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amplitude to complex values of the total angular momentum., We have fLund
‘four main difficulties. (i) the disconnectedness of the collision matrix,-ﬂ

*

(ii) the complexity of kinemntics, (111) the release of trinngulur

inequalities or of inequalities like ]Ml |J| o when T s complex.;:f

transforms finite sums into infinite sums which are most often diVergent, -
fand (iv)‘the presence of complex singularities in the cosine angles. |
‘_Of the three natural techniques--using the Schrodinger equntion, extending
'i the Fadeev equations, or extending the Fredholm solution of the' Fadeev i

\ equations to complex values of J ~=Only - the third one avoids difficulty

(iii)., The .Fadeev equations take care of difficulty (i), and difficulty (ii'

_ is smoothed by the use of center-of-mass energies of the three particles

«

Difficulty (iv) is not




the three-particle
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'=l' momentum J. It is admittedly of an exploratory character, without a.ny

: attempt at mathematical rigO'r - : '
Regge has shown that the two-body scattering amplitude is e

,meromorphic function of the total angular momentum.l This result has g

‘ticles interacting through A .sufficiently well-‘behaved poten_tial, for’

instance/a superposition of Yukawe, potentials. ‘"It is then found that" .'

the asymprtotic behavior of the scattering amplitude when the momentum o

transf’er tends to infinity. Furthermore, the functions which give the

states and resonancea of the system. In other words, e Regge tra,jectoryg K

These two properties are so fundamental that it is necessary to

know their degree of valid'ity. of particular_-importance"‘is their .

that, up to now, it ha.s y:lelded very few results.hf The most.‘interesting o




behavior of the scattering amplitude when the energy tends to infinity 5’6“,”
It is therefore interesting to investigate the : nonrelativistic
‘:"three-body problem for which, at least, we know & complete formulation..

‘One can hope that 1t includes most of the inelasticity problems ofvthe

'.relativistic casge, without the complications due to crcssing. The inter-j“ ~

esting questions are, obviously:

i

going into three partic e

: momentum J?; S o _“ ‘

”ftotic behavior of the total three-body scattering amplitude when some :
‘momentum tranSfer tends to’infinity? Or, in other words:~ is 1t

: possible to define a Sommerfeld-watson transformation of the expansion
;;in partial waves of the three-body scattering amplitude?7 A tentative

fanswer to‘these qpestions i ia »2 the subject of this paper.w

-

There are also other important questions, like'

Y
.l,

“i(d) Are the Regge results Validfor the scattering of a particle on e bound'“

‘ffwords' does the interpolation property of Regge poles apply only to;
'tvirtual particlesvor can it be extended to. external particles?



Before choosing to use any of these methods for the three-body

problem, let us try to see wha.t essentially nev difficulties we shall
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(iii) Although these two difficulties are already met in actual physical

¢

problems, a third one will appear when J is made complex. The reason is

DREAICERCE N P

'or»the inequslitles ‘M' < g between eigenvalues of_iisl snd)'J ;'are,noA.*:

-more true when J becomes complex. Consequently, certsin finite summationsjéxgn
v ) NS
on M or on sngular momenta involving Clebsch-Gordam coefficients become

?infinite sums and lead to conVergence problems 13 1h .

(iv) The existence of several momentum transfers between the 1nitial and the fuf

:;linkedvvith one momentum transfer. 'This also leads to difficulties of o

:

convergence. ) S

These four points seenm, up to now, to be the only existimg difficulties.

Let us review the three poss*ble methods (a) (b) and (c) in this light.

15

vﬁ(a) Newtqn ' and Hartlel® have tried to extend the. three-particle Schrodinger N

:equation to complex values of J . In fact, the differential-equstion

ness., Furthermore, their trestment of the kimematics leads them deeply 1nto

- the mentioned problems of.conVergence. It seems very unlikely that one



17 However, the Wa.tson equations

¥

‘problem is not of the Fredholm type.

3.
:

g 18
'/ for multiple scattering are of the Fredholm type, as was shown by

This vas ms.de explicit

use any unnecessary partial angular momentum.
in the preceding peper, vhere ve proposed to use as s complete set of
commu.ting va.riables the center-of-ms.ss energies of the th.ree pa,rticles

and
, 0, and cb5 ’ “the total angula.r momentum J//its pro,jections on a;

®,

i'body-fixed axis M ; and on a sps.ce-fixed axis m.zl In fact, m s

being a trivial constant of the motion, will never enter into the equations.
: » e .
"I'his -.wa.s a well-defined answer to difficulty (11). ot course, ‘other - l N

choices are possible. For‘ instance, one could replace

ml ’ coz, end m3

by their  sum E = wl + w + u)3 and introduce a complete set of orthoa-v

i onal f'unctions of w /E p a) /E and /E. 2A_1though this new choice

seems to be advisable in order to discuss the problem of - sense and

-nonsense"tchannels, it wi_ll not be used here, -

The Fa.deev equations, considered as integral equs.tions for the :5 ;\‘i“

M f‘rom b- J- to + J Therefore, when extended to complex values of

._’J, the Fadeev equations will contain & summs.tion on. M from’ =0 o
+oo . It could therefore ha.ppen ’ and indeed we sha.ll show it in the
following, ths.t the extended Fadeev equations make no - sense according to

iy difficulty , (111)

i



-

S :'r-"(c) It is clear that, if we are able to find an extension to complex J
of 'both ‘che numerator’ and the denominetor of the Fredholm solution of the :

'. Fadeev equations with a good choice of kinematics, we shall e.t least

* have got & sensible approach to the problem, free of a: leastiof. thes:: ‘.‘1':_3;';';'::1.. Lo

LA R s .

d;‘it‘st tlmee :difficulties. )

This paper is essentially devoted to defining such an extension:
of the Fredholm solution.. No serious attempt has been made to investigate

the analyticity properties of the extended Fredholm 391 uticn 50 that, Sl

from & ms.thems.tical standpoint, we can just claim to have stated tne

' ',-ﬁ;f"protlem in a form amenable’ to ana.lysis. ‘chever," t-here d.s'c no'? mehtion of -

’ difficul‘ty (dv)'in the present papers '*eIt' isl ourubeli“ef;-that ithis" d.ifficulty

. Tis the rea.l problemw and we: expect to“seyvmos-é pbput 4 inua ct‘utuz‘e‘ which
T

‘paper.m e Ve Jf‘ ';c‘ 4)11,.4\" A "(‘;u AL

In Section II, wve give the expression of the complete three-body

,. partial-wave e.mplitudes, except that rotation matrices 23 J (R)

reple.ce the Legendre polynomials Py (x) In fact, we need to knva Y
. T as ‘well
Y \the,ﬁ ,M(R) /a8 ve know the P, (x) Therefore, in Section IIT

‘and Appendix I, we investigate the properties of the %) J,M(R
.,'when J is complex and we define second-kind rotation matrices '

8 J (R) vhich bea.r the same reletion to the, ﬁ J (R) as the Legendre o
. MMt M M )
functions of the second. kind) "QJ(x) bear -to the ‘Legendre functipns o M?

N of ‘the £1gt kindj 7t ‘P:; (X) il Particmr: the "’ell'lmm Neymann

: theorem)which a.llowsﬁ:o express 'the Legendre coefficient of an analytic -

PR o et .
. A “ g it . B I
o PPN S o,

© L et .
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‘.'. il
RS .

. scattering amplitude (pl ) By ,‘ 2, "I[B,, B, p5) as & series of pertial- o
;-wave ampljftudes <0-i “é mj , M' IT l‘“_\,’ 2’ mj) M) " This relation is .

choséyanalogous to the expansion of the two-body amplitude in terms of S



general formula.’cion of the notion of signature.




-8-
.fpﬂ _equations‘as Statéd in a preceding paper.' In Section VI; the inhomo-- .

. - . M, el
oD '5;”' . geneous term of these equations 1s extended to complex values of J, bvy'iuse ¢

”if,yf' the‘geherélization of the Neumann theorem. For this we need to know the

u&j;?ﬂ ‘lgi'f*1‘analytic and asymptotic properties of the off-the-energy-shell two-body . .

