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ABSTRACT

The analytic structure of two-particle to three-particle production
_amplitudes is examined within the framevork of enalytic S-matrix theory,

- with particular emphasis on the structure of the physical sheet. The ﬁasic
principle used is maximal analyticity, which is boﬁh discussed and exegﬁlified.
The knowledge of the structure of the physical sheet is used in deriving
formulas for the discontinuities across the cufs}in the two-particlé sub-
energies of the three~particle channel and au& across the cut in the total

energy.
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I. IﬁTRODUCTION

The deﬁermination of the precise content.of the principle of maximal
analyticity is an important problem in analytic S-matrix theory.l This
princ1ple aaserts that scattering amplitudes, regarded as analytic functlons
of appropriate variables, have only the‘singu}&rities.reqnired by general
properties of the amplitudes.2 Asoociated withithe problem of determining
the locations ofvthese singularitios are many qnestions regarding the sheet
structure of the Riemann surface and the dlscontlnuities across branch cuts,
A"It remaing to be shown on the basis.of maxlmal analyticxty that one can"
- construct a single "physical" sheet, which contains all the physical points.

. Moreover, even with the assurance of the existence of the physical sheety

. there are still qnestions regarding the structure of the singularitles on

that sheet and how one analytically continues from one physical region to

. another, Though the situation is relatively simple-for scattering processes

?i:‘ involving two particles only; it is not 4t all'well understood when channels

- containing three or more pasrticles are taken into consideration. Complicatiohs

'  arise not only because of ‘the increose in the number of varisbles necessary

. to describe the processes, but also because of the possibility ofnover-"

- lapping normal cuts and the inevitable emergence of complex and anomalous
~cuts, In this paper we'ehall.examiné for the case of a produciion amplitude.v
~ some of the simple ways in which these problems arise, and how they may be.

resolved,

Our ultlmate aim here is to derive the discontinulties across unltarity

" cuts associated thh all the energy and subenergy channels of a production

'f'processe It is ordinarily considered that the discontinuity equation follows
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- froﬁ unitarity and He;mitian analyticity, 'Recently; Stt:z.pp:i has shﬁwn that |
_ the discontinuiﬁy_equation can be derived as a direct conséquence of the
~ superposition principle and the in-outlﬁoﬁndary conditions for the S-matrix,

-

quite independent of unitarity and time reversal invarianceas.In_terms of

-
" the scattering function M, defined by S = I +‘M, this equatioh has the form
. . L » t : n " oy o
M(Gi.,.;rgo-;a-qd +) .-.,;M.(.oi-e-,fs—, aJ .,.) = M(Oifg 8=y Ok -)M(Uk fp, 8%, UJ "')).' '

i(lol%.'

-.where 8 4is the total energy squared and the o variables represent the

squares of .the various subchannel energies. The ¢ gigns.designate tie¢ ,

n ‘ . . )
~ and the intermediate variables ak are to be integrated over the ranges

allowed by the_phase space of the intermediate state. This isvthe basié,_

- overall discontihuity_equatiqn. it does not, however, give the -discontinuity
for any one variable aione, éxcept in the simplest,casé of:.a two-particle_
intermediate channel..~0ur aim is to derive from (1.1) all the single=-

variable discontinuity equations of dpproduption amp;itudé. In the éourse of . :

{ .
-the derivation we shall encounter'aqd must solve some of the problems.

3

mentioned in the preceding paragrhph.

Consider the production process as pictured in Fig. l(a) and let us use

"~ the scelar variables as indicated .in that figure. One may ask what. the

discontinuity.acrossithe subenergy ¢ cut is. If one assumes that the usual
" two~particle discontinuity equation can be generalized to this case, the
result can be ‘shown pictorially as in Fig. 1(b). (An algebraic formulation

is an emergy-like variable and must have

¥

1

will be given later.) Since w
a value greater than its two~particie‘threshold'if the production process

-

..
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is physical, certain questions immediately arise, Should Wy be evaluated

- above or below the two-éarticle unitarity cut? How does the answer depend

upon the external variables? Note that these questions do not arise in model

calculations,& where-the interaction between Bnly two of the three particles )

* in the final state is assumed to be_dominanto‘

We propoée to derive the discontinuity equation for a subenergy variablé
by an analytic continuation from a region where the same variable is the
total energy of the crossed process, for.vwhich the two=particle discontinuity
équation is known by virtue of (1.1).  In other words we start yithjﬁhe

process for which line 3 in Fig. 1(b) is originally on the same side as lines

1l and 23 then keeping o fixed above - its two-particle ‘threshold, we véiy the

other variables in such a way that in the end line 3 is effectively sﬁuﬂg

over to the other side. 1In effecting this continuation, the main problem is

- to find all the sinéulariﬁies that may obstruct the path and to determine

the appropriate locations of the associated branch cuts, sa:that oné can .

avoid continuing into unphysical sheets., .The implication is, therefore, that

‘ . we mus* determine the boundaries of:the'physical sheet, at least to & certain

order in the structure of the singularitiés. Since, by.-definition, the

o physical sheet must contain all the.physical points, the boundaries will be

- 8o chosen that one cah always analytically continue from one physical point

to another élong paths that stay within the sheet, and that this.§r0perty is

- preserved when the singulérity structure of‘higher order~is'considered. In

fact, we shali adopf a rule for' the placement of the branch cuts of a

,;qiscontipuity function by,requiring that the form 6f,the discontinuity . equation

is'the'same‘qt,gil pbints'of the‘"principgl"fshegt bounded byiﬁhese cups.'4

<
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. The singularity structure of the scatiéring function: itself can then be'
determined with the help of Cauchy's'{ﬁeorem.

In Sectiop iI we present the conéiderations needed for tﬁe determinatioﬁ ‘L?
of the singularities of a scattering fﬂnction and the boundaries of the ?
princibgl sheet of the associated discbntinuiéy functions, The considerations }?'
are illustratgd by the study4of the fifst-order singularities of a prcduction' e

amplitude. Continuation of a twoeparticlé discontinuity function is astudied ,fﬁ

in Section III, the discontinuity equation in a subchannel energy variable

is then obtained. The problem is later extended 1n Section IV to include ’ .3{‘9%’v

singularities of higher ordero, After the discontinu1ty equations in sub»
energy variables are obtained, we then derive (in Section IV) the discogtinuity;;y
across the three-particle cut in the total energy veriable with the other

&ariablés kept fixed. This is quite simple once we Understand the structure . = -

e,

of the physical sheet and.somé properties of the two—particlevaubenexgy‘; )'].i;
 discontinuity equations, | A _ . s ;a;..‘_\ﬁ

o

.
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‘equation in g with a pole in W,
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II. THE PHYSICAL SHEET
In this section we consider, by means of a simple example, a procedure

for determining the boundaries of the physical sheet {n accordance with the

principle of maximal analyticity., It will be well to etate at the outset

-our interpretation of this principle. We first assume that it is possidble
. _ v ass

to derive from (1.1) single~variable discontinuity equations. Equation.(l.l)

itself is such an equation in'the case of two-particle discontinuity in the

ls variable, Results of this work (and generalization to more complicated

processes 10 be discussed in a later paper) Justify the assumption that

single«variable discontinuity equations can be derived in any variable. In'
!
lone

i

conjunction with Cauchy's theorem, such a discontinuity equation allows

to express a certain contribution to the scattering function M in terms of

- other M functions. We interprete maximal, analyticity to mean that M can

be built up as a sum of such contrinutions, plus, perhaps, contributions -
from contours at infinity;- The general procedure‘for obtaining'the analytic
structure is to start with contributions coming from the Cauchy contours
near the physical region, first.without regard to singularities of the M

functions on the right of the discontinuity equations, and then to introduce

Lf,the structure of these functions by means of an iteration-procedure.g' The
" _singularitieshareithereby classified as to order. In this section we examine

~in detail the singularities obtained by iterating once'the discontinuity

'y [see Fig. Kb)].

