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October 21, 1963 

ABSTRACT 

Neutron yields from the bombardment of a Au target by 164- and 
16 

142 -MeV 0 ions have been measured at angular intervals of 15 deg 

from 0 to 165 deg. Neutrons with energy from 0 to 12 MeV were detected 

by means of nuclear emulsions with use of the internal-radiator method. 

The 0-deg-yield measurements were extended to a neutron energy of 

25 MeV by using a polyethylene radiator together with nuclear emulsions 

for neutron detection. The yields at 164 and 142 MeV are subtracted m 

order to obtain differential cross sections averaged over this energy 

interval, which are then transformed to the center -of-mass system. 

It is known that this reaction leads to fission in most cases, so that the 

problem of neutron-fission competition arises. The anisotropy coeffi

cient, a, defined by the expression W(8) = 1 +a cos
2 e, is about 1 for 

2-MeV neutrons and decreases rapidly with neutron energy. The distri

bution of neutrons is essentially isotropic above 6 MeV. This behavior 

disagrees with calculations of the angular distribution of neutrons from 

fission fragments, which are based on measured fragment angular dis

tributions. It is concluded that some neutrons are emitted from the 

system before fission occurs. Calculations of the ratio of the neutron 

to fission width agree with this conclusion. The use of the internal

radiator method of neutron detection requires that the escape probability 

for protons from the emulsion layer be evaluated. Measurements of 

the multiple scattering of stopping protons, which were used in evalu

ating this probability, are reported in Appendix II. These measure

ments are in agreement with theory. 
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I. INTRODUCTION 

There are two differences between reactions induced by heavy 

ions (A~ 4) and t):10se induced by light particles, which account to a 

large extent for the interestin heavy-ion reactions. First, the angular 

momentum can be very large. In this experiment, where Au 197 nuclei 

are bombarded by o 16 ions of approx 152 MeV, angular momenta as 

high as 9011 are involved. Second, compound nuclei with very high ex

citation energies (> 100 MeV) and with relatively definite initial condi:.;. 

tions may be formed. If light particles with this much energy are u_sed 
., 

. . 'f .. 
for bombardment, an initial "cascade" takes· place before the energy," 

initially concentrated on one or a few nucleons, becomes uniformly 

distributed among the nucleons of the compound system~ Several nu

cleons may be emitted during this cascade stage, thus complicating the 

interpretation of the reaction. 

Throughout the discussion, the concept of a compound nucleus is 

applied. The assumption is made that a nuclear reaction can be divided 

into two independent stages: (a) the formation of the compound system, 

and (b) the decay stage .. , The, mode of decay is assumed to depend only 

on the energy, angular momentum, and parity of the compound system. 

These assumptions hold only approximately for the case considered 

here. Direct-type interactions such as a. stripping contribute to the 

total reaction. Furthermore, it is possible for particles to be emitted 

from the system before the energy. is shared among all the nuclei; i. e. , 

in a period of time shorter than the relaxation time for the nucleus. 

Certain types of reaction products may be interpreted in terms of the 

compound-nucleus picture, whereas others may not. Alpha particles 

from this reaction are peaked strongly forward, 1 which indicates a 

direct component of the a spectra about twice as large as the evapora

tion component. For neutrons, measured in this work, there is no 

evidence of forward peaking. 

A compound nucleus may decay :ln many different ways. Let 

P )E, U)dE be the probability per unit time that a nucleus with excita

tion energy U emits a particle of type v with energy between E . and 

E +dE. An application of the principle of detailed balance leads to the 
. 2 express1on 
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(25 + 1)1-L Err p (U- E - E)dE 
p (E, U)dE = v v v v s 

v lT21i3 p (U) 
c 

where (25 + 1) is a statistical factor, v 
S is the spin of v, v 
1-L is the reduced mass, v 
rr is the cross section for the time-reversed process, v 
p (U -E -E) is the density of states of the residual nucleus, the v s 

argument is its excitation energy, and 

E is the energy necessary to separate the evaporated particle 
s 

from the compound nucleus. 

The density of states of the initial nucleus is symbolized by p (U). 
c 

This-·bas'ic equation of the statistical model requires a knowledge of the 

time-reversed cross section rr , and of the level density of the com-
v 

pound nucleus. Here, rr v is not measurable because it refers to re-

actions of the decay product on excited nuclei. Neutron cross sections 

are not expected to vary appreciably with the excitation energy of the 

nucleus so that the geometrical cross section 'IT r 
0 

2 
A 213 is satisfactory. 

The level density is generally assumed to be of the form 

1/2 
p(U)o: e2(aU) , 

where a is a constant. If angular momentum is explicitly included, 

this level-density formula is altered, as discussed in Section III. 

For heavy nuclei, the emission of charged particles is so inhibited 

by the Coulomb barrier that neutron emission dominates the de-excita

tion process. For the reactions studied in this experiment, fission 

occurs about 80% of the time, 3 and, of course, an interpretation of the 

neutron spectra cannot be made without examining the effects of fission. 

Measurements of the charged-particle spectra for this reaction 

have been made by Britt and Quinton
1 

and by Reames. 
4 

The angular 

distribution of the fission fragments has been measured by Viola. 
5 

and 

the angular and energy distributions have been measured by Britt and 

Quinton. 3 Yield-mass and yield-charge distributions for the neighbor

ing reaction c 12 +Au have been studied by Blann,
6 

and by Thomas et aL
7 
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Measurements of the total neutron yields for the similar reactions 

C 12 +Au and Ne2° + Au have been made by Hubbard et al. 
8 

The energy 

and angular distributions of neutrons have been made by Breck, 9 who 

used surface-barrier counters for detection of the recoil-proton energy 

spectrum, and differentiated this to obtain the neutron spectrum. 
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II. EXPERIMENTAL PROCEDURE 

A. Emulsion Exposure 

1. Beam Geometry 

The experimental arrangement is shown in Fig. 1. It is designed 

to obtain a well-collimated beam of small profile at the target and, at 

the same time to do everything possible to minimize the neutron back

ground that originates when the beam hits matter other than the target. 

The 0
16 

ions leave the accelerator with an energy of 166 MeV. A 4-in. 

quadrupole lens focuses the beam at the target. The object for this 

lens is a 0. 5 -in. -diam collimator placed near the Hilac exit. A 1-in. -

diam carbon collimator placed 21 in. in front of the quadrupole lens 

eliminated all beam particles that would scatter from the beam pipe at 

a point closer to the target. This collimator was located 17 5 in. from 

the emulsion detectors, so that the solid-angle factor for neutrons 

originating in the collimator was very small (the target-to-emulsion 

distance was 8 in. ) . To further reduce the background from this slit, 

about 3. 5 ft of paraffin shielding was placed between it and the emul'sion 

detectors. 

In order to tune the beam, we placed a quartz crystal with a thin 

aluminum foil on the beam side in the target position and viewed it from 

the downbeam side with a television camera. The foil and crystal formed 

the back of a Faraday cup, so that beam measurements could be taken 

while we were viewing the crystal. The beam diameter measured in 

this way was ~ 1/4 in. The beam pattern at the target was observed 

several times between runs, and no changes were detected. If the quad

rupole lens is adjusted to focus a parallel beam, the position of the beam 

at the target is insensitive to the position of the beam in the object 

diaphragm; thus, any wandering of the beam leaving the accelerator 

would not alter the position of the beam at the target. 

The beam was measured by using a Faraday cup. This cup was 

a tube 2-3/4 in. in diam and 15 in. long with 1/32-in. walls, insulated 

from the beam pipe by Teflon insulators specially shaped to reduce 
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·~ 
Paraffin shielding 

~ in.-diam 

Emulsion 
detectors 

collimator .. l 
1-----205 in .. ------~o--------125 in .. ----------1 

MU-30018 

Fig. 1. Experimental arrangement for neutron detection with 
emulsion used as both detector and radiator. 
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leakage current. The rear end of the tube was cut at 60 deg to its axis, 

and a brass ring was soldered on to support the target. The thick Au 

target ( 132.5 mg/ cm
2

) formed the back of the Faraday cup. 

2. Neutron Detection 

We detected neutrons by means of nuclear emulsions, using the 

internal recoil method. The 1X 3 -in. glass -backed emulsions were 

placed a distance of 8 in. from the target at 15-deg intervals from 0 

to 165 deg. The plane of the emulsion contained the radial line from 

the target, and the 3 -in. edge was perpendicular to this line. The 

1/32-in. brass front covers of the cameras stopped most of the charged 

particles from the target. The emulsions used were 600-f.L Ilford type 

K-'2 and K--5. In some cases the plates were exposed in pairs with the 

emulsion faces together. This greatly reduced the flux of charged 

particles entering the surface of the emulsion, and thus increased the 

ease of scanning. 

3. Arrangement of External-Radiator Experiment 

The experimental arrangement for measuring the neutron yields 

by using an external radiator is shown in Fig. 2. The beam geollletry 

was similar to that in the internal-radiator setup except that the quad

rupole -to -target distance was shorter. The beam was measured by 

using a Faraday cup. The thick Au target, which formed the back of 

the Faraday cup, was backed by a 3/32-in. thick piece of lead, which 

stopped charged particles originating in the target. A polyethylene 

radiator was placed 14 in. from the target in the forward direction. 

