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ABSTRACT

The longitudinal electromagnetic interaction of an intense

coasting beam with itself, including the effect of a resistive vacuum

tank, is investigated theoretically. It is shown that even in the

range where the particle frequency is an increasing function of particle

energy, the beam can be longitudinally unstable due to the resistivity

of the vacuum taw< walls. In the absence of frequency spread in the

unperturbed beam the beam is sho\¥n to be always unstable against

longitudinal bunching wit~ a growth rate which depends upon (N/cr) 1/2,

where N is the number of particles in the beam and cr is the

conductivity of the surface material. By means of the Vlasov equation,

a criterion for stability of the beam is obtained; and shown in the

limit of high-conductivity walls to involve the frequency spread in the

unperturbed beam, the number of particles N, the beam energy,

geometrical properties of the accelerator, but not the conductivity cr •

A numerical example is presented which indicates that certain

observations of beam behavior in the MURA 40 MeV electron accelerator

may be related to the phenomena investigated here.

*
Research supported by the U. S. Atomic Energy Commission.
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I. INTRODUCTION

That an electron stream with a small density fluctuation along

the (longitudinal) stream direction may have the fluctuation amplified

when passing through a pipe ,rhich has resistance in its walls was first

.pointed out by Birdsall. The concept has been incorporated into the

resistive VIall amplifier and a general discussion of "slOl{ vTave"

amplifiers has been given by Pierce,"l while Birdsall and Hhinnery2

have given a general analysis of such structures.

The purpose of this work is to extend the theory as developed

for the analysis of traveling wave tubes to an· analysis of longitudinal

resistive instabilities of intense high velocity beams in particle

accelerators. In particular, the theory presented here includes,

through the Vlasov equation, details of the particle dynar.;ics (as

contrasted with the hydrodynamic approximation of Ref. 2) which are

vital to obtaining the criterion for stability. The work described

here is also an extension of previous studies of longitudinal

instabilities3,4,5 and draws heaVily upon the notation of Ref. 4. Our

analysis was stimulated by experiments with the MIJRA 40 MeV electron

accelerator which shoy; a pronounced longitudinal bunching of the beam

near the injection energy.6 Although the observed instability above

the transition energy is well understood, and had even been predicted

4
theoretically; the observations of bunching below the transition

energy came initially as a surprise. The analysis presented here

culminates in a criterion for stability and a growth rate in the

absence of stability; both of which seem to be in adequate agreement

with the observations at MORA. At the least, the theory sugges~further
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experimentssuit~ble for determining vlhether the observed phenomena

is in fact a resistive instability; and in any case) the theory

suggests des~gn re~uirements for any particle accelerator developed

for the production of very intense beams.

The a~alysis presented is a linear perturbative treatment

about a uniform (coasting) beam in the azimuthal (e) direction. A

perturbation of the beam density in the f~rm of a periodic wave in e

and t is assumed and the electric and magnetic fields arising from

the perturbation are then computed in Section II under two different

situations. In Section III the formalism of Re~ 4 and 5 is employed

to reduce the effect of the fields upon the particle motion to a

dispersion relation which determines the fre~uency of the assumed

wave. Section IV is devoted to a discussion of the dispersion relation;

Section V contains a numerical example) namely the application of the

general results to the MURA 40 MeV electron accelerator.

The analysis shows that the resistive instability leads to the

longitudinal bunching of an initially uniform beam of (one velocity)

~-1/2 where

cr is the conductivity of the surface material [E~. (4.7)J. An

effective stabilizing mechanism is the spread in particle circulation

fre~uency which is caused primarily by a spread of the particle energy

in the beam. It 1s shovTn that since the resistive fields are very

small' compared to the non-resistive fields the criterion for stability

is a sensitive function of the assumed frequency spread in the

unperturbed beam. For a realistic particle energy distribution and
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for surfac~of high conductivity, a condition for stability

is obtained which is independent of the conductivity [Eq. (4.20)].

It should be noted that although the analysis is restricted
I

to a uniform--or coasting--beam, it is expected that a very analogous

phenomena will occur even if the unperturbed beam is aZimuthally

bunched by an rf cavity. Some support is given to this argument by

the fact that although the previous theoretical work on longitudinal

instabilities),4,5 was also restricted to coasting beams, the phenomenon

has been observed1 in bunched beams in essentially the same form as in

the uniform case.

