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ON THE THREE-BODY SCATTERING AMPLITUDE. II. EXTENSION
TO COMPLEX ANGULAR MOMENTUM
Roland L. Omnes
Lawrence Radiation Laboratory
University of California
Berkeley, California
December 18, 1963
ABSTRACT
The Fadeev equations for the three-body scattering amplitudes of a

given total angular momentum J--as derived in a preceding article--are
extended to complex values of the angular momentum. The main steps are
provided by an analysis of the properties of rotation matrices for complex
angular momentum. Of particular importance are rotation matrices of the
second kind, which are natural generalizations‘of Legendre functions of the
second kind. It is shown that the terms of the kernel are analytic functions
of the total angular momentum J for any value bigger than :-1/2 « This
is a generalization of the cancellation of Amati-Fubini-Stanghellini cuts that
was discovered by Mandelstam. Although a complete mathematical analysis of
the analytic properties of the solution is not given, there is no evidence
for any singularity except poles. Therefore the essential results of Regge
for the two-body scattering amplitude may certainly be extended to three-
particle nonrelativistic channels. A Sommerfeld-Watson transformation
allows us to derive from these results the asymptotic properties of the

three-body scattering amplitude when one reaction angle becomes infinite.
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1. INTRODUCTION

This article.is devoted to an extension of the reduced Fadeev
equations--as derived in a preceding paper (léter~on called I)--to
complex values of the ﬁotal angular momentum.

Tﬁe reason for this study is: the current interest in the pos-
sible limitations of the Chew-Frautschi hypothesis,l according to
which the two-body scattering amplitude is a meromorphic function.of
the total angular momentum, and all elementary particles are members
of é Regge poie-trajectory.z If this hypothesis be true, it would
follow. that it is possible to build up a theory of strong interactions

5 and to analyze the high-energy diffraction

without arbitrary parameters
peak in terms of the Regge pole trajectories and residues.u The -exis-
tence of singularities other than poles would complicate .this.last ana-

lysis but it would not necessarily invalidate:the first statement.

Because of the importance of such problems, it seems worthwhile to

-take up a systematic analysis of the properties of scattering amplitudes

in terms. of a complex angular momentum.

When one wants:to extend the results of Reggeg-to the relativ-

istic scattering amplitude, two essentially hew features enter in,

‘namely: (a) the existence of processes described in the Mandelstam

representation5 by. the so=-called third double-gpectral function that

are ultimately due to crossing, and (b) the nonconservation of the
number of particles:that necessitates a study of the many-particle
states as possible intermediate or final states.

It was first realized by Gribov and Pbmeranchuk6 that crossing

‘leads to essential singularities of the scattering amplitude for two

spinless particles at negative integral values of the angular momentum.

[t
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On the other hand, Amati, Fubini and Stanghellini7

pointed out
the possible existence of cuts in the total angular momentum due to
many-particle»intermediate_systems, as is shown in Fig. 1 . It was

3 8
further shown by Mandelstam and by Pblkinghorne9 that, in fact,  these

cuts are not in the physical sheet and do not have to be considered.

However, Mandelstaﬁ;o,also showed that analogous graphs, like.those
in Fig. 2, lead indeed to cuts, and that the Gribov-Pbmeranchﬁk singu-
larities are on a well-defined sheét linked to these-cuts.

An important feature of the graphs in Fig. 1 is that they have
a nonrelativistic interpretation, aqd it would be ﬁery-interesting'to
know. if, for all such nonrelativistically interpretable processes,
there are no cuts; or--~stated otherwise--if the nonrelativistic ampli-
tudes for two particles going into many particles:or~for-many-particle
scattering, are meromorphic functions of the total angular‘momentum;
Clearly, the first problem is then to analyze the three-particle

scattering amplitude.

This problem has already been considered by Newtonll and Hartle,12

who, using the same method, arrive at opposite conclusions. While New-
ton claims that there are cuts of the three-body scattering amplitude
extending up to infinite values of the total angular momentum J ,

Hartle finds it to be a meromorphic function. As ‘we have .indicated

~in I, these two authors have used a formulation of the problem that

turns it into a study of matrices with continuous indices. This is
clearly unsuitable for any correct mathematical analysis. Furthermore,
they solve their reauced Schrodinger -equation by a method essentially
equivalent to a use of the Lippmann-Schwinger-eq_uation,15 which is well

known to be an insufficient formulation of the three-body problem.lh

¥
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We therefore think that the results of Newton and Hartle cannot be ac-
cepted and that it is necessary to find a formulation.of the problem
free of their drawbacks. The solution we have found is set forth as
follows.

In Section 2, the reduced Fadeev. equations found in I are
written explicitly after an iteration. The reason. for that iteration:
is ‘that only the square. of the Fadeev kernel is completely continuous}5’16
and we need at least to start from such a kernel for a sound mathematical
gnalysis; -This iterated kernel is an integral upon two-body scattering
-amplitudes’ that involves rotation matrices, one of the rotation angles
being integrated from ‘O to =« .

