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ABSTRACT 

A full solution for the fractional release of a tracer element 

through a moving boundary has been obtained for the cases of a slab 

and a sphere. In both cases, the initial distribution of the tracer is 

assumed to be uniform throughout the body. For a constant rate of 

boundary motion, the full solution is valid for all times over the range 

from zero to complete evaporation of the body, and this solution may 

be applied to all finite rates of boundary motion. 

By applying certain limitations to the time range and to the total 

amount of boundary motion, the full solutions are reduced to approxi­

mate forms that are presented graphically as a family of curves. 

For a more limited range of application, i. e., for small values 

of the quantity f (~) (~;) 1/
2 

(< 0.2), where b is the rate of boundary 

motion, ,t is the time, D is the diffusion constant, and a is a charac­

teristic dimension of the body (half-width for the slab and radius for 

the sphere), simplified. expressions are developed for the fractional 

release of the tracer, f, which may be used to more accurately deter­

mine the diffusion coefficient, D. 

These simplified expressions are 

f = (D;) 1/2 + t (:t) for the slab, 
a 

and 3 (bt) + '2 ~ for the sphere. 

Lieutenant, Civil Engineer Corps, United States Navy. 
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I. INTRODUCTION 

A. Basis for the Problem 

During his investigation of the diffusion of xenon in uranium 

monocarbide, Shaked noted the slope of his plot of the fractional re­

lease, f vs (t) 1/ 2 increased noticeably during a high-temperature 

anneal. 1 He postulated that evaporation of the uranium monocarbide 

was responsible for the increase. 

A similar increase in the slope of the f vs ( t) 1/ 2 plot had been 

reported previously for experiments in the temperature range, 1600 

to 2200°C. 2 

With the increasing interest in high-temperature applications 

for uranium fuels, in thermionics, for example, it is considered of 
interest to investigate the release of a fission product from the fuel 

element due to the additional process of evaporation occurring simul­

taneously with the process of diffusion. 

B. Discussion of the Problem 

Several investigators have reported diffusion constants for 

xenon-133 and krypton-85 in uranium dioxide. 
3 

A lesser number 

have reported results for the diffusion constant of xenon-133 1n 

uranium monocarbide. 1 In the "conventional" analysis, one assumes 

a uniform initial concentration of the tracer element in the geometri­

cal body whose boundaries are fixed with time. Evaporation of the 

body is discussed in a general manner, but the effects are minimized 

experimentally. 1, 3 

C; Statement of the Problem 

This report is an investigation of the effect of evaporation upon 

the fractional release of a radioactive tracer element from a fuel 

body. As such, the decay of the tracer is neglected for the purposes 

of this report (i. e., A.= 0), although this effect can and should be 

taken into account for experiments involving long postirradiation 

anneal time .. 

An expression for the combined fractional release due to both 

diffusion and evaporation (i.e., diffusion through a moving boundary) 
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is obtained. This result is compared to the fractional release derived 

for the case of "pure diffusion" (i. e., diffusion through a stationary 

boundary). 

The analysis is performed for the case of the· finite slab and the 

case of the finite sphere. It is assumed that the initial concentration 

of the tracer element in the body is uniform and that the concentration 

of the tracer element at the boundary (moving or stationary) of the 

body vanishes: 
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II. THE SLAB PROBLEM 

A .. Concentration of the Tracer 

One seeks a solution for the diffusion equation 

-(a.-bt)<x < a-b1: (II-1) 

such that (II-1a) 

