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ABSTRACT

The threshold and asymptotic behavior of the Regge parameters
are discussed and some examples given. It is shown that the position
and residue of the first trajéctory of a single attractive Yukawa
potential satisfy the dispersion relation expected when there are no
intersections with other trajectories. An example is given of‘a
repulsive Yukawa potential where the position of the pole does not-
satisfy such a dispersion relation. The Regge parameters for @he
first few trajectories of a single attractive Yukawa potential are
given in the form of figures. Examples are given of a simple super-
position of attractive and repulsive Yukawa potentials for which the
trajectories are similar to the relativistic case.

By modifying the background integral, the Regge formula is
rewritten to include the Born term and to make the background integral
less significant. The Khuri series for the partial-ﬁave amplitude has
been modified to explicitly single out the Born term. In deriving
this modified series it is shown that one needs weaker asymptotic
conditions on the partial-wave amplitude than those used by Khuri.

The convergence of this series has been investigated for the case of a
single Yukawa potential. It is fdund that the modified series con-

verges considerably faster than the Khuri series.
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I. INTRODUCTION

The notion of complex angular momenta was first introduced by
Sommerfeld in connection with the problem of scattering of radio waves
by the earth,l and the idea was later utilized by Regge to prove the
Mandelstam representation in potential scattering.2-h The point is
that, under certain conditions on the potential, the partial-wave
series can be converted into a sum of contributions from poles in the
complex angular-momentum plene plus a background integral. The position,
in the angular-momentum plane, of these so-called Regge poles changes
as the energy is varied, and the pole farthest to the right determines
the aéymptotic behavior of the scattering amplitude for fixed energy
and large (nonphysical) momentum transfers. The importance of Regge .
poles in the relativisfic case was first realized in connection with
this asyﬁptotic behavior and the number of sub’cract:ionfs.‘j in the
Mandelstam representation. It was later shown by Froissart6 and C-ribov7
that, in the relativistic case and based on the Mandelstam representation,
the analytic continuation in complex angular momentum can be uniquely
defined.

Aside from the clarification given to the asymptotic behavior
of scattering amplitudes, there are certain other aspects of the Regge-
pole idea that are particularly appealing in the theory of strong

interactions. We mention two of these aspects.

A. Regge Poles and Composite Particles

Ever since Yukawa's theory was advanced, it has been known that
the range of the strong interaction forces is of the same order of

magnitude as the size of the particles involved, so that when two
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particles are close enough to interact, their combined size is about
the same as that of one particle. In contrast to the strong interac-
tions, the electromagnetic forces allow for bound states considerably
larger than the size of each constituent. For example, the hydrogen
atom is larger than a proton or an electron by several orders of magni-
tude. Through collision with another particle, the hydrogen atom can
be broken into an electron and a proton.. One is thus led to consider
the hydrogen atom as composite, and the proton and the electron as
elementary particles. Let us now consider a pionization process,
P+XxX—=>Dp+ ﬂo + X . By considering this process to be analogous with
the above ionization process, one is then led to the absurd conclusion
that the proton before the collision is composite, and the proton after
the collision is elementary! But as long as one does not introduce

the "elementary" notion, the proton can always be considered as a
composite state of any number of particles which, together, have the
same quantum numbers as the proton.

Only by analogy with electrodynamics and in connection with
Lagrangian renormelization was the idea of "bare" and "dressed” protons
introduged. This concept then led to consideration of a physical
proton as a "bare" proton with a cloud of pions (as well as of baryons,
antibaryons, etc.) surrounding it. In the S matrix theory of strong
interactions,8 any one particle can be considered as a bound state of
any number of particles that combine to give the same quantum numbers.
In particular, £he proton cen be considered as predominantly a bound
state of a proton and a pion; this pion in turn can be considered as

a bound state of two other particles (e.g., = + %), and so on.
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Now, for example, the I = 1/2 even-parity spin-5/2 resonance
state of the pion-nucleon system has the same quantum numbers as the
proton, the only difference being the mass and the angular. momentum.
Once the proton is considered as a bound state, the Regge-pole hypoth-
esis is a natural way of putting such a resonance and bound state on

an equal footing--in direct analogy with fhe potential case.

B. The Pomeranchuk Trajectory

To express the hypothesis Qf maximal strength of strong
interactions (i.e., saturation of unitarity) and (or) the Pomeranchuk
theorem (constancy of the total cross sections at very high energies),
Chew and Frautschi9 and, independently, Gribovlo found it natural to
hypothesize the existence of the Pomeranchuk trajectory, the appli-
cations of which have already shown qualitative success in high-energy
diffraction scattering. It led, for example, %o the successful predic-
tion of the f° particle.’t |

From the above and similar arguments, the Regge-polevhypothesis
is expected to play an important role in the theory of strong interac-
tions. Furthermore, a considerable degree of similarity exists between
the potential and the relativistic cases; Because of this similarity,
a study of Regge poles in potential scattering appears interesting.

For certain potentials-~-among these the Coulomb12 and the
sq_uare-well15 potential--the ﬁroblem can be solved analytically, but
each of these potentials has its shortcomings. The Coulomb case
produces an infinite number of bound states and no resonances. For
the square-well potential, there are spurious singularities in

momentum traensfer, and the trajectories increase indefinitely. For
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a superposition-of Yukawa potentials, certain general theorems have
been proved, but a solution in closed form is not possible. Nevertheless,
the Yukawa potential is the most interesting and useful to study in -
detail. Restricting ourselves to a single Yukawa potential, we have"
a well-defined problem without the ébove-mentioned shortcomings of
the Coulomb and’sqpare-well potentials.

Byvdirect integration of the Schrodinger equation, we have
calculated the Regge.parameters for the first few trajectories. The‘
numerical calculations were carried.out ﬁi?h tﬁe ﬁelp of the IBM 709k
computer of the.Lawrénce.Radiation Laboratory. The program used is a
modified Qeréibn @f'thé‘FQRTRANfTBEGGEiprogram written by Burke and
Tgté,lh once.the Regge parameters»are calculatéd, we examine certain
(fréperties attributed toifhem. let us now expiain the type oqunestipns
to which we shall épply ourvnuméricél results. ‘ ‘

The partial-wave amplitude for a superposition of Yukawa

. potentials
) = [olw) & as | (1)
‘ ml .

