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The derivation of Eq. (25) from Eq. (24) is wrong. The considerations 

of parity made at that occasion make no sense. However, it is easy, using 

the integration on u and v to derive a correct proof. One can build a proof 

which makes no use of the poorly converging formula ( 17). This proof will be 
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of the two-body scattering amplitude. 
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ABS'!RACT 

The.Fadeev e~uations for the three-body scattering amplitudes of a 

given total angular momentum J--as derived in a preceding article--are 

extended to complex values of the angular momentum. The main steps are 

provided by an analysis of the properties of rotation matrices for complex 

angular momentum. Of particular importance are rotation matrices of the 

second kind, which are natural generalizations of Legendre functions of the 

second kind. It is shown that the terms of the kernel are analytic functiqns 

of the total angular momentum J for any value bigger than -l/2 . This 

is a generalization of the cancellation of Amati-Fubini-Stanghellini cuts that 

was discovered by Mandelstam. Although a complete mathematical analysis of 

the analytic properties of the solution is not given, there is no evidence 

for any singularity except poles. Therefore the essential results of Regge 

for the two-body scattering amplitude may certainly be extended to three-

particle nonrelativistic channels. A Sommerfeld-Watson transformation 

allows us to derive from these results the asymptotic properties of the 

three-body scattering amplitude when one reaction angle becomes infinite. 
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l. INTRODUCTION 

This article.is devoted to an extension of the reduced Fadeev 

equations--as derived in a preceding paper (later on called I)--to 

complex values of the total angular momentum. 

The reason for this study is the current interest in the pos­

sible limitations of the Chew-Frautschi hypothesis, 1 according to 

which the two-body scattering amplitude is a meromorphic function of 

the total angular momentum, and all elementary particles are members 

of a Regge poilie trajectory.2 If this hypothesis be true, it would 

follow that it is possible to build up a theory of strong interactions 

without arbitrary parameters) and to analyze the high-energy diffraction 

peak in terms of the Regge pole trajectories and residues. 4 The exis-

tence of singularities other than pol.es would complicate .. this. last ana-

lysis but it would not necessarily invalidate the first statement. 

Because of·the importance of such problems, it seems worthwhile to 

take up a· systematic analysis of·the properties of scattering amplitudes 

in terms of a complex angular momentum. 

When one wants to extend the results of Regge2 to the relativ-

istic scattering amplitude, two essentially new features enter in, 

namely: (a) the existence of·processes described in the Mandelstam 

representation5 by the so-called third double-spectral function that 

are ultimately due ~o crossing, and (b) the nonconservation of the 

number of particles that necessitates a study of the many-particle -

~ates as possible intermediate or final states. 

It was first realized by Gribov and Pomeranchuk
6 

that crossing 

leads to essential singularities of the scattering am~litude for two 

spinless particles at negative integral values of the angular momentum. 
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On the other hanu, Amati, .Fu,bini and Stanghellini7 pointed out 

the possible existence of cuts in the total angular momentum due to 

many-particle intermediate systems, as is shown in Fig. l • It was 

further shown by Mandelstam
8 

and by Polkinghorne9 that, in fact, these 

cuts are not in the physical sheet and do not have to be considered. 

_: 10 
However, Mandelstam also showed that analogous graphs, like.those 

in Fig. 2, lead indeed to cuts, and that the Gribov-Pomeranchuk singu-

larities are on a well-defined sheet linked to these cuts. 

An important feature of the graphs in Fig. l is that they have 

a nonrelativistic interpretation, and it would be very interesting to 

know if, for all such nonrelativistically interpretable processes, 

there are no cuts; or-~stated otherwise--if the nonrelativistic ampli-

tudes for two particles going into many particles or for many-particle 

scattering, are meromorphic functions of the total angular momentum. 

Clearly, the first problem is then to analyze the three-particle 

scattering amplitude. 

This problem has already been considered by Newton
11 

and Hartle, 12 

who, using the same method, arrive at opposite conclusions. While New-

ton claims that there are cuts of the three-body scattering amplitude 

extending up to infinite values of the total angular momentum J , 

Hartle finds it to be a meromorphic function. As we have indicated 

in I , these two authors have used a formulation of the problem that 

turns it into a study of matrices with continuous indices. This is 

clearly unsuitable for any. correct mathematical analysis. Furthermore, 

they solve their reduced Schrodinger e~uation by a method essentially 

e~uivalent to a use of the Lippmann-Schwinger e~uation, 13 which is well 

known to be an insufficient formulation of· the three-body problem.14 
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We therefore. think ·that the results of Newton and Hartle cannot be ac-

cepted and that it is necessary to find a formulation of the problem 

free of their drawbacks. The solution we have found is set forth as 

follows. 