Finally, it must be pOlnted out that the work of Ref. 5 is

incomplete in that the possibility of the instability discussed here

was overlooked. The work of Ref. 5 is correct, in so far as it goes,

but must be augmented with the analysis of this paper to give a complete

description of the phenomena possible.

I ,
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II. SOWTION OF VAX\-lELL'S EQUATIONS

In this section we shall obtain the electric and magnetic fields

associated vrith a perturbed density vrhich varies as exp[ i( nS - rut) L

vrhere because of the periodicity requirement n must be an integer.

Incorporating the resistance of the vacuum tank wall is sufficiently

complicated that we treat tyro special cases. The first is a beam of

circular cross section centrally located in a tank of circular cross

section where the longitudinal wavelength 2~R/n is assumed large

compared to the tank minor radius. In this case simple analytic formulas

may be obtained for the fields. The second case is a rectangular cross­

section tank in which the beam is assumed to be located in the median

plane of the cavity and to have finite extent horizontally) but be

infinitely narrow in the vertical ..direction (a ribbon beam). '. In this

case resistance is incorporated in the top and bottom tank walls) but

the side walls are assumed to be perfectly conducting. In both cases

the curvature of the vacuum tank is ignored) as this is a good

apprOXimation.

1. Circular Cross-Section Vacuum Tank

We consider a beam mOVing along the (z-direction) axis of a

pipe of radius a. Let the beam have uniform density out to radius

b) so we have the situation illustrated in Fig. 1. 'I'he perturbation

is as'sumed to vary as exp[ i(kz - rot)] so when vre relate this

calculation to an actual accelerator we will replace k by (n/R)

and z by Re Thus we have asswned current and charge:



-6-

P

r < b)

r > b)

(2.1)

r < b)

r >b)

:~..
which can easily be seen to satisfy the equation of continuity and

correspond to a wave velocity in the z direction of magnitude ro/k .

Corresponding to this charge and current distribution ,Till be the

fields:

E == [E (r) ~ '+ E (r) ~ ]r ...., z .....

i(kz-rot)
e

(2.2)

)

I

which upon substitution into Ma~"el1Is equations yields the coupled

equations

1 ~ (r E) + ikE ==
r or r z

:1m+ - Ec z ==

....
14n Po

io
\.

{:
ro
k Po '

r < b

r > b

r < b

r > b

1 H iro,E -- 0-ii;: ¢. + C r

o E
';kE z 1ro H 0
... r - "d"r- - c ¢::: )
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,{here CD.ussian units have been employed. It is easy to eliminate hro

of the fields and obtain a Bessel equation for the remaining fields.

One of the first hro equations of Eq. (2.5) may be ignored since it

follows from the other vrhen the equation of continuity is employed.

The boundary conditions are that at r = b all of the fields

are continuous) while at r = a the resistance in the walls implies

where the surface is characterized by

-1conductivity of the surface in sec

( 2.4)

the

Thus the general solution to

Eqs. (2.5) and (2.4) may be readily exhibited in terms of Bessel

functions of zero and first order. If we are willing to limit

ourselves to the case in which (ka)2« 1 . (leaving the more general

case to the next section) where the formulas are already encumbered

by the more complicated geometric situation)) yre may expand the solutions

for small values of r to obtain the forms

,

[~ AlPo r + r )

E = '"'r l 2rt bC
::.' Po

+ Al r.)r

r < b

r> b

H¢ = 13v Er

13w
2

) [re Po
2 1 2 J

2iA
ik(l - 1r + '2 Al r, +-- r < bk

E ::: 2
~

2 [ 2 . Al r
ik(l - 13yT ) 2re Po b log r +

2

. 2. 2
bJ

2iA
1

+ 're Po b - 2rc POb log +-k- ) r> b )

(2.5 )
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where ~ = ro/kc is the phase velocity of the wave in units of c .
. 1,r

In Eqs. (2.5) we have satisfied all of the equations except the wall

boundary condition Eq. (2.4) which now may be invoked to determine the

constant Al . In this vmy} for (ku)« 1 and GC« 1 we obtain

as the leading terms in the longitudinal electric field for r < b :

i(ka) ( r )
2

2 b

(2.6)

