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FRACTIONAL_RELEASE OF A TRACER ELEMENT
THROUGH A MOVING BOUNDARY

Stephen D, Lowe™

Lawrence Radiation Laboratory
University of California
Berkeley, California

October 30, 41963

" ABSTRACT

A full solution for the fractional release of a tracer element
through a moving boundary has been obtained for the cases of a.slab
and a sphere. In both cases, the initial distribution of the tracer is
assumed to be uniform throughout the body. For a constant rate of
boundary motion, the full solution is valid for all times over the range
from zero to complete evaporation of the body, and this solution may
be applied to all finite rates of boundary motion.

By applying certain limitations to the time range and to the total
amount of bouridary motion, the full sclutions are reduced to approxi-
mate forms that are presented graphically as a family of curves.

For a more limited range of application, i. e., for small values
'of the-quantity .21_ <_b§) <£Et_) 1/2 (<0.2), where b is the rate of boundary
motion, t is the time, D is the diffusion constant, and a is a charac-
teristic dimension of the body (half-width for the slab and radius for
the sphere), simplified expressions are developed for the fractional
release of the tracer, f, which may be used to more accurately deter-
mine the diffusion coefficient, D.

These  simplified expressions are

o 2 (2@) 1/2 1 (E) for the slab,

TT1/2 52 2 \a
and f= 6 (l—)—t> 1/2 + El <P—t—> for the sphere.
TT172 \52 2 \a

Lieutenant, Civil Engineer Corps, United States Navy.



[. INTRODUCTION

. A. Basis for the Problem

During his investigation of the diffusion of xenon.in uranium
monocarbide, Shaked noted the slope of his plot of the fractional re-
lease, f vs (t) 1/2 increased noticeably during a high-temperature
a.nnea.l.1 He postulated that evaporation of the uranium monocarbide
was responsible for the increase,

A similar increase in the slope of the f wvs (t) 1/2 plot had been
reported previously for experiments in the temperature range, 1600
to 2200°C. 2

With the increasing interest in high-temperature applications
for uranium fuels, in thermionics, for example, it is considered of
interest to investigate the release of a fission product from the fuel
element due to the additional process of evaporation occurring simul -

taneously with the process of diffusion.

B. Discussion of the Problem

Several investigators have reported diffusion constants for
xenon-133 and krypton-85 in uranium dioxide.3 A lesser number
have reported results for the diffusion constant of xenon-133 in
uranium rnonocarbide.1 In the 'conventional'' analysis, one assumes
a uniform initial concentration of the tracer element in the geometri-
cal body whose boundaries are fixed with time. Evaporation of the
body is discussed in a general manner, but the effects are minimized

experimentally. L3

C. Statement of the Problem

This report is an investigation of the effect of evaporation upon
the fractional release of a radioactive tracer element from a fuel
body. As such, the decay of the tracer is neglected for the purposes
of this report (i. e., \=0), although this effect can and should be
taken into account for expeﬁments involvihg long postirradiation
anneal . time. |

An expression for the combined fractional release due to both

diffusion and evaporation (i, e., diffusion through a moving boundary)



is obtained. This result is compared to the fractional release derived
for the case of ''pure diffusion' (i. e., diffusion through a stationary
boundary).

The analysis is performed for the case of the finite slab and the
case of the finite sphere. It is assumed that the initial concentration .
of the tracer element in the body is uniform and that the concentration
of the tracer element at the boundary (moving or stationary) of the

body vanishes.



'II. THE SLAB PROBLEM

A. . Concentration of the Tracer

One seeks a solution for the diffusion equation
QC(xt ZC()(. —(a—bt)<><< a-5t (11-1)
ot >
such that C (X,O) =C, (II-1a)

and CE’:(Q bf).t] O Ffor Ot <a/b_, (II-1b)

where b is the rate of movement of the boundary that may be obtained
from kinetic theory if one assumes evaporation in a vacuum of a
material of known vapor pressure, 4 The assumption of a constant
evaporation rate ignores the possible effect upon vapor pressure, and
hence upon the evaporation rate, if there is a change of chemical com-
position of the solid surface accompanying evaporation. At time
t=a/b, the sample will have complefely sublimed.,

Chambré has 'shown5 that the solution to Eq. (II-1) that satisfies

an initial even function f(¢) and Eq. (II-1b) may be expressed as

¢ ()= sty {_{L F(5)exp [- %‘gj “
(11-2)

+ 5(— v jf(j)ex p [+ |S (xt; 5+200) ‘/j}
where for the case under study

{S):CO | (11-2a)

and S(x,t')j) ex;o[ th ]#—exp[ (x+5) ] | (I1-3)



4=

Making the substitutions into Eq. (II-2), one obtains the result-

ing expression for ,C(X’ t):
C6t) = 2z {/GXP [ 145

+Z( /)/exp[ (j'i‘na.)][e)(f)[ ‘thlha ]ﬁ-ex}a[m Jj}

Performing the integration over §{ (see Appendix D), one may show

Eq. (II-4) to be o
Clat) = —%ﬁ {ehf [356] -erf [;’;7]3—%72]} |

+ G Zexpl-fr e - B0} foxp Bfer 2 Lleinit

—epf a@n-1)- (xw?nbt)]} (I1-5)

(1{7-4)

2 (D)%

5 Zeexp ot 0]} {exp(- i) frs ar-nst

= erf 2(Zn-1) +(X-2nkt) J}

2 (D)=

This may be rewritten as

(% %)- Lo [erf H%“/er’“FTL)/Z o Loen®

f¥2n 22 tab
g Ferartint 5 1}{emzma>ﬂerf@"z><ﬁi>i” >

0t pt- T " X% 2n DF ab
er—F@ g g%/f R (11-6)
&_Dtb’ Nnbag, n+l)+ —Q—&
+So Feexp PB4 Hop [ 25 cbe(afert 2 g’{?;; 2ek)
— erf @n= ')2@5% 2*7 EE%L'U}

Making the definitions

T-= %C | (I1-7)



and

= —%"*; (11-8)

where O<@T <l;

and Substitutlng into Eq. {I[-6), one obtains

004 )= Lo [erf () verf (528)]

+ %VZ(—))% XP{‘ rzfa[n(l—pt)-%]} {e,{ Zd/g},@c}i)_%‘ 5
—erf Zn(lz%zl/)z X/, } o
-+ CZO ,,Z(‘l)”exp {"Hﬁ]}?(/—{s f[).,_)(/a']} {er{v 2”2'52#—)4-"/&,
Zn(l X/
—erf (2,6’,?& |+ Q/}

By using Eq. (C-4) and setting B: 0 (i. e., no evaporation or boundary

motion), Eq. (I1-9) becomes

C'(x/a!@ - (.- Co j:eﬁf (’+ /“) ehfc —/—,g%'-)]

_ Q)_ () [erwfc@ﬂ)_;i/@_ enr(*’m ) =%

R n: _T™ CRTHE (I1-10)
(Z,hf—l)-i-x/@ Rn-l +X/a,
erfe g - erkig i |

This may be rewritten, after combining terms, as

CO4)= (= CZN [erhe o)t v oplordote] . s

Equation (II-11) may be recognizedvas one equivalent to Eq. (A-6),
which shows that the expression for the tracer concentration does re-
duce to that for the stationary boundary case when no evaporation is

considered,
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B. Total Fractional Release

The total release of the tracer element due to the combined ef-
fects of diffusion and evaporation may be obtained by integrating the
concentration at any time (7) across the volume of the slab, dividing
the result by the total initial amount of tracer present, and subtract--

ing this quotient from 4. Thus,

= Q- Q) _ | ~ QD) (11-12)
| Q. Qo |
where
Qo:é@a@ (II-12a)
and
(-pD) )
Q)| (% Dale) = 2[ COLTR). e
G °
Therefore, |-
L= - 2.]: E?%ﬂ)d(%)
2C,

- |- L A7) J— X
= =& [ et 18 erf 2 Jat)

(60
- éf% Z(_l)”eXJD {~n{@[n(l-pz>_>ya]} icrf(zmg%(;/fzhﬁ[)
—erf @ro)=(2ne) )

2T
(tew, | _
B ZLa jo%q_nz:"(—l> exp{—hﬂ ):H (I‘P’B>+x/¢]} ﬁ\erf (2H+/)Z‘f'g%z2hpf[,>

2T

_ erf ) m2ng 73)} (%)



(IT-13)

= |- -é—joo‘@[erf——ﬁgg/@ +erf ———,?-—’g,z/z ]d(’i’a)
oo " (/"/SC)
- 2/— 2 exp {‘”/3 [”("P‘T)B exp ng(%)] {erf 2”(’;?,’; 2{ ~X/a
—erf 20 (L9 1-% 3 4%
er(’ﬂ) T } d( )

__Lg(—/)”e)(p -h [n(l—p’c) -na(*L (17T | %/,
25 { & M) exp |-l )]{erf e fc)j/Lz /

e Zh(ga'%:’”/&} 4(%) -

C

Performing the integration and combining, one has
~F: /6’[ + T [Ceh(c %‘_ verfe —@—2£,ZE_]
+ 7 S, 3 ™=l o CZH—IX/- 7) -]
z n,m2=:<. 1) exp [:—np(n-/)(/—pz)] [2ne "] {b érfe Z’ZZ”Z
— (rerfe Gr-Y1-p7) T
z

o "= (I1-14)
// _’"’"’M _ Y= e wm-l - na )
+ T Z ) g g fend el

- Lmemcc.(zm‘g(gi'z)' ! } :

For 7=0(t=0), the fractional release, given by Eq. (II-14), is
zero, as is to be expected; and for Br =1 (or complete evaporation),

the expression becomes

rv// - / , - /
‘F = l -+ L 2 [LGY“FC_ 2T /= berC ZZ//L]
= ' _, N
)2 ntm o m "7?-[ -/ ,
+ ~ L ~ ("™ /
T [’C’ ] { " grm L Tere o
: / : - :
+(Merfe T "erfe 7R },

which is equal to 1, after cancellation of equivalent terms, and cor-

responds to.the total release of the tracer.

Setting =0 (no evaporation), Eq. (II-14) becomes

' " 7w
7f=7—7:’@ T~ T *lerfe _'Z/:—"/z



s {CCY‘FC ’—%}i —terfe fnrz}
n=z) .
l/ -2 n . n+, (II_iS)
— 7?5 {Lerfc TR lerfe —”—,—,z} .
Nz Z

This may be reduced to
' o [—='f = n - Y)
‘F: 2T [” +2n2(-/) verfc Th ]; (1I-16)
=

which may be recognized as eqtiivalent to Eq. (A-8), the fractional re-

lease under conditions of a stationary boundary.

C. Approximate Expression for the Fractional Release

For the usual values of 7 encountered in fission gas-release
experiments (7 < 0.01), the expression obtained for the fractional re-

lease in Eq. (II-14) may be immediately reduced to

=BT+ T erfc £5,

/
7
T2 (I1-17)

+ T Z N Sap Lo ] 2 )|

- 'Z//zg(‘ ))n”;’X/O[‘“F("*/I"‘F)T)JPnF’c"‘]m-lo’ Perfy @) /-/ﬁ@‘/'
nm= Xl

If the further limitation is made that B7<0.5, Eq. (I[-17) may be

reduced further to -

v ‘F: ﬁ}z-’- "C//Zber‘-fc %C,/L
‘ (I1-18)

1), ©° m y -l
+ TG e [ rpYip D [anet”] (g G-
nmnz ZT = )
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of which the n=1 term is of the greatest significance, as follows:

.$=ﬁT+- &ed% /u
F TEZC [apr] ™ imerte SET -

By using the relations (C-13) through (C-18), Eq. (II-19) be-

(11-19)

comes

/ e oo m=! 1L e /
jczﬁ,[wl/z[lerfcﬁzl +éa(q) (%zh) '@’"@bfc.%@"]

(1I1-20)

~P’(+2Z,/2LCV‘FC1&— -(-’Z“/"’“Z ()_,)”"(1@__ ) m+l J@_/z o

. 1/2 1/2
For large E-—E—(i.e. ) ﬂz——— >2.5), Eq. (II-20) reduces to f=p7,

which indicates that the release of the tracer is due solely to evapora-

tion,

For =0, Eq.(II-20) becomes

“F: :ﬁ_z—’r/- 'Z//ZJ ' (II-21)
2

the approximate expression for fractional release from a slab with
stationary boundaries.

