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ABSTRACT

b}

The effect of finite resistance in the vacuum-tank walls on the
loﬁéitudinal stability of an intense beam of particles in an accelerator
is investigated theoretically. We show that even if the particle fre-
quency is an increasing function of particle energy, the wall resista&ce
can render the beam unstable against longitudinal bunching. In the
absence of frequency sprea& in the unperturbed beam,.the instability

)1/2, where N

occurs with a growth rate that is proportional to (N/o
- is the number §f particles in the beam and ¢ is the conductivity of .
the surface maicrial., By means of the Vlesov equation a criterion

for beam stability is obtained. In the limit of highly conducting
walls the criterion involves the frequency spread in the unperturbed
beam, the number of particles N, the beam energy, geometrical pro-
perties of the accelerator, but not the conductivity ¢. A numerical
example presented indicates that certain observations of beam behavior

in the MURA L40-MeV-electron accelerator may be related to the phenomenon

wve Investigated.

v o s KRN,
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I, INTRODUCTION

The observation that longitudinal density fluctuations in an
‘electron stream may be amplified by the resistance in the surrounding
walls was first made by Birdsall, who uséd the concept to construct a
resistive~wall amplifier; Pierce has presented a general theory of
"slow ane"'amplifiers,l whereas Birdsall and Whinnery have given a
general analysis of such structures.2

- The purpose of our work is to extend the theory develo%ed for
the analysis'of traveling-wave tubes to an.analysisvof longitudinél
resistive instabilities of intense relativistic beams in cyclic particle
accelerators. 'Ih contrast to the hydrodynamic approach in Ref. ?, H‘
the theory presenféd here includes details of the particle dynamics |
that are vital to obtaining the criterion for stability. 6ur work is
also an extension of previéus studies of longitudinal instaﬁilities3’h’5
and dfaws heavily upon the notation of Ref, L., Our analysis was
stimulatgd by expe?iments with the MURA 4O MeV electron accelerator; -

these experiments. show a pronounced longitudinal bunching of the beam

near the injection energy;6 Aithough the observed instability above

- the transition energy is well understood, and had even been predicted

‘theoretically in Ref. L, the observations of bunching below the transi-ﬁ

tion energy came initially as a surprise. The analysis presented here
culminates in a criterion for stability and a growth rate in the
absence of stability, both of which are in approximate agreement with
the observations at MURA. The theory suggests further experiments

suitable for determining whether or not the observed phenomenon
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is in fact a resistive instability. In addition, the theory suggestis
limitations on the design of high-current particle accelerators.

In the following linear-perturbation treatmeﬁt, the unperturbed
beém is taken to be uniform in theé azimuthal (0) direction., A perturbation
in particle density of the form exp[i(n6 - wt)lis assumed. The electric
and magnetic flelds arising from the perturbation are calculated in
Sec., II for two different geomertries. In Sec. III the Vlasov equation
and the formalism of Refs. 4 and 5 are employed to derive a diEpersion
relation that determines the allowed values of the frequency w .

Secfibn IV is a discﬁssién of the dispersion relation, The analysis

shows that resistance in the surrounding walls leéds to exponential

growth of the denéity fluxuation if all particles in the unperturbed

beam have the same circulation frequency. The growth rate is proportional
to 0-1/2, where ¢ 1is the conductivity of the wall material., An ef-
fective stabilizing mechanism is & spread in particle~circulation fre=-
quency a?ising primarily from a spread in particle energy. Because the
contribution to the azimuthal electric field Ee from the finite resistance
in the walls is very much smaller than this field in the absence of
resistance, the stability criterion is quite sensitive to the distribution

of circulation frequencies‘in the unperturbted beam. For a reslistic N

‘ ehergy distribution and highly conducting surfaces, the stability

criterion is independent of 0, A numerical example, namely an applica-
tion of the results to the MURA LO-MeV electron accelerator, is given

in Sec. V.
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IT, SOLUTION OF MAXWELL'S EQUATIONS

In this section we obtain the electric and magnetic fields
associated with a perturbed density that vafies as exp[i(ne - wt)],
where n 1s an integer. We consider two simplified models &6f the
beam and vacuum tank. The first is a beam of circular cross section
centrally located in a tank of circular cross section. The longitudinal

wavelength 2rR/n is assumed large compared‘to the minor radius of the

tank. From this model simple analytic formulas may be obtainéa for the

fields, The second model is a tank of rectangular-cross-gection in which

the beam is located in the median plane of the cavity. The beam is

~finite horizontally, but is infinitely thin in the vertical direction.