'A. The Starting P01nt :

Let the process shown in Fig. 2(a), be represented by the function5

: M(s, g, m). The invariant variables are defined in' terms of the momentum
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four vectors as follows:

R

e g2 Lo 2 _ 2
8 (kl+1;2) y O (kh-tks) s W (kh-ks) ‘

" The two-particié discontinuity equation in the total energy variable ¢ has

a form as given by {(1.1)s On the right;hand gide there is implied an - T

i o A ——————

integration‘ovér the intermediate phase-space factor, which, for a twowparticle |

7'

1ntermediate channel of masses m6 and m

S e s o aE

—

Sf;r Tzu)l‘ 21r6(ki - m 2)e(x °):] (211) 6 (k * kS - k6 - k_{) - (2.1)
i=6,7 _— ' R g

The diagfam associated with this diséontinuit& is shown in Fig. 2(b). The
normal threshold singularify in the ¢ variable‘ie located at.the point where
the above phase-space factor v;nishes, i, e., at °.=0 = (m m7) The.
discontinuity is.nonvanishing only along the reél axlg for ¢ > Ot, provided - }
the external momenta are real;2 it is only in this case that the energy- ‘ Q
mqmentum.conse:vation laws can be satisfied with real internal momenta, and )- Ly
that (2.1) is consequently well-defined. The external momenta are guaranteed
to be real if the thresholds of the externsl channels are lower than the ;
internal threshold. Thus, if the masses of the external particles are ﬂ
sufficientiy shall the Cauchy contour will give a éontribution that reduces !
't° a .line integrﬁ;'over the{discogtinuity function extending from 9_ to [

t
infinity along_the}real‘axis.‘ The position of this contour, which defines & - i

k;boundary of the physical:sﬂeet, will, for large mass values, be determined

\ t

D s < . o oty e o anend
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by continuation in the external masses. The justification of this procedure
will be discuséed laterﬂ Thus, neglecting contrihﬁtions associated with -
- other possible singu;arities in‘the o - plane, we have as our starting point
the formula

: 1 . _a9

Mo(sl‘o o'y w) v _ : | : (2.2)

6

vhich is Valid.if the (effective)cexternal masses are small enough. This

is the normal or first~-order contribution éo M associated with this two-
particle intermediate state. 'This contribution will always remain fori%M.
but it may, for.larger values of the externgl'masses; be augmented by'higher:
order contributions,.which coﬁe from possible added segments of thé path.‘

of integration that detour around cuts of M, . Although the.normal
contributions are called the firsteorder contributions they are much more

comprehens@Ve,thah the first-order perturbation contributions, as they in

- fact constitute the entire function for small values of the external effective -

- masses.,

The discontinuity functiq? Mg appearing in (2.2) 18

|1}

.Mo(gn‘°'*;,@) M(s,.d'f, w) - M<?; ol=y w)

;'

. dn“"p(°'+)‘A<of“’-wz)-M(squ'f,él);- o (2.3)

N (2.4)
p(o!) = p7(qf)/32v?(of) (2 .

e ey ————
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Here, p7,his the magnitude of the three—momentum'of particle T in the

rest frame of the o' channel, and the integration is to be taken over 511
,poss?ble &irectiops of this momentum. A(¢', ?2) represents the iéft;hand
bubble in Fig. 2(v); M(s, o', wl) represents the right.

The first.problem is to determine the losations of the singularities of

Mé in the ,°' plane.l These are obta%ned by substituting into the rightehand
side of (2.3) various contributions to A and M . One proceeds by iteration, ..
starting withlcOntributions to A, and M coning from poles and normal
contributions., Contributions with singularities only at very lafge ¢' have
' no singularity strﬁctﬁre in the rggién of émall ¢' and therefore act in

this region effectively as constants with respect to the singulérity'séfucture.
We shall consider first the sihgﬁlaritiee of M, "that are assoéiated'wiyh(the

constant part of A and the pole term

.

. M(wl) = P/(wl - m82) ' ' ' h _';.> (2.5)

4n M . The corresponding diagram is shown in Fig._3. We shall insert
these contributions into (2.2) for 'small external masses, . then continue the
masses to their actual values, and finally study the function M as an

" analytic function of s and o . Before so doing, however, we discuss

briefly the procedure of continuation in external mass.

B. Continuation in External Mass

The problem of Justifying continuation in the masses of external particles

~

within the framework of analytic S-matrix theory has been considered by Stapp.

AL]

We describe here the main ides.
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Suppose we went to continue in m3 the .M: function corresponding to_

the diagram given in Fig. 2(&); Then first,consider the M function of a
largervprocesé, involviné six external particles instead~of five; let us
call it M'(s, Oy 1) where:at is .the effective mass squared cf.the two~-
particles as indicated in Fig. h.' The analytic structure of M! can be

determined in the same ﬁay as that of ' M, and for every contribution to M

there will be an analogous ccntribution‘to' M'. Now, general properties of t

the analytic S~matrix theory requinrecsthat M' have apole at % =mn 2 o

3

. Moreover, the residue at any such pole must be factorii_able.8 In particular,

-

2 - 4
Lim (¢ = my ) M'(s, o, t) = GM(s, o) , i\
5 . .

where G is a constant. It follows that M(s, o) defined in this way can

have cuts and singuldrities only at ﬁhe limit points of the cuts and singu= .

larities of M'(s, o, T) as 1 - m.32 . If M'(s, o, t) is analytic in «
{ . ) :

as T m32 s its singularitiea in s and o must move continuously. Thus

one can determine the locations of singuiariﬁies of M by tracing the

corresponding singularities of M' as ‘i +m o It is in this sense that .

~ we shall ‘discuss continuation in the external masses. Note that we have in

no way implied that the actual scattering functions are defined for unphysical

values of the masses,

'C. Locations of Singularities

We now proceed with the problem of determining the locations-of the

‘singplarities‘of M(s, o) dorrespbnding'to the diagram in Fig. 3. Define 6

as the angle between 53' and 57"in the rest frame of the o' channel.

e e ——

e e e o mm—e v
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Thus, - we have

w, = m32 + m7 - 2E3.E7 + 2p3 ?7 cos 6 , (2i6)
where ) L . -
.' 2 '1/2' , _ 5 2 1/2 .

E, = (o'wetm ) /20" K P, =.|§3| = (E3 - m, ),

' ' . / (2s7) i
B ) . i/2
| /2., p, = |k | =(E2en?) .

T tom @ 2 Rl R ¢ 1 7 .

E, (o m 4., Y26t s T
Equation (2,3) may now be written in the form ~ - - S

. _ (1 ' , - ;L
= dZ ' (208)
My(s, 0') = gle,0') ) TR . p
_ _ 4
vhere z £ cos 0 , g(s, o) = mAT p(q)/p3(s,o)p7(6j} . (2.9)
‘ .
8(s,0) = [m82 emlam?e 2E3(s,vo)E7(g)]/2p3(g, 6)p7(¢)" (2.10)

3 T

or  B(s,0) = [+0° - °(S'*.m32 * m62‘+ m72 - 2"‘82) + s~ m32)(m62" m72)]

1/2

L = 1/2 ) ' -1/2
% {['c -(s o m3)2'][o' (s = m3)2][c "(m6+m.'()2}(° -(m6-m7)2]} .