Figures II.1 and II.2 show the fractional release from a slab vs
[time] 1/2 ('ri/z) for various rates of evaporation (B). As a reference,
the stationary-boundary plot is given, and in each figure it is the
lower line. Figure II.1 is for the longer periods of time, whereas
Fig. I1.2 represents shorter periods of time,

Figures I1.3 and I1.4 demonstrate the contribution of the individ-
ual terms that make up the expression [Eq. (II-20)] for f. Figure
II.3 represents an evaporation rate of § =10 for times less than
7=0.01, and Fig. I1.4 covers the time span less than 7=0.0001 for a

higher evaporation rate of 3=50.
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(1) B= O (no evaporation)
(2) 8= 2
(3) p= 10
(4) p= 20
(5) p= 50
(6) B =100
(7) B =200
I~ 0.120
0.113
-
f
r -10.080
- —0.040
L ] 1 1 1 1 ol ] 1 ! o
0 ) 0.02 : 0.04 0.06 008 0.i0
Ti/2
Mmy-229028
Fig. II.4. Fractional release vs 71/2 for varidué rates

of evaporation,



(i) B = 0 (no evaporation)

(2) p= 20 '

(3) p= 4100

(4) p= 200

(5) p= 500

(6) p = 1000

(7) p =2000

T T T T T T T T T
B (7 0.024
(6)
L. (5) .
f
— - @ Ho.ote
(3}
- (2
1
- -l0.008
1 ] ! ! 1 ! 1 ] L o}
0 0.002 0.004 0.006 0.008 0.0!
S .TVe
My-32920

Fig. 1L 2. Fractional release vs 71/2 for various rates

of evaporation.,
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1/2 ® - 1/2\m
f=p7+ 271/2 ierfc 92:- ' +'r‘1/Z Z (4)™ <¥ /> i o rte 9211/2
m=1

—— Release —no evaporation (B=0)
—_—-— Combined curve for g =10
1/2\2
(1) pr (4) 71/2(4)2<%T- / ) i%erfe %11/2
i/2 ‘
1/2 .
(2) 27 / 1erfc%"— (5) 71/2(4)363_71/2)314&& Ezi/z
(3) 71/2(4)<%11/2>i2erfc %1/2 ¢ :
1

T ) T T T l/l

= / - -10.08

(2)

- // - A 0.04

0

MU.22927

Fi.g. II.3. Components of fractional-release curve.
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1/2 o a1/2\m 1/2
f:ﬁ'r+2'ri/zierfc%1 +“r1/2 Z (4)m<2'r ) im+1erfc%r-/

m=1
——— — Release —no evaporation
—_—-—- Combined curve for =50
(1) pr (3) .,1/2(4)@11/2)12“& %11/2
1/2

(2) 2712 erte %-_ (4) 71/2(4)2(%,_1/2>213erfc' 92;1/2

| ¢ { ¢ { i L ! L

(2)

0.004

o} 0.002 0.004 0.006 0.008 0.10

MU.I2928

Fig. 1I.4. Components of fractional-release curve.
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III. THE SPHERE PROBLEM

A. Concentration of the Tracer

A solution for the diffusion equation is sought. Let

oC(nt) _ 1 {32?’(:‘5) +2 DC£r1t>} , o<rdasbt  (m-y
such that C (r, O> = Co ’ (III-4a)
and C (a{bt,‘t) =0 Lo 04+ <ﬁg, (L11-1b)

where b, again, is the rate of boundary movement. At time t=a/b,
the sample will have been completely sublimed.
Equation (III-1) may be reduced to that for the slab problem by

mak1ng the substitution

u(rt) = rC(rt), | (111-2)
subject to the co;xditions

u ( r,0) = rC. (I11-2a)
and w(a-btt)= 0 for OLtLE - | (IT1-2b)

Since C(r, t) is finite at interior points, it is necessary to define
w( 0){;) = 0. (IlI-2c)

Chambré > has shown the solution of Eq. (III-1), which satisfies an

initial even function f(£) and Eq. (III-1b), to be

C(nt)= 37mpnn {/}w‘@eXP[‘%%Y]“’S
+Z[FFO)erplB )] STt 535

(III-3)
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where, for this problem

7(’(5> = (. | (111-3a)

and S(nt; ):exp[ —L,—D%—] —exp[ (H?)Z] (I11-4)

By making the substitutions into Eq. (III- 3), the resulting expression
for C(r, t) is

Co
C(rt)= 2 (ﬂ)t)'/z {fS— F[—go*g ]6/5

* Sljfexp[nb 3”’) [fo( 7‘4}/%&‘) (111-5)

—'GXP( __5&“_ a’s}

By perform1ng the integration over ¢ (see Appendix E), Eq. (III-5)

may be shown to be
a+r
C(Y) ) C - Co a. J;ehfc J&(Dt)"' erfe 2—(0_‘0)%-]
-5 fxra[--%"—(m-nbt-a][ o 2n(a-bt)een

i 2( Dty
e Y?C 2)‘72@(-53 r—h{aw-)]
+ %Taé, E’X}D[ nb (na.- nbt+r>] [er»fc Zn(a(g*[%T’f+k)

+erfe 2 @Eﬁ)’f’r)

L = , (I11-6)
— Q)gi(%@ J:beY‘FC 20ty v erﬁcz_flﬁ)_fb‘)llb]
- Co 73 (D‘b’) 26)(}3 [ Vﬂo(ﬂa h/ot—r)][er,,(c an(a(-gg))-l(;zi-k> |
2n (4-bt) - (&,
- lerfe 2(pt)T™ ]

+in_a'( ‘/)_ GX/O[ n!>(r)a hbt-#}’][wr{c lnz(a(gz)émr) _ (fn( 2n (a- lst') (a ,,.>

Z(D-b)’h,

rL
#
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Using the definitions (II-7) and (II-8), then substituting into (III-6),

one obtains

- [+ 17,
C(Cﬁl,(,) =(, 2(%)[8)42; Z'Z”L - erfc —g'z:a;]
/z, / /+F/
[uerfc o cerwfc_zﬁa—;—]

exP§ np Jn(1-g2)- 7] } {erﬁ; 2n(1~2,3'c)’+7_l- e

("/a.)
+orfe 2n(-pT=1- /&}
Zfl:’/z
0 e N
+«2(—r/ﬁ5 é’lexp{ ”/G[n(' pt>+r/’“]}{€rfc : 2[67:’47—7- = (T11-7)
 + erfe 20(-pD =1+,
2Th
e gl g
— (erfc 2n ("(é_'C)—/- rla
( /]q 00 ST
*‘/g_- Z_exp{ )’7/3[77(’-,6'@4-)'/%]} {LCYFC an,tﬁgz:/- + e

—ilerfe Zn(/-/gz/) [+ e }
, 27T /2

Setting =0 (i. e., no evaporation or boundary movement) in
Eq. (III-7), it follows that

CE ) = Co - —LC [erfc Z”C/’a/' ertc g,c/ﬁ]

= 2n+ ~ Yo Gn-1)-"la
n= LT erf 2T~

epfc(?«"“/)*r/a, - Qn-/2+’7a_

Z'Z ;L er\[‘c Z’C’/L

| (111-8)
C’oa 7" [ierfe Ll - Jerfc e
2T 27T

‘ 1,5 I An+l)=Y/ . Ner
- Q}’g‘& T é‘ [Ler_{fcg TZ%”— @ _ Cerfc gZZn 1 z/«,
—lerfe QUL ¢ et (———7—2”2 Jerle].
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The ierfc terms reduce to zero, and after some recombination,

Eq. (III-8) becomes

C@,T) _ Co‘-(),—ff”—% [erf (zn+/) /0-_ ok (znz);”ia] . (11-9)

This may be recognized as equivalent to Eq. (B-6), which shows the
expression for the tracer concentration to reduce to that for the

stationary-boundary case when no evaporation is considered.

B. Total Fractional Release

The total release of the tracer element due to the combined ef-
fects of diffusion and evaporation may be obtained by integrating the
concentration at any time (7) throughout the volume of the sphere,
dividing this result by the total initial amount of tracer present, and

subtracting this quotient from 1. Hence,

[e]

_F’z QD—Q(’E) - - Q('Z:Z)  (III-10)
Qo

where Qo — (,_L,-B— (_39_‘774&3 Co> . (ITI-10a)
(-7 |
and Q(’Z) = J L/77-(”/a>zC(’”/al’Z)d("/&>. | (I1I-10b)

1-67)
f=- dm f;ff/a)zC(%,fc)d(r/a)
4/3 - C,

1= 2 [ quteys {8

- Thus,

) - ' - € ”[C g’;/ 61] 4("%)
23ty £ v Lo for. il

+erfedn (izp’C,Z’ZI k/‘“}d(%)
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(-0
- 7 f(”a) Co Z exP {—nﬁ [n(#pz)-f-%]} {erfc Qn(/;,ze%).: +.;»/QL

20 =) . ) /
n{l1-gz)~|+"a { 4(
(-2 ’ _r +erfc i7" }d(/a)
(r/a> C—"% verfc /»Z'Z’& —(erfe 1("’/«. ]d("/)
+if(r/¢) ZC—T; ZexP{ n,s[n(/—p’c) /a,]} {Leyfc_’zngg'?:/—*’/a
_rerfe 200 /e'(:) /- r/a“}d(”/)
(-¢%)

Rl hﬁlﬂ("ﬂ’6>+ %)} {m&, 2120111 e

erfe 2n(] ‘é@z"(/:/)z +r/ov} (),/av)

= 3[(@ AC%) +J<*/>[effc S, - erfe k|4

T2 }( a)E exF{ np[n(:-pz)_ A }{erfc ,zn(gﬂ’g);_; o
+erfc 2n(l-87)- |- "la. 4(»*/) (IT1-11)

(’P fZ/z
-2 r/“ ~ n(1-pT)+ |+ a
f( )Z exP{ nﬂ[rz(i /32)1-”/@]} {erfc 2 (iz(fzzzl /
2 a
+erfc h(é@c'zg I +¥/, }d(r@

+ 3’(/1 (r/a) [(JCV‘FC Z_‘Zf"z > b@yafc __2”_"%:4%] d.(’%z,)

-37 G o Gexp {-nplp(re-]] frerfe 220D e

_ erfp 200AD)- %}d(*/)

ZZ”/L

— /Z r;
37 (A)Zexp{ n/e[n(l.[w)w/@]} {oehf lngjzp;c);/“/a

_ erfe 2D wk“}d(%) .

27T /2
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Integrating and comblnlng the terms in (III-11), one finds

f = 38T — 3((51’) +@’C) +3z~/z(/—~(@z‘>(erfc% +ierfc _%7)
—C,’Z(L ere £, ocré—%)-f-é?(/ﬁTXcerﬁg-ﬂﬂ %erfe 2 §Z>
VARG (C Yerte 82 Z’C" — ¢ erfc%%z)
+3fc"(/-@¢2’§§u (") " up Prptr- ) [ rerte £l -

+ (Porfeln- I)(I-,@'t) |

//L

+37%(p z} z (—/) e BT ) e P[ nemiXie2)] [Lme,«(CQnHX /-gf)v‘
+ Merfc (Z’Z’X -6~ ]

I/-z_

o m+! /y m-2 - ) =167 )+
+( ’[EZ(—/) (m-iXane ") exp| h,@(n-/leZU[bV@r{Q@ ?iﬁt ﬁ’f_) /
+ Lmefpcb iX/-/af)
—c”Z Z( )" (Vv-/)(»?npz’ ) exp[ h/ﬂ(m"/X/-ﬁT)][ "Ler{c@h*’x’ ‘/0"C>+/
+ (Merfe Q”*’)(’T,/f":)

+(a'( -ﬁZ)Z( % (Z”'PZ ) exP[hp(n /ﬂpf:)][me,% @”‘W;f’z)w‘-r

— (Merfe @nzlg 1/75@ -1 ]
+6T( "ﬁ@z 1) rp ™ exp [ natoli6%)] [pmerf GNP DL

Zh—//l

— CMGY{C Qh“")//"ﬁf) !

2

+12 'Z/zZ (~1) (m-2)2npT ") exp [-rpn -/Xi-{e’l)] E,me e @r —IX 1-87) +

T

_ (Merfe@n- /x;j,ﬂf) /

-12 'Z's/:g(—')m(m’szvp’c l/‘)m_é’x P [—nl@(nf-lx/-,azj] [e eﬁ%@m’m £+
m=3

//2.