In Section .3, some properties of the two-body scattering ampli-
tudes that enter into the Fadeev kernel are analyzed. As they are off-
the-energy-shell amplitudes, they are defined by Lippmann-Schwinger
‘equations (which are ;éliable.for'a:two-body.process). The method

17

used,here.iS'due:to'Lée and Sawyer. '0f particular importance -is the
asymptotic behavior of these amplitudes-when a parameter that enters
into thé Fadeev kernel tends to infinity. A cancellation between the
Regge asymptotic behavior as the scattering angle tends to infinity .
and the behavior of the Regge pole residues when the energy tends. to
infinity is fqund. This effect leads-ultimately.to_the nonappearance
-.of cuts found in Section.5 .-

In Section k4,7 .we introduce what we call "rotation matrices of
the second kind," which are related to the customary rotation matrices
in the same way as the Legendre functions of the second kind are re-

lated to Legendre polynomials. It is shown that it.is possible to

replace in the kernel the rotation matrices byimatrices of the second
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kind, - the essential integration now being made in.the complex plane and
~enclosing ‘the singularities of the two-body scattering amplitudes and
. of the propagation'denéminators. ‘This procedure is a generalization.of
.the Gribov-Froissart fdrmula;,l8

In Section.5, we extend the second form of the kernel to complex
angular momenta,s This extension is-unique, according:toba.theorem.by_

19

Carlson. It is found that, owing to the results in Section 2, the
kernel elements are analytic functions of the angular momentum, which gen-
eralizes:the,cancellation of the Amati-Fubini-Stanghellini cut found by
Mandelstam. Although we do not provide an .analysis.of the properties of
“the solution, - this seems to be a good hint.that.the three-body scattering
amplitude -is alméromOrphic function .of the total angular momentum.

Section 6 shows hOWJthese'results1canxbeiuse@, through & Watson-
Sommerfeld transformafion,~to.investigatevthe.asymptotic'properties-of'the
three-body;scatteriné-aMplitude when an angle tends :to infinity;go
| - In Appendix A some useful properties of the:Jacobi functions are
recalled. - These are found mostly in-the book by.SzegQ.El Appendix B
. states :the definitions and properties of the rotation matrices of the
first and second kind,for complex :values of the angular momentum. The
results to be found here are mostly new, so far as we know. -

-This paper is restricted to_the»case-ih-which'the particles are
spinless and.do not Have bound states. We intend to investigate :the
problem of the scattering of a .particle on a bound. state in a further
paper;22

Although the analysis.is specifically made on the iterated Fadeev
-equations, it can be . applied as well to the Weinberg equations, which are

25

another formulation of the three-body scattering problem. We have
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checked that--as it must be--the results are the same. The Weinberg
equations can be extended to the many-particle problem, and--at first
sight--it seems thalt most of the present work can be carried on.to this
more general case.

A truly complete solution of the problem would include an examin-
ation of the analytic properties of the solution and not only-of the ker-
nel. This is far from being a matter-of-fact extension. For instance, if
‘one wants to investigate whether the kernel K 1is completely continuous,
it is necessary to examine trace KK# to see if it is bounded. However,
the properties of this trace, which is a doubly infinite sum, require
knowledge about the asymptotic properties of the rotation matrices of
the second kind when two indices tend to infinity. This means knowing
the asymptotic properties of the hypergeometric function F(a, b, c, z)
when two independent linear combinations of a, b, ¢ tend to infinity.
Apparently this problem has not been considered by mathematiciansog

With the problem cast in a well-defined form, we hope:that it can be useful.

¥}
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‘2. REDUCED FADEEV, EQUATIONS
Let us start from the Fadeev equations (I.44) which we shall write

-in an-abbreviated from as

O @ C,- 3 (53 C Q)

(3)

where

i, d,k £ = 1,2, 3; i # 4, i # k i # 2

and k # £ . (1)

Equation (1) cannot be used directly to define an extension of the colli-

sion matrix to complex values of a parameter (namely, here, -the total an-

gular momentum) because the kernel K(l’J),is not completely contin_uous.15

We therefore iterate Eq.(1l), which gives

ty,

Z? (1) _ ”’Ckz ) (Z) w(1s3) _,_?Ciem .\ Z 25 3) @(j):, (@)
J . J

e

where £ £ j, m # j. . According to the expression (I.47) for the - ’

kernel K, its square K? has the form
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(
ety H Ho

ot © - Ty Hpytiys B ’ (3)
: +
| B 1 Bt
* -
B} N . 25
where a typical term 1s, for instance, Hi2:
|
. 1 . '
H12M'M(w 2, Z) = 1 F23((D » @ , u, z - wl )
P P
; g Nk
X F13(w s O v, 2 - we) dMlMl (- al ) e
J " ildEV J' "
Xd'Mle (6 ) e d'MEM CN [(‘”1 ta, o - z)
| ]-1 "
>§(cnl+a>2+a>3 -z) du dv dm5 . ()
w 1" Bl
) When we wrote Eq.(4), we took into account the equality /621 =0, -«
1" 1"
and we have integrated wl and wy which~-according to the delta

functions in Eq.(I.47)--are given by

(5)

1"

1 2
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The integrations over 'u and v --in Eqg.(4) go from O to 2z . The in-
i

tegration over is over a.limited range such that, according to Eq. (5 ),

3

1 1 1

According to the relation-(I.16) between w, and 6,, , one can also

3

write

de = - ‘2(’-”1“2“’1"”2)/"’3 d cos :9]2'" , (7)

-1

the integration upon-cos .612, going from -1 to +1. .
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-3, PROPERTIES OF THE TWO-BODY SCATTERING AMPLITUDE

We iheed to know the analytic properties-of Féj(w,',w,", zZ - ml')