(2.11)
- 8ince A(oc", wy) is & constant here, (2.8) has no dependence on w. A dis-

" cussion of the relaxation. of this restriction is;given in Section IV, v

—

———— .
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The singularities of - g(s,0') are located at (o' * m3) in the s
plane and at (s t )2

in the o' plane. The integral in (2.8) also

has square=~root branch points at these positions, which cancel the singular
behavior of g(s, ¢'), resulting in the fact that My(s, ¢*) is regular there.
’.vThis is, of course, true{only in the principai branch of the logarithm
coming from the integration. In addition, the integral has. square-root.
branch poiﬁ#s at of =}(m6 % mm)2 , which are in Mo(s, ¢!') also.

Mo(s’ o!) has, furthermore, the end-point singularities, vwhich occur:

when
-'B(s, o) = Jtl ., o ' : _' l{2.12)

Using (2.11), it can be shown that (2.12) can;be}satisfied only by o' ='0 ; © .

-,

and by the roots of L " ., |
. f(s’ o') =.0 . . , . | . ‘. . (2.13)

where f(s, o) ='som32 + szm,r2 +g m + m, 2m 2

2(

. 2 2 2, | 2,
"". 80\(‘11172 +‘m8 ) - sm3 m6 ""Dl,r ) - 0m3~2(m62 + m8 )

++ slm? « mg?)m® - m®) + olm® - nP)ag? - m®)

2é,'22 2
+ m3 (m6 - o )(m6 - mg ) .

0

It is straightforward to establish the equlvalence of (2.13) to the following

equation,
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. analytic Se-matrix theory.’

“llem

2,2 2 ' : SR
X “+x +x " +2x x,x,=-1=20, - S 2,14
xOrE TR 1 %2 %3 0y | o (2.014)

- where xl.= ‘a' - m62 - m72)/2m6 m?,

xp = (s = mg® = mg®)/ang mg,

2 2 2y
x3‘= (m3 - m7 - ma‘)(amvme .

This equation has been derived‘breviously9 by examining the analytic property

- of the Feynman amplitude for e“triangle'diagram in the perturbationvtheory.'

The derivation here is based oh the consideration of the pole contribution

to the discontihuity equation according to the iteration:procedure in the

T

From (2.13) we see that there are two~singularities in the ¢' plane

whose positions depend on s and m.; let us denote them by ﬁﬁaés, m3).

3!
They are given by
% \ 1/2 1/2

L 2, 2 _ (2.
xl = =X, x3 t (x2 1) (x3 1) . (2.15)

If the value of X, is in the interval (-1, +1), the real solutions of Xy
as a function of real x, form an ellipse inside the square whose sides are

x; = t1 and. X, = 21y this is ‘shown in Fig. 5(a). 1If |x3| > 1, then the

© * intersection of the solution surface with the real le-xej plane is. a

Lot

" hyperbola, as indlcated in’ Flgs. S(b) and (c). In all cases, the points of

tansency with the lines xl = 21 and x2 ¥l are +x3 or -x3.

s

e —
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The starting point of the study is at small values of s and m32 3

s N

thus, ;*2 and x3 ‘“may be taken toi'be less than -l initially. We

increaée‘,m32 to its physical value first, -and then study the analytic s

'structn:e?ct.mné(s, ') in the two variables s and o' . We‘assume that .
o 2 ' °

the physical valuekof -m3 satisfies the stability constraints

Im7 - m8| < mg < mg +mg . The corresponding value of x, 1s therefore

restricted to’ the intervgl (-1, +1). In the continuation of *3 from a

H
]

velue less than -l ‘to a value in the interval'(-l, +1), ‘the solution curve

for x1 (xz, x ) changes gradually from a hyperbola [Fig. 5(b)] toa straight

line [vhen X =, -ll.and ‘then to an ellipse [Fig. S(a)] The branch points

3

xl (x2, X ) in the xl Plane for x2

greater than -l ; this means that in the ¢! plane thevsingularities are

< =1 are initially real and not ‘

*

below the normal thréshold. ot.'vhile the o' . integration contour lies

‘--i\_ . ,,“' N
undistorted along the real axis from o, to + @« As the hyperbola becomes

a straight liné x1 3# x2 »- the ‘branch points ¢ (s,m ) coincide at a real

point below °t . still leavihg the contour undistorted. As the straight

Bl 'l‘ -

line deVelops-into‘an;ellipse, these.singularities &0 into the'complex a'
' plane taking conJugate positions. - '

This ia the situation from which we start investigating the analyticity
of M(s, a) with all the external masses having physical values. The value
of 8 at this point is small‘ Let us now increase s along a"path Just above
the real axis, ab ahown in Fig. 6(a) The traJectories‘of the singularities.
o,(s) of M (s, ') in the i plane areas indicated in Fig. 6(b)

Corresponding to x2 =_-x3 viswthelp01nt

) i

Sy s

T
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at this point o (s) reaches the threshold o, vhich is the lower, limit of
the integration in the dispersion formula (2.2). However, M(s,0) has no
.end-point 51ngular1ty at  51 s 88 can be verlfieq by taking the tvo4possiblg |
ways of continuing s around sl and showing that the diffe?ence is zero.
Continuation past sl with a small positive iﬁagindry parﬁ_has.the result that
o_(s+) goes :around ot. in the clockwxse direction, dragging the dispersion

contour with it as it retreats. Corresponding to X, = +l is s 5 s -(m +m8)2

6

 where o,(s) meet and pinch the contour; indeed, s,  is a branch point.of

t
- M(s, o). Clockwise continuation in s around 8, leads o _(s+) to the
lower halfQ' AR plane, sovthe o' contour is distorted downward. zThe
" trajectories of ct(su) are compleg conjugate to those of o, (s+). Foré'
58> 5, thg'deformations of the dispersion contour are shown in Figs..Y(a)

‘. gnd (b) for the two cases of s + ie and 's - ie;.‘ We remark that:the
distortion is forced by the movement of the singularity ‘d,(s); the particular
-wayiin whicﬂ the contour in Fig. T'is dr;wn is not meant to imply an appropfiate
positioh of the branch cut ending at o.(s), whichAis'as yet‘undetermined,f

When s is éuffidiently smali, the dispersion contour in the 6"plane
" is along the real axis undistor£ed. This contour in o' corresponds.to ;
branch éut-in M(8, o)‘ along the real axis of ‘¢ p}ane for ¢ > o ,
”qéross.which the discontinuity Mo 1is nbpvanisbing. Physical region is
Just above this cut. For the process indicated in Fig. 2(b),this-région
is at value; of o greatei than max {kmh + m5)2,4(31/21+ m3)2.' d?} o
When s 'is sufficientlyilarge, there is also another region above the cut
on the real axis, which is also physicdl, corresponding to the pfocess shown
in Fig. 1(%). The bounds of this region are max {(mh +m ) » 9, } on the

1/2

lower end and (8°/'° = m3) on the upper end. For the convenlence of

st o g o e e o |t S gy S iy S o e e

LR
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discussion, we define two sheets, ivand II, of M(s, o), connected by the’
branch cut on the real ¢ axis. -Since o is a two-particle threshold,

this cut connects only two sheets and no more. Let sheet I contain the

physical points above the cutj hence, it must contain also the physical

"sheet, CGonversély, the unphysical sheets must‘contain sheet II.