and C [±(a-bt),t] = o 
~~~ 

-for 0 < t <..alb J (II-1b) 

where b is the rate of movement of the boundary that may be obtained 

from kinetic theory if one assumes evaporation in a vacuum of a 

material of known vapor pressure. 
4 

The assumption of a constant 

evaporation rate ignores the possible effect upon vapor pressure, and 

hence upon the evaporation rate, if there is a change of chemical com­

position of the solid surface accompanying evaporation. At time 

t::: a/b, the sample will have completely sublimed. 

Chambre has shown5 that the solution to Eq. ( II-1) that satisfies 

an initial even function f(~) and Eq. (II-1b) may be expressed as 

C (x,-t) = :J.(~ot)"~ {1_"+-c J )exp [- t;t] dJ 
(II-2) 

+if l):[fcs)exp ['bb(y na_) Js (X,tjJ+~na_)~ J, 
where for the case under study 

(II-2a) 

(II-3) 
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Making the substitutions into Eq. (II-2), one obtains the result­

ing expre s sian for C(x, t): 

Making the definitions 

(II -7) 
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and 

(II-8) 

where 

By· using Eq. ( C -4) and setting ~ = 0 ( i. e. , no evaporation or boundary 

motion), Eq. (II-9) becomes 

c(xla/C) = Co- ~o [erfc (~i~)+erFc(-1;J,t)l 

This may be rewritten, after combining terms, as 

C(~ z) = c - c Z(-Jf'Terrct?n+I)-XIa_+eHc.~h~l)+XJav]. e(II-11) 
l 

0 0 n--= o L' z '[; ?z Z ?;'l'i<.. 

Equation (II -11) may be recognized as one equivalent to Eq. ( A-6 ), 

which shows that the expression for the tracer concentration does re­

duce to that for the stationary boundary case when no evaporation is 

cons ide red. 
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B. Total Fractional Release 

The total release of the tracer element due to the combined ef­

fects of diffusion and evaporation may be obtained by integrating the 

concentration at any time ( T) across the volume of the slab, dividing 

the result by the total initial amount of tracer present, and subtract-· 

ing this quotient from 1. Thus, 

I - Q(rr) 
Go/ ( II-12) 

where 

(II-12a) 

and 

(J-rc> 

Q ('L)::: 1 c (~) 'L) d(t) -
-(1-(3'C) 

(II-12b) 
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(II-13) 

For ,-=0 (t=O), the fractional release, given by Eq. (II-14), is 

zero, as is to be expected; and for j3T = 1 (or complete evaporation), 

the expression becomes 

f = 1 + 7:'/z [Cerfc. 2~~~ .. - Ce vfc z'rc''l- J 
+ rc'h Z (-1)11+¥-n [~~]rn-){i/~rfc ~ 1 if - cmerfc -' 

fJ,WI=/ c 1'.-rc ~ Z'L-'h 

·"I I' I .Yl? ( -/ (_ 
T L evrc .. zrcq..,__- 6 eYIC Z"C''7... J} 

which is equal to 1, after cancellation of equivalent terms, and cor­

responds to the total release of the tracer. 

Setting j3 = 0 (no evaporation), Eq. (II-14) becomes 

r I 'h rr '/z · . r I 
1 = -rr'h ?:. ~ <- cerTc z'~~ 
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'h:;l )I') { · .t n+/ · .~~ n ] - L n~ ,-1 L er-;-c elf').. - L errc '['h • 

(II-15) 

This may be reduced to 

r 'lz [ - 11'2. ') 
00 

(- ,\'1 . •- r Y7 J 
1 :::2'[ 7T +f'..~-1; uencr", (II-16) 

which may be recognized as equivalent to Eq. (A-8), the fractional re­

lease uncle r conditions of a stationary boundary. 

C. Approximate Expression for the Fractional Release 

For the usual values of T encountered in fission gas -release 

experiments ( T < 0.01), the expression obtained for the fractional re­

lease in Eq. (II -14) may be immediately reduced to 

(II-17) 

If the further limitation is made that f3T< 0.5, Eq. (II-17) may be 

reduced further to · 

f =: (3 '[+ 7 '
1
"' l.,e r-fc ~:f-1~ 

I (II-18) 

+ '['h£(-l)~exp [n~(n-'Y'-f tt)] [?nft''jY"f'L r-er-{c, (~n-1X1~T) -I 
YJ,M::.j 2 '[;I z. I 
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of which the n = 1 term is of the greatest significance, as follows: 

(II-19} 

By using the relations (C-13) through (C-18), Eq. (II-19) be-

comes 

(II-20) 

. 1/2 1/2 . 
For large @T (i.e., P7

2 
>2.5), Eq. (II-20) reduces to f=I3T, 

. 2 
which indicates that the release of the tracer is due solely to evapora-

tion. 

For 13 = 0, Eq. (II-20) becomes 

(II-21) 

the approximate expression for fractional release from a slab with 

stationary boundaries. 

Figures II.1 and II.2 show the fractional release from a slab vs 

[time] 1/ 2 ( T 
1/ 2 ) for various rates of evaporation ( 13). As a reference, 

the stationary -boundary plot is given, and in each figure it is the 

lower line. Figure II.1 is for the longer periods of time, whereas 

Fig. II.2 represents shorter periods of time. 

Figures II.3 and II.4 demonstrate the contribution of the individ­

ual terms that make up the expression [Eq. (II-20)] for f. Figure 

II. 3 represents an evaporation rate of 13 = 10 for times less than 

T = 0.01, and Fig. II.4 covers the time ,span less than T = 0.0001 for a 

higher evaporation rate of 13 =50. 
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( 1} ~ = 0 {no evaporation) 
{2) f3= 2 
( 3) ~ = 10 
( 4) 13 = 20 
(5) 13= 50 
{6) ~ = 100 
(7) 13=200 

T 112 

F1g. 
1/2 . 

II. 1. Fractional release vs T for various rates 
of evaporation. 
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( 1} {3 = 0 (no evaporation) 
(2) {3 = 20 
(3) {3 = 100 
(4) {3 = 200 
(5} f3 = 500 
(6) f3 = 1000 
(7} {3=2000 

Mll-32926 

Fig. II. 2. Fractional release vs T 
112 for various rates 

of evaporation. 
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f = f3T+2T 1/ 2 ierfc ~1/2 tT 1/ 2 f (4)m (~1/2)mim+i erfc ~1/2 
~ m=1 2 2 

( 1) 

(2) 

(3) 

0 0.02 

Fig. II. 3. 

Release -no evaporation (13 = 0) 
Combined curve for 13 = 10 

0.04 
T 112 

(4) 1/2 2(~1/2)2 .3 P:!..i/2 
T ( 4) \_" 2 1 e rfc 

2 

(5) T1/Z(4)3(¥-1/Z} i4 erfc ¥-1/Z 

0.06 0.08 

0.12 

f 

o.oa 

Components of fractional-release curve. 
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/ R,.i/2 1/2 ~ m (RT1/2)m m+i RTi/2 f = (3T+2T1 2ierfc ~ +T L (4) ~ i erfc .t:..:.... 
2 m=i 2 2 

( 1) j3T 

Release -no evaporation 
Combined curve for !3 =50 

( 3) T 
1

/
2 

(4) (¥1
/

2
) i

2 
erfc o/:-1

/
2 

( 2) 
1/2 RT

112 
2-r ierfc .t:..:.... (4) 1/2 zc~i/2)2.3 ~1/2 

T ( 4) 
2 

1 e rfc 
2 2. 

0.012 

f 

0 0.002 0.004 0.006 0.008 

Fig. II. 4. Components of fractional-release curve. 
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III. THE SPHERE PROBLEM 

A. Concentration of the Tracer 

A solution for the diffusion equation is sought. Let 

o<r<.a-ht (III-1) 

such that C(r,o) =Co (III-ia) 

and (III-ib) 

where b, again, is the rate of boundary movement. At time t = a/b, 

the. sample will have been completely sublimed. 

Equation ( III-1) may be reduced to that for the slab problem by 

making the substitution 

subject to the conditions 

and 

u ( rl o) = r Co 

u(a.-Lt)t)= o 

(III-2) 

(III-2a) 

for (III-2b) 

Since C( r, t) is finite at interior points, it is necessary to define 

(III-Zc) 

Chambre 5 has shown the solution of Eq. (III-1), which satisfies an 

initial even function f(s) and Eq. (III-ib), to be 

C ( r,t) =- ~r(rrDt)'/2 { J)+(s) exp [- s;-mtJ ds 

+}; [j-t(])exp [!'J' (j+na)] S(r,t;s +JM)d3} 
(III-3) 
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where, for this problem 

(III-3a) 

(III-4) 

By making th'e substitutions into Eq. (III-3), the resulting expression 

for C(r, t) is 

C ( r-t)- · C 0 {f~ ex [- (r-s)z.]d 1 - Jr-(rr"Dt)'l:z.. -~ F LfDt S 

+ t,J!expfnt ~+n~J [exp(- (~b~h~J (III-Sl 

-exp (- (r~k""'l)]d3} · 
By performing the integration over ~ (see Appendix E), Eq. (III -5) 

may be shown to be 

C( ) c o_ r. ·- (' a..-r rh a+r- J 
rJt = Co - J.~ Le n-c J..(Dt)''..._- e c :z(ot)''L 

-1: n~ exp[-nob (ntt-nht-r-)] [erfc ;<.n ~-;);,~-r-) 
r 2n(o--bt~-(a+r)J + € Y/C 2 ( Di:7 'h. 

+Coo...£ exp[-~b(na.-nbt+r-)lrerfc 2n a-bt ~(a+r-) 
.2r ~"~=J :.1 L 2 Dt ~ 

J' 2h(a.-bi)-(~-r-) J 
+ er-rc 2 c Dt)'t" 

C a. fvt;)'lz [- . r a -r- , rh o.+r- J (III -6) 
-~\"a?- Gerrc :l(Dt)''"l..-- v e c 2(Dt)'',__ 

-Co 0.... (D~)'1iexp f~h(na-nbt-r)]f·er-fc ~;_a-~)~~-r-
r o., n-, ) ] - _ [er-(; 2n{p.-bt~-(a.+r-) 

C 2 (Dt)'h .. 

t Co G./~\'2exp[-nb(na-hbt+r-~[ierfc ~ (a-ht(t+r-) _ ierh_ 2n(A-ht)-(a.-r-)J· 
T\'a..:/ '(}~' D ~ Z(Dt)'"l..; C 2(D-b)'h. 
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Using the definitions (II-7) and (II-8), then substituting into (III-6), 
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The ierfc terms reduce to zero, and after some recombination, 

Eq. (III,-8) becomes 

C (L rc) :=. c -Co a.. ~ '-erfc ~'Yl+l)- rja_ - erfc {R.n+l)+ 'r/a._ J 
\a, o r ~o ~ 2rc'h. Z 7:''7.. 

(III-9) 

This may be recognized as equivalent to Eq. ( B -6 ), which shows the 

expression for the tracer concentration to reduce to that for the 

stationary-boundary case when no evaporation is considered. 

B. Total Fractional Release 

The total release of the tracer element due to the combined ef­

fects of diffusion and evaporation may be obtained by integrating the 

concentration at any time ( r) throughout the volume of the sphere, 

dividing this result by the total initial amount of tracer present, and 

subtracting this quotient from 1. Hence, 

(III-10) 

where (III-10a) 

and (III-10b) 

Thus, 
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For T=O (t=O), the fractional release, as given by Eq. (III-12), is 

zero, as expected; and for f3T = 1 (or complete evaporation), the ex­

pression becomes 

( 
• - /' I 'A. 'r'"h _j_ ) f = 3- 3 + 1 - C, '[ t- -l.e,rrc ZT.'1z.- ~ e <:. Z'(1,. 

_ 12 '[ 3/z ( i 3erfc if'h- i3erfc zf·h) 
~/1\m+/ ,V)n)m-2 (·m ,_/ I 'Y>1 r{;_ -1 + c, 1:. ~ ~-11 (m-IJ.. 'f?.. L e. rr-c Z '['/'- + L e c 2 '['h 

Yl'l=.Z. 

- i.merrc z~'h. -iW~erfC.zi'h.) 
~ )'Y)-3 

-r 12 rr?if-'t'(m-2X -?fo~ (i "'e rrc_ 2 ~h.. - c,., e rtc. R.rc~J. 
- i~"~er--fc 2~,h. + i./"ertc.. 

2
{,1.,_), 

which is equal to 1, after cancellation of equivalent terms,. and cor-

responds to total release of the tracer. 

Setting f3 = 0 (no evaporation), Eq. (lii-12) becomes 

f 3 '1-z 11-'G .. J~ I 3 1 rr -~ . f' I + 3 rr 
= Tf'TA. T -+- 3 T ve YTC v~ - ~ '"C + (f) (.. (, e rrc """f172. 2- (.. 

1 rr . 1 . r 1 ? ~r-'3/z.f 1 -n--fz.) /Z ,-3/-;. ·3 . r' I + (p (.. L e Y!C ~ ... - I A- (. \ (, I, / ...,_ (.... 0 en-c. r ,,,_ 

+3 t'1-;.g fterfc ih,_ + ~.--erfc. 4)_ + Cerfc n+l + i€r(c -I!-rr] 
n:::.J ' (.. ?:' 1'2.. ?:''-;. r '/2.. 

+ 1 7:. i [ L:4erfc n+l + i"erfc. n 
~ n~, I t'~ r~ (III -13) 

. A .J' 11._ "2.~ _/ h-J ] - t.. errc '['13...- 6 c:J1'c. 7:''~ 

H '[i, { i >eriC £-h-i 'erfc 'f/~ + ('eric n{-( - i 'er+ c ;,,. } 

-1° ,.;3/2 ;; Ji3erfc 4 - l}erfc_ n-l - L 3erfc n+l +i3erfc n } . 
r.._ '(_, ~I l ~ '[' n.. 'C'h '['h.. '['l-z, 

This may be reduced to 

(III -14) 
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which may be recognized as equivalent to Eq. ( B -8}, the fractional re­

lease under conditions of a stationary boundary. 

C. Approximate Expression for the Fractional Release 

f = 3p'[- ~(~rct'+{j3rr.)3+- 37.'1;;.(1-(3rc)ier/c @:(,,~ 

- G '[ i -:?.e r-{c_ fz~lz -t- ~ T.. (1- (3 z) (/'-e r.fc fJ
2 

/2 ,.,... 3/-;. , 3 f. _&_:I:_ 
- c... l errc z'f'h .. 

+ 3 c;'l(/ -f3'C\ ~(-J)m+(JnA'['1jrn~ xp [-n~(n-1)/-p~~ iYYJer-fc ~n -lXI -~ z-)-1 
(.. 'fi"J/11= I (~ ,.. Z '( z.. 
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(III-16) 

- ~ '[(I-(3 z) ~(-if" (Jnrr''f~xp [- hf{r>-ifl-f'c)] i./'~e rfc (;. n ~~~{f)-/ 
rn=z 

of which the n = 1 term is of the greatest significance, as follows: 

f = 3 p r. - 3( f~t +(frr:.l + 3 r'/z. (1-p'C) ~er-fc -fth 

- C, T. i/1-e v-+c fz~L + ~ 'C(I-(3rc) 6~rfc f;;"-
1/3/z · 5 ,_fi, A '"C. 

- I Z c L e r TC. -tz;(i2. 

+ 3 t'1z(l-(3rc)/n~~l)mtl(l.f31:'1jm-i Wle r{c_ /i)z 

+ ~ '[ i1_-;f(m-;{J.(3 rr'1~)~-\merfc 2~~~ 

oa m z 
- G 'l(l-(3f"[)J;z(-1) (;z~rc'1jm- ~rnerfc. ;@l 

- /2 '[
31't,(-J)"'(m-zX:cpc'1'-r-3 

i""erfc. ?.. ~'!;;_ · 

(III-17) 

By using the relations (C-13) through (C-19), Eq. (III-17) becomes 

f = 3 ~rc(l-(3't) +(frr)3
- 3'[ - 3l. (1- (3~) 

+ G T~(J-~rr) terfc ,rzz'1~+ IZ T (1~ pre) i2erfc rzrc''2 
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+ 3'C'lz (!-(3rr:)i, ( Lf t( @/-1,_/Yj l'"~~ rf c_ if'[ 'h. 

+G, 7_ (!-pre)$:, (4t'f¥-'hln (~rm-~rfc ~rr_'h. 

oa )lri (' 137:'/z)m P,'['b. + ~ '[ {;, (m+/)(4 TZ [m-r~ rfc T 

(III-18) 

I 

The last three summations will be small compared ·to the first terms; 

therefore, f will be approximated by 

-f ~ 3 ~r (J -(li) i{(31:'f- 3 r- n( '-rn) + 12 r ('-f3'") L<e r!cl;f'" 
+ 31:'1~(1-~rc) f2Ler1c~'l~+ £ ('l)m~_I~WJirn-r~rlc .M_'h]. r z Y¥1=1 2 ~ 

(III-19) 

1/2 
For large i3T (i.e. , 

2 

1/2 
i3T 

2 
> 2.5), Eq. (III-19) will reduce to 

which indicates that the release of the tracer is due primarily to 

evaporation. 

For 13 = 0, Eq. (III-19) becomes 

( III-20) 

the approximate expression for fractional release from a sphere whose 

boundaries are stationary. 

If a further restriction is made, such that T
1

/
2 < 0.01 (or 

T < 0.0001), then those terms in Eq. (III-19) having T as a coefficient 

(excepting i3T terms) may be neglected, and one obtains 
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-f = 3~'[ (1-(31:-) +(r8rc)
3 

(III-21) 

-r 3'L 1•(!-(37:) tzcerfc. ~'['\~!M"'~''"'i""Jrfc fi'l:''J 
13T1/2 

For large 
2 

, Eq. (III-21) reduces to 

which indicates the release of the tracer to be due solely to evapora­

tion. 

For 13 = 0, Eq. (III-21) becomes 

-r G, t/'J.., 
= ---;; '[ ) 

JTI2-
(III-22) 

the more familiar expression for fractional release from a sphere 

with stationary boundaries. 

Figures III.1 and III.2 display the fractional release from a 

sphere vs [time] 1/ 2 ( T 
1/ 2 ) for various rates of evaporation ( 13). As 

a reference, the release for the case of a stationary boundary ( 13 = 0) 

is given for each figure; see line ( 1). Figure III.1 (note the dotted 

line) in addition, shows the effect of neglecting the 37 term in 

Eq. (III-20) for longer periods of time. Figure IIL2 represents the 

release of the tracer element for shorter time periods. 

I 

') 
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(1) ~ = 0 (no evaporation) ( 3) 13 = 10 
6 . 

f = -- Ti/2 - 3T (4) !3 = 20 
lTi/2 

(5) !3 = 50 

{2) ~ = 2 ( 6) !3 = 100 

T 112 

MU-329H 

Fig. III. i. Fractional release vs T i/Z for various rates 
of evaporation. 
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( 1) f3 = 0 (no evaporation) 

(2) f3= 20 

(3) {3=100 

(4) f3 = 200 

T 112 

(5) f3 = 500 

(6) f3 = 1000 

( 7) f3 = 2000 

f 

0.04 

0.02 

MU-32930 

III 2 F . 1 1 i/Z f . . . rachona re ease vs T or var1ous rates 
of evaporation. 



-2 7-

IV. DISCUSSION 

A. General Results 

For all values of 13 > 0, the fractional release with time is in­

creased over the corresponding value for f when 13 = 0. For any value 

of time (or T), f will increase, for both the slab and sphere cases, 

as 13 increases. With smaller values of B, say f3< 20, the curve of 

f vs T
1/

2 
very closely approximates a straight line for T

1/ 2 < 0.01, 

which indicates that f is proportional (or very nearly so) to T 
112 . 

The same statement may be made for T 
1/ 2 < 0.1, provided f3< 2. 

B. Initial Release 

This theory does not account for the large early release rate 1n 

postanneal experiments noted by several observers. 1• 6 In these 

cases, the slope of the f vs t 1/ 2 curve decreased with increasing 

time until a region of more or less constant slope was attained. 

C." Spherical Case --Stationary Boundary 

Figure III. 1 illustrates the effect upon f of neglecting the second 

term of Eq. (III-20). For values of T
1/ 2 < 0.01, the difference in 

values of f resulting from lack of consideration of the second term of 

Eq. (III-20) is negligible. For larger values of T
