

. -
the boundary conditions (IV.19) ~onstant, these solutions can be defined in 

a neighborhood of k~. In this neighborhood and for k 1 /- k~, they can be 

made a complete system of N linearly independent solutions by adding the 

function ~(N)(x). which one obtains from (IV.19) by putting q1 = ~~· Now 

~(N)(x) is not defined-at k(= k~•· We-propose_to show, however, that 

Indeed, defining the coefficients 
' \ 
l 

· == (N) \· 
0

-t m (N) 
~ · = L · js s ' 

8 

,. one can, for k 1 f: k~, rewrite Eqs. (IV.19) for mf) as 

\ (o?; E: o) T ~.-AS = sj 
6sN • 

i . 
. •.' 

(IV.21) 

(IV.Z2) 

(IV.23) 
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We make the further substitution 

(IV.24) 

Insertion of (IV.2.4) into (IV.2.3) shows that the coefficients {w1, • • •, wN} 

satisfy a system of inhomogeneous equations, the determinant of which is differe: 

.£rom zero in a neighborhood of k~~ th~s point k~ !included. This ii::<.cL:.~~ir);> 

follows from the properties (IV.9) and (IV.10), and from j5NN = 1. Therefore, 

these coefficients are uniquely determined and finite in this neighborhood. 

In particular, after substitution of w1 f~r 'in1fN), the !:!th of the equations (IV.23) 

reads at k 1 = k~ 

(IY.25) 

Therefore, we hav:e wN = ~N at k 1 = k~ and, since .all w i are finite,. from 

(IV .24), · 

6jN • (IV.26) 

With the definition. (IV.2.2.) and QjN = hj(a), this yields (IV.2.1). · 

Our last step consists in establishing the connection between the N 

linearly independent solutions F(~)(x).and MU)(x) in the neighborhood of 
. .' "'" . . · ... 

a. .J a. . . a. ( k 1 but for k 1 r k 1 and in taking the limit k 1 - ki with the help of lV.2.1). 

By comparing the boundary conditions (II.18) for the F(.t)(x) with the . ... 
conditions (IV. 1 9) for the M (j) (x), one· easily sees that .... 

(IV.27a) 

< and that in particular 
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(k
1 
~ k~) F{~)(~) = .'~ ~(2k,8 ) t/2. [exp(~ik a)} ha.(a) .!.. H4 (x). 

. .. - . ', . s 8 "'NN. -
' ( 

(IV.27b) 

'\' 

Withthe help of (IV.3) and (IV.t4), this can, for . . ~}~a, be written as 
..... , ., •; ·, 

. - . . ' 

lim a. (k1 ·-k~) £1(s) ~x) =< .. ,lv:. 

k1-k1 ' 
'J 

. ·, .·. 

1 a. t . [ . 4 1 
- YJ. IT.,. exp(1k"x) , 
~N . , , (v .t) ~. A • : 

(IV.27c) 

and thus agrees with (IV.5) because of the de;initions (II. 7) and (lli.6). 

We believe that the.eqUa.tiona (IV.27f''show the Breit-Wigner formula 
. . . 

(IV.5) and its implications in a new light. In the vicinity of a pole of S at 
~ 

k~, the physically significant solution:s f.t (s)(x) are dominated by the 

homogeneous solution H4 (x), .which is the function describing the "compound - .. . . 

'' z· 
state. 11 This 11 st~tett is independent of formation a~d d.ecay because the 

proportionality constant connecting F(a)(x) a~d Ha.(x) is independent of the 
. - -

properties of F(a)(x) and dependent only upon the properties of H4 (x). If - -a. . . 
h (a) = 0. for one or several a• s~ which is perfectly possible (for examplea,· 

8 . ' 

see section IV. E) then according to (IV.27b), F(s)/!~) will be holomorphic in -a. . .. 
. the neighborhood of k 1• · In· this case, the peak caused by the pole of S ;=; t 

~ 

. at k~ will not show up in the cross sections haVing 8 as incoming .or outgoing 

channel, no matter how close the pole is to. the real axis of the physical sheet. 

Then · lim . F(s)(x) exists ·arid is difieren~'from H4 (x). • - . : . -
,· (' ;.·. 

).; 

,·'1 ' • 

... ' 

. ' 

; ! . .!:! 
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D •.. The Breit ... Wigner Formula 

In this subsection, we discuss some of the consequences of the formulas 
~ . 

derived in IV. A, B, C. We are interested only in poles of S close to the real ~. 
• . . . ' s::: 

' Q 
.axis of the physical sheet. If the pole is at k 1 = k 1, then the channels i for 

which Re k~ ~ (ei)i/Z shall ~e called open~ the other ones close~~. From the 

sign conventions made ~n (~II.3) we know that Re k~ > 0 i£ m is open, and 

Re k~ < 0 if ~ is closed on sh~et~ ~djacent to the positive real axis of the 

phys~cal sheet. Therefore, Eq. (lV.4) can be written as . 

L 1Rek~llh~(b)l 2 - L · 1Rek~llh~)j 2 
_m_._o.Ap_e_n _____ - ._l;):l ____ m;......._c_lo,;.,..;.s.;;;.ed..;..., ________ ~;;J> 

0 
for all b ~ a. 

b ·I HG (x) I Z dx -0 
(IV.4) 

This equation gives the total width as a.!~ of contributions of the open and 

closed channels. The latter contribute,since the energy ~G is not real. and 

therefor'e the current in these channels is not zero. The contribution of the 
,. Q; 

closed channels tends toward zero, of course, as k 1 approaches the real 

axis. But then ra. is zero, too. Owing to the position of the pole, the 

contribution of the closed channels to ra. is negative. However, from (IV.3) 

we see that, with increasing b, the contribution from the closed channels 

becomes smaller and smaller. so that we may write 

ro. = lim 
b- 00 

I Re k~ j~(b) lz 
m open · 

• (IV.28) 

. Q; 
This is the usual formula for r . For applications in nuclear physics. we · 

expect to obtain very good answers by taking b to be of the order of atomic 
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distances,. It must be stressed, howeve;r, that the calcula1;ion of widths of 

decaying states with th~ help of qy~~S), ~d with b taken at ~he nuclear 

surface,. may lead t~ wrong .answers,. .. , ·, I I ', 

. . ... 
a. . '' ' 

.The func~ions H (x.) ar~ the ~ruer '~eigenfunctions"' of a "decaying 
• J , ' • IW ,. ' ·~ ! ' ·.' • . . . 

' ' 

state~•;• the ·width of which i.s give~,by (IV~Z.S)~ ·The time dependence of 
' . ' ' ' . 

I •, ' 

Ha.(x) is, of course, given by exp(~i~~t) if we continue ~he time-dependent 
fW • · . i I ' • ' · • , 

Schrodbi~e~ equation analyt~cally,.. 'f.he.refo;re,: , . , , : ~:: 

·~ '' 
. . I ~ 0. ·. . '. Q. ' '·. ' 

H (x,t)- exp[l"cr /Z)t]~ 
-~ : 

In the study of decay processes, lik~ a. decay, one would like to deal with 

a state having a purely exponential ~ime dependence like. Ha.(x, t)~ It has 
. . ' . ' ,.., 

. . . . . 

been shown (19) that this is not possible~ In the framework of the present 
. ;'...... '· ' . ~ ,· 

studies, we may rephrase this ~esu~t by saying that any physical state ~.an be 

described by a wave packet <!21• Such a wave packet is defined as a linear 

superpositlon of solutions of Eqs,. (II~4) with real energies 's. But Ha.(x), 
•, ,t !• . ' '' l ~ '• • ' 'I --

being a~ eige~uncUon to complex ene;rgy ga., can never be expanded into such 

solutions,. 

In the single-channel problem, a pole of the scattering function S(k
1

) at 

a. ' . ' a. 
k 1 ~. k 1 irnpl~~s the existence ot a ~~;ro o£ S(k1) at k 1 = -k1 ~ This follows from 

unitarity. The generalization of this. statement. to the many~channel case is · 

the following: If, in Fig. 5, we fol~ow the solid line for p~th 3 down to a 
. ' 

; . .. : 
. pole at k~,· then t~e expan.sion of the.·~. matrix is given by. (IV~S>~ In order 

to write doWn ~he analytically continued unitar~ty relationships (III.13), we . : ., ' . ' 
. "" . . . .·a. : ' . 

have to expand ~he elements o~ ~a~ - k 1, which one reache~by following the 
·. ' ' : ' • . . a. 

. ' broken line 3 ~n, Fig. 5. We ~o'! .that. S cannot have ,., pole' at·"!' k 1, hence we 
• ~·H ~ AS 

a. 
write, in ~ neighborboo~ ot ,• k 1, 

j t • 1 ~ 

''· 

(IV.Z9) 

~ ' . ' : ' 
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By using (IV.5) and (IV.Z9), we find that the unltarity relations @~l. 13) yield 

. 
\ (· \1/Z _ . . _ 
L · k'!"J yjtl djl. = 0 or ,det

0 
end • 0, 

j open J · · ·. P = 
(IV.30) 

where det means the subdeterminant with respect to the open channels. 
· open . . . . . • . ·.. . . 