We can now give the locations of the moving singularities of M(s, o)

" in sheets I end _II . of the g plane for fixed 8. They are at those

points where the pole- in. the 1ntegrand of (2 2) pinches the contour of

-integration with the singularities o, (s) of M K8y a')e Since the pole

(o' = o) appears as a multiplicative factor in the integrand it is on
all sheets of o' defined by branch cuts of M (s, a'). We find there;ore
with'the help of Fig. T that, for 8 +‘ic N a_(s+) is in the lower half
of the o plane in sheet I °, while .o+(s+) is in the upper half of sheet

II, For s - ie o (s=) [o*(s«)] is in the upper(lower) half‘of sheet

I (II.),

Singularities of ‘M(s, o) in the s plane for fixed o _can be found
in a-similar way. Let the solutions of (2.13) for fixed o' be denoted'by
st(o'). Then, because of the symmetry of Figs 'S under 1nterchange of Xy

and x; the'trajectories*of s, (o’ ) are analogous to those shown in Fig. 6

2’

except that the roles of s and o' are 1nterchanged.- Let us use the
( . .

notation in which ‘s Rk ) is associated with the solution of o' = a,(s), -

and s (o ) with o' =g (s) Sheets-I and II can be defined in a similar

way as before. They are connected by the branch cut on the real axis of the

s plane starting from '8, = (m6 + m8) to + . The singularitles of

M(s, o) are then located as follows-I for o + ie where o > ot, s (a+)

I3

R
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_ threshold the -only singularity of M(s,0) on sheet I is o (s+) in the

. lower half plane. 'Since this'singularitj enters into sheet I by emerg%pg

-16-

is in the lower half of sheet I, while s (a+) is in the upper half of

II.? For g = ie ,y 8 (a-) is in the upper half of sheet I and

, o o - -

Vo

N (0 ‘) is in the 1ower half of sheet II.

D. Placement ¢f Branch Cuts

Having found the locations of the brancl! points, we now proceed to
investigate the appropriate choice of the positions of the branch cuts
connected to these singularities. Consider the o plaﬁe for s fixed at a

value greater than ét\ and just above the real axis. -Aside from the normal

through the branch cut on the real axis in a dowvnward direction, it is natural

. to take the branch cut attached to it to connect to the lower side of the
“cut along the real axis. A necessary condition that the position of any
branch cut must satisfy is that the resultant physical sheet contains all

" the physical points. If the physical regions corresponding to the two

physical.proéésses repfesented by Figs. 1 and 2 are analytically connected

: Sy a path that runs on a straight line Just above the real axis of the

g plane, then any branch cut connecting to the bottom of the normal cut

. would be acceptable, at least as far as these two regions are concerned.

T_In order to determine whether a straight path of continuation just above

“the real akis, in fact, leads from one physical region to édother, one must

have some criterion for determining in general the analytic copﬂection

between various physical regions. We discuss this question now.

Consider ‘the scattering process of four particles into four partlcles,

and denote its function by M(s, g, r), where r “is as indicated in Fig. 8(a).

*
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For s large enough and 4% positive, there are two physical regions in.

the o© plane above the real axis. Let us call the lower region B, which

ranges from max {(m +m )2, ot} to (31/2 11/2)2

région A, which extends from G}/z 11/2 to + oo. When 1t 4is reduced, .

s and call the upper

the gap separating the two regions narrows, and when <t becomes negative,
. ) 2
A and B Ybecome connected... For fixed s + i¢ s the physical region of
M(s, 0, t) as a function of . ¢ and <t is shown in Fig. 9. Now, it can be

7,8

shown that the presence of a pole at T = m32 of M(s, g, 1) in the

physical region is the necessary and sufficient condition for the existence

of a physical particle of mass m32. Moreover, the residue of such a pole '

- must factorize in;o two factors, which are scattering emplitudes. Poleelfn '
_regions A and B _correspond to processes rep:esentediin F;gs._8(B)‘aed
(e), respectively. ' '

In Fig. 9 a path of continuaﬂion staying in or veryqnear the physical
region defines the.connection between the physical.reéions A and B, Such’
a path is ghown by the solid line.:_ A continuation of the eight-par_ticle

- amplitude from A to'eB with r' staying at,. the pole_position at ail tiﬁes'
is indiceted by the dashed line in Fig. 9 ittmust necessari}y.pass throegh.
an unphysical region. By virtue of the factorizability of the residue, the
-*ﬁanalytic structure of the eight-particle amplitude at the pole is composed of

. ' the analytic strﬁetures ofAthe two component five-parficle amplitudes., The -

continuatien along'the dashed line.in Fig. 9 is achieved by centinﬂing the
component amplitudes in their own variablea, along paths -not yet determined.

The question is .whether such a path exists. It it does, then the existence.

of a pole et .r,= m32 in one of the two regions, A or B, must imply the~
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existence of the pole in the other region as well, This then implies the

existence of a second particle of mass m32,'which may be identified as the

antiparticle. It is in this way that the existence of the antiparticle follows

from S-matrix brinciples. Moreover, the: path of continuation from A to B
that stays at 1 = m32 defines the‘continuatfbn from the original region to
' the cross=process region for the five-partiélé gscattering amplitudes‘appear;ng
| in Figs. 8(b) and (c). .

The above conclusions follow if one can find a-path from A to B that
stays at v = m32 « The problem, then, is to construct such a path. The'
way to do this.is.to take the path from A' to B' in Fig. 9, which is at &
negative value of <t and which lie§ in or very near the physical region;

and to gradually increase T . For the singularities that will be present

in the five-particle amplitudes this continuation is Just the continuation inl

1. that was already considered. Thus the connection betwen the two physical.

regions of{the five-particle amplitude is defined by a path of continuation
obtained by distorting the straight line above the réal_ 0 axis at 1 < 0

in such ai way as to avoid singularities that emerge when <t is increased to
2
3 *
amplitude that is (homotopically) equivalent to the original path from

m The path defined in this way will give a path in the~eight-§;fticle~
A to B via A' and B', as is required.

Consider the present specific;example. When 1 1is negative, there is no
.unphysical gap separating physdical regions - in the'-a' plane, as we have
already noted. Thus, the path of continuation may be placed just above the
. real axis; imbedded in the physical région. By consideration; simiiar to -

those given in the preceding subsection, fhe singularities a,(s+) can be found

P — £ e e m et 4+ e gt b e e e e v oo oo o
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o be located in sheet II Just above the real axis. As- T is increased
to.a positive value, the physical region breaks up into two disjJointed
sections A and B;. The singularities ot(s+) bécome complex for
T s (m.r'«» m8)2§ 0‘+(s+,) goes to .the upper hal\f plane of sheet II, while
, o_(s+) goes  through the real sxis and enters {nto the lower half plane
of.sheet I, Neither of these singularities disturbs the path of continuation
between. A and B .just above the real .6l axis in sheet I; There is:no
'need to consider the singularities associated with s « ie , since the
' physical regions are for s + iec .  Hencé5 to the extent of firstgérder
iteration of the discontinuity equation in ¢ , no singularity of M(s,0)
deforms the straight path of continuation between )A and B. These reg&onsv
will both bve on the physical sheet if the branch cut attached to a;(s+)‘is
taken conﬁectgd to aﬁy point on the-lower side of the nérhal cuts along the
real axis.‘l‘” | .

