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ABSTRACT
An inveetigation is made to determine those properties demanded of

the Regge pole formulas used by Ghew and Jones in order to ensure the con-.
istency of the strip approximation. A study of the asymptotic behavior of
the Rogge' para‘metero ba'sed'_on the dynamical equations is also made in
relation to the same quosfion. The conclusion is drawn that the dynam.ical"
v equotions appear capablé of producing solutiona that are essentially self-
consistent with the strip approximation that was uned as an input The Chew‘f |
J ones Regga pole formula is also compared with one auggested earher by

Kh_uri.
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1. INTRODUCTION

In the prececiing paperiva specific ca’.l‘culationa"l scheme is giv‘en for
bootstrapping the top-lying Regge trajectories by means 'Qf a set of N/D |
eqﬁations. ‘To produce the b.c?'oi:strap cycle, the input of the calculation is
parameterized in terms of the Regge traje;:tories of the cfossed chanrnels'?"
and the output trajectories are re quiréd to agieé self—cénsistently with the.
input., The contributiohs a_;ssociated with Regge 'traje,ctoriés that form the °
input of the calculation areé-expressed by formulas that aré assumed to give
a good approximation to the scattering amplitude in certain strip regions of
_ 'the‘ Mandelstam,diagram showh in Fig. 1. |

T.he object of the discussion here will be to establish in more detail
the conditions 'undve.r. which the_ strip approximation is expected to be consistent.
In Sect‘ion I we shall study thé érqssing symmetric Regge represéntationused
.by Chew aﬁd Jones (C‘J.) as the basis for the I_stvrip appro#ixﬁatiqn’ to see what
prope'rtiéis' aré re'quired £br it to be an accurate representation 6f_the‘amp1i- ‘
tude, ".I‘henvalidity of the strip approximatibn is closely linked with thé as- |
 ymptotic prbperties_ of the Regge parameﬁ_zrs, and in. Section III we discuss

what the dynamical equations predict_ about these properties.

11. CROSSING SYMMETRIC '.P;EGGE REPRESENTATION
AND THbE STRIP AP”PROXIMATIQN
We Aexaminé here the crossin‘g"s'ymmetric Regge repfesentation, which
‘is' the basis for the strip approximationi, to see that it éonforms to all.brea-
sﬁhable physical requirements and that it is consistent with the basic approx-
imation scheme. The main object of the strip approximétioﬁ in CJ is fo
determine an apprommate representation for the function B By (s), thus deter-

mining the kernel of the dynamical. equatxon
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Representing .B (s) by a few leadina Regge-pole terms m the t ancl
u channels appears to be the best parameterization of the input to the N/ D
equations yet discovered These terms include the effects of resonances in
the cros sed channels which dominate the nearby portion of the left-hand cut.
'To the' extent tllat the 'Mandelstarn cuts can be considered weak in comparison ‘
to the poles (see Section VII of reference 1), these terms also correctly charac-
' terize the asymptotic behavior on the left- and right-hand cuts. Most prevxous |
calculations have been content with representing correctly only the nearby part
of the left-hand cut and ignoring inelastic effects (such as keeping one term of
Ca polynomial expansxon in the crossed channel as was proposed in the original
work by Chew a.nd Mandelstam ) “Even admitting tha.t the Regge parameter-
ization is desirable, there is still the 'question remaining of what form the
Regge representation shonld t'ai{e. We shall examine here the one proposed by
CJ and compare it with one suggested earlier by Khuri 4
What we seek is an approximate representation of the full amplitude of *
-thé form | , - |
, —r t 4 u 1
A(s, t.»n) & >T R, (s..t) + E‘i R, (s, u)l

' +Z j (t s) + &5 t u)} (I1. 1)
- ‘

+Z’< Rk 1(“- S) + gk Rkii(u- t)} N

‘ﬁ}i’ere we 'h'a,ve a sum. over the: leading Regge pole terms in the s,t, and u
-channels respectwely (The @i 3.k are signature factors and we have used

__the notatlon in CJ. )} The strip regions in which the various terms of (IL '1) are
assumed to dominate the'amplitude are shown in Fig, 1. These regions include
the low;energy range of all three channels and the high~energy domain near

the forward and backward directions. The companion diagram, Fig. 2, shows
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the corresponding regions where the Mandels‘tam‘ double~si_>ectra1 fur;ctions afe
dominated by R.egge pole terms. As expl.ained in reference 1, our sz(s).
inpﬁt is to be determined by the t and u Regge terms from (II. 1) as well as
by the left-hand cut contribution from the s Regge term.
We now list the desired properties of our Regge represéntation (II.'i):

1. Near the resona:ncea in each channel the expression should go over to
the usual Breit- -Wigner form with the correct position and width, This means
that in the angular momentum plane there should be a pole at f=a(s,t, or u)
in the amplitude, 'wit_h the correct residue, p(s, t, or ‘u).