Other r·elations follow by inserting the expansions (IV.Z9) and (IV.5) into 
' ' 

(III.13), and comparing equal powers.:in (k1 ... k~). · Thus, the above statement 
' I . . ' ' . • .. 

for the single-channel case can be generalized and requires that det S = 0 
. · . .· open~ 

(1 • ' . • 

at k 1 = -k1• Since det ~. = det ~from (111.6), this means that if~ has a pole 

~t k1_, its subdeter~in~nt must have zeros at -k~ and at (t. k~)* on the same 

sheet because of (IlL H)~ 

This fact has some bearing on the possibility of a single-level approxi-
- . 

A . 0, . • ' • ' 

mation for ~if the pole at k 1 is .isolated and very close to the real axis. (In - ' 

the remainder of this subsection, we shall use the word isolated not in its 

mathematical sense, but in the sense in which it is used in nuclear-reaction 

theories (.!_).) We define ~N by the right-hand side of (IV.16)• and write in 

the vicinity of ~ = eo., approximating (IV.5): 

• (IV. 31) 

\ 
.... . 

A simple calculation· shows that ·s appr9ximated by (IV.31) does not fulfill = ' ' 
the unitarity relations (III.13) unless the following two conditions a~e fulfilled: 

.. ,.., ___ ::....-:.:::;:-_, ·--------

.. o. N . 
~N and the yj, _J = 1, • • • •. , are real 

(IV. 32) 

and L (yjo.>z .. ra. . = -~· • • I : ' 

.· j open 

.... (1 * U {IV.32) holds, then det
0 

S = 0 at k 1 = (k1) • · It is clear from the definitions 
pen= 

(IV.i4) and (1V.16) that we cannot expect the first of conditions (IV.32.) to be 
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'' ' ' a. 
fulfilled in general for· complex kf •. Similarly, we know of no relationship 

.. ' 

that would enable us to derive the second of the relation~ (IV.32). 
3 

Indeed, 
~ ' . . . 

the definition (i:V. 14) of y~ is independent of thechoice of a; as pointed out 
' ., ' ' J ' ' . ' ' ' . ' " ' .. ' 

below thi~ equation, whereas Eq. (IV.4), the only expression for ra. we 

have, although independent ~f b invokes. quantities like jh~(b) j 2, which 
' J ' 

' ' ' : 

therr.selves depend very strongly upon b. This means that we cannot in 
' ' 

general expect the single-level approximation (IV.31) to' hold even if k~ is 

very close to the real axis. On the other hand, the conditions (IV.32) are 

fulfilled, for example, i:n the Wigner-Eisenbud tr.eatment (~) of nuclear 

reactions. 

We interpret this apparently contradictory situation as follows. If 

one obseJ;ves experimentally an isolated resonance with negligible backgroundp 

then the approximation (IV.31) i's known to be good, and hence (IV.32) must 

·be fulfilled approximately. This possibility we cannot exclude. of course. 

If one observes an isolated resonance with nonnegligible background, then 

the approximation (IV.31) will not be valid, and one shall have to consider the 

next-order terms in (IV. 5). Hence, the experiments can still be fitted with 

all y~ real, since the only phases that enter the expressions for the cross 
J . ' 

sections (II.24) are the relative phases between the pole term and the next-

order terms, 

of .... "" d and e. 

and by choosing the y~. real, one simply redefines the phases 
J 

A possible deviation from (IV. 32) will be practically un-

detectable, since with increasing background it becomes increasingly more 

difficult to. determine the yj precisely. A similar situation occurs when one 

investigates the case of two overlapping resonances, and it seems therefore 

impossible to decide, on experimental grounds,. between the desc'ription of 

.reso~anceP with a set of yj not obeying relations (IV. 32} and with another set 

of real y?' fulfilling (IV.32}~ This. of course, means that the Breit-Wigner 
J 

formula in the usual treatment {~) with parameters obeying (IV.32) provides 
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for an excellent par-ametrization of experimentally observed resonances, 

. inasmuch as they are caused by nearby lying poles of the s matrix and, in our 

opinion, explains its success. In S~eti6nr Vli, we shall, with the help of 

numerical examples, investigate how far conditions. (IV.3Z) are fulfilled 

in special cases. 

E. Zeros of D on the Real Axis and at Branch Points 

In Sections IV. B. th:rough IV. ri, we have excluded the points k~ where 

at leas.t one of the functions . sin(s + ).. ·) i/Za = 0. Also, in the previous • m .... 
' part o! this section we have exdlu:da:l the branch points ki = 0, i = Z, • • •, N, 

... 
and the points k 1 = O. The behavior of S at these points. shall now receive 

fl: 

special attention. Furthermore, we want to study the ''conditions under 
... 

which a pole of 5 may lie on the real axis of the physical sheet and thus 
A: • 

give rise to a bound state embedded in the continuum, and what formS has 
11::: 

at· such a pole. The latter question has been dealt with in refs. Z.• .2.• and 17, 

and we shall pursue it only to the extent to which we need the results in 

Section. V. 

Let us begin with zeros of D on the real axis of the physical sheet, 

k
1 

= k~ real and such that neither any of the functions sin(;a. + >..m) i/Za 

a. . 
vanishes, nor any of the ki. = 0, i = 1, • • • , N. Writing out in full 'the 

condition for outgoing waves only and using (II.11), we have 

\ 0. gj(a) = d [exp(ik a)} 
L_ Jm m m 

(IV.33) 

j 

' and (IV. 34) 
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Multiplying the. complex conjugate of (IV.33) by (IV.34), summing over m, 

taking the imaginary part of the resulting expression, and using (II.13), one 

obtains 

(-i) jd IZ Re k [exp(-Zim k a)}= o. m m . m 
m open 

This implies d = 0 for all open channels, or · m 

\ OJ.m gj(a) = 0 and ~ 0. _dd gj(x) I = 0 i£ m i~ open. L LJmX .x=a 
j . . j . '' . ' 

(IV. 35) 
i-.., 

(IV.36a); 

. ' . . ' ~': j ~ \ 

This is the proof lacking for the statement in Section IV. A. The conditions 

(IV. 36a) imply that the QiN ·in Section IV. B are given b.y . ~ 

r; 

QiN = h~(a). = L Omi g~ (a) = 0 if i is open; (IV.36b) 
m .,. 

. a. . 
hence y. = 0 for i open, and the only elements of 

1 

.. . 

S that will have poles are 
11::1 .. . 

the elements S. · with i and m closed, i~ e., the elements in the submatrix 
. 1m 

.... . 
of S relating to closed channels.· This means that a pole on the real positive 

:::= 

axis of the physical sheet will not influence the scattering cross sections at 

all. (For the phase shifts, see, however, Sec. V.) 

The conditions for the occurrence of a pole on the real axis are 

det. E = 0 for real ka.
1
, and ha.

1
(a) = 0 = •,; • ~ ha.(a), all together (n + 1) conditions. 

:::= , n 

We see that with increasing number n of open channels we are less an.d less 

likely to find poles on the real axis, 
·. . ~2 

and they cease to exist for k 1 > (eN) • 

However, it is obvious that we can always adjust our potential parameters 

) so as to give poles on the real axis for k 1 < (eN) i/Z. 

In the branch poi~ts ki = 0, i = Z,. • • •, N, and for k 1 = 0, all our 

previous formulae remain valid if we replace the expansions in terms of 

. k 1-- k~ by the expansion in terms of the. parameters of local uniformalization, 
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k., i = 1, • • •, N. The reason t~a. t we have excluded these points so far 
. 1 

' is not this trivial point, but the threshold behavior of the cross sections 
.• 

(III.15), which is changed. Let us again exclude the points where at least 

one o~ the functions si~ (;a.+ X. ) i/Za = · 0, and let us assun1e that det E 
m . . . ~ 

has a simple root in ki at ki = 0, i = i, • • •, N. Then, Eq. (IV.5) will 

hold with y~ = 0 for j < i, and yO; possibly different from zero for j ~ i. 
J J . : 

. a. 
From (IV. 35) we cannot deduce that yi = 0._ ; Therefore, Eq. (III.15) has to 

be modified for the elastic cross sections. Indeed, using (IV. 5) and keeping 

only the lowest-order term in a power-series expansion ink., one finds, 
. . . . . . . . <,;) . : . 1 

for y?' f 0, 
1 .. 

(IV. 37) 

• . ~ z 
This follows from sii = sii' from ~N =-i I hi (a) I (Eq. (IV .16)]. and from 

Eq. (IV.14). We see that under such circumstances the elastic cross section 

at threshold is not zero, but reache~ its maximum possible value. This is 

. of importance !or understanding the results of Section V. If det E has a 
= 

zero of higher order than the first at ki = 0, then from the discussion in 

Section IV. A it follows that h~(a) = 0, and Eq. (III.i5) will apply. 
. . . 1 . 

Finally, we turn to the points k~ where · sin(sa. + >..m) i/Za = 0 for 

at least one m, and for which det E(k~) remains finite. Let m 1, • • •, mi 
. • .#::$ 

denote the ~et o£ m 1 s for which sin(;a.+ ·A ) i/Za = 0. It is clear that 
. -' . . . : m 

instead o~working with the matri-x··. E, 'we should in (11.19) and (II.26) have 
·. ' I:S 

employed t~e matrix 

0 I. 0 f - ik 6ml. . + ik n nmn m m 
(IV.38) 

n 
·: .... 