1/ 2 , the fractional 

release predicted by Eq. (III -22) becomes inc reasin:gly greater than 

that predicted by Eq. (III-20), and differs by 0.03 (:::::: 10o/o) at T
1/ 2 = 0.1. 

Since both Eq. (III-20) and Eq. (III-22) appear to be plotted as straight 

lines, an error of 17o/o in the value of D results for the above value of 

T from neglecting this term. It is noted that Eq. (III-22) closely 

represents the release curve resulting from boundary motion for 

which f3 = 2. 

D. Spherical Case- -Moving Boundary 

For values of T
1/

2 < 0.01, Eq. (III-2t) may be used in preference 

to Eq. (III-19) for all values of (3T. If (3T (remember (3T independent 

of D and is bounded between 0 and 1) is approx{0.2, then the term 

((3T) 3 may also be neglected. 
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For large values of i I3T 1/ 2 , .the fractional release is approxi­

mated by 313T ( 1 - 137') + ( 13T)3, which is a cubic equation in time (or T). 

This may occur at short times for very rapid boundary motion ( 13), or 

for very long periods of time (T). Neither of these cases, however, 

is useful in making a determinatio"n of D. 

For small values of f I3T 1/
2

, pertaining both to relatively short 

periods of time and small rates of boundary motion, the fractional re­

lease is directly proportional (or very nearly so) to T 1/ 2 and there­

fore to T 1/ 2 . It should be possible, therefore, to develop a simple ex­

pression that may be used to determine D witj:l greater accuracy,than 
13T1/2 (!3T1/2 ) would the use of Eq. (III-22). For small 

2 
, · 

2 
< 0.2 ; hence, 

Eq. (III -21) may be approximated by 

f = }. R?" + _Q_ ?-- t-J.. = 3._ (M_) + Z f'-" l JT Y.2 ( 2 a.. 
6 

7T.J-;i 
(IV -1) 

With Eq. (IV -1), one can predict the release curve to be para­

bolic in shape when f is plotted vs time to the one -half,power; the 

curvature depends upon b. The curve consists of a straight-line com­

ponent and a parabolic component, which is the evaporation correction. 

Figure IV.1 is the graphical presentation of Eq. (TV -1) for those 

values of f that do not differ by more than approximately 0.001 from 

the more accurate expression for L 

By assuming that b (the rate of boundary movement) has been 

determined, a corrected value of the fractional release may be ob­

tained by subtracting the quantity ~ (:t). from the actual fractional 

release. This corrected value of f may then be used with Eq. (III-22) 

to determine D. 

E. Slab Case- -Moving Boundary 

1 1/2 For large values of l I3T , the fractional release is approxi-

mated by I3T- -the percent of the body that has sublimed. 
13T1/2 (13T1/2 ) For small values of 

2 
, 

2 
< 0.2 · , a simplified expres-

sion for the fractional release may be developed in a manner similar 

to that for the spherical case. This is written as 



-29-

( 1) 13 = 0 (no evaporation) 
(2} 13 = 20 

(3} 13 = 100 

yl/2 

(4) 13 = 200 
(5} 13 = 500 

(6) 13 = 1000 

MU-32931 

Fig. IV. 1. Simplified expression for fractional release 
for the sphere. 
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(IV-2) 

Hence, D may be determined in a manner similar to that for the 

spherical case. For small periods of time, the correction factor 

j f3r [or f (~t)J is negligible; thus a straight-line plot may be ex­

pected; and ·over longer time intervals the plot may be expected to 

show an increasing slope. 

F. Some Numerical Considerations 

Using the values of Shaked 1 for his sample # 108 at 2040°C, one 

obtains 

I -IZ '2/ D = 0. ~ x 0 on 1 sec.) 

t'h = /50 (sec/h, (t = 2.25 x/0~ '5ec)) 

and {)_= 0.2 5 C.M· 

Therefore, 

The expected fractional release, with the use of Eq. (III-22), would be 

f = ~z T '1~ = 5. 2 >< I 0- ?5 • 
lr . 

Shaked estimated that the value of b he encountered during the 

anneal of this sample was 0. 3 f.!/h. Because Shaked 's sample was an­

nealed in a Knudsen-type cell, this evaporation rate was considerably 

lower than would have occurred if the sample were completely exposed 

to vacuum. 

Thus, 

and, if the value of f calculated above is substituted into Eq. (IV -1), 

one has 
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with D representing a modified value of the diffusion constant 

D = 'f, I x. JO- tz cmflsec I 

which is 61o/o less than that calculated by neglecting evaporation. 

If the sample had been completely exposed to vacuum at this 

temperature, the evaporation rate, b, estimated from.thermodynamic 

data, 
1 

would be about 150 f.J./h, from which 

For an anneal time of 2.25 X 104 
sec and an actual D of 

-12 . 2 
6.6 X 10 em /sec, it follows that 

Using these data in Eq. (III-21), one predicts a fractional release of 

f= 0. 757. Now, ii_ the experiment had been performed in this way, 

and if the effects of evaporation were ignored, these values of f, t, 

and a used in the nonevaporation Eq. (III-22) would yield a value for 

D of 

which is approximately 21,000 times as large as the actual diffusion 

coefficient for this temperature. 

These calculations illustrate the importance of either m1n1m1z­

ing evaporation experimentally, or of taking it into account analyti­

cally whenever one obtains diffusion data at high temperatures. 
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V. CONCLUSIONS 

An equation has been developed that relates the fractional re­

lease, f, of a tracer element in a geometrical body under conditions 

of evaporation of the body and diffusion of the tracer through the mov­

ing boundary of the body, with these conditions occurring simultane­

ously. T_his may be better expressed as the fractional release of the 

tracer element through a moving boundary. 

For small values of the quantity f3, the release curve is approxi­

mately a straight line whose slope is slightly greater than that for the 

stationary-boundary case. As f3 becomes larger in magnitude, the 

slope of the curve increases with increase in time and approaches a 

limiting value (see Fig. III.2) for the values of f3 and T considered. 

It can be seen that to completely ignore the evaporation of the 

body may lead to an incorrect value for the diffusion constant. The 

curve of f vs ( t) 1/ 2 can appear to be a straight line when the bound­

ary motion is not zero, but the slope of this line is not the same as 

that for the zero -boundary -motion line; hence, different values of D 

would be obtained unless a correction were applied to the moving­

boundary case. 

Simplified expressions have been developed that, for small 

values of the variable f3T 1/ 2/2, may be used to make a more accurate 

determination of the diffusion constant, D. With these expressions 

one can predict a release curve whose slope, when f is plotted 

against the one-half power of time, will increase with time. The cor­

rection made to the fractional-release equation for the stationary­

boundary case is independent of D, and by subtracting this correction 

from the actual release, one should obtain a line of constant slope. 

It also should be possible to fit experimentally obtained 

fractional-release curves to the curves obtained in Sections II and III 

of this report, and thus to determine both the rate of boundary motion, 

b, and the diffusion constant, D. 

Experimental verification of the simplified and the approximate 

relations for the fractional release remains to be demonstrated. 
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APPENDIX 

A. "Conventional" Analysis of the Slab Problem 

Solutions to the heat-conduction equation for a slab -a< x <a, 

with a constant initial temperature T 
0

, and with T = 0 at x =±a are 
. 7 

g1ven as 

( A-1) 

and 

The average temperature in the slab is given as 7 

(A-3) 

and 

(A-4) 

Using an analogy to the heat-conduction solution, it will be shown that 

the concentration of a tracer element C(x, t) for any time t and any 

position x, where ·-a< x< a, the initial condition C(x, 0) = c
0

, where 

C 
0 

is a constant, is 

(A-5) 

and 
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He_re, D 1s the diffusion coefficient for the particular element being 

studied. The corresponding fractional release, f, defined as the ratio 

of the decrease in average tracer concentration to the initial average 

concentration, is 

f== 
and 

A. L Tracer Concentration-Exponential Form 

By using the method of separation of variables, it may be 

shown 8 that a solution for the diffusion equation 

d C (x,t) _ ]) 'd:ZC,(x,t) 
. JF - ox;< J 

with c ( >(/ 0 ) ==- c 0 

and c_ (::t:a,t) = o ) 
may be expressed as C (x, t) = F (x) G ( t) , 

n n n 

where F (x) = A cos k x + B sink x n n n n n 

and 

Applying the boundary conditions (A-9b), yields B = 0 and 
n 

(A-7) 

(A-8) 

(A-9) 

(A-9a) 

(A-9b) 

(A-10) 

(A-10a) 

(A-10b) 

k =
2

TT (2n+1), where n=O, 1, 2,···. Applyingtheinitialcondition 
n a 

(A-9a) yields a= c
0

, so Eq. (A-10) becomes 



-3 7-

Cn (x,t) = c 0 An cos kn X exp (-kn/.Dt) 

= C A cos Rn+I)TTX exp[- (2n+lp'])t}. 
o n .2 a '-Ia.?-

(A-ll) 

The coefficient A may be evaluated by setting t = 0 and using the 
n 

property of a Fourier series 9 that 

(A-IZ) 

4.. 

thus, A = _i_{r(t)cosPn+l)rrx d x 
n a)' :za.. 

where f(x) = 1. (A-::13) 

-a. 

This may be integrated directly to yield 

n = 0, 1, 2 · · · . (A-14) 

Therefore, the substitution of Eq. (A-14) into Eq. (A-11) gives 

( A-15) 

Any sum of solutions is also a solution, so the final result is 

For long periods of time, the tracer concentration should become 

zero as t ...... oo. By noting that the exponent in each term approaches 
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-oo as t-+ oo, it is clear that the tracer concentration will indeed ap­

proach zero as a limit. 

A.2. Fractional Release -Expon~ntial Form 

The fractional release, f, may be determined from 

-F= (A-17) 

where Q(t) is the total number of tracer atoms per unit area contained 

in the solid at any timet, and o
0

=2aC
0 

is the total number of tracer 

atoms per unit area contained in the solid at time t = 0: 
a. 

f= 2aC0 -jC(x,-t)dx 
2.a. c 0 

= J __ l_ 
, 2a.Cc, 

For t-+ oo, the summation term approaches 0 as a limit; hence, the 

fractional release approaches 1 as a limit. For t = 0, Eq. (A-18) be-

comes 

-r- 8 oo I 
- / - 7T z ~0 (.2 n+l)z 

(A-19) 

The 
00 

sum ..i_ + __!_ + ..i_ + · · · = L 
12 32 52 n=O 

1 is shown 9 to be equal to 
(2n+1)2 

8 'TT2 
so f = 1 - - X - = 1 - 1 = 0 at time t = 0, 

'TT2 8 
which is as expected. 
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Thus, it has been demonstrated how Eqs. (A-5) and (A-7) were 

obtained, and it has further been shown that the tracer concentration 

and the fractional release approach the proper limits for large periods 

of time, and at. time t=O. 

It will now be shown, with the use of La Place transforms, that 

Eqs. (A-6) and (A-8) are the solutions of Eqs. (A-9) and (A-17), re­

spectively. 7 

A,3. Tracer Concentration-Error-Function Form 

Let (A-9) 

with C (x,o) = Co (A-9a) 

and C (:t a, t) = o ) ( A-9b) 

by symmetry, (A-20) 

Now the La Place transform of C(x, t) = C(x, p); 

C. (x, p) == j7: -pt C(x,-t)df · 
0 . 

(A-21) 

Making the transformations of Eqs. (A-9), (A-9b), and (A-20), one ob­

tained 

pC(x,p)- Co = D d;~fx~e) , (A-22) 

with C(±a.,p) 0 (A-22a) 

and 0 (A-22b) 
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Defining q 2 = p)D and by substituting in Eq. (A-22), one obtains 

(A-24) 

Solving Eq. (A-24) for C(x, p), one has 

(A-25) 

Upon applying Eq. (A-22a) and Eq. (A-22b) to Eq. (A-25), it follows 

that 

(A-26) 

-qa 
Multiplying the first term. top and bottom by e , one sees that 

(A-27) 

and upon expanding ( 1 + e- 2qa) - 1 by the binomial theorem, one finds 

(A-28) 

By substituting (A-28} into Eq. (A-27), it follows that 

= Co _ 
p 

(A-29) 

C ~ ,)n -qfJ.2n~l)a-x] II PO ,'(7 _qf[:<.n+/)a+x] 
__QL..J(-1; e [) . __ Lo Z(-l;e () . 
P n::.o P n-=o 
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Taking the inverse transforms, one obtains 

(A-30) 

For long periods of time, the tracer concentration should be­

come zero as t-+ oo. If t is allowed to approach infinity in Eq. (A-30), 
k 

the erfc - -+ 1.0, and Eq. (A-30) becomes 
t 

00 

C ( x,t) = Co - Co ~0(-/)n (Z) 
(A-31) 

=Co-c C
0
(2-:2+2-2+''), 

which appears to be nonconvergent and equals c
0 

or -C
0

, depending 

upon whether the last term of the expansion is negative or positive. 

This is a periodic function, however; and if the function f(x) is defined 

as 

and 

f (x) = 2 

f ( x) = 0 

if 0 .:::::; X .:::::; TT , 

if -TT .:::::; X .:::::; 0 , 

then the coefficients of the Fourier series for f (x) are 

0 7T 

a = _)_! o d x + __!__ 12 d x == z , o 71 rr Jo' 
-TT 

I 17T ,2 171 0 =- 2 cos n x dx = -- -stn nx 
0 

= 0 ' n 7T 
0 

rrn 

(A-32a) 

( A-32b} 

(A-33a} 

( A-33b) 

b 
~ ~ 

and n =-j_( .2 sin nx dx = -2 Cos nx] = 2 (!-Cos nrt}' (A-33c) 7TJ0 · nTT 0 n-,r 

and the Fourier series for f(x) becomes 

t ( x) = ~ Oo + i, (an COS Yl X + bn s 'n n X) 

= / + .:f_ (si~ x + si; 3x -r s1~ 5x -r '") 



-42-

II + _ 4 ::f ___ I I s i'r7 ( :2 n -1 I) X · 
Tl fi='o .<n+ 

( A-34) 

On page 180 of Sokolonikoff and Redheffer, 9 it may be seen that f(x) 

is well-defined on the closed interval -TT ~ x ~ TT except for the simple 

discontinuity at x = 0, has a finite number of maxima and minima, 

and is defined for other values of x by the periodicity condition 

f(x + 2rr) = f (x); therefore, the Dirichlet conditions hold for f (x}, and 

the Fourier series for f(x) converges to 

(A-35} 

for every value of x. 

In particular, at x = 0, 

(A-36) 

Because the coefficient of the second term in Eq. (A-31) is shown to 

converge to the value 1, the tracer concentration will, in fact, ap­

proach zero as a limit as t ~ oo. 

A.4. Fractional Release -Error -Function Form 

Calculating the fractional release from Eq. ( A-17}, one obtains 

a.. 
f = Za Co- ~ C (x,-t)dx 

2aCo 
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which, becomes 

= 2(ldt.)1:G 5 <(--J\n[ierfc. no. - ie r-+c @+I) ~J} a~ . l &o J ( tJt)'l-z. (Dt) ~ 

( A-38) 

By·letting n+ 1 = m, the last two terms may be combined, and by 

noting, frornEq. (C-7), that ierfc O=rr- 1/ 2 , one finds Eq.,(A-38) to be 

(A-39) 

For . t -+ 0, · the terms in Eq. (A-39) involving ie rfc k/t 1/ 2 become zero; 

thus, only the first term ~ (Dt) 1/ 2 remains. For t = 0, this 
rr1;2 a2 

term and also the fractional release are zero. 

For large t, as t -+ oo, the terms involving the 

ierfc na/(Dt) 1/ 2 _., ierfc 0, where ierfc O=rr- 1/ 2 ; with these substitu­

tions Eq. (A-39) becomes 

(A-40) 

By using the same analysis as that for the tracer concentration, it can 

be shown that the summation term converges to -1; thus Eq. (A-40) is 
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which is indeterminate; therefore, it is necessary to refer to Eq. (A-3 7) 

to resolve the indeterminateness. Hence) 
tt 

1/m f = - 1 f-/~YI1 f ~(-I)Y7 e y-{c (Zn+l)a.-x 
t~.t>O .Za. -~ DO Ln=o 2. ( ot)'lz 

...... 
+ L;(-;/' e He 2n-rl a:t-X J dx 

n:.o ::2 ( Dt Z 

a. 

=z}£[~f-1Y'(') +-tft/'(J)Jdx ( A-41) 

T_his previously was shown to be 1, so 

(A-42) 

It has now been shown how Eqs. (A-6) and (A-8) were obtained, and it 

has further been demonstrated that the tracer concentration and the 

fractional release approach the proper limits for large periods of 

time, and at time t = 0. 

A.5. Correlation Between the Two Forms for Fractional Release 

Using the method of Booth, 6 one can show that Eqs. (A-7) and 