(III-12)

_m GZW”'IX/ /3’Z> / ]
(rerfe = ]
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For 7=0(t=0), the fractional release, as given by Eq. (III-12), is
zero, as expected; and for B7 =1 (or complete evaporation), the ex-

pression becomes

fe 3-3+1-0T(Cerfe 52— L erfe sh,
— 2T (6381’7(5 S - Lerfc é—f"‘)
+6T Z'(/) (m-)(25 (L erfcz,[,,L + (merfe Z—’C/”z
=L fhfczzvz - ("erfc ZZ”L)
1)2'[3/2( ) (m-2) 23 ,) (V”eyfc = - (Merfy = 2,[’2
~ (Merfc 2Th+¢’"e»(¢2_z¢,l>,

which is eqilal to 1, after cancellation of equivalent terms,. and cor-
responds to total release of the tracer.

Setting B =0 (no evaporation), Eq. (III-12) becomes
F= B, TR+ 3T erfegn~ 2T +6 Titerk 4p + 2T
- _
+ é’l’d‘erﬁc-% - Z'[_J/z(éﬂ' /")1"/2 T%'osehcc %-IW-L

3'[_' 22 {Lerfc -71‘*' Lérfc ” / +(,ervfc ’,Z_’;’ +C€V[C %L}

5 {2 n+l L% n
L"Z" {L erfc?a " em[c'fvz (III-13)

— L'lerfc -f%,_— (;26/‘74_ %/7_}

+¢7Z {c erk - Uerfe I + ere Bt - (erf e 'Z"Q’"}
Y {63@7% 2= Cerfe g7 - (Perfe 24 ”*’ . +lerfe 2 3 } :
n=i
This may be reduced to

po (T [ 27 lerfe | - 3T

(III-14)
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which may be recognized as equivalent to Eq. (B-8), the fractional re-

lease under conditions of a stationary boundary.

C. Approximate Expression for the Fractional Release

For the usual values of 7 encountered in fission-gas-release
experiments (71 < 0.01), the expression obtained for the fractional re-

lease in Eq. (III-12) may be immediately reduced to

£=3p1 -3+ +3T4(1-p7) lerfe £3,- ¢ T irerfe LT,
-,Lé'[ﬂ—ﬁ@)Lcm%%lx Zz-/z(jeh[czeLT,/z_;
+37 (/ﬁ7)2<‘/) (o?nF;’Z /‘}n {@xp[npﬁo ’X//@’C)]L P ofr §;2n I(’ £T>
_;_exp[nlg(nHXI—@T)] (Perfc @n+l X"@’C) ’}

_ y Zrc’/z
+4T§(—D’" (m-iX2npT )" {ex/g [-npr)i-a7)] Mg .2n~f)0 Lo ?)-/
— expl-re(miip7)] ech_LL"z”*'X’ 0)-|
_éz(/‘ﬁ@Z( " (@pTty {eXP[ ne(n-iX1-p7)] U’”er“fc__ﬁ)_)(' Uil
_ +exp [nain+)ia 9] ere Bre! -E'c)-
R TG Tm2Y2np )" ferp [ W
sl Xp LBl ﬂ@]t’"erﬂ C?n+/X/-fo'z> /

’/z

— exp[ hein+i)(- ,@@)] cMerf (92)74»/ [/-é )- JZ

By making the further limitation that g7 < 0.5, one obtalns

(ITI-15)

{\.

f=3p1-3(p0)+EV 3T™(1-pr)ierfe L5,
— GT&’“erfc%/z + ¢ ’C(/—ﬁ’z) e rte }%Z

- 12 T3/26’3€r7fc ‘2%7.
I . o2 mt 4, -l ;
+3 'C’“(/-ﬁf&%fjf) (") exP[‘"ﬁ(n-'X'-ﬁz)]‘"’e*ﬁ@" L 55) -
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(ITI-16)

R

FCTZ Y bo-Narp " exp [l )] imerde Qo)
/7

?\-‘\

-0 U /-/36)5 " (ngt) " exp - ot p9)] z;memfc@"g{g;g@-/
mz2 _

| __/27:/22(/) (m-2Xangr")" ex/g[nﬂ(n XoD)] morfo @147 -]

Yz,
m 3 rz

of which the n=1 term is of the greatest significance, as foll?ws:
= 3p7-3(pef +(e0) + 3T (1-p0ierk £7,
—CT irerfe £5, + LT(-pQ) Cerfe £5,
~ 12T erfe £2,
+37T /2(/-pz)m§(~/ ) /(Zﬁz’/z)m_é merfe A2

+6 TZ?(‘/)M (r-n2ee™)" imerte 27:—&

- CT(/ @T)Z(-/) (Qp?:”’“) L erfcz%;
T f(-/)”’(m—z)(zp't"z}ﬂ— c"”erfgzl,%% :

By using the rela;tions (C-13) through (C-19), Eq. (III-17) becomes
70: 3@@(/—,6’?:) +@T}3— 37T — 3’2:(/—@«:)
v . s 3 /
+6T (1-p0)terfe 2+ 12T (1- pr) erfe £%

(TI1-17)
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+ 37 (- pfz)Z (Y ()" o rfm@—r‘l
(I11-18)
+CT(-p02 (L) imerfe £E

[

LGB A (R ke 45
+12 TRZ (o 4)" (B2 17 rfe £2"
m=] 2 < )

1
The last three summations will be small compared-to the first terms;

therefore, f will be approximated by

“F=3@T(/-/3’C)+@Z)3—3’(- 37(1-67) +1RT(1-p7) ézehfc%rz_’/z
(I11-19)
+3"Z//2( {3T>[2L6)‘*fcﬂ +Z’ (4)”’(_'@__/2 CMH)’[ %/z]

671/2‘ 1/2

For large — (i.e., E—— > 2.5), Eq. (III-19) will reduce to

= 3pr(l-pR)+eeS =57~ 37(1-p7),

which indicates that the release of the tracer is due primarily to

evaporation,
For =0, Eq. (IlI-19) becomes
-6 37, | (II1-20)
T
the approximate expression for fractional release from a sphere whose

boundaries are stationary.

If a further restriction is made, such that 71/2< 0.01 (or
7 <0.0001), then those terms in Eq. (III-19) having 7 as a coefficient

(excepting BT terms) may be neglected, and one obtains



_24-

f=3p7 (1-67) +@’C)3 N s
+37"(1-p7) [aenfc +2(4) ec ) mé%%q.

1/2 ’
For large BTZ/ , Eq. (III-21) reduces to

{=3p7(I-p7)+(@7)

which indicates the release of the tracer to be due solely to evapora-

tion,

For B=0, Eq. (II[-21) becomes

_ 6 Sk
_F_ 3 T (I1-22)

the more familiar expression for fractional release from a sphere
with stationary boundaries.

Figures III.41 and III.2 diéplay the fractional release from a
sphere vs [time] 1/2 (71/2) for various rates of evaporation (B). As
a reference, the release for the case of a stationary boundary (B: 0)
is given for each figure; see line (1). Figure III.1 (note the dotted
line) in addition, shows the effect of neglecting the 37 term in
Eq. (III-20) for longer periods of time. Figure III.2 represents the

release of the tracer element for shorter time periods.
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o _ 6 71/2
1/2
(1) B =0 (no evaporation) (3) p= 10
f-_6 r1/2 _ 34 (4) p= 20
n1/2
(5) p= 50
(2) B=2 (6) B =100
| T T 7 T T T T T
- —10.60
6}
— (5) -
f
= {4) <0.40
3} _10.3385
(+)
- —10.20
1 1 1 1. 1 ! 1 1 i
o 0.02 0.04 0.06 . 0.08 0.10
T2
MU-3293°9
. ' . 1/2 .
Fig. III. 4. Fractional release vs r for various rates

of evaporation,
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of evaporation.

(1) B = O({no evaporation) (5) B= 500
(2) p= 20 (6) p = 1000
(3) p =100 (7) p =2000
(4) p =200
T T T 7 T T
= -10.06
, f
- —40.04
= 0.02
r—-
] 1 ] L ! ) } 1 ) 0
0 0.002° 0004 0.006 0.008 0.01
T V2
MU.32930 )
. N 1/2 .
Fig. TIII. 2. Fractional release vs T for various rates
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IV. DISCUSSION

A, General Results

For all values of >0, the fractional release with time is in-
creased over the corresponding value for f when =0, For any value
of time (or 7), f will increase, for both the slab and sphere cases,
as B increases. With smaller values of B, say B< 20, the curve of
f vs 71/2 very closely approximates a straight line for 7’1/2< 0.01,

1/2

which indicates that f is proportional (or very nearly so) to 7
The same statement may be made for 71/2< 0.1, provided (< 2.

B, Initial Release

This theory does not account for the large early release rzte in

2

postanneal experiments noted by several observers. In these
cases, the slope of the f vs t1/2 curve decreased with increasing

time until a region of more or less constant slope was attained.

C. vSphe rical Case-~Stationary Boundary

Figure IIL.1 illustrates the effect upon f of neglecting the second
term of Eq. (II[-20). For values of 71/2< 0.01, the difference in
values of f resulting from lack of consideration of the second term of
Eq. (III-20) is negligible. For larger values of 71/2, the fractional
release predicted by Eq. (II[-22) becomes increasingly greater than
that predicted by Eq. (IIi-20), and differs by 0.03 (= 10%) at 71/2 =0.1.
Since both Eq. (IIi-20) and Eq. (III-22) appear to be plotted as straight
lines, an error of 17% in the value of_D results for the above value of
7 from neglecting this term. It is noted that Eq. (III-22) closely

represents the release curve resulting from boundary motion for

which B=2.

D. Spherical Case--Moving Bouhdary

For values of 71/2< 0.01, Egq. (IlI-21) may be used in preference
to Eq. (III-19) for all values of B7. If BT (remember BT independent
of D and is bounded between 0 and 1) is approx0.2, then the term
(67)3 may also be neglected.
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For large values of %571/2, the fractional release is approxi-
mated by 3p7(41-p7) +(ﬁ'r)3, which is a cubic equation in time (or 7).
This may occur at short times for very rapid boundary motion (), or
for very long periods of time (7). Neither of these cases, however,
is useful in making a determination of D.

For small values of 2167'1/2, pertaining both to relatively short
periods of time and small rates of boundary motion, the fractional re-
lease is directly proportional (or very nearly so) to 71/2 and there -
fore to 71/2, It should be possible, therefore, to develop a simple ex-

pression that may be used to determine D with greater accuracy.than

1/2 1/2
would the use of Eq. (II[-22). For small 572 , (572/ < 0,2) ; hence,
Eq. (III-21) may be approximated by
Z
_3 b A4 - 3 bt) 6 <J)t )‘“ V-
f=360t:70"% =3 ()+ % (3= (1V-1)

With Eq. (IV-1), one can predict the release curve to be para-
bolic in shape when f is plotted vs time to the one-half power; the
curvature depends upon b. The curve consists of a straight-line com-
ponent and a parabolic component, which is the evaporation correction,

Figure IV.1 is the graphical presentation of Eq. (IV-1) for those
values of f that do not differ by more than approximately 0.001 from
the more accurate expression for f,

By assuming that b (the rate of boundary movement) has been
determined, a corrected value of the fractional release may be ob-
tained by subtracting the quantity —2— (%) .from the actual fractional
release. This corrected value of f may then be used with Eq. (III-22)

to determine D.

E. Slab Case--Moving Boundary

For large values of 21[371/2, the fractional release is approxi-
mated by p7--the percent of the body that has sublimed.
1/2 1/2
For small values of L1 ) <ﬁ7 < 0.2> , a simplified expres-

2 2
sion for the fractional release may be developed in a manner similar

to that for the spherical case. This is written as
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fzz pr + 6 71/2
2 L1/2

(1) B = O{no evaporation) (4) = 200
(2) p= 20 (5) g = 500
(3) B = 100 (6) p = 1000
T T T T T T T T T
— -10.06
™ f
= 0.04
(6)
! | ) L | ] 1 ] J 0.
0 0.002 0.0Q4 0.006 0.008 0.0i
T!/Z
MU.2290)
Fig. V. 1. Simplified expression for fractional release

for the sphere.
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(bt) 2 D‘L’)/. {1V -2)

/ L2
'F):“E§f3QC +'§Fﬁz A
Hence, D may be determined in a manner similar to that for the
spherical case. For small periods of time, the correction factor
—21— BT [or —21-(1—:})] is negligible; thus a straight-line plot may be ex-
pected; and over longer time intervals the plot may be expected to

show an increasing slope.