' . 
a.· 1/Z a. . i/2 ./. 

~here fn = (g +An~ .· . cot(e +X1.n) . , ~ if n r m 1, • • •, mi' and 

-fn = (;a..+ X.n) i/Z if n = m 1, .• ~ • '. mi •. Wi~h the help of this matrix, we 
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can again define the· homogeneous equations (IV.6), a:nd again we can show 
. . ' 

that (IV.35) follows. Also, we can construct a matrix Q to obtain the 
' ' t::s 

expression (IV.5) with t'he y~ defined by (IV.f4). This shows that again 
' : ' • 1 " ' ' I ', . ' 

the S-matrix elements that are singular ~ust relate to closed channels 

only. Thus, the main results obtained in the previous sections remain 
. •;'•. '• :. ,• . 

valid in this case, too. The rea~on that we did not use the mat~ix (IV.38) 
r i r 

·;'• ,l '' ' 

from the very beginning is, of course •. that. it does not have the pleasant 
' • 'j 

> • ; 1, ' ! • . ~. ' .: !- ,'1 1', .1 ; . ' .. ' /· ~· ; ,• 

property (ll.30). 
: I ; ~ ' ~ .:'' 

'·' 

, .. ;: . '·,~ 

1-

''. 

'· 1 
'. 

---~--- --·-- ------------- · .. -:-.~~..,..=·~----·- -
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V. GENERALIZATION OF LEVINSON'S THEOREM 

Rather than stating the generalized version of this theorem at the 

beginning of this section and then proving it, we prefer to start with the 

proof and state the theorem at the end because we have to introduce some 

new symbols and concepts. We shall proceed as follows: In Section V .A, 

we prove what amounts to a Levinson theore~ for the phase of the function 

D defined in (IV. 1b). In Se,ction V. B, we show that for values of k-1 on' the 

. positive real axis of the physical sheet, the phase of D is related to the . . . . 

' 
eigenphase shifts of the scattering matrix.:~k· This completes the proof. 

A. A Relation for the Phase of D 

We know that in the upper half plane of ~he physical sheet, D can have 

zeros only on the positive_ i~~gix:>-ary and on the. real axis. Its zeros indicate 
. . . ' - "-::.---:--.:.'-...:_ ___ __,-.1..._. __ 

bound states, and a zero of D on the positiv~ real axis at k 1 = kt implies 
i 

the existence of a zero of D on the negative r~al axis. Both zeros co.rrespond 
I 
,j 

to the same bound state. Zeros of D at the -branch points 'correspond to 
I 

' t 
b.ound states if the zero is of higher order tha;p the first in the parameter 

i . 

1 

of local uniformalization, and to states that might be considered either 

bound or scattering states if the zero is simple. From what was said in 

Sectio~ IV, it is also clear that if D has a z~ro of .e,th order at k 1 = k~ 

the bound state is not more than n-fold degenerate. At the end of this sub­

section, we show that C~.> D - +1 a's I k 1 1- ao; with Im k 1 ~~ on the physical 

- : * * ' sheet. Finally, we have D (k~) = D(-k1 ), 

We define the phase o of D by writing 

(V.1) 

' . 
We now integrate the logarithmic derivative of D(k1) along the contour shown 

in _Fig. 6. This contour is defined as follows: _Starting at k 1 = R 0 on the 
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positive real axis of the physical sheet,- wher-e--R
0 

= max{[(eN)i/Z+1], R} 
. 

with R as defined in Section IV.A, we follow a semicircle with radius R
0 

around the point k 1 = 0 until we come to the point k 1 = -R
0

: Then, we follow 

the real axis in the direction of increasing: values of k 1• We avoid all branch 

points and zeros of D on the real axis by deforming the path into the upper 

half plane. The contour is closed when we reach k 1 : R0 • The contour C 

defined in this way encloses. all zeros of D on the positive imaginary axis 

(Im k
1
.> 0)· and no other ones. We consider the integral (£} along C, 

-2-,Tl-: -j [ :z D(z)] D~z) dze'? I : (V.2) 
• ,: •• 1 

Since we have avoided the branch points, the differential dz and the deriv-

ative of D(z) are well defined, and a simple application of the theo.rem of 

the residues (_!2) gives 
• i ~ 

I= m, (V.3) 

where m is the number of bound states (zeros of D) on the imaginary 

axis, each bound state counted n-fold if the zero of D is of nth order. . -
On the other hand, since D- 1 for I k 11- oo, we can deform C by letting 

R 0 - oo, and obtain 

f
+oo 

. 1 
I ~ "2"liT" 

-oo 

( d . ) 1 
dz D(z) ;o(z) dz~ 

or, with (V.1), 

21Tm = o(-oo) - o(+~). (V.4) 

It is understood, of course, that both o( -oo) and o(+oo) must be multiples of 

21T. The fact that n*(k1) = D( -k:) implies that on the real axis 

6(-k
1

) + 6(+k1) = 21Tv, v integer, (V.5) 

whenever D(k1) /: 0. In particular, (V,S) applies for k 1 - oo, and we call 

this particular fixed integer v0 : 
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(V.6) 

We now continue (V.6) with the help of (V.S) towards smaller values of 

I k 1 1 along the real axis. So long as we do not .cross a zero of D, or a 

branch point, v0 cannot change its value. Therefore, if we follow the 

contour C along the real axis, it is easy to see that we will also have 

o{- 0) + 6(+ 0) = 21Tvo, (V. 7) 

where o(:i: 0) = ,!im o(k1_), the limits being taken along the real axis. I£ 
~t-:!:0 . 

D does not vanish at k 1 = o. then obvious~!.: o(· 0) = 6(+ 0). 1£, on the other 

hand, D bas a zero of order u in k 1 at k 1 = 0, it is a straightforward 

matter to see that 

6(- O) = o( ~ O) - nu (V.S) 

according to (V.1), if we follow the contour C. Hence, 21Tv0 = 26(+ 0) -1ru, 

and using (V.4) and (V.6), we have 

1 
6(+ 0) - o(+oo) = 1r(m + 'Z' u). {V.9) 

This equation is a Levinson theorem for the phase of D. In the derivation 

of (V. 9) we have made use of the asymptotic behavior of D, D- 1. This can 

be shown as follows: We write 

D =(iiN=li [exp{ik1.a)] sin (~ + A1.) 
1
/

2
a 

1 
) (~ + Ai) 1/2 

Xdet[{~+A.) 1/2 cot(~+A.) 1/2 a 0-n··\ik 0. On]. 
J J J.l. L s JS A. s . 

s 
(V .1 0) 

Now, we expand for large k 1, on the physical sheet 

es 
·-+ ... 2k ' 1 

(V .11a) 
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and have, to lowest order in powers of k
1

"' 1, 

N 

D = IT {rexp(ikia)] sin (kiz +'A.l/Za 
. '1=1. . . : . : ' 

i; 

';( ~·. ', 
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1 

X [(k/ +>..//2 
cot (k1

2 +\l ~/Z a • lk1]} + o <i;) ; (V.Hb) 

Each of the . N factors in (V .11 b.) h~s the limit + 1 ii I k I - oo and 
~ . . 1 

Im k 1 ~0. This completes the proof of (V.9). 

·~,1; 

,. 

B. Relation Between o and the Scatt~ring Phase Shifts 

.• .... ~ 

The unitarity relations (II.32) are valid on the real axis of the physical 
" .. .. 

sheet. They imply that a submatrix Yf o'£ 2 ~s · \mita:r)y.. Here ";!! is composed - - ~ 

'of all elements S. of S · · · £or which i1':m < j if (e. 1) i/2 < k 1· < (e.) 112 . Hence, 
.. . 1m ~:;: . J- J 

af.l eigenvalues of 'f! have absolute magnitude one, and their p1·oduct can be 
. I - . . 

written as e 2 io ~(k1). In other words, o~ (k1) is the sum of the eigenphase 

. ' .. . ' 
shifts o£ the ocattering matrix, and 26 s (k1) is equal to the phase of det ~. 

cf-· 

Of course, o
5

(k1) is detarmined only modulo v. We propose .to show that 
I 

we can always add a mUltiple of v to os(k1) so that for the resulting value 

6 s (k1) the relation 

(V •. 12) 

is fulfilled for all values of k
1 

for which neither D:;: 0 nor ki = 0, i = 2, · · · , N, 

nor sin(~+ A.m) i/2a = 0 for any m •.. Th~se points are considered later. 

The proof of (V .12) is trivial for k 1> (eN) 1/ 2 • A comparison of the 

definitions of Din (IV.1b) and of S in (Il.19) shows 
~ 

, D*(k) 
det W = detS = det S·= D('k': = exp [2io(k1)] ·for k 1> (eN) i/ 2

, 
:= :::::= ~ ·1 

(V .13) 
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because of Eqs, (V.1) and (V.5). We prove {V.12) by showing that the rela­

tionship (V.13) is valid on the whoie positive axis of the physical sheet ex­

cept for the points mentioned above: 

for all k 1> 0 ex~ept for iso~ated points .• (V.14) 

.By inserting the definitions {1!.19) and (IV.ib), one sees the proof will 
' ' ' ' 

be completed if we can show 

det {2: E -~{k_. •••• ,k__)E.n (-k1,•••,-k__)} open . m1 " -~ b -~ 
. 1 

det {E1m(·ki' • · •, -kn' +kn+i, • • •, +~)} 
= --------------------------------------- (V.15) 

Here, n is thenumber of open channels, and det means the determinant open 

of the submatrix the indices of which refer to open channels only. The proof 

of (V.15), although ·not difficult, is cumbersome because it uses some of the 

concepts of the theory of determinants (_!!). Since it does not seem to give 

new physical insight and because o£ its length, we defer it to the Appendix. 