T? ;1fﬁt;ﬂ:‘f;<scattering amplitude which are investigated in Appendix  II and eapplied

{'f_' to the domain of definition of the inhomogeneous term. In Section VI -

'v,.we show that, while it is possible to extend the lnhomogeneous term and.

Ty
LY

"ff che kernel of the Fadeev equations to complex values of J, 1t 1s impossible
iﬁgga;to extend tha,equations themselves.' In Sectlon VIII we show how to extend .
;the Fredholm solution. Fina11y3 in Section IX we show that, althaugh ithis

extension can satisfy the Londitions of Lhe Carlson's theorem,zs-no {

L Sommerfeldawatson transformaion .can be used in the threeobody probleubbecause



sca.ttering amplitude.'
_ _ . . .
center-of-mass system, (p1 ’ p2 y p5) e.nd. (p1 ’ p2 " p3 ), we attach

A . , )

«

|'.L'I Y 33' it (5?-_115




10~ ., L R

_ o where R is the rota.tion S’ Q lwhich carries S into S

: s e Equation (2-:1) is “he generalization of the expansion of the -
twoa-'body scattering amplitude in partia.l-wave e.mplitudes, o :
l.'- ‘ ", ;l' & P ‘ ) ‘.‘.' . O J»-,. . M

30 @1 +1) 8l B(con 8), fes3)

e [EERERLD
e i-j-ﬁié%la )
..wllxexv'e ldR‘ is thé 1nv€riaﬁtlﬁé;sure';ni;hhe rét&tion g"r&zp (it';';bermé Of“thel‘

R Euler a,ngles a, Bs 7 @& =" a cos a dy) Equation (2“’*) Semm“ms |

<‘5 ' '55 'imlu ;p,.,) a cos. e P, (cos e) (avs)
B \3;:/ 2




The - similar ity, . iy

Let us mmuse to recall how Egs. (2-5) and (2»5) are used in that

respect. 5 ~ One first notices “tHat: Eq (2~ 5), when extended to any. value

'y ‘increases too rapidly, whe'z'xf J tends to _infinity with complex.

,4).

However, according




: -...,...t

~12- - ‘
':.” encloses this segment. l' .
IR . . Vhen the analytic function of- x, T(E, x), has only a cut LI

R .‘-‘-'going from  x '=,_'.,1 *o > 1 to +00 ‘along which its aiscontinuity’’ . .

is ai A(E, x).’ _" Eq. (2:7) can be replat,ed by RS ,

o'_}‘,w s ) ‘,
; af = 2 A x) Q) et L (a8
, , Lo J - - /;. : ‘ '.,“‘.,l'
. ‘ xo A
“. B . . N . . -‘ . ! , - . N "
- which is the Froissart-Gribov formp1é¥3“As Q;(x) decreases when
J +tends to infmtty,- the ‘Sommerfeld-Watson integral (2¢6) converges. l‘!"‘
?when aJ, for eny J , is replaced. by 1ts exjpression (2+7) . Moreover,
\.vzvaccording to a theorem by Ce.rlson, ( +7) is the unique interpolation

o ‘of the ph;ysical. values of aJ which is ana.iy'tic' m ‘the'right-handy

half-plane Re J’ > - ZL and which does not.increase as repldly '
nlJ[ o o e

L A L

i as

K

When there :l.s an exchange po*bential in bhe two»-body intex'
R T(E, x). has two cuts: one going from um;_j‘i;o - X,  -<'_'...- '

’;,‘ sey, and the other from x, > 1 to +o0. . Then the) coﬁtomﬂ’ ¢
fﬂﬂjﬁﬁijﬁf?'f‘{ in Eq. (2+7) cannot be applied without care along the left-hand "?‘“'""w‘”
ecut, qince Q. (x) itgelf haa also a cu‘c going from -0 to 41 .
A This dlfficul‘by is avoided by introducing the even and. odd parts

2 T(E’X)FT(E’“ xﬂ, Tl
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. .,..—...:..x./ .

: . : - -1,4- . ! |
S L0 tt III, SOME ROPERTIES OF THE ROTATION MATRICES
. " 6 | We shall try to follow the essential steps of the precedingj';.: h
B " analysis while extending it to the three-‘body case, However, that.'?‘"

‘means tha.t we shall ha.ve to substantia.te some well=known properties o:t’ ;'. , ‘
. the Legendre functions which were tacitly ;assumed by corresponding v-,'

X properties of the rotation matrices.

K3

 The generalization of ‘the" Legendfe eq_nation 18 given‘ ,ijr,{:he“'., L :
. se'c of differential rélations . - . A

(-
bt

’

.wlhere J ' ,: 'J y 7 . J are the e.ngula.r momentum operatora of the symmetrie

L .top, 1.e.,.differential opera.tors with res;pect "to the Buler angles (oe, B, 7). 23

— - ,.,_-.---’

J (resp. J ) is the projection of the total e.ngular momentum upon 'che

ody~fixed (resp. pace-fixed) = axisf _The la.st two Eqs.(B-rl) allaw

. us to wr:t.te B




Legend.re equs.tion EEq. (1-2) of Appendix I}, Just as\ the Legendre
‘:"’- functions are defined by the Legendre equation, we shall define the jf‘

a7 (B) as the regula.r solution st cos B 1 of this differential

!
i equation for any value of J-.

In Append.ix I it is shown that @ (s) has essentially the
oy

same properties as P (x), ns.mely° SR | Lk | |

- ,'

=-8s & function of x = cos B it 1s an analytic functi7n with a cut
- - b 1/2 :
going :t‘rom -0 to -1 ii’ M+ M ' 1s even, or (1 &% )

!

a.n ans.lytic function when M + M is 0dd,
4--when J tends to infinity, it increases as does eImJB

We shell define a. second. solution eMM' (x) of the differential'__"
a0 '
equa.tion for d (x), regula.r at infinity. The precise norma.lization is

MM’ - . closely
given _in. A‘ppend:lx I. Its properties are /_,,», analogous to the properties

--when J tends to infinity, 1t behaves like QJ(x)

= However, while the Q.J (x) 18 a meromorphic function .of J

with poles at kR 1 ;-2me 3 ,(x) has also singularities a.tv
O, l, . {ma.x IMI - l, hlil"ﬂiI - l According to the values of

M end M' iy - these singularities can be poles or bra.nch-point singu

l.arities.‘ They are indicated in dete.il in Appendix ,I‘




TR AL . v - . - N ] .
4 .ﬁr . g ta v * R - - » ¥ ' . \ ¢
EEasi \ o . T .
S . N - . .
s T . . . - . + ) .
“ Ty : »
a4 N . : . * . e
N . . . ) . i . . Lo . ‘ .
P B - A . . BN . . . . . .
. N . . . ch - - EN o . Lty -y . R

(X) has only a cut going i‘rom -" ‘1‘
I

. TR PR .

. hood of the segment (-1, +l) This is no'L surprising,since the properties

of ’che d (x) are silﬁple ;'onJJy.A when interpreted on the rotation group.-

'I'herefore we go back to the full set of va.riables (oz, B, 7) ’oy defining,
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Then, as proved in Appendix

>+1. Then
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4] R
’ “'180’ - ' \
: -.9.'2 . In order to continue the right-»hand member of Eq. (3+7) to compj_ ex -

values oL‘ Jy, one must take care that, generally, the singularities of the

function (e, By, 7) depend. wpon & and ¥ . On the other hand.,‘as

.1'-1 "e':r '(5) has & left-hand cut in cos B when J  1s not an integer, 5;[; could :'
.hgpen that the singularities of £(a, B,'7) | éneountezi that cut. ‘I'his‘.‘:

is in fact the pro'blem of introducing the signature into the many-body :

kinematics. B , - .

'. Le'c us ‘svta.rv f’rom 'hhe synuuetry remtion 61:/ the d.

N

2oy 8,7) | B (ca, NetET () d
o e R et
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O IW CONTINUATION TO COMPLED{ VALUES OF J '’ s MA!IIRIX TEE‘ORY
- 10. ~ It is . interesting, for the sake of orientahicn, to define the
. ‘extension of the three-body partial~wave amplitudes wvhen one assumes' the
'..validi*by.of the axiomatic’ S-matrix ‘the'oryo's ‘In this theory, one assumee;s/ )
that (pl pa p§ IT!pl p2 ;p5) can be extended to complex velues of the

. momenta with some well-defined, although nct too simple, singulaxlties.

