UCRL-11089

~ :2‘
A R

University of California

Ernest O. Lawrence
Radiation Laboratory

LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE
COASTING BEAMS IN PARTICLE ACCELERATORS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

Berkeley, California




Rept. sub. for meeting at the
Informal Conference at MURA,
October, 1963.
UCRL-14089

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No, W-7405-eng-48

LONGITUDINAL RESISTIVE INSTABILITIES
OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS

V. Kelvin Neil and Andrew M. Sessler

October 23, 1963



-iii- UCRL-11089

IONGITUDINAL RESISTIVE INSTABILITIES

V. Kelvin Neil and Andrew M. Sessler

Lawrence Radiation Iaboratory, University of California
Livermore and Berkeley, California

October 23, 1963
ABSTRACT

The lonéitudinal electromagnetic ihteraction of an intense
coasting beam with itself, including the effect of a resistive vacuum
tank, ié investigated théoretically. It is shown that even in the
range where th; particle frequency is an increasing function of particle
energy, the beam can be longitudinally unstable due to the resistivity
of the vacuum tank walls. In the absence of freguency spread in the
unperturbed beam the beam is shown to be always unstable against
.longitudinal bunching with a growth rate which depends upon (N/b)l/Q,
where N is the number of particles in the beam and ¢ 1is the
conductivity of the surface material. By means of the Vlésov equation,
a criterion for stability of the beam is obtained; and shown 1n the
limit of high-conductivity walls to involve thg freguency spread in the
unperturbed beam, the number of particles N , the beam energy,
geometrical properties of the accelerator, but not the conductivity o .
© A numerical example is presented which indicates that certeiln

observations of beam behavior in the MURA 40 MeV electron accelerator

may be related to the phenomena investigated here.

* . -
Research supported by the U. 5. Atomic Energy Commission.



I. INTRODUCTION
Thaf an electron stream with a small density fluctuation along
the (longitudinal) stream direction may have the fluctuation amplified

a4

when passing through a pipe which has resistence in its walls was first

4]

pointed out by Birdsall. The concept has been incorporated into the
resistive wall amplifier and a general discussion of "slow wave"
amplifiers has . been given.by Pierce,.l while Birdsall and Whinnery2
have given a general analysis of such strﬁctures.

The purpose of this work is to extend the theory as developed
for the analysis of traveling wave tubes to an-analysis of longitudinal
resistive instabilities of intense high velocity beams in particle
accelerators. In particular, the theory presented here includes,
through the Vlasov équation, details of the particle dynanics (as
contrasted with the hydrodynemic approximation of Ref. 2) which are
vital to obtaining the criterion for stability. The work described
here is aiso an extension of previous studies of longitudinal

5)}4')5

instabllities and draws heavily upon the notation of Ref. 4. Our

analysis was stimulated by experiments with the MURA AO MeV electron
accelerator which show a pronounced longitudinal bunching of the beam
near the injection energy. Although the observed instability above
the transition energy is well understood, and had even been predicted
theoretically;u the observations of bunching below the transition
energy came initially as g surpfise. The analyéis presented here
culminates in a criterion for stability and a growth rate in the

absence of stability; both of which seem to be in adequate agreement

with the observations at MURA. At the least, the theory suggests further
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experiments suitable for determining whether the observed phenomena
is in fact a resistive instavility; and in any case, the theory
suggests désign requirements for any particle accelerator developed
for the production of very intense beams.

The analysis presented 1is a linear perturbative treatment
about a uniform (coasting} beam in the azimuthal (6) direction. A
perturbation of the beam density in the form of a periodic wave in 6
and t is assumed and the elecfric and magnetic fields arising from
the perturbation are then computed in Section II under two different
situations. Iﬁ Section III the formalism of Réﬂa L4 and 5 is employed
to reduce ﬁhe effect of the fields upon the particle motion to a
dispersion relation which determines -the frequency of fhe aséumed
wave. OSection IV 1s devoted to a discussion of the dispersion relation;
Section V contains a numerical example, namely the application of the
general results to the MURA 40 MeV electroﬁ accelerator,