2. Each Regge term should give the correct asymptotic behavior in the
~ strip region inn which it dominates. For exami)le, the s-éhannel term must
have a behavior ;:i(s) tai(s’ as t - oo, wizfer‘e the power and the coefficient are
correct.

3.‘ No spurious poles are permitted in the £ plane to the right of
Re £ = - % Spurious poles which approachvth’e physicai region are obviously'
unwanted and have the effect of distorting the left-hand cut. |

4 Each Regge term ahould aatisfy the Mandelatam representatmn thh a
double-spectral function characteri_stic of the strip region in which it dominates,
(See Fig. 2.) | o ’ |

5. Each Regge term should vanish asymptotvicalAly in a direction perpen-
dicular to its strip, Thus an ‘s-.chann‘el Regge term gives the asymf)tdtic be -
havior of-the amplitude aé | t - o, but is iequired to vanish as. 8 - w" This
requiremeﬁt is Qery important if we are to avoid double‘-counting’.in (IVI.bii) and -
also if we are to be certain that the part of the a.mplitqde neglected in (II. 1) is -
small. This réquirement means that a Regge term will cohtribute'asymptotically

in a direction perpendicular to its strip no more strongly than the background -

term of a Sommerfeld-Watson transform,
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In order to establish a representation (II. 1) satisfying properties 1

through 5 we shall assume: (a) the partial-wave amplitude in each of the three |

channels is meromorphxc with only Regge poles to the rxght of Re 17,»— - —2— H

et it €

;ee1dues of the Regge poles, p. vamsh asymptotlcally at least as

fast as the .mve'rse square root of energy, to within logarlthmic factors ,5.-‘
v(c) in order for the specifm representatmn we discuss to satisfy requxrement
3, we must assume that all Regge poles that reach the right half ﬁ plane
revstrict their movement in the { plane to the right of Re f=- —. {d) both vy
(thé reduced residﬁe) and o are real analytic functions cut from threshold to‘
~+ oo, |
It may be possible to invent a representation (II. 1) which dispenses with

as sumption (c:l)ﬁ hgwéi)er, | it appears quite possible in the CJ ‘model that the
_equatioxi will acfué.liy generate solutions having property (c).

' We now sho@ that if we make the above assmnptions,_ the representation

. , . t
given in CJ has the properties required, We look at Ri 1(zs;, t) defined by

~

t. o a{s) e
R; Msut) = 320 (s)+ i.]_*yi(s)(-qsz) | E,EE_ a(s)(-1 -t'/2q_°), (1. 2)

|-

O.i(S)

where y,(s) is the actual residue B (s) divided by (q,°)  , and q %=s/4-1.

Equation (II. 2), as it stands, is well defined for ai(s) < 0, and is to be deter-
mined in othér fegions by analytic continuation. We see immediately by inspec-
tion that vRiti,(s, t) satisfies property 4, having a double-spectral function with»
asymptotes s = 9.0' t=t,.

Using the dispersi.on relation for Legendre functions of complex order,

we vméy rewrite equation (II. 2)
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t

R, Ye,t) = o [2a,(8)+ 1] v, . 'Zai(S)[ T P 1 t/z‘vZ
i '8 "i'[,ai(s ] Yi(s)(-qs ) LS—P—_—ITln“Qi 5 ai(s) +( 9 )

. P (s)( ") : :
+. dz' . : (IL 3)
_1;__“1/2(1:) z +1+(t/2q %)

The first term in (IL 3) is just the ordinary Regge pole formula, which
then has a pole in the angular mornentﬁm at £ = ui(s) with the correct residue,
ﬁi(s). As is well known, the'firsit term also possesses a spurious pole in the |
£ plane at B = - o.i(s) -1, but as long as we make ass'umptior‘x (c) it vﬁll never
reach the'right half f plane. The integral term in (11, 3) has, for fixed s, an |
asymptqtic t exéan_sibn consisting of iﬁtegral poweré of 1/t. This means that
_th-is’te‘r'rn can have, at worst, a sequence of fixed poles in the [/ plane at the -
negative mtegers Properties' i anci 3 aré thus verified. |