. TT2 Dt 

(A-8) are identical for values of -- < 1. Here, 
a2 

for 
TT2Dt 
-- < 1. 

a:2 
Equation (A-8) becomes 

f = 2 (Dt)1/2 
TT1/2 a2 

(A-7) 

( A-8a) 
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Rewriting Eq.JA-7), one has 

(A-:43) 

~ 

~ e·-rr-?-x The sum L._; (A-44) 
rn;.- /X) 

. Joo -xu2 d is, for small x, essentially e u. 
-oo 

Thus, 

(A-45) 

where x for this case is Krr2 Dt ---., K is 1 or 4, such that 

(A-46) 

Now, if both sides of Eq .. (A-46) are integrated over the limits 0 to x, 

the result is 

(A-47) 

which may be arranged 

(A-48) 

Upon substituting Eq. (A-48) into Eq. (A-43), one finds, 

f= 
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-"-

(A-49) 

00 

The L 1 

n=1 n2 

2 
is shown 9 as equal to iT · hence, 

6' 

,2 (Dt)'/z f = 7T'/;l,. o..:~- (A-50) 

2 
For values of iT Dt < 1, Eq. ( A-8) reduces to Eq. (A-50); thus, for 

a2 

TI
2 Dt these values of -- Eqs. (A-7) and (A-8} are equivalent. 
a2 

Solutions of the form of Eq. (A-7} converge slowly for small 

values of Dt/a2 , but solutions of the form (A-8} are rapidly conver­

gent for the same small values. 7 This statement also applies to the 

equations for the tracer concentration, i.e., to Eqs. (A-5) and (A-6). 
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B. "Conventional" Analysis of the Sphere Problem 

Solutions to the heat~conduction equation for a sphere, 0 < r < a, 

with a constant initial temperature T 
0

, with T = 0 at r =a, and with T 

f . 't 0 . 7 1n1 e at r = , are g1ven as 

and T(r.t)= 7:.- a7Q ~ Tt:rfcC<.n+I'Ja-r--er-fc rkn+IA+-Y] ' :(B.:.Z) 
J '/ o r n=o ~ ;e (kt)Vz :2 (kt)ie 

, -~ fat) = -r- a_ To ~ exp f_{zn+-/'4!-~] . (B-2a) 
( 

1 I ( 0 (77kt)Jk £ [ '-/-k 

[See note following Eq. (B-6a):] 

The average temperature in the sphere is given as 7 

(B -3} 

and 

( B -4) 

Using an analogy to the heat-conduction solution, one can show that 

the concentration of a tracer element C( r, t) for any time t and any 

position r, where 0 < r < a and .the initial condition C( r, 0) = c
0

, 

with c
0 

a constant and with C( 0, t) finite, is 
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( B -5) 

( B -5a) 

and 

C(~t)= C _a Co.~ ~rfc (Zn+l)a-r: _ erf'c Rn+l)a~t], 
' o r ~o 1: c 2 (Dt)'l~ Z(ot)lz 

( B -6) 

C (0 t) = C _ 2a.Co .:; exo [- (2n+l~a;<,J . 
I 0 (7TDtt~ ~0 v '-FD 

( B -6a) 

[It will be noted that Eq. ( B-6a) differs from ( B -2a)- -other than 

in the change of notation- -by a factor of two in the summation term. 

It will subsequently be shown that Eq. (B-6a) is the proper expression 

for the tracer concentration at the center of the sphere.] 

The corresponding equations for the fractional release of the 

tracer element are 

( B -7) 

( B -8) 

B.1. Tracer Concentration-Exponential Form 

The radial-diffusion equation 

(B -9) 
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may be reduced to the linera-diffusion equation (A-9) by making the 

substitution u( r, t) = rC( r, t) 

., 

with the following boundary a:nd initial conditions 

and 

u(r, 0) = rC
0

, 

u (a, t) = 0 

u ( 0, t) = 0 

(B-10) 

(B-10a) 

(B-10b) 

( B -10c) 

A solution for Eq. ( B -10) may be obtained by using the method of 

separation of variables8 

where 

and 

U (r, t) = F (r) G (t) , 
n n n 

F · ( r) = A cos k r + B sin k r , 
· n n n n n 

G ( t) = a e 
n 

-k 
2 

Dt 
n 

(B-11) 

(B-11a) 

(B-11b) 

Applying the boundary condition (B-'10c) yields A = 0. The boundary 
n 

condition (B-10b) gives kn = n:, whereas Eq. (B-10a) gives a =C
0

, 

(n= 1, 2, 3 · · · ), and Eq. (B-11) becomes 

U~J~ t) =Co Bn sin knr exp (- k:vt) 

= C B Sin nrrr exp(- n-:<.TT
2 Dt) . 

0 n a a_2 

( B -12) 

The coefficient B may be evaluated by setting t = 0 and by using the 

' f F n_ · h 9 
property o a ouner senes t at 

I 

p 
b = - 1 jf(x) Sih n-rr>< dx 

n .J. .:.j J 
(B-13) 
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Thus, 

where f(r)=r. (B-14) 

This may be integrated by parts to give 

(n= 1, 2, 3,···). ( B -15) 

The substitution of Eq. (B-15) into Eq. (B-12) results in 

( B -16) 

Any sum of solutions is also a solution; so the final result, upon using 
1 C(r,t)=-u(r,t), is 
r 

and 

where the relation 

has been used. 

lim 
x-+0 

sin x 
X 

= 1 

( B -17) 

(B-17a) 

For long periods of time, the tracer concentration should be­

come zero as t __.. oo. By noting that the exponent in each term in both 

Eqs. (B-17) and (B-17a) approaches -'oo as t-+ oo, it is clear that 

the tracer concentration will indeed approach zero as a limit. 
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B.2. Fractional Release -Exponential Form 

The fractional release may be determined from 

) (A-17) 

where Q (t) is the total number of tracer atoms contained in the solid 

at any time t, and a
0 

= ~ rra 
3c 

0 
is the total number of tracer atoms 

contained in the solid at time t = 0. Thus, 
a.. 

Lf~ 7Ta 3 C0 - fo 'f-rrr;;c.C(Y1t)dr 
'-l/3 TT a3 Co f= 

For t-oo, the summation term approaches zero as a limit; hence, 

the fractional release approaches 1 as a limit. For t = 0, Eq. ( B -18) 

becomes 

The 

so, 

sum _!_ + _!_ + _!_ + 
12 2 2 32 

00 

= 2: 1 
n=1 n2 

is shown 9 to be equal to 

(B-19) 

2 
11' 

6 

6 11'2 
f = 1 - -X - = 1 - 1 = 0 at time t = 0, which is as expected. 

11'2 6 
Thus, it has been demonstrated how Eq. (B-5) and (B-7) were 

obtained. It has further been shown that the tracer concentration and 

the fractional release approach the proper limits for long periods of 

time and at time t = 0. 

It will now be shown, by using La Place transforms, 7 that 

Eqs. (B-6) and (B-8) are the solutions of Eqs. (B-9) and (A-17), re­

spec ti vel y. 
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B.3. Tracer Concentration-Error-Function Form 

with 

and 

We have 

'dC(r;t) 
ot 

C (a, t) = 0 , 

C(r,O)=C
0

, 

by symmetry . 

The La Place transform of C( r, t) = C ( r, p) is 

( B -9) 

( B -9a) 

(B-9b) 

( B -20) 

(B-21) 

Making the transformations of Eqs. (B-9), (B-9a), and (B-20), one ob-

tains 

(B-22) 

where C (a, p) = 0 , ( B-22a) 

and (B-22b) 

Defining 

2 
q = PjD (B-23) 

and substituting Eq. (B-23) in Eq. (B-22), one has 

( B -24) 

Solving Eq. (B-24) for C(r, p), one obtains 

- ) A q,r B _qr Co C(Yip =yev+ye v+--p · ( B -25) 
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Upon applying Eqs. (B-22a) and (B-22b) to Eq. (B-25), it follows that 

C (r,p) == (B-26) 

Then, multiplying the first term of Eq. ( B-26) top and bottom by 
-qa 

e ' one finds 

( B -2 7) 

and expanding [ 1 - e- 2qa] - 1 by the binomial theorem, one gets 

D-e-~a.r I: e-Z1a.+(e-~~~(e-Z~t+ "' (B-28) 

== ~ e-2n~a.. 
n=o 

Subs~ituting Eq. ( B -28) into Eq. ( B -2 7), one sees that 

Upon taking the inverse transform, one finds 

C (r.t) ~ C -a Co Z rerfc (2n+Oa.-r- erfc (?nt))~f J <B-30) 
1 0 r n=o r 2 ( Dt)V~ 2 0t ~ 

and 

(B-30a) 

which is indeterminate. Applying L 'Hospital's rule 
10 

to the second 

term to eliminate the indeterminateness, one sees that 

lim -f(x) _ lim f'(x) 
X _,a ~ (X) - X~ a. :J 1 (X) 
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Now, 

c_(ot)-::::. C - /irn a Co ~ rer.fc(2n+l)a-r-- evfc 'Zn+l)a_t-r-1 
1 ° r ~o r ~() C 2 ( Dt) 'h. 2 Dt ' ~ 

_ C lim a. Co:; frz ][-' ] · {- f!f7')~~fJ2} 
- o- r_,o - 1 -~ \tn-''Z LZ(Dt)'h exp 2 Dt ~ 

- [2 ]C -I J [ f(2n+l)a.+r]~1) tn-•/z LZ(DtYiz exp -Cz(Dt)'k j (B-30b) 

== C _ a Co lim£ fexp[-[fZ(1t~;[l2? +exp{-Jentffgtrl~. (\ 
o (~rDt)Yz r -?0 n""o \ Z J J C2( j j) 

- c -~ ~ r_ (2n+~za~] . 
- o (rrDt)Yz ~ exp L 4-D 

As an additional check on Eq. ( B -30b), it can be shown that the 

tracer concentration approaches zero as a limit as t-+ oo. 

The sum 

(A-44) 

00 2 
6 J -xu is, for small x, essentially e du, 

-oo 

where j oo -X'Uz f7T)Yz e du. = \x . ( A-45) 

-()0 

Equation (B-30b) may be written as 

C rot)= C _:2aC? f9exoLn~~~-Zexpf%it~7} · (B-31) 
\' I o (-rrDt)V:zln;', r-\- '-fDt/ n=l J 

Combining Eqs. (A-44) and (A-45}, one finds that 

~ e- n;<_x - _I f7T7 'l'z- _I_ .. 
6 -2X .2' n:J 

(B-32) 
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and by substituting Eq. (B-32) into Eq. (B-31). one obtains 

lirr, ( ) - ·c lim 2a Co r ~('·lrrlJtJ'h _ _j_ (-rrDt)~ 7 
t-7t><J C o;t - o- -t~oa (rr15t,Y~z L 2 a~ / z a~- J 

= C _ I i m 2 a_ Co . ['/ (rrDt)'12 __ (rriJt)'lz 7 ( B _ 3 3 ) 
o t-7oa Zo.. (-rrDt)?~ r::- I J 

-c fl·-o - o - Lo - • 

B.4. · Fractional-Release -Error -Function Form 

Calculating the fractional release from Eq. (A-17), one has 

a.. 

f = J-it f r"C (fit)dr 
0 (;(. 3Co[ :2{1-~ ~ re~ 2n+t)a-r 

- /- 3C r r ~oL' c 2 Dt)'z a o o (B-34) 

- e r-k (2n+l)a+r]} dr 
2 (Dt:.)'h. 

re r+"<c (?.n+l)o..- 'r- ~r-r:c (;;2n+l)a. +r-]dl,.· c 2 (Dt)li '- '- 2_ ( Dt)'fz I • 1
C( ¢':' 

= ~~ r~ 
VI. n=o 0 

Now, Eq. (B-34) may be integrated by parts, by using Eq. (C-11) and 

by letting u = r and 

which yields 
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- 6 ( Dt)'/z r~ . (' ha_ ~ . r ($1)~ ] 
- a,_4 Lfi;;o ce r-;-c (Dt)'h + ~ ~ e rrc t)' 2. ( B -35) 

I 2 ( Dt) [ ~ · :<. r h a.. ~ · :<. .r (n+ I) a_ l 
- a."l. ~o L e rrc Tffl'l~-~ L erTC (Dt),h j' 

By letting n + 1 = m, the ie rfc terms may be combined; the 

i
2
erfc terms will cancel except for an i

2
erfc 0 term. Noting that 

the ierfc 0=1r- 1/
2 

and i 2erfc 0=1/4, one finds thatEq. (B-35) be-

comes 

(B-36) 

For t- 0, the terms in Eq. (B-36) involving ierfc k/t 1/ 2 
become 

zero. For t = 0, the remaining terms are zero; thus, the fractional 

release is zero. 

If the substitution of Eq. (C-7) is made for ierfc 

Eq. (B-.36), the resulting expression becomes 

f = 6 ( ~It1;< [rr-Y2 +2rr-~17?.i,' exp(- f:-;.) 

na 

-,2 {;, (~·~~erfc(Jty~~] -3 ( ~~) 

ln 

(B-37) 

For large t, as t-oo, ~t _. 0; thus, Eq. (B-32) may be substituted 

into Eq. ( B -3 7). Hence, 

f· r /i ~ (Dt)Y::<.f -Yz ~ n a. r na.. 
-t!:oo-r = +~~· L8 a:l. tr - 2~, (Dtytz e r-rc. (Dt)'lz 

+ rr-'/z [~ (rrot/'"- J J} -3(~)] 
'-- ~':"" [-12 ~ (n)e ~+c ~),,z+ G ( ~t )-3( ~) J (B-38) 

= {~ [ 3( ~) -12};,(n) er-fc. ~,1,.] • 
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This is equivalent to oo-+ oo, which is indeterminate. Referring to 

Eq. (B-34), one finds for large values oft that the difference be­

tween the two complementary error functions may be approximated by 

Z [\2n-rt)cur _ n+l)a-r-Jex [ (Zn+l)~<l_ 2 r f (?.n+IYO-.J 
TTiJ:<. [2(Dt)Vz 2 Dt ~ p 4Dt j- (rrDty;~exp - 4-Dt ' 

which, upon substitution in Eq. (B-34), gives 

Applying Eq. (B-32), one finds 

Thus, lim f = 1 t-+oo ' ( B -39) 

It has now been shown how Eqs. (B-6) and (B-8) were obtained, and it 

has further been demonstrated that the tracer concentration and the 

fractional release approach the proper limits for large periods of 

time and at time t = 0. 

Booth has shown that for values of 

( B -8) are identical. 6 

TT2Dt -- < 1, Eqs. (B-7) and 
a2 
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Solutions of the form (B-7) converge slowly for small values of 

Dt/a
2

, but solutions of the form (B-8) are rapidly convergent for the 

same small values. 7 This statement also applies to the equations for 

the tracer concentrations, i.e., to Eqs. (B-5) and (B-6). 
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C. Properties of the Error Function and Related Functions 

where 

and 

7 
The following definitions are made: 

2 x -z2 
e rf x = .- j e dz , 

.fff'o 

erf oo = 1 , 

erf( -x) = -erf x , 

e rfc x = 1 - e rf x = J 
X 

2 -z 
e 

ie rfc x = J e rfc z dz , 
X 

.n-1 
1 erfc z dz , 

. 0 f f 1 er c x = er c x , 

-2 

dz, 

ierfc x = -x 
e - x X erfc x , 

.2 f 
1 er c x = 1 [erfc x - 2x ierfc x] . 

4 

The general recursion formula is 

2 .n f .n-2 f .n-1 f n 1 e r c x = 1 e r c x - 2x 1 e r c x . 

If both sides of Eq. (C-6) are differentiated, 

d .n+1 f 
1 · er c z = d J inerfc y dy 

dx dx z 

= -inerfc z dz 
dx 

( c -1) 

( c -2) 

( c -3) 

( c -4) 

( c -5) 

( c -6) 

( C -6a) 

( c -7) 

( c -8) 

( c -9) 

(C-10) 
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Integrating both sides of ( C -10) and rearranging yields 

1 
dz 
dx 

inti erfc z ( c -11) 

provided dz is a constant and the constant of integration is neglected; 
dx 

then (C-11) is the indefinite integral of inerfc z dx, where z is a 

function of x. 

The values of inerfc(-x) will now be studied to obtain an inver­

sion formula, so that the tabulated values of the positive argument 

may be used. 

Noting 

and 

one obtains 

Thus, 

and 

So, 

erf( -x) = -erf x 

e rfc x = 1 - e rf x , 

erfc( -x) = 1.- erf(-x) = 1 + erf x 

= 1 + ( 1- erfc x) 

= 2 - erfc ·x 

ierfc x = 
2 

-x 
e - x erfc x , 

ierfc ( -x) = 

= 

1 = --
,r; 

= Zx + 

e 

e 
2 

-( -x) 
- ( -x)e rfc ( -x) 

2 
-X 

e + xerfc ( -x) 

z -x + x(Z- erfc x) 

[~ 
2 j -x 

- xerfc e 

= 2x + ierfc X., 

.z f 1 [ f 2 . f ] 1 e r c x = - e r c x - x 1e r c x , 
4 

( c -3) 

(C -4) 

( c -12) 

( c -7) 

(C-13) 

( c -8) 
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i 2erfc ( -x) = _!_ [erfc ( -x) . 4 -2 ( -x) ierfc ( -x)] 

= 

= 

1 [ (2- erfcx) + 2x ( 2x + ierfc x)] 
4 

1 
2 

_!_ (erfc x - 2x ierfc x) + x
2 

4 

1 2 . 2 f = +x -1ercx. 
2 

(C-14) 

By using the general recursion formula (C -9) and the relations just 

developed, it may be shown that succeeding terms are 

3 -1 x + -1 x 3 + 1. 3e rfc i e rfc ( -x) = x , 
2 3 

( c -15) 

1 + ..!. x2 + 
16 4 

1 4 
-X 
12 

.4 f 
- 1 er c x, ( c -16) 

and 
1 1 3 1 5 5 

- X + - X + - X + i erfc X • 
16 12 60 

( c -17) 

From the foregoing, a general inversion for:znula for inerfc ( -x) may 

be obtained: 

1 2xn n-2 
inerfc ( -x) = ( -1)n+ inerfc x + + _x __ _ 

n! 2(n-2}! 

+ 
n'"'4 

X + ... + 
n-m 

2x 

(C-18) 

16(n-4)! ( 4:8 ·12· ··2m} ( n-m)! 

where n- m = 1 for n= 3, 5, 7,···, 

and n- m = 0 for n = 2, 4, 6, · · · . 
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D. Solution of the Slab Problem for a Moving Boundary 

D.1. Concentration of the Tracer 

An expression for the fractional release of a tracer element 

through the moving boundary of a slab will be obtained. Chambre 
5 

has derived a general solution for the tracer concentration for a slab 

-(a- bt) < x < a- bt and 0 < t < ~. where b is the rate of movement 
b 

of the boundary a, 

C (x,-t) ~ 2 (~Dt)~ JA(J)exp [-C~;;t] dJ ~ (D-1) 

+ Z(-l)n_/f(j) exp [nD6 (s+na)] S(x,-t )j~2na)ds S' 
n=J -tJ.. 

S (X +I <) = exp r_ (X -Jz] + €X p r_ (X +-~_?-l . 
, ... ) j L 4 ' L '-+De J ( D-1a) 

This equation is the solution of the diffusion equation 

(D-2) 

subject to the restricting conditions 

C ( x,o) ={(x) for o <.x <_a) ( D-2a) 

oC(o,-t) = O for 0 <t <._ ~) ox 
(D-2b) 

and C(a-bt,t)-=- o for 0<_-f-/.Q,_. '- ....... b (D-2c) 

For this problem, the initial condition (D-2a) shall be assumed to be 

a constant, C
0

; thus, 

for ( D-3) 

If this substitution and S(x, t; s + 2na) are made into Eq. (D-1), one 

has 

C(x,-1:) = 2c(~DtY'· [L~xp [-rq;t]ds + 
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This may be simplified somewhat by defining 

y = ~ + 2na ( D -5) 

and x-£ z = _ __;___ ( D-6) 
2~ 

upon which Eq. ( D-4) becomes 

C(x,-t) = 2fTr~~(-2wj!~;(-z~)d" 
' ~·11,. 

( D-7) 

+ii->expfr,b(t-n~{exp[-~+exp[- (~fi]!d~ \. 
o.{?J,-9 u f) 

The first term may now be integrated directly, and if exponentials are 

(D-8) 

The exponentials may be simplified, 

~)"--~'Q' = 4~-[ [x,._2x 1 +(- 4nbtq-} 

='fix: { {-2~(X+2nbt)+0+?nbt)""+X~~+2nbtf] == 
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=. '/~ [f~-(X+2n!;t) r- L/n bf: ( X+nb-(;)} 

= 'fbt & -(x;-znbt)t- nJ> (x+nbt); 