" 1" _
as a function of w, , as well as its asymptotic behavior when . tends

3
to infinity.
-As was shown in Eq.(I.L40), 2 is equal to the two-body scattering
amplitude 1?23.(?;1’25 s 323 , t) , which is itself defined as the solution
of the Lippmann-Schwinger equation. We shall write.that equation in the

case .for which the potential is a pure Yukawa potential ge-“r-r-l

- 57
£(g a0 §) = & e
G-3 +° (2r)” X - ¢
X = £k q', t) . (8)
@-% +°

If one analyzes the singularities of the solution of Eq.(8) according to
the method of Blankenbeckler, Goidberger, Khurt, and Treiman,26:it is
found that .f(a; E', £) , as an analytic function of ¢ , has only poles
at the bound-state energies and a cut extending from 0 to . As a
function of Q? (and (q'g), it has a cut starting from q? = 0 and a

.cut going along (Eﬁl/z + iuo-(where W < B, < o). As-a function of

O
the cosine, § + §', it has the customary Landau singularities.
More  can be said if we apply the Lee and Sawyer method to Eq.(8).
Projecting out the 4th partial wave az(q?, q'2 , &) from Eq.(8) , we

get the equation
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2 e o [Rea?e®) g
4 . | . - =
az(q > a4 ,8) = 2q % 2qq’ T
2 2 2
g +k +p dk 2 12
f Qw ‘ “Dak > v ?z(k s 45 8), N (9)
kK- = ¢ : :
0

where .Qz is the. Legendre function of the second kind. One sees in'Eq.(Q)
that az(q?, q'a,-C) ‘has a right-hand cut going from ,q'2 = 0 to +.m
and two superposed Ieft-hand cuts going from ,q'2 = - to (ip % q)?:.
The Fredholm determinant.of Eq.(9) depends only upon ¢ and is in fact
identical to the Lee and Sawyer determinant. Its zeros are the Regge
poles of. the two-body scattering amplitude with a complex energy £ .

The asymptotic behavior of f._(d.., 4 .., £) , When @ . tends
e asymptotic behavior o 23 q25, a 0% » When “%5 ends

-to infinity can be deduced from:the Sommerfeld-Watson formula:

2 12 .
- -, : az(q. »y Q- C) ~ ~ )
£(e, 9’5 8) = 3 | = P,(<q - Q') as . (10)

sin w4 Y/

POfH-

‘Taking into account only, the leading Regge pole .a({) , one has

N 2 12 o
0@ 3t = Hda a8 (gl gne(@)

= oo W@ ' (11)

K
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1
However,. we are in fact interested only in the 1limit o tending teo in-

3
finity, where not only .§ - §' , but also q'2 ‘tends to infinity, so that

a precise knowledge of the asymptotic behavior of the nesiQueﬂL@(q%;q1g5§)

ig§ adso meéded. ¢, - . I .

When q', tends to infinity, the inhomogeneous-term in Eq.(9)

behaves as - q"”'e times a function that does not depend on q'. As the

-kernel in Eq.(3) does not depend on q' itself, the full solution. will

behave as q'-z_a 5 50 long as it is defined. The solution will not be

defined when the values of € and £ correspond to a Regge pole , but

by letting € ‘tend continuously to such.a value, it is clear that the

residue behaves as .q’qj(g)-2 when q' tends to infinity.

When &5" tends to infinity, both .q25" and q' . a" behave as

w'"l/a so that the two exponents «(f) .in the Regge factor and its

5 s

residue in Eq.(ll)_éancel. Therefore,

| .
F_ (o), o, z-o Y~ when . - o . (12)
03 > 3 4

3

This is equivalent to the statement that the full solution. of Eq.{8) has
the same kind of asymptotic behavior as the Born approximation when w3"
tends: to infinity.

Finally, let us notice that, due to Eqs.(20a and 20b) of I,

the singularities of F23 , which are all outside the physical region
|a . a| < 1, are also outside the domain -1 < cos 8 P

12
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-4, AN ALTERNATIVE FORM.OF THE KFRNEL
In order to extend Eq.(l4) to complex values of J , it is necessary
- to give:it éuch a .form that,the,extenSion is uniquely defined. We shall see
in Séction 5 that this is not the case for Eq.(l4) . This problem is al-
ready well kpownuinuthe case.of“two-bodj scattering, where:the partial-
wave scattering amplitudes,for real values of ‘£ can be indifferently

. written in terms of the total scattering amplitude f(cos8), as

+1 B o _ »
J[ Iw(cos'e) f(cos-6):d cos'® v (lja)
-1

. or
,[ Qz(cos-e)-f(cos'G),d>cos:9 . (13b)
C

where the contour C encloses the segment (- 1, + 1) in the plane of

complex cos'® . However, when £ -iS'madeacomplex, the expression. (13a)

| Tme |
e .

blows up exponentially when Im £ - oo as whereas (13b) stays

bounded. According to Carlson's théorem}QEq;(I§b)is:the unique interpola-

tion, which has this property and which makes a Sommerfeld-Watson transfor-

mation possible. /

Equation (4) is very analogous to (13a) because, when M, =M, =0,

12
ws is equivalent, according to Eq.(7) , to an integration over cos 8.,

dy g(e ") . is equal to P.(cos © ") , whereas the integration over
M el T J o
[

7"

When 'Ml and M, are not both.equal to zero, it is possible to

2
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. . " .
relate -dMiMéJ(Gel") to the Jacobi polynomials Ih(ohﬁ)(cosr ) accord-

ing“to25

e21

1/2

I, (T +M)i(T - M) no | Ml
d'MlME (6 ) = @ +M)@ - M) cos 6,4 /5

e N Ok YV

X [sin-® 01/ Ib'Ml cos &, . (W)