In Section III 1,re will need the azimuthal electric field to

which the particles are subject, on the average. This involves some

average of E over the beam cross section} but since the precisez

average required is not clear (in view of the approximations inserted

in Eq. (2.1)) and because E varies only slowly across the beam
z

we will continue in the spirit of Ref. 4 and employ E (r=O) •z

Introducing the perturbed charge per unit length A by

A =
. i( kz-rut)
e

we have for the total field: in the z direction:

f!.~
dA 2 2 G\~w

= -d"Z (1 - ~ )(1 + 2 log a/b) - A •
. r=O w a (2.8)

It is interesting to note that the out-of-phase contribution decreases

like
-2

I
W

=
2

1 - f3"r involves a geometric factor, and is proportional
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to the variation of charg~ in the z direction--results all familiar

from previous studies.
4

The (new) in-phase component only exists in

virtue of the resistivity and furthermore does not vanish as k ~ 0

or as ~ ~ ~w . In all practical applications it appears that if( is

sufficiently:small that the in-phase component is small compared to

the (usual) out-Of-phasecomponent.

In a notation which will be convenient for subsequent analysis

we have, finally:

2
-inA(l - ~ )(1 + 2 log a/b)w

where n is the number of waves about the circumference and the

perturbed charge per unit azimuthal length ~ has been written in

the form

i(ne - rut)
~ = ~l e

2. Rectangular Cross-Section Vacuum Tank

(2.10)

In this section we consider an infinitely thin beam in the

vertical direction, located in the median plane of a rectangular duct

of height H and width W , as illustrated in F~g. 2. The beam

charge distribution in the x direction is assumed to be unaltered

by the longitudinal bunching and determined by initial conditions so

the perturbed surface charge distribution a(x,y,t) is taken to be

of the form

i(ky~t)

a(x,y,t) = ~la(x) e (2.11)
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w;+n rl(vl normalized so that its integral over x is unity_ .J.U ... ,l. v, ..... , ......

conservation of charGe implies a surface current distribution

j (x}y}t) just equal to (m/k) times a(x}y}t).
Y .

The boundary conditions for the electric and magnetic fields

are taken to ge perfectly conducting side walls so that t0e tangential

electric and normal magnetic fields vanish at x = ° and x = W •

On the"top surface (z = H/2) we require

E = (1 - i) 6\ Bx Y

(2.12a)

and on the bottom surface (z = -H/2) we require

E = -(1 - i) ~ Bx Vl y

(2.12b)

where G( "has been defined following Eq. (2.4).

Expressions for the fields are most easily written as two sets}

transverse magnetic (TM) and transverse electric (TE), with transverse

referring to the z direction. Each set independently satisfies

Maxwell's equations for free space everywhere inside the tank except

at z = 0, and also satisfy Eqs. (2J2a) and (2.;J2b).. The desired

expressions are as follows:

."
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1

sinh v(z:;: ~ ) - ~~ (1 -i)cRCOSh V(z :;:. ~ )J

/ -

~[~
/\ xi]cos l) x i + i k sin "

[ + cosh v( Z + ~) 1m (1 - i)G( sinh v( z :;: H J£2 ."1+ - - 2") V sin" x l:. JVC

J
( 2.13)

i(ky-{J)t) ,-, [
B

TM
c: e i (~) E

s
:;: cosh v( z :;: ~)

S . .

~ (1 - ilG?sinh v(z.+ ~ lJ

ik sin ~ x t + ~ cos ~ x 1.1, .
.(2.14)

E
TE

:::. e i(kY-{J)t) I
S

1m
VC Es [ +sinh v( z + ~) .

ivc,..,() "+ ill ,.1 _.~} ~\.COS!i v\z

= . ei(ky-<nt) I
s

BTE ' Es {[+ cosh v(z + ~) + i~C (1- ilG{sinh v( Z+ ~ )1

.1J-~ ~iq x 1 + i k cos ~ x ~1
, lr - - H ivc () .·-H)] t+ +. sinh v( z +"2) +~ 1 - i) IJ\ cosh v( Z +"2 V ,COS"