2-4

has been studied by Regge et al.” They have shown that the amplitude

A(2,8) (where £ 1s the angular momentum, and s = k® 1is the energy)
can be continued in the complex £ .plane and, in the Re £ > - 1/2

. region, A(Z,s) is meromorphic in £ . In the complex s-plane,
A(£,8) has a right-hand cut from s = 0 to oo and a left-hand cut
from s ='-m12/h to s = -00, where m, 1s the lower limit of the
integral in Eq. (1). They have also shown that for s <0 tﬁe

L= ai(s) poles of A(£,8) 1lie on the real £ axis.



Throughout this paper, we are concerned only with the subclass

of potentialé (1) that can be expanded in a power series,

V(r) = E: C, =1,
n=0
It follows from the proof by Mandelstaml5 and Froissartl6 that A(4,8)
is also meromorphic in the left-half £ plane. On the other hand, the
proof by Regge et al. that ai(s) are real for s <O has no obvious
generalization to include the region Re £ < - 1/2 , since this proof -
rests on the integrability of the wave function.

A third property of A(4,s), shown by Zemach,17 is that A(%,s)
has no multiple poles in £ for Re £ > ~1/2 . This proof again
rests on the integrability of the wave function and has no obvious
generalization in the left-half plane; consequently for Re £ < -1/2
it is not known under what conditions multiple poles can be excluded.

Based on the meromorphy of A(#£,s) , reality of ai(s), and
absence of the multiple poles, Téylor>was'able to show that the Regge
parameters ai(s) and bi(s) [whergl bi(s) are the reduced residues]
are real analytic functioné of s with only thé ¥ight-hand cut.l'8
However, from the Coulomb 1imit15 it follows that for sufficiently
large values of |_s|, all trajectories lie in the region Re £ < -1/2 .
Thus, to our knowledge there is no proof that any given trajectory is
free of anomalous branch points. Neverthéless, our numerical study
shows that the'lead;ng trajectory, al(s)', for a.single attractive
Yukawa potential is indeed real analytic in s with only a'right-hand

cut. That multiple poles in A(£,s) and corresponding anomalous

branch points of ‘ai(s) in 8 for the region Re £ < -1/2 do occur
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in general is shown by the example of a single repulsive Yukava
potential.

The threshold behavior of the Regge parameters in the rela-
tivistic case of two spinless ?articles has been investigated by
Barut and Zwanziger,l9 starting from the Mandelstam representation.

As they have pointed out, the same threshold behavior holds in the
nonrelativistic case with potentials (1). Starting from a formula by
Regge et al.,u we obtain the threshold behavior'of all Regge parameters
for both the right- and the left-half plénes.

For high enough energies, oné needs consider the_behavior of
the potential near the origin only. Thus, in po£ential (1), if the
limit of rV(r) is finite as r aproaches zero, then the Regge
parameters at high energies approach the Coulomb case, and in this way
one can determine the asymptotic behavior of the poles and residues.
In particular, one finds that the reduced residues need subtractions
in their dispersion relations.

Regge trajectorieS'for certain céseS‘of'a sinéle Yukawa potential

20,21 One peculiarity of single Yukawa

already exist in the literature.
potentials is that Re a(s) increases very little above the threshold
and the trajectory moves quickly fowards the left. This is in contrast
to the relativistic ase (e.g., the Pomerénchuk trajectory) in which
Re ¢ increases considerably from the threshold value. We have
attempted to find a simple sum of attractive and repulsive Yukawa
potentials which produces relativistic looking trajectories.

The question has often been raised: Is it possible to write

the scattering amplitude solely in terms of Régge parameters, thus

eliminating the background integral? A major step in this direction



has been taken by Khuri.22 Bésed on & rather restrictive assumption
concerning the asymptotic behavior of A(4,s) for large IZI , Khuri
has found an extension of ﬁegge's formula in which the background
integral is entirely removed.22 He has also proposed a series
representation of the partial-wave amplitude in terms of the Regge
parameters. We examine the rate of convergence of the Khuri series

for a single Yukawa potential, and show that, even if the series is
mathematically convergent, it is not uéeful at high energies. We also
modify the series starting from somewhat weaker assumptions and examine
the rate of éonvergence of the modified series.

In the following section we give a short review of certain
results of Regge et al.2"3’LL and Taylor.l8 We also give the threshold
and asymptotic behavior of the Regge parameters. Section IIT deals
with the dispersion relations satisfied by fhe Regge parameters. In
Section IV we discuss & simple superposition of Yukéwa poteﬁtials
which produce relativistic-looking trajectories. Khuri's extension of
Regge's formulae is treated in Section V. Finally, in Section VI we
give the Regge parameters for several trajectories and &also give the

S matrix for the first three partial waves.
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II. ESTABLISHED PROPERTIES OF THE REGGE PARAMETERS

A. Reality and Analyticity

In this section, for the sake of completeness, we review

2,3,4 and Taylor18 that are

briefly certain results of Regge et al.
of interest to us in the subsequent sections. No attempt has been
made to make the arguments rigorous; we only give plausibility arguments.

The radial Schrodinger eguation

! |
9—% + k2 - V(r) - £

Jdr - T

lxv= 0 (2)

together with the boundary conditions near the origin

\V' ~ r‘e+l (5)

defines the analytic continuation of the physical scattering solution.

Asymptotically, this solution is of the form

~-ikr

- £(4, -k)e - ()

£( 4,k )er

oy
¥r) 5o Pik

where f(4,k) and f(£, -k) are the so-called Jost functions. In

terms of the Jost functions the S matrix is defined as
ik :
L€
f(z,.&) ] (5)

5(4,6) = =
2

For the class of potentials (1), Bottino et al.LL have shown that
f(2,k) is holomorphic in the £ plane for Re £ > -1/2 , and in
the k plane it has a cut on the positive imaginary axis from

k = iml/2 to k = ico and a kinematic branch point at k = 0 .
Similarly, f(4, -k) is analytic for positive imaginary k .

Furthermore, it turns out that S(£,k) can be continued in the gap



-9-
from k=0 to k= iml/2 and also that
* e'iﬂ)

£ a,k) = 2047, K . | (6)

Thus f£(4,k) is real for real £ and negative imaginary k and
£(4, -k) is real for real 4 and positive imaginary k .