F. Some Numerical Considerations

Using the values of Shaked1 for his sample # 108 at 2040°C, one

obtains

D=66x*10"7" cm¥sec,
t% - 150 (sed)” (t=225:10"se),

and a=025cwm:
Therefore, T‘% = 235 X/O—é (z‘l/‘?= /. 54*/0—3) -

The expected fractional release, with the use of Eq. (III-22), would be

‘IC '/z = 5,_2X/O—3 '

Shaked estimated that the value of b he ;ncountered during the
anneal of this sarnpl'e was 0.3 p/h. Because Shaked's sample was an-
nealed in a Knudsen-type cell, this evaporation rate was considerably
lower than would have occurred if the sample were completely exposed

te vacuum.

Thus,

and, if the value of f calculated above is substituted into Eq. (IV-1),

one has



_3 6 ¢ (Dt LL_- v 2
f-;ﬁﬂ;zt "bf‘t>+—‘.)z —] = 5.2 XxI0

with D representing a modified value of the diffusion constant

D= 4/x lo~ % cmsec

which is 61% less than that calculated by neglecting evaporation,
If the sample had been completely exposed to vacuum at this
temperature, the evaporation rate, b, estimated from.thermodynamic

data, 1 would be a.bdut 150 “/h, from which

B =158000-

For an anneal time of 2.25 X 104 sec and an actual D of
~-12

6.6 X 10 crnz/sec, it follows that
Y2

BT _ 121

7 > /<
Using these data in Eq. (III-21), one predicts a fractional release of
£=0.757. Now, if the experiment had been performed in this way,
-and 1_f_ the effects of evaporation were ignored, these values of f, t,
and a used in the nonevaporation Eq. (III-22) would yield a value for

D of
D=/3.9 x /O;S szeC,

which is approximately 21,000 times as large as the actual diffusion
coefficient for this temperature.

These calculations illustrate the importance of either minimiz-
ing evaporation experimentally, or of taking it into account analyti-

cally whenever one obtains diffusion data at high temperatures.
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V.. CONCLUSIONS

An equation has been developed that relates the fractional re-
lease, f, of a tracer element in a geometrical body under conditions
of evaporation of the body and diffusion of the tracer through the mov-
ing boundary of the body, with these conditions occurring simultane -
ously. This may be better expressed as the fractional release of the
tracer element through a moving boundary.

For small values of the quantity B, the release curve is approxi-
mately a straight line whose slope is slightly greater than that for the
stationary-boundary cé,se. As B becomes larger in magnitude, the
slope of the curve increases with increase in time and approaches a
limiting value (see Fig. II[.2) for the values of [3 and 7 considered,

It can be seen that to completely ignore the evaporation of the
body may-lead to an incorrect value for the diffusion constant. The
curve of f vs (t) 1/2 can appear to be a straight line when the bound-
ary motion is not zero, but the slope of this line is not the same as
that for the zero-boundary-motion line; hence, different values of D
would be obtained unless a correction were applied to the moving-
boundary case,

Simplified expressions have been developed that, for small
values of the variable (37'1/2/2, may be used to make a more accurate
determination of the diffusion constant, D. With these expressions
one can predict a release curve whose slope, when f 1is plotted
against the one-half power of time, will increase with time. The cor-
rection made to the fractional-release equation for the stationary-
boundary case is independent of D, and by subtracting this correction
from the actual release, one should obtain a line of constant slope.

. It also should be possible to fit experimentally obtained
fractional -release curves to the curves obtained in Sections Il and III
of this report, and thusto determ1ne both the rate of boundary motion,
b, and the diffusion constant, D,

Experimental verification of the simplified and the approximate

relations for the fractional release remains to be demonstrated.
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APPENDIX

A. "Conventional'' Analysis of the Slab Problem

'Solutions to the heat-conduction equation for a slab -a<x<a,
with a constant initial temperature TO’ and with T=0 at x=+a are

given as

;lnrl

Tit)= ¢TZ(/)” "F[— kgizt/fwzf 0 (;2;;/)77)( (A1)

and

G

The a\}erage temperature in the slab is given as7

J2n+/)7r T] (A-3)

Tt L frk i ]

7“—1_/ —7'2 2(22h+/)’~ SXP |~

Ty = 927—( {77 sz'—ZZ( /) ocf‘r/cwz} (A-4)

Using an-analogy to the heat-conduction solution, it will be shown that
the concentration of a tracer element C(x, t) for any time t and any
position x, where --a<x<a, the initial condition C(x, 0) :CO, where

C, is a constant, is

0 : s
n 2 2
C)ﬁ(‘é) 46’02’;{”/4)_/ €X,O[— @52/27 ]COS‘ Q,’,ZZ X (A-5)
and

Clt)=C, - (’2() {er%cﬂ%}xwten@@;’ﬁ?tx}- (A-6)
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Here, D is the diffusion coefficient for the particular element being .
studied. The corresponding fractional release, f, defined as the ratio
of the decrease in average'traéer concentration to the initial average

concentration, is

ch’/b @n""/)T_DtT (A-7)

f-Crlall_ | S205

and

=2

A.1. Tracer 'Concentrati_on—Exponential Form

Y. —/ = .
2{77' +2}§(_/)}76€ﬁ(c %//Z « - (A-8)

By using the method of separation of variables, it may be

shown8 that a solution for the diffusion equation

BC(X’LL) D T—QLZX;”& (A-9)

with C ()( ()) = | (A-9a)
and ¢ (zq,t) =0, (A-9D)
may be expressed as C_(x, t) = F_(x) G_(t), : (A-10)
where F (x) = A_cosk x +B_sink x (A-10a)

and , Gn (f) =X exp (—kat> . (A-10b)

Applying the boundary conditions (A-9b), yields Bn:O and

k= %(2n+1), where n=0, 1, 2,---. Applying the initial condition

(A-9a) yields a=Co, so Eq. (A-10) becomes



-37-

C,(xt)= CyA, cos kX exp (-4, Dt)

G
+ 2n+! o
— 60/4,,605 {Zzna/ 77X exp[_(_#azﬁ_ﬂ_l“].

The coefficient An may be evaluated by setting t=0 and using the

property of a Fourier series9 that

J |
:j_/f(x)cas }TX ax ; | - (AR

thus, An T .[6( Cogém“/)?f)( ax where f(x) = 1. (A-13)

2a
=a

This may be integrated directly to yield

_)7
A = ‘, n:O,iyZ"", (A,14)
n 77(2)7+/)

Therefore, the substitution of Eq. (A-14) into Eq. {A-11) gives

C (t)= L/C(/) ﬁ’XP[ (2n+i)?r2Dt]COS%iam C iass

7r(2n+1) 4a*

Any sum of solutions is also a solution, so the final result is

(lt)= 4Ce L erp = g PR S (a-10

For long periods of time, the tracer concentration should become

zero as t » o, By noting that the exponent in each term approaches
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it is clear that the tracer concentration will indeed ap-

-0 as t = o,

proach zero as a limit,

A.2. Fractional Release —Exponential Form
f, may be determined from

The fractional release,

Q
- 62& (t)

0]

(A--17)

where Q(t) is the total number of tracer atoms per unit area contained
in the solid at any time t, and QO :ZaCO is the total number of tracer

atoms per unit area contained in the solid at time t=0

L= 2al, /C(Xf)dx
=2aclC,

CZM/)WZ%Y/ /@(5 (A-18)

=/-5 ng gn+)/“'°)“/"[ g
[ (2h+/)77' D‘é‘]

/ (Zn+/)’“ L‘-’X
, the

For t - », the summation term approaches 0 as a limit; hence
fractional release approaches 1 as a limit. For t=0, Eq. (A-18) be-

comes
_f | — g . (A-19)
{2n+/)
o0
The sum ——+-L+ L +... = 1 is shown9 to be equal to
.12 32 52 n=0 (2n+1)2
w2 8 e
—, so f=1- —~ ><—8-——*'1—'1‘O at time t=0, which is as expected

8 o
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Thus, it has been demonstrated how Eqgs. (A-5) and (A-7) were
obtained, and it has further beenvshow"n that the tracer concentration
and the fractional release approach the proper limits for large periods
of time, and at time ‘t=0, |

It will now be shown, with the use of La Place transforms, that
Eqgs. (A-6) and (A-8) are the solutions of Egs. (A-9) and (A-17), re-
spec’cively.7

A.3. Tracer Concentration—Error-Function Form

L.,et 2C[xt) - o 2X 0t (A-9)

Xz

with C ()(, O) = Co | | (A-9a)
awd ((zat)= 0 (a-9b)

by symmetry, ?_%.;Ot) — O . (A-20)
X v
Now the La Place transform of C(x, t) :a—(x, P);

@(X,P)=/Z‘Pt6(x,%)a‘+ . (A-21)

Making the transformations of Eqs. (A-9), (A-9b), and (A-20), one ob-

tained

pCip)—Co= D LLHE) -

with C(ia,}:}) - O o : (A-22a)

- 2C(0.P) _ A . _
d 5% , ot O (A-22b)
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Defining q2 =p/D and by substituting in Eq. (A-22), one obtains

?ZXC;(MQ _ %Zc_(x,/b) - —éo . .  (A-24)

Solving Eq. (A-24) for C(x, p), ©one has

Clxp)=Aet + Be T+ & (a-25)

Upon applying Eq. (A-22a) and Eq. (A-22Db) to Eq. (A-25), it follow.s
that |
C (x )-_— — Co(e%x"’ e—%x) 4+ Co
P p (et*+e %) P

(A-26)

Multiplying the first term top and bottom by e—qa’ one sees that

-/
Clop) =~ et re™¥]+ Lo taan

2qa, -1

and upon expanding (1 +e” ) © by the binomial theorem, one finds

e ] = - €2 Fe @) E25 e

(A-28)
=Z) e
nN=o
By substituting (A-28) into Eq. (A-27), it follows that
— _ C o2 n_—2nh4qa (X-a) "%(M’a‘)] + _&
= -Log(

Clxp)=-z2zF/e 7*[e¥ e =

(A-29)
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Taking the inverse transforms, one obtains

Cot)=C-Ca-1) [erfcﬁ%ﬂ% rerfelzlin. o

For long periods of time, the tracer concentration should be-
come zero as t > o, If t is allowed to approach infinity in Eq. (A-30),

the erfc lti —- 1.0, and Eq. (A-30) becomes

I ext)= Co = C Z (R

| (A-31)
=0, = C,(R-2+2-2+").

which appears to be nonconvergent and equals C_, or -C_, depending

0 0’
upon whether the last term of the expansion is negative or positive,
This is a periodic function, however; and if the function f{(x) is defined

as
f(x) =2 if 0 €<x<7w, (A-32a)

and f(x) =0 if -1

N

x<0, (A-32Db)

then the coefficients of the Fourier series for .f(x) are
(7 ) (2
A, :W/O dx + 5[ <dx =2 > (A-33a)
e
:—/2605 nx dx = 77,—,) Sin nx]o =0 > (A-33Db)
L :
and An=7—’;/02 sin nx dx = 2 = COs nx] 2 (/—Cosnr/ﬁ > (A-33c)

and the Fourier series for f(x) becomes
jC()() ao+2(d Cos nx + b,sin nx)

: i X i sin 5x . .,,) —
4ot (SR SR S o) <
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/ L/ - / - Dt )X (A-34)
— /_/_vn._/._ > St SN A2 vl )
77 )’7@=o"‘n+

On page 180 of Sokolonikoff and Redheffer,g it may be seen that f(x)

is well-defined on the closed interval -m <x <7 except for the simple
discontinuity at x=0, has a finite number of maxima and minima,
and is defined for other values of x by the periodicity condition
f(x+2n)=1(x); therefore, the Dirichlet conditions hold for f{(x), and

the Fourier series for f(x) converges to
L0 = £ [£6) #£(x)] (-39

for every value of x,

In particular, at x=0,

+(0) = 2/ [f(O’“) +7[(0_)]= 2/‘{24'0) =/ (A-36)

Because the coefficient of the second term in Eq. (A-31) is shown to
converge to the value 1, the tracer concentration will, in fact, ap-

proach zero as a limit as t - o,

A.4. Fractional Release —Error-Function Form

Calculating the fractional release from Eq. (A-17), one obtains

_F: Ral, “E(Xi)dx
20 Co

= _/ZT/‘O [’[5'(/) erfc%} (A-37)

‘f'Z( e e @n+/)a+x]}a[x

2(Dt)”

ZQ/[2(/)er&%}xwﬂ@)e#@g}’ﬁﬂf]dx>
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which, with the use of Eq. (C-11), becomes

%f = ~ n+la-a _ - n+l o+
£= éibt) {;ég—/)”[berfc%g%y%—oebfc : %f‘cij]
Er -
o . . N (A-38)
= Z(Q) {Z( )" [Le d 7—72 LEP c%t—)%]}

%2(2 [cervfc o+2( ) Lehfc~59 2( /)”oerfc%l ]

Byvletting."nr+. 1=m, the last two terms may be. combined, and by
noting, from Egq. (C-7), that ierfc O=x 1/2, one finds Eq. (A-38) to be

For 't - 0, the terms in Eq. (A-39) involving ierfc k/‘.c1/2 become zero;
thus, only the firstterm 2 (2>1/2 remains. For t=0, this "
1;2 al
term and also the fractlonal release are zero.
For large t, as t - o, the terms 1nvolv1ng the
- ierfc na/(Dt) 1/_2—> ierfc 0, where ierfc 0= /2, with these substitu-

tions Eq. (A-39) becomes

[im £= 5, (Dt /z[/ +2§(-/)n] : (A-40

't‘—>oo

By using the same analysis as that for the tracer concentration, it can

be shown that the summation term converges to -1; thus Eq. (A-40) is

lin £ =2 (Z) )~ []= =0
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which is indeterminate; therefore, it is necessary to refer to Eq. (A-37)

to resolve the indeterminateness. Hence)

/’m " f = /’m [2( I e rfe —)—T(Z’g’;%“zx

+Z ) e rfe Cotlarn ] oy

=—é—4[§o(—/)”(/) +§0(‘/)’7(/)_7a’>< (A-41)

/ a . ) - ‘ a.
=5 [REC) I = REC)GG)[ K

n=o

=22 )

This previously was shown to be 1, so
//‘m 7[' = /. (A-42)
t>o0 / |

[t has now been shown how Eqs. (A-6) and (A-8) were obtained, and it
has further been demonstrated that the tracer concentration and the
fractional release approach the proper limits for large periods of

time, and at time t=0.