(2.16)
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In these expressions ~ == s1f./H )
n2 __ 2 2
)j 11 +k) and

s is an integer which must be sumIT.ed over. The top and bottom signs

apply when z > 0 and z < 0 respectively. 'Yle determine the constants

E and B from the discontinuity conditions at z ~ 0 :
s s

Expanding a in a Fourier sin series in x

(2.17a)

(2.17b)

o(x)

we find

(~. )I assin 11 x J

S

(2.18 )

E -21f. A1 cr5 V/ l [COSh~VH/2)
im (1 - i) (ii sinh(VH/2)J== - - J.S vc

(2.19)

and

~ ~/22 [COSh(V H/2) + iVc (1 -B == 21f. A.1 a i)6?Sinh(V H/2)J )s _s w m

(2.20)

with ~ == (m!ke).w

The only field component that enters into the Vlasov equation

in Section III is E (z=0). After some simplification we have) to
y

first order in Q.)
E (z=O)y = -21f. i A.

l
ei(ky-mt) I

s

i(l ~ i)G(~w sech2
(v H/2)J

( 2.21)
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T,le may ignore the (small), term proportional to (_i)2. If the

perturbation wavelength is long compared to the transverse dimensions

of the vacuum tank then ~» k and V ~ t ~ ~ .

In Section III we will need the average fiel~ which the

particles feel in the azimthal direction. This is obtained from

E (z=O) by averaging over x:
y

J a(x) E (x,y,z=O)dx
(E ) =

y ,e J a(x) dx

or

(Ee ) = . J dx L as' sin'l1 x Ey
s'

"We thus obtain

( 2.22)

:~. '

=

i(ne-mt)

W
~ as

2 {~ (1 -

i ~ f3w
2VH}sech 2" .

(2.24)

This general expression may prove useful in some applications.

We have evaluated it numerically for a particular choice of a(x) which

has two parameters, namely a beam of width ~ with center

indicated in Fig. 2. The functional form chosen was

as
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~ (x - z )
6. 0 . J Ix - zol

Ix
,

"

, 8
and a 7094 Fortran Program developed to evaluate the quantities:

,.....
Relong ::

s

k "tanh vI!
v 2

Imlong :::

In terms of these:

s

2 2 VI!
cr s ~w sech 2 e2.26)

(R Eel " -4~ i >.. ( ~ ) lRelong - i (it Imlong]
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III. THE DISl?ERSION REIATION

The dynamics of the problem is incorporated in the Vlasov

equation which we solve in cylindrical coordinates incorporating the

formalism of ~efs. 4 and 5, and in particular the canonical variables

e and ""·for the ·azimuthal motion. The quantity w = 2rc(Pe - po)

where is the canonical angular momentum and PO the mean value

of Pe for the beam. The transverse motion of particles is

'considered only in so far as it contributes to the transverse

. dimensions of the beam and to the relation between the circulation

frequency of particles and their canonical angular momentum.

The particles distribution function V(w,e,t) satisfies the

one-dimensional equation: 5

o ,

where the' quantity (R Ee > has been evaluated in Section II. The

unperturbed beam is uniform in'azimuth and constant in time so it

may be.describ'edby a distribution function vO(w) • 'He may take

a infinitesimal perturbation in the form of waves so that

i(nS-(J)t)
V(w,8,t) = 'lrO(w) + vl(w) e

which whEm inserted into Eq. (3.1), after linearization, yields

=
2~ i e (R ES > d~O

(ill _ n e) dw

-i(nS-(J)t)
e ,.

Let us normalize V to particles per unit length so that in terms

of the total number of particles in the accelerator N,
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while the perturbed charge density may be related to ~l by

Thus, combining Eqs. (3.3) and (3.5):

e
- i ( n8-<J)t) f'd'¥o'

~1 = - 2rc i e2 (R· E ) dwe dvT (J.) _ n e

Defining

=J dfO dwI d . ,
'iT (J.)-n8

and inserting Eq. (2.9), Eq. (2.24), or Eq. (2.27) yields

-1 = (U - iV)I ,

2

Iu 4rc Ne 2 ~ (1 _ ~ 2) tanh vR= W 0'6 V 'lIT 2
,

s

2 G( I 2V.
4rc Ne 2 VH= VI . 0' S 13 sech _ .

w 2 '
s

( 3.6)

(3.8)

( 3.9a)
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and from Eq. (2.26):

u = Relong }

v Imlong •

(3.9c)

Although U and .. V are functions of ill through

we shall see below that ill near n illa is the region of interest.