· Equation (V.12) then holds on the whole positive axis of the physical 

sheet except fo~x:~some points. Among these, let us first consider the points 

k~ where D{kf) f. 0, ki f. 0 for i = 2, • • •, N, but where sin(~a. + h.m) i/Z a =0 

for at least one m. Both sides of (V.14) are well defined at kf and are con­

tinuous fwtctions of k 1 for real k
1 

in a n.eighborhood of kf. Therefol·e, 

since (V .12) holds in a neighborhood of kf, it also holds at kf itself. 

Among the branch points · k. ·= 0, i = 2, • • •, N, we first consider those for 
~' l 

which D{k. = 0) f. 0. For lc
1
< (e.) 1/ 2 , ·the matrix W has i- 1 rows and 

1 l ~ 

columns, and for k
1 

> (ei) i/Z, it has i rows and columns. However, the 

~ontinuity argument still applies to the right-hand side of Eq. (V .14). This 

shows that we can choose the sum of the eigenphase shifts o
5

(k1) so that 

it is continuous ac1·oss threshold, i.e., so that . lim o5 (ki) = lim 0 5 (ki), 
;~-+0 iki-iO 

~---.:=..::~.·---·-
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where. the two limits have to be taken alo~g the positive real and positive 

imaginary axis. In order to be able later to define our choice of phases 

in ~imple terms, let us formulate this choice of 6
6

(k1) as the 

Conditioi:,. :1. Unless there is a bound state at threshold, 6
8
(k1) is continuous 

at threshold. 

If we fulfill Condition 1, Eq. (V .12) is valid on 'sections of the positive 

real axis of the physical sheet that have zeros of D as their end points, Let 

now kf > 0 be a u -fold zero of D not coinciding with a branch point. Then, 

from our'definition ·of the path Cit follows that £or E > 0 and in e1;~alogy to (V.S), 
<{i 

lim O(k~ •E>) = lim o(kf t E) • Tr(J, ,_o ,,.....o (V.1·6) 

Therefore, we can fulfill (V .12) for real values of k
1 

both in the right and 

in the left neighborhood of kf i£ we require 6s(k1) to jump discontinuously 
0. .. . .. . . ···- ... - .-~~~-~- ------... -. 

by 1ru at k 1 , according to (V :16). A similar argument applies to ~-fold 
!: 

zeros of D at the branch points. We can thus formulate 
., 
•I 

•' •' 

Condition 2. 0. a. a. Let a bound state ocour at k 1 with k 1 real, k 1 > 0, so that 

·o has au -fold zero in the parameter of local uniformalization. 

At k 1 : kt, o 
8 

(k1) is a discontinuous function of k:1. It fulfills, 

for E > 0, the equation 

lim 6 (k1a. -E) = lim o (k
1
o. + E) - tl'(7 

E-0 S c-0 S 
(V.17a) 

if the bound state does not occur at threshold, and the equation 

lim OS(k~-- E) = lim 68(k~ t E) - ~U 
e-0 E-0 

(V.17b) 

if the bound state does occur at threshold. 

If we fulfill both Conditions 1 and 2, Eq. (V .12) holds on the whole 

positive real axis of the physical sheet, and we have, from Eq. (V.9), 
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Levinson's Thcoren'}.: The sum- 6
8

(k1l·of the-eigenphase shifts of the scattering 
I . 

matrix is determined only modulo 1T, Let it be chosen so that 

Conditions .1 and Z are fulfilled. Then, 

where m is the numbe·r of bound states not embedded in the continuunt, 

each counted t-fold if D has a t-fold zero, and where cr = 0 for 

D(O) f. 0. Otherwise, if D has a T-fold zero at k 1 = 0, cr = .,., 

The above form of the theorem is a satisfying generalization of.. 
\ . ,. \ 

Levinson's theorem for s"ingle.channel potential scattering. It allows us to inter-
. . . ~~ 

pret the poles of S close to the real axis in another way. Let S have a simple 
== '. = 

pole at k~, where kf is_positive r~al and ki(k~) f. 0, i = 2, · • •, N. At k 1 =kf, 

. we have a nondegenerate bound state embedded in the continuum. Ifwe change 

the potential parameters A- 1, ·.: •, A.N and g slightly, we can make the pole of 

S move off the real axis. It now gives rise to a sharp resonance, and as a 
R: 

consequence of Condition Z, we obtain the 

Corollary., Let a sharp isolated resonance in the cross sec~ion be caused by 

a simple pole of the S matrix at kf close to the real axis so that 

~m k; 1<< Re kf, Imk;< 0. In the limit of vanishing Imkr. 

we have 
a. a. f. ( a. a. 6 s (Re k 1 + lm k 1 ) + lT = us Re k 1 - Im k 1 ). (V.19) 

"J·:: ~·::This relatichi ho~ds approxitq.ately for · __ ji~ kfj ~ ~ ;Re kf. . . 

We believe that this corollary completes in a very satisfactory manner 

the description of resonant states given in Section IV. Unfortunately, we 

c;:annot prove the reverse, namely that if os increases sha1•ply by lT, we rn·ust 

have a pole of the S matrix close to the real axis. Similarly, we can under-· 

sta'nd better what happens if there is a bound state at threshold, k. = 0, 
' .. 1 

i = 1, • · ·, N. I! D(ki) has a simple zero at ki • 0, then the sum of the 
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1T 
eigenphase shifts jumps by - at k. = 0. This is in perfect agreement 

2 l 
' 

with Eq. (Iy.37). If D(ki) has a zero of higher order than the first, this 

zero does not affect the cross section, and the sum of the eigenphase shifts 

il1.creaaes by a multiple o£ n', (lt follows from our discussion in Section IV 

that if D(k.) has a· zero of higher order than the first at k. = 0, then the order 
l . l 

of this zero must necessarily be even.) One possible shortcoming of our 

generalized version of Levinson's theorem is that we cannot show that a 

zero of D of higher order 0' than the first in the parameter of local uni­

fo:t·malization ~lways implies the existence of a -r-fold degenerate bound 
. . . . . "'!,~ 

state with u = .,, We can show 'only u ~'T' ~-.1. However, one may trust 

that in most cases all zeros of D are simple. 

\ 
I 
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... 
VI. DISTRIBUTION OF THE POLES OF S ON U(N) 

~ 

AND ITS DEf>ENDENCE ON THE POTENTIAL PARAMETERS 
' 

We want to discuss the distribution of the poles of S on U(N) as an 
. ~ 

illustration to the foregoing sections. We are of course, not able to describe, 

the position of the poles complet~ly for arbitrarily st~ong coupling between 

the channels.. In Section VI.A,, the reader is reminded of the distribution for 

single-channel square-well potential scattering; in Section v'I.B the more 

general.case of N channels is dealt with.· Some detailed properties of the two-
: . . ; ... 

channel case are investigated in Section VU.~ .~. 

A.' Reminder of the Single-Channel Case (Q) 

W:e ·.:i'e,~in,d ·thelr.~a:de$w·f Fig. 1 from Nussenzveig 1 s paper (8). It shows 
. -

the distribution of poles of the S fw1ction in the k1 plane for scattering of an 

S-wave particle by an attractive square-well potential. This corresponds 

exactly to our si~gle-channel case. 4 . The position of the poles is given as a 

function ~£ the depth of the potential well, I >.1 d, in units of t1
2 /2Ma 

2
. If we 

. '2 2-
put a~ 5 £, then fi /2Ma = 1 MeV, where. M is .the nucleon mass. This 

2 ,, '' ' ' 
means that k gives the energy in units of MeV.. 

'·' .. 
The position of·'the poles is a function of I >. 1 I, .. and for I >.. 1 1 - 0 there 

are infinitely many simple poles located at k 1 = nrr.,- iroo, n = 0, :J:i, ±2, · · · . 

With l.ncreasing I Xi I' they move qn curves' that are almost straight lines 
" . . ,. 

parallel to the imaginary axis. The pole on the imaginary axis moves faster 

than the others; it stays on the imaginary axis for all values of I >.. 1 1 and, 

after having crossed the real axis, corresponds to a bound state. The other 

poles, which must occur in pairs since they must be situated sym.metrically 

with 1·espect to the imaginary axis, move along the li-nes shown in Fig.1. of (~). 

Eventually. they merge into a double pole at k 1 = -i; then separate again . 

. 'If 
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They move along the imaginary axis, one towards positive imaginary values 

of k 1 • the other towards negative imaginary values of k 1 • The first of them, 

after having crossed the real axis, becomes equivalent to a bound state. 

way, more and more bound states appear with increasing lx. 1: I· 
This 

We have calculated the phase shift 6(k1) as a function.o£ k
1 

for 

I ~ 1 !a2 =50, which corresponds to apotential depth of 50 MeV. We have 

two bound states, at k 1 = 4. 55128 i and at k 1 = 6. 51728 i. There is one pole 

of S(k1) on the negative imaginary axis, at k 1 =- 6.03146 i. In Table II, we 

give the· positions .of the first six poles of S(k1) in the lower half of the k 1 

plane. 