This equation is.valid only for Ml':.Mé and Mi + Mé both positive or

. zero, and. other expressions are needed in the other cases. However, Eq. (1k)

will be enough for our purposes.
We indicate in Appendix A the properties. of the-Jacobi polynomials

that will be needed in the following. Together with the Jacobi polynomial

P (O&B)(x) » one can introduce -the so-called Jacobi function. of the second’

n

“kind Qn(ogB)(X)_.2l For 'n -an integer, it .is an analytic function of x ~

in the plane cut from -1 to +1 , whereas for n not an integer it is ana-

lytic -in the plane.cut from - oo to +1 . We introduce the new matrices

| 7+ 1)1 - )2 -
J(e" ) _ 1 1 'e" . ‘en
eMlME 21’ T T +M)IT - 1) COS Boy /ol SR ® 51 /0

(b, -1, M, ) "

X QJ%M _ cos -9 o1 (15)
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“together with-the matrices analogous to the full rotation matrices

-iM, .
6M1MQJ(W’ -9, FP) = € lMl eMleJ(O),é-%Q . . (16)

¢ <

It is shown.in Appendix B -that they enjoy the remarkable property

M=+
{/MlMQJ(R'R) = Z & 0 0 0(9/ (17)

M=-m

g . . . J " 1
Equation (17) means that, if we replace df>// (e ) by éi/ )
’ MM, M1M2

.in Eq. (h) , this is equivalent to replacing the full expression

dMMl( o ) dMlM N ,.-elev GMEMJ(GQ)', (18)

which. is nothing but

J [ o . .
M™ [R( al P u,,921', Vs a2)] p) (19)

. (where R is the product of a rotation dé around the y axis, v around

the 2z axis, '921" around y, uaround z., and lastly - qi' around y). by
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J . 11 )
%'M [R(' Oll': u, 62 PR a2)]" (20)

as we shall show are the end of this section.
The analogy of Egs. (13a) and (13b).is that, when f(x) is an ana-
lytic function of x .1in a neighborhood of the segment [-1, +1], the two

gquantities

+1 |
[ (1 - 0% + xPe(x) PP (x)ax  (e1e)

-1

and

= (v - )% + l)ﬁf(y).Qn(a’ﬁ)(y) dy (21p)

are eq_ual.21 Here C has the same meaning as in Eq. (13b) .

It is not quite obvious that Eq.(4) has the form (21a) . In fact,
accordiné to Eq.(14), dMngJ has rather the form (1 - x)a/g(l + x)ﬁ/2
Ih(oha)(x) . In'order‘ﬁorsee.the form (21a) it is necessary to-introduce

first the Legendre series expansion of Fé and Fl

3 5

A

o

‘according ‘to Eq.(I.k2):
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By o z-0') = ¥ Z (22 + 1)

£=0 M=0

seslom

(22)

t2 1;2
X ay(aps 030 Gy ) G
X‘IiM(cos 711) PZM(cos 71") cos Mu ;

then, for a given value of Ml’ we integrate upon u, which leaves us with

a series of the form
iMiu EZ: M1 -
;/£53 e du = a, P, (cos 7, ) . (23)

Now P, “(cos 71 ) is equal to (sin 71 ! times a polynomial in
cos 71" . On the other hand, we have seen that, according to Egs.(20a)

and (20b), sin 71" is equal to sin 623" times an analytic function of

w in a neighborhood of the segment [= ll s + 1) . This provides the

3

right power of sin 8.." , which is necessary to give to Eq.(4) the form

21
(21a) . It is easy to justify the use of the expansion (22) in the domain
where it is needed.

We have thus shown that it isvlegitimate‘to replace Eq. (4) by

e J " "
an analogous expression in which ngMé (621 ) replaces d.Mle(e21 ) and
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1] .
for which the integratiorn upon cos 612 is now made on a .contour that
encloses -1 and + 1 . This contour may then be deformed in order to
enclose the singularities .of the integrand in w'" » We.shall call

3

I' such a contour. Finally,

25 '
1" "
H ((D ; ) f f du. d.V — (‘]ﬂ)5 F25(d)', W, u 2z .(pl').

1M1u

>§F13(w ) v, Zom @) dM'M I(- ay ) ")

o
ey, 12

' -1
_aTgMJ(ag) [ + @y + 0" = 2)(@ +a, +ay -2)] .

(2k)

Now. it is possible in Eq. (4) to replace the full expression

Gy 7 (- % )e d‘MlM 05 e]Mz 'dM?M(O‘e)

R ' by only one matrix ,M'MQ(R) , where R is the product of the five ro-

tations with angles 'yql' 9 u,/elg", v, and a2 respectively, around the
> axes Oy, Oz, Oy, Oz, and Oy . It would be very convenient for what fol-
lows to replace.also the matrix that appears in Eq. (24) by only one ro-

tation matrix of the- second kind éi/ J(R) , where R 1is the same matrix

as above but for'the complex character -of cos ~621 . That this is pos-
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sible is suggested by Eq. (17). Equation (17) is proved for a.complex
value of J . 1In order to understand its meaning, for physical values:of
J , let us consider the case in which ‘M = M' = 0. In'that case,

Eg. (17) becomes the familiar addition for the Legendre function of the

second kind,

QJ(cos'e-cosre' + sin-© .sin © cos @)