The g?ove argumeﬁts do not specify the exact point of.the real axis
at which the exitfpoint.should lie.  In Fig. 10(a) we sﬁow tvo.possible position;
. of the complex bfanqh cut in the o ‘plane. Clearly, the discoqtinuity‘acrosa‘
' the fe;; axis is the same in,tﬁe two cases except aloné the segment bounded
by the two alternaﬁive exit points. Neither choice is incorrect, but one.
particular location is mo}eiconvenient:than‘thé othef; We estéblish the
‘fol;owing rule; the branch cuts of'fhé discontiﬂuity function associﬁted:yith.'
singularitieg,arisihg frgm‘iteré£ion of the Aisqdntinuity equation are to
. be placed along the images of the real interval [=1, +1] of cos © ugder the
.'#ﬁprOpriate mapbing; which in the present exampie is the inverse of{cn;

cos8 = B(s, ¢'), as defined by (2.11)... Lét,us'refer to these images as the
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"natural" positions of the branch cuts, and the sheet of the discontinuity
function defined by these natural branch cuts as the "érincipal" sheet. The f_'
generalization to more complicated problems is rather clear: the natural N

- positions of ' the boundaries of-the'pfincipal gsheet are such that on this

sheet the phase.gpace integrations of a discogtinuity equation are never S

distorted by the singularities of ?he M functions in.the integrand,'which

.. - of course move as one changes the external parameters.. Any distoitions of
"‘_the contour of integration in (2.2) will bé taken tq'run slong éhese cutsa.
The physical sheet defined by this representation Qill therefore have, in
addition to the normal cut, possible added cuts that will run along pOﬁitionq
of these (natural) cuts that bound fhe principal sheet. ’ R ‘b

For our example the physic¢al sheet defined in this way ceréainly'satisfies

- o the homotopy condition. The natursl position of the complex branch cut of :

‘ M (s+,0') in the o' plane connects o_(s+) with o (s+), as shown
approximately in Fig. 10{b). Since the dispersion contour is distorted -
dévnward for s + ic' [ef. Fig. T(a)], the resultant branch cut of M(s+, o)
" in the ‘¢ ‘plane 'is in the lower half of sheet I, as indicated fy the solid

'L curVe_in.Fig. 10(a). That the homotopy requirement,will-alwa&s be satisfied
by this rulé for placing_cuts remains to be establisheﬁ.

n ! . The rule has many advantages., Firstly, the second type of singulari;‘
tiqs,lo corresponding to internﬁ; ﬁgmenta being distorted to infinity, must

. be on an unphysical sheet, This 1s.because integrations over undistorted,

real internal momenta correspond to phase-spéce Integration taken over

<y .

‘physical angles, and a second type of singularity occurs when some contour of |,

-— g

. ) . R ' ! « . ! )
',this integration is distorted to infinity, as we shall see in the next secticn,

b e
N

’
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Secondly, the natural position of the complex cut of Mo(s, ag') in our

1/2 2
-m
3)
+ m3)2 (see Fig. 10(b)]; consequently, at least in the order

example intersects with the resl axis at a point between (s
and (81/2
cpnsidered,. the discontinuity functions in the physical regions A and B
never have discontinuities themselves in the same.variable o' « The

position of this exit point can be.found by recognizing that the point of

intersection corfespondé to B8(s, ¢') = 0, whose solution, according to

(2.10), is

B (") = (m,” + m® = mg®)/2E7(0")
| i

Since E7 is greater than m% if o' > Ty s and m32 is restricted By‘
stability constraints, Ej must be less than m3, thus limiting.the inter=
section point to be within the unphysical gap between A and..B.; Thirdly,
the boundaries of the physical sheet determined by this rule make possible
an integral representatiohll of the production amplitude invdlving real
contours only., To achieve this, conformal transformations on some of the
variables are clearly needed. Lastly, the discon£inuity equations in the
physicﬁl reéions are simple, as we shall see in the foilowing sections,

Adopting this rule, we make several comments concerning the natural '
positions of the branch cuts of M(é, o). Because (2.11) can be put in the
form of a fourth‘o:der.algebraic equation in 'o' with real céefficients if
s 1is real, the natural.cuts of My(s, 0') in the ¢' plane must have

nirror symmetry about the real axis, as we have indicated in Fig. 10(b).

‘For M(s+, o), the lower'half of the cut joining o_(s+) with o+(si) is

¢
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in sheet I, the upper half being in sheet II, and vice-versa for M(s=, o).
In both cases there is. another cut in the unphysical sheet connecting

. 0% 0 with «00 along some path which may have complex parts. The situation -
intthe 8 plane is similar and will not be described in detail here. We -

»

mention only that if - ¢ is large enough, fhege are also two physical regions

' in.the 8 plane Jjust above the-real axis. The lower region is bounded by
i/2

' max {st, (ml + m2)2 } on the lower end and by (o™’ « ms)g on the upper

end,” It is physical for the process of Fig. 2(b), and should therefore be
labeled A, The higher region is for s > (ol/2 + m3)2;'it is labeled B, .

since it is the ﬁhysical region of the process indiceted in Fig.'l(b). lThe
t

normal position of the branch cut of Md(s, a') for @' > g_ 1is aleo arched;

t

. @ .

it intersects the real igi-axis in the gap between A and B. -

N .
R (] J -
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III, THE DISCONTINUITY EQUATIONS
In the immediately preceding section we have given a rule for the -
- placement of branch cuts of discontinuity functions, compatible with the
n homotopy condition on paths of continuation between physmcal points.

; These naturalipositlons of the branch cuts define the prineipal sheet,

§which has the property that at any point on this sheet the normal, real
| integrations over phase space in the discontinuity formulas are not

x

f

'y distorted. In this section we derive the discontinuity equation for the _'
,{ production amplitude M(s, 0, w). in the ‘subchannel energy K, by an
analytic continuation in s, for fixed 0, from the region (A) where the
crosged process (0 being the total energy) is physical, and where we
know what the diecontlnuity in ¢ is. In particular, we want to answei
the questions raised in Section I, regarding the sign of the small

imaginary part of wl in M(s, o'y, w ) in (2.3).

In the specific example considered in the preceding section, where the _
" discontinuity equation in o' 1is iterated with & pole in the Swy channel, v
'_uwe find that the complex branch cut has its natural position in between the

" two physical regions A and B in the s plane. The discontinuity equation
' 1/2

m3)2 . (mh +m )2, o, } s

given by (2.3); in this region the comtribution to the dispersion formula

" in o' in region A vhere o' 3 max {(s

for M(s, o) is on the real o' axis and is undistorted because the externel

* momenta are real, Since, by definition, the discontinuity function on the

principal sheet ie given by the normal form-of the discontinuity equation,
we can continue M (s, o ) in s to region B where s > (0'1(2 *+ m, )2
' ialong any path in the principal sheet and obtain the result that (2 3) is

also valid there. .Tne sign‘of _ie: for 'wl in the;integrand of (2.3) is

w o e B . R . . N . .
. " - N . . [
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immaterial even for 8 in B , since the pole in ml that is considered
is not near the (physical) region of integration. This will become evident
later, as we consider other aingﬁlaritiés,in the wl variable. . .
- We now:consider. the singularittes that are associated with the normal
 twoeparticle contribution to the function M ,appearing on the right-hand
side of (2.3). That is, instesd of & pole, we take M(s, O', wl) in {2.3)
to have the form ‘ ' | | e a
. ]
T Y de ' » ' ' -
M(s, o'y, w } = = =~ M, (s, 0y ), ' (3.1)
R § w W . * w 1 CLn <
mt l.f. l . .

vhere mt is the lowest two-psrticle threshold and M, 'is the discontinuity‘

i
across the associated two-particle branch cut on the real axis of the 0,

plane. The diagram for this case is shown in Fig. 11, Putting (3.1) in (2.3},

*

and ignoring the singulerity structure of A(¢', w2), as before, we have
v - 1 |
M (s, 0') = g(s, 0). S dz Fls, o', 2). | | ' .- (3.2)