Since we have two bound states, we know from Levinson's theorem that 

5(0) = 2lf if we require 6(+g()) = 0. Th.e function 6(k1) for k 1 ~ 30 is shown 

in Fig. ':/. It equals (3/2)lf and ( 1/2)11' at k r:= 2 and k r:= 14.6, respectively. 

Obviously, 6(k1) is not a'very smooth function of k 1, and the arrows on the 

real axis' coincide more or less with those values of k 1 for whi~h 6 and 

hence the cross section sin
2 

6 display little bumps. The arrows indicate 

the real parts of the m~.mbers given:i~~'Tabl~-u:--It is clear that the bumps 

have something to do with the poles of S(k1). It is gratifying to see that 

the bumps are more easily discernible if Im k 1 is sm?~;ll than if it is large~. 

according to Table 11. 

For potential scattering, Humblet (_!,20) has shown that S(k1) is a 

meromorphic function of k 1 and can be written as an infinite sum over pole 

terms plus an entire function (see. Eq. ( 1. 54) oftf1e:f:iFr.st;Of1references 4]. In 

order to see which influence the pole terms have, we have calculated the sum 

• over the pole terms excluding the two bound states and the state on the nega-

tive imaginary axis. Unfortunately, Humblet•s· formula contains an arh:i,trary 

parameter M. We have chosen M = 1. The sum converges essentially like 

1/n2 , and we have calculated the first 100 terms to obtain an accur'acy better 

than one part in 10-4 • 
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The result is shown in Fig. 8! We plot 1 - Re S(k
1
)-- this is propor­

tional to the cross .secti'on--a~ a func~ion of k 1 (curve C). Curve A shows the 

contribution to + S(k1) of the fir~t .resonance at around k 1 ::: 3.2 (see Tableii). 

. * We have added the contributions fro~ tl_l~_pol~!__at k 1 and at -k1 . Curve B 

shows the total contribution of all resonance terms; it practically coincides 

with A for k 1 < 3. 5, and differs from it for larger values of k
1

, mainly be­

cause of the influence of the second resonant state at k
1

::: 8.3. Curve D is 

the difference between curves C and B, i.e. , the contribution from the entire 

function. and from lhe three states on the imaginary axis. 
I ' ' . ' 

We see that most of the cross section. is due to the entire function and 

not to the pole contributions. (The contributions from the bound states and 

the state at k 1:: .. 6.03 i are very large, but monotoni'? functions of k 1.) We 

also see that curve D still displa'ys the bumps, although less pronouncedly 

than curve C does. ·This has to do both with the fact that M is arbitrary and 

with the fact that the resonances are far from the real axis (r ;::::.1 MeV), and 

not isolated. In such a situation, it is simply not possible to decompose the 

scattering function S(k1) uniquely into a resonance part and a nonresonance 

part. This can also be seen from Fig. 7, where the poles do not cause 

o(ki) to jump by 'IT but produce only barely discexnible little bumps. 

From this example, we learn that maxima of the cross section need 

not have anything to do with poles of S(k1). '.The maxima at· k 1 :::: 2 and 

k 1 :::: 14.6 are consequences of Levinson's theorem, and are not caused by 

nearby poles of S(k1). Poles too far away from the real axis cannot be dis­

cerned very well, and we shall henceforth concentrate on narrow resonances 

·· in the cross sections,i. e., resonances for which Im k 1 :< ~O or r < 10 keV. 

We may hope that these are indeed caused by nearby poles of the S matl·ix . 
... 
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B. The Case of N Channels 

We study this case by first depictfng the position of the poles for vanish-

ing coupling between the channels and byJater adding a few remarks about the 

more general case. In the limit of vanishing coupling between the channels, 

the S matrix is diagonal, and the ith diagonal element of S contains the ex-
. ·~ - ~ . 

pression for elastic scattering in channel i. Therefore, it would suffice to 

study the problem on N different complex planes--one for each k.. There, 
. . 1 

the poles of ~ would be situated just as described in Section VI.A. The 
, ... 

distribution of the poles on U(N) can thus be obtained by mapping the complex 
. ~i 

planes for the N wave numbers ki onto the Riemann surface U(N). 

Since each sheet-.-except for its;c,uts and the point k 1 = e>0- -is an exact 

copy of the k 1 plane, the distribution of poles of the s11 element on each 

sheet of U(N) is the same as described in Section VI.A. To see how the 

poles of the element S .. , i r 1, are distributed, we divide the 2N· 1 sheets 
~ . 11 

of the surface into two classes. All sheets for which the (i-1)ot element, 

Ti-i' of the labeling vector k is positive belong to one class, the other ones 

to the other class. The way the ki plane· is mapped onto all sheets belong­

ing to the first class .was indicated in a special case in Fig. 3. F1·om this 

mapping, one sees that poles on the positive imaginary axis of the k 1 plane 

are mapped onto the positiv.•e imagimiry or the real axes of all the sheets in 

·the first class. I£ they are on the real axis', they appear symmetrically with 

respect to the origin. A simple pole at k. = i(e.) 1/ 2 appears at k 1 = 0, where 
1 1 

it will be a twofold pole in k 1, the parameter of local uniformalization. This 

can be understood from the arguments presen~ed in Section IV/B. A pole on 

,'the negative imaginary axis of the k. plane will, for Im k. <-(e.) 112, be 
1 1 1 

:n:;apped onto the negative imaginary axis of all sheets of the first class. The 

image of the piece of the imaginary k. axis with -(e.) i/l~Im k. ~ 0 lies, by defi-
1 l. 1 

- .. 
nition of the sheets, on the part of the real axis of the sheets of the second class 
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for which - (e1) i/ 2 ~ Re k 1 ~ (ei) i/2 . Again, each pole has two images, 

which lie symmetric with resp,ect to the origin. Finally, resonant states 

at k~, so that neithe'r Re k.o. nor Im k~ vanish, are mapped into the lower 
l 1 1 

hal£ plane o£ the sheets of the first class, where they lie symmeh·ic with 

respect to the imaginary k 1 axis. The mapping of the poles onto the sheets 

of the second class is obtained by taking a sheet of the first class, reflecting 

it around its real axis, and exchanging the poles on the real axis with k
1 

between -(e.)
1

/
2 

and+ (e.)
1

/ 2 , as described above. Since all sheets differ 
l . l 

in at least one element 7'.. of their labeling vectors from the physical sheet, 
l 

we see that the physical sheet is indeed the only sheet in the upper half plane 

of which there are no pole$ of any element of S (except on the imaginary axis). 
. ~ 

It is helpful to investigate the motion of the poles as functions of the A.., 
l 

still with no coupling between the channels, and for >... ~- e:, so that according 
' l l 

to (II. 9) and (II.10) we deal with attractive potentials. We shall be interested 

only in the physical sheet and the sheets adjacent to it (see Fig. 4). We begin 

with channel 1. Let us assume we have two bound states. They correspond to 

two poles on the positive imaginary axis of the physical sheet. As x.
1 

de­

creases, they move towards the real axis. Simultaneously, the one pole that 

m.ust exist on the negative imaginary axis of all sheets does the same. For 

a particular value of >..
1

, the first pole crosses ,the point k 1 :: 0 and then . 
enters the sheet {-1, · • •. -1}, moving dow~ on the negative imaginary k 1 

axis. Simultaneously, a pole enters the negative imaginary axis of the phys-

ical sheet from the adjacent sheet·{-1, · · ·, -1}, and moves down. At k.1=-i, 

two poles coming from larger an~ smaller values of Im k 1 merge on each 

sheet, and from here on the motion of the pair is confined to one sheet, and 

i€l as described in Secti~n VI. A. For sufficiently small_ values of >.. 1 , the 

1 second pole leaves the positive imaginary k 1 axis, too, and moves toward 



-63- UCRL-11 040 

smaller values of Im·k.1, staying on the imaginary axis and moving on 

whichever sheet is adjacent to the one on which it was before it crossed 
\ . '. 

the point k 1 = 0. 

This simple pattern of motion is considerably more complicated for 

i-f 1. For ~ufficiently large \• two poles lie on the positive imaginary 

k 1 axis 'of all sheets with 7i-i = +1, and on the negative imaginary axis of 
. . 

all sheets with -r1_1 = -1. One of the two causes on~ pole to lie on the 

negative imaginary axis of all sheets with -r1 .. 1 = +1, or positive imaginary 

axis of all sheets with T. i = ... 1. As A.. decreases, the pair of poles on 
1- 1 

.-;._) 

the positive imaginary axes of the sheets with 7-iN 1 =+;f··m·oves towa1·d the 

real axis until one of them _reaches the point k 1 = 0 on the real axis. There, 

it is joined by .the pole belonging -to the pair on the negative imaginary axes of 

the sheets with 7:i-i = -1. We have a double pole in the 2N-Z points 1<1 =0, 

with 7. 1 = +1. When we decrease A.. further, the two poles separate and 
1- 1 

move in opposite directions on the real all>tis until they reach the points 

k
1 

=±(e.)1/ 2 , ..,, 1 ::: +1.!5· The pair of poles belonging to the physical sheet 
1 1- . 

leaves this sheet and :e~ters the real axis of the sheet with Tk=+1 fork< i-1, 
... :· 

or -1 for k:~1.:..1.. We now have pairs of poles on the real axis of all sheets with 

T. 1 = -1. In. the meantime, the pole .on the negative imaginary axis of the 
1-

sheets'with ,.i_ 1 = +1 has moved towa.rds the real axis, too. At k1 ·~ 0, 

\. 