It is therefore a good approximation (provided the particles are not

extremely relativistic) to replace by t3 =a vic , where

'v = illa R is the mean velocity of particles in the beam and illa is·

the mean angular frequency. This simplification is strictly true at

the stability limit of the negative mass instability, where ill=nilla

..

is a solution to the dispersion equation. There is a further dependence

of V on ill through ~ = (ill/8rr.a) 1/2. This is a weak dependence,

and we shall everyplace replace ill by n illa ' thus rendering U and

V . independent of ill •

The quantities U and V arc positive} and for all cases in

which we have evaluated them G( is so small ~hat V« u.
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IV. ANr,\LYSIS OF THE DISPERSION REIATION

-1. Instability in Absence of Da~ping

In order to directly demonstrate the resistive instability

vle first choose ':: o(w) which represents a beam vlith all

particles having the same canonical angular momentum. Since we are

only concerned with small deviations in VI we may vrrite

.
e = ( 4.1)

where ruo is the mean angular frequency and k
O

is related to the

particle revolution frequency f) which is a function of particle

energy E) by

==
df
dE

( 4.2)

Below the transition energy kO is positive) while above the transition

one is in the region of "negative mass." Evaluating Eq. (3.1L we

have from Eq. (3.8)

2
(ru - n ru

O
) n ko(U - i V) •

If k
O

< 0 then even for V == 0 (i.e. no resistivity considered)

Eq. (4.3) exhibits an instability) namely the negative mass instability.

In this regime we need not ,consider the effect of V since V is

always very small compared to U . For k > 0o we obtain from Eq. (.4.3)

V
(1-i

2U
)) (4.4)

where the positive sign corresponds to a "fast wave" in which the wave

phase velocity ~w is greater than the particle velocity ~O and the
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perturbation is dJLmped. 1,2 The negative sign corresponds to a "slol-1

....rave" and it is clear that the disturbance in this case is exponentially

growing,l,2 with an e-folding time TO given by

2
=, -V

'.

This formula maybe evaluated using Eqs. (3.9). For the

circular geometry, and with the restiction that n < R/a we havel(1 - ~ 2)(1 + 2 log a/b) 11
/

2
a w (4.6)TO =
~ R kO Ne

2
J

[1 -
. 2 1/2

which is approximately, in terms of t30
and ''1 = t30 ]0

'fa :::
a [ ---=-~,.....-J 1/2 .1 + 2 log alb

2 df
2n: R Ne f

dE

The e-folding time is seen to depend upon the surface conductivity cr

1/2 -1/2as cr ,and upon the number of particles as N . The dependence

is only correct for n < R/a , and more generally can

n

of 1'0 upon n

be obtained froL: 3~s. (4.5) and (3.9b)j it is a weak dependence

only enters through 6( which varies as n
l
/ 2

, so that TO

since

varies

dispersion relation

as

2.

-1/2n .

Criterion for Stability
. I

A stability c~iterion will automatically emerge from the
{

if we use an fO(W) which describes a frequency

spread in the unperturbed beam. This is simply the well-known

phenomenon of Landau damping. The analysis is complicated by the fact
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that V« U , which means that the grov~h rate is very small and

easily damped by particles riding at the wave velocity ~ .w
On the

:;.,'

other hand the wave velocity is shifted from ~O by the (relatively)

large term U ) with the result that the damping is sensitive to the

particle distribution at frequencies removed from the central frequency

ill
O

• To s~~arize the detailed results presented in this section) and

qUi~e consistent with these physical arguments) we find that the

condition for stability is that the frequency shift (ill - n illO) be

less than n times the frequency spread in the beam.

To illustrate the problem consider the Lorentz) or resonance)

line shape for fO(w):

0' .
2 2new + 0 )

) (4.8 )

where 0 is a measure of the u-spread and hen,":', the fre quency

spread in the bean. The integral in Eq. (3.7) may be readily performed

and one obtains

V
(1 - i 2 U )

where Eq. (4.1) has been employed and V assumed much smaller than U .