In Section 2, the reduced Fadeeveq_uations found in I are 

written explicitly after an iteration. The reason for· that iteration:: 

is that only the sq_tiare of the Fadeev kernel is completely continuous;5, 16 

and we need at least to start from such a kernel for a sound mathematical 

analysis• This iterated kernel is an integral upon two-body scattering 

amplitudes thatihvolVes:rotation matrices, one of the rotation angles 

being integrated from 0 to ~ • 

In Section 3, -some properties of the two-body scattering ampli-

tudes that enter into the Fadeev kernel are analyzed. As they are off-

the-energy-shell amplitudes, they are defined by. Lippmann-Schwinger 

eq_uations (which are reliable for a two-body process). The method 

used here is due to Lee and Sawyer.17 Of :rarticular importance is the 

asymptotic behavior of these amplitudes when a parameter that enters 

into the Fa.deev kernel tends to infinity. A cancellation between-the 

Regge.asymptotic behavior as·the scattering_ angle tends to infinity 

and the behavior-of the Regge pole residues when the energytends-to 

infinity is found. This effect leads ultimately. to the nonappearance 

of cuts found in Section 5 • 

In Section }+, we introduce what we call "rotation matrices of 

the second kind," which are related to the customary rotaticrn matrices 

in the same way as the Legendre functions of the second kind are re-

lated to Legendre polynomials. It-is shown that it is possible to 

replace in the kernel the rotation matrices by matrices of the second 
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kind, -the. essential integration now being made in the complex plane and 

enclosing the-singularities•of the two-body scattering amplitudes and 

. of the propagation denominators. This procedure is a generalization.of 

. 18 
the Gribov-Froissart formula. 

In Section.5, we extend the second form of the kernel to complex· 

angular momenta/ This extension is ·unique, according to a. theorem by. 

Carlson.19 It is fotind that, owing to the results iin Section 2, the 

kernel elements are analytic functions of the angular momentum, Which gen-

eralizes·the cancellation of·the Amati-Fubini-Stanghellini cut foundby 

JY'JS.ndelstam. Although we do not provide an .analysis. of ·the properties of 

the solution, .this seems to be a good hint-that the three~body scattering 

amplitude -is a meromorphic fUnction of ·the total angular momentum. 

Section 6 shows how these results can be used, through a Watson-

Sommerfeld transformation, .to investigate the asymptotic properties of'the 

three-body scattering amplitude when an angle tends .to infinity.
20 

In Appendix A some useful properties of·the·Jacobi functions are 

recalled. These are found mostly in the book by. Szego.21 Appendix B 

states the definitions and properties of·the rotation matrices of the 

first and second. kind for complex.·. va:lues ·of ·the angular ·momentum. The 

results to be found.here are mostly new, so far as·we krrow. 

This paper is restricted to the case in which·the particles are 

spinless and do not J:iave bound states. We intend to investigate ;the 

problem of the scattering of a particle on a bound state.in a further 

22 paper. 

Although the analysis.is specificallymade on the iterated Fadeev 

equations, it can be applied as well to the Weinberg equations, which are 

another formUlation of the three-body scattering problem.23 We have 

., 

• ... 
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checked that--as it must be--the results are the same. The Weinberg 

equations can be extended to the many-particle problem, and--at first 

sight--it seems that most of the present work can be carried on to this 

more general case. 

A truly complete solution of·the problem would include an examin-

ation of the analyt1c properties of the solution and not only of the ker-

nel. This is far from being a.matter-of-fact extension. For instance, if 

one wants to investigate whether the kernel K is completely continuous, 

it is necessary to examine trace KK+ to see if it is bounded. However, 

the properties of thi~ trace, which is a doubly infinite sum, require 

knowledge about the asymptotic properties of the rotation matrices of 

the second kind when two indices tend to infinity_. This· means knowing 

the asymptotic propert1es of the hypergeometric function F(a, b, c, z) 

when two independent linear combinations of a, b, c tend to infinity. 

Apparently this problem has not been considered by mathematicians.24 

With the problem cast in a well-defined form, we hope that it can be useful. 
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. 2... REDUCED FADEEV •· EQUATIONS 

Let us start from the Fadeev equations (I. 44) which we shall write 

in an abbreviated from as 

where 

0' (i) == L: 
(j) 

K(i, j) ,?:; (j) 

i, j, k, £ == l, 2, 3; i ~ j, i ~ k, i ~ £ 

andk~£. (l) 

Equation (l) cannot be used directly to define an extension of the calli-

.sion matrix to complex values of a parameter (namely, here, the total an­

gular momentum) because the kernel K(i,j) is not completely continuous.15 

We therefore-iterate Eq.(l), which gives 

,(j (i) == ~k£ - 2:: K(i,j) __ y.; + L r<i,j) u<j), (2) 
(j) £m j 

where £ ~ j, m ~ j • According to the expression (I.47) for the 

kernel K,- its square r has the form 

, 
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where a typical term is, for instance, H12 :25 

= 

' 

u, z 
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I - ().) ) 
l 

(3) 

(4) 

II II II 

When we wrote Eq. (4), we took into account the equality e21 = a2 - a 1 , 

" II 

and we have integrated ro1 and w2 , which--according to the delta 

functions in Eq.(I.47)--are given by 

" " (5) 
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The integrations over u and v . in Eq. (4) go from 0 to 2:n: . The in-
·II 

tegration over m
3 

is over a limited range such that, according to Eq.(5), 

I II 

I pl - P21 . .::s p3 < ;pl + p2 • (6) 

II II 

According to the relation .. (I.l6) between CD
3 

write 

and e21 , one can also 

(7) 

·II 

the integration upon cos el2 going from -l to +l • 
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3. ffiOPERTIES OF THE TWO-BODY SCATTERING AMPLITUDE 

I II I 

We ;~heed to know the analytic properties. of F
23 

(ro:. ,ro:. , z - ro1 ) 
II II 

as a function of ro
3 
~·as well as its asymptotic behavior when ro

3 
tends 

to infinity. 