Asymptotm behavior in t for fixed s 1is clearly governed by the first
term of (II. 3) and has the correct form requlred by property 2. 7

Fo;'”the asymptotié pr;)perties‘ perpe’ndicula.r’ to the strip we must look at
the second term of (IL. 3), which for large s and fixed t dxverges at the lower

limit of 1ntegrat10n. In this neighborhood, we can write

. ;1 n (S)(Z ) ]
/ . da? < = constf' dz* In(z +/1) s ix,-'lnzs .
. PAR T (R 8= oo ' _ z'+1+(t/2q_ ") R
o1-(t/2q %) | quz tfized  Y-1-(t/2q %) s
| - (IL 4)-
and thus ' ' } ] | '
t : o 2 ' o
Ri (s,t) = const [Bi(s) In“s. S . (IL. 5)..
' 8-%oc0 . ; :
t fixed

With assumption (b), this establishes property 5,

?
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.We now Wish to vérify thaf Eq. (IL 1') constitutes a good approximation
to the amplitu’de in the sense that the remainder 6f the amplitude“ (presumably
- depending almost exclusively on portions of the double -spectral functions not
shaded in Fig. Z) vanishes asymptotically in each direction at least as fast as
the inverae square root of the energy variable, This follqws from assumption,
(a). | o |
B To céfr& out the pibdf, Qé break the amplitixdé .upv into the bc_o'ntribgtions- N
vcorriingvfrtlam' each doub1e~sp'e.c;tra1 _fufxct{on. _Wg'cqnéid’éf A (s, t) “arising
' from the (s, t) ddu’ble-spectral functioAn;' 'I"he' partiaiéané 'amplitudes which
result from A st (s, t) by projectlon in the - 8 and t. channels possess the same
"Regge poles in those channels as the full amplitude A(s t). We now perfor—m
Sommerfeld Watson transformatmn on - A (s,t) in the t: channel. when this

5,
is accomplished we. replace the ordmary Regge pole term with RJ (t s),

incorporating the dxffe_r_ence into the back-ground. Thus we write®

N L , Bt 8
Ast(s' t) = _ABt (s},_t) + Rj'

where the first term on the right represents the t background term. "

Yt o), - ane)

Aéy'mptotitl:a"l.lvy in s, we may write |

1/2'

A tBt(s, t) < const / s (I1. 7)
. K:fad
-t fixed
We can now perform 'a. Sommerfeld-Watson tx‘ansformation of (IL. 6) in the
s channel and; recalling the asymptotic t behavior of the second term,
54 | 2, (1L 8)
R, "(t,8) ——— B.{t) In"t
j. oo j .
8 fixed

we see that with assumption (b) this term can be identified as a part of the

8 channel background term, Finally, therefore, we may write
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t . 8

Bts(s t) + R, s, t) + R Y, s), (1. 9)

Al t) ,=' A
where the first term on the right of (II. 9) must vanish asyrﬁpt»Otica'Zl’-l‘y'a's the inverse
square root in either s or t. An identical argument may be carried out for the
segments of A(s,t) coming from the other two double-spectral functions, and
the va.lidxty of the representation (II. 1) is established.

_Khuri4 has recently proposed an alternative Regge pole formula to Eq._
(I1. 2). The two formulas differ in an important way dnd we now wish to compare
them. The link betweet_x (II. 2) and the Khuri fofmule is most easily established
by replacing ‘Pai(s.) in (IL 2) by its asymptotic .expansio‘n in t’, |

~ Assuming ai(s)- > -1/2, we have

. w w ai(s)-n
: t a.(s) . ' ‘ -t ' X
R, s, t) = 320, O P e IR O ) . (a0
: ot "t n=0 © \%%
1

t

~ .