If one replaces the moment.a by the var‘.ta.bles ' 1035; , 5 :
3‘." _" an'c’; the rotation R which defines T,ne oriematidn oi “the final triangle
: ', .' (}51', By’ '135 ), with respect o the mitial triang]e (pl, Byr By

v J C
" the connected part of the three-body scatter:tng empli‘hude can then be o

]
iy Oy s " ﬂ: 7) with Ven‘“!ﬂ -

4

,.ffjﬁ.‘vritten as a f\mctimm( 2, 3;' wl',
P '_"_:definea singulerities in y B, 7 - : o
The preceding a.nalysis can then ‘be appktied to this function

» _;j_f"(cp} o' 3 0 By 7) .80 that Eq. (3«rl§) becomes a. genera.limtion of the

| ,Fro.issartmGribov formulaq Some special care shou:ld be- excercise&f'because

" '.:'J‘ o8 the existence of - singularities within the physical reglon,

. In this form the physical meaningd‘:‘ signatwre :I.s o'bvious' ' changing
(a, B, 7) into (a, B+ 1(,..7) means replacing the rotation R by |
, X ro_tationA R s Which lea.ds to 8 new_refersnce;-aystem l:tnkecl tp the ‘
| 'fj:iinal~stat'e.‘.' The old and new systems of axes differ by a rotation around
.._~li_,"::ijthe xn;a.xis. This is also obviously the meaning of signature in the
.“':Q-“':'i_two«-body case If one chooges the -z- axis along the final mamentum in

,the centeroof«-mass system. Let us note tha'b, accordine; to EQ,- (I+17) of the .

L o Appendix, the extended. me.trix element 18 not 'beunded when J tends to :Lnfinite
et complex valuea;because off presence of. complex singulaz:fties in the cos’B plane.

However, since the integration ¢ontour upon cos™Bis completely within the right
" hand plene Rews' 8’>0, the condits ons of application Of Garlson's theorem,as

S : s’cated in Ret. 26, are sai.:zsfiea. A i DRI S

y Ly R . et L R 4 NN .
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1ffor‘instan¢e

1o ?

end the total three-body amplitude

~

to complex

s "18 the two-body amplitude’

:(541) banhot be used
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Equation

~

(1) +27(2)+ 20 (3)

1 for the scattering of particles 1 and 2

~di¢ectly-to,define'an éxtenéion of the collision matrix
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‘ vhere £ # 3, m # J. We shall introduce the comnected part -
ST AL A Rt
S F W) ke » vhich satisfies .

T
‘

J_ J:A P orrd . I n
U= e xyg” v US, Lo (5«;3');:_

R . i ) . - R -, o ,
- ' ' » ) L =

p L d J J J -
L . Where we have written 6‘7: = »( @25 o, 815 y 2’912 According
B to Eq.” (47) of paper I, the kernel KJ2 has the form ( L

’ . Tt . . .

r 321‘&{23 -' ’ t> (5"""'\)

. Wl’i?lfe a'i:ypica.l term is, for instance, H12:21’ 51 o )

H‘T (ﬂ) ya),Z) -——-—'-—-r-n (w ’w ,u’ z - w ) J .

12MM o 1’1 Pz 23

: "XFB(O) w, v, z - )GM'M1(°al ) eiMlu




'a.ccounﬁ- the ~equa.11ty i 921 = '_a2"; - al )'.‘a.nd we have 4,1ntegrated.

, which--according to the delta functions in Eq. (lq)

w o a n
an ,
2

RN

According to the rela.tion (16) of paper I between 'j




TKERL)

Pyt Sr

2he . - , o ";
2. i Let us now consider the extension bf the first term K, &7
; “in Eq.(5.:3) to complex values of J . A slight cha.hée in kinematics ’
i is necessery in order to put the right-hand side of Eq. (5»5.) into the

‘form (5-7). In place of v, v, and (n5' ’ We must use as verisbles the N

b - three Euler angles, say (a, Bs 7) , of the rotation which applies the-
o RS - set of axes linked to (pl s p2 , P}.) to the set of axes linked to

AR (pl R p2 P p3 )'. Iet us call R that rotetion, Let us also call Ro
RS, oy o wend S RS
g " the rotation wu;n Euler ang.Les {u, @12", ) e Xy ', &nd r2 the rotations ~

‘ *_'_ ' of angles al' and o, around the y-axis. : Then, acqording_ to the .. -
. ~relation e “.': : . ‘ L

owing ST : ¢ s :
'one ha.s, /m to the inmi&nce of the groupnthecretic measure o

. (doz a 'éos B ay = du d cos 612"- av - EEEE _ (5.10) -,
Accordingly‘, the inhomogeneous term K 67 J has the form el
i . (312 s 13} 21 + 23) 331 ) Where) for inst&nce - ,»,';‘

, .

M -i’,, o y A

‘ fle (FP":U’: Zy Q, _ﬁg 7 )oG'M ,



L ~f].2(w':w;z:a,ﬁy7) =2 !

F,. o (00,0, B, 732ty ) 0
| Bs7) " . ; s (00,0 By 752 )
RV Py p2m3(wl- +w2+w3 z) 7 T

cr
.

. )(F:D(w': w.v @, B). 75;.2 - we)‘-_'_ | ‘

" . - IH "
_;Here F23 p2 3

is the two-body scattering amplitude /(p2 1:;3 I (z-a) )]
i}expressed in terms’ of the variables w,, w, Qy f3 and. 7 , The kine- o

¢

matical situa'bion"is 1llustrated in Fig. 1. ’
’ , When Iconsidering the second term K e‘jJ of Eq. (5.3) we sha}ll
‘?;_again introduce the Euler angles (a, B, 7) of the rotation which a.pplies
’j“the initial reference system linked to (pl, pa, pj) to the final system
.:‘vlinked to (pl , p2 s p3 ) . However, when writing explicitly K, 29’

,.,lit w11l be necessa.ry to introduce two sets of 1ntermediate states, let us

PO | T | T M oy _.m
say (py 512, 5 P5 ) and (p, P s P ) . We shall teke &s va.ria'bles, :
in add.ition to (a, B; . 7) the a.ngle be’cween the (pl, ;pe, p3) triangle and

(p1 3 p2 s p3 ) “triangle a.s well as the two undetermined sides of this

:,la.st triangle. - Then KJ __ @, will assume ‘the form ,(5-.-11_) vhi;l.e i »will_ .
‘4'_,tcontain three two-body scattering amplitudes e.nd.ﬁthree more j.nt;egra.t:i.ons.'v"":i
A typical kinematic situation for Kee‘? :Ls depic¢ted:in Fig. 2.
- The genera.lization of this epproa.ch to any term of the Born-series '

‘:.expansion of U is obvious. Unfortunately, it 'becomes more and more

.......
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i N .the price 0 ey for the three-body kinematlcs. In order to ss} something |
about fhe extension of 'bhesle terms, and particularly (5.11), we nc-_:ed‘to now
‘ y _more aBout the analytical properties of the 6ff-the»eﬁergy;sheli two-'body o
, 'Bcatéering'amplitude. i 3 o .: ” | o N .




v --27-

VI CONTINUATION OF THE INHOMOGENEOUS TERMS

;.‘13'.' . The off-the-energy-shell two~body scattering a.mplitude o

e T(p, 2, e, (where ¢ is the complex total energy as it a.ppee.rs in the

¥ -‘) K
[ LR R I

‘ Lippms.nn-Schwinger equs.tion) can be considered as 8 function of e e
¢ and of the three invariants p2 s D 2, and  t = (p - p ) ,‘«. o
‘ A sketchy a.nalysis given in Appendix II indicates the.t T(p ,A 'p ,t, g)
'::“'is an.. analytic function of p2 , D , t - and § with the following singu-
'-.larities?h R o S / .