<X

Here F(s, o', z) has a square-root branch point at gz = B*'(as, 0'), where

Bt(s, 9') is given by (2.11) with m82 replaced by ® . The integral is

t

therefore singular when B8'(s, 0') = %1, Let the moving singularities in the

¢! plane be called 0} (8);;their positions may be found¢by-solving (2.14)
' where, again, 82 is. to be replaced by w .

o1f w, 15 less than (m + m7)2, which is the w, - threshold of the
~external lines  of~- M(s, ' l)' and if s is greater than 8y then as

v




before we have X, > +1, and ~1 % x3
are at conjugate points in the complex' o' plane. The natural. position

<1, so the singularities o) (s)

of the cut Joining them 1nte£sects the real axis in the unphysical gap
between A and B, | 8

A ' %y becomes 1, and (2.15)
B t ) ‘v

~ becomes simply x; = x, . Thus, o} (s) coincide for all values of s,

1

For s greater than the three~particle threshold st = (m3 + ng +-m7)2,

When w, becomes equal to (m3 + mT)

o! (8) are greater than o } o The image of the point 8'(s, o') = 0

t
: 2
in the . o' plane is on the real axis between (51/2 - m3)2 /e, m_) ,

3

as before., It can be verified that the natural position of the branch‘cut
' g

connecting o, (s) is a closed loop, as shown approximately in Fig. 12..' If

and (s

8 ié above the cgt on the real axis, then the contour of integrat&dn'in the
dispersion representation (2.2) is distorted downward, also shown in the
figure., Otherwise, for s - ic , the contour is distorted upward., It is easy
to see that no singularity of M(s, o) -can be in the physical region, since. .
" the contour cannot be pinched there.

Let us now fix o' at a point do' in region A and determine the
natural branch cuts of Mo(s, o') in the s plane, It is not difficult to
obtain the result; we ;ketch it in Fig. 13. The natural complex cut in the
8 piane also forms a closed loop, enclosing the threshold (0'1/2 +‘m3)2 of

. !
the physical region B. The singularity s_ (¢'), given by

s-'(c') = g'(1 + m#/mT) + m3(m3 + m7 - m62/m7) .

LA

is located in region B, It divides the physical region into two sections:

vhere (01/2

] .
B, where s > s_{c') , and B,

: [ ]
1 +m )2 <g<cs (o')e The
. 3 L.
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section B2 is inside the loop cut..

We are now in a position to exemine the continuation of the discontinuity ,
formula from the region‘ A , vhere it is originally given, to the region B
?orresponding to the crossed reasction. For the discontinuity function evaluated
at ao' y & continuation in s. from. A to B that stays on the principal
sheet of the discontinuity function, as showr in Fig. 13, will leave the
form of the discontinuity at &o. unchanged; this is how the principél sheeﬁ
df "Md(a, a') ves defined., One can follow the corresponding motion of the.

cuts in the o plane as they move to the right; these cuts must avoid the -

. .
fixed point oc » 8ince the path of continuation in 8 detours around the

i
]
'

natural branch cuts in the s plane,
Since the contour of integration in the equation (3.2) for the discon&inl
A‘tinuity function is undistortéd, ifllies along the real interval [«1, +1] in
the . 2 plane. In this plane there is a pole and a brancﬁ cut belonging to
F(s, o', z)s The positions of these sihgularitiea depend on the.vaiues of |
,s and ,0" and are guaranteed not to distort the real contour of integration,
as long as s. and q" sﬁay on the principal sheet, However, we shall need
to know the positions of these singularities and associated cuts relative ﬁo |
the contour of integration, in order to determine the sign of #ic of the

argument w. appearing in the discontinuity equation (2.3). -

1
Let us consider_fhe movement of the branch'point B'(s,-é')vin the z
plane., The value of o' is fixed at ao' s 80 we have Py > 0 and E7 > Pqe

Initially, s 1is in region A, and so we have E3'> 1 0. Substituting
ﬁez > o = (m3 + m7)2 into (2,10), wve find that 8Y(s, o') is real, positive
and greater than *l,_whgn 8 .is in A, 1The cut in the LWy 'p;ane’starting

¢
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at Wy = w, maps intc a cut in the 2z plane, running from that value of

B'(sy 6') to + oo, and hence ::. v« never passes near the interval [-1, +1].
Consequently, sign of tie on ml is immaterial in this region. Now we
" continue in. 8 to the region B,, taking & pathlz as shown in Fig. 1lu(a).

. With the help of the formula for B8'(s, o')s-%. e., (2.11) with m, = m3+ m —

8 7
we find that the imsge of this path in the =z plane is as shown by the

dashed line in Fig. 14(b). The segment along the straight line between

) LI .
[(oo )1/2 - m3]2 and [(oo )]‘/2 + m3]? is mapped onto the negative imaginary
4 axis.‘ The part Just abbve the loop cut corresponds to the section Just

below (-1, 0] in the z plane, as it is required. The regioﬁ"Bilis'fhgrqfore

mapped onto the region just below the negative real 2z axis between

‘\

]
B! (o0, o, ) and <l , where : .

| ' ' 2~ . ' 2 ' 2 -1/2
B'(00,y0, ) 2 =(0g -m +m72) {{o, -(m6+m7) ] [o “(m6-m7),1}

On account of (2.6), we see that w, = + o0 goes over to 2z = + oo for

1

p3 > 0, whether' s is in region A or B , but it corresponds td

z =2 i o for' [(c:a')l/2 - m3]2'< 8 < [(qc")l/2 + m3]27

continued to region Bl , the branch cut in the 2z plane runs from B'(s+,0

+ . Hence, when s 1is

v
o)
to + o, passing the real interval [-1, +1] on its lower side. The inte=
gration of z in (3.2) should, therefore, be above "the branch cut of

F(s, 0'y, 2) in 2z . See Fig. li(a); Transformation to the w, variable

1
by (2.6) yields the result that in (2.3) the integration is to.be performed

L3

over a range of values,df w. which should be,evaluatedfabove the twoe

1

particle branch cut of M(s+, o'+, w,). See Fig. 15(b), -That is, w, should

+
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be specified by 0y + ie + It is to be emphasized that this is true no -
matter which sign of tie ' is associated with wn(the external variable),
80 long as we have s + ie . Fur@hermore, it caﬂ be shown by the same
method that for s ~ ie we must use M(s-, o'+, ml-) in (2.3). These
properties tuin out to be éruqial to the deriyation of the discontinuity
across 8 , as we shall show in the next section, -

Consider now the continuation’to region 32 inhthe interior of the loop
by passing through an infinitesimal>gap between s*'(a') made possible by
letténg w, be (m3 + m, -e)2. A path leading from B, to B, » &8
indicated by the dotted line in Fig. 1l4(a), then maps into a path in the. 2
plane starting . from Justnbelowfthg:négative real axisy it'leads up to ;ipe
and then retreats to lower values above the real axis without going'afoﬁgd
z = ~1 point. Hence, for- s in B, on the principal sheet, Fig. 15(a)
and (b) are still applicablé. Throughout the whoig regioh B , therefore,
the discontinuity equation in o' should read '

{ ¥y
' ' ' L ‘ v
Ma(st, o +,0) = hist,o +) :3 duy Ao -,wz) M(st, o +, wlt), : (3.3)
x

'y and x and y are physical minimum and

'1/2 + m3)2 and a

where' h(s,o') = ﬂp(O')/b3p7

maximum values of w, for a fixed total energy s > (o

1

fixed subenergy o' > ¢ The simplicity of the equation is a cbnsequencg

t.
of the choice of natural position for the branch cut. The price to be paid
is that the integral formula for M(s,c) has complex parts.