As was shown in Eq.(I.40), ~3 is equal to the two-body scattering 

amplitude f23(~3 ' ~3 ' s) ' which.is itself defined as the solution 

of the Lippmann-Schwinger equation. We shall write that equation in the 

case for which the potential is a pure Yukawa potential 
_,,,. -1 

ge .- ·r 

X 
2 

~ ~ 2 
(q - k) + 1-L 

g 

2 
+ 1-L 

1 

(8) 

If one analyzes the singularities of the solution of Eq.(8) according to 

the method of Blankenbeckler, Goldberger, Khurr, and Treiman,
26 

it is 

found that 
~ ~, 

f ( q, q , s) , as an analytic function of s , has only poles 

at the bound-state energies and a cut extending from 0 to oo. As a 

function of q2 (and q 12 ), it has a cut :st':'trting from 

cut going along (s)1
/ 2 + il-10 (where 1-1 ~ 1-10 < oo). 

2 
q = 0 and a 

As a function of 

the cosine, A .-.1 q • q , it has the customary If3-nda:u singularities. 

More· can be said if we apply the Lee and Sawyer method to Eq.(8). 

( 
2 t2 

Projecting out the !th partial wave a.t q , q , S) from Eq. (8) , we 

get the equation 
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00 

J '2 ,;2-) + k + ..... 
2qk 

dk 2 r2 
2 an (k , q ' ~)- ' 

k. - ~ ,XJ 

(9) 

0 

where -~£ is the Legendre function of the second kind. One sees in Eq.(9) 

( 2 r2 r2 
that a£ q , q -, · ~) . bas a right-band cut going from . q = 0 . to +- oo 

and two superposed. _left-hand cuts going from 
. ,2 
q = -oo to 

The Fredholm determinant of Eq. ( 9) _depends only upon ~ and is in fact 

identical to the Lee and Sawyer determinant. Its zeros are the Regge 

poles of the two-body scattering amplitude with a complex energy . s . 
The asymptotic behavior of f23 (~3, -;r'

23
, ~) , when ~23" tends 

to infinity can be deduced.from.the Sommerfeld-Watson formula: 

(10) 

Ta;king into account only,the leading Regge pole a(S), one bas 

f(q, -;;i'' 0 (11) 
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However, we are in fact interested only in the limit 
II 

(.l)' 

3 
tending to in-

A AI t2 finity, where not only ·. q • q , but also q tends to infinity, so that 

· kn led f ·the t t• b ha · f th · ··~··~' .&\(· 2- •2 1'.) a prec1se. ow ge . o asymp o 1c e VJ.or o e ne~:L~I.le .. 'u q ,,,q ._, •.; 

lLs a:hso ·needed. ( \ . 

When ' q tends to infinity, the inhomogeneous term in Eq.(9) 

behaves as ·-i-2 ' q times a function that does not depend on q • As the 

kernel in Eq.(3) does not depend on ' q itself, the full solution will 

behave as ·-i-2 q , so long as it is defined. The solution will not be 

defined when the values of s and i correspond to a Regge pole , but 

by letting s tend continuouslyto such a value, it is clear·that the 

residue behaves as q,-a(0-2 when q' tends to infinity. 

" " When w
3 

. tends to infinity, both and 
A I All 
q • q behave as 

so that the two exponents a(s) in the Regge factor and its 

residue in Eq.(ll) ~ancel. Therefore, 

" 
(.l) ' 

' z - (.l) ) 
l 

"-l 
"'(.l) 

3 
when " (.l)' 

3 
OJ • (12) 

This is equivalent to the statement that the full solution of Eq.{8) has 

" the same kind of asymptotic behavior as the Born., approximation when w
3 

tends to infinity. 

Finally, let us notice. that, due to Eqs. (20a and 20b) . of I , 

the singularities of F
23 

, which are all outside the physical region 

< l , are also outside the domain -l < cos e12 
" < l . 
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. 4. AN ALTERNATIVE FORM OF THE KERNEL 

In order to extend Eq. (4) to complex values of J ~ it is necessary 

to give it such a form that the extension is uniquely.defined. We shall see 

in Section 5 that this is.not the case for Eq.(4) • This prob~emis al-

ready well known in the case of two-body scattering, where· the partial-

wave scattering amplitudes for real values of £ can be indifferently 

. written in terms of the total scattering amplitude f(cos e), as 

. or 

+l 1 Pt{cos 9) f(cos 9) .d cos 9 

-1 

J Qt {cos 9) cr(cos 9 ), d cos: 9 

c 

(l3a) 

(l3b) 

where the contour C encloses the segment (:- 1, + 1) in the plane of 

complex cos.· e . However, when £ is made complex, the expression (13a) 

blows.up :J!Irmtl exponentially when Im £ _.. oo as e whereas (13b) stays 

bounded. Accordirig to Carlson's theoremf9Eq~tJ.::3ibJis.the unique interpola-

tion, which has thrs property and which makes a Sommerfeld-Watson transfor-

mation possible. 

