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I. INTRODUCTION 

In order to establish a firm basis for exploring the utility of 

liquid theory as a guide in understanding fluidized-bed phenomena, 

it is necessary first to be cognizant of the current status of liquid 

theory. A fundamental review of the statistical-mechanical foundations 

. of liquid theory and a description of fluidized-bed phenomena are 

therefore presented below. The basic liquid theory discussed here is 

that presented in the general statistical-mechanics texts listed as 

Heferences Hl, Pl, and Tl. 

A. Statistical Mechanical Theory of Liquids 

The science of "statistical mechanics" employs the theory 

of probability to deduce the thermodynamic and transport properties 

of a system containing a very large number of molecules (of the order 

of 1020 or more) from knowledge of the mechanical behavior of the 

individual molecules. The basic feature of this approach is the 

mathematical construction of an ensemble of systems, i.e., a 

collection of a large number (n~) of systems, each constructed to be 

a qualitative or geometric replica on the macroscopic scale of the 

actual thermodynamic system of interest, or a subsystem within it. 

'l'he fundamental assumption made, known as the "ergodic hypothesis," 

is that the "system of actual interest (which serves as the prototype 

for the systems of the ensemble) spends equal amounts of time, over 

a long period of time, in each of the available quantum states" (H2). 
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The nature of the ensemble is directly related to the thermodynamic 

description of the actual system. That is, the constraints on the 

thermodynamic system establish the restrictive conditions that apply to 

the ensemble. The canonical ensemble is of most frequent utility for 

liquids; it represents a closed isothermal system having a number of 

molecules N, volwae V, and an absolute temperature Tt serving as its 

constraints, e.g., an enclosed system immersed in a constant temperature 

bath and thermally in equilibrium with it. For the most part, the 

remainder of this discussion will be confined to such a system. 

In the canonical ensemble, the probability of observing a given 

quantum state j (having energy Ej) in an arbitrary system of the 

ensemble is 

P .. 
J (.r-1 ) 

where state j is included among the accessible states i=l, 2, ••• n. The 

denominator is named the partition function (or sum over states), z, and 

a is the reciprocal of kT, k being the Boltzmann constant. The 

thermodynamic entropy, a function of the randomness of the system, is 

defined as 

( :r- 2...) 

and the macroscopic equilibrium value of a property whose value is D 
j 

&' 
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when the system is in quantum state j is 

D = L D· p. -' z. 't. 

L;._ Di fZx. p (-P.:. t: i) 
~ ·----- (r-3.) 

't. 

Thus it is easily shown that if the partition function is known, all 

of the thermodynamic properties of the ensemble can be calculated 

directly. For example, 

and 

E= 
Z E exp (-~E,:) 

' 't 
.2~~,_.,,~ .... ---!Sn'»t''' -

F.: E-T:S:::. -kT~-C: 

(.r-"" ) 

(J:-S) 

(I~Co) 

( r-7) 

To evaluate the partition function properly it is necessary to 

solve the quantum mechanical wave equation for N interacting particles, 

in order to establish the energy levels. Clearlyt this is an impossible 

task 5 and simplifying assumptions are in order. These assumptions are 
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in the nature of a decoupling of the less significant intra- and inter-

molecular interactions, such that the resulting molecular model possesses 

a manageable number of degrees of freedom and yet truly represents 

physical reality. The following discussion lists these assumptions and 

furnishes the basis for an understanding of the maJor current liquid 

theories. 

In general, the energy of each quantum state is the sum of 

contributions from the different degrees of freedom. ~herefore, 

because of its exponential dependence upon energy, the partition 

function can be expressed as the product of factors related to the 

separate degrees of freedom, iee., 

• (I -8) 

where Ztr (the translational partition function) is the contribution due 

to the positions and motions of the centers of mass of the molecules, 

and Zint (the internal partition function) is related to the rotational, 

vibrational, electronic, and nuclear degrees of freedom of the molecule. 