Nuclear emulsions located 6 in. from the radiator at angles from 20 to 

30 deg to the beam direction were used to detect the recoil protons. 

The polyethylene shield in Fig. 2 protected the emulsions from neutrons 

coming directly from the target, which would blacken the emulsions if 

not attenuated. 

All protons entering the emulsion surface are assumed to originate 

from n-p collisions within the polyethylene radiator. Those not origi

nating in this way constitute background. The amount of background 
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VACUUM CHAMBER 

MU-30019 

Fig. 2. Experimental arrangement for neutron detection with 
the use of an external polyethylene radiator. 
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present could thus be estimated by replacing the polyethylene radiator 

by a dummy radiator containing no hydrogen. For this purpose, a thin 

carbon sheet, containing the same number of C atoms per cm
2 

as the 

polyethylene radiator was used. This did not exactly simulate the poly

ethylene in that it was less effective in stopping protons passing through 

it. However, this effect is not large because most of the background 

protons entering the emulsion surface probably originate in the walls 

of the vacuum chamber, and the total correction is only 9.4o/o. 

The target-radiator -detector system used is a compromise be

tween the intensity problem encountered with t'oo "tight" a geometry 

and the problems of inaccuracy arising from too open a geometry. 

B. Beam Energy 

The Hilac accelerates ions to a velocity corresponding to 10.4 

MeV per nucleon. This velocity is fixed by the length of the drift tubes 

in the accelerator cavities and cannot be altered (except that half

velocity particles can be obtained). The charge of o 16 ions exiting the 

accelerator is generally six, but may be five or seven, or some combi

nation of these. Thus, for reliable beam measurements, it is best to 

use a stripper foil that reduces the beam to a known charge. 

Runs were made at 164 MeV and at 142 MeV. For the full-energy 

runs, a 0.1-mil Al stripper foil was used; for the 142--MeV runs, a 

1. 7 -mil degrader-and-stripper foil was used. The beam energies were 

measured by observing the particle ranges in nuclear emulsion. Ilford · 

type C -2 glass-backed emulsions were exposed to the beam with the 

emulsion surface at an angle of 5 deg to the beam direction. The par

ticle ranges were measured under high magnification with the use of a 

calibrated eyepiece reticle. The range -energy relation of Heckman 

et a1. 10 was used to determine the energy of the particles. The follow

ing corrections were applied to the measured ranges: (a) Emulsion 

density corrections were made according to Barkas.
11 

The emulsions 

were exposed in vacuum so that the volume through which the ions pass, 

being near the surface, was assumed to be "dry" (density 4.05). (b) 

One mean grain diameter (0.35 iJ.) is subtracted to correct for the ex

tension of the first and last grain of the track. 11 The results of these 
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energy measurements are given in Table I. Comparison with the meas

urements by Nor,thcliffe 
12 

are made. The two lowest-energy runs were 

not used in this experiment. The measured energy straggle includes 

the effects of range straggling in the emulsion(:::: 1%). 

Table I. Comparison of measured and calculated beam energies. 

Nominal Measured 
degrader thickness 
thickness 

2 
(mils) (mg/ em·) 

0.1 0. 70 

1.7 12.22 

3.2 22.22 

4.25 28.22 

Calculated 
energya 

(MeV) 

141.0 

115.3 

97' 7 

Measured 
energy 

(MeV) 

164.0±0.6 

141. 9±0. 7 

115.6±0.5 

97.1±0.6 

Energy 
straggle 

(MeV) 

2.5 

2.6 

2.5 

2.7 

a These values were obtained with use of the range measurements for 

heavy ions in aluminum by Northcliffe. 

C. Shrinkage Factor of the Emulsions 

Emulsion shrinks during processing. The fact that the pellicle 

1s mounted on glass constrains the shrinkage to the z direction. The 

shrinkage factor, which is the ratio of the thickness of the unprocessed 

to the processed emulsion, was measured in the following way: The 

unprocessed emulsion contains some naturally radioactive substances. 

Some decays occur during the storage time of the emulsion and leave 

identifiable tracks. The range R of these tracks in emulsion after 

processing satisfies the relation 

2 2 
s z ' 

where i_ is the projection of the range in the plane of the emulsion, 

s is the shrinkage factor, 

and z is the projection of the range on the normal to the emulsion. 
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Thus a plot of 1
2 

vs z
2 

gives a slope equal to s
2

. The most useful 

decays are from Th C', which has an unusually large Q value of 8. 776 

MeV. These decays can easily be identified because the a range ex

ceeds that of any other common decay by 9 j..l.· This extra length also 

yields more accurate measurements. Ra C' events were also found to 

be useful for these measurements. 

If the emulsions are processed shortly after manufacture, it may 

be difficult to locate a sufficient number of events. 

Figure ·~ is a plot of 1
2 

vs z
2 

for one plate; the line is a least

squares fit that gives a slope corresponding to s = 2.46 ± 0.06. This 
13 

method has been suggested by Barkas, ,but apparently had never been 

applied in practice. 

D. Em.ulsion. Scanning and Data Analysis 

1. Internal Radiator Method 

In the internal-radiator method, the analysis is based on neutron

proton co~lisions that occur in the emulsion. If the direction of the in

coming neutron is known, then its energy is given nonrelativistically by 

E =E (R)/cos
2 e, n p 

(1) 

where R is the measured range, e is the angle between the neutron 

and proton directions, and E (R) is the energy of the recoil proton. 
p 

A measurement of R and e completely specifies the energy of the 

neutron. An analysis based upon the measurement of both R and e 
and'a subsequent calculation according .to Eq. (1), is called the indi

vidual-track method. The traditional method of measurement and 

analysis, called the average -angle method, is to choose a small cone 

of acceptance in the forward direction and reject all tracks outside this 

cone. 
14 

The energy of the neutron is taken to be a value that represents 

an average for all neutrons producing a proton with range equal to that 

of the measured proton. The main disadvantage to this method is that 

the small cone of acceptance results in a large error in determining 

which tracks lie within the cone; its main advantage is the ease of 

analysis. We used a coordinate readout microscope. together with 
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400 

200 

0 
0 

MU-32817 

Fig. 3. Plot for the determination of emulsion-shrinkage factor. 
The projected range squared, £2, in units of the eyepiece 
reticle (1 R. V. = 1.306 fl.) is plotted against the square of 
the z extent of the track. The line shown is a least-squares 
fit, which gives a shrinkage factor equal to 2.46 ± 0. 06. 
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digital computers for analysis. This allowed us to use the individual

track method without spending an unduly large amount of time in meas

urement and analysis. The fractional uncertainty of the neutron energy 

caused by an error in angular measurement d8 is, according to Eq. (1), 

dE 
n 2 tan ede. 

En-

Because the error increases without limit for large e, it is necessary 

to choose an acceptance cone and use only protons with e < e . The 
max 

neutron flux through the emulsion is given by 

F(E ) = 
n 

n 
c 

dE n (J' ( E ) C [ 1 - P ( E , e ) ] 
n p np~ n n max 

where n is the number of protons per cm
3 

in the emulsion, 

(2) 

p 2 
F(E )dE is the number of neutrons/ em traversing the emulsion 

n n 
with energy between E and E +dE , 

n n n 
n is the number of proton recoils per em 

3 
of emulsion that corre

c 
spond to neutron energies between E and E +dE and which have 

n n n 
e < e , 

max 
CJnp(E) 1s the_ total-n..,-p :c:ross _section for neutrons_ oLepergy.En' 

c is the fraction of all recoil protons that have e < e , 
max 

and P(E , e ) is the probability that a proton produced by a neutron 
n max 

of energy E and lying in the cone e < e leaves the emulsion. This 
n max 

quantity is discussed in Appendix II. 

The factor C can be easily determined if the scattering is isotropic 

in the center -of -mass system (this assumption is accurate for neutron 

energies ~ 14 MeV). Then the c. m. distribution P(e':<) is 

where e':< is the scattering angle in the center-of-mass system. The 

laboratory-system distribution is then given by 

P(e)de 
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With e':' = 2e, we have 

P(e)de = 2 sinecosede 

and 

J
ema~ 

P(e< e ) = 2 sinecosede= max 
0 

.2/) 
Sln o ; 

max 

hence, C = sin
2

e . 
max 

For a center-of-mass distribution of the form~~ ex: 1 + 2A cos 2 e':' (a 

P wave contribution to the scattering has been added;), the correspond

ing result is 

1/C = 
1 + 2/3A 

This is the form used in this analysis, with values of A given by 

Gammel. 
15 

The neutron yield, Y(E, E , 8), for an incoming beam 
n 

energy E at laboratory-system angle e is defined as the flux per unit 

solid angle per unit neutron energy divided by the total number of in

coming particles; thus 

Y(E,E ,e)= 
n 

F(E ) 
n 

2 
r N 

(3) 

where F(E ) is measured for a beam energy E at laboratory-system 
n 

angle e. Here, r is the target-to-detector distance, and N is the 

total number of incident beam particles. If we know these yields at 

two energies E 1 and E 2 , we may calculate an average cross section 

over the region E
1 

< E < E
2

. This is given by 

d2u Y(E 2,E~,8)- Y(E 1 ,En,8) 
-'---- = 
dr.ldE Ao 

n (R(E 2 ) - ~(E 1 )] p::-

where R(E) is the particle range in the target material in g/ cm
2

, 

A 0 is Avogadro's number, and A is the atomic mass of the target 

nucleus. 

a. Emulsion scanning. 