Finite resistance in the top and bottom tank walls is incorporated in
the calculation, but the side walls are assumed to be perfectly conducting.
In both geometries the major curvature of the vacuum tank is ignored,

and Maxwell‘s'equations are solved for a straight pipe.

A, Vacuum Tank of Circular Cross Section

We consider a beam moving along the axial (z) direction in a
pipe of radius b. Let the beam have uniform densitj out to.a radius a,
as illustrated in Fig. 1. The perturbation is assumed to vary as
expli(kz - wt)}], so when we relate this calculation to an actual
accele?ator we will replace 'k by (n/R) and z by R8, where R is
the major radius at which the beam circulates. The perturbed change (p)

and current (Jj) densities are
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( i(kzwt) .
ple when r <a .
ﬁ(z’t) _= ) (2.18.)
0 when r >a ,
i, = wp/k . : (2.1b)

In this section perturbed quantities carry no subscript. The electric‘
and magnetic fields arising from these sources have components Er’ Ez’
B¢, all with z and t dependence given by exp[i(kz ; wt)]. >

The complete solution to Maxwell's equaﬁions may be exhibited

in terms of modified Bessel functions. If the condition

,gz - (m/c)2‘<< b2 (Q.éx

holds, an expression for Ez,inside the beam may be obtained by a simple

application of the equation

o~ T ¢ at

o J

As showni in the next section, the pertinent value of w is such

~~
N
-
w

~

E{e?)

oA
& a .
-

that w/k is very nearly equal to the main speed v of particles -

in the unperturbed beam. Therefore Eq. (2.2) may be stated as b/y\ << 1,
where A 1is the wavelength of the perturbation and y = [1 = (v/c)z]fl/z.

When this condition holds, the radial electric field is given approximately

b
d ‘

oy when 1r <a '
i - | ’
E = 2nplel(kz wt) _ (2.4)

5 :
a°/r when r>a -,
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From the radial componeni of the equation

i aE 1
-t Ly
X = PP P .
v ,5 c t * o] 3M (2.52)
wve f£ind
B(p = mEr/kc . (2.5b)

The only boundary conditicn that must te satisfied at r = b is

B, = -(1-9RB, _ (2.6)
A = 1/2 . s .
where = (w/87w0) and o is the conductivity of the wall materiel:

in sec™. From Eqs. (2.4), (2.5), and (2.6) we have
E(r =b) =-2np (1 - )R (w/ke) (a2/pyetthz=ut) 5 oy

We now apﬁly Eq. (2.3) to a surface (Fig. 1) with the following
perimeter: from a point z,b on the wall radially inward to a point
r < a, along the =z axis a distence dz, radislly outward to s point
z + az,b on the wall, and then along the wall back %o the starting
point. Inserting Eés, (2.5b) and (2.7) into Eq. (2.3), we have

T / b :
/. E (r',z)dr' + E (r',z + dz)dr'
. r / r
“b Jr

i

If we divide by dz and take the limit dz -+ G, the first two terws

on the left-hand side of Eq. (2.8) become-
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Inserting Eq. (2.Lk) for Er and performing the necessary integrations, we obtain

' 2
_ 2 i(kz-wt) 2 [ r 1
E, = 2mp,8"e éik(l - 8, )Lﬂ.n(a/b) + 5" 2}

~(1 - 1)Rs /v ; : (2.9)

‘an expression valid for r < a. In Eq. (2.10) Bw = w/ke is the phase
velocity of the perturbation in units of c.
In Sec; III we need the azimuthal electric field that acts on-