So far our development has been in terms of quantum states, but 

for other than low temperatures, the energy levels are sufficiently 

close that the classical approximations can be used. The translational 

partition function is then 

( T-~) 

+ where H is the Hamiltonian, dpi is the volume element in momentum space, 
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.... 
dri the volume element in position space occupied by molecule i. In 

most instances, the Hamiltonian can be expressed as a sum of momentum and 

potential contributions: 

where w(;
1 

••• ;N) is the potential energy of the system when the 

-+ .... 
molecules are located at r 1 ••• r • The partition function in this case 

N 

is separable, and the following expression results: 

3'~ 
l-Ie thus have Z =Q/ A r • Within the accuracy of the above tr 

development, and because the mutual separation of the molecules can be 

defined, the configuration partition function is: 

( .,- .. ' ··:; ) 
.J... , ........ 

If we now restrict our discussion to monatomic fluids, for which Zint=l , 

the thermodynamic properties can be expressed in terms of the 

configuration partition functiono Thus, 

( I: - : ;;:.) 
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<.-.......,-

and p= kT (J~':-~) 
do\/ N.T 

(I-I(q) 

I 

'rhe evaluation of the configuration partition function for the 

entire thermodynamic system remains a difficult task, since it depends 

upon the location of N (of the order of 1020 ) molecules, and the extent 

of their interaction with each other. However, the total interaction 

of any one molecule with the others is g:i.ven to a high order of 

approximation by the vector sum of its individual and separate 

interactions with each of its immediate neighbors; this is known as 

the pairvrise additivity approximation. Utilizing this approximation, 

calculations have been made on high speed computers for a small number 

(104) of molecules interacting according to simple parametric 

intermolecular potentials, e.g .. , hard-sphere and perturbed square-well 

potentials (Hlt P2~ Sl, 82). 

1wo calculation methods are employed: the Monte Carlo method (Rl) 

selects rearrangements in the molecular distribution in a random manner 

subject to appropriate constraints; the molecular-dynamic method (P2, 

SJ., S2) specifies initial and boundary conditions and solves Newton's 

, 
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equations of motion for the particles. The two methods yield thermodynamic 

predictions in good agreement with each other, and the molecular-dynamic 

method possesses the additional capability of calculating transport 

properties. These calculations are useful in furnishing an exact result 

to which other predictions may be compared, but possess the obvious 

limitation of being able to handle only a small number of moleculest 

and of requiring an extremely large ratio of computer time to real time. 

To simplify further the calculation of the configurational 

partition function an additional restriction is necessary, and it is 

the nature of this restriction that differentiates the various liquid 

theories. Although differing in specific form! all current liquid 

·. 
theories consider that molecular interaction take place only among 

particles in a subsystem; that is, a given molecule interacts with 

n (n<<N) particles in an average potential field established by the 

(N-n) other particles. Mathematically, the irrelevance of the 

remaining particles is accounted for by averaging over all the 

configurations available to them. The justification of this 

assumption lies in the experimental observation that while liquids 

possess short-range order (among molecules in the subsystem) there. is 

negligible long-range order. 

Virtually all liquid theories are of the one-body variety~ 

with a few extensions into the two-body domain. These theories fall 

into two general categories: the first employs knowledge of the radial 

distribution of molecules around a central molecule» whi.ch is established 

by experimental or theoretical means, to predict the thermodynamic 

properties; the second postulates that a hypothetical cage exists 
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around each molecule, with suitable choice of properties for the 

environment within the cell leading to quantitative predictions of 

liquid behavior. Each approach possesses certain advantages, and will 

now be discussed in more detail. 

.. 
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1. One-Component Systems 

The one-component system offers a great simplification in 

evaluation of the partition function. Since all the molecules are 

identical, the perturbation to the multicomponent partition function 

that accompanies an interchange of unlike molecules within a given 

spacial configuration need not be considered. Therefore! the one

component partition function depends only upon the spacial location 

of the molecules, not upon their individual identity. A factor of 

(NI)-l is accordingly introduced into the partition function given 

in Eq. ( r-12) so. that each quantum state will be counted only once. 

With this in mind, we proceed to a consideration of the specific 

liquid theories. 

a. Radial-Distribution-Function Method. The radial-distribution

function method in its most general form furnishes an exact description 

of liquids in terms of a radial-distribution function g(r) defined as 

the ratio of local density to the average density of the fluid. 

Unfortunately the distribution function cannot be experimentally 

measured with sufficient accuracy, and the alternative theoretical 

development leads to an insoluble set of N+l inter-related integral 

equations. The approximation necessary for the closure of the set of 

integral equations constitutes the essential limitation of this method. 