The poles in £ = a(k) of the S matrix are then the implicit

solutions of the equation
£(4, -k) = 0. . (7)

From Eq. (7), we have

f(é, -k) = [égggj—ZEQJ | [z - a(k)]

4=k )
2 . 2 '
. 1[P2, poam e - o,
2 aze : -
=a( k)
(8)
If the first derivative does not vanish, we have

L -alk) ¥ £(2, -k) , for £ = alk) .

[ éﬁ%%L“:El ]g=a(k)' | (9)

Now since f(#%, ~k) and conéerently' Of(8%) /o8, are
analytic in k , then a(k) is élso analytic in the upper half k plane.
Then in the k° plane, 'a(kz) has only the right-hand cut. Furthermore,
if a(kz) is real for k° <0 , then a(kz) is a real analytic

function.
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In the K2 plane we denote if(z,k) by f+(£,k2) ‘and £(8, ~k)
by f_(z,ke) . It turns out that whereas f+(z,k2) has a left-hand

cut in k2 , f+[a(k2), k2] does no1:..l'8 Defining the modified residue
as

f_'_(a( ke)) k2)

a_[a(x?), k3)))
.Y

(10)

B(ke)

B(ka) has only a right-hand cut in k? . Tt is also real for k° < 0,

as can be seen from Egqs. (2), (3), and (4), which are all real. The

residue of the S matrix,

B(x?)

it

B(x) explt x (k)] | (1)

is also analytic with only the right-hand cut. However, . B(ka) is
not real, because of the factor exp[} 7 a(ka)]-. The reduced residue,

defined as

2 .2 ’
b(ke) _ ﬁ(k(i2)+% _ B(kx) 2 . (12)
P . o Q
21(x%) 21k( k%)

also turns outbto be a real analytic function. We wish to emphasize
that the reality and analyticity properties of the Regge parameters
mentioned above are rigorously valid fof the class of potentials (1)

in the right-half.t plane. In the above arguments it has been assumed
that (a) the partial-wave S matrix is meromorphic in £ , (b) no
multiple poles of S(£,k) occur, and (c) a(kg) is real for K° <O .

These conditions have been shown to hold for the region Re £ > -% .
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" As already mentioned, at high enough energies all trajectories approach
their Coulomb limit and finally end at negative integers as |k2|'+ ®.
Consequently, no trajectory lies entirely to the right of Re £ = -% .
Man.delstam15 and Froissartl6 heve shown that the amplitude is also
meromorphic in £ for Re £ < -3 . On the other hand, both the
proof of Bottino et alou that a(ka) is real for k- <0 and
Zemach's17 proof that multiple poles do not occur rest on the integra-
bility of the wave function and have no obvious generalizations in the
left-half plane. It is not known under what conditions multiple poles
in the region Ré £ < -%- do not occur. We later give an example of a

single repulsive Yukawa potential in which a(kg) is complex below

the threshold as a consequence of two trajectories in the complex

angular-momentum plane intersecting at the same energy.

‘It has been shown by Bottino et al. that"
. - 1
2(2,%) = g2+l S(4,k) - explein(L + )] (13)
s(s,k) - 1

is continuous in the gap G' = { k | k= 1 7, In| < ml/é } , and

that
"
2(2,k) = 2(4, k e~ ) , (14)
and also

. | (15)

* - * * -
s¥(e,5) = sTH4T, k&I

Now let us consider
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Y(4,k) = -1 2(8,k) expl-i x(£ + )]

o expl-i(s + B)] Yexploin(s + B)] - S(z,k)}
s(2,x) - 1

(16)

iin)

L}

©

Y(4,k e

It follows from (15) and (16) that, for k in the gap G and
for real £ , Y(£,k) is real and Y(Z,kz) is a real anslytic function

of £ and k2 with only a left-hand cut in k2 starting at

k2= -1

le/h . In terms of- Y(£,k), the S matrix can be written as

24+1
24+1

Y(8,k) + k
Y(£,k) + k

explin(£ + %)] ] (17)

s(é,k)
expl-in(2 + )]

The poles of the S matrix are the solutions £ = alk) of

24+

Y(Jé,k) +k exp(-in(£ + %)] = 0, (18)

which is the nonrelativistic analogue of Barut and Zwanziger's
formula°l9 Near a pole we have

-2 4 k2a+l sin (o + &)

{BYsg;a(-k?, k; e 2 In(k o172

s(4,k) ~ ST

expl-in(a+5) 1\ (£ -a(k)j

(19)

)i

and it follows from Eq. (11) that ay[z=a(k2), k2] /32 has only a right-
hand cut in k2 . We shall use these results in connection with the

threshold behavior.



~13-

B. Threshold and Asymptotic Behavior

The threshold behavior of the residues for the left-half plane
has not been given so far. However, they follow easily from Barut
and Zwanziger's expansion, 19 and here for the sake of completeness
we give a full set of threshold behaviors.

For Re £ > -% and near the threshold, since Y(4,k) is

even in k , we have

, 1
Yz(a - ao) +s Y, + safﬁ exp[-in(a + &)] + 0(52) = 0,
(20)
S o (L =0a., s=0) oY(e = Uys S = 0)
where s = k Y, = —= Y =
? Ty =Y 7 s Os v ’
and %y = a(s = 0). Therefore, we have
1
o, + %
a -1 o ° . 1 2
a = oy -Y," les + s exp[-in(ay + 3)] ¢ + 0(s%)
’ (21)
and
@ +5
Rea = o, =Y s cos n(a, + %) + 0o(s) , s > 0y
0 2 0 .
1
-1, %2
Rea = a;-Y, (-s) + 0(s) , s <0
> - .
] ao""é' > for ao . %
Ima = Yz s sin:r(o_zo+%), s>0
Ima = 0 , ; § <0
(22)
For Re 4 > -% and near s = 0 , it follows from Eq. (19) that
a tE
B(s) ~ 21 Yz 1 g 0 sin n’(ao + %), (23)
1 %R |
B(s) ~ -2 Y, s sin :t(ao + %) exp[-i:t(ozo + 3)] (2u)
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and

b(s). v Yz— sin n(ao +3) . (25)