The analysis shows that the resistive instaoility leads to the
longitudinal bunching of an initially uniform beam of (one velocity)

1/2

particles with a growth rate which is proportional to o where

o 1s the conductivity of the surface material [BEq. (k.7)1. An
effective stabilizing mechanism is the spread in particle cifculation
frequency which is caused primarily by a spreéd of the‘particle\energy
in the beam. ‘It is shown that since the resistive fields aré very
small compared to the non~resistive fields the criterion for stablility

is a sensitive function of the assumed frequency spread in the

unperturbed beam. For a realistic particle energy distribution and
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for surfacesof high conducpivity, 2 condition for stability
is obtained which is independent of the conductivity [Eq. (4.20)].

It should be noted that although the analysis is restricted
to a uniformi-or coasting--beam, it is expected that a very analogous
phenomena will occur even if the unperturbed beam is azimuthally
bunched bf an rf cavity. Some support is giﬁen to this argument by
the fact that althoﬁgh tﬁe previous theoretical work on longitudinal
instabilitiesi’u’slwas also restricted to.coasting beams, the phenomenon
has been observed7 in bunched beams in eésentially the same form as in
the uniform case.

Finally, it must be pointed out that the work éf Ref'. 5 is
incomplete in that the possibility of the Instability discussed here
was overlooked. The work of Ref. 5 is correct, in so far as it'goes,

but must be augmented with the analysis of this paper to give a complete

description of the phenomena possible.
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II. SOILUTION OF MAXWELL'S EQUATIONS

In this section we shall obtain the electric and magnetic fields
assoclated with a perturbed density which varies as exp[i(n® - wt)],
wheré because of the periodicity requirement n must be an integer.
Incorporating the resistance of the vacuum tank wall is sufficiently
complicated that we treat two special cases. The first is a beam of
circular crosé section centrally located in a tank of circular cross
section where the longitudinal wavelength 2ﬁR/n is assumed large
compared to the tank minor radius. In this case simple analytic formulas
may be obtained for the fields. The second case is a rectanguler cross-
section tank in which the beam is assumed to be located in the median-
plane of the cavity and to have finite extent horizontally, but be
infinitely narrow in the vertical .direction {a ribbon beam). - In this
case resistance is incorporated in the top and bottom tank walls,'but
the side walls are assumed to be perfectly éonducting. In both cases

the_curvature of the vacuum tank is ignored, as this is a good

approximation.

1. Circular Cross-Section Vacuum Tank

We consider é beam moving aloné the (z;direction) axis of a
pipe of radius Aa . let the beam have uniform density out to radius
b, so we have the situation illustrated in Fig,.l. The perturbation
is‘aésumed to vary as expli(kz - &dt)] so when we relate this
calculation to an actual accelerator we will replace k by (x/R)

end z by RO . Thus we have assumed current and charge:
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'po e r < b,

p = .
0 T > b,

‘ (2.1)
, i(kz-wt)
o e r < b

o & ’

j =

z 0 ] r > b,

which can easily be seen to satisfy the equation of continuity and

correspond to a wave velocity in

Corresponding to this charge and

fields:
B - (0 2w B(n)
L = rr£ ZI‘
~  ilkzeot)
H = H¢(r) ¢ e

which upon

equations

1 9

= B;(rEr) + 1kE,

1 9 i

—I‘-B‘I"(I‘ng) +~'—C—EZ

-1k By %Er = 0
o Ez im '

LB - T 0T

the z direction of magnitude w/k .

current distribution will be the

‘A i(kz-wt)
zle
(2.2)
J
coupled
‘ihﬁ oy r § b
: EO ; r > b
L
by w
_ JT kP r o< b
0 ; r > b
= 0 ,

(2.3)
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where Gaussian units have been employed. t is easy to eliminate two
of the fields and obtain a Bessel equation for the remaining fields.
One of the first two equations of Eq. (2.3) may be ignored since it
follows from the other when the equation of continuity is employed.
The boundary conditions are that at r = b all of the fields

are continuous, while at r = a +the resistance in the walls implies

E, = -(1 - i)@(?H¢; . o (2.4)

where the surface is characterized by <§% = (w/Bﬂc)l/e , with ¢ the
conductivity of the surface in séc-l. Thus the general solution to