~~~
2

- n;t ='fix [x'-+2xr+f- 'fnbt1} 

= 'f-bt_ { {+ 2qlx-2nbt) + (X-2nbt)"+ X, -(X-2nbtf} 

=~[[~+<x-2nbt){+ 'fnbt(x-nbt)} 

=: '1-~ /jt-t-(X-2nbt)]\ 7} (x-nbt) ; 

II ( -t_) _ Co r . r X +0. . r X- 0... ] "- x, - :::- L er-r 2 ( t5t)7?. - er-r 2 ( Dt)V2. 

(D-9a) 

( D-9b) 

a..(~+l) 

+ Co ~r!Pexp[-nb(na.-nb-t-x)l fexp[_ ljj-(x+.2n.bt)]]dy,. ( D-10) 
.2(rr Dt)~ f/::.1 D 1} c L (f .Dt (/ 

a.(ZI'I-1) 

a(.2nf-1) 

+ Co I ~~Jtexp[_nh(n~-nht+x)l rexp [- Et+(><-.2nbt)f"1dli . 
Z(rr])t)~n~, . L D ~)I 4])t J 0 

~~-1) -

Simple substitutions similar to Eq. (D-6) allow the last two terms of 

Eq. ( D-10) to be integrated: 



-65-

C(x,t)= ~o [er!2(~v~- erf fl~·~>] 

+Co ~(-1\nexp [_nb(na.-nbt-x)lferf a(:<n+Q-0+Znbt) 
2 ~/ J [ D 'JL Z(Dt)'~ 

-er{a.(2n-l)-(x+2nbi) J 
.2 ( Dt)Vz 

+_kg_~~ J)n t n h (na_ -nbt +x)l ~rf a(2n+l)+'x -2n bt) 
2 ~r exp D 'Jf :2(Dt)Y2 

_ e r+ a.(:ZtJ-!)+(x-2nbt) 7. 
2(Dt)'h J 

Using Eq. (C-3) and rearranging terms, one has 

( ) Co r. . (' a+ X -r a -X l C. x, t = z Le r; :Z(Dt)"" +err .2(Dt)'h. J 

+k ~X-Jtexp[-n..b (na_-nbt-x)))r err .2n (a-bJ)+a.-x 2 n=J D ~ ~ i .2 ( Dt '/;e, 

( D-11) 

- erf2n~ {~vf-:-~ J ( n- 12) 

+ ~o n~~Jfexp[-qf(na.-nbtrx)][erf .2h;(~~~+x 
_ e r{ Zh{a-bt)-a..+x] . z ( Dt)'l:J.. 