Equation (4) is very analogous to (13a) because, when M1 = ~ = 0, 

J. " " ~ M~,.; (e21 ) . is equal to PJ(cos e12 ) , whereas the integration over 
r~ . 

m
3
". is equivalent, according to Eq.(7), to an.integration over·cos.e

12
" 

from - 1 to + l • 

When ·~ and M2 are not both equal to zero, it is possible to 

I~ "'' 

.• 
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to the Jacobi polynomials Pn (a:, t3) (cos e
21

") accord-

I(J + l\)!(J -l\)!ll/2 ( " ) Ml+~ 
= L<J + ~)!(J- ~)!J- cos e2l/2 

(14) 

This equation is valid only for Ml ~- ~ and Ml + ~ both positive or 

zero, and other expressions are needed in the other cases. However, Eq. (14) 

will be enough for our purposes. 

We indica-te in Appendix A the properties of the Jacobi polynomials 

that will be needed in the following. Together with the Jacobi polynomial 

Pn(o:,t3)(x), one can introduce the so-called Jacobi function of the second 

kind Q (o:,t3)(x) •21 For n an integer, it is an analytic function of x · 
n 

in the plane cut from -1 to +l , whereas for n not an integer it is ana-

lytic in the plane cut from - oo to +l • We introduce the new matrices 

(15) 
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together·with·thematrices analogous to the ful:J_.rotation matrices 

. (16) 

It is shown in Appendix B that they enjoy the remarkable property 

& J(R'R) 
Ml~ 

M==+OO 

== L 
M==-oo 

(17) 

E'luation (17) means that, if we replace ~~ J ( e21" ) by ~~ J ( e21") 

. in Eg_. (4) , this is equivalent to ·replacing the full expressi~n. 

(18) 

which. is nothing· but 

.!J J[ ( I II 
M 'M R - al ' u, 921 ' v, (19) 

{where R is the product of a rotation a
2 

around the y axis, v around 

II 

the z axis, 921 around y, u around z , and lastly .. - a
1

' around y) by 
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(20) 

as we shall show are the end of this section. 

The analog;r·.of Eqs. (l3a) and (l3b) is that, when f(x) is an ana-

lytic function of x in a neighborhood of the segment [-1, +1], the two 

quantities 

+l 

J (2la) 

-1 

and 

l 'j 
irr 

(2lb) 

"· c 

21 are equal. Here C has· the same meaning as in Eq. (l3b) • 

It is not quite obvious that Eq.(4) has the form (2la) • In fact, 

according to Eq. (14), 'M J has rather the form (l - x)a/2 (1 + x)f3/2 

P (a, f3) (x) • . In order to ~ee the form (2la) it is necessary to introduce 
n 

first the Legendre series expansion of F
23 

and F
13 

according to Eq.(I.42): 
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II 
00 00 

' -CD') F23 (q.>l ' o.) ' 
z . - I: L: (2£ + l) .l 

£=0 M=O 

(22) 

then, for a given value of M1, we integrate upon u, which leaves us with 

a series of the form 

f ~u 
F23 e du = L (23) 

~ II 

Now P£ (cos r1 ) :rn· eq_ual to (sin 'Yl 11 )~ times a polynomial in 

cos r1
11 

On the other hand, we have seen that, according to Eq_s.-(20a) 
II II 

and (20b), sin 71 is eq_ual to sin e
23 

times an analytic function of 
II 

(- ll ' + l] . This provides the m
3 

in a neighborhood of the segment 

right power of sin e21
11

, which is necessary to give to Eq_.(4) the form 

(2la) It is easy to justify the use of the expansion (22) in the domain 

where it is needed. 

We have thus shown that it is legitimate to replace Eq_. (4) by 

an analogous expression in which eM1~ J (e21
11

) 

II 

replaces '~ (e21 ) and 

,... • 

1"-"'. .. 



-17- UCRL-11186 

II 

for which the integration upon cos e12 is now made on a contour that 

encloses - l and + l • This contour may then be deformed in order to 

enclose the singularities of the integrand in ill3 
II 

We shall call 

r such a contour •. Finally, 
' 

l 
du.dv -.­

J.1( J F
23 

(ro ', ro
11

, u, z -ro
1
') 

0 0 r 

-1 
- z )(ro1 + ill2 + ill

3 
- z)1 • 

(24) 

Now it is possible in Eq. (4) to replace the full expression 

is the product of the five ro-

tations with angles ~alr' u, 812
11

' v, and a2 respectively, around the 

axes Oy, Oz, Oy, Oz, and Oy • It would be very convenient for what fol-

lows to replace also the matrix that appears in Eq. (24) by only one ro­

tation matrix of'the.second kind ~'MJ(R), where R is the same matrix 
II 

as above but for the complex character of cos e21 That this is pos-
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sible is suggested by Eq~ (17). Equation (17) is proved f'or a ·.complex 

value of' J • In order to understand its meaning, f'or physical values of' 

J , l-et us consider· the case in which M = M' = 0. In ·that case, 

Eq. (17) becomes the familiar addition f'or the Legendre function of' the 

second kind, 

QJ(cos e cos 9' +sine sine cos q>) 

00 

+2 L ( -l )m !J -m (cos e' ) QJ m . (cos e) cos mq> • 

m=l 

It is important that, when J .tends to an integral value£, the summa-

tion upon m does not stop at m = £ • Rather, according to the equation 

= r~J - m + l) [p m( ) _ g_ • ( ) -iirl1r Q m( )J r J + m + l) =J z ~ s~n Irl1r e .J z , 

_!J -m(z) reduces to 2(-l)m+J+l QJm(z) when J and m are both positive 

integers, and m is larger than J, to [r(J - m + l)/r(J + m + l)] .!J m(z) 
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when m is smaller than J Accordingly, the addition formula becomes 