( 4) 

Scanning was done with the use of a digital coordinate readout 

microscope the output from'whic'h is recorded on IBM cards. Three 
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analog-to-digital converters, connected to the three coordinate screws 

of the microscope, transform their angular positions to digital electri

cal form. This binary information is then converted to decimal form 

and fed to an IBM card punch. The coordinates are punched in fixed-_ 

point decimal form in units of microns for the x andy coordinates and 

in units of 0. 6 micron for the z coordinate. The scanning procedure 

is as follows: The scanner begins by recording the z coordinates at 

the top and bot tom of the emulsion at some standard point. This meas

urement relates the thickness of the emulsion at the time of scanning 

to that at the time shrinkage factors were measured. Next the "fiducial 

point" of the emulsion is recorded. This is the point at which the target

to-emulsion line intersects the front edge of the emulsion normally 

(Fig. 4). Track scanning begins at a point 2 mm from the front edge 

of the emulsion to avoid the excessive edge distortions. 

To determine the volume of emulsion scanned, the scanning pro

ceeds by "fields of view," which are sequentially numbered and recorded 

on the IBM cards. A field of view consists of a volume of emulsion ex

tending from the top to the bottom of the emulsion and defined in the xy 

plane by lines on an eyepiece reticle. Each proton track that originates 

in the field of view is measured. Thus, after a track is measured, the 

x and y coordinates must be returned to their original positions. This 

process was greatly facilitated by use of a ball-bearing device in the 

lead-screw control knob and readout dial assembly, which allows the 

scanner to return readily to the original center coordinates of the field 

of view. This apparatus is shown in Fig. 5. 

The position coordinates of a track are recorded at its origin, at 

a second point chosen to give the best measure of the orientation of the 

track, and at as many subsequent points as are necessary to determine 

the range. 

b. Track analysis 

The emulsion-target geometry is shown in Fig. 4. We define the 

following quantities: x
1

, y
1

, z
1 

and x 2 , Yz• z 2 are the coordinates of 

the beginning of the proton track and the second point measured, re

£erred to the emulsion axes, which are aligned with the movement of 

the microscope stage; 
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Emulsion plane 

\~~;)~Track 

'V 
\ 

\ "" Fiducial point 

\ 
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Target 

MU-32818 

Fig. 4. Two drawings illustrating track and emulsion geometry; 
see text. 
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MU-32819 

Fig. 5. Apparatus, designed by James C. Hodges, to return 
microscope stage to a predetermined position. For complete 
discussion of microscope stages, the reader should refer to 
the report of Hodges. 31 The parts of the lead-scr.ew dial are 
shown separated for viewing. A ring with a radial slot in it is 
recessed into the lead-screw housing. A clutch, consisting of 
a broken ring with an eccentric to spread it, locks the ring when 
engaged. When the clutch is not engaged, the ring rotates freely. 
A ball bearing is attached to a leaf spring that is fixed on the lead
screw dial. When the apparatus is in its assembled position, the 
spring forces the bearing against the slotted ring. The principle 
of operation is as follows: With the clutch disengaged and the ball 
bearing in the slot, the slotted ring rotates freely with the lead
screw dial. The scanner engages the clutch when the lead screw 
is in the initial position, A. Now when the lead screw is turned, 
the ball bearing leaves the slot and rides along the ring without 
rotating it. When the lead screw is returned to position A (or, 
this position plus an integral number of turns), the ball bearing 
snaps into the slot in the ring, thus indicating to the scanner 
that the microscope stage is in its original position. 
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a.' is the angle between the projection of the proton track in the 

xy plane and the y motion of the microscope stage; 

a.
0 

is the angle between the neutron direction (which is in the 

emulsion plane) and the y motion of the microscope stage; 

d is the target-to-fiducial distance; 

'I is the angle between the track direction and the emulsion plane 

(dip angle); 

and xf, Yf are the coordinates of the fiducial point. 

Then f;om Fig. 4, we see that 

2 2 2 2 
COS (}=COS (a. 1 

- a. 0 ) COS '1 = [(cos 0. 1 COS a. 0 + sina. 1 sina.
0

) COS '1] . 

In terms of measured quantities, we have 

coso.'= 

and 

Putting these into the above equation, we have 

2 
cos e = 

( 5) 

The angle a. never becomes larger than approx 1/8 radian, and hence 
0 

we can neglect quantities of order a. 2 with an error of less than 1 in 
. 2 ° 2 

64. Thus we neglect (x 1 - xf) compared with (d + y 1 - yf) . Further-
2 

more, (y 1 - y f)/ d never exceeds 1/16, so that (y 1 - y f)(x 1 - xf)/ d can 

be neglected. Making these approximations, we get, after rearranging 
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[ IY2 - Y1 1 + (x2 -x1 ) (x; -xf)/d]
2 

R2 

where R is the range of the first measured segment of track, i.e. , 

These equations together with the total proton range allow us to deter-
2 

mine the energy of the neutron as well as cos e. We also wish to find 

the azimuthal angle ljJ. This is found from the two relations 

sinljJ = 
s in 'Y S ( z 2 - z 

1 
) 

= --------=-~~ 
sine R(1-c~s 2 e) 1/ 2 

and 

cos ljJ = 

The signs of sin.lJJ and cos ljJ determine the quadrant of ljJ, so that the 

above two equations completely determine ljJ. The data cards were 

processed by an IBM 650 computer. The computer was programmed 

to tabulate the following information: 
2 

( 1) For each track the values of E , cos e, and ljJ. 
n 

(2) Tables of the number ·of tracks recorded in each 10-deg interval 

of ljJ withE in each of three chosen intervals, and the ljJ distribution 
n 

of all the tracks. 

(3) Tables of the number of tracks recorded in each 0. 01 interval of 

cos
2

e withE in each of three chosen intervals, and the cos
2

e distri
n 

bution of all the tracks. 

( 4) Tables of the number of tracks recorded with E in 0.1-MeV n 
intervals from 0 to 10 MeV, and 1-MeV intervals above 10 MeV. Also 

the neutron yield, calculated according to Eq. (3) and its statistical 

error. These calculations were tabulated for each two chosen cones 

of acceptance, defined by e
1 

and e
2 

. . 
max· max 
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2. External Radiator Method 

In this case the proton recoils from the radiator enter the emul

sion surface with dip angles of about 15 deg. The method of scanning 

is simply to measure the range of each track that enters the emulsion 

surface within a given area A. The relation between the number of 

tracks counted and the neutron flux at the radiator is derived in Appen

dix I [Eq. ( 13)]. The neutron yield is then given by 

2. d 2N 
d y . 0 

d~dE dQdE 

X 1 
r 2N ' 

where d
2

N
0
/drldE is the neutron flux at the radiator as given by Eq. 

(13). Here, r
2 

is the target-to-radiator distance, and N is the total 

number of incident beam ions. 

3. Background Analysis 

With the individual-track method of analysis one can compare the 

observed angular distributions of the proton tracks with that required by 

the known n-p differential cross section. Deviations from the required 

distributions are indications of background. The proton distribution 

with respect to both cos
2 e and l); must be uniform. As before, e and 

l); are the polar and azimuthal angles between the proton direction and 

the direction to the target. An analysis of these distributions showed 

no systematic deviations from uniformity other than those imposed by 

the finite mesh size of the coordinate readout. A still more sensitive 

test is the following: All recoil protons must be going away from the 

target. For protons with energy greater than 2 MeV, the direction of 

motion can be visually determined and this test applied. This test is 

especially sensitive for emulsion plates located at angles near 180 deg 

with respect to the beam direction. Here the neutron flux from the 

target is smallest, and also the background is expected to be coming 
-

from the direction of the accelerator, which is in the direction opposite 

to the target. Thus, for these emulsion plates the background is expected 

to be going predominantly towards the target and is therefore easily 

detected. It is estimated by this method that the background flux is 

less than 3o/o of the total neutron flux. 
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4. The Center-of-Mass Transformation 

The yields at each lab angle were least-square fitted to the form 

B 2 
Y(E) = AE exp(CE +DE ), 

where E 1s the neutron energy. This form was suggested by the 

Weisskopf, Maxwell, and LeCouteur distributions discussed in later 

sections. 

values of 

It includes these three distributions. It gives reasonable 
2 x . This form is meant to be used only as an interpolation 

formula, so that the center-of-mass transformation program described 

below could be carried out. The c. m. transformations were then done 

in the following way: First a c. m. energy is chosen arbitrarily. Then 

fo.r each laboratory-system angle, the corresponding laboratory-system 

energy and c. m. angle were found. The laboratory-system cross sec-'

tion is then determined from Eq. (4) and transformed to the c. m. sys

tern. The laboratory-system energy corresponding to c. m. energy E':< 

is 

[ 
I I 

] 
2 12 2 ·'· 12 E = T cos()+ (T cos ()+E''"-T ) 

en en en 

where T is the laboratory-system kinetic energy of the compound en 
system divided by its mass in units of the neutron mass. With this 

equation and the relations, 

sine* o (~* tz sin 9 

and 

( 

>:< )112 ... ... E 
a (E···, e···) = - a (E, fJ) , 

c.m. E 
(6) 

one can make the transformation. The value of T used is an average 
en 

for beam energies between 142 and 164 MeV computed from 

~ 112) = 1164 71/Z(E) u (E) F(E) dR dE ' 
'\en en en dE 

E=142 

where a 1s the eros s section for compound-nucleus formation, F(E) 
en 

is the average number of neutrons emitted, and R(E) is the range of an 
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21 oxygen ion in Au. Values of (]' used were· calculated by Thomas. 
en . 6 8 