A.5. Correlation Between the Two Forms for Fractional Release

Using the method of Boo'ch,6 ozne can show that Eqs. (A-7) and
e Dt

al

< 4. Here,

{= /—7% f Z CXP [_ (Z}ZC/L)EWZDJC]
A |

(A-8) are identical for values of

(A-T7)

11'2 Dt

)

for

< 1. Equation (A-8) becomes

_ 2 /Dt\1/2 : }
= (22) : (A-8a)
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Rewriting Eq. (A-7), one has
A _nr 2D'(,' oo | Om) 32Dt
_ /-8 Fa= / _‘(_alaq— (A-43
f= I3 |Zme ™ —Zghpl | e

The sum Z e'mzx = /+ 2200' é’_mzx (A-44)
m=

ms= -~ o0

0
is, for small x, essentially f -xu du. Thus,
-00

/O;—xuzda — (7%()//29 ' LA

: K'rrZDt ‘ ‘ '
where x for this case'is -, K is 1 or 4, such that

432

2

/+Zm§7 ™" = (%)yz, (A-46)

Now, if both sides of Eq. (A-46) are integrated over the limits 0 to x,

the result is

X +2n02°’,0777_/§ (/- e‘“’l’() = Z(Wx)yz . (A-47)

which may be arranged

o7 - Z ‘“ | (A-
_mZ_,—h—?%e — 67)() % - héz . (A-48)

Upon substituting Eq. (A-48) into Eq. (A-43), one finds,

f=1+5 [(m)" % - 25k
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= |+ £ [( ) - R 2]

YbrcptYe_ YrRot. < 1 ( (A-49)
{ [ ( fa> aaz ; m:«]
2 5 .

2
The Z A ‘is shown9 as equal to - ; hence,
n=1 né ) 6

%
2 (Dt)*” (a0

77"'/2
'rrZDt
For values of <1, Eq.(A-8) reduces to Eq. (A-50); thus, for
a
‘ . 'rrZDt ‘
these values of > Egs. (A-7) and (A-8) are equivalent.
a

Solutions of the form of Eq. (A-7) converge slowly for small
values of Dt/az, but solutions of the form (A-8) are rapidly conver-
gent for the same small values.7 This statement also applies to the

equations for the tracer concentration, i.e.,, to Eqs. (A-5) and (A-6).
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B. . "Conventional' Analysis of the Sphere Problem

Solutions to the heat-conduction equation for a sphere, 0<.r < a,
with a constant initial température TO’ with T=0 at r=a, and with T

finite at r=0, are given as

T()’t)—_ Z:‘:o(/) P(_U___E Sin L ”777’ ° | (B-i)

7'(0;1‘) =-27, Z( /) exp( nA ) (3:1;5

ron= 2D

and T[C@:Z—@Z@rééw/)a r erfé’l("%);’f] > (B-2)

Tlod)=To— Lo 2] - =

[See note following Eq. (B-6a).]

The average température in the sphere is given as

74_1/ — 6’7— éX/D( Anim zt) | (B-3)

T = 67;( )[7 22’4@/7{@)—,{}+3T(a ) (B-4)

Using an analogy to the heat-conduction solution, one can show that
the concentration of a tracer element C(r, t) for any time t and any
position r, where 0< r<a and the initial condition C(r, 0)=C,

with C a constant and with C(0, t) finite, is
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Clr t) 2&.60%' ()'7/) exp( Vzist1aa?P8 WZDZ‘,‘ sjy 1Y n7Tr (B-5)
C(O/t) =—2 C’og(—/)”exp (__/7_2_7;2&_ 3 (B-5a)
and

Ct)=C,~455

@ntl)a-r én+/)a+/’ )
erfe ST —erfc e Gl (B-6)

C(Olt>:Co % fo/?[ &QFQ] (B-6a)

[It will be noted that Eq. (B-~6a) differs from (B-2a)--other than
in the change of notation--by a factor of two in the summation term.
It will sﬁbsequently be shown that Eq. (B-6a) is the proper expression
for the tracer concentration at the center of the sphere. |

The corresponding equations for the fractional release of the

tracer element are

70— ,,z exp( ”’Z?t) (B-7)

—/j 6 ( )/[77 22’ oerfc w/z] — 3(%9 . (B-8)

B.1. Tracer Concent_ration——Exponential Form

The radial -diffusion equation

D[ 2 0]
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may be reduced to the linera-diffusion equation (A-9) by making the

substitution u(r, t) =rC(r, t)

Bu(r'é) D?Za(_r,jf)  (Bei0)

with the following boundary and initial conditions

u(r, 0) = rCO , (B-10a)
u(a, t)=0 (B-10b)
and u(0, t) = 0 (B-10c)

A solution for Eq. (B-10) may be obtained by using the method of

separation of variable ss

U (x, t) = F_(r) G (1), (B-11)
where "F(r)=A_ cosk r+B_sink r, , (B-11a)
n n n n n
-kn2 Dt
and Gn(t) =ae . (B-11b)

Applying the boundary condition (B-10c) yields An: 0. The boundary |

condition (B-10b) gives, kn= n?n-’ whereas Eq. (B-10a) gives a =CO,

(n=1,2,3--+), and Eq. (B-11) becomes

U, (nt) = Co By sin kor exp (—kat)
C B Sin )’77’}"6)(/3( N2 2Dt

(B-12)

The coefficient Bn may be evaluated by setting t=0 and by using the
' g

property of a Fourier series that

J
bn _ £()sin 2TX dy (B-13)
A 4 T |
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Thus,

a

a/—wfr)sfn——"frdr: where  f(r)=r.  (B-14)

This may be integrated by parts to give

- _Ra /_ Y - -
Bn——ﬁ< )) ., (n=1,2, 3,’ ). (B-15)

The substitution of Eq. (B-145) into Eq. (B-12) results in

r .
U (rt)= ——2;4%_(‘_’2 exp [—”—%g;_ﬂt—] Sin ATC . (516

Any sum of solutions is also a solution; so the flnal result, upon using

C(r, t)= ——u(r, t), is

( ‘é)—— ZQ_COHZ:/(/) eXP[ n WZDt S’n na-’:rr (B-17)

and

C(0)= 15 Clrt) =2 o2 exp [FPZRE] . (pesna

where the relation

lim sinx _
x-0 x

has been used.

For long periods of time, the tracer concentration should be-
come zero as t — «. By noting that the exponent in each term in both
Egs. (B-17) and (B-17a) approaches -« as t—> o, itis clear that

the tracer concentration will indeed approach zero as a limit.
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B.2. Fractional Release —Exponential Form

The fractional release may be determined from

{\ Q, QS(‘&) (A-17)

where Q(t) is the total number of tracer atoms contained in the solid

at any time t, and QO = %na3C is the total number of tracer atoms

0

contained in the solid at time t=0. Thus,

PO Y,
B 6(/3 7—,—a3C’o

= /- = ( 2aC)Z(/)" XP(nZ;Dt/»S,H .

:/__6_2 2exp(/727TDt

=

For t —+o, the summation term approaches zero as a limit; hence,

the fractional release approaches 1 as a limit. For t=0, Eq. (B-18)

becomes

]C_ ] _E6 g . (B-19)
TTZ)’):] )72 .

v - 5
The sum —1——+—1—+—1—+---: Z 1 s shown9 to be equal to T,

12 22 , 32 n=1 n? 6
so, f=14- —(32—>< TT6— =4 -1=0 attime t =0, whichis as expected.

m

Thus,. it has been demonstrated how Eq. (B-5) and (B-7) were
obtained, It has further been shown that the tracer concentration and
the fractional release approach the proper limits for long per1ods of
time and at time t=0, '

It will now be shown, by using La Place tramsforms,7 that
Eqgs. (B-6) and (B-8) are the solutions of Eqs. (B-9) and (A-17), re-
spectively. |
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B.3. Tracer Concentration—Error-Function Form

We have
YC(rt) . 2 dC(rt)
2 (rt) - “D[__”_l £ et
| with C(a, t) =0 |,
C(r, 0) = co',
and ?%’_CO—’-Q:O by symmetry.

The La Place transform of C(r, t) :E(r, P) is

5()",P)=0/”€'PtC(r,JC>df :

Making the transformaﬁons of Eqgs. (B-9), (B-9a), and (B-20),
tains
A _ *C(r, 2 9C(r
pCrp)-C, = D [Lned 2 KR,
where E(a, p) =0,
oC(op)
d =
- S or O
Defining

q¢ = P/D

and substituting Eq. (B-23) in Eq. (B-22), one has

*C(rp) +2 B%KE- c&C(}’P)“C"

dr=

Solving Eq. (B—24) for C(r, p) one obtains

Crp=A et Retrle

(B-9a)

(B-9b)

(B-20)

(B-21)

one ob-

(B-22)

(B-22a)

(B-22b)

(B-23)

(B-24)

(B-25)
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Upon applying Eqs. (B-22a) and (B-22b) to Eq. (B-25), it follows that

5, \__Coaleteh] | Co
Clnp)= rp le~#- et "

(B-26)

Then, multiplying the first term of Eq. (B-26) top and bottom by

-qa .
e 4 , one finds

C (r P>:_%%a[e—%(a-r)_ e—cb(a#i][/_e—zzq] -/+ }go ’ 52

'an] = 1

and expanding [1- e by the binomial theorem, one gets

- — 2aa -
[} e 2%0_] [+ e 23@—&(6 ), +(e 5)—/- vl (B-28)
— —2n a
= Z, e
Subs_icituting Eq. (B-28) into Eq. (B-27), one sees that

+a-~r - |
C(fP) Lo { ~glrerd igzm)a”]}. (B-29)
Upon taking the inverse transform, one finds

C(rt> Co— aCoZ [@hﬂ —(—7-@”+0 erfc n+la+r] (B-30)

C(O,‘t) = Ipi_’;%C("ft) = (Co— 30 » (B-30a)

which is indeterminate. Applying L'Hospital's rule10 to the second

term to eliminate the indeterminateness, one sees that

lim £(x) _ lim £(x) _
x2a q(x) T X=a gT(x) ~
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Now,

Co)= Com iy &8 2 [erkeErillit — ertegraatt |
= ¢, i ale 2 (12 )t ep [ BT |

- B [t o Tl } o

= (- 5 ,,Zo(exf’ﬁ‘%ﬁ ’LeXP{‘%WJD

As an additional check on Eq. (B-30b), it can be shown that the

tracer concentration approaches zero as a limit as t - o,

The sum
Zie < /+2h2€“”x ‘ (A-44)
N=~p0 =/

—xu'2
du,

6

) oo
is, for small x, essentially f e

oo R /2
where /e—)(b(.du = @(—T) . (A-45)
—00 :
Equation (B-30b) may be written as .
_ 2a( _ 2h)203] .
C (Qt>—Co‘ (G 7 { €><P< ) Zexp[ (B-31)
Combining Eqs. (A-44) and (A-45), one finds that