'T i-i = -1, it was joined by the. pole on the P<:>sitive imaginary axis of the sheet 

with 7. 1 = ~1. Again, the two poles haye separated and moved in op~,osite 
).-

directions alon~ the real axis of the sheets with ,. i- 1 = -1. At k 1=±:{ec·v 
1
/

2
, 

Ti-i = -1, they merge with the poles discussed above and form pairs of'' 

double poles. As A.. decreases further, they separate again, one pole of 
1 . 

each pair leaving the real axis towards positive values of Im k 1, the other . . . 

one towards negative values o£ Im k 1• This way, finally two poles situated . 

symmetrically with respect to the imaginary axis emerge below the points 

. ., 
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1/2 . . 
k 1 = ± (ei - 1) onto the lower hal£ of the physical sheet and move on this 

. 
hal£ plane toward oo, For very small potential strength their paths become 

asymptotically equal to the ones described in Section VI.A. 

We have seen that the only poles ever to be on the positive real axis . ' 
of the physical sheet are the ones corresponding to a bou..'ld state, as it should 

'· 
be. This is not true for any other sheet. Furthermore, if all )\.. are auf-. a 
ficiently large, there will be .!i::! [(e.+1) 1/ 2 -. (e.) 112] bound states between 

1f l. 1 . 

any two neighboring thresholds for zero coupling'between the channels. (This 

is because the asymptotic distance between. two poles is 'If,) Thus, with in-

creasing numbers o£ open channels the density of bound states becomes more 

and more reduced. We expect the same statement to apply to the density of 

narrow resonances, unless the interaction between the channels changes 

things drastically. This is supported by the fact that for arbitrarily strong 

coupling between the channels 6 the conditions for the existence of a bound 

state embedded in the continuum become more numerous with increasing 

numbers of open channels, according to Section IV .E. 

With vanishing interaction between the channels, we could treat all 

sheets on the same footing. This is no longer true as we turn on the coupling. 

In particular, a pole (bound state) at k; on the·positive real axis of the 

physical sheet in general moves into the sheet adjacent to the real axis at 

this particular point, when the coupling is·t~rned on. Since we know.that poles 

always occur symm.etrically on each sheet with respect to the imaginary kt 

axis, the same holds for its mirror pole at .. k;. This way, two poles leave 

the physical sheet simultaneously and become re·sonant states, and the 'sym-

metry amotlg the sheets is destroyed. 
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VII. NUMERICAL EXAMPLES: THE TWO-CHANNEL CASE 

Several authors (e. g., references (]._, .2_, g, 13) have investigated 

various aspects o£ this case, and we restrict ourselves to those aspects 

that seem to be of interest in the framework of the present investigation. 

These are the motion of the poles o~ the Riemann surface as a function of 

the interaction strength between the channels (with particular emphasis 

upon poles close to the real axis of the physical sheet), the demonstration · 

of Levinson's theorem, and properties of a single resonance as mentioned 

in Section IV. We begin with a suitable parametrization of the two-channel 

case. 

A. Parametrization 

Let the. symmetric matrix A~n of Eq. (II. 9) with m, n ~ 2 be given by 

(VII. _i) 

where b 1, b2 , and care real numbers. Let the eigenvalues of this matrix 

be >..
1

, >.. 2 where 

(VII. 2) 

The elements of the orthogonal matrix 0 defined in Eq. (II.10) are then 
. , mn 

'given by 

where 

0 = mn 
1 

Ai/2 

•• r' 

(VII.3) 

(VII.4) 
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We introduce the abbreviation 

and have, for the matrix Elm of Eq. (11.1.6), 

so that 

2 

.(>.. 1 ~b2)c 
--A--(zi -zz) 

... 

:det E 1 m = (z1 .. ik1) (z2 -ik2)- cA (z 1 - z 2 ) ·{ik1 - ik2). 

The elements of the S matrix are given by 

(VII. 5) 

{VII.6) 

(VII. 7) 

s11 =e-Zikia(det E.fm)- 1 [(z 1 +ik
1

)(z2 -ik2)+ c.: (zr .. z
2

)(ik1+ik2)] • 

. ; 2 

S -2ikza ( )-1- [( . )( .k· :.) c ( . )('k '1 )] ( 8) 
22 = e detE1 m , _z 1, -1k1 z 2 + 1 2 -A z 1-z2 1 1 !l <2 , VII. 

From Eqs. (VII. 7) and (VII.8) it is obvious that it is useful to introduce 
2 . 

). 1 , >.. 2 ' and Q. ::: cA . with 0 ~a. ~ 1 as the independent pa:~.·ametcrs by means 

of which we characterize our problem. In terms of these parameters {and 

the threshold parameter ez 5: e). the physically relevant parameters are given 

by 
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b2 = a.A 1 + (1-a.)Az• 

c = ± [o.(1-a.))1/2(A1 .. A2)' 

C(A -b ) . I 
1 2 ~:!: [a.(i-a.)] 1 z. 
A . 

V H = -~1' 

. 
V 12 = -c. 

UCRL-H040 

(VII. 9) 

It is also useful to realize that Eqs. (VII. 7) and (VU.8) are invariant under 

the substitution 

A1- Az• 

Az-.--- A1' 

a.-- 1-a.. (VII.iO) 

so that in many cases it suffices to have a. vary in the range 0.::::: a. .::::: ~ . 

In the following, we shall put a = 1 throughout. 

B. Resonances and Levinson's theorem 

We have calculated the cross sections <1 11 , u 2.2.' and cr 12 defined by 

Eqs. (VII.8) and (II.2.4) for various values of the parame~ers. As an example, 

we show in Fig. 9 .:• the function o(k1)- -L e. , : the .phase of the function D as 

defined by Eq. (V.1)--and in Fig. 10 the various cross sections forO:::; k 1 ~ 20. 

We have chosen e = 100, A1 = 40, Az = ~50. For vanishing coupling between 

·L 

the channels--i.e., a.= O--we have two bound states in channel one, correspond-

ing to two zeros of D on the positive imaginary axis of the physical sheet, and 

two bound states in channel two. The latter ones impty, according to Section 

V!.A, that D has zeros ~t k2 (i) = 4.55128 i and k
2
(2.) = 6.5172.8 i. This corre~ 

sponds to values of k 1 = (k2
2

+100) 1/ 2 given by k.~P= 8.904260 and 
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k 1 (
2

) = 7.584527, respectively. As a consequence>Levinson•s_, theorem 

requires 0(0)- O(+GO) = 2'1T, if 0 increases by 1T at 'J.<,1:(i) and at k1 2). 

Fo·r, a.= 0, o will simply be the sum of the phase shift~, ~P the two channels, 

and for a potential depth V Z2. =- b2 - e = -~ . .;.2 .. e = ·50, one of the two terms 

adding up to give 6 was displayed in Fig. 7. For channel one; where 

V 11 = -40, the corresponding figure will be very similar. Curve A in 

Fig. 9i1 illustrates what happens when we choose a.= 0.005, leaving >.. 1, x. 2 , 

and e unchanged. The very weak coupling. between the two channels 

causes the poles ~£ the S matrix originally;,_situated at k
1
(i) and at k1(

2) to 

move of£ the real axis. Th~s, 6(k1) becomes a continuous function which 

increases rapidly by almost 'IT at k
1
(i) and k

1
(2). Except for these two 

points and their neighborhoods, 6(k
1

). decreases monotonically with increas­

ing k 1 and displays the litt~e bumps that were discussed in Section VI.A. 

Curve B __ of Fig .. 9·, shows 6(k1) for the same values of >.. 1 , >.. 2 and e, but 

with a. = 0. 5. This value o£ a. corresponds to the maximum coupling 

possible between channels 1 and 2, and to c/b1 = c/b2 = +9. Still, the over­

all beha~ior of 6(k
1

} is not changed appreciably. At k
1
(i) and k1 2), o{k1) 

rises by somewhat less than 'IT, it displays a conspicuous cusp at threshold, 

k 1 = 10, and from there on it falls off monotonically until it eventually reaches 

the value -2'1T, as required by Levinson's theorem. It is surely surprising 

that the large change in a. produces so little effect. We have also calculated 

6(k1) for values of a. between 0.005 and 0.5~ and have obtained a gradual 

transition between the values displayed in curves A and B of Fig. :.9;. {The 

same holds true, incidentally, for the cross s~ctions shown in Fig. 10). 