( i) ‘ ‘8 cut in p2 ‘from 0 to infinity, el

h ii) oy a.lcut in p - 2 from O %o, infinity,

. . N c ' ) \ - .
. iii)- a cut vin t from p.oa to infinity, ”‘O -1 being the range of the potentis.l )

j.(iv) > a cut in z .. from 0 to infinity,

- G) ia poles in z for values of z which are the energies of the bound. states.:

T These singularities give rise to singularities of f (03, 0, 2; a,B,y)

" in Eq. (5-11) which, for fixed values of « and % are singularities '-’,f,.*{v";‘jf;":_;-."'

in cos B J e _singularities in ,r_ . of the two-body sce.ttering amplitudes .

. alweys take ple.ce outside of the integrs.tion domain in (o:, B,7). - The singu-:"»; N

_, la.rity in q23"2 of F 3(m _ ® ’ z - ®y 'Y, for instance, can touch this f o

"physical region}':' Intfact,v | q25 =0 corresponds to & kinematical

>

situation where '52 and 3;" . are equa.l, and this can happen onlywhen

oy = 0 or : aSl-'- = _20)2 . (see Fig. l) Therefore, except for’ a set

t.,of zero mea.sure of the initia.l and fina.l varia‘bles, the theorem (3.7)

9

j,'bbof' the first inhomogeneaus term K Q

' tocomplex values of J .




S 28 o : :
. - ‘ ‘ 7 is ‘being extended

— f'. . ‘ . When “x.hostings. the second lnhomogeneous term Kh. é7 /more care

R ‘must be cexercised,because the second triangle (see Fig. 2) is variable B

and there'is'alnays a kinematic si uation where, for . instance,

; '_J*.'§i'_ = Sé" . However, since the integrand is also analytic in " - o
SCRATI S ' : ' . .
L X wl" s 5 2 and "1, we shall assume that it 1s possible to displace slightly -

'(ﬂ;wffxﬂ:j"_:the contour of integration of these variables In order to avold that
' \:ﬁ';ﬁ-‘singularitv. As this kind of singularity only touches the physical

reglc witnoum crossing it, such a displacement is always possible.»,,;‘”

l We have up to now revlaced Eq._(Bvll) by

K . o oL cal . . b . e N
4 ACEPR . R . . - . c. . . B N
PR N L P . . RN .
e Ce U T e N . D . . .
.. ’ . SRE] . ‘ [ N . . A Lo
o , L e . - .
’ : l .

Ble M(w ,w,z) | fdcwcoss'awf (w',q),z;a,m)éi (a, B, 7), |

N RN . : : (6"1)
:iTQWhere a and 7 ‘are integrated from 0 to 2x - and cos B 1s integrated .
Jt}{;:falong a c?ntour whieh encloses the singularities of the integrand and goes.;if
e $herefare to infinity. The equivalence of Egs. (5-11) and, (6:1) o veld

. as the exis’cence of the integral in Bq. (6»1) depend “pon the asymptotic o
1i:behavior of" f &b, o, z; o, B, 7) when cos B tends to infinity. |
: : When cos B tends to infinity the components of the vectors

?}f;pl , Pe ; 53 ‘ in Fig. l ‘become infinite (and complex) ‘while, wi w,',
and ‘“5" i the squa.res of their moduld, remain finite. Accordingly "; ',

becomes infinite as well as the c.m. momenta




Since the components of ;p3 ' increase linearly with cos B and since

_ - <m1 o
r—z—r“‘l %*‘%) .%(m’ m’;’:n’ “a

and 035 increases linearly with cos ﬁ, the c.m. momenta q23

as well as the scattering angles cos ¢' " and cos }5 “tend to

" .
Q.lj AN "l

infinity linearly in (cos. B)l/ 2

The fact that the scattering angles tend to infinity could 1ead
.one Yo believe that the Regge poles of the- two-body scattering. amplitude W
determine the asymptotic behavior of the integrand in (6~1). However, it
is shown in Appendix III ‘that the fa.ct that the center-of-mass momenta
also tend to infinity compensates that effect, and. that the overall

behavior of F23, for instance, 1s N
3 (m @ - ml 5o b, >~ (eos 5) 1/2_’“

- According to Eq, (I-.-l5)of Appendix I, _ 8 MM,(x) 'behaves 1ike'

'J'l when . x tends to infinity and, therefouce, the integrand




. » . . A %
. PN
. . . ~ ’ .

"go that it converges when Re J 1is larger than -2, o

o Accordingly, the domain of analyticity of the inhomogeneous

omplex values of J 4n the ha.l.f-pla.ne35 : R .

w

. . . .

. . B .

. of the :solltrbion',b'f‘ the Fedeev equations. . i U

P

S

. " terms KJQ'J and’ KJ2 QJ ‘of the Fadeev equations can be extended to .




VI CONTII\IUATION OF THE FADEEV EQUATIONS%

equa‘cions can be extended to complex values oi‘ J into analy'tic
 functions (of 7). withtn the half-plane(6-5) |

~ Let us now consider the: problem of extending the reduced iterated '-'
;AFad.eev eq_uations themselves to complex values of J To do so, let us

3

first write them explici’cly for physical values of J

'bne kernel K2 in Eq. ('7-1) is given by Eqs. (5-:’4) and (5»5) Both

~

V and 1{2 have ‘the form (5+11). ,

We know that in order to extend the partial-wave expansion (2-2)

'sa’cisfies the’ conditions of Carlson theorem. This property leads us to ;

‘

, choose the extension of v T to complex values of J described in

» e

§ection VI, si_ncej th'e




“32., .
© . as the £u1 solutdon.
When we come %o the kernel K7, there is no direct condition upon

"_";‘ it, but indirect conditions, namely:’

:,-. (L) the extended equation must have the physical solution for physical )

\

values of J,

o ( 'Li) - the extended sblution must not increase as rapidly as sin nJ when
S S C ~ ‘

T J tends to infinity. _
. Condition (L) 1s not trivial because, when J ‘becomes a complex

‘ .l 3‘pe.rameter, there e.re no more limitations upon M ' a.nd Eq (7-.-1) becomes

vt

_U(i)J(w w) V(i)J(w w)+ Z i _

M'=~c0 3—1 .: "
f“’“"«» =l ‘U, ‘“"«»” Sa, e

and ve. would ma.ke sure that, wvhen J is an. integer and iM] ’ IM'I '3;.:
" two integers sma.ller tha.n g the summation upon ': IM'I in Eq. (7-@2)»
i‘rom J to infinity glves identically 2ero. ’ o " f |

' 'I'here are a priori two simple vays of extending K J, namelj o

(a.) keep 1t inthe form of ‘Eq. (5.5) as an integra.l upon & .(9

0 (b) transform it into a contour 1ntegra.1 of the form of Eq. (5-11) upon B
‘ . : .



R

Let us discuss the consistency between these two extensions and.

‘e

condition (1) B E . S

[

‘

3 16. , " We shall first discuss extension (s.) In order to simplify the
: : in' s

1n . (72). o
We shall usee.)’_J A

s FI‘(J‘- M+ 1)
AT +M+ 1)
Sme -
rg-M+21)
'"Jd + M.+ 1)

:‘Let us now consider the integral in Eq. (7.2) f we' assume th.at, aB

g

in S-matrp.x theory, : ‘;U has the form (3.15) or that 1t has the same .

'IJ M O <

o 1t will behave like - e;" N i.e.,become infinite
0

when M > 0 and. J tends to Zero. On the other ha.nd

\KzJ"- behaves 1ike dJ . ,i.e., vanishes bs

lproperties as’

like J,'l/ 2

Jl / _' since the Legendre

oM .
: function in Eq. (7..3) vanishes b.sac? J e.nd the normalization coefficient

1/2

behaves like J

Theref‘ore we must inq_uire about the result of the

'.summation of Eq. (7.2)




- ' ’ - ’ 12 .y \ : N
! . . . .
'. .i t N . ; . . -5lk ,"‘, I “\ ~ . . . .-
e, g ¢ ’ X 5 w ! t
L ;. ‘ (_7-5 )
‘. ! A e N N
‘4 ' . . * 4 N v‘, 4
and the quantity which should vanish is \ b
RN fjrl,." )
L L - (7-6)
! ;:l

,':of fU

(taking into account the symmetry prOpertiesl( I{ - 5) of the d. and. —

.

song.