Khuri's Regge term, Ri 1(5. t), results frorn taking only a finite number of
terms in (II. 10) determined by the maximum excursion of ai(s) for real 8.
Spec1f1ca11y, Khuri drops those terms which decrease at 1n£1n1ty at least as
fast as the inverse square root of t' for all real values of s. The correct ‘
asymptotic: t behavior is clearly preserved’in this case and the pole term is
correctly present, satisfying our properties 1 and 2>. |
The important difference bet;neexi (I1.10) and (Il. 2) is in the asymptotic
8 behavior, 4 Equation (I1.10) contains the feature that the asymptotic s behavior

depends as follows upon the number of terms N that are retained in the sum, 7

¢ C - . N-ui(s) , ; A
4(s,t) ——> const g, (s)(q,%) ) R R

5% 00

t fixed
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In order to satisfy prope rty ,5’ an'd'al‘so the condition that the remainder -
‘of the amplitudes after the Khuri terms are removed vanishes in all directions_.
like the backgreund ter‘m,_ we must make different assumptions about the
' asyfnptotic ‘behavior of the pi(e) than i;vere made in (b). Specifically, in f:he
Khuri case the '[3;(”_8})' must generally vanish more strongly, the precise power
requii'ed _de_pending_up‘on‘-the maximum rightward excursion of the Regge pole
ni(s). This is the hear_f of the distinction between the two approaches, namely,
a difference in the ass‘umptidns about the‘a,sy'mptot_'ic behavior of the residues.

We find no reason to su-pport the notion vt‘h-at the asymptotic beha}.vior‘e'f
" the residues is linked to the number ef'resonaﬁces ‘or bound ste.tes prodﬁced by
a given Regge trajectory, and so we tend to favor assumptxon {b) made in CJ,
and the use of expressmn (II 2) The estimates given in the next section of the’
as_ymptotm be'hav;o_z" of the Regge parameﬁers based upon the dynamical equatioxis
’ alse.app’ear:to suppoft assumptier_x (b). Although a potentialftheory argﬁme’nt on
‘thi‘s point must be considered weak, we note th'et in_nonreiétivi_atic potential . |
vscet'f:er»invg. ther‘eﬁ is no correlation between the ‘asy.mpto'tic behavior of fhe residue

. and the r'ightwar‘d' excursion of tlie Regge t_ra.jectoi'y. |

IIl. ASYMPTOTIC BEHAVIOR OF REGGE PARAMETERS
The dynamzcal equatmns in CJ determine the Regge trajectories f(= a(s)

through solut:.on of the equatmn

D (s) =0, - | | S {IL 4)
This can be solvec'lvfo_r 8 <~BO’ where all quantities involved are real. Once
—a(s) is determined, the residue may be calculated, In fact the self-consisteﬁcy
requirement of the bootstrap calculation is satisfied by matching the Regge
parameters which go into determining B Ep(s)v with those computed using (III. 1),

Of immediate interest is the question of the asymptotic behavior of trajectories .
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~and residues, . We have seen in the previous sectiovn that a consideration of
this point is quite important in establi»shing the consistency of the strip approx-
imation, o |
First, we discuss the asyrhptotié behavior of _a(s), which is 'determinéd
by the solutions of (IIl. 1) as 8 - », We know D,- 1 as 5 ~ o, ’so it appears
reasonable that if the top-lying txféjectories approach distinct limits as s+ «,
this limit must be a fixed infinite-type £ singularity of 'Dy(s). To illustrate
we consider the mechanism of a fixed simple pole in £ discussed in CJ. In

this case we can write, for Dz(s), '

: 8 ,
L _ : 1 r(s', £) ' '
DE(S) = 1 + m : f ds? W s v o (III. Z)
2 A | ‘
0 .
where r(s, f)is xjegular at £ = a(w), Solving Eq. (IIL. 1) in the high-energy

limit gives
a(s) -~ a{w) = d/s + terms of order 1/13Z
1, B, S | |
d, = = j ds' rs', afw)]. ‘ (I11. 3)
84 '

It is argued in CJ that the fixed poles that occur arise from the Fredholm
character of the basic equation. The explicit expression for the Fredholm
kernel K’ (s, si) that results from the dynamical equations is given by Egq. (I. 11)
of reference 8. 'In this problem it is importaht to note that the kernel is actually
a function of the eigenpgraméter £, rather than being a sfmple multiplicative |
factor. Iix regions where the kernel K’)Z(s,.s') is locally an analytic function -
of ¢, this cannot change the nature of the eigenvalue problem, for ’Kk('a, g')
éan be expanded in these regions to give in a neighboi'hood the usual linear de- -