In the upper part of Fig. 10, we show u 11 as a function of k1 for the 

same set of parameters. Again, curve A refers to a.= 0.005 and curve B to 

a.= 0.5. Curve A displays a eros~ section that has two broad maxima. This 

corresponds to Levinson's theorem, applied to channel one individually £o1· 
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a. = 0: The phase 61_ decreases from zero to -2'11' and thus the cross section 

given by 4 sin
2

61 mu·st twice assume its _maximum.· Interruptions of this 

(1) (2). 
smooth pattern occur because a. .F 0 at k 1 and k 1 , where we find very 

narrow resonanc·es. These are shown with a different scale for k
1 

in the 

inserts on the lower left part of Fig. 1 O. (As a consequence of a theorem 

by Wigner (21), the cross section must vanish in the vicinity of a resonance 

if only one channel is open. This can easily be seen from the relation 

a
11 

=·4 sin2 6(k1). Whenever 6(k1) increases by w, a 11 has a zero.] A 

further interruption occurs at threshold, where k
1 

= 10. 6 Furthermore, 

u 11 does not actually assume its maximum value 4 for k 1 ~ 10, owing to 

inelastic processes. For a. = O. 5, the resonances at k
1 

(i) and k
1 

(2 ) become -broader, the behavior aLove threshold and for k
1 
~ 14 changes drastically 

owing to inelastic processes (see a 12 which is shown on the bottom of 

Fig. 1 0), and a little bump develops at k 1 == 5. Still, the oVerall behavior 

of a 11 is similar to that with a. = O, except for the occurrence of resonances. 

In the central part of Fig. 10, we show a 22, which of course is 

defined only for k 1 ~ 10. Curve A, again showing a 22 for a. = 0.005, is 

very similar to curve C in Fig. 8 (except for a scaling factor that was 

omitted in Fig. 8). The similarity becomes even closer if one remembers 

that the scale on the abscissa is different in both figures. Whereas in 

Fig. 8 the abscissa shows what should no:w be called k 2 in a linear scale, 
. . ' 

the abscissa of Fig. 10 shows k 1 in a linear scale. Curve B again shows that 

choosing a. = 0. 5 does not have a very great effect upon a 22• The changes 

are, of course, most marked where ·a 12 (Curve B at the bottom of Fig. 10) 

is largest. For a 12, we have not shown the case a. = 0.005 because a 12 < 0. i 

for 10 ~ k 1 ~ 20. 

It is clear from Fig. 10 that we are dealing with ~wo resonances at 

·k
1 

(1) and k
1 

(2 ) that are fairly well isolated. Therefore, we give in Table III 

a few quantities relating to our discussion in Section IV. We have kept the 

:! . .:!' 
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parameters >.. 1, >..2.,· and e fixed (their values are the same as given above) 

and have calc~lated the P.osition of the pole of S originally at k 1 <
2> as a 

function of o.. In the first column of Table III, we give the values of o., and 
·' 

in the second and third the values of Re k
1 

and lm k 1 that define the position 

of the pole. Column 4 gives r = -4 Re k1 X Im k 1• In columns 5 and 6," 

I - tl2 I - 112 · we give 'Y 1 (JJ.) and 'Yz (JJ.} , where 'Y 1 and 'Yz. are defined by (IV .14), 

and ~ by the right-hand ·side of (IV.16). It is these quantities that enter 

into the expansion of the S matrix (IV. 31) and into the relations (IV. 32). In 

order to display''the second of relations (IV.32), we give in column 7 also 

(y 1 ) 21~. which should be real and equal to -r if (IV.32) were correct. The 

numbers in column 7 show clearly that this is not the case. In terms of 

our discussion in Section IV this means that a single-pole approximation for 

S with no background terms is not permissible. In the last column we give 
~ 

the ratio I"'(b)lr forb= 1.0~ Here I"'(b) is defined by 

I"'(b) = m open 
' (VII.11) 

in analogy to Eq. (IV.28), but without the limit b• oo. We see that in 

this particular case the error causeC. by calculating r without using the 

sum over closed channels in Eq. (IV.4) is less than 2 per cent. With in-

.. 

creasing b, this error decreases rapidly, and for b = 2.0 it is less than 

i part in 10-5 for all the cases considered in Table III • 
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One of the most spectacular results of the numerical calculations 

shown in Section ·VII. B is that even for strong coupling between the channel~, 

the poles that were (for a. = 0) on the real axis remain so close to the real 

axis that they cause resonances with widths much smaller than in the case 

o£ single ·channel (potential) scattering. By integrating the differential 

equations for the motion of the poles as functions o£ A1, A2, and a. 

nwnericallyo we· have studied this behavior further and have found in all 
;' j 

cases that the poles have an' astounding tendency to stay close to the real 

axis for values of k 1 below threshold. (Except in the vicinity of the 

threshold, we have never found poles close to the real axis above threshold.) 

Speaking more quantitatively, in the many cases investigated numerically 

I Im k 1 I (indicating the position of the pole, as in the third column in 

Table III) never became larger than 0. 3. Unfortunately, we have not been 

able to find an exact proof for the assertion that poles that were originally 

on the real axis cannot move far from it as a. increases, and there may 

well be cases for which such an assertion is wrong. Still, it seems that 

in the majority of all cases the poles do have this tendency, and if one 

extrapolates this statement to many channels one is led to some curious 

speculations about nuclei. In the light of these results, the fact that nuclei 

have many sharp resonances need not be attributed necessarily to a weak 

coupling between the open and the closed channels. It also does not seem 

to be a particular property of the nuclear forces. It seems possible that 

any attractive, sufficiently strong two-body force will lead to many sharp 

,resonances in the cross sections. In fact, sharp resonances may be 

produced even when the diagonal terms of the interaction (Vii and V 22 in 

our example in Secti<?n VII. B) are to<:>t weak to lead to any bound states at all. 
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Examples for this are not hard to . .find (s_e_e __ r_~_ference .2.>• This is the 

reason why we preferred to discuss our results in terms of the eigenvalues 

>..1, >..2 and the coupling strength a. rather than in terms of the original 

matrix elements V • Whethe,.- our resulta permit one to make such mn · · · 

speculations depends, of course, largely upon the generality of the case 

under investigation. We must leave this question to the judgment of the 
. . I 

reader. 
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Vlll." SUMMARY AND CONCLUSIONS 

We believe to have given a fairly complete description o! the properties 

of a particularly simple many-channel scattering problem. We can summa;ize 

our results as follows: 
. A 

The Riemann surface U(N) upon which the elements of the S matrix 

are meromorphic functions is the surface of an algebraic function !rom 

which a finite number of points has been removed. The poles of the S 

matrix correspond to the zeros of D, which is holomorphic on U(N). 

Whenever S has a ·pole there exists a solution of the Schrodinger equation 
;:;: 

which has only 'outgoing'waves in all channels. In the neighborhood of such 

a pole, the physically interesting scattering solutions are dominated' by 

this (homogeneous) solution, and as a consequence, the residues of Sat the 
;:;: . 

poles factorize and thus yield the Breit-Wigner formula. However, the 

total width need not be equal to the sum of the individual widths relating to 

the open channels. This is E.<:>_':~.! out by th~ numerical calculations. If, 

however• the single-level approximation for the S matrix is valid it is 

clear that a relationship between total and channel widths must exist. 

The numerical calculations show that the poles of the S matrix that 

correspond to bound states embedded in the continuum in the limit of 

vanishing coupling between the channels have a most remarkable tendency 

. to remain in the vicinity of the real axis for almost arbitrary strength of 

this coupling. This and the fact that the density of such poles decreases 

; !, ..?.! 

rapidly with increasing number o£ open channels gives rise to some speculations 

about nuclei discussed in Section VII. 

The generalization of Levinson's theorem to many-channel scattering 

yields as a consequence a further satisfactory characterization of a resonance 
~ . . . 

caused by a pole of the S matrix. The sum of the eigenphase shifts increases 

by w over the width of the resonance as the energy increases. So far,, we 

have not made any attempt to find out whether this sum is aurreasui·ible 
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quantity, since we are interested in the formal properties of resonance 

scattering in this paper. If, however, it should turn out that it is measurable 

we would have an interesting means of classifying narrow resonances in 

measured cross sections. It is surely regrettable at this point that we can-

not show that i! the sum of the eigenphase shifts increases by 1r we are 
' 

indeed dealing with a pole of the S matrix. 

Most of the above statements follow from the properties of the function 

D. It seems that this !unction plays a fundamental role in the theory of 

many-channel scattering, in much the same way as the Jost function does 

in potential-scattering theory. ln fact, Newton <.!J has shown that D is the 

determinant of what might be called the Jost matrix of Many-channel scattering. 

In addition, by a generalization of proofs given by Peierls (10) and LeCouteur 
. . ---

(11) he was able to show that all elements of S can be expressed in terms 
- == 

of the values of D on the various sheets of the surface. This fits in very 

nicely with the equality between the phase of D and the sum of the eigenphase 

shifts of the S matrix derived in Section V. Therefore, one is tempted to 

believe that many of the theorems valid in potential scattering theory as 

reviewed recently by Faddeyev (~) can be generalized appropriately to 

many-channel scattering with the help of D. Also, the role played by D 

in the dispersi.on relations for many-channel scattering seems worth while 

investigating. On the whole, we feel that much more work should be done 

to completely elucidate the properties of many"channel scattering and in 

particular the significance of the function D. 