The general characteristics of the distribution function are 

illustrated in Figure 1:- l • The form of this function has been 

verified by experimental X-ray diffraction measurements. From its· 

definition, the departure from unity measures the short-range order, 

relative to a given molecule, in the arrangement of its neighbors. 
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g(n+l](r ~ ). Kirkwood (Kl) proposed a "superposition principle", 
·2 

analogous to the Hartree approximation in quantum mechanics (H3), to 

. close this set of integral equations. This principle is illustrated by 

considering a three-body distribution to be expressed in terms of the 

pair-distribution functions of the three molecules: 

( :r -.zo) 

The manner in which the superposition approximation is introduced is also 

of importance; two different equations for the radial-distribution 

function have been deVeloped. These equations, derived by Kirkwood (Kl) 

and by Born and Green (Bl) are both first-order nonlinear equations and 

differ only because the superposition approximation is inexact. 

The thermodynamic properties can be established by inserting 

the expression for the radial-distribution function into Eqs. (~-11)-

( T -15 ) • 'l'he resulting predictions have been found to be quite 

acceptable from a qualitative standpoint. Due to the approximations 

involved, they are not quantitatively accurate, however. When they are 

compared with the exact results for a hard sphere fluid as calculated 

by Kirkwood, Mann, and Alder (K2), the agreement is seen to become 

increasingly unsatisfactory at the higher densities where triplet and 

higher order interactions become important. The lack of success of the 

distribution-function method in obtaining accurate quantitative 

predictions suggests that it might be fruitful to examine a more 

intuitive model based on the short-range order observed in liquids. 
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b. Free-Volume Theories. The short-range order existing in liquid 

molecular structure ha.s been mentioned previously. The spacia.l necessity 

for such ordering can be traced to the relatively minor volume change 

that occurs upon melting, and to the extremely large short-range repulsive 

forces that preclude molecular inter-penetration. For a molecule to move 

through the liquid it must penetrate the potential barrier formed by its 

interaction with the surrounding molecules. The motion can be described 

as a random walk of the molecule between groups of contiguous molecules. 

Between intergroup jumps the molecule oscillates about a quasi-equilibrium 

position within the cell formed by its neighborse If the frequency of 

oscillation within each cell is much greater than the frequency of the 

intercell jumps, the thermodynamic properties of the liquid will be 

largely determined by the cell properties. The problem, then, is to 

determine the effective potential energy field within a cell, and, hence, 

• to ascertain the Boltzman factor. This being done, the cell partition 

function and related thermodynamic properties can be established. Such 

is the nature of the free-volume or cell-model approach to liquid theory. 

'I'he free-volume approach, first suggested by E.'yring and 

Hirschfelder (El), describes a liquid as being composed of individual 

molecules, each moving in an average potential field created by its 

neighbors. The resulting partition function for each molecule can be 

written as 

(I-Z.I) 
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where vf is the free volume and w is the energy of the molecule in its 

average potential field. This equation serves to define the free 

volume as the effective liquid-phase volume within which a molecule 

will obey the perfect gas law, pv f=.lt"r. The corresponding thermodynrur..i c 

properties may be readily obtained by substituting Eq. ( I-2..1) into 

( I·-t;;2..) 

( -- ') -,) J..~ ... :;, 

Eyring empirically related the microscopic variables, w and v to the 
f 

volumetric properties of the liquid, and succeeded in obtaining 

reasonable qualitative predictions. 

A possibility for improving the Eyring approach would be to 

relate the parameters wand v f to the intermolecular force constants of 

the molecules. Lennard-Janes and Devonshire (Ll) accordingly 

suggested a "cell model" for liquid structure, which provides expressions 

• 
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for the force-field parameters in terms of molecular constants. They 

postulated that since the field acting upon a molecule is rapidly 

fluctuating, it could be represented by an average field possessing 

spherical symmetry. In that case, the mean energy of a molecule's 

interaction with its neighbors depends only upon the radial distance 

of the molecule from the center of the cell, w(r). If the energy 

state is referenced to the energy of the system when all particles 

are at the center of their cells, the configuration partition 

function is 

where v.( : 4lT I exp f- [ W(r)-w(clJ/1 kr} r'"O-.

ce.l\ 

(I:- Z..G) 

In this case then the free volume v f serves as the cell part it :ion f'unct.ion; 

and Nw(0)/2 is the system energy when all particles are at the center of 

their cells. 