The value F(E) = 9 + E -142/11 was used. ' 

5. Systematic Errors that Affect the Normalization 

The following errors were considered for the estimation of the 

overall error in normalization: 

a, Target-to-emulsion distance: The maximum error in centering 

the beam· is about 1/8-in.; this results in an error of 3o/o. 

b. Beam integration: Comparison of beam measurements by a 

Faraday cup with Rutherford scattering by Gilmore 
16 

under similar 

circumstances indicate that the Faraday-cup readings are reliable to 

within about 4o/o. 

c. Shrinkage factor: One effect of this error is to change the size 

of the cone of acceptance. To first order in small quantities, this 

affects the yields by the same factor as the error in the shrinkage 

factor (~2-1/Z.o/o). The other effect of this error is to change the esti

mate of the volume of emulsion scanned. This error is in the same 

direction as the cone error. Hence the total effect on the yield is 

approx 5o/o. 

d. Hydrogen density of emulsion: This error is estimated to be 

about 2o/o. 

e. Errors in escape probability: These are discussed in Appendix 

II. The errors are small and are neglected. 

f \ The n-p cross sections: These are very well measured. The 

errors in this cross section are neglected. 

g. Background: This is discus sed in Section II. D; the value of this 

error is approX 2%. 

It is assumed that the above errors add randomly. The resulting 

error in the normalization of the yields is then given by the square 

root of the sum of the squared errors, as can be seen fro;rn Eqs. (2) and 

(3), which involve the above quantities as factors. The resulting nor,

malization error of the yield _ is approx 7. 8o/o. 

The eros s section is given by Eq. ( 4), 

(]' = Y(164 MeV) - Y(142 MeV) 

[R(164) - R(142)]~ 
0 
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The error in CJ is then 

2 
ou =(f.[oY(164)

2 
+ oY(142)

2
]

1
/

2
} + 

u l [Y(164) - Y(142)] 

. I 12\1/2 ~[oR(164) 2 + oR(142)
2

]
1 2 

) 

l [R(164) - R(142)] 

The yields at 142 MeV are about 1/2 those at 164 MeV. Replac

ing 1/2 Y(164) = Y(142), we have 

{[
6Y(164)]

2 
+ ..!.)[6Y(142)]

2 

ou= Y(164) 4 Y(142) + 
(J ( { 

.! 1/2 

[
6R(164)

2+ 6R(142)
2

] ~ . 

[R( 164) - R(142)] 2 J 

The second term under the radical is negligible compared with 

the first. Then our final estimate in the normalization error is 

ou - = 17.5o/o. 
(J 
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III. RESULTS AND DISCUSSION 

A. Experimental Results 

Figures 6 through 12 show the measured yields. Figure 6 shows 

a comparison of yields obtained by external and internal radiator methods. 

The normalization between the two methods is good. The errors shown 

are statistical errors in the number of tracks counted. The main .results 

of these measurements are illustrated by Fig. 13, which shows the an

gular distributions of neutrons in the center-of-mass system, and by 

Fig. 14, which displays the energy dependence of the neutron spectrum 

in the center-of-mass system. The curves shown in Fig. 13 are least-

* 2 * square fits to the form cr(e ) = cr(90 deg)(1 +a cos 8 ). The cross 

section averaged over angle is then cr(90 deg){1 +a/3). A summary of 

values of cr(90 deg), a, and the cross section averaged over angle is 

given in Table II. 

E 

1.5 

2 

4 

6 

8 

Table II. Values of the cross section at 90 deg, the anisotropy, 

and the cross section averaged over the angle for various 

values of the neutron energy E. 

cr {90 deg) 

(mb/MeV -sr) 

183 :;1:,39 

176 :;:1:.37 

119. :;1!:..14 

53.8:±: ..4.5 

· 2L9 ± 2:.:1 

a 

1.05 ± 0.32 

0.81 ±0.32 

0.159±0.19 

0.047 ±0.145 

0~099±0~158' 

Average eros s section 

cr =cr (90 de g)+ a/3 
a 

247 

224 

125 

55 

22·;"/ 
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Fig. 6. Neutron yield in the laboratory system at 0 deg for 164-MeV 
o16 ions on a thick Au target. Triangles and circles designate 
points obtained with the use of internal and external radiator 
methods. 



-25-

I 

t 
! 

it 

10-5 ~ 

ht e = o• 
lob 

i !} i ! 

}i 
Blob=l5o t 

I}~ ! 

! ! 

:;; ! ! 

1 
I 

~ Blob =30• 

! i ~ 
' H "'0 
Qj 

I I 
>= t i i 

t 

' j 
Blab=45• 

Beam energy 

164 MeV 

0 12 

Neutron lob energy (MeV) 

MLIR-225S 

Fig. 7. Experimental results: The neutron yields are shown 
as a function of laboratory-system energy for laboratory
system angles shown. The absolute yields are indicated 
for the uppermost curve. Successive curves are displaced, 
each by one order of magnitude. 



-26-

I I I I I 

I 
! 

! 
10-5 ! 

I- Blab =60o ! f 
-

r-
r- ! i 

I I t ! 
~ 

I- -
r- B =75° 

± r-- lob 

r- I !lj • 
! r--

! 
:;; 

! I r- -
> 

~ Blab=90o l -
"' ::;;: 

..... 

i ~ r--
"' >= 

r--

HI I- -
! 

Blob= 105o 
f 

r--

f ! 
r--

I- I -

r-- Beam energy 
r--

164 MeV 
r--

r--

I I I I _l 

0 2 4 6 8 10 12 

Neutron lab energy {MeV) 

MUB-2259 
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Fig. 13. Center-of-mass angular distribution for neutrons. 
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Fig. 14. "Temperature plot" assuming a center-of-mass 
distribution of the form given by LeCouteur [Eq. (8) of 
this paper]. The line shown gives 

2 
d CT = 415 ES/11 -E/2.08 b/M V-dndE e m e sr. 
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B. Angular Distributions 

There is no evidence of forward peaking. In fact, there seems to 

be a tendency to peak backwards. This could be a result of incomplete 

momentum transfer to the compound system. For those reactions with 

incomplete momentum transfer, the velocity of the compound system 

would be overestimated, with the result that neutrons would appear to 

be peaked backwards in the compound system. Sikkeland et a1.
17 

have 

observed that incomplete momentum transfer occurs in a significant 

fraction of heavy-ion-induced fission reactions. 

With the nuclear evaporation theory one is able to predict the 

effects of angular momentum on the decay of the compound system. 

The density of states for the nucleus then depends on angular momentum, 

J, as well as on energy, and is predicted to be of the form 2 

p(U, J) = p(U, 0) (2J+1) exp[-J(J+1)/2a
2

] , 

where a 2 
=J T/11

2
; J/ and T are the moment of inertia and temper• 

ature of the residual nucleus. The parameter that describes the mag

nitude of the effect of angular momentum on the angular distribution is 
2 

JP./a , where P. is the orbital angular momentum of the emitted par-

ticle, and J is the spin of the initial nucleus. For Ji. /a 
2> > 1, the 

angular distribution has the form 

1 

sine':< 

For JP./a 2 << 1, there results W(e':<) o:: 1+a cos
2

e':<, with a=f-LR
2
Er

0
/2gT, 

where f-L is the reduced mass of the particles, R is the radius of the 

compound nucleus, and E is the rotational energy of the system. 
rot 

The distributions are more complicated for intermediate values. In 

our case, a 2 
is approx 340 for the first evaporation, so that the limit 

of small J f. /a 2 
should be applicable. This leads to srrialler values· of 

a than those observed. The effect does, however, increase somewhat 

for successive evaporations because the temperature decreases. Small 

values of Ji./a 2 
indicate also that there is little coupling between I and 

f., so that only a small amount of angular momentum is removed by 

neutron evaporation. (Unless J and P. couple their directions so that 
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they tend strongly to be antiparallel, no angular momentum is removed 

from the system.) At the last evaporation stage, therefore, the angular 

momentum is still large. A large amount of angular momentum must 

be disposed of, because at the lowest energies only low-spin states are 

energetically available to the residual nucleus. Therefore, there are 

expected to be large anisotropies for the low-energy neutrons. This 
18 19 effect has been observed by Allen and by Douglas and McDonald. 

It could be enhanced if the last prefission neutron and the last post

fission neutron from each fragment were all strongly coupled. In this 

experiment, the observed anisotropy increases strongly at low neutron 

energies. 