- pendence on £, This functional dependence of the kez‘nel on the parameter f, -
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-~ however, modifies the solut_ion as a function of { from what would be expected
in the usual Fredholm case, and it becomes an 'impdrtant problem to study thg
singularities of thq_uly,;ernel in £. In the étandard case the eigénparameter. .
simply ;multiplies the kernel_ and:‘the sblution'.possesses poles in the / plane
given by the zeroes ’.i)f_the Fredholm detérminaht, which is a holomorphic function.
' These poles posséss no point of accumﬁlatiqn in the finite plane. |
vIn'our case, the kernel Ky,’ (s, ') will gene.rally possess poles as well
- as branch pqint's, and the above picture becomes considerably more complicated.
" Near fixed poles of the kernel in / we exi:se_ct' an accumulation of Fredholm'pol"es, '
since the kernel becomes unbounded in_'such a neighborhdod. Branch points in
- the kérnermay be transmitted more or less directly to the solution, | or such
':singulariti‘es may be moc_lified in the proCesé, depen.ding onthe singularitf tyfgaé.'
In any event the s-sirx_g\ilarity st;'uéture of fhe kerﬁel KE'(S' s') in f wiil cleaﬂy
play an impozftanf role in de‘términing the nature of the dynamical solutions, and
(as already discussed) we also expect it to playv a cen;:ral role in determining the
ésymptotic' behavior of the Regge parametefs. | |

The Fredh’blfn k¢rné1 Kg" (‘s, 8') has e'sseﬁtially the sar‘né singularity
as ‘Bﬂp(s) has in’the )/ pléne, and we shall begiﬁ our discussion by _Iocating
irﬁportant sir}gularities of B.gp(s). As shown in CJ, if the residues vanish
sufficiently faét at infinity the leading singularity will be the Gr‘ibov—Porheranchukg
pole ét £ =-1. In the discussion that follows, we make thev aséumption fhat the.
.Gribov-Pomeranchuk pole is the dominan‘t singularity of Bp(_s ). This é.ssumption
can be di.rectiy Justified if the reduced residues, Xi(s_)’_ vanish strongly gt infinity
and high-—énergy elastic scattering data leﬁd experimental sﬁpport to this notion
{(see Section VI of CJ). 10 The unbdund'ed charaéter of the function near 2= -1
is e#pectéd to produce an accumulation point for Fredholm poles, and if these
polés are distinct we may focus our attention on fhe”B‘ﬁe standing farthést to the
right at £ = a(»). The pole produced in the solution of the integral eq\iation for

Np(s) is carried over to Dﬁ(s) by the relation
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5

o 1 p ,(s') N (s') ’ ‘
1. ,
Dfsy=1-2 f as' 2 L, : (L. 4)

- 8

80

If we assume a simple pole at / = a (=), the situation of equation (III. 2) is

- produced and the asympfotic: behavior (III. 3) is found for a(s). Néte that the
Fredholm pole occurs in both N and D, thereby cancelling out in the complete ’
amplitude. This is as it éhould be, for the complete amplitude has no fixed

i)ole at £ = a(o). We also point out that B (s) is regular at £ = a(»). To
determine the corresponding asymptotlc behavior for the reduced residue v(s) .

we use the fact

yls) = To(s) ) (IIL. 5)
VT @Y s e |
We can expand both N and D in a Laurent series about £ = a(«),
: . T S) 00 . .
z(s) =1 +7‘%237 an(s) [£-a(e)]™ . (L eé)
=0 - _ v
. N(s) N n ' o - v
E(S) = m Z fn (s) [[,-u(oo.).] . (I11. 7)
n=0 ' ’ ' . .
For our purp'osés it will be convenient to write the equation for NE(S) as
b 4 (1 BN p 8N (s
N,(s) = D (s) B, (s)+-1-r-j ds’ B (111. 8)
, ‘ 5,
Thus, inserting (IIL. 7) into (IIL 8),
: ’ s
, 1 (S )p )(8')r (s")
P 1 i N
N (e) = D(s) B, (s) + o 7=q=y) f asr L s .
‘ , - S
0
0 s ' P Y ¢ N o ' '
1 B, (s')p ") £ " (s") , :
y L // .
= Z e-agen® [ as e ~ @)

%0
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The functions sz(s) and p E(S) also have expansions about the point {=a(w):

P .