Suppose we do not: take the contour of integration in Fig. 12 to be
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disnorted'by the complex natural cut, but collapse the branch cut.and take
"the contour to be straight,lying Just above the real axis (ignoring the
\m00n cut due to pole iteration) but bglow the collapsed cut. This collapsed
" cut runs from ot {s+) to [(&34-):'“/2 -m ]2, which is a-singular point as
will become clear later. Let the section beneath this cut and above the
' .

o ¢ The correspondlng region in the s plane is,

reached by approaching the real axis between [(o +)l/2

© real axis be denoted by B
+-m3]2 and s"(af+)
fron above by collapsing the loop cut in Fig. 13. Now,it 18 clear from
Fig. 14(a) and (b) that the interior of the 1oop cut. inithe s plane maps
onto the upper half w- plane under the transformation z2 =B (s,a') for fixed

ot ot- A continuation that distorts the natural cut and thereby leadé\to
"the region that is orig1nally on the inslde of the cut ‘has the result that Fﬁ" :

(L
\

goes through the interval [~1,+1] on the real axis from below and enters into

. the upper half plane.' Thls means that in the 2 plane the contour. of

,
. integration from w1l to +l must be deformed upward. Thus, to reach B2 ,"i

in the .s ‘plane‘by collapsing'the'loop from above, the bnanch.point B' in
the vz plane must go to the negative real axis =00 < z < ~l1 by dragging ‘;
the integration contour along with it. The resultant'picture is as shown

in Fig. 15(c). The impact on the discontinuity equation (2.3) is that “1

' h
.must be integrated along a path13 l that loops around its threshold wy

" as is indicated'in Fig. lS(d)..'
In the case of Fig. 15(b), for\which‘ s is in By, w,
. over the physical region from x _to':y’Q In fact, as o' -is reduced.to the

is integrated

threshold ct, % and Y approach-ench other,lcorrespondingvto the fact .
that the two-partlcle phase space of the a“ channel vanishes and the.

normal threshold is reached.u In- the case of Fig. lS(d), however, the




«3(e
integrat;on between x and Y. -has an extra anomalousg piece., Equation {(2.3)

should then be written as

.’y ’ v
. R R

t ] )
Ma(“’ o +, w) = h(s2, c_:"") S day AE“'“’ wa) M(st, °"°'t ‘?’1*)

2
x .

X .

A Ty 1 ‘ o
+ :; : d@l Ao =, wy) Mwl(a*, g +, mlé) R ' (3.4)
o "

where Mw is the discontinuity of M(s, ¢', wl) across the twoe-particle
l ) d
unitarity cut in the ‘w

, chennel, defined in a way analogous to (2.3l.ﬁ
Evidently, the complex part of the contour integration in Fig. 12 is
eliminated:at the expense of complicating the discontinuity equgtion.

As s+ approaches [(c'+)l/2 + m3]2, the branch point 8' pushes the.
contour of integration in the 2z plane to =-oo.  Thus, a singularity occurs

{
at 8 = [(o'+)l/2

+ m312; this is a singularity of the second type.lO
‘ If we fix the branch cut along its ﬁatural position, then this singularity
can be reached only by_coﬁtinuation across the cut, and is therefore hot -
on the principal sheet. . _

If the amplitude A(oc, wé) in (3;3) is not regarded as a constant but
has, in fact, a two~particle ﬁnitarity'cut {n the -0 channel, one m8y
' question whether the integrand A(o~) M(o+) ca; be wfittgn"equivalently
as A{o+) M{o=). To show that they afe.equivalent, we use the convention

S(o=) 8(o+) = 1 and find that, in the abbreviated notation where phase-

space integrations. over pfodncis of amplitudes are implied, ’

& . . F




, 2 .
‘where M = gy

F(o=) A(o+)‘M(a-) « A(o=) M(o+) ]

[Ao+), = A0=)] M(o=) = A(o=) [M{o+) - #lo=)] = Ao=) F(o-).

2

. ‘ 5 ’
- This being an integral equation with an JZZ kernel except at the poles of

A(c) , F(o) venishes everywhere except at certain isolated points; analyticity
then requires that it be identically zero. | -

Finélly; Qe make some remarké regarding the.sitgation where we is
greater than (ﬁ3 + m7)2. in this cagé Xq is less than =1, sp the solution

' ' {
x* is a hyperbola, shown in Fig. 5(b). The associated singularities h

2 :
a*ﬁ(o') in the s plane are real if o' > o, . The natural branch cut

B [} . .
Joining: s, (o') is es shown in Fig. 16(a). The value of . 8 at which the

cut turns complex can be determined by solving (2110) for E3(s,o'), whieh

gives

B M w2 1/2

Wb 2,0 5 "R
B MOt pp 8 M- gt (BT - T 8 0]
ES(SQG')An~ . ‘. . N ‘ »

. b 5 w2
2(137 - Py B )

"

t
for which the square root is zéro, i eoy .

a‘m32 -_m72 «. Defining Bo _to be the positive valuelbf ‘B

' ~ 1/2
: : . . Mh - hm32 m72 S
Bo(a '.) ‘= + . l - . - > P g : e

¢ i o - .




~30a
we see that for real o' > o and a sufficiently small positive value of"
o, = (ng + m7)2 s B, is in the interval (0, 1) ; clearly, Ey(s, o')
(and therefore s itself) is complex if =B, < 8" < Bo s but is real if
Bo € l8"| € 1 . Similar behavior can be found for the branch cut in the
o' plane. A sketch of it is shown in Fig.‘lé(b). It is interésting to note

but greater than +1, i.e.,

that when Xy is reduced to a value less than “X3

(m6 + mtl/2').2 <g <'fo)t *'m6 [m6 + m7'+ (“t - m32):/1ik(] ’

the singulgrity o_"(s) moves to the left, goes counterclockwise sround the
threshold Gy» and then retreaﬁs ﬁo the right again,staying Just below ghe
real axis. At this point ﬁhig gingular;ty of Ma can produce a pincﬁ ‘
singularity for the M(s,0) amplitude in the physical region.}? The
branch cut attached to it is in the ;nphysical sheet, as is requi:ed'by the
homotopy condition. -

i
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L W;;’ IV. DISCONTINUITY EQUATIONS FOR THE THREE~PARTICLE CHANNEL - ‘ AT
o t‘i "In this section ‘we want to:derive the discontinuity across the - P

lfil:fff;ffl> three;particle unitsrity cut in the s-channel. 'The:tvo-particle'a;channel%:?eﬁﬁi
* _‘ . -,' b} l‘. ’ ) ,_-,-," "; . : *
i RS discontinuity equation in the principel sheet is giVen by (3. 3), which ve . _g'f
" ,e' Tf~ rewrite here in terms of angular integration as . 7; -,'ﬁ;:‘;j::,fi:‘ f;;:niﬁ;ﬁif
e T e . S T s Ty

; [ Mglatycor, 0) = plor) [ a8, 'A(omy wp) Mlst, o wyr)a” Y ()

:;fﬂjfa;ﬁ\' This eqnation has the following two properties:-. . ":»lf" J TS

" In the physmcal regions the M function in the integrand is‘l

L ' l,:;,-

ﬂ:-:,‘:,'l’evaluated above (or below) the ui unitarity cut aocording as s is

" * above' (or below) its unitarity cut, independent of which side oi‘ the L
“ij:t real axis w is on.. ‘ . |

'B; My (s, 0, ) can ‘have no singularities in the physical region of |

the W variable when 8 and o are physical,

::"ﬂ”ﬁkff:;l;” © The first property above has already been established by the. analysis :?35 I