C. Energy Dependence of the Neutron Spectra 

The spectra result from multiple emission of neutrons; that is, 

there are several neutrons emitted per event. Le Couteur has given 

approximate forms for the energy distribution of neutrons from an evap

oration chain. 
20 

He finds for an assumed dependence of the temperature 

on the excitation energy, To: (U) 1/ 2 , that the distribution of neutron 

energies has the form 

d
2

a 5/11 --~ = canst X E exp( -E/T ff) , 
dQdE e 

( 8) 

where T ff is 11/12 of the temperature, T , governing the first 
e 2 . max 

evaporation. Thus, a plot of log(d a/dOdE)/E-5/11 vsE (Fig. 14) has 

slope equal to -11/12 T max· This gives Tmax = 2. 27 MeV, and for the 

level-density parameter a- -defined in the relation T =(aU/ A) 
1

/
2

- -one 

obtains the value 9. 73 Mev,- which is in good agreement with the usually 

assumed value (a::::: 10 MeV). In the above, we use cross sections av

eraged over angle, as discussed in Section III. A. Those neutrons 

emitted after fission are raised in energy by an amount equal to the 

energy per neutron mass of the fragments. This effect has been neg-· 

lected in this discussion. Also the effect of angular momentum on the 

energy spectra is ignored. This effect has been calculated to be small. 9 
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The total cross section can be estimated by integrating the form 

(Eq. 8) over energy. A least-squares fit to the data points leads to the 

energy dependence 

d 2a 
__ a_v = 415 E 5/ 11 e -E/2 · 08 mb/(MeV sr). 
dr.ldE 

Upon integration, this gives a total cross section of 12.3 b. This value 

is quite sensitive to the assumed form of the spectrum, so that this 

result maY well be in error by about 25o/o instead of the 17.5% normal

ization error calculated in Section II. D. This sensitivity reflects the 

fact that a large fraction of the neutrons are emitted with energies be

low the lowest energy measured in this experiment (1 MeV). The ratio 

of the total number of neutrons expected for these measurements to the 

number expected at beam energies of 164 MeV is calculated to be 0.82. 

In this calculation we used the cross section of Thomas
21 

and assumed 

that one additional neutron results from an increase of 11 MeV in ex

citation energy. The value for comparison with experiments at 164 

MeV, 15 b, lies between the values of 12.8 and 19.2 b given by Hubbard 

et al. 
8 

for carbon and neon, respectively, on Au. It is somewhat below 

the value of 2 5 ± 10 b given by Broek. 9 

D. Fis sian-Neutron Competition 

1. Experiment 

Measured angular distributions of fission fragments show large 

anisotropies. For 164-MeV o 16 ions on Au, the forward-to-90-deg 

ratio is about four. 
3

' 5 This anisotropy affects the angular distribution 

of neutrons evaporated from the fragments, and thus presents a pos si

bility for separating pre- and postfission neutrons. The following analy

sis of the neutron angular distributions measured in this experiment 

leads to the conclusion that some neutrons are evaporated before fission 

occurs. 

We now calculate the center -of -mass angular distribution expected 

for neutrons evaporated from the moving fission fragments. We assume 

that the neutron distribution in the fragment rest frame can be written 
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in the form 

(9) 

where eF is the angle between the direction of emission of the neutron 

and the f_ragment velocity, and where y, T, and a£ are adjustable param

eters. This distribution is first transformed to a coordinate system at 

rest in the compound system with polar axis along the direction of frag

ment motion. Then a rotation is made to align the polar axis with the 

beam direction, so that an integration over the fission-fragment distri

bution can be made. The details are given in Appendix III. Angular 

distributions were tabulated for several values of y, T, and a£" The 

calculated anisotropy increases with increasing neutron energy, and, 

at high neutron energies, is greater than that observed. The effect of 

increasing a£ was found, as expected, to increase the anisotropy. 

Some typical results are shown in Fig. 15. Curve D has the flattest 

distribution. The observed distribution at 8 MeV is flatter than that 

for curve D by only L 1 standard deviations. However, this curve with 

T = 2. u MeV leads to an average neutron energy of 4. 7 MeV, which is 

considerably higher than the observed value of 3.01 MeV. To obtain 

agreement with the average neutron energy, one must assume a tem

perature of 1. 5 MeV, which results in the more anisotropic curve A. 

This curve has a value of a that disagrees with the observed value by 

three standard deviations. This argument is summarized in Table III. 

It is seen that no value of the temperature can make both the anisotropy 

and the average neutron energy coincide with experiment, and thus the 

data are inconsistent with the assumption that all neutrons are emitted 

after fission occurs. 

It should be stressed that this is a purely geometric transforma

tion and that the results do not depend upon any details of evaporation 

theory, etc. Particularly, the "temperature" T is only a parameter 

that describes how fast the spectrum drops off with increasing neutron 

energy. It is not supposed to agree with the temperatures discussed 

in Section II. C. 
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Fig. 15. Neutron angular distributions calculated assuming 
postfission emission. Curves A and C are for Maxwell 
distributions, with T = 1. 5 and 2 MeV; B and D are for 
Weisskopf distributions at 1.5 and 2 MeV. 
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Table III. Comparison of calculated and observed values of the average 
neutron energy ( Ecs) and anisotropy a. E is the neutron energy, T 
the nuclear temperature, and T the fragment kinetic energy per neutron 
mass. No assumed value of T can make both ( Ecs) and a agree , 

· · with the observed values. 

Assumed distribution 
in fragment rest frame 

Mean energy 
in fragment 
rest frame 

W eis skopf: F(E)a: E e -E/T 

Maxwell: F(E) a: E 1/ 2e-E/T 

2T 

3/2 T 

2 
T = 0.71, F(EJ) = 1 +a cos e 

Curve A, Maxwell, 1.5 MeV 

Curve B, Weisskopf, 1. 5 MeV 

Curve C, Maxwell, 2.0 MeV 

Curve D, Weisskopf, 2.0 MeV 

Observed value 

Resulting dis
tribution in 
compound
system frame 

Feather 

Watt 

2.96 

3. 71 

3. 71 

4. 71 

3.01 

Mean energy 
in compound
system frame 

(Ecs) 

T + 2T 

T + 3/2T 

a (8 MeV) 

0.56 

0.46 

0.37 

0.28 

0.099±0.158 

It has been argued that the angular distribution of the high-energy 

neutrons should not be affected by the small velocities of the fragments 

from which they came, and should be nearly isotropic. This is notneces

sarely ±he:. case. :The anisotropyre.sn_lts because a given lq.bo-ratory energy 

E qnresponds to :a higher ·value of$':' at 90<:_.thahat 0". As is shown 

below, the quantity that characterizes the magnitude of the anisotrbpy 

is 2(E T f) 
1

/
2 
/T, where E is the laboratory energy at which neutrons 

are being observed, and 'T f is the energy of the fragment divided by 

its mass in units of the neutron mass. Only if this quantity is small 

compared with unity is the distribution isotropic. For fixed values of 

the temperature and the fragment velocity, the anisotropy increases 

· with the neutron energy. The following calculations shows this ex

plicitly. Consider a nucleus with kinetic energy per neutron mass T f' 
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and assume for simplicity that neutrons are being evaporated isotrop

ically with the energy dependence 

d
2

a a: (E':')1/2 e -E':'/T; 

dQdE':' 

.then, using the transformation factor (Eq. 6), we have 

2 
d <Tlab 

dQdE 

1; 2 {:..[E+Ts -2(ETs)
1

/
2
cose]} 

= E exp , 
T 

and we have for the ratio of the cross section at 0 deg to the 90 deg 

cross section 

2 
d <Tlab 

d~dE /

d2 
\ <Tlab I =exp{[2(ET )1/2]/T}. 
0 dDdE . 90o s 

Thus the higher the laboratory-system neutron energy, the more for

ward-peake~ is the neutron angular distribution. This result does not 

depend on the detailed shape of the assumed center-of-mass distribution. 

It shows why the conclusion--that some neutrons are not coming from 

moving fragments- -is supported most clearly by examining the angular 

distributions of these neutrons at high energies. 

2. Theory 

The problem of neutron-fission competition has recently been ex

tensively discussed by Huizenga and Vandenbosch, 
22 

who give for the 

ratio r n/r f the expression 

X exp {2a 
1

/
2

[(U -B' -E ) 
1

/
2 

n R 
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where U is the excitation energy of the compound system, 

A is the atomic mass, 

B 
1 

is· the neutron- binding energy corrected for pairing and 
n 

shell effects, 

ER is the rotational energy of the equilibrium nucleus, 

Ef 
R 

is the rotational energy of the saddle -point configuration, 

El 
f 

is the fission barrier for a nonrotating nucleus corrected 

for odd-even effects, 

a is the level-density parameter, 

K 0 = 'fl
2 /2mr~ , 

and m is the neutron mass. 

In this equation one assumes a level density of the form p=exp[2(aU) 
112

], 

with the same value of a for the level density of the saddle-shaped 

nucleus as for the neutron-emitting nucleus. R. Vandenbosch et al. 
23 

found it necessary to assume different values of a for the saddle

shaped and neutron-emitting nucleus in the interpretation of their results 

from the bombardment of heavy elements with 23 to 40-MeV a. particles. 