Therefore we have

Re B(s) =~ - Y, s sin n(2 ay + 1) , s>0)
o, %t
Re B(s) =~ -2Y, (-s) sin ﬂ(@o + %), s <0
a*]; &fOI‘ CZO> -%‘
- > .
Im B(s) =~ EYZ sineﬁ(ao +3) s 0 s s> 0
ImB(s) = 0, s <0

(26)
To investigate the threshold behavior in the region Re 4 < -3
we rewrite Eq. (17) in the form

{R(z,s) + s—(z+%)_exp[-in(z + %)]'}exp[iﬁ(2£ +1)]
s(4,s) = . * _ ’

R(2,s) + s_(z+%) explin(4 + %) ]

(27)
vhere R(£,s) = Y-l(z,s). We assume that S(4,s) and Y(£,s) have

the same analytic properties as before. Near a pole we have

1

-2i s-(z+%) sin n(£ + 3) exp[2in(L + 3)]

s(s,s) = . (28)

R(4,8) + s~ **2) explin(s + 3)]

Again the poles of S(£,s) are the solutions £ = a(s) of

R(2,8) + s explin(z + B)] = o, (29)

and near the threshold we obtain

Rz(a - ao) +sR_+ s'(ao+%) exp[iﬂ(ao +3)] + 0(52) = 0, (30)
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where R, = OR(Z = Uy 8 = 0)/o4 and R, = R(L =0, s=0)/ds .

2
Therefore, provided that @y 1is real, we have
Rea=a)-R, & coszt(ao+%)+0(s), s>0

-1 '(ao*‘é)

Re @ = o) - R, (-s) + O(S), s <0

. (. +3) for a, < -1
Im @ = -Rg- s O sin :t(ao + %), s>0
Ima=0, : . s <0

(31)

Also for the residues we obtain

B(s) ~ -2i R s sin n(a. + 3) exp[2in(a. + %)]
J/ 0 0
~(a,+3)
B(s) ¥ 2R "lg 0 explin(a. + 2)] sin n(a. + 3) for o, < -3 .
) 0 0" ® o~ "2
-1 -(2010+1)
b(s) ~ - R, s sin :r(ao + %) exp[zi:t(ozo + 51
) (32)
giving " _(ao_’_%_) ' ‘
Re B(s) ~ Rz s sin 1r(2oao + 1), ' s >0
| -(a +5)
Re B(s) ~ 2 Rg-l (-s) O sin ﬂ(ao +3), s <0
-(a,+3)
ImB(s) » 2 R‘e':L s O sinazt(ao +3) s>0
. for
ImB(s) = 0, , s <0 | N
-1 -(2(10+l) ' >ao < -2
Re b(s) ¥ - RE 8 cos n(2 ao+1)sin‘:t(o:o+%-), s> 0
Re bls) ¥ R, "t ( )-(2a0+1) i .
bis) ¥ -R, -s sin 1:(0!0 +3) , - 8<0
: 1 -(aao+1)
Im b(s) ¥ -R, " s sin n(2a0+1)sin n(ao+%), s>0
Imb(s) = 0, s <0
(33)

This completes the threshold behavior of the Regge parameters.
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Now let us consider the asymptotic behavior of these parameters.
Since we have assumed that in Eq. (1) %ig r V(r) is finite, the
potential behaves as 1/r near the origin. As |s| approaches ),
one needs consider only the behavior of the potential near the origin,
s0 the Regge parameters should approach asymptotically the Coulomb

limit. For a Coulomb potential V = -g/r the S matrix 1512

(o1 78)

S(z,S) = - . . (5)4-)
T(} +1 4+ —= g,>
2Vs
‘s . 12
The positions of the poles are given by
Ofn(s) = =n + £ ) n=1,2, *°°°, (35)
2\[s
. R 12
while the residues are
n
\ -1 - 1)! i
ﬁn(s) - (-1) /(n ) y L& (36)
‘n+ 1+ 18 ls] o Ve

Vo
Therefore for potential (1) at high energies one obtains Egs. (35) and

(36), where

g = - lim f oln) e™ au . (37)
r=-0 :
1 _
Also we have
Cn ]
B,(s) NI SO (38)
Is| - o

and

by(s) g1 % (s) £ . = (39)
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We shall use these asymptotic values when we consider the
dispersion relations for the Regge parameters in the next section.
It is interesting to note that from the asymptotic formulas (35) and

(36) as well as the threshold formulas (22) and (23) one gets
B(s) ~ 21i Imals) . | - (40)

We shall see in our later examples that, although expression (40)
holds both near the threshold and at large |s| , at intermediate

energies it is far from correct.
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ITI. DISPERSION REIATIONS OF THE REGGE PARAMETERS

In this section we examine the disgersion relations of the
Regge parameters for some examples of a single Yukawa potential. As
seen from the arguments of Section II, none of the trajectories is
completely contained in the right-half £ plane, and to our knowledge
it is not known under what conditions in the region Re £ < -% the
Regge parameters are free from singularities other than the right-hand
cut. | |

In the absence of branch points due to trajectory inﬁersections;

one expects an(s) to satisfy the following dispersion relation:

® Im an(s‘)ds’

Re a(s) - -n + l;-j . (41)

. 8' = g

The real and imaginary parts of a(s) have been calculated numerically
from the Schréainger equation for the case of a single attractive
. -Tr ' . . .

Yukawa potential V(r) = -ge /r . By substituting Im a in Eq. (41)
and integrating numerically, the left-hand side of Eq. (41) is compared
with the actual values of Re @ from the Schrodinger equation.
Figures 1 and 2 show Re Ca vs s for the first trajectory of an

. ) . -T -r
attractive Yukawa potential V= -1.8¢e  /r and V=-5¢e  /r,
Figure 3 shows the corresponding Im al(s) ; The cross marks on the
curves for Re @ are the result of the dispersion relatiocn. From
the agreement we conclude that in these examples al(s) does indeed
satisfy the dispersion relation (41), so the trajectories in question
must be free from intersections on the physical sheet,

From the arguments of Section II, it follows that for

nonintersecting trajectories, Bn(s) _satisfies_a dispersion relation
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. (k2)

Im B _(s')ds'
Re Bn(s) = % j Z

s!' - s

Notice that no subtracfion is needed.

In contrast to Bn(s) , bn(s) does not vanish at large s .