Z e‘”zx 2/ (Tr) , | (B-32)
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and by substituting Eq. (B-32) into Eq. (B-31), one obtains

Im c(op) = ¢, - im, 2C J"’Tm)/z 4 (2]

%

-l 28K [ (]
- Co - co. = Q0 -

B.4.' Fractional-Release —Error-Function Form

Calculating the fractional release from Eq. (A-17)
f= |- fr C(rt)dr

= /“%C@for { rno[eh[%r

, one has

(B-34)
- la+r
@YWCC 2 Dt) ] dr
'< = 2n+l)a- )'_ Cn+Da+r] 4,.
— ) é_.: [er'[ Z(Dt) 'ar‘f—,;(w— d}’*

Now, Eq. (B-34) may be integrated by parts, by using Eq. (C-11) and
by letting u=r and

s @n+l)axr
dv=erfc 2hese d

?

which yields

. nt)a~ = > Rrh)a-a
123 1 200 ierfe Rty F e Bpedace

+ QéZ(W)’&CGMC%%F% + 4(])‘(:) 5’ (_zey;p@)’?‘f'/ C?+d.] -
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=6( ) Z lerfe (Dt).,2+2 cerfe ”“gﬁ] (B-35)

_ }2(%’5:) Lfo (e rfc {55 -g Lzervfc%g—%]

By letting n+1=m, the ierfc terms may be combined; the
izerfc terms will cancel except for an izerfc 0 term. Noting that
the ierfc 0= /2 and ilerfc 0=1/4, one finds that Eq. (B-35) be-

comes

- 6B T2g et ] -5() oo
1/2

zero. For t=0, the remaining terms are zero; thus, the fractional

For t— 0, the terms in Eq. (B-36) involving ierfc k/t become

release is zero,

If the substitution of Eq. (C-7) is made for 1ierfc r];a‘,; in
Eq. (B-36), the resulting expression becomes
/. - —the T Ra>
£=6(DL)2 ks 2tz exp (- &)
a: 7= Dt (B-37)
s ha  oplohna | (Dt ,
~2Z %% /zervfc@—ty&] 35
For large t, as t = o, -I% — 0; thus, Eq. (B-32) may be substituted

into Eq. (B-37). Hence,

/;foof: 7{;”; [6< ) { x ey Z (D-t)‘/ze V‘ﬂf—(—/z
ko] -3

=lim [-12 Zmertc 88+ 6(2%)-3(2)] =9

=lim [3(Bt)-12Z () erdfe e |
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This is equivalent to o - «, which is indeterminate. Referring to
Eq. (B-34), one finds for large values of t that the difference be-

tween the two complementary error functions may be approximated by

2 Cn+la+r _@n+lla-r @n+l) @n+a
//A [én(D-t)l/z A(DL)’/G ]@XP[ T’C'—h a]— (7TD't! GXP[ Z‘IIDt O"J,

which, upon substitution in Eq. (B-34), gives

lim £ = 7 2 [@n £ exp [FElE Jor
- 'é(—};noo oDt /2 [ r {no,oexp [ ] Z@XP [ %%Jg}dr
Applying Eq. (B-32), one finds
I =l E‘TW—V/ e (4t 52 (TDt) Vz] dr
=l e | P[RR (DA dr

jrzdr - 361:: /

Thus, Mmoo : (B-39)
t—o00

[t has now been shown how Eqs. (B-6) and (B-8) were obtained, and it

has further been demonstrated that the tracer concentration and the

fractional release approach the proper limits for large periods of

time and at time t=0.
72Dt

a

Booth has shown that for values of <1, Egs.(B-7) and

(B-8) are identica,l.6
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Solutions of the form (B-7) converge slowly for small values of
Dt/az, but solutions of the form (B-8) are rapidly convergent for the
same small va,lues.7 This statement also applies to the equations for

the tracer concentrations, i.e., to Eqs. (B-5) and (B-6).
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C. Properties of the Error Function and Related Functions

The following definitions are made:
2 x 2 ‘
erf x = = jez dz , (C-1)
NTT
erf oo=1, (C-2)
erf(-x) = -erf x, (C-3)
. 0 2
erfc x:1—erfx:——2—f e dz , (C-4)
N7 %
jerfc x = f erfc z dz , (C-5)
X
ilerfc x = f i erfc z dz , (C-6)
>4
.0
where i“erfc x = erfc x, (C-6a)
—x-z
ierfc x = 1 e -x X erfc x, ' (C-7)
N
2 _ 1 _ .
and Ci%erfc x = n [erfc x - 2x ierfc x] . (C-8)
The general recursion formula is
2n iferfc x = i" %erfc x - 2x i® lerfc x.. (C-9)

If both sides of Eq. (C-6) are differentiated,

%{ in+'1erfc z = %{ I i"erfc y dy

. (C-10)

.n dz
= -ierfc z —,
dx
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Integrating both sides of (C-10) and rearranging yields

1 in-l-fl erfc z (C-11)
dz

dx

finerfc:'z dx = -

provided %}Z? is a constant and the constant of integration is neglected;
then (C-11) is the indefinite integral of ierfc z dx, where z is a
function of x.

The values of inerfc'( -x} will now be studied to obtain an inver-
sion formula, so that the tabulated values of the positive argument

may be used.,

- Noting i erf(-x) = -erf x (C-3)

and erfc x =1 - erf x, (C-4)
one obtains erfc(-x) =1 -erf(-x)=1+erf x

=1+(1-erfc x) (C-12)

=2 -erfc x,

2
Thus, ierfc x = —1 e® - x erfc x s (C-7)
, T
1 —X)Z
and ierfc(-x) = — e - (-x)erfc(-x)
N

2
e + xerfc (-x)

4
’\/‘?T— .

2
e = + x(2 -erfc x) (C-13)

2
-x
e - xerfc {]

ierfc x..

b
Nm
N

= 2x +

So, izerfc X = [erfc x - 2x ierfc x], (C-8)

TS



-61-

1

and , izerfc'(—x_) = 41 [erfc (-x) -2 (-x) ierfc (-x)]
= 41 [(2 -erfex) + 2x (2x +ierfc x) ]
1 | 1 2 (C-14)
= > — (erfc x - 2x ierfc x) + x

1

5 +x‘2 - izerfc X .

By using the general recursion formula (C-9) and the relations just

developed, it may be shown that succeeding terms are

i3erfc (-x) = %x + él—xs + i3erfc X, (C-15)
.4 1 1 .2 1 .4 .4
iTerfc (x) = — + = x" + — x -1 fc x, C-16
() 16 4 12 er ( )
5 1 1 .3, 1 .5,.5
d : fc (-x) = — x + — + — + f . C-17
an i"erfc (-x) 16x 12x 60x i"erfc x ( )

From the foregoing, a general inversion formula for i"erfe -X) may

be obtained:

n n-2
i"erfc (-x) = —1)ner1 i"erfc x + 2x + =
n! 2(n-2)1
(C-18)
n-=4 n-m
+ X 4l 2x :
16(n-4)! (4:812---2m)(n-m)!
where n-m=1 for n=3,5,7-°---,
and ' n-m=20 for n=2,4,6,---.
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D. Solution of the Slab Problem for a Moving Boundary

D.1. Concentration of the Tracer

An expression for the fractional release of a tracer element
through the moving boundary of a slab will be obtained. Chambré 5
has derived a general solution for the tracer concentration for a slab
(a-bt)<x<a-bt and 0< t< %, where b is the rate of movement

of the boundary

C(xt)= Wﬁ@ op [4 |45 (D-1)
+ ZC0F (5 exp [B on)| St s5r2m9ds .

Sxt;s)= exp[ -1_7.? ] +e<p[ ij;ﬂ (D-1a)

This equation is the solution of the diffusion equation

2C(xt) _ D 5_%%@@ , (D-2)

subject to the restricting conditions

C (X O) =~F(X> for O <X <Q) (DfZa)
_T_OLE) or Ot <E (D-2b)
and C(d—btf}_’): for O <t /\% (D-2c¢)

For this problem, the initial condition (D-2a) shall be assumed to be

a constant, CO; thus,

C(X/ O): CO for O({XI(C( (D-3)

If this substitution and S(x, t; & + 2na) are made into Eq. (D-1), one

has

Cxt) = —T—ﬁ— Hexp [— ]dj +
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_I_é(_ I)nexp[%b(jqu-} (exp{- .[%%%23‘)]2} + exp L(];in }) ]
<4

This may be simplified somewhat by defining

y = ¢ 4 2na (D-5)
and = Xt (D-6)
'Zl\/Dt

upon which Eq. (D-4) becomes

C " (I)f)
C(xt) 255073%7% (—2@@4{% exp (—z)dz
2008 (D-7)

+/§"(+/>/) exp[2Ey- na)]{@XP %{— j+ex;:> Q%%Z ]}d&)

The first term may now be integrated directly, and if exponentials are

combined, one has

olxt)= Lo {eri [558s] - erf ;(;;;)4}
(2r+))

+_C—%]?)/’- {Z(—/) exp[ E_(na] P[ (—%-(- ”jé’ (D-8)

a(?n

+exp[ —"—%E)z d‘(f}

The exponentials may be simplified,

- )Z-— A / ¢ 2'._. +I
S5t -5t = 2y inity

= b { -2y e 20ht) soznbtfit onttf'f =
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- %léi {[g _(X+2nb‘t)]z~— Ynbt (x*"”bt)}
(D-9a)

= # &.'—(x+2nbt):l 2— ﬁDb (x +>’713t);

%% —-%‘A% :-4-1/)—-_—6 XZ”’ZX%"‘#Z* Lll'hbt?,}
{y +27(X—mkt)+(x—2nbt)+ Y= (%=2nbt) }

__1
T YDt

(D-9b)
. [[%-#(X*Zh/:t)]z-f' dnbt( x—ﬂkt)}

4D‘t [y?‘-( —7n£'t>] +L2 no (x—nbt)

C(xt) = —%— [é%f S5 — E’H[ZX(-D%'Z]
| a(2n+l)
—;—Z(l) eXP[ nl’(na nb‘t x)]/E’XP{ &,:ginbt)]}déf (D-10)

a(Zn I)

a@nt)

—1“2(2%.0/2 :, GXP[ nb(m nb‘tﬂ):) J €>XP ["H(x 2nbt)] }dy

Simple substitutions similar to Eq. (D-6) allow the last two terms of

Eq. (D-10) to be integrated:
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Cit)= S [erf Abm — erf 455
+32 nZ'j 1) exp [ nb(na nbt—x)][erf “(Z’g)ﬂf/’;*r?hbt)
- a(2n-)-(x+2nbt) (D-11)
ert- )L ]

+:%—- |( ) ex P[— b(na-nb‘t+><)][erf a(22h(~§/>)6(;<2—2n 29
- e,,_ﬁ a(2;—(/)b4;cg);;2nét> .

Using Eq. (C—3) and rearranging terms, one has

C(x, t)= oo

+C° Z(fexp [ ﬂé(na—nbt—x)][eth 2(? Dég)c)/:a X

er[2nga(£€)/il— ] (D-12)

_CZ_Z XP[ ZLA(HQ nét+x)]):€rf 2”{%(%{:_2:;/2 X

— 2nla-bt)-a+x | .
erf ”gwt),,ﬁ X]

With the use of Eq. (C-4), i. e., erfc x=1-erfx, one finds
Cit=C- % [erfe S terte &('_X.,z]
+ ng /) exP[i(ﬂa—nbt—xU[er-FQ %%‘_ﬁ
—erfe 2%@;%— ] (D-13)
& -bt)-
+%—§‘J (- 'exp [—f’—b—(na-nbﬂx)][er{ 2'72 ( ?D@)'/za—#x

—erle 2}7@(-15%4;3“] .