With the use of Eq. (C-4), i.e., erfc x= 1-erfx, one finds 

C ( x
1 
t) = Co - ~ [e rf~ Jr~v,. + e rfc :r~ v~] 
+ Co ~(-JY'exp Clff(na.-nht-><)]rer-rc zr~f(~5?f--x 

2 n=J L t 
-er-h 2.n(o..-bt+a.-x] 

C 2~Dt' 2 (D-13) 

+ Cz £Hfexpf~b(na.-nltH)][erfc 2'2~;t~a.+x 
-e"'"' 2nCa-bt +a..+x]. 

t'TC ;z ( I;<. 

For t = 0, .because erfc oo = 0, Eq. (D-13) becomes 

C(x, 0) = c 0 . 
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For t = a/b, which corresponds to total evaporation, the tracer con­

centration should become zero. Hence, 

C(x,%-) oo Co-~ [erfc~~l-- +er-(c_ W~f> J 

+ 9· 5'(-J!~xplnMferrc -C(f2y - erfc a. -x l ~ h;i \-D i'Lc Z ~ ;(, Z(~'lz. j (D-14) 

Since lxl <a -bt at t=a/b, x in Eq. (D-14) must be zero. Thus, 

C(;x4:-):= C- Co 0erfc(~f~l +h_i(-ltf2erfc[-~t~JI~l-2erfc[-k(~tl], 
1 P. 0 2 [! \TV/ j Z i7=l ( zr I j -<- j 

"'Co- C. eric R (-~~'lj1 Co j;(-O"{erE Jit{!y)'/,J- crfc[Hi1~ 

with the use of Eq. (C-12), 

(D-15) 

00 

It was previously shown in Eq. (A-41) that 2 L ( -1)n = 1; similarly, 
oo n=O 

it can be shown that 2 L ( -1)n = -1. With this substitution, 
n=1 

Eq. (D-15) is 
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If, in Eq. ( D-13 ), b = 0, which corre spends to no evaporation, then 

C (x,t) == C0 - ~ [er+c 2~~,1]. + erfc %{~~~7-] 

+Co ,2(-1\n rerfc ~n-t)a.-x - er-h ~)1+t)a.-x 
2 n::.1 

1 L 2 ( Dt)'lz C Z(Dt)~ (D-17) 

If 2n-1=2m+1, Eq. (D-17) becomes 

C (x, t) = C,- ~·- [e rk 1(iiy. + e rfc tc~)·h J -~' ~.(-;) & riC~;(~-:( 

+er-Fc ~n+~o.~-x l +.k~(-J\M+'~~r:c.C?"H-I)a+x te_r (Qn+~-x J 
~~ J 2 ~~- J LL.'-r·< :<(Dt)'h.. rrc 2( )Ill. 

C ____ ( 9 ~~- I)V) re ""c (:Zn+l)a +X + er·r'r (:Zn+fkfl,-;-~ l 
o 2 ~- ~ , tc Z(Db)'lz 1'6 2( )'''). J (D-18) 

_ _G_ ~(--l)mrerfc (2mt1)4+~_ +er~~ @m+I)<L -xl 
2 ~(J LC '- 2 (Dt)?:<. l- ;?. ( Dt)Y:<. 'J 

= C - C 2(-l)nrC)r:(.~ C2n+l)a.-x + erfc¢?-n+l)o...+x J , 
. 

0 0 h-=o L c.., '- 2 ( Dt)'/~ 2 (Dt) Y~ 

which may be recognized as Eq. (A-6). 

D.2. Fractional Release of the Tracer 

The fractional release may be computed from Eq. (A-17), as 

follows: 

(a.-bt) 

;;_a_ C 
0 

- j C (X, t) d X 
- (CI.-b-Q) 



-68-

(a-bi) 

== /--1 jc(x,t)dx; 
Ja...C6 -(a-bt) 

using the symmetry relation, one obtains 

(a-J,i) 

f = /-ah. J C(x,t) dx · (D-19) 

0 

With the substitution of Eq. (D-13) for C(x, t), it follows that 
(a -ht) / (a-lot-) 

f = /-~o [codx +o:ro j fF-&r+c ~(o~·~>+erfc ~~1,,]dx 
0 

~~ f _ I jCo ~ (:-l)nexp f_.nb(no..-nhi-><)l erfc 2:n(a.-bt) -a.-x 
a.Co Z f;-r [ D ~ 2(Dt)'l~ 

0 er+c 2n(a-b~+Q.-'X]dx ( D-20) - c 2(Dt 7~ 
~~ ' 

-~ {-~o Z(-t)~xp [-nb (na.-nht+x)lrer{c 2n a-bt ~a+x 
1.Lo 1> J..J n= 1 D 'Jr ;;?_ Dt) :<.. 

_ erf'c 2n a-bt +O.+X]dx. 
2 (D '1-::G. 

With the use 'of Eq. (C-11) in the second integral, Eq. (D-20) 

becomes 

f = ~ t + ~'k[- ie rfc ~(;t~t + ierfc. :/(ott~ + Le rf 21~)'1~- 0e rfc 2~·~:z. J 
(a.-h-t? . 

_; il-J)r'exp L'-tl.bcnxa-bt)l r exp(~\ rer=rc 2, ca-bt)-a-x 
- 2a.. r.r=J D 'j)o~ D / L' Z (Dt)'l~ 

_ er-k ;cn£a.-btJ~a_-x] dx 
r~-ht) "'- ( t5t) .._ 

- _J__ g t-1)'' ex p fli!f' r h ;ra-tt)]Jexp(-jx)[erFi: z]a. -;!~.;:a.+ x 
2a n:1 o 

_ er=·r.c ~nCa.-bt~+a+x J ..Jx == -rc 2 (DC IJ~ (,{ 
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(D-21) 

The remaining integrals in the expression (D-21) for f may be 

evaluated by integrating by parts, as follows. Let 

1)_=-exp(-nDhx) and Jv-er(c2n(a-bf)±a.-XdX . then - 2 ( Dt)'lz .· ' 

The result may be written as 

To integrate the second integral by-parts, let 

and 

du =-~b exp(-~dx 

dv== erfc. 2n(a.-bt)±a.+x dx 
2(Dt)'h_ 

then 

and V--;2(Dt)'l~ .. ·e ""r :Zn(a.-bt)± a..+x 
- (., '-rc. . 2 ( Dt)'h 
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The result is 

(D-23) 

Upon applying the limits to Eqs. (D-22} and (D-23} and inserting there­

sults into Eq. ( D-21}, one obtains 

( D-24) 

-·f·· ,· )'J')/", (,., .2n(o.-bi}+a. _ c;vp[--nb.r(A-b-t)7iYYier-f' (;2n+1Xa-bt)-a_ 
\.- v rrc... .Z (Dtr 2. l..t' D \~ ~ iC Z( Dt) '/:a. 

After eliminating equal and opposite terms and combining exponen­

tials, it follows that 

b-t ~Dt)~ [· .f' bt · .r ,Za.-ht] f == a_ +\o.z Le r1 c Z(Dt)'lz- uer-rc_ .Z(Dt)'h. 
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e [- nbt'a-b-t)7 {.;l?!er{c pn+lha.-bi)-a_ - xp o~" J · 2 Dt)'l;_ (D-25) 

_ bt ~Dt) Y:z /- .r bt - .I' .Zo.. -b-t] - -zr- + \- o..~· L 0e r;c Z(ot'jl~ - 0errc Z(Dt)'h 

-rr?J: )v~(-lrlz(lffYDGJkf~xp f~n-,Xa-ht lt 'e~@.~f~~6~ a. 
\. n,m-1 ~1 

_ L merfc{;zn- ~a -bt)ra.} z Dt)'h 

(r-r+--\'1~ · m-1 b J: 
-t 7#-; "t;, (4''" [2(-~b X~"] exp [-lJ!( nr(~O-ht) Jt•erf?•~f~4;"-

- eYJer-fc t2n+l'[a-bi)-a..-} . 
Z(Dt)?~ 

At t = 0, each term of Eq. ( D-25} becomes zero; thus, the fractional 

release is zero. At time, t = a/b, which corresponds to complete 

evaporation of the solid, the fractional release should be 1, as shown: 

( D-26) 

= 1. 
If, in Eq. ( D-25 ), b is set equal to zero, which corresponds to no 

evaporation, then 

-f:: eg;t' [Lerfc 0- Lerfc f1ty,_] +(C:flf-d'"{ier!C ~~k 
( D-2 7) 

_ · ;_r na. , J o/+I)C} · _r_ no... J 
Le rTC (pt/''"' -r t-e r-rc. Dt)'-;<.. - c er-rc (ot)'i-;.. ; 
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by letting n- 1 =p and nt 1 =m in Eq. (D-27), one obtains 

(D-28) 

Noting that ierfc 0 = rr- 1/ 2 , and combining the m and p terms, 

finds 

one 

which may be recognized as Eq. (A-8). 

D.3. Conversion to Dimensionless Form 

If one defines 

and 

so that 

T = 

f3 = 

bt 
a.. 

ba 
D 

(D-29) 

( D-30) 

(D-31) 

(D-32} 

where f3T = 0 corresponds to t = 0, and f3T = 1 corresponds to com­

plete evaporation, then Eq. ( D-13) becomes 

C(x r\- C - Co { I'_ /+ X/o._ .r /- x;O-) 
\Gl..) ~; - 0 z e rrc 2 y_'l?.. + e r-r-c 2 rc'1~ --+ 
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Equation (D-25) becomes 

( D-34) 

and Eq. (D-29) becomes 

( D -25) 

D.4. Approximate Solution for the Fractional Release 

If Eq. (D-34) is expanded to the first few terms in n, then 
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- T1:~(-l)"' ( ~ 'C 'h. f~p [-¥(1,e1:)] (i"'erfc if~'; - i '"e rfc 2_2~;;_:.) 

+ T "'!;, (-rj" ( ¥ (J'l'liJ"'2x F [-2(i(1-rn?J] (i"erff:. 2if!i, -i "'erfc 4 z?f£) ( D- 3 6) 

+l',4~t-')"'(lff3'C"r&pf€¥(t-fl-9j(i"'erfc 6zW -Lmerk '~?.~'f) 

- z:r:.{,(-1)'"( 6f'C~~xp [-6(3( 1-f'¢] (i merfc 'fz_ ~'l - i"'e rfc 6 i ;f ~!:") 

+I I I 
0 

Now, if the restrictions Dt < 0.01 and f3T < 0.5 are. made, then 
a2 

Eq; (D-36) may be closely approximated by 

(D-37) 

Inversion formulae for imerfc ( -x) have been developed in Appendix C. 

If these are applied to Eq. (D-37) and expanded in terms of/m, it can · · (A 1 2)x be· seen, if sufficient ter!p;S are taken; that terms of ,_,'T cancel 
m f3T1f2 2 

and only the i erfc terms are left. Thereupon th~ approxi-, 2 
mate expression for the fractional release, f, becomes 

(D-38) 
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E. Solution of the Sphere Problem for a Moving Boundary 

E.1. Concentration of the Tracer 

In this section an expression for the fractional release of a 

tracer element through the moving boundary of a sphere is obtained . 
... s . 

Chambre has denved a general solution for the tracer concentration 

for a sphere 0 < r < a- bt and .0 < t < a/b, where b is the rate of 

movement of the boundary 

C{r;t)~2r4Dt)& {ljl6)expff;;f}J; 

+[J;irj)exp[g"~+ndfjS(r;tj5+::ha)Js], 

This equation is the solution to the diffusion equation 

subject to the restricting conditions 

and 

C(r, 0) = f(r) 

C(O, t) 

C (a - bt, t) = 0 

for O<r<a, 

is finite , 

for 0 < t < a/b . 