"· ...... Finally, a word about the generality of our results may be appropriate.··· 

It seems that we can extend most of our results to the case in which the 

potential :matrix V mn (x) = 0 for x >a. Whenever tbe potentials do not 
\o, I • • 

{ 

!all~££ sufficiently fast as x - CliO we encounter mor<:: complicated analytical 

-str~ctures, like logarithmic branch points. Even in this case, however, 
l 
I 
{. 
i 

. I 
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the main results of Section IV seem to remain valid, and probably also the 

characterization of a resonance close to the real axis by the fact that the 

sum of the eigenphase shifts increases by w. Also, the introduction of 

angular Jnomentum and spin should not affect the results appreciably. In 

the framework of many-channel scattering, then, many of our results seem 

quite general. As soon as we allow break-up processes o£ the residual 

system to occur, however, this is probably changed. It would certainly be 
' 

most interesting if one were able to study the analytical properties introduce'd 

by a three-body breakup in a somewhat general case, and doubtless the 
i 

Riemann surface is much more complicated under such circumstances. 

We feel that the artificial suppression of this mode of decay in this paper 

is the most serious handicap in trying to apply our results to a realistic 

scattering process. 

' I 

l 
t, 

'i 
/-

~--

. -·· __ _._ ·.---- -. ~-- ---·-~- ----·-· 

\ 
i 

--~-=:.: .. --------- -
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APPENDIX 

Proof of Equation (V.15) 

We introduce the following notation. Let L be an arbitrary matrjx 
1:::: 

of N rows and N columns. Let ri and si' i = 1, • • •, n, ne N be two sets 

of positive integers, so that 1 ~ ri ~Nand 1 ~ si ~ N .. with ri ~ rk and 

si < ek for i < k. The minor L(r 1, • • ·, r~ l'.ifi_'~·· • •, an) of~ is the determinant 

of the matrix obtained from L by omitting all but the rows labeled r,, • • • , r 
~ ~ n 

and al~ but the c?lurnns labeled s 1, • • ·,an. The algebraic complement 

L(r1, · · •, rnls1, • • ·, sn) of L(ri' • • ·, rnjsi' • • •, sn) is the determinant 

of the matrix obtained from L by omitting the rows labeled r
1

, • • •, r = n 
. . rt+···+r +s1+···+s and the columns labeled s 1, • • ·,en' mult1phed by (-1) n n~ 

A special form of Laplace• s theorem [see ref. (18), p. 34] can then be 

written as 

' .. 
.... ·.de~ L = 

= 
L(i, • • • n I s

1
,\ •·•, s ) I: (1, • • ·, nl s

1
, • • •, s ) ........ , .. 

. n n 

(A.i) 

We now apply these definitions to tlie matrix E and its inverse. In 

order to show the dependence of the k 1, • • ··.,~ ~· we write the minor of ~· 

!or example, as E{(r , • • •, r Is , • • ·, s );~ , • • •, k__}, etc. The left-1 n 1 n. '·1 -N 
I 

hand side o£ Eq. (V. 1 5) can be written a~' 

det . {·~ open L 
. i=1 

'•' '···' .; 

because of the symmetry of E. . . = We now apply Theorem 26 on page 66 of 

ref. (.!§_) and obtain, with n = number o(open channel~, 

:!.~ 
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det {E-i(K) E(· ~)} = 
open = - = 

' ( ' 

(A.2) 

From page 90 of the same reference,. it follows that 

~ 

E-~ {(t, • · ·, n Js 1~ '" , •nl• ~} • [det ~<!9 r ll: {u• · · · . nIsi'··· • •nl•::} . 

(A.3) 

Hence, we have · 

·, 

det . ·{E - t (K) E(- K)} = [det E(K)J -
1 

open = - :::: ... = -

X 

(A.4) 

From the definitions of E [see Eq. (II.16).).of the minor and of the algebraic 
:::: 

complement, it follows that E { ( 1, • o • , n Is 1, • • • ; sn)} depends explicitly 

only on k 1, • • o, kn and not on kn+ 1' • • ~· j, ~· The reverse is true for 

E .{(1, • o ·, nl s 1, o • • ~ sn)}. Hence, we have, using (A.1), 
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q·· 
f' 

,. ' (A.5) 

From (A.4) an.d (A. 5), ·we· obtain (V~ 15) •. · . · 

' . ! • • . 

.. 

•. 
l 
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1. We should also exclude the points where at least one of the functions 

sin{t + ).. )1; 2·a vanishes and £or which det E does not have a pole. 
m 

A . . 

Here, S may have poles, too. Buftiiese-points are isolated for all 
::::: 

finite values of. ki. They are considered further in Section IV. E. 

2. It should not be necessary to point out that the terms "wave function" and 

11 state 11 are not applicable for complex kf. However, the word "com-

)' pound state" is equally meaningless--if one is strict about it--and very 

helpful. 

3. Davies and Baranger (13) succeed in deriving a relation similar to the 

second of conditions (IV .32). ·They do this be decomposing the S matrix 

into a pole term and a background matrix B and by assuming that B 
. ~ ::::: 

for real energies is constant over the width of the resonance. One can 

easily see, however, that without this rather drastic assumption about 

B (drastic in view of the analytically continued unitarity relationships) 

it is not possible to arrive at their results. 

4. In the following, we shall consider only attractive potentials, since only 

.. they seem to give rise to sharp resonances in the many-channel problem .. 

5. 'on their .way from the origin k 1 : 0 to the points k 1 = :1: (ei)1/ 2 , i> 2, these 

points pass through a number of branch points. At each of the:se branch 

points, they are double poles in the parameter of local unifor;.-halization. 

• 
At k 1 = ± (ei)1/ 2, they are simple poles in the parameter of lo9\fl'l uni-

. 'I 

. '\ 
' formalization, k.. From considerations of ~his type one can Uifderstand 

1 ' 

' \ 
\ 

\ 
\ 

-' 
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how the generalized version o£ Levinson's theorem in Section V 

works for the case of vanishing coupling between the channels, 

and that it agrees with the same theorem applied to scattering 

in the N uncoupled channels individually. 

6. At threshold, a 1.1. must display a cusp or a similar type of behavior 

which can .be predicted from the knowledge of o(k1). This has been 

discussed by Newton (~). 

/ 

:! . }:!' 
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Table I • Construction o! the Riemann surface for N=3 

''· {+1, +i} { +1, -1} { -1, +1} {-1, -1} Upper shore 

Lower shore {-1, .. 1} {-1. +1} {+1, -1} {+1, +1} 

Table II. Position of the p~les in the lower half of the k 1 plane 

3. 2.38 

i.066 

8.306 

1.316 

12..141 

1.519 

15.673 

1.689 

19.072 

1.836 

22.395 

1.963 



Table III. Properties of the Residues of the Elements of S at a Pole 
:::: 

0. Re k 1 1m ki r 'Y 1/{ii,) i/ 2 y2/ (~) t/2 2/-'Yt J.1 

0.005 7.5842 -0.0010 0.030 -0.1411- o. 1026 i to
3 

(-0.8867 + 0.8780i) +0.009+ 0.029i 

0.100 7.5784 -0.0214 0.648 -0.6113- 0.5150i to
3 

(-0.9609 + o. 7782 i) +0.108 + 0.630 i 

0.200 7.5776 -0.0454 1.377 -0.7959- 0.8120i 
3 • 

10 (-1. 0138 + 0.6358 i) -0.026+ 1.292i 
.. 

10
3 

(-1.0520+ 0.4835i) 0.300 7. 577 3 -0.0716 2.169 -0.9248- 1.1077 i -0.372 + 2.049 i 

0.400 7. 5849 -0.0984 2.985 -0.9400- i. 3904 i iO~ (-!.0327 + 0~3045i) ·- i. 050 + 2.614 i 

0.500 7.5991 -0.1235 3.753 -0.8714- 1.6444i 10
3 

<-.0.9526+ 0.1314i) -1.945 + 2.866 i 

i_3l 

\,, .. 

r{b=i.O}/r 

1.020 

i.019 

i.018 
. ! • 

1.015 ' 

1.013 

!.011 
I 
00 
U'1 
I 

Cl 
() 

~ 
I 

...... 

...... 
0 
~ 
0 
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Fig. 1. 

Fig. 2. 

Fig. 3. 
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Figure Legends 

The topological structure of the .Riemann surface for N=3. 

The physical k 1 plane with its cuts. 

The physical k 1 plane for N=2, e 2 = 6, with the values of 

k 2 in italics. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

The physical k 1 plane and the sheets adjacent to the real axis. 

Analytic continuation o£ the unitarity relationships. 

The contour C for the integral, in V .1. 
· ...... 

2 
6(k1) as a function of k 1 for I A. 1 1a =50, k 1 ~ 30. 

Cross section and pole contributi?ns as functions of k 1. 

The phase of D as defined by Eq. (V .1) as a function of k 1 

for -x. 1 = 40, ). 2 =-50, and e = 100. Curve A corresponds to 

a= 0.005, curve B to a.= 0.5. 

Fig. 10. The various cross sections as functions of k1 for ). 1 = 40, 

).2 =-50, and e = 100. Curve A corresponds to a.= 0.005, 

curve B to a.= 0. 5. The inserts show a 1 1 (curve A) with an 

enlarged scale for k 1• 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 