Q.e(cos-9 cos 9 1 +sine sin 9 1 cos cp) = R.e (cos 6 1
) Q.e(cos e) 

j, 

. + 2 I (- 1 )m Rt -m (cos e I ) . Q j, m (cos . 9) cos mcp 

m=l 
00 

+ 4 I 

An essential property of this expansion is that, while the first two terms 

have parity (- 1 )R, when cos 9 1 is replaced by - cos 9 1 and cp by 

(- l)t+l • . cp + 1!- , the last term has parity This splitting of the addition 

formula (1:7)': into two parts of opposite parity when J is an integer is 

in fact a general property not restricted to M = M1 = 0 • We shall 

use that property in order to rewrite E~. (24) in another form. Let us 

first introduce the inverse of a state lrn J M) , labelled Plrn J M) • 

Then introduce the state with signature ~ as 

lrn J M)~ = lrn J M) + t Pjrn J M) , (~ = ± 1) ' 

and the collison matrix of signature ~ as 
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Define the notation 

[ ( 1 II )] ( 1 II I I I ) G m, m , m , u, v · s = G m, m , m , a1 , a2 , ~' a1 ,a2,~,u, v 

I I I ) 
~ - ~ , ~· - a2 , ~ - 0) , u + ~, v + ~ • 

Finally, the kernel of the modified Fadeev e~uation for T~ can be written 

2~ 

JJ du dv J 
o r 

)\ F 13 (mil' m, v, z - m2)] ~ ~ IMJ(R) [ (mll + m2 + m3 II - z) 

(25) 

The distortion of contour used while passing from E~. (4) to E~. (24) is 

justified by the fact that all the singularities· of·the two-bbdy scattering 

amplitudes as well as of.the propagation denominator (m1
1 + m2 + m

3
11 

-·z) 

areoutside the interval (- 1, + l) ,of cos ·e
12

11 
for complex values 

·of ~ • 

,. 
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. 5. EXTENSION TO COMPLEX ANGULAR MOMENTUM 

Our problem is now to extend Eqs. (24) or (25) to complex values of 

J. It is shown in Appendix A how the Jacobi functions of the first and 

second kinds can be extended to complex values of·the index n. This is 

used in Appendix B to extend the definition of·the rotation matrices of the 

first and second kind J 
dMM' (e) and J 

~· (e) • The main results are: 

J a. ~~· (e) is an analytic ~~ction.of cos e in the plane cut from -co 

to -1, 

b. ~,J(e) is an analytic function of cos 9 in the plane cut from 

~ co to +1, 

J <\w• (cos e) increases like eiJS when J tends to infinity, c. 

d. eMM/ (cos e) is bounded when· J . tends to infinity, except when cos e 

is between -1 and +l , 

28 
e. one has a property analogous to the group property, 

·+00 

~,J(R'R) = L ~/(R') E;'M/(R)' 
M"=~oo 

as well as Eq. (17) , 

&MM'J(R'R) = 

+CO 

~ /? / J ) £r. J( ~" (R I ,M"M' R) • 

M"=-CO 

(26) 

(27) 

Equations (26) and (27) are true only for certain values of·the Euler angles 
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(possibly complex). of the rotations R and R' , according as the series in 

the right-hand members converge or not. We shall agree to define these series, 

' even when they do not converge, as formally equal to the left-band members. 

According to Carlson's theorem and Property (d) , Eq. (24) written 

for complex values of J provides the unique extension of'the kernel to 

complex J. The inhomogeneous ·term of· the Fadeev ec;iua tion can also be treated 

in the same way. [This is true when one writes the Fadeev equation for the 

connected T matrix, Le., for ·instance, T(l) - T 
. 23 . ] 

Property (f) shows that it makes no difference whether one makes 

J complex into the form (24) or the form (25) of the kernel. 

According to the asymptotic properties of the two-body scattering 

amplitudes given by Eq. (12), and of the rotation matrices given by Eq.(B-7c), 

" " when m
3 

or, equivalently, cos 912 tends to infinity, the kernel (25) 

is formally defined for J > -3 . However, as the asymptotic property 

(B-7c) of &MM/ • is true only for J .larger ·than -1/2, the kernel is 

defined only for 

J > . - 1/2 . (28) 

In fact, this last statement is justified only if·we can show that 

·II ( it is possible to displace the integration contour on m
3 

in Eq. 25) 

to infinity without having to displace the contours on u and v to infin-

ity. That means that the singularities of F
23

, F
13 

( 
I II ) and m1 + m2 + m

3 
-z 

will not meet the singularities of & J[R( I .M'M · -al ' u, 9
21

", v, a
2

)]. Let 

us call (~, ~' v) the Euler angles of R. 
k?' J 

The singularities of ~M'M (R) 

are at cos ~ = ± 1. However, it is easily shown that, for u, v,a{,a2real, 
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II corresponds to values of cos e
21 

between . -1 and +1, and cos 1-L = ± 1 

we have already shown that the singularities never get into that physical 

region. Accordingly, the·terms of.the kernel are analytic functions of J 

for J > - 1/2 • 

As it is discussed in the introduction, this result is not enough 

to prove that the 'UJi are meromorphic functions of J, but, at least, it 

does not contradict it. 
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6. WATSON -SOMMERFELD . TRANSFORMATION 

Let us suppose that, as suggested by the results of Section 5, 

{; M'MJ(ru ', ro, z) is a meromorphic function of J ~ It is easy to relate 

tr~t hypothesis to the asymptotic behavior of the three-body scattering 

amplitude. 