BEP(s) = Z vbn(s)[z - a{=)]", - (IIL 10)”“
’ n=0 . .
pyls) = Z p™(s)[ £ - a(w)]™

n=0 -

.'Substituting 2= d(s) into (III. 9), we keep the léadiﬁg'behavior in 8 as 8 - oo

‘We find the first term of (III, 9) vanishes because Da(s_)(s-) = 0, giving

4 ¢

| NQ(S)(B) Biéo "' ek "T—r""—(—")‘a s -CI.VI°° ®
.31 _ v | o
c= f ~ de’by(s')p of8") ry(s'). (I 11)
. 8y S
We also have
dD (S) ::, . 1'(5) - o v o r (8)
? D . $ D n-4 D
- B e iyt nf “(s)[a(s)~a(w)] "= - ——— }
a7 . f=a(s)  [a(s)- a(w;]—z -;0 n s—+w  [a(s)=-a(=)]"
. : | . : . (III.~1-.2)".
‘r:])(s) e ;:o;xst .
i B—%o -
vReca;llling (IiI.‘?:), wé ﬁave finally
' | ~ . & a(s)- u(oo)v _const ' o .
. Y(s) oo s rD(S) = | 5 o | . (III. 13)

We see that Eq. (III. 13) implies for B(s) an asymptotic behavior

pla) —— (20" 1.
as :
8 ~» o0

)
B{s) will vanish strongly enough at infinity to satisfy
property 5 of Section II,

As long as a(w) < 1/2,
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One may ask if it'is possible for multiple poles to develop at £ = a(w)
in our Fredholm equatién. The answer to the question is apparéntly Yyes, " ‘
because the kérnel I<£'(8, s') is not symmetrical. When the kernel i'_s not
symmetrical there is no assuran;:e it can be diag'onalized, and such a faiiure :
provides the Oppdr.tunity for multiple poles to occur. This possibility, we shall
see, complicates the question of asymptotic behavior, |

We can illustrate the occurrence of multiplé poles for non-symietrical
kernels by reference to a simple example in linear algébraic equations., Con-

sider the linear equations

y + Lx, - : - (I11.14)

X, "y, 11 - | |
xz 4 YZ » L= 0 4 ° : (111.15)

The operator L is feadily seen to have a double.eigenvalue for A =1, but

Ax

- where x

there is only one eigenvector (é) . Thus ," L cannot be diagonalized and the
solution to (IIl.14)has a double pole when \ = 41, Because qf the complete cor-
respondence that exists between systems of linear algebraic and Fredholm |
ixﬁ:egral equationé, .we may infer that the ébove result is quite.;general and we
may expect to find, for nénsymmetric kernels, kth-order Fredholm poles, 1

‘In the case of kth -order poles, reasoning similar to that leading to

' Eq. (I 3) gives
a(s) - a(wo) = const (-8)” 1/k . ‘ : _ (111, 15%)

The corresponding asymptotic behavior for the reduced residue is
v(s) =  const (-s)” 1/k
8 ~» o0

(IIL. 1:7)
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In this case the high-energy behavior is

. p(s)”——‘—~) s‘a(eo)-i/k ]
- as
5=+ c0

So, in order for p.rop'é‘rty 5" of Section II to be true, we must have
a(w) < 1/k=-1/2.
It should be emphasized that in both the simple and multiple-pole caées, the

‘asymptotic behavior deduced puts an upper bound on thé behavior; the residues

may vanish more rapidly,

IV. CONCLUSION

We have e‘stablishéd the ¢onditions under which Eqs. (IL. 1} and (II. Z).
ai'e expected to cqmpr'isé a ‘good épproxinﬁation to the scattering amplitude in
| the strip regipn.-,of Fi'g.. 1. The bgé_ic requirements for the con‘sistency of the
appro_ximation are that B(s) vanis‘h at infinity ’at.a' ieast as fast as. fhe inverse
"afma'r;e‘ rdotsio"f -8 ‘and that a(w)>-1/2. An examination of the dynamical equa-
'tions in the asyxhétotic lim’it suggests that solutions with the general asymptotic
prdpefties_ fequifed fd-ma.ke the strip approximation bconsiste’nt can be expected, B
Howe#ér, from thé considerations given i'xexe, one cannot establish copclusivély
the strong tendehc:y for the 'reducedfresidu;m to vanish at inﬁtﬁty. as indicated
by ekpe_riment. More _precise.informafion and new insights on these questions
will d_oubtless emerge as nuthericé.l calculations with the equati‘onys are per~

formed.
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Fig. 1. Region of val1d1ty of strip apprommatmn, :

Fig. 2. Regxons where Regge terms dommate the double -spectral

func_ti Qns R
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