Egs. (2.3) and (Q.k) may be readily exhibited in terms of Bessel
functions of zero and first order. If we arelwilling to limit

ourseives to the case in which (ka!)2 <1 (leaving the more general
case to the next section, where the formulas are already encumbered

By the more complicated geometric situation), we may expand the solutions

for small values of r to obtain the forms

25 o r o+ Al r, : r <‘b
E. = A
* {27{ pobC
— + Al r., r>Db
By = By B2
21A
; 2 [ 2 1 2 ] 1
1k(1-r3w)npor t5h T =, r<b
E = ' :
ik(1 - Bw,) [Qn Py b log r +
‘ 2iA
. 2. 2. 1
+’w0b -%r%b hgg}+ T s r>5b,
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where ,Bw = w/kc 1s the phase velocity of the wave in units of ¢ .
In Egs. (2.5) we have satisfied all of the equations except the wall
boundafy condition Eq. (2.4) which now may be invoked to determine the
constant Al:' In this way, for (k&) << 1 and 6& << 1 we obtain

as the leading terms in the longitudinal electric field for r <b :

on pob2 o | 1 (ka) , r 12
Ez(r) = " (1 - B, ) | -i(ka) [5 + log a/b] e ( = )
. ,
- UQ% 1 - szj .
| (2.6)

In Section III we will need the azimuthal electric field to
which the particles are subject, on the average. This involves some
éverage of EZ over the beam cross section, but since the grecise
average required is not clear (in view of the approximations inserted
in Eq. (2.1)) and because E, varies only slowly across the beam
we will continue in the spirit of Ref. 4 and employ E, (r=0) .

Introducing the perturbed charge per unit length A by

| 5 .i(kz—mt)‘

o= wopy b e , (2.7)

we have for the total field in the z direction:

NG O 2 QCRB

It is interesting to note that the out-of-phase contribution decreases

like 7w-2 = 1 - ng‘, involves a geometric factor, and is proportional
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i

to the variation of charge in the =z direction--results all familiar
from previous studies.LL The (new) in-phase component only exists in
virtue of the resistivity and furthermore does not vanish as k = O
or as ﬁw i ; . In all practical applications it appears that é? is
sufficiently}small that the in-phase component is small compared to
the (usual) out-of-phase component.

In a notation which will be convenient for subsequent analysis

we have, finally:'
(REe) = -inn(1 = ng)(l + 2 log afv) - 2 Ge B*-x (1—2-)
(2.9)

vhere n 1s the number of waves about the circumference and the -
perturbed chearge  per unit azimuthal length AN has been written in

the form

. i(n6 - wt)
A= N e . - .(g.lo)

2. Rectangular Cross-Section Vacuum Tank

In this section we consider an infinitely thin beam in the
vertical direction, located in the median plane of a rectangular duct
of height H and width W , as illustrated in Fig. 2. The beam
charge distribution in the x direction is assumed to Ee unaltered
by the longitudinal bunéhing and determined by initial conditions so
the perturbed surface charge distribution\ U(x,y,t) is taken to be
of the form ‘

i(_ky-(m;) o

O'(X;Y)t) = XlG(X) € 2 - (2-11>
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with o¢(x) normalized so that its integral over x is unity.
conéervation of charge implies a surface current distribution
Jy(x,y,?) just equal to (o/k) times o(x,y,t).

'Thevboundary conditions for the electric and magnetic filelds
are taken to pe perfectly conducting side walls so that the tangential

electric and normal magnetic fields vanish at x =0 and x =W .

On the top surface (z = H/2) we require

.
i

< (L - 1)6{133,
(2.12a)
— - - I
Ey = (1 i)@BX R
and on the bottom surface (z = —H/e) we require
E_ .—.-(1-1)63y
(2.12b)

Ey' (1 - 4) 6{ B, ,

|

where 6{ - has been defined following Eq. (2.4).