To that effect, let us consider the amplitude (p{P~P~ITip{p2p3 ) ,. 

and let us associate two reference systems with the initial and final states, 

in a well-defined way that isnot nec~ssarily-the same for both states 

(for instance, the z' axis coincides with "P1 ', and the z axis coincides with 

-+ f .-+ -+ -+ ) 
p2 or is orthogonal to p1p2p

3 
• • • • Let us call ( 1jr, 8, cp) the· Euler 

angles that define·the transition of'the initial reference system to the 

final reference system. Then, according to Eq. (23) of I, 

= 

Because the extension of~J to complex values of J has been made 

according to the Carlson theorem, Eq. (29) can be cast into a Watson-

Sommerfeld form, 

= constant 

MM' 
J (2J + 1) 

sin :n:J 

M90 J .Q./ J 
i (- 1) C. MM' "VM'-M (1jr, 8 + :n:, cp) ' 

(23) 

(30) 

--· ... . 

• 

.. 

,. 
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in which we have used the symmetry property, valid for J an integer 

== J~J (- 1) .M'M (t, 6 + 1C1 q>) (31) 

Eq_uation(36_) shows· that,. if the singularity with higher real 

value of 9:: M'MJ(m', m, z) is a pole at J == a(m', m, z), then 

(pIT IJ?) behaves as (cos e P when cos ·· 6 tends· to. infinity . 
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APPENDIX A 

In this appendix, we shall recall some useful properties of Jacobi 

functions. 

The Jacobi polynomials P (a,l3)(x) 
n 

are customarily defined as·the 

set of orthogonal polynomials on the interval [-l, +l] with the weight 

function w(x) = (l - x)a(l + x)13 , where a and 13 are larger than 

-l; the normalization of P (a,l3)(x) is effected by 
n 

r(n +a+ l) 
= r(a+l)r(n+l) (A-l) 

They satisfy the homogeneous differential equation of the second order, 

2 (1 - x )y" + [13 - a - (a + t3 + 2)x] y' + n(n +a + 13 + 1) y = o. 

(A-2) 

.Equation (A-2) can easily be reduced to thehypergeometric form, so that, 

using Eq. (A-l), one has 

P (a,l3)(x) (+a) 
F{-n, n + a + 13 + 1; a + l; 1 - X) = 2 . n 

n 
(A-3) 

The Jacobi functions correspond to the case for which n is no 

longer an integer in Eq. (A-3) . Equation (A-2) has a second solution 

;~ 

. 
~· 

·~"' 



. " . 

-27- UCRL-11186 

regular at infinity, which is called a Jacobi function of the second kind 

and can be defined as 

Q (a,~)(x) 
n 

2n40!+{3 r(rt + a + l) r(n + ~ + l) 
= . r(2n + a + t3 + 2) 

v ( )-n-a-1 ( )-t3 
1\ X - l' X + l 

X F(n +·a + 1, n + l; 2n + a + ~. + 2; 1 : x) . (A-4) 

.We need the behavior of this function when x tends to l + 0 . 

It is equal to 

2a-l r(a).r(n + t3 + 1) 
r(n + a + t3 + l) 

when a > 0 . 

(x - 1)-a 

When we use Carlson's theorem, we need to know the asymptotic 

(A-5) 

behavior of the Jacobi function of the first kind when n tends to infinity. 

When x does not belong·to the closed segment i-1, +1] , it is given by 
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and when u = cos 8 belongs to the open interval (-1, +1).; .it is 

given by 

1 2 . -l 2 ' 

~ 
.. 

e) .~ 2 I (nn.s>n e) I cos. h·+·l/~ 9- .c/4} 
(A-7) 

The norm of a Jacobi polynomial is given by 

+l 

J 
-l 

= 
2a + f3 + l 

2n +a + f3 + l 
r(n +a-:+ 1) r(n + f3 + l) = h_n(a,f3}(A-8) 
r(n-+ 1) .r(n +a+ f3 + 1) 

so that a function f(x), defined in the interval [-1, +l], can be 

formally expanded as a series of Jacobi polynomials ac.cording to 

f(x) 

where 

00 

L an pn(a,f3)(x) ' 

n=O 

+l 

= J 
-1 

(A-9) 

(A-10) 

r 



• 
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When f(x) is an analytic function of- x in a neighborhood of the 

closed segment [-1, +1] in the complex plane, then one can use the formula 

00 

~ 
n=O 

= 1 (y - l)a(y + 1)-~ 
2 y- X ' (A-ll) 

which is valid when y is outside the ellipse with foci at ±1 and 

which passes through x • Equation (A-ll) allows ·us to replace Eq.(A-10) 

by 

a n = dy ' 

(A-12) 

where the integration is performed along a contour that surrounds the 

points -1 and +1 and that does not contain any singularity of f(x) • 

The expansion (A-9) is then valid within any ellipse with foci at 
y 

±1 that does not contain any singularity of f(x) .·• 

Finally, it is clear from Eqs. (A-3) and (A-4) that P(a,~)(z) 
. n 

and Q (a,~)(z) are analytic functions of the complex variable z. 
n 

When n is a positive integer, P (a,~)(z) is an entire function (in 
n 

fact a polynomial), whereas Q (a,~) is analytic in the plane cut from 
n 

-l to +l. When n is not an integer, Pn(a,~)(z) and ~(a,~)(z) 

are analytic in the z plane cut , respectively, from -oo to +1. 
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Clearly, the particular case a = ~ = 0 corresponds to 

Legendre functions. 