1

theAparticles. This involves some average of Ez over the beam cross |
section, but in view of the approximations inherent in Eq. (2.1), the
precise average required is not clear. Because Eg varies slowly

across the beam, we will continue in the spirit of Ref, k4 and employ

Introducing the perturbed charge per unit length

Az nplab expli(kz - wt)], we have for the total field in the =z

direction: ,
(E-A) = A (1L -8 2)[l + 2 en(b/a)] 27{BW by {2.10a)
R e v n - TT ' ’

in which we have neglected the term proportional to iR for reasons given

below. We note that the out-of-phase contribution decreases like

-2

v - 1= Bw2’ involves a geometric factor, and is proportional to

Y

the variation of charge in the =z direction=-results all familiar;from
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previous studies. The (new) in-phase component exists only bvecause of

the wall resistivity, and furthermore does not vanish as kX =+ 0 or as

B + 1, In all practical applications it appears that A 1ig sufficiently

of -phase component.
In the notatiocn used in the next section, we have

<(RE57 = aWini{(l - Bwe)[l + 2en(b/a)} - QJQBW(}R/b)X s (2.10v)

Al

where n is the number of waves about the circumference, and the per=

turbed charge per unit ezimuthal length A is written in the form

A= XJ exp [i(nd « wt)].

B. Vacuum Tank of Rectangular Crosg Section

In this section we consider & beam infinitaly thin in the
vertical {z) direction located in the medien plane of a rectangular
duct of height h s&and width w, as illustrated in Fig. 2. The bean-

charge distribution in tiie % direction is zssumed to be unaltered

i
by the longitudinal bunching and determined

-
(e
to

v initial conditions so

the perturbed surface~charge distribution o(x,y,t) is taken to be of

Sof ¥

[ o PN,
4

4 1. s e
GL [$rgi)

LS

\ \i { }{ym(;)tb)

g{x,7,t) = kld(x;e

s {2.13)

N\

. . . W i . . .
with g{x) normalized so thatgo o{xldx = 1., Conservation of charge

implies a surface~current distribution 5v(xﬁymt) Just equal to {uw/k}
’

o

times ¢ (x,y,t).
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The boundary conditions for the electric and magnetic fields
are taken to be those appropriate to perfectly conducting surfaces at

the side walls so that the tangential electric and normal magnetic fields

vanish at x = 0 and x = w. On the top surface {(z = h/2) we require
E = (1-1)R3B
Ey = ~(1 - 1i)RB . (2.12a)
and on the bottom surface (z = =h/2) we require s
E. = -(1 - 1)723y
(2.12v)
E, = (1 - 1RB,

where "R has been defined following Eq. (2.6). N
Expressions for the fields are most easily written as tﬁo sets,

transverse magnetic (TM) and transverse electric (TE), with transverse

referring to the 1z difection. Each set ihdependently satisfies

Maxwell's equations for free space everywhere inside the tank except

at z = 0, and also satisfies Egs. (2.12a) and (2.12b). The desired

expressions are as follows:
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In these expressions n = sn/f, 22 = n2 + ke, N (w/c)2, and s

ig an integer. The subscript s on these quantities has been omitted
for brevity., The top and bottom signs apply when z > 0 and z < 0
respectively., |

- We determine the constants Es and B5 from the discontinuity
conditions at z = 0:

Ez+ - B = bwo(xy,t) » _ (2.17a)

Bx+ -8 = iyt : ' (2.17D)

Expanding o(x) in a Fourier sin series in x,

! 1
o{x) = {2_) o _sinnx (2.18)
3 wicTs
we find
Ln | v lvh 1w v . |vh ‘o |
B, =~ }‘lcs';?. {cosh{-—-é- - (L - i)Rsinh l-é-} . {2:19)
and
161 n [ {vh\. dve vhi 1
Bs = = A0 B ,(12) LCOSh lmé.} = (1 - i) Rsinh 5 J| . (2.20)

The only field component that enters into the Vlasov equation

in Sec. III is Ey(z = 0), After some simplification we have, to

first order in 7€ ’

o _ hm f(ky-wt) § .
Ey(z = Q) ~‘ - = ine .o sinn x

S

I

k 2 fvh ! 2|y
x L— (1 - 8., )tanh'-!mé’}’ - 1(1 -1 /()B sech 2

R

VR
.

(2.21)
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We may ignore the term proportional to (—i)27L. If the perturbation
vavelength is lon
tank, then n >> k and vx L »n.