In particular, since bl(s) -+ g/2 = constant we have
& p ® I bl(s)‘
= - Pty ————————— t :
Re by(s) = 5 + = s, (43)
0

where we have made the subtraction at c. It also follows from Eq. (39)
that for higher-qrder trajectories we need more'subtraction. From the
point of view of a dispersion relation, it is more useful to work with
the modified residue Bn(s) rather.than the reduced residue bn(s) ,
since the former vanisheé both near the threshold and at infinity.

Figures 4 and 6 show Re Bl(s) for V= -5 enf/% and
V= -1.8 e"r/% respectively. Figures 5 and T are the corresponding
Im Bl(s) . The marks on the cur§és for Re Bl(s) show thé result of
the dispersion relation. The agreement obtained here is expected when
one ébserves the corresponding results for the trajectory; it supports
the accuracy of the numerical calculation of the residues.

Figures 10 and 13 shov Im bl(s) for the first trajectory
of V=-5e7/r and V= -1.8 e"r/} respectively. The corresponding
Re bl(s) are given in Figs. 8 and 11. Again thé marks show the result
of disperéion relation (43).

For s <0, to avoid a.build up of truncation errors, the

asymptotic solution V¥ ~ eikr is integrated inwards and matched to

£+1

the solution ¥ ~ r near the origin. [For details see refer-
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ence 14.] Thus for s <O the residues have so far not been calcu-
"lated directly from the Schrgdinger equation. We have, therefore,
calculated bl(s) for s < 0 using the dispersion relation and
Im bl(s) for s >0 ., The result is given in Figs. 9 and 12.

We conclude this seétion by giving an example of an anomalous
trajectory. For a single repulsive Yukawa potential V = 1.8 e_r/r
the first trajectory is plotted in Fig. 1#. The energy is given as a
running parameter. For s <0 , it is seen from this figure that
al(s) is not real. That a(s) becomes complex before reaching the
threshold is due to the branch point at s = =3.1l. Figure 15 shows
a(s) 1in this neighborhood, and it can be seen that «a(s) is double-
valued. There are two trajectories that cross at s = -3;1°

We now proceed to show that for V = 1.8 e”r/r the singular-
itieé of al(s) are not confined to the real s axis. In the absence
of complex branch points, al(s)' should satisfy a dispersion
relation with a cut from s = =3,1 to s = +c0. The imaginaryvpart
of al is plotted in Fig. 16. B& inspection of this curve, one can
easily convince oneself that, since Im al(s) has a very large negative
slope at s =0, if ai(s) satisfied a dispersion relation, Re al
would have a sharp minimum—aﬁ s =0 . But from Fig. 1% we see that
Re al(s) has a maximum there. Of course there is an ambiguity of the
sign of Im al(s) for s < O_o The reason for this ambiguity is that
Im al(s) vanishes at s = O , and in the Cauchy integral we'have the
ambiguity of closing the confour in two different ways, as shown in

Fig. 17. However, even if we choose Im al to be negative for

s <0 , an actual integration shows that we can not reproduce Re al(s).
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It follows that al(s) must have branch points at complex s -values.
Examples of a repulsiﬁe Yukawa potential for which al(s) is. complex
below the threshold have already been pointed out by Lovelace and

Massoneo and by Burke and Tate.23
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IV. REIATIVISTIC-LOOKING TRAJECTORIES
Some Regge trajectories for a single Yukawa pofential; calcu-
lated by different authors, already exist in the li‘berature.eo’21
In all these example, Re @ increases beyond the threshold value by
an amount considerably less than that required to explain observed
9

resonances. In the case of the Pomeranchuk trajectory for example,

at the threshold we have

a(t=4n)  ot=0) = 1, (1)

where t 1is the total energy in the barycentric system. At the

position of the £° particlell we have

Rea(t =80 m2) = 2. (45)

1S
Therefore, if £° is on the Pomeranchuk trajectory, as is believed
to be the case, Re o must increase at least by one unit beyond its
value at the threshold. For the single Yukawa potential with g = 10,
where « 1is approximately 1 at the threshold, we have
(Re a)max = O 4 reshold =~ 0+25 . Therefore, it is desirable to
find a simple superposition of Yukawa potentials for which Re o
increases significantly so as to produce a relativistic-looking
trajectory; The simplest superposition, as suggested by Chew,al‘L is
the combination of a strong, short-range, attractive and a wesk,
long-range, repulsive potential. The long-range repulsive potential

then acts as a barrier toc confine the metastable state. We have

chosen the potential to be of the form

Vo= -g e Ffr + &, eur/a/r s (46)



-23-

where g, , gé and a are all.positive. Figures 18 through 21
show the trajectory for such a potential. The values of s , in
units of the range of the attractive potential are given as a
running parameter. One immediate conclusion is fhat, to produce
trajectories that move significantly towards the right stérting from
their threshold, one needs to make the ratio of the two ranges
considerably different from one. Because of the largé strength of
the short-range potential and of the long-range of the repulsive
potential, numerical integration of the Schrodinger equation is
rather tedious, and we have not attempted to follow the entire

trajectory.
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V. MODIFICATION OF THE KHURI SERIES

2,3,k has shown that, for the super-

As already mentioned, Regge
position of Yukawa potentials (1), the partial-wave amplitude is

meromofphic in the right-half A plane and has the asymptotic form

-NES
C(s)e 1 '
A(N,s) ~ Bl RehA > 0, | A - o,
, w/;s , . : .
(47)
. . m 2
1 -1 1
where A= £ +3 and & = cosh (1 + = ) 5 m,  being the lower

limit of the integral in Eq. (1). From this, using the Sommerfeld-
Watson transformation, Regge obtained for the scattering amplitude

the representation

ioo N P)\' _]__("Z)
, A(N,s) E v _m’2
- . a ) 2AA,S)
f(S,Z) 1 -j, A ) Px-%( Z) cos 7N + en Kn B n  cos ﬁhn ’

-i00 . n=1

(48)

where B'n(s) are the residues of the poles of A(N,s) at A = hn(s)
= an(s) +3, Re A, > 0 . Using Egs. (47) and (48), considering
the subclass of potentials (1) for which A(A,s) is also meromorphic

in the left-half N plane, ahd with the additional assumption

_)\.g
C(s)e 1 - N
AN,s) ~ DRSS, Re A <O, . A -+ o, (49)

Va

Khuri22 has found for the partial-wave amplitude the expansion

S expl(4 - a )]
Mas) =) B (s) ——— L, (50)