The asymptotic behavior of ~{a,~) (x) when n tends ·to infinity 

. can be easily derived from Eq_. (4) and the Watson formula 

(l/2 z - l/2) -a-A. F [a + A., a - c + l + A.; a - b + l + 21\.; 

X · 2 ]= 2a+b r{a - b + 1 + 2A.) r(l/2) x-112 

l - z . r(a - c + l + A.) r(c - b + A.) 

-(a+71.)~( -~)-c+l/2 ( -~)c-a-b-l/2 .e .L-e l+e , (A-13) 

where 

l/2 2 . :t~ 
z ±(z - l) = e . (A-14) 

Equation (A-13) shows that ~(a,~)(x) stays bounded when n tends to 

infinity, except when x is in the interval (-1, +l) • 

• 
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APPENDIX B 

We indicate in this Appendix some properties of the rotation 

matrices for complex values of the angular momentum. 

As is well known, the matrix that represents a rotation with 

Euler angles (a, ~' r) within the irreducible representation of total 

angular momentum J can be written 

(B-1) 

make up an orthogonal set of fUnctions 

of (a, ~' r) according to the relation 

(8i) 

= 

-1 

8 I 
m'm 

1 

An important particular case is provided by . m' = 0 , where 

dmoj (~) [ (j - m) !] 1/2 ( -l)mP .m (cos ~) . 
= (j + m) !J J 

(B-2) 

(B-3) 



. -32- UCRL-lll86 

More generally, the ~mm 1 j(t3) can.be related.to the Jacobi polynomials 

according.to 

-(m..;m 1 , m+m 1 
) ( ) X P. cos t3 .• 

J-m 
. (B-4) 

Equation (4)·is true when 

m - m' > 0 

and:m+m 1 > 0. (B-5) 

One way of proving Eq. (B-4) consists· in :writing·the Lie equations 

for the rotation group in a differential form. According to Eq. (1), this 

leads to the differential equation for y = dmm 1 j(x) , where x = cos t3: 

[ 
2 

(x2 - l)y" + 2xy 1 + m 
2 

+ IJJ. 1 
- 2mm 1x 

1- x2 - j(j:+ 1~ y = 0·. (B.;.6) 

One t:Q.en.gets Eq. (4) byreducing Eq. (6) to the Jacobi form by a change 

of variables. The- coefficients can be obtained by com~ring Eq. (2) and the 

orthogonality relation between Jacobi polynomials (A-8). 
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We have shown in Appendix A how to extend the Jacobi polynomials 

to Jacobi functions when the index n = j - m is not an integer. That 

pDDvides: immediately an explicit extension of the d ,j(x) to complex . mm 

values of j. For a general value of j, the restrictions m ..:::; j, 

m' ~ j have to be dropped, so that m and m' may now run .from -oo 

to +oo taking any pair of integer values. 

An important property of these.functions is their asymptotic 

behavior when x tends to ±l or to co • As Eq. (6) is of the Fuchs' 

type, it is easily seen that its solutions behave as 

and 

(x - l) 

(x + l) 

+j 
X 

m-m' 
-2-

or 

m+m' 
-2-

or 

or 

so that, when x- co, Re j 

m'-m 

(x - l) 
-2-

when X- l, 

m+m' ·-
(x + l) 

2 when X - :-,1 

X 
-j-l· when x- co , 

> -l/2, d ,j(x) behaves as xj • 
mm 

(B-7a) 

(B-7b) 

(B-7c) 

As d ,j(x) is related to the Jacobi functions of the first kind 
mm 

through Eq. (4) or (5) , one can likewise define a second solution of 

Eq. ( 6) that is regular at infinity, behaving as x-j -l , and is related 

to Jacobi functions of the second kind through 

(Eq. (B-8) cant. ) 
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(B-8) 

A fundamental property of the rotation matrices is their group 

property 

vtJmm, ~:(R 'R) = 

m"=+j 

L 17:_ .. j(R') 4•m•j(R), (jan integer), 

m"=-j 

(B-9) 

where R and R' are two rotations characterized~by-their Euler angles 

(a, [3, r) and (a', f3', r') and R'R is the product of H' and R • 

It can be extended to any value of j by giving up the conditions on m" 

m"=+oo 

= I (B-10) 

m"=-oo 

A particular case of (B-10) is the well-known addition property of 

Legendre functions, 

Pj(cos f3 .cos f3' +sin f3 sin f3' cos cp) = p. (cos f3 )P. (cos f3 I) 
J J 

.. /'· 
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which ·is a particular case . of Eq. (ll) for m - m' = 0. , where use 

-has been· made. of Eqs. (l) and (3) and where we have defined cp = r 1 + a . 

One can prove Eq. (9)-in several ways. For simplest proof, -consider 

the Fourier expansion of dmm 1 j(cos ~:cos~~ + sin~ sin~· cos cp) in a 

.series of terms proportional to lmq> 
. e • Then, except for convergence consid~ 

erations, Eq. (10) is equivalent to the set of equalities 

-1 
2:n: 7 j -im"cp 

d 1 (cos ~ cos fj 1 + sin ~ sin ~ 1 coscp) e dcp mm . . 