In Sec. III we need the average azimuthal electric field that
acts on the particles. This average is obtained by multiplying
Eq. (2.21) by o(x) and integrating the equation over x. Using

Eq. (2.18) as well as the normalization condition on o(x), we obtain

A

- i{nd-wt)
Luix Rel(n )
- 1 2)n 2 © |vh . 2{vh
(REg) = - = - Es o fzz (1 - 8 ")tann (\ 5 - 1J8, sech”| 2’}

(2.22)
vhere we have replaced y by R6 and k Dby n/R.
This general expression may prove useful in some applications.

We have evaluated it numerically for a particular choice of o(x) that

has two parameters, namely that representing a beam of width A with center

X, as indicated in Fig. 2. The functional form chosen was
l 5%-cos %-(x - xo) , when X - xol < pf2
o(x) = (2.23)
‘ 0 : s when |x - x "> a/2 .

and a 7094 FORTRAN program’ was developed to evaluate the quantities:
2 2, n {vhx
= - a— — | '#»hg)
Relong i o (1L -8"°) = tanh l S | (2,2k4a)



-1l

Tml - E: s 28 h2'vh\
mlong = - s By sec ( 2) .-

In terms of these,

'<RE6> = <hnil {%)[Relong - iR Imlong] .

(2.2Lb)

(2.25)
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ITI. THE DISPERSION RELATION

The motion of the particles is treated by means of the Vlasov
equation, which we solve in cylin@rical coordinates, We incorporate the
formalism of Refs. 4 and 5, and in particular the canonical variables
® and W for the azimuthal motion. The quantity W = 2ﬂ(pe - po) where
Py is the canonical angular momentum and po.the mean value of Py for
the beam. The transverse motion of particles is considered only inso-
fgr as it contributes to the transverse dimensions of the beam and to
the relation between the circulation frequency of particles and their
canonical angular momentum,

 The particle~distribution function ¥(W,6,t) satisfies the

dne-dimensiopal equatibn5
2y | & AV 3 _ |
st 0 3p t 2me ‘(REQ§ 57 o . (3.1)

The quantity (REé} is evaluated in Sec, II. The unperturbed beam is
uniform in azimuth and constant in time so it may be described by a
distribution function wO(W). We consider an infinitesimal perturbation

that allows us to write the distribution function sas

pOi,0,6) = (W) + gy (e (R0t (3.2) .

Inserting Eq. (3.2) into Eq. (3.1) and linearizing, we obtain

v ()yet(0=ut) erie(REg) dy, (3.3)
1 ' (6 - nb) aw
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The function y is normalized so that the total mimbexr of particles

in the accelerator N is given by
(‘

N = 2m. jy.(Waw , (3.4)

but it will be convenient in what follows to define a function
£,(w) = 2n;;¢0(w)/u .
The perturbed charge density per unit length XN is found from
A ='e(w (W)aw | (3.5)
1 J 1 : ’

Combining Egs. (3.3) and (3.5) yields

. ay .. |
A ei(ne”mt) = _2nie” (REGE[ Q Sl , (3.6)

1 a¥ (w - nd)

in which we must insert the appropriate expression for«(REe>from

Sec, II. The dispersion relation may be written in the form

-1 = (U=-iv)T , (3.7)

with I defined by

1 = dfO aw (3 8)
d¥ (w - no) . .
The definitions of U and V in Eq. (3.7) depend upon which expression

for<(REé)is used in Eq. (3.6). If Eq. (2.10b) is used, we have

U

we®(n/R)(1 ~ 8 )1 + 2 20 (b/a)] (3.92)

<
n

2Ne2zgsw/b . _ (3.90)
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If Eq. (2.22) is employed, the definitions are

U = Cthez/w) Z:osz %§A (1 - ng) tanh (vh/2) , (3.10a)
s T
Vo= (baNe®/w)R) o %8 sech® (vn/2) . (3.100)
. s .