However, they conjecture that at higher excitations (such as those in

volved in this experiment) this difference should disappear. In the 

following analysis, we use the comrnonly assumed value a= A/10 per 

MeV. The quantities A 
2

/
3 

and a 
1

/
2 

do not change much during the 

course of an evaporation chain. It is convenient to consider them as 

constants. The ratio r n/r f then depends on just two variables: The 

first may be taken to be the excitation energy in excess of the saddle-
I f . 

point energy, Q = U - (Ef+ER)' and the second may be taken to be a 

quantity characteristic of the competition process, 
f I , I f i I 

En= (Bn+ ER) -(Ef+ER)~ This isanalogous to the quantity Bn- Ef 

considered in fission-neutron competition without angular-momentum 

effects. 22 

The nucleus at the high excitation considered here should be 

essentially free from shell and pairing effects, and therefore the shell 

and pairing corrections given by C~meron24 were subtracted from the 

masses given in the appendix of that work; that is, the masses used 

agree with Eq. (7) of reference 24. The resulting neutron-binding 

energies are a smooth £_unction of A and Z, and in the region of interest 

were found to fit well the empirical form 
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B' (Z,A) = 8.36-0.0888 [12.06- 2.906Z + 2(A-Z)], 
n 

which was used in these calculations. 
I f 

The quantity Ef + ER represents the energy of the saddle -point 

nucleus that is unavailable for intrinsic excitation. In using this ex

pression (Eq. 10), one assumes that the su:r:face and Coulomb energies 

of the saddle shape are not affected by angular momentum. This approx

imation is good only for small angular momenta. For large angular 

momenta, a more realistic expression for the unavailable energy is 

EfR + ER' where EfR is the fission threshold energy of the rotating 

nucleus. For numerical values of EfR and ER' we use the results 

of liquid -drop calculations recently made by Cohen, Plasil, and 

S . k' 25 M k' h b . . h w1atec 1. a 1ng t ese su st1tuhons, we ave 

and the expression [Eq. (10)] for r n/r f becomes 

f 
constX (Q-E ) 

n 

2a 1/2 o1/2 -1 

where a is now assumed to be constant, so that E f and Q are the 
n 

only two independent variables. 

In the approximation considered here, a nucleus is completely 

specified by its charge Z, its mass A, its angular momentum J, and 

its excitation energy U, so that E f depends only on Z, A, and J. 
' n . f 

ar;.d 17 show the dependence of E on A and J for Z = 87 
n 

Figures 18 and '19 then show the dependence of r jr f on 

Figures 16 

and Z = 85. 
f 

E and Q. A compound nucleus is formed with Q::::: 100 MeV and, with 
n ' 

each neutron evaporation, moves to the l'eft a distance B + Ek. t· + 6 · n 1ne 1c 
ontlJeiig•L.:<.;:; 6 i;:; a small quantity that represents changes in rotational 

energy and ifl the fission barrier resulting from the emission of a 

neutron. The probability that it fissions after each neutron emission 

is given by its position on Fig. 18. Its o.rdinate, E~, at any time is 

given by reference to Fig. 16. Typical average paths are shown in 
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Fig. 16. Values of the difference between the neutron binding 
energy and the fission barrier, Ef, as a function of the mass 
number A and the angular momenrum J of the compound nucleus. 
The curves are contours of equal values of Ef. The value of 
Ef in MeV is shown beside the contours. Z ~ 87. The strong 
dJlpendence of Ef on A reflects the strong dependence of the 
fission barrier t-n the fissionability parameter z2j A, and shows 
why r n/r f decreases with each neutron emission. 
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Fig. 17. Values of the difference between the neutron binding 
energy and the fission barrier, E~, as a function of the mass 
number A and the angular momentum J of the compound nucleus. 
The curves are contours of equal values of Eh. The value of 
E~ in MeV is sh~wn beside the contours. Z = 85. The strong 
dependence of En on A reflects the strong dependence of the 
fission barrier on the fissionability parameter zZj A, and shows 
why r n/r f decreases with each neutron emission. 
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Fig. 18. The solid curves without points are contours of equal 
values of the parameter r nfr f· The lines with points indicate 
"trajectories" for typical nuclei under various assumptions, 
as follows: Z = 87; Curve A: initial L = 85, ~L = -2; Curve B: 
initial L =57, ~L = 0; Curve C: initial L =57, ~L = -2; Curve D: 
initial L = 5, ~L = 0. 
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MUB-2267 

Fig. 19. The solid curves without points are contours of equal 
values of the parameter r n/r f· The lines with points indicate 
"trajectories" for typical nuclei under various assumptions, 
as follows: Z = 85; Upper curve: initial L =55, .6.L = -2; 
Lower curve: initial L = 40, .6.L = -2. 
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Fig. 18. For the curve C, for instance, one assumes an initial J of 

57 (this is the average initial value of J), and one assumes also that 

2 units of angular momentum are removed with each neutron evapora

tion. 

The average angular momentum removed in the process of emit

ting a neutron is not well established at the present time. A theoretical 

estimate can be made if a level density for rotating nuclei is assumed. 

For a level density of the form 

2 2 
p(U, J) = (2J+1)p(U,O) exp (-J /2CJ ), 

the average angular momentum removed by the first neutron is about 

1/211. {This value was determined from a computer program written 

by Donald V. Reames:) Calculations are made here for an average 

value of angular momentum removed of 0 and 211 to illustrate the de

pendence of r Jr f on this quantity. It is very unlikely that the average 

angular momentum removed by a neutron is greater than two, because 

such a large value leads to the conclusion that the neutron angular 

distribution is highly peaked in the forward and backward directions, 

contrary to experiment. 

The series of points on the graph (Fig. 18) at which successive 

neutron emissions of a single nucleus occur define a trajectory. When 

fission occurs, the trajectory ends. The probability of fissioning on 

the Nth chance is 

where w = 
N 

N-1 
PN = TI. 1 (1-W.)WN, 

J= J 

1 
1 + r /r , and the average number of neutrons emitted 

n f 

before the :nude.us fissions is 

n = 

n 
max 

N=1 

(N-1) PN. ( 12) 

Since the initial distribution of angular momentum and excitation ener

gies is approximately known, it would be possible to carry out Monte 

Carlo calculations to determine such quantities as the distribution of 
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the number of neutrons emitted and their energy distribution. However, 

because of the uncertainties in the theoretical parameters involved, etc., 

it seems sufficient to consider only. a few representative evaporation 

chains. First, consider a nucleus with angular momen~um equal to the 

average value for all nuclei (5711), and assume that each neutron carries 

away 2 units of angular momentum. The "trajectory," under these 

assumptions, is the curve C in Fig. 18. The average number of neutrons 

emitted before fission is 4.04. Nearly all nucleifission, and most of 

them fission after the emission of several neutrons. The value E f ln-
n 

creases with each neutron emission, and thus fission becomes more 

and more likely at successive steps in the evaporation chain. This in

crease in Ef is caused primarily by the increased fissionability of the 
n 

nucleus as its mass decreases. The small increase (::::: 1/2o/o) in the 

fissionability parameter, Z 
2

/ A, with the emission of a neutron influ

ences greatly the neutron-fission competition process, as can be seen 

by examining the effect of this on Ef (Fig. 16). This together with the . n 

consideration (see Fig. _18) that neutron emission is preferred at high 

excitation energies- -even if Ef is somewhat greater than 0- -explains 
n 

why neutron emission is favored at the beginning of the evaporation 

chain even though nearly all nuclei eventually fission. The dominance 

of neutron emission over fission at very high energies has been discussed 

by Perfilov et al. 
26 

Another factor that enters the overall pi!=ture for this reaction is 

the high cross section for direct a. emission, measured to be 0.54 b by 

Britt and Quinton. 1 Assuming that these alphas are involved singly and 

do not result from, for example, the breakup of a carbon nucleus into 

three alphas, then about 1 in 4 reactions involve a compound nucleus 

with Z = 85 instead of Z = 87. Fot this reason the dependence of r n/r f 

was calculated for Z = 85 (see Fig. 19) as well as for Z = 87. The differ

ence between these two cases is very great. In the :Z = 85 case, only 

about half the nuclei fission. This agrees with the measured fission 

cross section of 0. 9 b from the bombardment of Au by 120-MeV C 
12 

ion, which is approx 45o/o of the total cross section. 
3 



-48-

Table IV summarizes the results of these calculations by giving 

the probability of fission at the Nth chance for various assumptions 

about the initial conditions and the amount of angular momentum re

moved by neutron emission. 

Table IV. Values of the probability that a nucleus fissions on the Nth 
chance under the assumptions listed at the top of each column. Z is the 
nuclear charge, J the initial angular momentum, and ~J is the ave.rage 
amount of angular momentum removed per neutron emission. The ini
tial mass number A is 213 for Z = 87 and 209 for Z = 85. Across the 
bottom of the table are listed the mean number of neutrons, n, emitted 

J 

N 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

n 

z = 87 

J =57 

~J=O 

Curve B 

Fig.1.7 

0.071 

0.106 

0.142 

0.184 

0. 216 

0.207 

0.107 

0.020 

0.001 

3.62 

before fission occurs. 

z = 87 

J =57 

~J=-2 

z = 87 

J=5 

~J=O 

z = 87 

J = 85 

~J=-2 

z = 85 

J =55 

~J=-2 

Curve C Curve D Curve A Upper 

Fig. 17 

0.071 

0.0845 

0.111 

0.122 

0.134 

0.176 

0.166 

0.105 

0.028 

4.04 

Fig. 17 

0.005 

0.007 

0.009 

0.012 

0.106 

0.025 

0.04 

0.05 

0.06 

0.88 

9.24 

Fig. 17 
curve 
Fig. 18 

0.645 0.024 

0. 262 0. 030 

0. 07 45 0.'034 

0. 017 0.036 

0. 0023 0. 046 

0.471 

0.063 

0.085 

0.68 

6.06 

z = 85 

J = 40 

~J=-2 

Lower 
curve 
Fig. 18 

0.0031 

0. 0037 

0.0043 

0. 0050 

0.0055 

0.0059 

0.0055 

0.0001 

No fission 

No fission 

7.85 
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APPENDIX I. 