Upon assuming a form for the intermolecular potential, e. g., the 

Lennard-Jones 6-12 potential, the mean energy can be evaluated as a 

function of radius in a straightforward manner. The resulting expression 

can be represented functionally by 

( r- z s) 
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where c* and d are the energy and distance parameters in the Lennard-

Jones potential, a is the cell radius, and A is the number of nearest 

neighbors. The thermodynamic functions are again as given in ~qs. (I-~~)-

(I-ZS) where w is now defined equal to w(0)/2. 

Two special cases of cell theory are of sufficient interest to 

be considered here. 'l'he hard-sphere model, sketched in Figurel-2 for 

the case of hexagonal packing, most clearly illustrates the basic features 

of cell theory; a large number of calculations have been made for this 

case. The model postulates "billiard-like" molecules which interact with 

an infinite repulsive force upon contact, but experience no potential 

field between collisions. The molecular energy within the cell is thus: 

W(r)==O 

(I- ZBb) 

'l'hen from Eqs. ( T-7.7) and (r.--.1.?) the free volume and the equations of 

state are eas:i.ly determined to be 

< r-2'1) 

and 
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Fig. I-2. Schematic diagram of a hard-sphere-liquid cell 
with hexagonal packing. 

. 
XBL673-2264 
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where y is an empirical packing parameter defined by y=a3/v=d 3/v0 (e.g., 

y=/:2 for a face-centered cubic lattice) and v 0 is the cell volume of 

closest packing. The agreement of this equation of state with numerical 

calculations using the Monte Carlo method is quite good (Hl). 

A "square-well" model developed by Prigogine ( P3) and designated 

as the "smoothed-potential" approximation offers further improvement 1 

yet possesses the simplicity of form necessary for analytic calculations. 

It assumes that the molecule in its cell is acted upon by a uniform 

potential given by the molecular potential of the molecule when located 

at the cell center. Physically such an assumption is justified by the 

fact that while a molecule's interaction with some molecules increases 

when it moves away from the cell center, its interaction with other 

molecules decreases, and in the range of liquid densities these two 

effects tend to compensate for each other. The model continues to 

assume hard-sphere molecular interactions, and the reference potential 

energy, w(O). is generally calculated assuming a Lennard-Jones 6-12 

potential. The form of the cell potential with respect to the reference 

potential is identical to that for hard spheres, i.e. 1 

UJ(r) - W(o).: 00 

0 ~ 1-- "- (tt- vh 

y-?: (a.- J) (I-31} 

Thus the same partition function results. with vf given by Eq. (I-21). 

The equation of state differs from Eq. (T--30), in that it now includes 

the volumetric dependence of the reference potential: 
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( r--~'4 

The last term on the right, the "thermal pressure," arises from the 

molecular motion of the hard spheres, and the first term, the "static 

pressure," results from the configuration, i.e.! position-dependent, 

interaction between molecules. The importance of the smoothed-potential 

modification to the hard sphere model lies in the fact that the liquid

gas transition only occurs for molecules possessing an attractive 

potential (just as the liquid-solid transition depends on the repulsive 

potential). 

The cell models discussed so far have been of the localized 

one-body variety, and as such they do not account for the so-called 

"communal entropy" of liquids. This entropy, which equals Nk, results 

from the disruption of order that occurs during the solid-liquid 

transition, and the consequent inability to associate a given molecule 

with a specific lattice site. The cell model, however, hypothetically 

divides the liquid into cells, and thus effectively 'reidentifies' the 

molecules. In an extensive examination of the cell model, Dahler and 

Hirschfelder· (Dl. D2) concluded that it is not possible to account 

satisfactorily for the communal entropy within the restrictions of the 

conventional cell model. For this reason, two extensions of cell theory, 

known as the multiple-occupation theory and the cell-cluster theory, have 

been proposed. 