Expressions for the fields are most easily written as two sets,
 transverse magnetic (TM) and transverse electric (TE), with transverse
referring to thé Z dirgction. Fach sét independently satisfies
Mexwell's equations for free space everywheré inside the tank ekcept
at z = 0, and also satisfy Egs. Céjea) and (2,1%b).. The desired

expressions are as follows:



D

5

TE .

+ [+ cosh v(z +—-) - -:-— (1 - i)&sinh viz *

i(ky-cnt) Z

N
X{—iksin'qxi

eiﬂ(ky—wt) Z

(

-11-

1

» sinh v(z I—g- ) - Ug(l -i)@\cosh v(z 1% )J

/‘ !
X{HCOST\X;{V‘P iksinnxfj\ii

S

Ve

)

ol

) 'ES !:3; cosh v(z *

H

2

,62 ‘ o
) Tsinnxh

(2.13)

i - |
T (l - 1)K sinn v(z\'+—2~ )]

, Al
+ mecos K Ji,
} 2o 2

n A
X itk cosnzil + nsinnz] ’

S

r
+ {+ sinh v(z * ——) + —jﬁy—c—(l - 1)@(:05}1 V(Z

1(ky-wt)
e }: BS +coshv(z+

27

j{‘-n,s'innx/{ +ikcosn

h!
5)

5, e (1- 1)@s1nh o

]

(2.1k)

(2.15)

mltn

|

posnxg

<| o i

(2.16) )

1

2
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2_ 42 (w/c)z, and

. 2 2 2
In these expressions 71 = sx/¥ , £  =1" +%, v
s is an integer which must be summed over. The top and bottom signs
apply wvhen z > 0 and 2z <0 respectively. We determine the constants

1

Es and Bs from the discontinulty conditions at z = 0 :

bro(x,y,t) , (2.17a)

3
1
1
i

h«j(x,y,t)/c . , A (2.17p)

los}
'
(s}
i

Expanding ¢ in a Fourier sin series in x ,

a(x) = % )ch sinq x, | (2.18)
ﬁe find | o
E = -2¢x XN, ¢ v/ze {cosh(vH/E) . (1 - 1)6Zsinh(vﬁ/2)J
s l"s . ve ' S 7
(2.19)
and .
B, = 2t N o B, 'q/ze [cosh(v E/2) + -%’)—9 (1 - i)@sinh/(v 5/2) {,
(2.20)

with B = (w/xe).
‘ The only field component that enters into theAVlasov equation
in Section IIT is Ey(z:O). After some simplification we have, to
first order in Qe, |
Ey(z=0) = 21 1 M ei(#y4ﬁt? }: o, sinn x
5 .
X % (1 - Bwe)tanh(v B/2) - 1(1 - i)@ﬁw sechz(v H/é)} .
‘ L (2.21)
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We may ignore the (small), term proportional to (-1)2. If the
perturbation wavelength is long compared to the transverse dimensions
of the vacuum tank then n >k and v = L= 17 .

In Section IIT we will need the average field which the
particles feel in the azimthal direction. This is obtained from

Ey(z=o) by averaging over Xx :

[ o(x) E_(x,y,2=0)dx .
(By) = X ;o ' o (2.22)
[ o(x) ax

or

(E

4

e) [ dx Z o, sinn x Ey . ‘ (2:23)

We thus obtain

, brin R e
\ L 2 E 2 vH
(REj) = - > o, ¢y (1 - B, )tanh 5

o ) 2 vH
- iﬁﬁwsech 5 .