-.e functions with respect to M allows[ to sum only upon positive integer

: /o
"I‘ J - M + gl
Now, le't; us report the normalization i’actorv : My M+ 1

upon 1{2 80 that the summation in Eq. (7.2) will e replaced by .

M (cosp ).doadcosﬁdyl. .
I‘ J"FM l):,; :

RN

= F((D ,0.) 101517)e-m 7 M( l)M _ J'




[0
COSJﬂ P(J+M+1)F(M-JO

If we perform now the. symmetrization of Eq. (7;8) 1n .order to introduce

R . - -




N\ #
e ot

: 6., B |
- As_f;;* , E To conclude, we see that extension (a) does not satisfy
e - condition (1) ' |

- If we use extension(b), the argument'is the same as aboye up to
e (7.8) where s (cos B) has to be replaced by QJ(cos B). Therefore, ;
;'{i:b;: both the terms of the kernel and of the solution tend to infinity like '

. ‘J;l/e .

vhen J tends to zero and the sum (716) has no meaning.
Therefore, " we cannot find‘an extension of the Fadeev equations to .
complex values of J which has the physical solution when J is 'an integer,

The reason must be traced to the existence of nonsense channels for

0 nten lul >l

1?3317, .. The preceding negative results should be.very strange if the lt

i

extended Fadeev equations had a solution, while not satisfying condition
*:’;1( ). In fact, the asymptotic behaviors of % (x) and eJ (x) when
| M and M' tend simultaneously to infinity ﬁg exponential¥§ increasing o
_,(see Egs. (17206.) and  (Iz21) of Appendix I} so that Eq. (7+2) has
Loi:'an unbounged kernel with both extensions @) and o) . Furthermore, -

if we assume’ that the : solution L) has the same behavior in M and M

: u'M L
j,as in S-matrix theory or as \/ B the asymptotic behavionsof dJ (x),<w
='-and e’ (x) when bUAR tends to infinity [as given by Egs. (I+18) and

(17129) of Appendix I] show that the summation upon . M in Eq. (7-2)

will never -converge.
To conclude* the removal of the. constraint ,lMlv < IJ], vhen
J is complex, which has no counterpart in the two-body problem, is

' enough to render an’ extension of the Fadeev equations devoid of: all meaning.
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' n=0 ‘ . A oo - ,
' * R _-" ootouuto.odaooa-ooo‘bsonoaooéaoo\»qco‘¢-‘o R o
CE L n2 " o2 E
. 'i'-_’.'."}’-, ', -_. . ,‘ n-lK2 ootoonIGOl.oso }&KJ‘ ,}““:-. .Kn.‘l{‘z]'ﬁ.}';::.,. , '..
" o ' ! A ‘ : f’. ,‘ . I S “_ .
We have introduced the notation L IR Do e

it

.‘Trecev K§n S "~,ﬁf_ “‘j.‘fyf - " - (8r6i3

. .
' i

'”" We have already shown how to extend terms 1ike' K \/J

T;}f}{'{‘complex‘values of J.. Let us show now how to extend the quantities
In(order to express K§ for physical values of J, ve shall

" use the same kind of variables as in Sectlion V, . 1Quﬁﬁan&ﬁ?N:‘i.ea,[;"*

rotation R(ab B, y) giving the relative positionsof the 1nitial and

>j‘;gfinal reference systems plus other momentum and angle variables
'"35711»1abe11ed collectively ¥ which determine the relative position of

"f‘ ;g:.?;} the 2nd 3rd ceey 2n -2 intermediate states when K?n is expanded

J o
'vw‘in terms of matrix elements of twodbody scattering amplitudes.v Then onefﬁ

. bas, accordfms 'co Eq (a«h) R R E VR
'{"' .




,B—J (a B 7) f( )(w ,w',i',a,b, )dyda acosp a7,

Z A (C‘)B;?') f( >(‘D:w:}':a)5:7) dwY da dCOSB d-7 dw
y - . . :

R
t.‘
i

Ey




.:MN.

e e

/; sin(2J+l) R
d¢ dcose 2f(n}w,w,y,e, ,p)—---————:""-sin2 dcosg
,, ' sin - - i
S e o (8aw)
o F-Y?;f;§VfAf Let us ‘now ‘use the fact that two rotations with opposite axes
AR and angles are in fact identical S0 that S I '.? 35}“ B s

- ;.f(“”)(w,fds;f‘&;.'x:,_- 6. ¢.¥'n,’ .’ °.)‘:‘. o )(w, w, ¥3 9, ¢ p)

‘.. ’and introduce S T R ;l37.-.' o

( )(w w,y,e,sécosg) -21-[ (n)(w,w,y,e,%p) + f( )(w,w,y, -6,¢m—p)}

.‘.A'v.‘“‘.... -

: According to Eq. (8.12) F(n). and the analy‘bicity of the two-'body

: scattering amplitudes, ' ( )(w,a),y,e, ¢, p) is an analy‘tic function of

,‘ cos. p/2 and ‘one 'has




: '.--.-is e. 'I'chebysheff poly'nomia.l, o so that we can introduce a Tchebysheff

'function of the second kind /S (x) such that A'_(8~1’+) ‘takes .the forxn




. -1‘2- . .

. éd% . Putting these results together, we see that we are able to extend
.b':fﬂi'ell the terms in the Fredholm-solution (8r3) to complex values of J. In
':‘:g;fthis extension, there does not remain any summation upon indices M, which
"‘Qﬂtgé;was the essential difficulty met in the extension of the Fadeev equation. ﬁ
While the solution (8+3) consists of the quotieﬁt of two series |

" where each term is analytic in the domain35

Red > mex Jul -1 Ml 7 0 (8a8).

'1'as”long as nothing can be said about the convergence of these series,apd
~ we cannot find the analytic properties in J of the solution, ,This T

l?iiilijproblem seems to'be extremely difficult, and we have nothing to present
L fd lii?;;about it. . A _ .‘ o | . '
‘Qd{ft}:jd:j%i: - or course,. the simplest situation would be that the series converge U
- &tiﬁ;uniforolyy as they do for physical values of J, so that the zeros of

5.fiDJ would(define the Regge poles of the three-body scattering amplitude.
‘”As DJ depends only upon 'z ’ the-trejeetories of these poles are

‘t;{.:jQ;}-i7fwﬁ’;;?fz'1f“'DJ(z)f_a;~Oif:jfegf;‘”=7' : .d"“ . ?f~]“"!;f ; -ff. (8v19)1f';f

,@"These Regge poles interpolate the three-body bound states and resonances.e e

v nowever, difficulty (iv) could uery well invalidate such a simple result, .




%

“Let us start from the partial-wave expansion (2-,2)‘ * By

: vsymmetry proper ty

@;32' @'lu 151‘ 3 55> T
. mlmems =

However, a function '8 J' as given 'by the ex’cension of' the
MM

;'Fredholm series (8-3) or by axiomatic S-ma.trix theory will beha.ve like

. eJ , " when . M and M' tend to infinity. A few specialcases of the \
m .
asymptotic behavior of eJ a.nd dJ ’ a.s given in ’Appendix I,
MM' and- . M-M' - '
Eq_s. , (1‘18) ’ (11-20 a.), (I~20b), / (1—21) show that the summation upon

. M a.nd M dn Eq. (9r2) does no‘c converge.,‘ -

-l i.Therefore, here again, the summation upon a.ll helicities M

o




L A, L

. . -

~in-order to investigate the asymptotic behaviar of thé‘connected part of

' the three-body scattering amplitude when one momentum transfer tends to ..

" infinity. .. - . e




,v ::: _hs'_“

: "":-"x". CONCLUSIONS
; PR

We have found essential differences between the three-body and the E

‘ two-body scattering amplitudes when extended to complex angular momenta.:“

.f:In fact the three-body problem is much more difficult than the two-body

t

;problem from the analytical standpoint, and we have not even touched any'

%qpestion of convergence, except to show up some obvious divergences.

The fact that no integral equation cen be written for this problem Y
must certainly be traced to the existence of infinitely manj nonsence
channels, and 8 careful exemination of the sense and nonsense channels,
in the three-body case is certainly the next step to make before contemplating,

the formidable problem of investigating the convergence of Eqs. (8-h) snd

Although wve are yet very far from being able to draw any conclusion,
we have now come to the point where all difficulties of an essentially
kinemetical nature hsve been removed.‘ It remains now the much more -

difficult task of investigating the convergence properties of the solution.