"Hultiple occupation of cells" (P4) implies that more, or fewer, 

than one particle may occupy a cell. The interactions between the 
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molecules in the same cell are treated exactly, and the interactions 

between molecules in different cells are approximated by an average 

potential similar to that used in the Lennard~Jones and Devonshire 

model. The communal entropy is seen to arise as a result of 

fluctuations in the cell occupation numbers, i.e., density fluctuations 

on the molecular scale. The use of higher cell occupation numbers 

than one successfully predicts the correct communal entropy, and 

provides a continous transition from a one-particle model to the 

correct N-body model. It is found, however, that occupation numbers 

of three or more contribute only 10% of the communal entropy, and of 

course add greatly to the complexity of the problem, Therefore 

nearly all discussions of the multiple-cell-occupation approach are 

restricted to two or fewer molecules per cell. A well known example 

of this type is the 11 hole theory" developed by Cernushi and Eyring 

(Cl). Although developed prior to the multiple-occupation theory, 

it is simply a special case in which the occupation numbers are 

restricted to be zero (i.e., a hole) or one; since it is only a 

one-body model, it offers no improvement over the standard cell model 

with regard to predicting the communal entropy. A more useful 

application of the general theory is to quantum liquids for which 

consideration of even doubly-occupied cells provides an insight into the 

ef'fect of correlations between particle motions. 

The cell-cluster theory developed by DeBoer (D3) is a more 

direct attempt to include correlations between particle motions through 

the concept of "cell clusters" of two or more neighboring cells. Within 

the cell cluster, the molecules move under the influence of their mutual 

" 
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interaetion and their interaction with the surrounding (N-n) molecules. 

The resulting cell-cluster partition function depends only on the 

number of cells in the cluster and their mutual arrangement. This theory 

predicts the correct communal entropy for a one dimensional gas. 

Although no calculation has been published for the condensed state, 

the correct result should be obtained if sufficiently large cell 

clusters are employed. (At high densities, a fluctuation will involve 

a large number of molecules and the cell clusters are correspondingly 

very large.) Because it accounts for the communal entropy, the 

concept of multiple occupation of cells seems to offer the best 

prospect for further development of cell-model theory. 

The free-volume model has been discussed thoroughly because 

it offers an intuitively satisfying model for liquids and, for that 

reason, serves as the logical starting place for an application 

of liquid theory to fluidized beds. It must be kept in mind, however, 

that the assumed cell structure has too high a degree of order "built

in", and the calculated values of free volume depend upon the 

particular molecular arrangement assumed. Evincing this effect, the 

isotherms derived from free-volume theory, for other than large 

cell-clusters or multiply-occupied cells, resemble continuations of 

the crystalline isotherms. They agree neither with the Monte Carlo 

predictions nor with the experimental isotherms. Also, the radial

distribution functions calculated from the cell model differ markedly 

from those obtained by x-ray diffraction methods. Thus the free-volume 

model provides a useful counterpart to the radial-distribution-function 

method, but it too falls short of being an accurate quantitative theory. 
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2. Surface Tension 

The existence of surface tension is traceable to the change 

in free energy which occurs when a molecule is removed from the 

isotropic potential environment of the bulk phase and placed in the 

nonisotropic potential environment of the surface phase. It may 

be defined in terms of the divergence of the local pressure of the 

close-spaced surface molecules p from the uniform isotropic bulk 

pressure p0
: 

dV 
( 

j (f"- f=') r,~a' 

where o is the surface tension and z1 is the distance away from the 

plane of the surface. Eq. (r,.-:...:1) is consistent with the usual macroscopic 

definition of surface tension in terms of the Helmholtz free energy: 

'l'he former definition is employed by the radial-distribution-function 

approach, and the latter is used in the cell-model analysis. 

a. Radial-Distribution-Function Method. The bulk hydrostatic 

pressure is given in terms of t])e radial-distribution function by 

Eq. { :r- : 8 ) : 
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The comparable expression for the local pressure is: 

where z is the distance away from the surface plane and x1 , x2, Y2• 

and z
2 

are the remaining Cartesian coordinates of mol.ecules one and 

two (with y1=u). By substitution of Eqs. (L-~5) and (r-~~) into Eq. 

(r·::>.:.) the surface tension may be obtained. Kirkwood and Buff (K3) 

have carried out such an evaluation. 

b. Cell-Model Theory. Lennard-Janes and Corner (13) ascertained 

surface tension from the cell model of the liquid state by determining 

the free energy difference between a mole of liquid with unit surface 

area and a mole of liquid with no surface area. The resulting 

expression for surface tension is: 

where ~ -~ is the increase in potential energy per unit interfacial 
0 0 
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area when two semi-infinite blocks of liquid with plane faces are 

xnoved from zero to infinite separation in a reversible isothermal 

process; Ns is the number of molecules per unit interfacial area; 

and vf and vs are the free volumes of a molecule in the bulk and 

surface phases, respectively. 