(2.24)

This general expression may prove useful in some applications.
We have evaluated it numerically for a particular choice of ¢(x) which

has two parameters, namély a beam of width A with center z. as

0

indicated in Fig. 2. The functional form chosen was



b~

1_—22 cos %(x-zo)_ , ]x-zo'] < pf2
o(x) = {
Lo , lx;zol > b/2,
(2.25)

and a TO94 Fortran ProgramB developed to evaluate the quantities:

Relong = Z 052 (1 - Bwe) -}5 tanh _V_IQfI_
S .
Imlong = Z 682 B sech -éf—I . (2.26)

In terms of these:

(R Ee) = -h-jt i a( ;I% ) {‘Relong - i@lmlong] . (2.27)
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" ITI. THE DISPERSION RELATION
 The dynémiés of the problem is incorporated in the Vlasov
.-equgtioﬁvéhicﬁ we solve in cylindrical éoordinateé incorporating the
formalism ofﬁﬁefé. L andIS? and in particular the‘canénical variables
6 and w- fo}‘thglazimuthal motion. The quantity w = En(pe - po)
where .peV is}£heAcanoni¢al angular momentum and 12 the mean valﬁe
“of pe  for.#ﬁe §é§m. The transverse motion of part;cles is |
<¢§nsider§d:oﬁlynin so far as it contributes‘tq the transvérse

f. dimensioné of the .beam and to the relation between the circulation
vffequency 6f parti;ies and their canonical angular momentum.

The‘partiéles distribution function W(w,e,t) satisfies the

>

":fone-diménsional equation:

.- a . oi'al : ' a .
: 5% + 8 5% + 2t e (R EG> 5% = 0, (3.1)
where the quantity (R E,) has been evaluated in Section II. The
,unperturbéd beam is uniform in-azimuth and constant in time so it
* ‘may be described by a distribution function»>wo(w) . Ve may take
& infinitesimal perturbation in the form of waves so that
e ' - 1(ne-wt) ,
¥(w,8,t) = y(w) + ¥, (w) e , . (3.2)
which Whén_inser’ce_d into Eq. 1(5.1_), after linearization, ylelds

2x 1 e (R Eg)j dwo ~ ~i(ne-wt)
— = e N (3.3)

W) = -
','l',_‘ ‘(a)-né)

Let us normalizév ¥ to partiecles per unit length so that in terms

" of the total number of particles in the accelerator I ,
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¥ = 2x R [y (wlaw = N[ £ (w)av, (3.4)
while the perturbed charge density may be related to Xl by
A o= e f ¢1(W)dw . | (3.5)
Thﬁs, combining Egs. (3.3) and (3.5):
~i(ne-wt) (dy..
A, = -2tie> (RE) e 0 dv | (3.6)
1 V] ar oy . n b
Defining
ars ’ '
. _ _ 0 dw
I - dV’ ® -1 é ) (5‘7)
and inserting Eq. (2.9), Eq. (2.24), or Eq. (2.27) yields
-1 o= (U- )T, (3.8)
where from Eq. (2.9):
Ne2 n 2
U = m (1 - By J(1 + 2 log a/b) ,
A (3.9a)
5 Oa,
Ne“ 2 ({ B ‘
V = _——.—_-@___w—- ;
a
while from Eq. (2.24):
T W % ¥ T Py 2 7’
(3.90)

|

v : . ) .
Ly . Ne B B secn® YE |
‘ W $ Og w 2 7 1
L : s : ‘
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2
U = EEﬁEE— Relong ,
, (3.9¢)
2 )
by Ne“ (K
V = ;——————Jil Imlong .

W

Alfhough U and EV are functions of « through Bw = m/kc{
we shall see below that ® near n mo i; the reglon of interest.
It is therefore a good approximation (provided the particles are not
extremely relativistic) to replace Bw by Bo = v/c , Where
Vo= o, R 1is the mean velocity of particles in the beanm and wb is -
the mean angular frequency. This simplification is strictly true at
the stability limit of thé negative mass instability, where' Ww=n wo
is a solutioﬁ to ﬁhe dispersion eguation. There 1s a further dependence

of V on o through 62 = (w/8ﬁc)l/2 . This is a weak dependence,

end we shall e#eryplace replace ® by n @y thus rendering U and

V.. independent of o .
' The quantities U and V are positive, and for all cases in

which we have evaluated them 6% is so small that V << U.
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IV. ANALYSIS OF THE DISPERSION RELATION