(E -1) 

( E -1a) 

(E -2) 

( E -2a) 

(E-2b) 

(E-2c) 

For this problem the initial condition,· ( E -2a), shall be assumed to be 

a constant, c
0

; here, 

C(r, 0) = c
0 

for O<r<a. (E-3) 
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If this substitution and S(r, t; s + 2na) are made into Eq. (E-1), then 

C(r,t) = 2;(~)v~ (f)exp{-c;;fjc!J 

+tf;expf~"(s+na~{exp[ ~~~=>Jj (E-41 

- exp[- [r~g;zm)]J )c!s). 
The first term may be integrated by parts, by letting 

u=s 
and. 

dv= ~xpf (:JR._]~; 

if the second term is rewritten., then a: 

C ( r, t) = ~rq [erfc~(~J'Iz + erfc ;(~)v.J- £~ferfc {@:y~ '13 
-a... 

+ 2S(rrlJt:)Yz ~ exp[-~b (na)Jj;exp(IJ#)~p[ fr;/1fl;"d)]J (E -s I 
-tJv 

The exponentials may be simplified, as follows: 
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= Lfbt [(r-2na. +2nbt)~-2J (r-2na. +2nbt) + J")_ 
+r2__ (r-Zno..+2nbt):a- Lfnar+'lr?a?] 

(E-6a) 

= ·~~--11 r-2n~+2nb-t)-_s ]-z-Jot {!2
- LJnr(a-bt)+Lfrl(a-btl 

+ Lfno.r- L/ n::zo.?-- r 2 J 
= Lf~t [{r-Zna-r2nbt)-J]'2-_-ir [- L/nar+4nbtr +Lfn:<rL~ 

- 8n'-o.Jl+'-lnt-t(nhi)+L/no..r- 1/n:<a:J_] 
= Lfbt [( r-.2na+2hbi)-JJ;t- nJ [r- 2hct. +nbt J~ · 

= ¥.fst [5~ '-l-na3- tfhb-t:s+ 2'J + ifnar- +'ln~z+r2] 

== _}_ {j- 2+2.1'( r--+-Zna..-2nbt)+ 4na_r + L/n7..a?·+r ::z] 
Lj])t _) 

I [~ . ~ = LJDI::. J +Z:j(r+Zna..-2nbt) -r(r+2na-2nbi) 

- (r+2nCL-2hb-t)~+ 4naY +4n-;.a,'- +-r~ ] 
(E-6b) 

-= '-1 ~ [5+(r+2na.-2nbt) ]
2-v.f5t {!~lfnr (a-bt)+~n'{a.-b-t) 

- '-lna.r-Lfn=<a?-r~] 

-=Lf~t [J+(r+.2na.-2nbt)]7--zlat [4na.r--Lfnbir +Lfn").a?--

- 8 n?.a.bt+ 4nbt(nbt)-L/nar-l/nlaj 

-= Lj bt [5+(r+Zn0--2nht)]~- ne [-r-2na_ +hht J 
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Integrating the second term of Eq. ( E -5) with the aid of Eq. ( C -11), 

and also substituting the results of Eqs. (E-6a) and ( E-6b), one finds 

( 
..1..) Coo. r: .r r-a. __ f' a+r ] C r, L = 2 r L er;-c :2(Dt)'l:z + e rTc. z (ot)Y2-

ct (E-7) 

-1- Co , ~ expfnb(no.-nbi-r~ (? expL [(r-2na.+2nbt)-5]~(k Zr-(rrDI)1).. (7: I D .! j ( '{Dt J ~j 

-- C v ·~ ~ expf nb (n4·hbt+~l r:apf_[(r+Zna. -2nbt):tJ] d 
2r(rrDt);Gn=, D Jj5 l LfJJt 5~ 

-~ 

The remaining integrals may be solved as before by integrating by 

parts. Let U.=-j 

and let 

successively; then 

C ( t) - c a. r . (' r- a. + . ('_ a+-r J r1 - ~ L err-c. 2 (Dt)'lz. e r-rc Z( Dt) Y-;. 

C (Dt)'lz[, ,_r_ r-0.. - -'- a+r ] - or L e rrc 2(Dt)'l~- fJ er-rc 2(Dt)'l-z 

+~-a_ ~ expl-nb(net-!rbt-rn[e rfc. r- 2 no....+2nbt-a.. 
2r ~ L D Jj 2 (Dt)'lz 

+ erfc r-2n&;+2nbt+o..] 
.2( ) 7~ 

+Co a~ expfnb(no..-nbt·r))lferfc r+2nQ-2nht+a.-+er-~'- r+:<.na.-2.-nh-t-~7 _ 
2r f;j D -r 0Lc 2(Dt)?~ TC Z(Dt)'h j 
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a. 

-k~expfljf(na_-nbt-;-)] rerfc 
2r n=1 U ' 

-a. 

r-2no...+2nbt-'{ J 
2(Dt)7.z ~ 

(E-8) 

- ~.Zexpfnb(na.-nbi+01)(~r-fc r+2ha-2~gt+g d~. 
Zr n=-t D ~ -o..- :;dDt) z J 

Upon integration of the last two terms of (E-8), one has 

By using Eq. ( C -12), one obtains 

.r: r-2no.+Zn.bt-a_ + I r-2na.+2n'bt"+o... 
e r-rc 2 ( Dt) 'I~ e r1c 2 ( Dt) '/2-

- '? -e r.fc. 2na.-2nhf+o..-r -t- ? e v:.fc Zna.-2nbt-r-a.. 
- ,z - Z ( bt) 1/=<. ,_.__ - ' ' 2 ( Dt )Yz · 

(E-10a) 

and 
·'~ r-Q ~ -~ a-r e r-rc 2 (D9'12 -= ~ - e r-rc .z(Dt)'l=<- · (E -10b) 
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Using Eq. (C-13}, one has 

L'erfc r-2ho..+2nbt-a... _ ierfc r-Zho...+2hbt+a. 
.2 (Dt) 'lz 2 (Dt)'k 

- 2 [Zno_-ftclt- r+a.. J + · e r_ 2na.-Zn6t +a. -r 
- 2 ot)'h.. ~ rtc. Z(Dt)'l~ 

-z[2na.-2ngt-a-r]- ier-fc 2na-2n~t:-a-r 
2. (Dt :z Z(Dt ~ 

(E-11a) 

= 2a. + cerfC. 2na..-2n~"t+1.-r- ·e -k .<?na.-tt~-a.-r 
(Dt)Y~ Z(Dt ?'2. G r 2( )' ~ 

and (E-11b) 

The substitution of Eqs. (E-10) and (E-11) give 

C.(r,t)=(2fgr~) +ira. [erFcZ(~)'l~ -er-!Cz(~?~] 
-f Cr( Dt)')~r£>~ - Co~ Dt)'l~erk ~fv't;~- Lerfc z(~~v.] 

+ ({(~o,_ a_) i exp f.!Jf(na_-nb"t-r )] 

- Co a. <t PxpfnJ.,~"r;a.-nbt-r-\1 r e lr,r('· 2na..-2nbt~a_-y-
Zr- n~- ,_ 0\' 1J~ r'TC .Z(Dt) 7;,.,.. 

+e rfc ::Z~ifj.)"t;;_o..-r] 
+ Coa.. ;1'ex.pcnb(na..-nbt+r)lrerfc 2na.-2nbt+a_+r 

2r ~/ L D 'JL' Z(Dt) V:<. 

+erk 2na.-fhbt"-o... +r} 
2 Dt) 92 

- [c.~Dt)'6.[&t'J?•] ~ exp [-IJ!.(na.-nh-t-r)] -
/ 
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( E-12') 

For t = 0, since the e rfc oo = 0, Eq. ( E·-13) becomes C( r, 0) = C
0

. 

For t = a/b, which corresponds to total evaporation, the tracer con­

centration becomes zero. (The proof will not be given here.) 

If, in Eq. (E-13), b = 0, which corresponds to no evaporation, 

then 
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_ Co~~ rerfc C?(+')a;r + eH-c ~n-tJa..;;:-
2 r n=J 1.: 2 Dt) z .Z(Dt) 

1 r; ) (E-14) 
- eri'c k2n+l)a..+r- erfc I,Zn-1 ~+r] 

Z(Dt)'/z 2(Dt -... 

C a_ (-:.Dt.)rz r,. .r a- r · . r a.. +r ] - --p--- o}· LLer-rcz(IJt)V;:z.- Le r1c 2 (Dt)'l2. 

_ Caa.'rDt)'l~ l~erfc(2n+l)a..-r -i.erfc (2ntJ!ta.-r r \ ""'o_=<- n=t ~ 2(Dt)Yi 2( )'12 

- ier.fJzwl)a.+r + ier+c (z;,(')oy]. 
2 ( Dt) '1~ 2 Dt) :<. 

If 2n -1 =2m+ 1, Eq. (E-14) becomes 

C ()_ lllt)~:<{- _ r~ a.- r · ·- r_ a+ r- ] -T\· OJ- L terJC. 2 (Dt)l"· - cerrc. Z(Dt)114 

c a. (Dt. )'I~~ r-eV<:{_ Rm+l)a-r-- ,· erfc (2m+l)a.+r] + r a?/ ~o LL tiC Z( Dt)'h v Z(Dt) 7i 

C _Co a. ~ fer--h 8n+l)a-r- _ er+c ¢;2n.,..l)a.+r] 
o 2 r ~0 L~ c.. .2(Dt)";2. 2(Dt/h 

_ Co a_ ~ rerfc (?rn+l)a-r _ erfc ~m-rl)a.+r] 
Z r ~ Lc Z(Dt)v~ 2 (DtY7z 
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(E -15) 

which may be recognized as Eq. (B-6). 

E.2. Fractional Release of the Tracer 

The fractional release may be computed from Eq. (A-17), 

o0 -Q(t) · 
f=--- ( A-17) 

where O(t) i.s the total number of tracer atoms contained in the solid 
' 4 3 

at any time t, ar:1d 0
0 
=- TTa c

0 
is the total number of tracer atoms 

' 3 
contained in the solid at time t = 0. 

( E -16) 

With the substituti.Qn of Eq. (E-13) into Eq. (E-16), one finds 
(a-bC) (v.-1;1;) 

f = j.- ~~o [ r""Codr + o.~ [ r"( 1:-)[erf ~·;,.-erFc '¥Jifb-]dr 

.3 [(a.-ht)c \ 00 [ ~L( bt ~nr. ·-'- .2n0.-bt2+a..-r +-- r:z(~;2] expclf no_-n -r;JLe~ 2(Df)'7~<.. 
d!Co <:> :zr n=l 

+ er'- ::2n(a.-bt)-a-r 7 dr 
'' TC Z(Dt)v;i J 

(a-bt) _ * [r2(Coa..)~ expfqf-(m.-nbt+r)lrer(c 2n~(t;f)&+r 
a..3(o 

0 
2.r n~t JL 

+erfc Zn(a.-bt -a.+r]dr + 
,2 Dt)'2. 
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3 fca-~Ca.Vot)!l.zr· a..-r- · a+r ] + a_3Co ~ r;2(r-).-OJ- L~erfc 2(Dt)'l:<- Gerfc 2(Dt)Vz dr 
~~ f b1 3 j 2((! ~Dt)l~ :1 r... hb(na-nbt-r)lrcer-Fc 2nCa- I(., +a-r 

+a3C r T a-- ~ expL D 'JL' ::z(IJt)h 
o <l n-t ;: ~

4 - cerfc 2n\a.-b~v. -a-r]Jr 
(a-U) 2( Dt)/2. 

_ 2 Jr:<.(Coo . .YDt_\/z~expfnb(na-hb t+r)7r1.e r-Fc :<n a-Jot +o..+r 
a3C0 o r 'A o}--/ ~ D ~L' 2 Dt)'lz.. 

_ /er--rr zn(a_ -b& -a+r] d r 
v -tL .2 ( )'h: 

l a.-ht) 3 (a.-bt) 

I - ~ o r~dr + za.~ [ r [e rfc ~(~t;t- erfc. f(~'h.Jdr · 
(a-J;t) 

+ 3':l( r Zexpflf!Cm-n/;t-rJ)[erfc 2n;J(£1t~t;-r (E-17) 
;::.a~ n=1 l () +· e rh" .. &t! (a -b-tJ;a -r dr 

(~-bt) I__ ,2 (Dt) I _j 

_ _Q_fr ~expfnb(na-nbt+r)]rertc 2n(a.-bt)+a.+r 
Zci" n=t D L.' Z(Dt) '12-

0 +erfr Zn(a-bt)-a+r]dr 
(a-b~ '- 2 ( Dt )7~ 

+ 3__/D't) lh(r ~exp f-nb (na.-nbt-r)l[~erk 2n(a-bt)ta-r 
cP· \'a?-/ ~ 1 

n=t · 0 ~ 2( Dt) 7=<-

. _ { er{c 2n (a-bt~-a--r]ar 
Z(Dt) ~ 

)
' /2 (a -IJ:) 

- 3 (Dt '2 ( rZ'exp [_YJ.h(na-h/:;t+r)]f"Ger{c 2n(a-bt)+a+r 
a~ O..,"J.. ~I n=t c [) . / Ll. 2-(Dt)'l:<.. 