= By (cos ') QJ(cos-G)
00
+2 E: (-l)mtE&-m (cos-8') QJm:(cos~9) cos m® .

m=1

It is important that, when J . tends to an integral value £ , the summa-

tion upon m does not stopat m = £ . Rather, according to the equation

) - HEEER (70 -2 e e 0]

£3~m(z) reduces to 2(-l)m+J+l QJm(z) when "J and m are both positive

integers, and m ‘is larger than J, to [I'(J - m + 1)/T(J + m + 1)] ;bm(z)
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.when m is smaller ‘than J . -Accordingly, the addition formula becomes

Qz(coswe cos. 8" + sin O sin ©' cos Q) = P, (cos'e'),Qz(cos-e)

£ .
+ 2 }: (- 1)® f&um (cos-e'),Q,zm (cos-8) cos mQ
m=1 ‘

(oo}

+ 4 E: (- l)£+l sz.(cos 9')_Q,zm (cos 8).cos mo .
m=L+1

An essential property of this expansion is that, while the first two terﬁs'
have parity (- l)z when cos-©' 1is replaced by - cos ©' and @ by

@ + w , the last term has parity (- JL)“l . This splitting of. the addition
formula (l?)ﬁf.‘into two partS~of'opposite ﬁarity,when J . is an integer is
in fact a general property not restricted to M = M' = 0 . We shall
use that property in order to rewrite Eq. (24) in another form. Let us

first introduce the inverse of a state lw J M) , labelled .Pkn J M) .

Then introduce -the state with signature £ as
-IwJM_)C = |loJd M) +¢Ploswu, (¢ = 1),

and the collison matrix of signature € as

g<a)' J M|T|w J‘M_)g = {w' JVM|T€|0) JM) .
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Define the notation

] | t 1
(Glw, @', @", u, V)]g = Glo, o', 0", @, % %’ Q‘l':%,%,u,V)

+ € G((D) o'y o, 1 - C_‘l y X ‘“ae: x "% s

ﬁ-ql" Vﬂ'-aé', T("qj", u+T[, V+Tt)o

¢

Finally, the kernel of the modified Fadeev equation.for T~ -can be written

21

ng'(w', w) = -J)(/r»du av - f ‘da); [E23(a)',.cb", u, 2 ;wl.'.)
N , >I\ )

0

1

XF]_B(‘D"? Wy Vy Z.=- @2)]C eM'MJ'(R) [((_Dl' +(1?2 +(1)5 - z)

X (@ +a, oy - 2)17t . - (25)

The distortion of contour used while passing from Eq.. (4) to Eq. (24) is
'justifi.ed by the fact that all the singularities of the two-body scattering

amplitudes as well as.of the propagation denominator ({,ol' W, + -z)

2 p)

are outside the interval (- 1, + 1)  of cos .‘612" for complex values

‘of ¢ .
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5. EXTENSTION TO COMPLEX ANGULAR MOMENTUM

OQur problem is now to extend Eqs. (24).or (25) to complex values of
J. It is shown in Appendix A how the Jacobi functions of the first and
second kinds can be extended to complex values of the index n. -This is
used in Appendix B to extend the definition of the rotation matrices of the
first and second kind dMM,J(e) and eMM,J(e) . The main results are:
a. dMM,J(e) is an analytic function.of cos © 1in the plane cut from =~-0o
to -1,
b. eMM'J(e) is an analytic function of cos ® in the plane cut from
- oo to +1,
e. dMM,J(cos @) increases like el9® then J  tends to infinity,
d. eMM,J(cos.e) is bounded when  J .- tends. to infinity, eicept when cos 6

is between -1 and +1 ,

2
e. one has a property analogous to the group property,

D iwm)

g
X

%
@Q

(26)

as well as Eq. (17) ,

]

+00 '
Cog ®'R) Y- ' ®) L w (27)

M"=-c0

Equations (26) and (27) are true only for certain values of the Euler angles
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(posSiblyjcompleX),of'the rotations R and R' , according as the series in
the right-hand members converge Qr"not. We shall agree to define these,series,
* even when :they do not converge, as formally-equal to fhe left-hand members.

According to Carlson's theorem and Property (d) , Eq. (24) written
for complex values of J -provides the unique'extension'of‘the kernel to
complex"J. The - inhomogeneous ‘term of the Fadeev equation can also be treated
in the same way. [This is true when one writes the Fadeev equation for - the
connected T matrix, i.e., for instance, T(l),--T25 .1

Property (f) shows that it makes no difference whether -one makeé
'J complex 'into the form (24) or the form (25). of the kernel.

According to the -asymptotic properties of the two-body scattering
amplitudes given by Eq. (12), and of the rotation matrices given by Eq.(B-Tc),
when aB" or, equivalently, cos elé" tends' to infinity, the kernel (25)

-is formally defined for J > -3 . -However, as the asymptotic property
- (B=Te) of E/ ,J :is. true only for J .larger than -l/2,-the'kernel is

defined only for

7> -1/, (28)

In fact, this last statement is justified only if ‘we can show that

it is possible to displace the integration contour on . in Eq. (25)

3

~to infinity without having to displace the contours on u and v to infin-

. . . o ' R n
ity. That means that the singularities of FEB’ Fl5 and (wl oy * g -z)
will not meet the singularities of d?/];l,'J[R(-al', u, 921", v, Qé)]' Let
us call (A, 4, V) the Euler angles of R. The singularities of .M;Mq(R)

are at cos u = * 1. However, it is easily shown that, for Ug'vgqi,qéreal,
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cos p = t 1 corresponds to values of cos 8 between -1 and +1, and

21
we have already shown that the singularitieslneverlget into that physical
region. Accordingly, the terms of the kernel are analytic functions of J
for J > - 1/2 .