1. Instability in Absence of Damping

In order to directly demonstrate the resistive instabllity
ve first choose fo(w) = ®(w) which represents a beam with all
perticles having the same canonical angular momentum. Since we are

only concerned with small deviations in w we may write

6 = @0y + Ky ¥, . | (4.2)

where ®y is the mean angular freguency and ko 1s related to the
particle revolution frequency f , which is a function of particle

energy E , by

ar
ky = 2t f = . ‘ \» (k.2)

Below the transition energy ko is positive, while above the transition
one is in the region of "negative mass." Evaluating Eq. (3.7), we

have from Eq. (3.8)
(0 - ne)® = nx(U-17), | (4.3)

If k, <O then even'for V=0 (i.e. no resistivity considered)
Eq. (L4.3) exhibits an instability, namely the negative mass instability. -
In this regime we heed not .consider the effect of V since V is

always very small compared to U . For ko > 0 we obtain from Eq. (k4.3)

| | v |
o = n £ /nx,U <l“i§ﬁ')’ (k)

where the positive sign corresponds to a "fast wave" in which the wave

. phase velocity Bw is greatef than the particle velocity BO and the



1,2

perturbation is damped.™’ The negative sign corresponds
wave' and it is clear that the disturbance in this case is exponentially

given by

growing, 2 ~with an e~folding time T

3 1/2

2
y vV nko

(&.5)

This formula may be evaluated using Eqs. (3.9). For the

circular geometry, and with the restiction that n < R/a we have

(1 - 5w2)(1 + 2vlog a/b) ‘& 1/2

N .

. = (4.6)

0 B . 2
6{ W R X, Ne J
| - p.1/2
which is approximately, in terms of 50 and ‘70 = [1 - ﬁo ] :
§ 1/2 N
1+ 2 log a/b
T / . (k. 7)

a
BoyoR [ o R Ne® £ %

The e-folding time is seen to depend upon the surface conductivity o

as - 01/2 , and upon the number of particles as N-l/2 . The dependence

of 7 upon n is only correct for n < R/a , and more generally can

0

be obtained fron Zgs. (4.5) and (3.9b); it is a week dependence since

n only enters through Ggi‘which varies as nl/2 , so that <. varies

o
as n-l/2 .

2. Criterion for Stability

A stability:égiterion wili automatically emerge from the
dispersion relation if wé use an fo(v) which describes a frequency
spread in the unperturbéd beam. This 1s simply the well-known

phenomenon of lLandau damping. The analysis 1s complicated by the fact
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- that VKU, which means that the growth rafe is very small and
easily damped by'pafticles riding at the wave velocity 6w . On the
other hand the wave velocity is shifted from BO by the (relatively)
large term U , with the result that the damping is sensitive to the
barticle distribution at frequencies removed from the cenfral frequency

o
quite consistent with these physical arguments, we find that the

w. . To summarize the detailed results presented in this section, and

condition for stability is that the freguency shift (w - n mo) be
less than n +times the frequency spread in the beam.
To illustrate the problem consider the lorentz, or resonance,

line shape for fo(w):

5

£.(v) = —— (4.8)
0 x(w2 +A62) i :
where ® i1s a measure of the w-spread and henc: the frequency

spreed in the beam. The integral in Eq. (3.7) may be readily performed

and one obtains

. | v |
® = nog ¥t {nk U (1-11—2—1—]-) - inky o, (k.9)

where Eq. (4.1) has been employed and V assumed much smaller than U .

The slow-wave instabiiity is damped out if

. L ,
nkyd > = , (4.10)

0
which is much less stringent than the correct result to be derived
below. The criterion has resulted from the very large tail of the

Lorentz line.



) TT Ty e s
n L{O(U +1V) ) J Cho aw L 1)
T = v F] ol
(UE . V2) dav  (w - rl)
where wl = (d -n wo)/n kO . Consider now a Gaussian distribution
in w , ‘taking
i "W2/62 .
£lw) = e . (4.12)

Ve

A partial integration and a change of variable from w to

w/8 = & puts Eq. (4.11) into the form
2 = | )
nky ® (U +1V) ] ,( ) : )
— . = £.) . 4.13
(v + v®) \/~ 5 £ ) /7 *

) .
The function 2;(&1) has been investigated numerically by

2 but asymototic’expressions will suffice here. The stability

Fried,
criterion is fbund bv considering real £, = (w - n wo)/n Ky & .