_ ierk :Zn(a-bt)-o...+r] ,~,_ 
. Z(Dt)Vz ~ 

(~ I+-' 
3 Dt ~~ , a.- r - a_+ r 'li. -A--10'-) 

+ ()}· (a_'-) C) r [L e rfc 2(Dt)'l:z. - Le rfc Z(Dt)'1~] d r · 

The first integral in Eq, (E-17) may be handled directly, whereas the 

second and last integrals may be handled by integrating by parts twice, 

as follows with the use of Eq. (C-11): 

u..=r, d ·n r a-r d v1 = L errc Z(Dt)'lz ,., where n = 0
1 

I, 

d d - ( )'lz -n+l (' a-r-u = r.. o.nd V, - 2 Dt 0 e rTC 2.(Dt)'l;<;, 
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Hence, f = j- ~3 (O.-bt/~+-;2~~[2(Dt)1z][(o_-bf.) terfc2r~)'lz 

+(a-bt)ierfc ~~t] 
+ 3 r')(r..-\'6.7[ ')(ot)'l~; 2a rf.-, h t ..J.._ ')(Dt)'h.: 2,..,' r, 2a -bt J .za.-;. ~ vc1 J[ t:... ~... c c J rc:_ Z(Dt)'lz ' .z t.. c rrc 2 (Dt)'l~ 

+ ~(~!)'k[2(Dt)'l1@a_-bt)Lzer{c ;}(~)'h.+ (a_-bt)~~rfc_ ~(;tt2 J 
3 ('12t.)~zr; (Dt)'h.7[ ?( )'/z·3 ._r,. bt ")( \Y.z-3 ,r:_ 20---bt ·] +a}· o.."Z. L2 J -h.. Dt 0 ern.: .2(Dt)'h +-<- Dt1 0 erTC 2.(Dt)'l;l., 

(o--tt) 
+ 2jr 2 e xp [ nb ( na.-h b t- r-)] [e rfc. 2h(a.-b t),+a- r-
za~ n=-1 L D ;::_ (Dt) /;<. 

o + er{c 2n(o..-bt)-o...-r]dr 
Z(Dt)'h 

f0~f bL) 3 ~- ~ f 1 )]r: f 2n(o.- .c +a.+r 
_ "? -;<, r ~ exp- ~b(na-hbt+r Le r c. :Z(Dt)'~~ 

1'-().; 0 17:.1 

te .r: 2n o.-bt -a+r]c! 
(a.-ht) rrc z ( Dt 'lx.- . I r 

-f- 3 (Ot)'lz(r.£ expfnJ,(na.-nbt-r-)l[cerfc_ 2n0--bt)+o..-r-
o.?- 0.... 7.. ) I n =I D ~ 2 (Dt) 7~ 

0 

_ Cer-fc.. 2n(a..-bt}-a.-r ]d 
ra-!t) :2. ( Dt) 7z.. r 

- 3_ ( D-t;) '!;(-( r 2 ex oF- '2 b (na-n/:; t +r)ll ~e r+c _?n_ (a.. -bt) + o. +r 
a~\. ().._- ) n=t I L v 'JLl ' 2 (Dt)'1:<.. 

0 

_ ier!c.. 2h@.-bt)-a+r]dr 
Z(Dt)'1?.-

- 3( tt )- 3( ~t)~+(bf)3 

+ 3 ( Dt)'~z(-o._-b t) [- 1( bt - ,_ r 2o..-b-t ·] 
· a?- . a.. Ler c. ;<.(Dt)'l;<_ + Ge rrc.. Z(Dt)'h. 

_ __ ·z · L ·z 2a...-bL ( Dt) ...- b..J... . 'J_ -

6 o..:<.. [L erfc 2(ot)'6 .. - r.. erfc Z(otYh.-J + 
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+ 6 (~)(-~6t)[c~erfc 2f~~ +[~erfc ~(Dt~~] 
(E-18) 

12 (- Dtj
3h~·3 J bt ·3 I ;;zo...,-b~ ] 

- 0.?-/ LL errc :2(Dt)'lz- c.- errc Z(Dt)'i 
(a.-it) 

...L3_}r~ e·,r-f nb(n"-~~L+_ r· ) 17r.a ... J_., 2n(a-bt~+a-r 
I 2o..?· &i AjJ - D /J... fiOLJ j c::: I lC 2 ( D"t) z 

o + e rfc .2n ca-bt)-a..-r]dr 
(a.-bt) c Z(Dt)12 

- 2JrZ'expfnb(na.-nbi+r-)lrer+c 2n a.-bt +a+r 2a.'--
0 

n=1 D 'JLc: Z Dt)' Z> 

+ €rfc 2n a..-bt -a..+r-J dr 
a-b~ '- 2(Dt 2 

+ J_(~)~~ g exp[-qfrna.-nbt -r)]~er+C 2 nffrtWzP--r 
, rfc Zh(a-bt)-a-r]d 

r(),-bt) -. t__e :2 ( Dt) '7-z r 
_ 3 (Dt..)Y:<.)frE expf~b(no.-nbt+r)lner+c :2vJ(o.-bt)+o.+r 

0}· \ 0}-; 0 h::.t JL 2 ( bt) ?z 

- Cer+c 2n{-~Dt~~~-a+r )dr. 
The remaining integrals in the expression ( E -18) for the fractional re­

lease may be evaluated by integrating by parts, as follows: 

U= rexp f 'bb (na..-hbt-r-)}· 

du.= r-(i(})exp[-Cjf(na-hht-r-)7dr +expf~6(na-nbt-~'"~dr, 

and 

Several repetitions may be required before the pattern that develops 

becomes obvious. The result is 
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Z( u)*{a-Ji;)expfff< nil. -nht-sll~(-l)'"'~~~bjiJt)''j'"i~e rfc z1:(-;;{/7 .. a -r 

(E-19) 

.J-Ll(Dt\expLnDJ..I'. na-nbt-r)7 -;:t_,,m;Jn_ 1,,r,(nbY1ot\'h..7rnL-~....L. '2n(a-bt):i:. o..-'r 
I I ") L 1){.1 IJ(;j;.~ 'I \ I /LA.. D p I.Jj J c:;f TC 2( Dt)1:<. 

Th . "1 . 1 h" h ld h d . f 2n(a- bt) ± a- r d e s1m1 ar 1ntegra , w 1c wou ave v = 1er c r, 
2 ,.,[15t 

differs from Eq. (E-19)only in _the power of the ierfc x term. If m 

were replaced by m+ 1, the result [Eq. (E-19)] could be used as it is. 

The remaining form of the integral to be evaluated by parts is 

().. = r expf 7f (na.-nb-t-rr)]~ 

dv - er:Lc :Zn(a.-bt):±a+r Jv-
- I 2 (Dt)'h CAt ' 

and V- _ Q(!TI-)'k/pr.t;. :<:.n(o..-bt)±a. +r 
- ;.... Ln.- v - 1 1..- ;2. ( Dt;) 12 • 

After several repetitions the result may be recognized as 

(E-20) 

-+ LJ( ot)expfgb(na.-hbt-~r-E 2r o11)-9[?{nb tDGJ']"'Z;~erfc 2n ra.-bt):b;t+r. 
m~ D Z(Df)'fz 

Upon applying limits to Eqs. (E-19) and (E-20), the resulting terms are 

0 
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as the solution in full form for the fractional release of the tracer 

element froma spherical body. 

At t=O, each term of Eq. (E-21)becomes zero; thus the frac­

tional release is zero. At time t = a/b, which corresponds to com­

plete evaporation of the solid, the· fractional release should be 1, as 

follows: 
D r;· :2 I a_ · 2 . I' ,2 a..-~ ] f = 3-3 + 1- 6(Cib)L!: errcz(Ijf)¥~- L er1c .2(~)~ 

+ 6 (ii;)~Ht{in-1) f?( 1r\:'-)~ r-zu "!=ric z(i& t i "erfc 2(%J~ 
J'YJ=Z 

-L"erft: .2~';z-i"erft 2(~~ <E-221 

+ 12(-R-)~f,fO'T m-2)@( -lff-Jii:-1'~,..
3

~ merfc 2( ~Y"" 

'm... I' -a. 'm, fc a. , _(_ -a. ] 
- L t:'Y+c z( ~'!;<.- ~ cr ;2{%)'/z +- 0 '1::r-rc Z(ffj'l:t 

= 3-3+1 = j. 

If, in Eq. (E-21), b is set equal to zero, which corresponds to no 

evaporation, then 
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(E-23) 

By letting n + 1 = m and n- 1 = p, one obtains 

r - --:;7 ( Dt )'/z r;.. r "' -.c . (' a__ l ' 12(D"tl ; 2~" ('.., ()_ 
j - .:J a.?- L6e r-tc u + Gt YIC ( r:t)'lz J + a~) l., e' TL ( Dt)'h 
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(E-24) 

- 6 ( Dt)v2 [- f 0 ? ~ - L ho._ ] - a.·i: LeJ~ c -+-~n;-; t.--er, c. (Dt)'h .. 

- 12 ( ~I) e<-e rfc.. o . 

-112 2 I Because ierfc 0 = rr and i erfc 0 = 1 4, Eq. (E-24) becomes 

-( 6 ( ot)'l'2 r, - 'l'z. ,..., ;1 · ,_ r n a_ ] -::? ( Dt) = a?· {Tr + r:..ff;-: L en-c ( Dt)'i:<. - .J o.: ' (E-25) 

which may be recognized as Eq. ( B -8). 
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E.3. Conversion to Dimensionless Form 

Equation (E -21) becomes 

f = 3~7:-3(~'CY--K_f/d3+ 3'C1z(l-(3i/t-erfcfc'S;z + ierfc ~?&) 

-I z '[ 31z( L3e rfc frc~~ -{ 3erfc if~)- 6 T (t.' 2e rfc f1:f,~z 

- e<-er-fc 2;!$~)+6 T.(l-prc'fi}er{c ~!h.+ i/·erfc 2.;r,;J) 
lr-J'-' ~<.... N'L 2 

-t 3 '['~2(1-ptlEf' t+(2n~'t'17-}Efxp fhp(n-JXl-p'l:)]G~r-Fc ~n-IXI-,st)+t 
'l,m-t 2f['f~ 
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(E-28) 

E.4. Approximate Solution for the Fractional Release 

Now, if the restrictions Dt < 0.01 and r3T< 0.5 are made, then 
. a2 

Eq. (E-27) may be closely approximated by 
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(E-29) 

- 6 '[ (I -(3'C)£ (-1)"'(2ryB'l: 'Sf~)( p fnte(n-JJir3iJ] L "'erfc P,n1YJt~;_L -I 
rYJ-=2 . 

-I Z '[~4, (-I)'"( m-2'j2n~rr; ''ttx p [-nf3( n-Jfl-(3'CE inerfc:¢<~~-8}2 -I , 
m=3 

of which the n = 1 term is most significant. 

_ 6 rr(J-A '[1 ~ (-- !lin(1_1,m-2( A'C '/z)m-Z 'm . r: -!87:. '/:z 
. ~ ('"' .; ~z ; '; r 2 I L e rTc. 2 
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Application of the inversion formulae for i me rfc( -x)- -developed in 

Appendix C- -to Eq. ( E -30}; upon e{2ansion to a sufficient number of 

terms, reveals that terms in (i3T~ 2
)x cancel each other. There­

upon the approximate expression for the fractional release will reduce 

to 

f == 3 (3 rc - 3 ( f rc )z + ( (3 ~ )3
- 3 T. (I-t8 rc) - 3 '[ 

+ 6 r.tt-{JT-)ierlc fJ'Iz + 12 rc(l-(3rc) izerfc ($_,'['12 

(E-31) 

In general, the last three summations of Eq. (E-31) may be neglected 

in comparison with the remaining terms 

(E-32) 
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NOMENCLATURE 

a Characteristic dimension at initial conditions; half thickness for 

b 

c 
Co 

D 

f 

Q 

ao 
r 

t 

X 

T 

a slab; radius for a sphere (em) 

Rate of boundary movement (em/sec) 

Concentration of the tracer element (atoms/cm3 ) 

Initial concentration of the tracer (atoms/cm3 ) 

Diffusion coefficient for the tracer atoms {cm2 /sec) 

Fractional release of the tracer element 

Number of tracer atoms 

Initial value of Q 

Space coordinate in spherical geometry (em) 

Time from start of evaporation/diffusion (sec) 

Space coordinate in slab geometry (em) 

Dimensionless evaporation/diffusion coefficient [ Eq. (II -8)] 

Integration variable (em) 

Dimensionless time [Eq. (II-7)] 
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