By the definitions, Egs. (2.2La) and (2.2ub), the latter definitions of

‘U and V may be written
U = (hﬂNez/w) Relong (3.11a)

V o= (bNe®R/w) Imlong . (3.11b)

\

Although ‘U and V are functions of w through B, = w/ke, we '

shall see below that values of w near nwo are of interest. It is

therefore a good approximation (provided the particles are not extremely

relativistic) to replace’sw by 8 = v/c, where v = wOR is the mean

velocity of particles in the beam and @ is the mean angular frequency.
|

This simplification is strictly true at the stability limit of the

negative~-mass instability, where w = nw is a solution to the dis-

persion equation. There is a further dependence of V on w through
;L.= (w/8wo)l/2. This is a weak dependence, and we shall replace w by
nw,, thus rendering U and V independent of w, The quantities U and V

are positive, and for all cases in which we have evaluated them A_ is

so small that V << U,
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IV. ANALYSIS OF THE DISPERSION RELATION

‘A, Instability in Absence of Damping

In order to demonstrate the resistive instability we first
choose fo(w) = §(W), which represents a beam with all particles having
the same canonical angular momentum. Since we are concerned only with

small deviations in W we may write

¢

6 = wy* K ‘ (k.1)

where wg is 27 times the average value of the particles'circulation fre-
quency f. The quantity ko reflects the characteristics of the H

accelerator guide field, and is related to f by

a3
[}

onf(df/dE) (4.2)

df/dE is positive, and above the transition energy df/dE is negative.
x

The latter is the regime of "negative mass,"
From Eqs. (3.7) and (3.8) we obtain

(v = nm0)2 = -nkO(U - iv) . (L4.3)

S

If k, < 0, then even for V = 0 (i.e., no resistivity considered) Eq. (%.3)
exhibits an instability, namely the negative-mass instability. In
this regime we need not consider the effect of V since V is

always very small compared to U. For ko > 0 we obtain from

Eq. (L4.3)
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==t AN
F Vnk,U \L - 153 ) ' (4.4)

where the positive sign corresponds to a 'fast wave" in which the wave
phase velocity Bw is greater than the particle velocity B8 and the
perturbation is damped.l’2 The minus sign corresponds to a "slow wave"

that grows exponentially with an el-folding time 1. given by

0

)1/2

= (2/V)(u/nk, . | (k.5)

To
This formula may be evaluated with Egs. (3.9) used in the circular-

geometry model. We further employ the approximation Bw = 8 with the

result

. = D [ 1+ 2 tn (b/a) 11/2 . (4.6)

O BYR| onp ne®s(ar/ar) |

1/2

The eé=-folding time depends upon the conductivity ¢ as o , and upon

. s L - . . - .
the number of particles asN ~~ ~, The dependence of To upon n 1is

correct only for values of n such that Eq. (2.2) is satisfied. It

-1/2

is a weak dependence, n s which enters through A . The general

dependence of 1, upon n must be obtained from Egqs. (4.5) and (3.10).

0

B. Criterion for Stability

A stability criterion will automatically emerge from the

dispersion relation if we use a function f.(W) that describes a fre-

0
quency spread in the unperturbed beam. This is simply the well-known
phenomenon of Landau damping. The analysis is complicated by the

fact that V << U, which means that the growth rate is very smell

and easily damped by particles riding at the wave velocity Bw. On
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the other hand, the wave velocity is shifted from ’Bv by the (relatively)

large term (nkoU)l/g, with the result that the damping is sensitive

to the particle distribution at frequencles removed from the central

frequency w In illustration, consider the Lorentz, or resonance,

O"
line shape for fO(W)=

é
1r(w2 + 62)

£,(0) = . (4.7)

A

where § is & measure of the spread in W and hence of the frequency
spread in the beam. Equation (3.7) may be integrated readily with

the result
w =, Duwn + K/nkﬂil— 1 -1 —~\ . ink 6§ ' (4 8)
L 0. oU 0 ’ y

where Eq. (4.1) has been employed and V is assumed to be much smaller

than U. The slow-wave instability is damped out if

-

§ .
_ k. § > e 4,
‘ ot > (h.9)

this condition is much less stringent than the correct result derived
below. The criterion [Eq. (4.9)] has resulted from the very large tail
of the Lorentz line.