As it is discussed in the introduction,  this result is not enough

to prove that:the‘?Z/Jl are meromorphic functions of J, but, at least, it

does not contradict it.
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6. WATSON-SOMMERFELD :TRANSFORMATION

Let us suppose that, as suggested by the results of Section 5,
ZTM,M;QDQ ®, z) is a meromorphic function of J. It is easy to relate
-that hypothesis:to the asymptotic behavior -of the three-body scattering
amplitude.

y . ; . nd rlnd >

To that effect, let us consider the amplltude'(plp2p3|T|plp2p5) .
and let us associate two reference systems with:'the initial and final states,
_in a well-defined way that is not necessarily the same for both states
(for.instance, the z' axis coincides with ’El' » and the z axis coincides with
=y, . —- = =
p,' or is orthogonal to plpep5--o). Let us call (¥, 6, @) the Euler

angles that define the transition of the initial reference system to-the

final reference system. Then, according to Eq. (23) of I,

p |Tlp) = /constant Z(EJ + 1) (CTM,M @ oY (6 8 9)-.

(23)
on 0t T7 |
Because the extension of - -to complex values of J has been made

according to the Carlson theorem, Eq. (29) can be cast into a Watson-

Sommerfeld form,

5'|T|5> = constant }: jr(gJ + 1)

sin nd

J J
VECE R H (% ®+ 7 9), (30)

M'-M
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'in which we have used the symmetry property, valid for J an integer
J -J+MK€}7°J
d& _ (¥, 6-0) = (- 1) MM (¥, &+, ) . (31)

.Equation(30)  shows' that, if the singularity with higher real

+

value of %f?M.MJ@DS w, z) is a poleat J = afw', ®w, z), then

= - : QL ' ] . ..
(p|T|p) behaves as (cos ©)* when cos -8 tends to.infinity.
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APPENDIX A
In this appendix, we shall recail some useful properties of Jacobi
functions.
The Jacobi polynomials Ph(obﬁ)(x) ‘are customarily defined as' the
set of orthogonal polynomials on the interval [-1, +1] with the weight
function w(x) = (1 - x)a(l + x)6~, where « and B are larger than

_~1; the normalization of ‘Ih(oha)(x) is effected by

/n +

P ‘(a,B)(l) _ In+a+1)
n

T{o+L)T (ntl) (A-1)

- They satisfy the homogeneous differential equation of the second order,

(1 - xe)y" +[B-a-(@+p+2)x] ¥y +nln+a+8 +»l)-y = 0.
(a-2)

_Equation (A-2) can easily be reduced to the.hypergeometric form, so that,

using Eq. (A-1), one has

1l -x
2

Ih(a’a)(X) - Fl-n, n+a +PB +1; o + 1;
(A-3)

‘The Jacobi functions correspond to the case for which n is no

longer an integer in Eq. (A-3) . Equation (A-2) has a second solution
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regular at infinity, which is called a Jacobi function of the second kind

and can be defined as

neB T+ +1) T(n + B + 1)
T@n +a+p +2)

Qn(obﬂ)(x) - o
X (x - l)-n-a-l (x +~l)'-'B

(A-4)

XFln+a+1, n+1l; 2n +a + B + 23 I % — 1

.We need the behavior of this function when X tends to 1 + O-.

It is equal to

0, @) = 20t HELTRLR ) o

wvhen o > O. (A-5)

When we use Carlson's theorem, we need to know. the asymptotic
behavior of the Jacobi function of the first kind when n tends to infinity.

When x does not belong to the closed segment [-1, +1] , it is given by

lﬁ)'l/ n+l/2

2

(a-6)

I%‘OQB)(X) ~ (Enn)-l/2 = - l)-l/u X + (x? -
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and when u = cos © belongs to the open. interval (-1, +1); .it is
given by
‘Ih(obﬁ?(cos 8) .= El/e(ﬂn=Sin e)'1/2 cos rn-+-l/%-:e~-'n/h .
(A-T)
The norm of a Jacobi polynomial is given by '
+1 _
a . B [ @)
(1 -x)7(1 +x). P 2Ei(x) ax
-1 ‘ -.
22 P*Y  raroesrlTh@rp+1) | (@B), g
2n +a+B +1 Tn+1) To+a+p+1)  n 7°
so that a function f(x), defined in the interval [-1, +1], can be
formally expanded as'a series of Jacobi polynomials accoerding te
m B
(.68,
1) = ) e 2P, (a-9)
1n=0
where
+1
n (B), _ f 1 - 0% +0f £x) 2 %P (x) ax .
n n n
-1 :

(A-10)
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When f(x) is an analytic function of x ‘in a neighborhood of the

closed segment [-1, +1] in the complex plane, then one can use the formula

a5 -1
Y [hh(a"ﬁ)] p @8)() o @) ()
n=0 :
@ y-B
% (r - ;)-(XL‘*']-) , _ (A-11)

which is valid when y 1is outside the ellipse with foci at 41 and
which passes through x . Equation (A-11) allows us to replace Eq.(A-10)

by

a = (ein f v - V% + 1P o “P)e) £ ay
(A-12)

where the integration. is performed along a contour that surrounds the
points -1 and +1 and that does not contain any singularity of f(x) .
The expansion (A-9)  is then valid within any ellipse with foci at
+1 +that does not.contain any singularity of f(x):.