L -«
n

all poles

with 4 an integer.
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In this section we first examine certain aspects of Eg. (50).
We then modify this formula, starting from weaker asymptotic conditions
on A(M\,s) . Finally, we examine the rate of convergence of Eq. (50)
as well as the modified series for the case of a single Yukawa potential.
Now for the éake of simplicity let us consider Eq. (50) for a
'siﬁgle Yukawa potential,
‘ -m. 1

1
e

v(r) = -g - . (51)

The ideas can be easily generalized if the potential is of the form
of Eq. (1) and behaves as l/r near the origin. As s approaches oo

from the Coulomb limits we have

Ctn(s) = =D, n=1,2, oo , _ (52)

and, since we are conéidering the residues of the amplitudes rather

" than the S matrix,

p' (s) »~ £ . | | , (53)

By assuming that for s - o the series (50) reduces to the
Born term

2
m

a(e,s) = £ g0 + ), ~(54)

Khur122 was able to find the correct asymptotic behavior of the

residues, Eq. (53). Thus the series (50) does indeed converge to
the Born term at high energies. For practical purposes, however,
series (50) is not suitable at high energies because in that case

it reduces to
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. exp(-(4 + n)m /Vs ]
Mps) —— £ ) - , (55)

s = 00 £ + n

n=1

and the convergence is very slow. Khuri22 has suggested that in
contrast to the high-energy behavior (53), at intermediate energies
the résidues B'n(s) may decrease for poles further to the left in
the A plane, improving the rate of convergence. Our numerical
solution of the residues given at the end of this paper shows that
this is not the case, and at any given energy the différent residues
are generally of the same order of magnitude. Aside from this
difficulty, it seems plausible that for large |n] , A(,s) . should
approach the Born approximation, which for negative Re A is dominated
by the largest masses in the exponential. So, for a superposition of
Yukawa potentials the asymptotic condition (49), which emphasizes the
longest rather than the shortest-range componeht, seems to be too
strong an assumption. These arguments suggest the need for a
modification of the Khuri series in such a way as to single out the
Born term and also deemphasize the contribution of the pole terms
further out in the left-half A plane.

Let us first rewrite the Regge formula, Eq. (48), in such a
way as io accommodate the Born term. This, incidentally, would make
closer the'analogy with the relativistic case in which the Regge poles
in the crossed channel are also important.) Our starting point is

the mathematical identity



rad : m2 P)\. __1_( "Z)
-i éi_ _[- A dA-Qx (1 ) A==
-3

2s 2s cos 7w\
-ioo

2 2

- 8 \ m,

- £ ) (e o1 L)
2=0

(56)
m2 - t ’

where. t = «2s(1 « z) . This equation is obtained simply by applying
the Cauchy theorem to the integral on the left-hand side of Eq. (56)
and closing the contour to the right. Now for the sake of convenience
let us assume that the potential is of the form

k —mir :
v(ir) = - ZE: g, = = mog > oM (57)
i=1

e

thereforé the Born term would be

k g oo k m, 2

1 Il L
sl DICER O NCCICRIE -SRNCD
i=l i £=0 i=1

Now adding and subtracting the quantity

'k : 2

B, m, P, 1(-2)
. i i A=5
i > 3 9. (P ) T | (59)
i=1

N

from the integrand in Regge's formula, Eq. (48), and using Eq. (56)

we obtain



ioo k- o)
- 'Px-%('z) SN 8 my
f(S,Z) = =] A dA coS TOn A()‘,,S-) - Z E Q‘)\-“a]‘(l + —25— )]
-ioo ' : i=1 -
k N P .
gi ] }\n-%( Z)
+§Z — 1+ 2n }; A B ———, (60)
m 2 -t n-n .COS TN
i=1 i n:l ’ n -

Therefore, in modifying the background intégfal'of the Regge's
formula, Eq. (48), we have been ablé.to incorporate the Born term.

One advantage of Eq. (60) over Regge's formula is that by
-including the Born term we have made the baCkground‘integral_less
important. In particular, at high energies yherg the Regge poles in
Eq. (60) are all absent (since all the tfajéctories have moved to the
left-half N plane), and on the other hand the background integral
does not contribute [since A(A,s) appréaches the Born term and the
integrand vanishes], we simply obtain the Born term, as we should.
Another advantage of Eg.. (60) is that by incofpéfating the Born term
we have made more meaningful the-analbgy with the relétivistic case,
where the Regge poles in the crossed channel are‘important. The Born
term in the nonrelativistic case is the énalogue of the .contribution
from crossed-channei Regge poles in the relétivistic‘scattering. “To
say that at high energies_thé potent;al scattéring amplitude is well
approximated by the Born term isAanalogOQS to thé relativistic state-
menf that at high energies the amplitude~is well approximated by only
the contribution of the crossed-chanhel Regge poles.

Now starting with Eq. (60) we follow the same procedure as

Khuri. Using the relationg2
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(0.0]
t AP, 1(-2) _ M sinhx dx (61)
cos 1 A (2)3; @ (coshx - )72

e e)

we can write Eq. (60) as

~i00 i=1

ico k a. m.g
£(s,2) - ;5)275— o [ans) - ) Fe e )J

® k

X ™ sinhix ax . &
v - 2

» 3/2
o (cosh x - z) oot

N x B P
L k-‘él—-z)

+ 2 Z . (62)
cos 1 >‘n

_ n=1

Instead of Egs. (47) and (49) we assume the asymptotic

condition
k
(s - ) FEe0 o > ofs) £
A(N,s) - 5= @ 1\l + > s ’
L 2s Q’)\ =5 2s ')"I - 00 A
: (63)
-1 2 . R
where & = .cosh (1 + m“/2s). The choice of m is discussed below.