/f ‘. made in the 1ast section, We now give arguments to establish.the second." f
‘, Referring to Fig. l(b), let us consider the three momentum—vectors of
~_f particles 3, h and 7 in ‘the rest frame of the o channel. Denote the ,:

*-angles between 3 and 4 by v, between 3 «and? T by K} s and between

i? L and T By X Clearly, the variables ws l,_snd w, depend on the ,Jig?ﬂ

:é angles v, 8, and XY, respectively. If the polar axis is placed along the

direction of VectOr 7 e then ] can'be expressed in terms of ¢, x' and :g“uf*
g the azimuthal angle ¢ --¢ ;: In<(h;l), thefangles'offintegration can be . ?:’
:ﬁ either ‘9 oe, or x, ¢ﬁ ' Now. the integral can have a singularity in the

v

LW, variable only if both A(c W ) and M(s, a, wl) in the integrand contribute

v \ e
P ’ . ey o7 M : - & '
N H N Lo - ta . .
.. N . . M .
. : h ‘ f Ll !
. ; :
_‘r ¢ : ’ i o LARR A ¢
. 3 . i .
1. LR A . .
) .



f terms that depend on the angle of integration, otherwise, the integrand can:

‘% be made independent of w and the integrel is then no longer 8 function ® .;:";-'

»
~ PR

l Since wa is a momentum trnnafcr variable of a- four-line amplitude, singu-“g;

larities of A(d, w ) in the- w2 chennel are elweys located at unphyeical

' angles of x e vherees M(s, o, w,) can haVe singularities et phyaical
1

; values of: 0 .: Theae singularities must pinch the contour of integration p

) -,

; in order to yield a aingulerity of M (s, a, w) in the w. variable., It ie

‘clear from the engular relationship between w, 8, and x thot it is

REIR ‘

. where x ie unphysical. Hence, we find that in general M (s, o, w) does«ft

Il e I
v

5 ’ v, .

., T e 'a-"""'.'-
P . PP

'._‘a,- <" ‘ PR P
’

On the basis of properties (4) and (b), the derivation of the discon-‘

-

'tinuity equation in the 8 variable in the physical region of a three-

13

'particle state is extremely aimple. To specify the subenergies of tnc M E

function more completely, ve need elso the variable y , defined to be

\ 'R "‘.

28

i2”~(k3 + ks) Although it satisfies “the constraint }ng.'
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]

M(s+, o+, w, v#) « M(s+, 0=, wt, vt) = A(0=) M(s+, o+, w'+, v'+),

‘

M(s+, o=, wt, v¢) « M(s+, 0=y w=, v+) = A(w~) M(s+, o'+, wt,v'+),

i

;A(O-) M(s*, o'+, w'+, v+),

M(s+’ c-’ wﬂ’ v+) - M(8+’ 0"‘, w"'g v-)

A4

Adding the expfessions yields B

M(s+, °i+) - M(s+, oi-) = ?ﬁ(ai—?ﬁM(s+, oi+), ' S - (4.2)

i

where 6i designates o, w, and v collectively, and TD is the sum of

the disconnected parts of the three-particle amplitude. The over=all

.
i

1
C‘A
i

discontinuity gquatibn (1.1) derived by Stapp3 on géneral grounds without

using unitarity or Hermatian analyticity states that

. : ' ' . ..
Mst, 0. 4) = Mlomy 04=) = T(sey 05y 0y =) Mlaty 05 #), - (h3)

I

. ‘. . ° o .
where T(si, Og9 Oy Y is the general.three-in, three~-out scattering agplitude.

Subtracting (4i2) from (4.3), we have finally

'M(a*.. .Ui"‘) - M(S“'t Ui"') = Tc(s“o oi-‘_. oif"’) M'(s";)'oi""'), | _ “hh)

_where Tc(s, O oi') represents the connected part of the tﬁree-particle

-

scattering amplitude. In a similar way we can derive

+y 0y +) M(s=, ¢

ﬁ(b*, ai+) - M(se, °i+) = TC(§+!'61

i
Equations (4.4) and (4.5) are the discontinuity equations in the s

7? variable across thé,ﬁhree-pafticle:ﬁhitérity cut with the subenergy

"' variables kept fixeds . - ..

- s : . —— e e
™ o POV - \
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“a

'J‘ which run along the cuts of the discontinuity functions. The cuts of ﬁbe

-36-

VI. CONCLUSION

Maximal analyticity is interpreted to mean that a representatlon of .

. the. M function on the physical sheet can be developed by starting with/

contributions from Cauchy contours associated with discontinuities across

.-

" the various normal cuts (poles'included),‘and'then'introducing these

contributions iﬁeratively into the’formulas expressing the discontinuities,

. The physical sheet- is bounded by the normal cuts together with additional'
" cuts that emerge from these as one increases- the effective external masses

" from zero; These‘additional cuts come from extra parts of the contours,

P
.. .

\
!

discontinuity functions are determined by defining the funmction everywhere

:- (i. e., on its principal sheet) by means of the original integral formula, -

"7 with fixed (undistorted) contours. The M functions are expressed to a o

’

Y

certain "order" by using the exact M functions in the discontinuity formulas

across the;various cuts, but including contributions from only those cuts

"obtained by carrying the iteration scheme to a certain order.

‘ tinuity formulas, which give the simultaneous discontlnuities across all

~

the cut in the total energy. o »f. R

This procedure has been applied to the case of a two«particle to three=

‘1 particle production amplitude in certain lowest nontri&iai. orders.'.It has -
‘ ”T'been verified that the physical sheet defined in this way contains tﬁe
' physicel regions corresponding to various crossed reactions, and that the
cuts do not prevent continuation between the physical regions.. The knowledge L

.’ of the analytic structure is then used to determine from original discon=

[y
1)

cuts. the simple formulas for the discontinuities across the individual

., cuts inithe. tvo-particle subenergies of the three-pertiele chennel and across

LI

- ) i " " “
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FIGﬁRE CAPTIONS
Production process,wiﬁh s being the total energy variable,
Production process,with ¢ being the total energy variable.
Diagrém asgociated with iteration of the twow=particle
discontinuity equation in o¢' with ; pole.

A six-particle amplitude.

Real.sections of the singularity surface for three different ranges

. n,
3 L J
(a) Path of continuation in s ; (b) ‘the corresponding trajectories

of values of x

of the singularities in the o¢' plane, i

L}
1

Distortions of the contour of integration of the dispersion formula.
(a) An eight-particle amplitude; (b) and (¢) & pole in t in two
different physical regions. . ' S

A section of the physical region of the eight-particle amplitude. .-

‘ fa) Two alternative positions of the complex branch cut of M

function in the o -plane. (b) Distortion of the o' contour

of 1ntegration.by the natural position of the complex branch
“eut of Mc in the o' plane. | |

Diagram associated with iteration of Mc ‘with a twoeparticle
* normal cut in LWy e
Principal sheet of Mo(s, ¢') in the o' plane for fixed

s+ > (m3 + mg +'m7)2 .

Principal sheet of 'Ma(s, of) in the ¢ plane for fixed ¢' = g4 o
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- .Fig. 14, (a) A path of continuation in 8 in the principal sheet, (b) The
' corresponding path of the branch point B'(s, ¢') in the =z plane.
s Fig. 15. .Ranges of integration of M relative to the branch cut of the
_ ‘ integrimd for the various cases. s
’ " Fig. 16. ‘- Natural positions of the branch cuts of ‘, in s -ahd‘ a' planes
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