’ ’
Since . U>>V , Re 32 >> Im 2?’ is the region of intercst, which is

where the expansion
2

| -t
A ~ - s | (4.1%)

J ‘lv Vo T 3

is a good approximation. From Eq. (h.lB) we have at once. that

the limit of large él ,

21 &,

} 2 2 ;
2 2,.2 U )% :
/67 = —L (%.15)

n ko ST U
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or, to goodvapproximation:

' 1/2
v, = - <nUk >/ . (4.16)
0]

The corresponding frequency shift ® - n Wy is thus ko nwv,y ,.0r the

same as obtained for the two other choices of fo(w) in Egs. (L4.4)

and (4.9).
However, the stability criterion found from Egs. (L4.13) and
(%.14) differs drastically from Eq. (h.le. The value of ® necessary

for stabillity is found by solving the transcendental equation
2

gl5 e_Jl =V x V/éU s | (b.17) -

where we have used Eq. (4.15) in the left side of Eq. (4.13). We
will not pursue this criterion further, but merely note that the value

of B necessery for stability depends logarithmically on V , not

directly as in Eqg. (4.10). For numerical computa
ﬁrove extremely useful.

Consider now, a distribution function fo(w) which has non-zero
values for only a finite range of w . It is easy to see that for such

(= physically realistic) function it is impossible to satisfy the

dispersion relction with real w if w, 1lies outside “he range in

1
which £, is non-zero. This can be seen by writing Eq. (4.11) in the
form
n k 6) ar . ar
0 0 aw 70 ,
o2 (v +1 v) = J/P aw  (w - wl)' ol ?
. _ ' ) w:wl

(4.18)
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where (7/ indicates the Cauchy princ1p1e oart. The eguation cannot
be satisfied by a real value of ¥, afg \ is zero. Furthermore,
' _

1t can be shown that any w, having a real part

1

non~ZzZero fo(w) has an imaginary part with a sign corresponding to an

instability. The value of Re vy has been seen to be insensifive

to the form of fo(w), so we can deduce a necessary condition for -

stablility, namely the range of fb(w) must include Wl . Because V .

is so small compared to U +this necessary condition is a very good -

approximation to & sufficient conditicn. Quantitatively we have the

frequency spread in the beam Ams = kOS and so

nA‘ws > 2(n ko U)l/2 (.h.l9)‘

is the condition for stability. Evaluating this for the case of circular

geometry; with the restriction that n < R/a we have from Egs. {3.9a

1/2
erx f %% Ne2 :
to, > 2 A (1 + 2 log a/b) s (4.20)
R 70
which is algebraically just the criterion for the abz.:..: of thé negative

mass instability (out there, of course, df/dE is nciitive and its
absolute value appears'in the fdrmula).h This last result has the
geometric factor appropriate to the circular geometry; and i1s independent
of n , which result-is only valid for n < R/a (The more general case
can be handled employing Egs. (4.19) and (3.9b).); and is seen +to be

independent of the surface resitivity o , in this limit of high

'conductivity,surfacés.
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It should be noted that Eg. (4.20) may

i)

1lmpose more sever

&

design requirements on a high intensity accelerator than thoée
necessary to circumvent the negative mass instability. This is
because in tﬁe negative mass instability the enéfgy mist be above
transition whére ] %% ] is usually small and 7o may be large,
Eq. (4.20) must be applied near injection in an AGS. The absence
any observed effect in present generation machines--in contrast to
observed negative mass instability in Saturne, the Cosmotron, and

Bevatron7—-must be laid to the rather large energy spread from the

linac injectors (in comparison to the amount of injected current).