Let us rewrite the integral in Eq. (62) as

ioo k 5
-i S gi 7 m
fl(S)?) = n(2)3'7—'2 f d}\|:A(>\,,S) - Z _é.; Q}\_%(l + Ei_ J
S e =1
e  simh.x dx X .
“) e ) g 40 )
3 _ T Zioo &

3
X 5 ™ sinhx dx

“® (coshix - 2)5/2
= f2(s,z) + fj(s,z) s

(64)



where

&

fg(s,z) = ,((_-2_—575 j d)‘-[A(K:S) Z o8 Q?\-‘"z‘

-i00 i=1

(cosh x - z)5/2

o)
)( Jr e X sinh x dx
3

and
i k

f3(5,2> = ;—(—;—)—575 dan [A(X,S) - Z 55

X f ehX sinh x dx
(cosh x - z)3/2

In Eq. (66), using condition (63), we can close the
integration to the right in the AN plane and obtai

of A(h,s) in the right-hand A plane

N 3 knx
-1 ' e sinh x dx
f (s,z) = — }ﬁ B 1 .
5 VG; ! no (cosh x - 2)5/2
n=1 -0

In Eq. (65), by closing the contour to the left in
in addition to the poleé of A(MN,s), we pick up the

@ functions. The result is

(65)

(66)

contour of

n only the poles

(67)

the A plane,

poles of the



' ' _ @ hnx
1 ! e sinh x dx
£(s,2) = = Z B
- v n 3/2
2 1lert poles : (cosh x - 2)
k @ m 2 foo]
1 &y T (1 i exp[-(n - £)x)sinh x dx
T 3s 255 ) =57 :
2 s n (cosh x - z)
i=1 n=1 - £ .
(68)
Using these results in Eq. (62) we obtain
1 e
f(s,z) = \/——_— Z T sinhl x %};2
2 left poles (cosh x - z)
09) - o R
oL N fi P (1 + i ) exp[-(n - &)xJsinh x dx
VE s n-1 2s ( 3/2
i=1 n=1 A cosh x - Z)
k ¢ xnx
+ Z &8s + z =1 sinh x dx
2
191 M "% rignt & \[5 (cosh x - 2)/%
poles
o N Phﬂ_%(—z)
+ .
cos x Kn
(69)

On the right-hand side of Eq. (69) the first term is the
contribution of the poles in the left-half plane, the second and
third tgrms are due to introducing the Born term, and, finally, the
term in the brackets is the contribution of the poles in the right-

half A plane. Khuri-® has shown that the combination of the two



-32-

terms in the last bracket for each pole has no branch cut in the
region 1 < 2z < cosh g , and therefore it has ohly a branch cut

in z for z > cosh §€ . It is evident that each‘term in the first
summation on the right-hand side of Eq. (69) has only this same cut

in 2z . Also, by inspection it can be seen that, provided hn(s)

and Bn'(s) are free from left-hand cuts in s , each Regge-pole term
in the first and last summations on the right-hand side of Eq. (69)
satisfies the Mandelstam representation with the cut in +t from m2
to infinity, and in s the cut from the two-particle threshold to
infinity plus a spurious left-hand cut due to § , from. s = -mz/h to

s = =00 . {(Note that here we have been using s = k2 . If we had

2

defined s as W(k° + M2), the right-hand cut in s would start at

s = LM )

For integer { the partial-wave amplitude is given by

1 ,
A(L,s) = 3 j f(s,z) Pz(z)dz . (70)
. J. ‘o

Using Egs. (70), (69), and (56) together with® the inverse of (61),

ioco -h'
sinh X - -iV2 A an By, (-2 )& — |
(cosh x - z)3/2 cos wA'
=100
(71)
we obtain
k 2
, exp[ (% - a )¢] 5 m,
A(L,8) = Z Py — T T & Zé‘ QT+ z)
all poles . n
k g 00 o 2
- i iy exp[-(£ + n)E]
Z 2s z Poe1 (1 + 2s ) ¢ + n ) (72)

i=1 n=1
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Now let us consider Eq. (T72) for the case of a single Yukawa

potential,

. mr
V(r) = =ge /I‘ )
. exp(-(¢ - o )¢]
A(C,S) = Bn T - o :
‘ all poles - n
00 m 2 ' m 2
_ B8 1 exp[-(¢ +n)E] g M1
2s }: Pn--l(l * 5s ) L +n * 2s Qa(l * B8 ‘
n=1 v
(73)
2
-1 ! '
For & = g, = cosh (1 + e ) the last two terms exactly cancel and,

mathematically, series (73) is identical with the Khuri series, Eq. (50).
In deriving Eq. (73), however, we have used a weaker assumption than
the one used in Khuri's paper. Two immediate advantages of Eq. (73)
over the Khuri series are immediately apparent. At high energies the
first two terms on the right-hand side cancel, and we simply obtain the
Born term in closed form. Also, at large values of ¢ , fhe two
summations are small, and, for ¢ > gl , the Born terﬁ stands out as
it should.

There is a one~to-one correspondence between the terms in the
two summations, and in practice the first N terms of each summation
are used. By considering the first N terms, we obtain the

approximate expression
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‘ . expl-(¢ - o )E]
A(tL,s) = }: B, T
‘ n=1 n
N m 2 ( ) n 2
g 1y expl-(¢ +n)E] & 1
T 2s }: Pn-l(l " 2s ) ¢ + n T 2s Qz(l i )

(74)

Now we conjecture that2h in Eq. (63), m= 2ml.3 For
Re A\ > 0 , this seems to be correct, because once the Born term is
taken out of f(s,z) , the dispersion integra125 in t starts at
t = hmlz . The asymptotic behavior of A(A,s) for || » oo, Re A <O
is not known, and Eq. (63) with m = 2m, 1is the weakest asymptotic
behavior we can afford and still be correct in the right half N\ plane.
That the asymptotic condition (63) with m = em, is correct

for Re N\ > 0O can be seen from the dispersion relation of f(s,t) for

fixed s .25
g, QD[ D (s, )at
f(s,t) - Z -—2-1——-; = % JI _:C-t_‘-—_t__ (75)
i-1 M umle -

Now projecting the {th partial wave from Eq. (75), we obtain

Kk 2 b
gi m, £
Ale,s) - Z Lo (1eg) - cyls) Q (1 + 20D, (s, 6 )at" .
i=1 . ule

(76)

For large |4]| the right-hand side of Eq. (76) is



t! 1 1 ‘ . Ce(S) - I ' . ' '
c,(s) Q,f(l + Q—S)Dt(s,t )at ol f_\:w \/? exp[-f.e,(t )]D.t(s,t. Jat

2 ' X ' 2
l}ml Re. £ >0 lunl

~ C—(:s-l exp[-2¢

Ve 2}

(77)

where &(t') = cosh™ {1 + (t'/2s)] and t, = cosh™ 1 +l(ltm12/25)] .