Finally, it is clear from Egs. (A-B) and (A-4) that. Ig(obﬁ)(z)
and Qn(obs)(z) aré analytic functions of the complex variable z.

When n 1s a positive integer, P (OQB)(Z)

o @ op)

is an entire function (in
fact a polynomial), whereas is analytic in the plane cut from
=1 to +1 . When n is not an integer, Pn(a’s)(z) and Q ’B)(z

are analytic in the 2z plane cut , respectively, from -oo to +1.
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Clearly, the particular case & = B = O corresponds to

Legendre functions.

The asymptotic behavior of 'Qn(O&B)(x) when n tends to infinity

_can be easily derived from Eq. (4) and the Watson formula

(1/2 z - 1/2)'a’” F[% +N . a=-c+1l+N a-=-b+1+2\

¥ 2 1 2&¥b~P(a-- b+ 1 +2\) T(1/2) x‘l/2
1 -z} la~c+1+A) T(c=Db+»)

R T I R (a-15)

where

1/
z £(z5 - 1) / = etf (A-1k)

Equation (A-13) shows that Qn(ogﬁ)(x) stays bounded when n  tends to

infinity, except when x is in the interval (-1, #1)..

W .
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APPENDIX B
We indicate in this Appendix some proﬁerties of the rotation
matrices for complex values of the angular momentum.
As is well known, the matrix that represents a rotation with

Euler angles (0, B, 7) within the irreducible representation of total

angular momentum J can be written

@/mmuj(a) B, 7) = -é-ima dmnﬁlj(ﬁ)e-imy e (B-1) |

The matrices “é;;lmq(og B, 7) .make up an orthogonal set of functions

of (a, B, ) according to the relation

-1 s 3% J )
(8“2) OG;ch (Ol, B 7) ”@mimi‘l (O!, B 7) da d cos B Ay
1

-1
= (2§ +1) .. B S v ' (B-2)
Jj, mm) m'my

An important particular case is provided by m' = 0., where

J +m)!

. . 11/2 .
0o’ ®) = [$5 B (e ) (5-3)
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More generally, the -dmm,J(a) can be related ‘te the Jacobi polynomials

according to

Equation (4)-is true when
m-m' > 0

and m +m' > 0. ) _ (B-5)

One way of proving-Eq. (B-U4) consists in writing the Lie equations
for the rotation group in a differential form. According to Eq. (1), this

leads to the differential equation -for 'y = d_ ,9(x)., where x = cos B:

mm

( 2 --l) "o Oyt +m2 v+m'_2 - 2nm'x -"('-+'l) = 0. ‘(B'—6)
X ¥ Ly 1o X2 | I\J: -y—-_""

One then gets Eq. (4) by reducing Eq. (6) to the Jacobi form by a change
-of variables. The coefficients can be obtained by';comparing Eq. (2) and.the

orthogonality relation between Jacobi polynomials (A-8).
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We have shown in Appendix A how to extend the Jacobi polynomials
to Jacobi functions when the index n = J - m 1is not an integer. That
provides immediately an explicit extension of the dmm,J(x) to complex
values of J. For a general value of |, the restrictions m £ J,

m' < J have to be dropped, so that m and m' may now run from -
to +oo taking any pair -of integer values. ‘

An . important property of'thése.functions is their asymptotic

behavior when x tends to %1 or to o . As Eq. (6) is of the Fuchs'

type, it is easily seen that its solutions behave as

m-m' m'-m
2 2

(x - 1) or (x.-1) ‘when x - 1, (B-Ta)

m-Hn ~m+m'
(x + 1) 2 ar (x + 1) 2 yhen x - -1 (B=T0)

and
+j | 3L

X or X when x - ® , (B-Tc)

so that, when x - o0, Re j > -1/2, dmm'J(X) behaves as x9 .
As dmm,q(x) is related to the Jacobi functions of the first kind
through Eq. (4) or (5) , one can likewise define a second solution of

-3-1

Eq. (6) that is regular at infinity, behaving as x , and is related

to Jacobi functions of the second kind through

e d(x) o (Wxm)i(i-m)
mm ! G+ )i - w)

:] 1/2

(Eq. (B-8)cont.)
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m-m'

2

e O R X5

A fundamental property of the rotation matrices is their group

property

‘mm

v.m"=+j . i .
O dam - Y Dodwn Lond®, (3 an mteger),

m": -j

(8-9)

wvhere R and R' are two rotations characterized by their Euler angles
(2, B, 7) and (', B*, 7') and R'R ‘is the product.of R! and R .

It can be.extended to any value of j Dby giving up the conditions on m" :

~m'm!

‘ - m"=+m :
O@/mm"j(R'R) = Z @;muj(R) 03/" J(R) . . (B-lO)

mll=_w

A particular case of (B-10) is the well-known addition property of
Legendre functions,
P&(cos B .cos B' + sin B sin B! cos @) = Pﬁ(cos B)I}(cos B')

0 ' o '
T'(j-m+l m.m :m 1
+ 2 m;i oL (-1) Eh (cos ﬁ),I3 (cos B') cos n@ ,
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which~is a particular case of Eq. (11) for m = m' = 0., where use

-has been made of Egs. (1) and (3) and where we have defined @ = 7' +qQ .