For t=0, because erfc « = 0, Eq. (D-13) becomes

C(x, 0) =Cg .
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For t=a/b, which corresponds to total evaporation, the tracer con-

centration should become zerc. Hence,
C(Y/gb_) = [6’)"& d(‘fg;) é’ﬁfc_ 2 Da)/z]

h=|

-+ % ) exp(” 5Y>[éﬁ( atx) . —erfe —5/‘] (D-14)

+ CO /)exp( ”Aﬁ[ehfc Q{D);y —erfe g@ /2]

Since [x|<a-bt at t=a/b, x in Eq. (D-14) must be zero. Thus,

(0 8)= - G 2ot (8 |+ SoZ fpentc 4032 T

_ C@_ (, erle [_21_([5@ '/]74 805@)7(@%[%{@’&} _cnf,[%(ébcyiz}

with the use of Eq. (C-12),

=, [lmerfe £ (8] + 20,20 I-erle 4 ()] - oo

o0
It was previously shown in Eq. (A-41) that 2 Z (-1) no = 14; similarly,
o0 n=0
it can be shown that 2 z (-'1)n = -4, With this substltutlon
n=1
Eq. (D-15) is

C(x,%): Coﬂ—er&; ;f(b—g'f/ﬂ —-»Co[/—erfc%(ég)'h] =(). (D-16)
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If, in Eq. (D-13), b=0, which corresponds to no evaporation, then

Cé(zt) _ Co-% [é’f‘!fc a+><,/z+erfc Z(Dt)/z]

2(DY)
25, AP “a-x 2n+1)a~X '
+% nZ:I(—l) [erwfc% - erfc%(wa)yz— (D-17)

2n-1)a+ X 2nt+l)otX
+er7[c%7 7 erfc‘(—w’é Tl ]

If 2n-1=2m+1, Eq. (D-17) becomes

Ct) = (- lerfe %%,,;erf%g(m)%] G 2( /}“[eff%%;}

rerfeZulhox } 227 ( )" @rfc&—)vu” d yerfelptlacx C"’f]

=, - g"é(—/ [erﬁ——DEW—(ZZ“E” Srt +erfoltal) } (D-18)

=, 2 -
- 52 lert gt ertc o]

=(,-C, Z(—:)"[ar&@__%g—z +eric@laex |,

which may be recognized as Eq. (A-6).

D.2. Fractional Release of the Tracer

The fractional release may be computed from Eq. (A-17), as
follows:

(a-bt)
£2Q-Q®) _ 220, —/ C(xt)dx
Ro 220, =
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(@-bt)

CixDdx ;

-(a-4t)

:/ 2@0

using the symmetry relation, one obtains

(a-bt)
(D-19)
With the subst1tut10n of Eq (D- '1(3) for C(x, t), it follows that
a-bt)
CH-X a X

@éﬂ

_T/Co 2( eXP£LL(m-anc—x)][erfc zy’g?ggv;d—x

—erfc ?”2(‘(‘@320’“ dx ~ (D-20)

(a-bt) .
~ b 52 2 0 op [t et Jertc 2ofation

—_ er‘fc 2n(a- b_t +a+'X]dX

2D 7=

With the use of Eq. (C-11) in the second integral, Eq. (D-20)

becomes

£ b’t +_(D_Ql [ OEY‘FC%%T +oer7[c_7—7Z *H,GV{CZ—/ -terfe Z(Dt)h]
-4 nZ:l(—/)”ex p [—-ﬂDﬁ(nXa'bf)] / p (@X) erfc 2L a-b)—a.-x

Z (Dt)"=

2n(a-bt+a-X
fgfc 2(DL)7z ]dx

s e oo ol e

a
g £ 2n (a-bt)+a+X d
— ér+C 2(%>l/z X =
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o
_—_—él—-f(bt—a:) [Lehfc-—ut—j’,,_ oeﬁfc-’-?zi(‘wb—t (D-21)

a-bt)

oo " | _ b - - =X
L T e b )]{ o2 e 2o

—erfe 2{%@1‘“ "]dwf@(p( —b‘)[e»%: 2ofarb)-a eré—%—%wy—’?”; é’tf‘"c/x

The remaining integrals in the expression (D-214) for f may be

evaluated by integrating by parts, as follows. Let

poop(R) s dheere2fiflepty o o

du:%éexp )d)( and \/= 2(Dt>/zb€)’&’_ Q}ga(-él%:f;f.'x

The result may be written as

z(mY s'( )e p(nbx>[2 DAXD‘@] L ervfc'eh(gé’tgé%_x . (D-22)

To integrate the second integraf by parts, let

epf )t dreerREGEEAS e

b hopl i e oaloferk 2R
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The result is

!

-2 D’C)I/ZZ:(- /)mé/xp(— %éi)g)(%b}’lbt)'/’:[/z Mertfe 2”%}@;&” . (D-23)

Upon applying the limits to Eqs, (D-22) and (D-23) and inserting the re-
sults into Eq. (D-21), one obtains ‘

_ bt 2 bt ’ 2a-bt
f=E @) ierte A - erfe £55k5 |

%tf)l%?<'/ Vexp[-n( ”X“"Jf)] MZ:(-DW[LZ (—’%éXDt)'/j m%p[g—”(m)]i *érﬁ;%L;DgL})z—a

—("erfe 2”—2(?51’%:7% —exp [gé(a—bt)} C”Yerfc@; - é)ggg):"* - (D-24)

+Imerfo 20 apl nbobt)limerk e rdo

| L) ‘ ; - : it
+"erfe 2—%%(%.1,;@" +ExXp _%L(z-),t)] B %ﬁ}:‘“ —"erk Zg(@_%%@} .

After eliminating equal and opposite terms and combining exponen-

tials, it follows that

f= (L) [ierfe fg verfe Z55E |

/&' -1
o, L oo m / , " ] na
E;%) nZ”(—l)”exp [— RS -bt)] ,;,(' Y [2( %Wf] {fXP ’EL((’T"’JC)]L”’G%‘(————&WZ,{%W

—exppst] irerfe UL | o [—%é@-b@]@ﬁ%?;@ _
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_ G’XPE%b(a”!’t)] Lmerfe C"‘”E%@D‘té’z’a | (D-25)

— bt (Dt)/z[berfc—z—w certe %]
g e e o

nm=i

2( Dt) 72
AR Z b o oo b slfrenegtiye

_ G+l a-bb)-a }
(erfe S

At t=0, each term of Eq. (D-25) becomes zero; thus, the fractional

release is zero. At time, t=a/b, which corresponds to complete

evaporation of the solid, the fractional release should be 1, as shown:

‘F'; /+(£_)’/[L€ﬁ[cz Da>/2 Ler%ZD_%_,E]
B ST ety
(D-26)

—i 6)")[C2(Da. gy + L erfcm ("erfc 2(D®>/z}
=17.

If, in Eq. (D-25), b is set equal to zero, which corresponds to no

evaporation, then

-F: (%)l/z [Lerfc O - Lerfc (S‘-&)%_] /ZM )nﬂ[bé’ﬁfcﬁ%%&

(D-27)

—-Lerfe é;’_;.z -/-wrfc%_lf“"’)a; — (erfe A% } ;

(Dt)=
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by letting n-41=p and n+41=m in Eq. (D-27), one obtains

_(% VZ[LGHZC O —lerfe —7—+22( ) 09”7(C

1 erk o+ 20 erfe ﬁ.—&]
(D-28)

Dt /"“[2 lerfe O +22’(/) "eh[CT—T/Z
+ S erte G +EC) oé’h‘cwz.]

Noting that ierfc Ozn_i/z, and combining the m and p terms, one

finds
o) . S £, na
7[—,_@ “cZ T =+ m( 1) terte oo | (D-29)

which may be recognized as Eq. (A-8).

D.3. Conversion to Dimensionless Form

If one defines

;= Dt (D-30)

a2
and ﬁ = bfa ’ (D-31)
so that /6?: - %a E:E - g_t , 0<,5rc<l \ (D-32)

where B7=0 corresponds to t=0, and B7=1 corresponds to com-

piete evaporation, then Eq. (D-13) becomes

(7)o forke o erte 520) 4

2T



+52 2 expi-npltip)-3] f [erte 20010k

(D-33)
—erfe An(#/f)"‘/"‘]
L =T .
oo > 7~ _./
ne >l iexp £ WP[’?(-"'/@'@*%}L e 2all ﬁﬁ a2
< i \ QT(/ - BT+ [+X
—_ n
erfe ZC7 j

Equation (D-25) becomes

#:p’( + ’Z'/Z(Lemfc'—%:% - éerﬁ%%?—)

’”/25(-/) <2n/a-7:”*) éxp[ nB(r-1X /6">]ﬂ””€rfc(2”21,'g'ff@ !

— (merfe oD+
<'T'*

(D-34)
o3, N gy | i
+ Z f%("/) (,5}’1/6’6 /3‘) @xp[—)’)/g(nHX/*,@’C)’ 4(m£_,r.[c @”":’{ 1=
Wt ! A L
— (MerfcEr “/)’(c/f@ ]
and Eq. (D-29) becomes

o)

D.4. Approximate Solution for the Fractional Release

If Eq. (D-34) is expanded to the first few terms in n, then

*F 15'7 + hl/z(&eﬁf -‘@-7' —verfe 22;'5,,: >

Yoy /sy /zm‘/ 267\
— T ) (zer”) (trerke SE5; —imerlc Z5%
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_Th )" (et expl2a(-e0] (erfe Z55% — irerk %%)

T BT (o xp [p(-)(erte 288 - rer ) (o-se

+ Z%g(. )( lf,s'c"‘)mélxp[—ép(/-p@ﬂ ((merfc %—%% — ("erfe %’5)

- eGP epepl et e rer LRE - imerte £5545)

- 25 (ept e Fr2s(1 9(erfe SIBE - ierke %’%@@)
T

Now, if the restrictions D—Zt < 0.01 and BT <0.5 are made, then
‘ T4 .
Eqi (D-36) may be closely approximated by

{= BT+T Aierte %"5—/’“- =k (4),’"'/(%'?”2'"% %f’ . (D-37)

Inversion formulae for il erfc (-%x) have been developed in Appendix C.
If these are applied to Eq. (D-37) and expanded in- terms 91/ it can
BTZ > cancel

1 ‘
and only the iPerfc BTT terms are left, Thereupon the approxi-

‘be seen, |if sufficient terms are taken, that terms of <

mate expression for the fractional release, f, becomes

/zm

{= /3”+2Z lerfc B +Z(4}( enfc.%L - (D-39)
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E. Solution of the Sphere Problem for a Moving Boundary

E.1. Concentration of the Tracer

In this section an expression for the fractional release of a
tracer element through the moving boundary of a sphere is obtained.
Chambré 2 has derived a general solution for the tracer concentra.tion
for a sphere 0< r<a-bt and 0< t< a/b, where b is the rate of

movement of the boundary

C(rt) =zt ﬁfé)@(/’[‘%%f]‘f

+Z/J;7C/>e\,f7[n56+na275’(rf) +72 M) } (E-1)

and S(‘)J) ey/?[ >27 exp[ __g_] (E-1a)

This equation is the solution to the diffusion equation

2C0t) et 2 9<1(nf>] e
Y—‘D[arz)rar v

subject to the restricting conditions

C(r, 0) = f(x) for 0<r<a, (E-2a)

e C(0, t) 1is finite , (E-2b)
and C(a-bt, t) =0 for 0<t<a/b. (E-2c)

For this problem the initial condition, (E-2a), shall be assumed to be
a constant, CO; here,
C(r, 0) =C for 0<r<a. : (E-3)
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If this substitution and S(r, t; £ + 2na) are made into Eq. (E-1), then

O(rit) = 35 ( /jeXP[ e
/ jex,o[”z’(gma)]{?xp{ M} (E-4)

_ E’XP [r+ ( §+2na)] }} d)

The first term may be integrated by parts, by letting
“=3

and dv GXP[——%}]C{S'

if the second term is rewritten, then

C(nt>=ﬁﬁ[erfcé@%&+erfc§%/z] S ferte e

+§%—'TWZ€XP[%<”“>]/§€XF( )6‘/7 %_M}(E >
'_ eXP{' [r+(§+2ha)]2 )dj

4Dt

The exponentials may be simplified, as follows:

[f“gfmﬂ ks L [ o 2na) Grond -kt

- ]5 +4P05~‘/néfj 9»3’ Ynar+4n*a +r]
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:ZEDLt— 5 25(1’-9)401-’)1" ED) — 4nar+ 402 +r? ]

[ﬁ’ —2na +2nkt)*= 2 5 (r2na+2nbt) + 5’

+/’ ()"—2}70.+2né'[:) 4)’7&)’*4)7 @2] (E-6a)
/75—5‘5”—2')71*2%’5)*5] —_— EZ 417)’(4*5'6)‘/"4/72(&—52‘,')2

+ Ynar-4n*a*~r ]

j[(l’—Zna +2nbt) —5] ‘JEF[ Unar+4nktr +4n?a>

/ Skt bbbt + Hnar e |
= W [(r—Zha+2hZ7JC> "j] - _ [r— Zha'+nbt] |

wnd [rti;_t‘zm)] ﬁf)‘g /t‘ [f Z+2r(5 *2n0)+6‘+2na>2‘ ‘/nb?%]

:_p% BZ“L 4'7@3' - ‘fhz?tjw“@:}’v‘é‘mr +4;72£2+r2]
= TL EZ+2\V§(r+2na—2nA%)+ Ynar +4n2a+r 2_7