f Also for m = 2m , Eq. (72) correctly implies that the left-
hand cut of A(2,s) in s, for s in the region -mlg-s s < -mlz/h ,
is entirely due.to the Born term. Furthermore, as we have already
mentioned, each Regge p;le term in Eq. (69) has a cut in t from
t = m2 to t= o . Therefore, from Eq. (75), for m2 = hmlz , each
Regge-pole term has the same cut in t as the scattering amplitude.
We should also like to mention that there is no essential difficulty

in generalizing our results to the case of potentials (1). In that

case, Eq. (72), for example, would be

cexpl-(¢-a )E] & 2
A(e,s) = Z By 75 L 21—5 U_(p.)du;Q_z(l + ‘—g-s- )
all poles , n i, )

£ + n

a @® . .
+ %—g f a(p)du Z Pn-l(l + %g ) expl-(¢ + n)t]
" - - (78)

vhere ¢ = cosh_l[l + (hm12/2s)] .
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We shall now present the resﬁlts'of our numerical calculations
* applied to series (50) as well as the modified series (73). For our
purposes it is more’convenient to work with thé S matrix ratﬁef than
with the amplitude. If we take the first N‘ terms, series (50)>for

the S matrix is

N v - .
exp[-(2 - a_)¢.] o
s(e,s) = 1 + }: B n L, (79)

n=1 g - C‘n

Then instead of Eq. (73) we have

N - | N 2
- exp[-(2-a )E] | - om .
S(e,8) = 1 + z 8 &-an -\7'—% an-1(1+2§) ex,xi[ if;n)é]
) n=1 : n / 5 n=1 :
o2
i 1 '

+ ;yf. Q&(; + 53 ) : .(80)

since S(4,s) = 1 + 21 Vs A(L,s) .

In.Eqé. (79) and (80), an(s) = 21 Vr;—pﬁg(s) are now the
residues of the partial-wave S matrix rather thanvthe partial-wave
amplitude.

Figures 22 through 57 are plots of the real and imaginary
parts of the S matrix vs the number of terms in the original and the
modified Khuri series, for both m =-ml ’and m = le . The horizontal
lines correspond to the actual values of the S matrix. The Regge
parameters as well as the actual S-métrix values have been calculated
by numerical integration of the SchrSdinger equation.

From Fig. 22 through 57 the modified series with m = em, is

considerably favored. In particular, for g = 1.8 the agreement with
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the actual S-matrix values is remarkable. The fact that the agreement
‘is not as good for g=5 as for g - 1.8 may in part be due to the
error in the residues. For stronger potentials our numerical calcula-
tion of .the residues ié less accurate, because in the integration of
the Schrgdinger equation for stronger potentials, we have to start the
integration closer to the origin and integrate the wave function to a
larger distance from the origin to get to the asymptotic reéion. |
Because of the large interval of the integration, the truncation error
increases. For g =5 1in some cases it turns out that only a few
percent error in the residues introduces a considerable error in the
values of the real or imaginary parts of the S matrix calculated from
the series. As we shall see in the next sectién, aside from the error
of the residues, the magnitude‘of the residues grows with the strength
of the potential, and for stronger potentials a larger number of terms

in the series should be considered.
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VI. REGGE PARAMETERS AND THE PARTTAL-WAVE S MATRIX FOR A SINGLE
YUKAWA POTENTIAL
Several examples of ai(s) for a single Yukawa potential

already exist in the literature.go’El

The residues, however, have not
been given in these references. In this section, we shall give the
detailed energy variation of the Regge parameters for the first three
trajectories of a single Yukawa potential V = -1.8 ¢™ /r and -5¢ */r.
We shall also give the energy variation of the S matrix for the first
three:physical partial waves, hoping that the S-matrix values together

~ with the details of the corresponding Regge parameters will pe of
future use, in connection with questions similar to the convergence of

' the Khuri series that we discussed in the previous section.

Figures 58 through 97 show the magnitude of the real and imaginary
© parts of the Regge parameters ai . Bi ) Bi’ and bi vs s for the
first three trajectories of a single Yukawa potential V = -1.8 e ' /r
and V=-5e /r. Inorder to cover a wide range of values, these
figures are given in logarithmic form. The + or - signs ﬁext to
the cur&es indicate the sign of these guantities. The threshold and
the asymptotic behavior can be seen roughly in most cases. Note, however,
that in some cases the energies considered are not large enough to show
the asymptotic behavior. (For example, the residues of the second and
third trajectories of V =.-5 e'r/r have not been followed to their
asymptotic region.)

Figurés 98 through 103 give the values of the real and
imaginary parts of the partial-wave S matrix for the above potentials.

Again, the + or - sign shows the sign of these quantities.



Finally, to show how residues grow with the strength of the
potential, the reéidues of the first trajectory are given for a range
of values of the potential strength. Figures 104 through 108 show
plots of Im Bl(s) vs Re Bl(s) for a single Yukawa potential
V = -ge '/r with g ranging from 0.05 to 5. The energy is given

as a running parameter.
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1
-r/10

1

V= 50e /r + (30e )/r with the energy s as a

running parameter. For comparison, the same curve for
V=-5e"/r is also given.

Fig. 19. A portion of the first and second trajectories of

V = -25e/r + 5 e-r/lo/r .

Fig. 20, A portion of the first trajectory of
- -r/10
V = -%0 e r/r + 10 e / /r .
Fig. 21. A portion of the first trajectory for

r/l

- - 0 ‘
v 8eF/r + 5e /r eand for

v -r/10

i

/r .

-18eF/r + 3e

Figs. 22 through 57. Real and imaginary parts of S vs the number
of terms in the expansion. |

Tl Ex. (79)

C Eq. (80) with m=m

1
2m

4 Eq. (80) with m

7

Figs. 58 through 97. Magnitudes of the real and imaginary parts of
the'Regge parameters vs s for the first three trajectories
for g= 1.8 and g = 5. The sign of these qpéntities is
indicated along the curves in each case.

Fig. 98 through 103, Real and imaginary parts of the S matrix vs s
for the first three partial waves, ¢ =0, 1, and 2 .

Fig. 104 through 108. Imaginary B, Vs real bl for g = 0.05, 1.8,

3, 4, and 5. The energy is given as a running parameter.
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