The slow-wave instability is damped out if

(4.10 )

..
which is much less stringent than the correct result to be derived

below. The criterion has resulted from the very large tail of the

Lorentz line.
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To consider other functions 1x'"e first vrrite

relation in the form

n k (D + i V)o ( 4.,11)

where wl = (ro - n roO)/n kO • Consider now a Gaussian distribution

in v,) taking

few) = ( 4.12)

A partial integration and a change of variable from w to

w/'O = S puts Eq. (4.11) into the form

2
n k

O
'0 (U + i Y)

(U2 + y2)

1,-
-y;

ro

J
-00

" 2
e- S ds

(s - s,)2
.....

( 4.13)

I
The function 6. (Sl) has b~en investigated numerically by

Fried}9 but asymototic expressions will suffice here. The stability

( 4.14)

criterion is found bv considering real Sl = (ro - n roo)/n kO '0 •

I I
Since· U » V) Re 3 »rm J is the regi~n of interest, which is

the limit of large sl' where the expansion

-s 2
1e

.. 1s a good approximation. From Eq. (4.13) we have at once that

(4.15 )
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or], to Bood approximation:

(~)1/2n k o
(l~ .16)

The corresponqing fre~uency shift ill - n illO is thus k
O

n wl ]. or the

same as obtained for the two other choices of fo(W) in E~s. (4.4)

and (4.9).

However] the stability criterion found from E~s. (4.13) and

(4.14) differs drastically from Eq. (4.10). The value of 0 necessary

for stability is found by solving the transcendental e~uation

2
3 -~1 '/

51 e = -y;- V/2U ] (4.17) .

where we have used E~. (4.15) in the left side of Eg. (4.13). We

will not pursue this criterion further] but merely note that the value

of 0 necessary for stability depends logarithmically on V ] not

directly as in Eg. (4.10). For nWllerical computations Eg. (4.17) can

prove extremely useful.

'Consider now, a distribution function f
O

(",) which has non-zero

values for only a finite range of w. It is easy to sec that for such

(a physically re&1.:::..stic) function it is impossible to 3c.tisfy the

dispersion rel~tion with real ill if wl l{es outside ~he range in

which fa is non-zero. This can be seen by writing E~. (4.11) in the

form

n k a-- (U + i V)
U

2

df 'a
dw

, ,dfa \ '
i 1\­

d'l-l

"'=Wl
(4.18)
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Furthermore)is zero.

indicates the Cauchy principle part. ~he equation cannot
dfO \

if dw \
"r=wl

be satisfie~ by a real value of WI

where

it can be Showil that any WI having a real part outside the ranee of

non-zero fO(W) has an imaginary part vrith a sign corresponding to an

instability. The value of Re WI has been seen to be insensitive

to the form of fO(W), so we can deduce a necessary condition for'

stability, namely the range of must include Because V

is so small compared to U this necessary condition is a very good

approximation to a sufficient condition. Quantitatively we have the

frequency spread in the beam 6ns ~ 2kOo and so

( 4.19)

is the condition for stability. Evaluating this for the case of circular

geometry) with the restriction that n < Ria we have from Eqs. (3.9a):

6n
5

> 2[2rc f

R

df
dE

2
"'10

(1 + J
l/2

2 log a/b) (4.20)

which is algebraically just the criterion for the ab.:.;.__ ..3 of the negative

mass instability (out there, of course) df/dE is ne..::::.tive and its
. 4

absolute value appears in the formula). This last result has the

geometric factor appropriate to the circular geometry; and is independent

..
of n, which result· is only valid for n < R/a (The more general case

can be handled employing Eqs. (4.19) and (3.9b).); and is seen to be

independent of the surface resitivity (J, in this limit of high

conductivity. surfaces.
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It should be noted that Eq. (l~.20) may impose more severe

desiVl requirements on a hiGh irltensity accelerator than those

necessary to circumvent the negative ~ass instability. This is
,

because in t~e negative mass instability the energy must be above

transition "'There I df I
.dE

is usually small and /0 may be large] but

Eq. (4.20) must be applied near injection in an AGS. The absence of

any observed effect in present generation.m3.chines--in contrast to the

observed negative mass instability in Saturne] the Cosmotron] and the

Bevatron7--must be laid to the rather large energy spread from the

linac injectors (in comparison to the amount of injected current).