= d j (cos A) d.. . J·(-e:os ·A: 1 )·. .. . 
~- mm11 · · ..., nm".'an' · .~ · :L ·-__ · (B-12) 

Equation (12) can be: proved by applyiug the differential operator that 

appears.in (B-6) to theleft-hand side in order to provethat the right-

hand side is proportional to The calculation is in fact 

rather tricky. 

Another proof consis~s in considering real vqlues of ~ and ~ 1 , 

such that I cos ~I, I cos ~' j, and I cos ~ cos ~ v + sin ~- sin ~' cos cp I 
stay less than 1 when cos cp runs from -1 to +L Then, for m, m 1 

and m" fixed, Eq. (12) _is true for arry positive integral value of j 

according to Eq. (9) . Furthermore, Eq. (4) , together with Eq. (A-7) , 

shows that both members do not increase as rapidly as 
i:n:j e· when j 

tends to infinity. Both members can be then extended through Eq. (9) 

to complex values of j in a way that satisfies the conditions of 

Carlson's theorem. Therefore Eq. (B-12). is true for any value of j . 

The conditions on. cos~ and cos ~~ can be removed by-noticing that 
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both~members are analytic functions of' ·cos f3 and cos 13 1 
• Finally, 

Eq. (12) . is true. as. -long as· cos f3 /: -1, cos f3 1 i -1, and 
fl ... 

cos f3 1 + sin f3 sin f3 1 cos .q) . does ·not pass through . -1 when cos cp var];es 

from -l to +l. In fact, even .that last condition: could be removed by 

. displacing tl:).e. integration contour. 

The domain of' convergence of' Eq.'(ll)is easily deduced f'romthe 

asymptotic properties of' L~gendre functions when m •tends to infinity. 

As the asymptotic properties of' Jacobi functions when · m . or m 1 tends 

to inf'inityby·integral values·are not known--at least to ·our knowledge--

the-convergence:domain-of' Eq. (10) cannot be f'ullyexpl:ored. H;owever, as 

obtained f'rom the theory of' Fourier series for any -real or· complex set of' 

values of' cos f3 and cos f3 1
, Eq. (lO) converges inside a corona (of 

radii RR' = l) passing through the point c0t 13 = - cot 13: cot f3 1 

In fact, when-the series.in Eq. (10) does not converge, we just 

consider the left-hand side as the correct definition.of'.the.right-hand 

side. 

Equation (10) can be extended to the-r0t13,tion.matrices 0f' the 

second kind as follows: 

' -. 

. -inia j ( ) -im')' e e . , 13 e mm (B.l3) 

and 

•..:..' 

= 

m11 =+co 

I If j(R) 
m11m' (:8 .• 14) 

m11=-co 
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In order to prove Eq_. (14) we first need the important identity 

d -rrm 1:J( -z) . , 

(B.l5) 

where the signs are taken according as Im z > < 0. Eq_Ufition (15) 

applied to Eq_. (12) shows 

J. -~"cp 
e (cos 13 cos 13 1 sin 13 sin 13 1 cos cp) e · · dcp mm' 

j d j ( ( m" 
== emm" (cos 13) m"m 1 cos ~ 1 

) -1) , . (B.l6) 

. when 1 < cos 13 1 < cos 13 . • Then, analyticity of both .members of 

(B-16) . allows us to give complex values to cos 13 and cos 13' • Then Eq_. (14) 

follows as a conseq_uence of·the theory of Fourier series. Here again7 

we shall consider the left-hand member of Eq_. (14) as the correct defini-

tion of the right-hand member·when.it.diverges. 

Finally, let us go back to the proof of Eq_. (15) . According to 

the symmetry properties of.· the dmm' j functions, it is true for integral 

values of j. When . j is not an integer, we notice that 

dmm 1 j ( -z) both verify Eq_. (6) ; therefore,. the right..,hand member of 

Eq_. (15) also verifies Eq_. (6) and is a linear combination of dmm 1 j(z) 

and e 1 j (z) '. Using the asymptotic behavior of· the Jacobi functions mm 
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(

.2n + a + f3) n 
. x , when : x tends . to infinl 'ty. 

n 
(B-17) 

as :well as Eq. (4), one easily-verifies ~thattheright-hand-member of 

Eq. (l5),increases. less rapidly.·than j when z tends to infinity, so that 

it is proportional to e 1 ~ (z) · • The proportionality coefficient may ·then .mm 
j be fixed by a comparison of the behavior. of d 1 ( -z) near z = , ±l -mm__ • 

and Eq. (A-5) · • The behavior of d j(z) 
-m+m can be related to that of 

l +X) · F(m 1 
- j, j + m1 +l;.m 1 

- m + l, 
2 

. with·the help of Eqs; (4) and 

(A~3) •. By using the asymptotic behavior of the hypergeometric function 

)
-£ r(£) r(a + b- £) 

F(a, b, a+ b.- £, z) ·"' (l- z r(a) r(b) ' (B-18) 

. where . £ ·is a positive integer, ~me finds that Eq. {l5):.lfollows immediately. 

{ 

I~ 
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MU-33153 

Fig. 2. 
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