'The presence of complex singularities, which haVe very strong bnplications

P
P

R
[

on the asymptotic properties in J will be certainly e determining =
feature for convergence._ We expect to investigate this effect in a

e

forthcoming paper..
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APPENDIX I. PROPERTIES OF THE. ROTATION MATRICES 3 = SRR

Cou~

- '23. Definition of the d”M(x). o

The rotation matrix corresponding to a_rotatiép with Euler ::.
:-'anéles f(a,ka, y)ueah be,written23

ﬁﬁmv(a. By y) = e~ }I,M (cos B) e‘m Yoo 0 v (1-1)

"f:lThe.functiqn;-dgMj(x) {5 the regular'soiution near. x = 1 of the

i differential equation.:

<
L

i e (M2 e omt'x
vfﬂ(x. -'l?,; f'zxy"f - >

ST L) |y= o0 (T-2)

._:It can be related to the Jacobi- polynomials P (% )(x) vbyhl':fv;»;

(T + M)I(T - M) 1/2 1l +x E 1-x|2 P

(3 + )T - 1) V2 \ 2

R AT
%yt (%) N

.f ‘,' ‘ ‘ F ( «J+M, J+M+1y L+ M M3 > )

X
H A r(l+M~M')

”f- or to the hypergeometric functions by - efief o f~<;?11'~

. -y“, , . é;f,ff' MHM! M;Mv?;l':;
(T ) o D(IHeL) (FM41)2 f1ae) 2 (1x)?
R MM' | I‘(J‘+M'+l) {J-1+1) 2" 2|

F(-J+M, J+M+L l“'M"'M' 1;X] BRI

X " ('I}.lla)'"-‘i

T (1+M-M' )

Equations (I-3) and (I-h) are true only when both M - M' and M + M' o

“4jg'i’f€§:5are nonnegative. The other cases are given by the symmetry relations

. . . B , . 2
N o - st LA P e,
A M '. Lo e ! . -




21+ Extension to complex J

dJ (x) ‘can be defined as the correctly normalized solution
. m?
. of Eq (1-2) reguJar a.t X = l, or as given 'by Eq. (I-:h) It is a.n

ana.lytic function of X with a cut going i‘rom -do to --l when

M+M is even, to +l when M+M is odd.._

. As a function oi’ J 1t is the product of an entire function by .-
I‘(J+M+1)P(J-M+l)/ S
the nortnaliza.tion factor [I‘(J T o G +l (f r M M > 0,M+M > O)

' ".I‘he corresponding singularities when J is an. integer are a.s follows
(a)IM] IM | IJ+1/2|-1/2,- " " no. singuiarity,dm,(x) finite (physical ca.se)
: (b)lMl '] > |J+l/2|-l/2 MM > O;no singuiarity,am,(x) finite (but unphysical), :

i'_(c)IMI, M | > |J+l/2|-1/2 M4'<,03n0 singularity,dﬂM (x)

_f(d) M| < [Jﬁ-l/2||l/2, M > |J+1/2I| 1/2 s square root 'branch point where

dJ (x) vanishes. ';
For M.= M o, one has dMM,(x) J(x)'

25. Definition of the é?, (a, s, 7) 3
mu’

We shall define the i\mction e (x) as the solution of Eq_ (142)
T which is regula.r when x is infinite.‘ Its norma.liza.tion is fixed by its

rela.t:lon with the Jaco'bi function of the second kindh:.l"




Ry M

T e L M-M' I+ M+ )T - M+ 1 .
e’ (x) = (1) ( )r( )| |
ot o I‘(J+M+1)I‘(J‘ Mm_) -
‘;. M+M* :
: 2 .
2
or, in terms of the hypergeometric function, . - ‘. . Tl

-J+M-l F(I-M+1 J-M'+1; 2J+2, ~7—) ~_
o o T(ed +2)

ox




IJ + 1/2[ -1fp & () s finite for’ J ) 0,

IJ + 1/2!-1/2 and MM’ < 0,polenof *resmue(*l)"r Mg ‘T

e

' branch i)oint whereA 'eMM(x) is infinite. _'

. (\*‘ . o
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Sl T g o) (@) T v AT i
S ,(X)‘ = Zeinx(@ - My - dﬁm'(f)"‘dM"M'( x (I? x

2 0).

. -
o MM .

[N . . L. .
R S S . o N . . . . e . . L
. we U ot . . . ' . - P (I‘:lz)
. R ot . T AT - T
o R : \

; . \

., ’l . Equation ‘ ' | ' - I o Lt
awans. (I712) 1s derived from Eq(2-6)of Bateman. Reference, 37., Sec.n29 taking ot

@fF- into account' the correct draving of the cuts.-yi';{

\

Cr) & ax, o o e
S K P PR AT

Sl
EISE

‘;when f(x) is an analy'tic function of x in a. neighborhood of the PR '

.

segment (-l, +l) and J is an. integer to the contour integral,; o

; . bl :
where ¢ is & contour enclosing (-l, +l) 'frowever,, "a's.»i" B.J,",'(x)‘if' ean
have a singularity at ‘x. = .1; ‘some care must be excercisrelg.
f_  hmmemeﬁ*’”””””'“V“ﬁ”
. 1_ _ ‘:‘ Let us, replace the integrand by
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S
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?g
=
L.:f_.;

: - I ,:‘ Q,:'gi._
= [f(a B,Y) + (-l)M +M ._f(a +~.1r,.8,Y_ _4-1.{)] 'ng'(c‘o B..'_.Y)

': .Th1S does not change the integral. c'inc:e f(a B Y) 15 defined 6n'£hélgi :J

A3 .

. i”rotation group (and not  SU2 1) one has ??ikf;_?jﬂl’ :
fla+m,B,y+1)= f(a, -8, v); ":iﬂ*'f{zi’i;?J1 bi.;t”1t1(I-13)¥ ;¥}
. , - R ’/ el AT ey

o therefore the integrand contains [%(a, Bo Y) + ( l)M+M f(a,-s,y% F(a B,Y)

R kSince fla,- B, Y) is an an&lytic function of cos B and sin B ) F(a B,Y) is

an analytic function of cos B when M + M' 1is ‘even and sin)B times an f:x"‘

~analytic function of cos. when M+ M' s odd.i As 5;:&:

SR PN ( l)M-O-M'-O-l %, ' R
'5'231n 8 4 MM.(B) is always an analyticv function of ces 6

. (3=7) follows: from Eq. (1-11) T ARSI AT ;

..

'Asymntotics
All the asymptotlc behaviors given below can be obtained by using the

- ) .“.,"' 3

'Aasymptotic properties of the hypergeometric functions as given by Bateman ;flg

.as well as-the’ identities satisfied by those functions.f“xf“ 2
(a) When x tends to. inflnity, :;2i] ﬁ;“; 2]f;L f? o f’ f:jfffi?Ti B

¢IM'




S " (b} Wnen J. tends to infinity (x, = cos B),

S‘f"nef S | B - (zm6),

e’ u%&kﬁk mg)dk[ xlﬁﬁ&Wé 1fﬂ mx > 0.

x’ S ,(COS 8) ~ [cos g- : sip %M l!(J Sinq COS{J-M+1/2|6J } s

for ex < argd & x. 7 ;53;,?[V (1-17)

() When M, tends to infinity, M'. fixed, .\ 7. v i)

B T R AP Py S M/a " -2
a%. (x)vconstent x D(I-M +1) . [simt(J-M) 1/2 MaM - i-;\ (T ;(‘l-:- ] '
ot e r(eta) , ‘__J. o } 5 xj 2

3

“otafa

l+x
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: A ¢ .
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; * . <
A ¥ *

P

X J.‘é"(z"f]f.), (:ﬂvx)_'f'-l/2 1 - ¢

2J+1 /2

_( §2 1 /2

.

o (x): sin ﬂ‘.(J -mr@afey
AT,

’

X "é?;: (2 >1/2 i

f) Using Eqs. (1,12), (I’QOa.) and (I-20b), we

“of J (x) when M M tends to infinityf” .