but
of
the

the



As a numerical example we take the MURA 4O MeV electron
accelerator with parameters as listed in Tebles I and II. We assume
the conductivity of the walls is that of aluminium, namely
o= 3x lO17 sec—l. In Table IIT one can find the result of_numerical
calculations for U and V , a5 well as a comparison with the
analytic formulas of Eq. (3.92). The agreement is seenvto be
excellent, although the geometry is very removed from a circuiar
situation and n is not much less than R/a . Table IV giveé
results for the growth time in the absence of frequency spread T
and for the frequehcy spread required for stability A.ws . In
Table V, ‘N is taken at two values bracketing the experimental
range and A(DS is expressed in terms of a reguisite energy»spread
AES on the assumption tha% the frequency spread is causedbsolely
by an energy spread. The numbers are in semi-cuantitative agreement
with observation, with the. AES being closer to obser&ations than

the =« - It is realized that the growth time T is a function

o *
of the resistivity of the walls and could be considerably reduced
if the effective reéistivity of the walls is higher in the accelerator,

than the nominal value (for aluminium) which was used in these

theoretical calculations.
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Geometrical parameters employed in the numerical example

approximating conditions in the MURA LO MeV electron accelerator.

The dimensions are defined in Fig. 2.

Case n R (cm) H (cm) o {cm) z . (cm) A (em)
A 1 125 5.k .100 15 1.0
B 10 125 5.4 100 15 1.0
c 10 140 5.4 100 30 1.0
D 10 1k 5.1 100 30 2.0




-7~

TABLE IT. DBeam parameters employed in the numerical ekample. The

guantity X corresponds to a field index parameter of 9.3.

___ Ear -2 -1
Case By Yo @ cm/sec K= 25 k, sec’  erg
, ' _ 8 22
A - 0.5528 1.2 - 1.3% x 10 1.96 0.575 x 10
' _ ' 8 ., _ 22
B 0.5528 1.2 1.3% x 10 1.96 0.575 x 10
' 8 22
c 0.8660 2.0 1.86 x 10 2.0h 0.702 x 10
8

D 0.8660 2.0 1.86 x 10 2.04 0.702 x 1022
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TABLE ITII. Values of +he quantities U and V , as defined in Eq. (3.9).
The conductivity, in this example, is taken to be that of aluminium;

1 -1 :
namely, g'=3%x 10 7 sec . It can be seen that the analytic formula

of Eq. (5.9a§ is an exceedingly good approximation--in this example, at

i
" least--to the numerical computations.

=T

Employing Eq. (3.92) - Employing Eq. (3.9¢)
case |3 x20%ergs) ¥ x 10%(ergs) L x 100(exgs) ¥ x 20%(exgs)
A 0.561 %9.6 0T 39.5
B 1 5.6 125 7.69 121
c | 2.02 ' 2352 2.47 \ 229
D 1.38 232 1.91 ' 226
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TABILE IV. Growth time and spreads required for stability in the

numerical example. The gquantity -~ is computed employing Eq. (M.5),

0
while A is evaluated employing Eq. (%.19); in both cases using
the last two columns of Table III. The cuantity AES is the energy
spread in the beeam required to give the frequency spread A‘ws (and

hence stability), under the assumption that the frequency spread arises

solely from energy spread.

Case /2 (séc) 2% ety A’Es x 10° (xV)
To Eﬂé {22 W_é
A 5.9 x 10° 13.5 30
B 1.9 x 107 13.0 20
’ 2
C 5.2 x 10 8.k ‘ 22




TABLE V. Growth times in the absence of energy spread and energy spread
required for stability for two different values of The total number of
particles in an example approximating conditions in the MURA LO MeV

electron accelerator.

N = 108 N = 10°
. i \ S
Case o (msec). OE (kv) . Ty (msec) AE (kVv)
A - 590 - 0.3 59 3.0
B 190 0.3 19 7.0
c | 50 0.22 5.2 2.2

D _ L7 0.19 b7 ‘ 1.9
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Figure 1. Geometry of beam and tank for the clrcular cross-section case.

Figure 2. GCeometry of beam and tank for the rectangular cross-section

v
.
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