To qonsider other functions, we first write the dispersion

relation in the form

nky (U + 1Y) [ av (4.10)

2+ o W)




D]

where W, = (w = nwo)/nko. Consider now a Gaussian distribution in W,

with
1 (-1°/6%)
£ W) = e exp ] (4,11)

A partial integration and a change of variable from W to W/§ = £ puts

(4,10} into the form

t. 8
nk (U + iv) _ }_'J[ expl~&. di -/9 (e.) . To(h,12)
(U2 + V) BAES 5“51 s

The function Q}:(gl) has been investigated numerically by Fried,lo
but asymptotic expressions will suffice here. The stability criterion is
found by considering real &l = (@ - nmo)/nkgéa Since U »>> V, we must |

have Re %}">> Im ’gﬂ. This cccurs in the limit of large El’ where

the expansion

1
- 2
NIE) = pit 7 explaf2) 4 e (h.13)
AR 1 2T ;2
"1
is a good approximation. TFrom Egs. (4.12) and (4.13) we knov at
once that
W 2 e 2
gf = o=y = LI (ho1k)
§ nkoé U N
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.or, to good approximation,

W. = -(U/nko)l/2 . | (k.15)

The corresponding frequency shift w - nmo is thus ,konwli or the same
as obtained for the two other choices of fo(w) in Eqé. (4.4) and (4.8).
However, the stabllity criterion found from the Gaussian

distribution differs drastically from Eq. (4.9). The value of §

necessary for stability is found by solving the transcendental’equation

3

& exp(~& 12':)., =  ~=V/2u~T, (k,16) -

where we have used Eq. (4.14) in the right-hand side of Eq. (k.12). We

\

will not pursue this criterion further, but merely note that the value

of & necessary for stability depends logarithmically on V, not

directly as in Eq. (4.9).: For numerical computations Eq. (4.16) can

prove extremely useful.

Consider now a distribution function fO(W), which has nonzero
{

values for only a finite range of W. It is easy to see that for such

a (physically reslistic) function it is impossible to s@tisfy the

. e A PRI SN PR 4 o PR 1 r L am et =d Ao -~ Ny s - S
dispersion relation with real w if W, lies ocutside the range in which
— 1 &

f is nonzero. This can be seen by writing Eq. (4.10) in the form

0 ~
nk (ar ar
0 . ~ 0 daw p 0

= (U + iV) = 631 el cRey +inm = , (4.17)

W=
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where (F)indicates the Cauchy principle value. The eguation cannot be

satisfied by a real value of W

ca s | ‘o
1 if (df /dW);w=wl is zero, Furthermore,

it can be shown that any W. having a real part outside the range of

1
nonzero fo(w) has an imaginary part with a sign corresponding to an
instability. The value of Re Wl has been seen to be insensitive to

the form of fO(W), s0 we can deduce a necessary condition for stability,
namely the range of fO(W) must include Wl.‘ Because V 1is so small'
‘compared to U , this necessary condition is =a very good approkimation

to a sufficient condition. Quantitatively we have the frequency spread

in the beam Aws ::2k06, and so

nou, > 2(nkOU)l/2 (4.18)

is the condition for stability. Evaluating this for a vacuum tank of

circular cross section,.we have from Egs. (3.9a} .

. Ton(e ar/aE)ne® 112 .
Aw > 2 = {1+ 2 an{v/aj] . (4.19)
o L Ryg %

Ny

, !
" This result is algebraically Jjust the criterion for suppression of the

negative-mass instability (but there, of course, df/dE is negative

and its absolute value appears in the formula).h This last result

- has the geometric factor appropriate to the circular geometry, and .
is independent of n. We must remember however, that Eq. (4.,19) is

valid only for n << yR/b. The more genergl case can be handled

with Eqs. (4.18) and (3.10a). The stability criterion is independent

of the surface resistivity o in this limit of highly conducting

surfaces,
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Equation (4.19) may impose more severe design requirements
on a high~intensity accelerator than those necessary to circumvent
the negative-mass instability. This is because the negative-mass

ility is possible only if the energy is above the transition

ot

energy where [df/dEI is usually small and Yy may be large. DBut

Eq. (4.19) must be applied near injection in an AGS. The absence
of any observed effect in present-generation machines--in contrast
to the observed negaﬁive-mass instability in Saturne, the Cosﬁgtron,
and the BevatronT--must be laid to the rather large energy spread

from the linac injectors.,
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V. NUMERICAL EXAMPLE

As a numerical example we take the MURA hO-MéV~electron accelerator
with parameters as listed in Tables I and II. Ve assﬁme the conductivity
of the walls to be that of aluminum, nemely o = (3 x 107) sec™ .