,.,,,;m (10) {1+x
e 2sTEn (3-1) | 2 } |
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29 Grouplike properties

o

‘,'...
"

e ‘ ' A fundamental property of the rotation ma‘trices is their grou_p

L s

A [ I . . Y ".‘ ‘3~ §

"';;j','"-"'. ’@\J (RR) Z U&J (R) '&\J (R); (J and integer),

M ==~:T C S ', 'g:"_ ol

‘where R 4an‘d R' are ﬁro 'roté.tidns’ charaéterized by'..their Euler angles -
’_’-‘_(o:, 6,7) and. (a a )7 ) and. R'R 1s ’che product of R' and R
B

'
]

A part:lcvlar case of (1-22) 15 the well-lmown addition property of

Legendre f‘unctions ’ 15 4 { S

. "'2 Z’l L J;:Il ( 3-)m m(GGS E) Pm(cos Bu) cos m¢ ,

k]
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"‘;‘ which is a pe.rticula.r cs.se of Eq. (1-22) for M ,_‘-_-' _M' ‘ u=‘ 0, where use

has been made of Egs (I-l)and(7-3)and where ‘we ha.ve defined ¢ 7_ + o

. One .can prove Eq. (1-22) in several ways. For simplest proof,

consider the Fourier expansion of d (cos B cos B + sin § sin 5 cos ¢)

: Y : "
?in & series of terms proportions.l to e ¢ 'i‘hen, except for convergence S

,,(cos B) a7 (cos B )
MM MM

: ’-E','Equat,ion (I«22) can be proved by applying the differential operator the.t

‘rather tricky. o SRR Y

Another proof consists in considering rea.l values of ﬂ and B T

" such tha.t Icos 6[, lcos B I, and ]cos B cos B'+ sin B sin B cos ¢[

sta.y less than ‘1 wvhen. cos ¢ runs from -l to +l. Then, for M,M
L cend M fixed, Eq. (I-e23) is true for any positive integra.l value of
: 'J Furthermore, Eq. (1916) shows that: both members do not increase

as rapidly as ei’t'j

: when 3 tends to infinity. Both members can ’be e e o

ST then exte'nded through to complex values of .1 m a oy that satisfies .




¥

..56-'
R thé éoﬁditions‘ of Carlson's theorem. Therefore Eq. (1-23) ',is‘ true '.
| for é.hy value of J *+ The conditions on cos B a.nd cos B' ,can be
e '_:'.,{. removed by noticing that both members are a.naly‘tic functlions of cos B
s ‘;:- 3’-“,""-and cos B' . Finally, Eq. (I=23) i¢ true as long asicos B # -1, _
E ' cos BI' # | -1, and cos B' + sin B sin p' cos §' 'doe‘s not pass through |
-1 when cos ¢ variés ffom =1l to- +1 . In'.'fa.ct, evén that last
, condition could be removed by displacing the integration contour.

' ~ The domain of convergence of Eq, (I-225 ai's egéi,.y deduced from '4
:":",E‘l'(r"le) . Equa.tion }quiriverges inside & corona (set closed by two..».v
:{ffcircles of radii R ‘and R', RR' = 1) passing throvgh the point . -
:'i.-'cot B . - cot p cot B | 1‘

Equa’cion (1122) can be extended to the rotation matrices of the' L

SN second kind as follows for 1 < cos B < cos B l
S Cg/ (R ‘R) Z & (R ) ‘& Jn 1(31) N T (I-.Qll) St
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" APPENDIX '1'1- m&: TWO-BODY scmmmc AMP‘LITUDE _

Analyticity properties.

"We need to know the analytic properties of the off-the-energy shell

- N
PN
3

two-body scattering amplitude T(p, D, g) ‘solution of the Lippmann-'{'

v °f

=‘Schwinger eqpation

T(p, D' §) V(p - p!) +f—£— V(e - q) T (q, p', §)(II~1)
.{where ' ' 2”' 2' 2
: T(p, D' g)can be considered as a function of the invariants °,p ,-t=-(p p )

or

\and of § While a2ll the techniques which have been applied for investigating K
fthe on-the-energy-shell amplitude give some information onwthe off-the-energy-v
;ahell amplitude, this new problem is more complicated since it involvee_i
‘a function of few complex variables and not only of two variables. - Therefore ,_yﬁg
cour approach will -rather have a trial-and-error characterthan theform
Tof an exact proof. o ;. o c .H'f‘“'wgg | |
: ' we shall restrict ourselves to the case/whiuh the potential V(r) is frﬂ;l
;alsuperposition of: Yukawa potentials and, for. simplicity3 we shall only write f*

fonly S
~explicitly/the case of an‘isolated Yukawa, potential V(r) = ge ur/r so that its i

;Fourier transform is V(p) —g(p L ),‘ It would be_easyrto extend-ourlresultsrgib

‘%o the more gemeral case. - .. | T
_Let us first consider the properties of T as a function of g

;is well~known that the Lippmann-SchMinger kernel is of the Hilbert-Schmidt

}type 46 As it is also bounded and operator-analytic es a function of §,-

lis an analytic function of ¢ except for a cut going from 0 to infinity and

poles which are located at the energies of the bound states. The position :

_of these singulatities is independent of p?, P 2, and t .

RN

o ‘ Let us now go to the analytic properties in t. Let us writeh7‘

’ ,g)./ 12—2(“’+y)-12,22&_y)v1/2(x)x(; y,g)vl/ (y)a3x d3y (II-rQ)

4T Ib




. . - =58~ : .
s lj_'where K(X:Yyﬁ) 1s the resolvent of ’che kernel Vl/2 J; T V1/2 s
| which 48 I° . Keeping' p + ' fixed, and using the_exponential e
; decrease of the potentials when x ~or' 3} 'tencii‘ to j.nfinity;, it is

.-, easy to show that T is analytic for " i

3 N
ke
N »

. lIm(-ﬁ -p )| < pfe, N ‘_[Im(;p‘+ 1;')] < uf2 . (II=3)
Since . T(p, -I;-'; §)' is rotational- invariant,: it 13 an analytic func"ciqn', B

of the invariants p2 3 p'e) and in the image '-A' of - the domain

: :' e (II?B) The form of A" is rather complicated, however;: vhen p2 - and

p'2 are real and positive the projection of A upon ‘ohe t-'-omplex B

i

g
B -plane J.s the interior of the parabola.

ST mt = eRe e i) L o T (11el)

Our only need fcr this domain is to make sure that 'bhe Legendre

series expansion of T as a ﬁmction of the scat’cering a.ngle cos e—p p/pp'; .

LA

).
7.

con'verges, at least for some values of p end p o

Ve
P
R )

v T p,' p, g) Z (28 +. 1) T£(p, p y- §) P (cos 6) (II-:5) X |

D PR RN
LT e
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5o, u—&"gpq e L71CTS 2P D RPRTRNR
Cag A\ BB RN
L ‘ : BE (11-6)

The inhomogeneous term has a singularity at p >= ip iiu . Letting p

become complex in the integral, ve see that the integral is convergent and

J IR

'\defines ‘an analytic function of p  within the strip .Dl defined by ‘! "_jw;*qu
: v ' _ o S o

1;we can now deform the contour of integration of q-vin*a_new contour,t
_.Fl{ ,,;aiso going from 0O uwp to an infinite'reai value}'_rl must stay

gaithin"n' and avoid the singularity of the Born term at tp iu and
‘*the singularity of the integrand at q =;.¥'=§ B Letting now P

ibecome complex in the integral along Pl ; ve see that T, (;y ,E)

is analytic within the strip _’T‘ ' i-..-;?
Dy 2 lIm pl <2, (11:8)

"jindented by cuts, parallel to the imaginary axis and ending at *p t iu
and * § This procedure can be iterated to show that Tz(p,p ,§)

is an’ analytic function of p , except for these cuts. The analytic

s

Ve

N properties of Tz(p, »' ’ g) as a ﬁmction of p . could ’be obtained in




U complex parameter ¢

60~
’ the same way By 'us'ing the Lippmann~Schwinger equation for the initiall'
o "state. The results are of course 'bhe same asg for p .
" Let us now notice that the cut at p = % r does not in fact : |
,. exist for the full amplitude. . Indeed, :L’c would mean that there 15 a. 'J
" singula.rity in ¢ which depends upon the value .of p, which we have o
" shown not o ’be;true.
_' ’ e singularities at b = -p' # iu dovs not extist in the |
: ;.,._full-a‘.mplitude. Indeed, if ve put & = p'2 o &, ve know that this
N singx'alari_t'y is. a't;sent? Tt represen‘és'the left—hand cut of thé partial-wave A
', é.mplitude associated witl;z.tﬁe singulariﬁy at | t = +u2 of the full
smplitude. The same argument holds for the singularities at p = D Ult m R
This analysis, whose resul’cs are given in Sec’cionvj;, is admittedl;y

sketchy and nonrigorouso N

52 Asympto tic properties .

RS

We need to know the asymptot"ic behavior oi‘ T(p, T, g) when ‘

- both p' jand -cos 6 tend to infinity like some constant multiple of a.