A. External-Radiator Calculations 

r 

/ 
/i 1\. 

e 
1 

/ 

~·// 
)J 

In this appendix, we derive formulas for the neutron eros s sec

tion for the external-radiator method. First assume a radiator of 

small area and thickness. The double differential cross section fo'r 

S-wave scattering of protons by neutrons can be written as 

= 
da np cos e __ ..:;._ 

dE 'IT 

where da I dE is the total np eros s section, and e is the angle be-np 
tween the initial direction of the neutron and the proton direction. Then 

we have for the number of protons d
2

N/dr2dE pbserved per unit solid 

angle with energy between E and E + .6.E, 

cos(} da 
np ' dE4 dE . N 

r 'IT 

Here, E' is the energy of the neutron, which, upon colliding, produces 

a proton of energy E at the detector, and dN0 /dE 1 is the number of 
2 

neutrons per em with energies between E' and E' +dE' at the radiator, 
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and N is the total number of protons in the radiator. If the surface 
r 

area of the emulsion scanned for protons is A, then the solid angle of 

acceptances is A/r
2
sina, where r

2 
and a are as shown. The flux 

at the radiator is then 

= 
dN dE 2 
- - r sina 
dE dE'. 

dcr 
N~ 

r dE 

cose 
~A 

( 13) 

We now examine the factor dE/dE'. 
I 2 

For E, we can write E=E cos 8-EL, 

where EL is the energy that the proton loses in passing through that 

part of the radiator left to be traversed and through the aluminum de

grading foil. Then 

2 dEL 
dE = dE' cos 8 - dE' dE' 

The energy loss dEL is a function of E', which decreases with in

creasing energy, so that dEL/dE' is negative. We write, then, 

dE 
dE' 

2 
=cos8+y 

with y > 0. Numerical values for y were found by computing the energy 

loss for protons traveling through the polyethylene radiator and through 

the aluminum sp.ield, and observing the change .6.E in E for changes 
I 

.6.E 
p 

it is 

in E'; E' is the initial energy of the proton. For these purposes, p p 
adequate to assume that all protons originate at the center of the 

radiator. 
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APPENDIX II. 

A. Multiple Scattering of Protons With Energy Loss 

In this appendix, measurements of the shape of proton tracks in 

nuclear emulsion are reported, and compared with' calculations by 
27 

Barkas. The value of the ~·scattering factor", K 
0

, for low-velocity 

protons ([3< 0.3) is obtained empirically, and compared with values 

obtained from Moliere's theory. Finally, the results of these measure

ments are used to obtain corrections for protons leaving an emulsion 

plate, which are necessary in the internal recoil method of neutron 

detection. 

1. Measurements 

Measurements were made on a beam of stopping protons enter

ing a 600-fJ. Ilford G 5 pellicle parallel to its surface. The coordinates 

of the track were recorded at intervals along the track, determined as 

follows: The interval is taken to be 100 fJ. unless a visible change in 

direction (~ 2 deg) occurs, in which case the interval is divided until 

this criterion is met. No attempt was made to determine the details 

of the track ending (the last approx 200 fJ. of track). From these sets 

of points, the following quantities describing the shape of stopping 

tracks were calculated as a function of the parameter Rp' which is the 

projection of the track range on its initial direction: 

a. ( y) and (y
2

) , where y is the lateral displacement of the 

track; 

bo ( R - Rd) and ((R - Rd) 
2

) , where R is the "true range," 

defined here as the sum of the measured range segments, 

and Rd is the direct or "crow" range; 

and Co ( Rd - R J and ( (Rd - R ) 
2

) 0 

p p' 
Tracks with large single scatterings (> 4 deg) were not included in this 

analysis. The effects of this are discussed in a later section. The 

initial direction of the track is defined by the first two points of the 

track. The error in the initial direction of the track is thus approx 1 

deg. Although this significantly affects the value of y for a single, 
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track, the averages ( y) and ( y
2

) should not be strongly affected 

because this error is random. In the worst cases, this amounts to an 

overestimation of 0_2
) by about 5o/o. A single proton track is used to 

obtain values of y, and the other track parameters for s·e.:v:e-ral: 

values of R .· 
p 

are recorded. 

The points of the track beginning with the track ending, 

When R exceeds one of the values nX 0. 5 rom, that 
p 

point of the track is considered to be the origin, and the track param-

eters are calculated.· 

2. Results and Discussion 

R 
p 

-~ I 

The increase in the mean-square projected scattering angle ( <1> 
2

) 

is closely represented by the expression 

= 2p~c 
( 14) 

where Z is the charge of the particle, p = M~-yc is its momentum, 

and ~c is its velocity. The constant K~ is determined in a later 

part of this Appendix with the use of Moliere's theory of multiple 

scattering. 
27 

Barkas used Eq. (14) and a range relation that takes the form 

P~c = 0.44Zb/SMZ/SR 3/ 5, (15) 
p 
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where M is in units of the proton mass and R ·is in microns, to 
p 

obtain explicit relations for the track parameters measured in this work. 

He derives the following results: 

( 16) 

( 17) 

and 
R )4/5 5 p 

R -R =-a ( .iJ 72 . ~z1/ZM ' 
( 18) 

where a = 5 ( __ o_ K )2 
\o.44 

< 
2) 9/5 According to Eq. (16), the quantity y /R should be inde-

pendent of R . In Fig. 20 the experimental values Po£ (y~/R 9/
5 

are p . p 
plotted against R . The data are consistent with Eq. (16) and give 

K 0 = 0.105±0.005p(MeV/iJ-) 1/ 2 , or a= 0,282 (MeV/iJ..). In Figs. 21 to 

· 2) I ) : ) 23 are shown the measured values of (y , \R-R , and (,R-Rd 
. ... p 

together with curves, calculated with K = 0.105. In all cases the 
0 

agreement is satisfactory. 

3. Calculation of K
0 

from Moliere's Multiple-Scattering Formula 

We begin by describing Moliere's theory, which is fully discussed 

1n references 28 and 29. We introduce an angular unit X c' called the 

characteristic angle. For a pure element, we have 

4 2 = 4rrNte Z(Z + 1)z 

(pf3c)2 
( 19) 

where N is the number of atoms per unit .volume, t is the thickness 

of the scatterer; Z and z are the charge numbers of the stopping mate . .,

rial and the particle, respectively. 

For a composite material, such as nuclear emulsion, a sum is 

taken over the constituent elements. Next we wish to define an expan

sion parameter B through the two relations. 
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Fig. 20. (y2
) /Rp vs Rp; the ordinate should not depend on Rp. 

The line shown is tfie average value of ( y2) /Rp. 
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21. (y2
) vs Rp; the curve shown is of the form 

([2) = ~ a Rp9/
5 

with a = 0.282. 
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Fig. 22. 

with a. = 0. 282. 
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Fig. 23. . / ) ·25 4/5 the curve shown 1s \ R - Rct = -- a Rp . 
I 144 
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e b = 6680t(Z+1) Zz
2 

~2A [1+3.34 ( ~:·)r 
B b 

and Be = e . 

b 
Again, e is taken to be a sum over the constituent elements of 

nuclear emulsion. Then the scattering distribution for the reduced 

angle cj> = <1>/x (B) 
1

/
2 

is given by Moliere in the form r c 

f(cj> )dcj> = dcj> . 
172 

exp( -<j> ) + - f (cj> )+ ~ f (<j> ) + ... 
{ 

2 2 1 ( 1) 1 (2) } 
r r r (it) r B r B~ r 

(20) 

This expression is valid .for B > 4. 5. The functions f( i) and f( 2 ) are 

tabulated by Moliere. The quantity B increases with the thickness t, so 

that for thick foils one predicts a Gaussian distribution. The rate of 

increase in the mean-square scattering angle, calculated over a distance 

L::l.t along the track direction with a cutoff angle <j> , is 
max 

i::l.t 
(21) 

The independence of d ( <j> 
2

) / dt on L::l.t is only approximate because the 

cutoff angle, () , should apply to single scatterings and not to a distri-
max 

bution over a finite interval, D..t. The interval, L::l.t, should be chosen 

large enough to insure the applicability of Eq. (20), and small enough 

so that the cutoff angle is not seriously affected. A distance of 2 fJ. was 

chosen. Calculations also were done for i::l.t = 10 fJ. to observe the re

sulting change in d (<!>
2

) /dE. It was found to be generally less than 

1%. Results of the calculations for K
0

[:= (1/2pj3c)(d (<!> 2
) /dt)] are 

shown in Fig. 24. The curves for different values of the proton energy 

can be brought into approximate congruence if the cutoff angle is scaled 

by X , i.e., if we choose for the abscissa the variable <j> /x . The c 2 m~ c 
dependence of K 0 (or d (<!> ) /dt) on <!>max is somewhat less than loga-

rithmic for large values of <j> • For <j> = 4 deg, the calculated 
max max 

average value of K
0 

is 0.117, which is to be compared to the measured 

value of 0.105 ± 0.005. 
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8 12 16 
cpmax ( deg) 

MU-32825 

Fig. 24. Dependence of K 0 , as calculated, on proton energy and on 
<Pmax· The curves for different proton energies are brought 
into approximate congruence if the abscissa is changed to 
<j> 

max , where X is Moliere's 11 characteristic angle. 11 

X c c 
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4. Evaluation of the Escape Probability for Protons in Nuclear Emulsion 

a. Straight-track approximation 

We consider the case of neutrons entering an emulsion plate 

parallel to its surface, and begin with the constraint (which is later 

relieved) thatthe recoil protons travel in straight lines until they either 

come to rest in the emulsion or escape from it. Define the following 

quantities. Here, f) equals the angle between the neutron and proton 

directions, R is the proton range, y is the projection of R in a plane 

perpendicular to the neutron direction, b is the projection of y in a plane 

perpendicular to the emulsion surface and containing the proton track, 

and d is the emulsion thick·ness. 