One. can prove Eq. (9).in several ways. For simplest proof, .consider
the Fourier expansion  of dmm,a(cos B cos B' + sin B-sin B cos @) in a
mp

series of terms proportional to .e' . Then, except for convergence.consids

erations, Eqg. (lO)lis equivalent to the set of‘equalities ‘

-1 27 j » _ ] -im"(p
25 ‘£-'dmm' (cos B .cos B' + sin B sin B' cos @) e de

= apd(cos B) Q. Tleas By ~ (8-12)

Equation (12) can be proved by applying the differential operator that
appears .in: (B-6) to the.left-hand side in.order to prove that the’righté

hand side .is propertional to -dmm"J(cos B) . The calculation.is in fact

.rather tricky.

Another‘proof consis?s in-considering??eal values of B .and B!,
such that lcos B|,.lcos B‘i, and Icos B cos B' + sin B sin B' cos ¢|
stay less than 1 when cos @ runs from ;-l "to +1. Then, for m,m’
and m" fixed, Eq. (12) .is true for any;positiveviﬁtegral value of J
according to Eq. (9).. Furthermore, Eq. (h),,-ﬁogether'with‘Eq. (A-7).,
shows -that both members do not increase as rapidly as eijtj when - J
tends to infinityo Both members can be then extended through ‘Eg. (9)
to complex values of J 'in a.way that satisfies the conditions of
Carlson's theorem. -Therefore Eq. (B-lQ):ié true for any value of g .

The conditions on.cos B and ces B' can be removed by noticing that
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both;memberélare.analytic;functiohs of ‘éos B ‘andv cos BY . Finally,
Eq., (12),is'true-asuiong'aS‘cbs B £ <1, cos B' 4+ -1, and
cos B' + sin B sin B’ cosl¢; dees*ndt.pass'through't-l when:cos ) variés
from -1 to }i.v In fact, évenﬂthat.last eéndition:cduld'be“ﬁemoved'by
.displacing"the-integratioﬁrconfour. |

The‘domain;of'éonvergence of Eq. (11) 'is easily deduced from the
-asymptotic properties of Legendré-funétions;when ‘m tends to infinity.
As'the:asymptotic properties ofiJacobi“fUnctiéns when m or m' tends
to infinityrbygintegralvvalues‘afernot knbwh--at.least-to our knowledge-~-
the- convergence :domain -of Eq. (10) cannot be.fullyyexPlored, However, as
dbtained_from the‘theory;of Fourier series:fdr;anyjreai or complex set. of
values. of cos B and cos B', Eq. (10) converges inside -a corena (of
radii RR' = 1) passing through the point cot B =" = cot-B.cot B .

. In fact, when:the ée;iés:iﬁ'Eq. (lO)_dbes'hot converge, we - just
conéider'the left-hand side ‘as the correct definitionuof;the.fight-hand
side. |

Equation (10) can be-extended'to'therrotatioh.mét}iceS'of'the

second kind as follows:

Emi 8 7) - Vé'imfe-mm.j(s} LA (8.13)
and
. m"=+co o ; . ,
E S ER = ) Cop’ ®Y) %.,m.J(R) (B.14)
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‘In .order to prove Eq. (14) we first need the important identity

€

j . . 4 i Finj. IR j
_mm,J(z)‘51n 1y =5 (=1)"- et J”dmm'J(Z):"d-mmﬁq(-Z) s

(B.15)

where the signs are taken according as Im z 2 0.. Equetion (15)

applied to Eq. (12) shows

2%

(o)™ eygt’ (cos B cos B’ sin B sin B' cos ) e Py
0

= gy’ (c08 B) dyuy,? (cos B) (1), | (B.16)

when 1 < cos B' < cos B.. Then, analyticity of both«members of
(B=16)  allows us to give complex values to cos B and cos B' . Then Eq. (14)
-follows as a consequence .of the theory of Fouriei‘-series° Hbrevagain,
~we shall consider the left-hand member of Eq.. (14) as the correct defini-
tion of the right-hand member when:it diverges.,

Finally, let.us go back.to the proof of Eq. (15).. According to
the symmetry properties of the ’dmm,j functions, it is true for'infegral
values of Jj. When .J is not an integer, we notice that gmm,j(z) .and
dmm'j('z) both verify»Ed. (6) 3 therefore,. the rigﬁt—hand member of
Eq. (15) also verifies Eq. (6) and is a linear combination of dmm,j(z)

and _emm,q(z)!. Using the asymptotic behavior of the Jacobi functions
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. 2n + o + B
'Pn(obﬁ?(x) ~ 278 - x®., when .x ‘tends to infinity.

(B-17)

as well as Eq. (4), one easily -verifies ‘that” the right-hand member of

Eq.(15) increases: less rapidly than J :iwhen P “tends to. infinity, so that

it is proportional to _emm,Q(z)f.,.The proportionality coefficient may then

be fixed by a comparison . of the behavior: of 'd;mm}J(-z) -near 'z = il

and Eq. (A-5):. The behavior of d_m+ﬁJ(z) ~can be related to that of

1 +.x

Plm' - j, j+m' +1;m' -m + l,-—§——)jwithtthe'help-of Egqs. (4) and

(A=3).

. Where

. By using the asymptotic “behavior of the hypergeometriC’function

F(a, b, a +b.- £, z) .~ (1 - z)-z P(ﬂ)fﬁé?[;(ES’ £) , (B-18)

4 -is a positive integer, one finds that Eq. (15) follows immediately.

Y

T
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implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the

Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
¥
ﬁ.
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