I‘b is difficult to £ind the exact behavior by sta.rting from Eq. (II-IL)
'because V(P - q.) can become infinite upon some part of the q- domain
of integra.tion. We shall therefare use the results of the analysis of

Eq. (II—G) 'by Brown, Fivel, Lee, and Sawyer.ll '.T.’hey ha.ve ‘shown 'bha.'c this .




. equation is of the Fredholm type when the solution is sought within the L

Hilbert space with metric dq(q - g) , when Im & 91 0. Therefore

B " the solution T, (D, p ,g) is a meromorphic function of ‘& for fixed ya

or of .ﬁ for fixed ¢ . Its poles are the zeros of the Fredholm deter- o !

o mmantto R |
(e g) = 0. et (Ire0)
L \ ./:‘ R X . )

One can use a Watson-Sommerfeld transformation in/order to show that, RS

for infintte velues of cos © y'the a.symptotic behavior of. the full o ‘?Q St
! ':‘i ' q N ‘;’le ; T

amplitude is given by '

= aft) and .. .
0‘(§) is ‘ohe leading Regse Pole. - S “{*

In order o find the behavior of‘ 6(p, o', g) when p tends to

infinity, we shall notice that :I.t is equal, up to constan’c factors depend.ing

k only upon g ;. to the sca.lar product of the’ inhomogeneous 't:erm of Eq. (II~6)

‘. T
‘“
.
. ~
5
, R




» N

L metric dq in place of q? dg in Eq. (1116)}. As the configuration~ -

@

W,

. * where V(q). satisfies

- |e. 2 2 g
wz(p) = f ~——-9~ Yy 2 +2§q*“) Yla) s 4 = ale) . (11m3),

When 4 1is an inbeger, we kuow the asymptotic bemavior of v, (o) .
oo In fact we- know that V(p) must be equal to thefwave function divided

”* 'by P (é factor D for the one in Eq. (II-5) and another one for the - .

S : . . i
* . space wave function .Wz(ﬁ) behaves like r° when - 0, WI(P) . !‘J
.77 vehaves like 7 yhen p= oo . | |

" One can show, ‘using Eq. (11713) that this behavior is still con-

;‘Tﬁf;sistent with compkx velués of £ . In fact, let,us assume that

4=l - yithin the integrand of Eq. (II?lj) Let'usnow split the .

1f;integratipn domain into two partb going from -0 to pp and from

';ﬁ;fj’;pp to 0 ;- where p is a fixed number p << 1, sav p = l/lO . Then

o - .pp T . :
£+, - - L I
11:,1(0*)—3“ {?i%) | (1 + o(1))'xxr£(q) ...2_.‘33.. .
| AL A

?'tfhﬁﬂqbl 1 [ WA P ) d k f'ﬁlﬁjiconstant
SRR o 7..(2‘1) T o) 4@ e < TR

‘_ (Iitlh) :.
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Cand ‘ ‘

~8
8

¥, () ...._3... < P S BT q'z'l(l;o(l))@.% R
e . - pp . - : B St

" " . ‘:.' . ".. ‘."e b . L. C T N . . “ ’ -. 2 . 2 2-':‘ . ‘ ) . ': :‘ o ‘ l‘.
RISV . e _y=b=le€ ! -+ L
R < p)t j Q, q 2§P+p { dge < constiﬂs.:e: Log p (I1=15) -

' ' e ' Jq P :

B f'Al bough
”chis is'not a direct proof, it shows that, by con’cinuitx, the limit

) ,‘

-fﬁ‘}', \IIB(Q) q -1 extrapolated i‘rom 1ntegral values of 1 is consistently e
de L_i'ned arid uha.t o : . B R IO UT li,“_, L

)\..2)' for g' = °°) By ‘Re £ . (x1=16).

NE(Q)I ~ g
‘ :, Now exactly the same technique can be used in Eq. -}(II-rZ‘l2)|to ‘show :

that
8 e 4 '™ ep'm0on (1T,
. So, usins'the asymptotic' foi"m of‘ P and Eq. (II-lB), we see tha.t the -

' K leading term 1'1 Eq. (II-ll) becomes proportiona.l to. 2‘-‘ when p and

: cos e are given by Eq (.LI" 9) : Notice the cancellation of ‘the dependence‘

. ’ v"":of the Regge Pole. h9 . .




' take into account’ the contri'butions of all 'che Regge poles which all

o ‘the lea.ding Regge pole does not determine the asymptotic behavior of

Y.T(P; P; §) o : f-' .«

J- ¢ behaves like ®

S of wl/ 2) dependins vpon A-end B in Eq' (II"9)

) .:j'Schwinger equa.tion, R

N

-6l

In fact, this analysis is unconclusive insofar s_‘ 'v'e ahould &

""behave as T . Ve shoild ‘cherefore consider 1t as & proof tha‘c

SV e

AT - et
X 2, (g) 1 o :
m) o, (g)(cos e)ﬁj(P:P :ﬁ)
a(§ Lo
+100 ° ' R S ‘
ﬁ;b Pz( cos e) ml(p, ®') e) .
cddoo. 5';; e
o SRR P T _(II':lB),

g ?,.,'The same kind. of analysis shovs that, vhen Re 4. o, sz(p, P ,g)l

: Lf'::_“}.:_’behaves like 1/p' when p' tends to infinity, therefore T(p,p ,g)

l/, 2 , the precise a.symptotic beha.vior. (i e., he coefficient

An alterne.tive approach would ha.ve been to use tl'ie Lippmann- S

T
. (N

& T(", ' 5) Vp 3 )f/——-q- T(i; L §) -----V(q p )(II-.»19)

.‘«-g

e




T 2 D B)| < comstant(1 + )TTE, o !
C ' : - S ‘ ) -
“valid for ~thSiCa.l values of .p and q n

physica.l and - -within the domain of p and -cos © . where (11-19)
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’ R : ' * APPENDIX III
cec L e :

TCHEBYSHEFF FUNCTIONS . . N
H ' hl , . ,‘-:'..
33« The polynomials =

‘ " sin nB : e "n‘ s
-Tn(X)_—.ggg“g‘). : x =cos B ‘IIIel)

| 1/2
are orthogonal on the segment ( -l, +1) with the weight function (l - x2)
_They are

]
1. Lo . )
a special case of Jacobi. polynenlals'

._,
P oty
5]

-
l
5
i

They satisfy the differential equation

‘ (xz‘ml)d n+x§.?l’.1.

. 2 . )
- (n =1) ?n7”30!

S ax

Another solution of Eq. (I11+3), regular for_ix = co,“can be defined as
e 1fff'h ;t ,-:"f : o - ‘

1.

>ﬁs (x) =

(x-l) 2(x+l)2 F(n -‘%3 23 2n - 13 E%E')T”-:' (1T1<4)
SOT R (n-l) : ._]7,,'¢ ‘ . ' ‘

e ‘-If“.fvﬂ
-  for; h;= 2, 34{",and N I ’

R

T

ol
Sﬁx)'r ”i log <1+x>-—<x-1>’¢” e
R Aot AR

.-———u—d—-n

Log (l+t)dt .

x;;-l

‘7{7}.3(111q5)ﬁ
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'_where' £

the segment

in a neighborhood

& contour

, +1)

enclosing.

¢ is

that segment

and

(-1

Ly, 2, 3,
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
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