Dt [5 425 (r+ 2na-2nbt) +(r+2m _2nkt)”
— (r+2na-2nbt)'+ Ynar +4n*a* +r ]
= 79'8?[5*(}#2}7&—2)76@] -—ﬁ'DLt [r24nr (a-bt)+4r(a-bl)
- Ynar -4n%a?-r3 |
‘/Dt SHr+2na-2n bﬂ] q%t“ [4nar-tnktr +4n*a*
_ 8rRabt+4nbt(nkt)- L/Nar—‘/n‘aﬂ
=—'/'E [5+(r+zna-2nkt) | " —5[—r—2na+hbtj

(E-6b)
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Integrating the second term of Eq. { E-5) with the aid of Eq. (C-11),
and also substituting the results of Eqs. (E-6a) and ( E-6b), one finds

O(rt)= O‘ [eﬁ(c oot Terte 2————761(%,1]

_C(Dt>

[L@V‘FC Z(Dt)l/z beﬁ(C Z(Dt)l/z]

Zg(?"r 57 /Lg exp[ 1b(ng-nbt- f)] j 3 exp[ [(r 2“"2”%) ?]}Jj

- Zr( ),ZGXP[ nb - %—é—,«.r)fj,@(P (r+2na ant)*’f]}d

The remaining integrals may be solved as before by integrating by

parts, Let
U=3

and let dv exp[ (”2”‘“2"“ dz]dj

and dV exPL (V+2H(l. 2nbt+§>2]0{j— ~successively; then

C(rt)= $al [erfe £28, +erfe 220,

%o A
___.._C’o( /" [ierke Liftg,- verk Sim |

-/—Qea > exp[ 16 (na-nlt- r)][erfc A

+erfe L=2n +2nbt‘+cL

C a = b (ra . . 2na-2nht- 2na—?hb‘(7_
S8 Z oxp [ tarbtir ferfc CERAE vt 2 -

-~
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(1 /,) o r—2na.+2nb't-§‘

g,f. ,expmma-mmb e g

Upon integration of the last two terms of (E- 8), one has

C(rt)= zQ[e%z(D%)'/z*er %(Lr)”z]
__(_2/2 [ Le V‘rcc —ler fc 2%55/2

\

(-8)

C())"&;h, xp[——(ﬂa nbt- ][éh%r Zn?gsfggaﬁﬁ%%étﬂ]

n Qo':%z’j exp [-A(ra-nbt r)] [e e F+2na-2nbtio. (£-9)

2(DOY7= )
terk r+go? Déq/é}'—a.

(Dt) e X P[ ﬂ—(no: nbt- r)][‘v € F‘FC r- 2?” %gt';;;bt—a‘

r-2ng+2nkt+a
— (e f'FC 2(D0) % ]

_ﬁ__.z/ €XP[ —é(na—nb'hr)][(ler_ﬁc I +2”@“2”5f+0v

S(DH7=

2
— (erfc & 2"(%45%1_ &

By using Eq. (C-12), one obtains

r-2na+2nbt-a _2na+2rkt+a
erfe Sk terle =S5t

(E-10a)
_ 2 O~ th+C2-r -2nbl=r-

and E’}")CC f‘(jﬁg’&j&{z = erwfc __—5/2, (E-10b)
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Using Eq. (C-13), one has

F—Zna+2n1>'f'-a_ _ c'éhfc r-2na+2nbl+a

— ~[2na-2nbt~r+a : - -
- 2[ aé(Dt)'/z ] + cervfc”g(ﬁ%f"a 4

(E-11a)

— 2o [2na-2nbt—a-r 2na.- -a-r

2[ 2 (Dt ] e rfc 2o lugract

2a Pro-2btta-r - ) -% ;Eé—g-f
(DCV Le% Z(Dt)l/z - 66/‘7@. én% n>/2

and Uer{p 2- /2 2[ (Dt)'/z]"'bfhéz 51/2 (E-11b)

The substitution of Eqs. (E- 0 w0 518 g
C(rt) CO“‘) ; % [erf Sirty. — €rfe S|
A,a[Q._a_) Zexp [ (nanbt-r)]

nZ" exp [ 1b(a- nb‘t—r):{ [f‘ Lo ZmE %ggza__r

2na-2nblC—a-r J

a— f@xp [— (n@-hé’&r)][@rfc 2n0£,(2§$t/:a+r

+Crfe 2nasenl atl Dg'f” ]
[_9_2/[2@ ]2‘ exp [ (na,—hb‘t-r)] —
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- G DY* nb (na-nlst - 2ra-2nkt +a.-
Zexp[ (na: r)—[[Lech a (gt)’/t} r -

_(_e/«Fc 2na-~ ZNAt—CL-
2(Dt)"7z

-J-__._)/z 3 E’XP [ %(m—né'tw):[[cerfc —'ﬂ-—%ﬁi”

— £na- -a+r
Lerfec 204 (%%b}; ]

Upon cancelation and rearrangement, one has
a a- at+r
@ ()"t) =C,- —-Q——c [ehfc 2—(—%72— erfc 2_(17_(:)7’“]

——Z—O—-Zexp[ i(na—nbt- erfe 2%@(2%;;@—

=
+ erfe 2”2’*({% ot ]

0o = L 2n(a-kt)+a+
+ Zgra.n:zleXP[—ZPL(ﬂa ﬂbt‘”‘)][@r‘/:c > (DC)VZ 3

" 2n(a-bt)=a+r
+erke Ao ]

- C,g_a(%)/z[éerfc% - ilerfe 2%—457,_] (E-13)
— Ga (BE)5 enp  pbcra-ritrerfe 2aigacr
_lerde Rn [a—bt)~a—r]

2(DD72

+ ) Gepl e g

' -5t)- a+r
—(erfe ana(Dt)?/z +r],

For t=0, since the erfc « = 0, Eq.(EmiS)beconms CXr,0)='CO.
For t=a/b, which corresponds to total evaporation, the tracer con-
centration becomes zero, (The proof will not be given here.)
If, in Eq. (E-13), b=0, whkﬂlcorréspondstoru)evaporaﬁon,
then ' |
a+r

C(rt)= C,~ Z [ere S - ere iy
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- C Q g2n+l)a r En-la-r v
2r 5 [er[C 2(Dt)’= +erfc =(pty= . (E-14)
_ mlja+r 2n-l)a+r
f—’”’fcf—z?)‘v erfe gt |

) lierfe &5 “e”"fc%z]
G D‘C) S flerfeleglar ;3 orlacr jerpe Grllar
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If 2n-1=2m+14, Eq.(E-14) becomes

C(rit) = Co- Qop[erﬁzg—gt-;/z-er %(ET'}VZ]

@&% orfe zm/)aﬂ» J
a5 [erfey Emtar ”-—eré‘@_m;%%ﬂ:]
ﬁc/z[beh% Lot - lerke S
- G (DS et Erller o e
+Ga (o) [erwfc%“;‘—’)‘;‘vf jerte e |
= ‘—0——2 [erfoiier - erﬁ%%’j]
- 2 A [ttty - ek lag]
- o |

;37' n /




-83-

Tt I/zoc
_,.—C}gL@(*a‘T) = |ierfc %M(ID’-%_%{ lerfe ”"E’%‘)‘“’] (E-15)

m=o

) [erfﬂf?—”-}’)gv- er{C—Y—ﬂ;—@”*')g‘f]

which may be recognized as Eq. (B-6).

:CO

E.2. Fractional Release of the Tracer

The fractional release may be computed from Eq. (A-17),

f= ——w+ . (A-i?)
Q

where (O(t) is the total number of tracer atoms contained in the solid

at any time t, and QO = 4§ Tra.3C0 is the total number of tracer atoms
contained in the solid at time t=0,

(a-bt) .
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With the subst1tut13n of Eq. (E- '13 1nto Eq. (E-16), one finds
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The first integral in Eq, (E- '17) may be handled directly, whereas the

second and last integrals may be handled by ntegratmg by parts twice,
as follows with the use of Eq. (C-11):

usr,  dy=Uerfofidr where n-o

db( drs and V, = Z(D'O/Z n+l ‘FCZ(Dt//Z
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The remaining integrals in the expression (E-18) for the fractional re-

(E-18)

lease may be evaluated by integrating by parts, as follows:

U = rexpEDDé(na—hbt—r)].
due= H(& )exp[ Z1}2()%1 hb‘t—rﬂo{r +exp[”b(na—nbt‘r)]dr,

< (DCYy=

= % 2n(o-Bt)=+ a-t

Several repetitions may be required before the pattern that develops

becomes obvious, The resultis
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differs from Eq. (E-19) only in the power of the ierfc'x term. If m
were replaced by m+ 14, the result [Eq. (E-19)] could be used as it is.

The remaining form of the ihtegral to be evaluated by parts is

The similar integral, which would have dv=ierfc
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After several repetitions the result may be recognized as
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Upon applying limits to Eqs. (E~19) and (E-20), the resulting terms are
Q
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inserted into Eq. (E-18) to give ’
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as the solution'in full form for the fractional release of the tracer

element from a spherical body.
At t=0, each term of Eq. (E-21) becomes zero; thus the frac-

tional release is zero. At'time t=a/b, which corresponds to com-

plete evaporation of the solid, the fractional release should be 1, as

follows:
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If, in Eq. (E-21), b is set equal to zero, which corresponds to no

evaporation, then
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By letting n+4=m and n-1=p, one obtains
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Because ierfc 0 =Tr_1/2 and izerfc 0=1/4, Eq. (E-24) becomes

7[ 6(Dt>/2[7_[ /2"’<'L€h{. ’/z] ( (E-25)

which may be recognized as Eq. (B-8).
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E.3. Conversion to Dimensionless Form

If the definitions (D-30) and (D-31) are now utilized, along with
Eq. ( D-32), then Eq.(E-13) becomes
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and Eq. (E-25) becomes
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f=ETHr gk fu]-5T .

E.4. Approximate Solution for the Fractional Release

Now, if the restrictions I—)Et <0.01 and B7<0.5 are made, then

a
Eq. (E-27) may be closely approximated by

£= 3T~ BT 3TH1-p0) lerfe £5, -



-94 -

—6T % h‘c%@& +67(1-p7) 526”%%2 - 12T Trfchn

4 /-/5r)ﬂ%ﬁ-/l)’"*’(zn(e'("z)mé&p[-n{é( P-1X1-60)] ("o rde L /rX/ 20|
(E-29)

+6 'Z';Zj ?{- e M—IXZDP"C '/’9’”—;)([3 [—)’?ﬁ( ""X/',@”C)j "o ’4@(2”2—,}; I/—/gz)— /

~8U ‘t@@g,z(”)"f( et Exp Frptr160) imerfGrllipd

_I2 73/2'7%(—/)'”(;77-2)(% TS p e X/.‘@rc)ﬁm@,{c@n 1fi-7)-!
of which the n=1 term is most significant.
Thes, =387 -3(B (B +3TR(1-pD) ierte %ﬁlz
—6T ertfe @?/ZvL & T(1-67) Lzerwfc%'c—vz— 12T % %ﬂz

+3TH(-pr)z¢ »%;m e et g

FETZ I -1 L) erke. =4E (E-30)

-617(1¢ DI 4\m'2(ﬂ@—'z—l/‘2)m_zc'me rfe 82"

m=2 / 2 o

~ 2T Z R )T e f ST



-95-

Application of the inversion formulae for iMerfc( -x)--developed in
Appendix C--to Eq. (E-30), upon ex ansmn to a sufficient number of
terms, reveals that terms in <5T > cancel each other. There-
upon the approximate expression for the fractional release will reduce

to

f=3pt-3(1)+ (80-37(1-p0)-3T
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In general, the last three summations of Eq. (E-31) may be neglected

in comparison with the remaining terms
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NOMENCLATURE

a Characteristic dimension at initial conditions; half thickness for

a slab; radius for a sphere {cm)

b Rate of boundary movement (cm/sec)

C Concentration of the tracer element (atoms/cm3)
Co Initial concentration of the tracer (atoms/cm3)

D Diffusion coefficient for the tracer atoms (sz/sec)
f Fractional release of the tracer element

Q Number of tracer atoms

Qo Initial value of Q
r - Space coordinate in spherical geometry (cm)

Time from start of evaporation/diffusion (sec)

ot

Space coordinate in slab geometry (cm)
Dimensionless evaporation/diffusion coefficient [Eq. (11-8)]

Integration variable (cm)

S B2 e o> I

Dimensionless time [Eq. (I[-7)]
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