-25-

v. rH.H·lERICP..L E)W~lPLE

As a numerical example we take the MORA 40 MeV electron

accelerator with parameters as listed in Tables I and II. We assume

the conductivity of the walls is that of aluminium, namely

C5 == 3 x 10
17 -1

sec In Table III one can find the result of numerical

calculations for U and V ) as well as a comparison with the

analytic formulas of Eq. (3.9a). The agr~ement is seen to be

excellent) although the geometry is very removed from a circular

situation and n is not much less than Ria. Table IV gives

results for the growth time in the absence of frequency spread ~O )

and for the frequency spread required for stability ~ rus . In

Table V~N is taken at two values bracketing the experimental

range and ~rus
is expressed in terms of a requisite energy spread

bE on the assumption that the frequency spread is caused solely
s

by an energy spread. The numbers are in semi-quantitative agreement

being closer to observations than

It is realized that the grmTth time

with observation)
6

the ~O •

with the. L)E
s

1'0 is a function

of the resistivity of the walls and could be considerably reduced

if the effective resistivity of the walls is higher in the accelerator)

than the nominal value (for aluminit:m) ,,,hich vras used in these

theoretical calculations.
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TP~LE I. Geometrical parameters employed in the numerical example

approximating conditions in the ~~JRA 40 MeV electron accelerator.

The dimensions are defined in Fig. 2.

Case n R ( em) H (em) '.:T (Clil) 2 0
( cm) D. (em)

A 1 125 5·4 100 15 1.0

B 10 125 5·4 100 15 1.0

C 10 140 5.4 100 30 1.0

D 10 140 5.4 100 30 2.0
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TABLE II. Beam par8.meters employed in the numerical example. The

quantity K corresponds to a field index parameter of 9.3 .

Case [30 (1)0 em/sec
E df k

O
-2 -1

/0 K -== fdE
sec erg

A 0.5528 1.2 1.33 x 10
8

1.96 0.575 x 10
22

B 0.5528 1.2 1.33 x 10
8

1.96 0.575 x 10
22

0.8660
8

2.04 0.702 x 10
22

C 2.0 1.86 x 10

D 0.8660 2.0 1.86 x :0
8

2 ..04 0.702 x 10
22
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TABI~ III. Values of ~he quantities U and V, as defined in Eq. (3.9).

The conductivity, in this example, is taken to be that of aluminiumj

namely, 3 10
17 -1

~ = x sec. It can be seen that th~ analytic formula

of Eq. (3.9a) is an exceedingly good approximation--in this example) at
1.

~

1east--to the numerical computations.

Employing Eq. (3.9a) Employing Eq. (3.9c)

Case

A

B

C

D

U 20IT x 10 (ergs)

0.561

2.02

V 26Nx 10 (ergs)

39.6

125

232

232

U 20N x 10 (ergs)

0.774

2.47

1.91

v 26IT x 10 (ergs)

39·5

121

229

226
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TABLE IV. Grov~h time and spreads reQuired for stability in the

numerical example. The quantity 1"0 is computed employinc; EQ. (4.5),

"rhile I':, (l) is evaluated employinc; EQ. (4.19); in both cases using
s

the last tyro columns of Table III. The Cluantity 6Es is the enerc;y

spread in the beam reQuired to give the frequency spread I':,m
s

(and

..

hence stability), under the assumption that the freQuency spread arises

solely from energy spread.

1/2
I':,m I':,E

106 (kV)Case s I -1) s
N 1"0 (sec) Nl / 2 ~ .;cc

Nl / 2 x

A 5·9 x 103 13·5 30

B 1.9 x 103 13.0 30

c 5.2 x 102 8.4 22

D 4.7 x 102
I 7.4 19
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TABLE V. Growth times in the absence of energy spread and ener~J spread

required for st3.bility for tT,TO differ-ent values of the total number of

particles in an cX2.r.1p1e approximating conditions in the IvlORA 40 MeV

electron accelerator.

..

Case

A

B

C

D

N

"0 (mscc).

590

190

52

bE (kV)
s

0·3

0·3

0.22

0.19

N :::

"'0 (msec)

59

19

3·0

3·0

2.2

1.9
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FIG1.JRE CAPTIONS

Figure 1. Geometry of beam and taillr for the circular cross-section case.

Figure 2. Geometry of beam and tank for the rectangular cross-section

case.
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