Table IIT shows the results of numerical calculations for U and V,

as well as a comparison with the analytic formulas of Eqs. (3.9). The
agreement in the values of V is seen to be excellent, although the
geometry is remote from a circuiar situation and n is not much less
than yR/b. Table IV gives results for fhe growth time in the

absence of frequency spread Tys and for the frequency spread Aws re-
quired for stability. In Table V, N is taken at two valueé brackefipg
the experimental fange.and Ams is expressed in terms of a requisite |
enexrgy spread AES on the assumption that the fréquency spread is caused
solely by an energy spréad. The numbers are in semiquantitative
agreement with observation, with the AEs being closer to observations

than thetTO‘ 6 The growth time t. is a function of the resistivity of

0
the walls and could be considerably reduced if the effective resistivity

of the walls were higher than the nominal value (for aluminum) used in

. .
these theoretical caleculations.

id <.
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Table I. Geometrical parameters that are employed in’ the numerical example

and that approximate conditions in the MURA L40-MeV. electron accelerator.

The dimensions are defined in Fig. 2.

Case n R (em) h (cm) w (cm) %, (cm) s (cm)
A 1 125 5.4 100 15 > 1.0
B 10 125 5. 100 15 1.0
c _ 10 ko 5.4 100 30 1.0

D . ¢ 1ko - 5.4 100 30 2.0
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. DBeam parameters employed in the numerical example. The
quantity « corresponds to a field-index parameter of 9.3.
, | ., LBaf 2 gl
Case B Y wo(cm/sec) ¥ ko(sec erg )
, 8 22
A 0.5528 1.2 1.323 x 10 1,96 0.575 = 10
- , ~8 : 22
B 0.5528 - 1.2 1.33-x10 1.96 0.575 x 10
8 ; 22
C 0.8660 2.0 1.86 x 10 2,04 0.702 x 10
D 0.8660 2.0 x 10° 2.0k 0.702 x 10%°

1.86

10
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Table III. Values of the guantities U e&nd V , as defined in Eq. (3.9),
The conductivity, in this example, is taken to be that of aluminum;
nemely, 9 = 3 % 1017 sec—l, In the evaluation of Eq. (3.9a), b has been
taken as h/2 and a as 4/2, It can be seen that tlhe analytic formula

is an exceédingly good approximation--in this example, at least-=to the

numerical computations,

Ad

Employing Eq. (3.9a) Employing Eq. (310z)
Case '[1'\}1' xlOeO(ergs) % x1026(ergs) %— xlogo(ergs) % x1026(ergs)
A 0.561 ¢ 39.6 ‘ 0.77h ‘ 39.5
B, 5.61 125 | 7.69 121
c 2,02 o232 . 2,47 229

1.38 ‘ 232 1.91 226
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Table IV. Growth time and frequency spreads required for stability in

the numerical example., The quantity 7. is computed with Eq. (4.5),

0
whereas Aws is evaluated with Eq. (4.19); in both cases the last two
columns of Table III are used. The quantity AES is the energy spread
in the beam required to give the frequency spread Ams (and hence

stability), under the assumption that the frequency spread arises

- solely from energy spread.

Abw ' AE
1/2 8 -1 s 6 4,
Case N L (sgc) ;i7§ (sec™ ) §i7§ x 107 (xV)
A 5.9 x 10° 13.5 30
B 1.9 x 103 13.0 30
c 5.2 % 102 8.4 25
{ 2
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Table V. Growth times in the absence of energy spread, and energy spread
required for stability for two different values of the total number of
particles in an example approximating conditions in the MURA LO-MeV-

electron accelerator.

N = 108 , N = lOlO
Case
T4 (msec) | AES (kv) i (msec) AES (xV)
A 590 0.3 59 340
B 160 0.3 _ 19 3.0
C _ 52 . ig.22 _ 5.2 2.2

D L7 0.19 L7 1.9
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Fig. 1 Geometry of beam and tank of circular cross section,

Fig. 2 - Geometry of beam and tank of rectangular cross section.
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