We now derive the probability p that a proton recoil produced by 

a neutron of energy E leaves the emulsion plate. For a given b, 
n 

this is b/d. For a given value of y, we average b over all angles ljJ 

(Fig. 4) to obtain 

J
TT/2 
0 b(ljJ)dljJ 

f
rr/2 

d X ~ dljJ 

- 2y 
- TTd (22) 

Emulsion surface 

Neutron--;? 
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To go farther, we need a form for the range-energy relation for protons 

in emulsion. We use the relation R = (E/ A) 'I, with A = 0.22 and · 

'I= 1.67.
27 

We canthenwrite 

b " R sin e " ( i r sin 0, { 23) 

where E, the energy of the proton, is given byE = E cos
2e. Combin

n 
ing this relation with Eqs. (22) and (23), we have, for P as a function 

of E and e, 
n 

Finally, to obtain P as a function of only the neutron energy, we need· 

to integrate over the distribution of scattering angles f(B). This is 

f (e) + _2_s 1_. n_2-:=:e,..--__ 
2 

1 - cos e 
max 

where e is the half angle of the acceptance cone for recoil protons. 
max 

Then we have 

P(E ) 
n J

e max 

= P(e, En)f(B)de 

0 

(
E )" e 8 -;-_ f max 

Tid(1-cos 2 e ) 
max o 

= 

where Rmax is ( :n J , and 

8 f
e 
max 2 +1 2 +3 

0 (cos e y -cos e y )de. (24) 
2 

'TT(1-cos e ) 
max 
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Values of J(B ) were tabulated numerically and are shown in 
max 

Fig. 25. It is to be noted that these formulae are valid only for energies, 

such that the maximum value of y is less than the emulsion thickness 

d. By differentiating P(B, E ), it is found that the maximum transverse 
n 

range y occurs when e = 29 deg. If we then require that y 
max max 

be less than 600f-L, we find that the highest-ene-rgy neutrons for which 

the calculation holds is 20 MeV. 

b. Corrections for multiple scattering 

For a track that undergoes scattering, the vertical extent of the 

track b' exceeds the analogous quantity b for a "geometric track" by 

an amount we call 6.b 1 • Let a be the dip angle of the track; for a= 0, 

6.b1 is simply 

----- a ---- _j 
- ___._ -

the transverse range y and is thus positive. As a increases, 6.b' 

decreases rapidly, and finally, for large dip angles, actually becomes 

negative. This is evident, for when a= 90 deg, then 6.b' becomes 

R - R. The quantity 6.b' was measured for values of a other than 
p 

0 deg by drawing replicas of the 'tracks on graph paper and taking ap-

propriate measurements from the drawings. For short tracks (< 1 mm), 

direct measurements of 6.b' were made with use of an eyepiece reticle. 

The results are shown as circles on Fig. 26. The lines were arbitrarily 
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Fig. 25. Values 
is given by 
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40 

Bmax ( deg l 

60 

of the integral J((;) ). 
max 

R (E ) 
P(E ) = max n 

n a 

80 

MU-32826 

The escape probability 

J( (;) ) . max 
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0 0.04 0.08 0.12 0.16 0.20 0.24 

Sin a 

MU -32827 

Fig. 26. ~b' vs sin a. The intercepts at sin a= 0 are well 
measured, but the slopes are roughly interpolated from 
a few scattered data points. 
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drawn to fit the data and to make .6.b
1 

a smooth function of sin a and 

the range. This graph was then used to determine the corrections to 

the escape probability. The corrected escape probability now becomes 

P'(B E) = max dB d4J b'(B,4J) f(B)f(4J) l e Irr/2 
. m~ d · 

0 0 

= P(B , E) max 

e frr/2 max 

+ 1 dB d4J .6.b'JB,4J) f(B)f(4J), 

0 0 

where f( B) and f(4J) are properly normalized distribution functions 

for e and 4J. The integral can be done in a straightforward way, for if 

B, 4J, and E are given, then the proton range and dip angle a can be 

calculated. Then .6.b' can be obtained from Fig. 26. The values of the 

escape probability F, calculated in the straight-track approximation, 

and with corrections for multiple scattering, are shown in Figs. 27. to 

30. 
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Fig. 27. The escape probability P vs neutron energy. The 
lower curve is without corrections for multiple scattering. 
The upper curve includes these corrections. 
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Fig. 28. The escape probability P vs neutron energy. The 
lower curve is without corrections for multiple scattering. 
The upper curve includes these corrections. 
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Fig. 29. The escape probability P vs neutron energy. The 
lower curve is without corrections for multiple scattering. 
The upper curve includes these corrections. 
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Fig. 30. The escape probability P vs neutron energy. The 
lower curve is without corrections for multiple scattering. 
The upper curve includes these corrections. 
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APPENDIX III 

A. Calculation of the Angular Distributions of Neutrons Evaporated 
from Fission Fragments 

We assume the rather general form 

for the neutron spectrum in the moving fragment center-of-mass frame. 

Here, 

EF is the neutron energy in the fragment system, 

cos eF is the angle of emission of the neutron with respect to the 

fragment direction, 

and T.' is the nuclear temperature of the fragment; n and a are 

adjustable parameters. 

For n=1 and a=O, we have a Weisskopf distribution; for n=1/2 and 

a=O, we have a Maxwell distribution. 

Three reference frames are used in these calculations. These 

are illustrated in Fig. 31. The F frame moves with the fragment and 

has the fragment direction as its z axis. The C frame moves with 

the c. m. of the compound nucleus and has its z axis in the direction 

of motion of the fragment. The 0 frame moves with the compound

nucleus system and has its z axis in the beam direction. The plane, 

defined by ljJ (the azimuthal angle) equals zero, is the same for all 

three frames. The subscripts F, c, and o are used to define the ref

erence frame, and the symbols used are 

E = neutron energy, 

T = energy per neutron mass of fission fragment in the compound 

nucleus system, 

e = potar .. angle, 

ljJ = azimuthal angle, 

and a = angle between the beam direction and the fragment direction 

in the compound-nucleus system. 
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Fig. 31. Reference frames used in the calculations of Appendix III. 
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The cross section in the c system is then 

Using the relations 

il2 
EF = E + T - 2(E T) cos e c c c 

and 

one obtains 

0: (E ) ii 2 (E + T- 2(E T) il 2 cos e ] n-il 2 
c c c c 

iF 

X e xp { - [ E + T - 2 ( E T) i I 2 
c 0 s e] IT } 

c c 

E 
X { i + a [ i - c sin 

2 e ] } . 
E + T - 2(E T) il 2 cos e c . 

c . c c 

The subscript iF indicates that evaporation from only a single 

fragment has been considered. The distribution in the compound 

system with the z axis along the beam direction must now be con-. 

sidered. This requires only a rotation, so that energy variables are 

not affected (E = E , etc.). The angle e must be expressed in c 0 c . 
terms of 0 coordinates. A vector (Fig. 30) with coordinates 8

0
, ~0 

has projection on the z axis equal to cos a cos $ 0 :+ sfn,ci sin 8t>·tos·~c:r , : 

and hence this values of cos e . Using this relation, we obtain for the 
c 

distribution in the 0 frame 

( 4) 
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where x = E + 'T- 2Q(E 7) 1/ 2 ,. and Q =sine sinacosl)J+cosacose. 
0 . 0 0 0 

An integration over the fission-fragment distribution still remains. 

Because of the azimuthal symmetry, an integration over ljJ is equiva-
' . 0 

lent to an integration over the azimuthal angle of the fragment distri-

bution. Let the fragment distribution be W f(a)da. The neutron distri

bution from a distribution of fragments becomes 

X W(a)sin a. ( 5) 

Equation (5) was integrated numerically with the aid of an IBM 

7090 computer for several representative combinations of values of the 

parameters T, a, and n. Temperatures of 1.5 and 2 MeV were used. 

Values of n used were 1 (Weisskopf distribution) and 1/2 (Maxwell 

distribution). 

Values of the anisotropy coefficient a of 0 and 0. 5 were used. 
30 Th . . 1 The fragment velocity per neutron mass is 0. 72 MeV. e emp1nca 

curve 

W(a) cc 
2 

· · 
( 

1 0917 )
0

·
6 

sin a+ 0.0917 

was found to fit well the results of Viola's measurements of the fission

keep fragment angular distribution5 and was used in these calculations. 
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