Empirical observation of surface tension led to a relationship 

known as E8tvos' law (E2): 

where K and T0 are independent of temperature. Equations (1:-~7) and 

(r-lo.S) can be brought into accord with one another subject to two basic 

assumptions. These are that both the potential difference '¥
0

-4> 0 , and 

the free volume ratio vf/v5 are independent of temperature. Then since 

Ns=v-213: 

c. Surface Wave Behavior. An assessment of the magnitude of the 

surface tension may be obtained by observing the behavior of a surface 

disturbance. The propagation velocity of surface waves under the 

combined influence of gravity and surface tension may be shown to be (Mf): 

where c and A are, respectively, the wave velocity and wave length; 

oi' 
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g is the gravitational acceleration; p is the fluid density; and h is 

the fluid depth. If the fluid depth is much greater than the wave 

length, the hyperbolic tangent factor approaches unity; then 

+ ... 

Rearranging Eq_. ( r:·"+l) • we arrive a.t an expression for the 

surface tension: 

( r· .,.·z.) 

Therefore, if we measure the wave speed and wave length for a fluid 

of known density the surface tension is directly obtainable. 
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3. Transport Properties 

From the viewpoint of kinetic theory the distinction between 

equilibrium and nonequilibrium systems is not fundamental. as ?oth 

depend upon the same molecular motions. It is therefore natural to 

expect that some knowledge of a system's nonequilibrium behavior may 

be gained from consideration of its equilibrium properties. Although 

this expectation has been realized in the case of dilute gases, for 

which Chapman (C2) and Enskog(E3) have obta.ined the nonequilibrium 

distribution function from a perturbation expansion about the 

corresponding equilibrium distribution function, the necessary 

introduction of multimolecular interactions and short-range order 

has so far prevented the development of a satisfactory equivalent 

theory for liquids. 

In general the development of a complete theory for liquid 

transport phenomena has had to be approached from two distinct paths. 

One treatment has been concerned with the solution of the Boltzmann 

equation under the restriction of no intermolecular collisions; 

Kirkwood's (KJ) Brownian-motion method falls into this category. The 

other approach has considered only the collision contribution to 

transport phenomena; originally developed for dense gases by Enskog 

(E2), it has recently been refined for liquids by Collins and Raffel 

(C3). Both theories will be discussed briefly in the following 

paragraphs. 

a. Brownian-Motion Theory. The Brownian-motion approach to the 

establishment of liquid nonequilibrium theory involves an empirical 

assumption as to the nature of the dissipative process, and the inclusion 
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of the attributes of short-range order into the Liouville equation. 

Kirkwood (K4) introduced a parameter, the autocorrelation function § , 

which serves as a measure of the dissipative behavior of the system: 

( I-"l-:3) 

where F(t) is the force due to all neighbors on a given particle at 

time t, !<'( t+1) is the force on the same particle at a later time t+ T1 , 

and < > indicates an ensemble average. In effect ~ defines a transient 

"cluster" of 10 to 20 molecules. He then postulated that the nature of 

the dissiuative (or randomization) process is such that a plateau time 

Tc exists, for which 

~ -F 0 if 0'< t:c. I 
~ 

§ 0 if 1'~ -:.. tc ( I:-41) 
-:::: 

I,.. I 

The essence of this hypothesis is that the forces acting upon a particle 

will cause it to escape from its initial force field within a time 

interval T c• 'l'hus, for a coarse time scale with units greater than 

,. c the system effectively exhibits molecular chaos. 

Kirkwood also defined a related quantity, the friction constant, 

1!. 
6::: -- J ~ (t:)at ( r _..,..,&;;:;) 

YV'\ k r 
0 

applicable where t>t This quantity serves as a measure of the lifetime 
I· C • 

of the "cluster." Since the evaluation of o is extremely complex, only 
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Since there is no "action at a distance" in a hard-sphere fluid, 

only binary collisions are considered; the collision frequency therefore 

has the value developed in the kinetic theory of gases, times a molecular 

shielding factor A. The corresponding flux tensor J;, for such a system 

has been shown by Chapman and Cowling (C2) to be 

( T-5 2.) 

where ~is the quantity being transferred, e.g., momentum or kinetic 

energy; ~ 1 is the amount of ljJ possessed by the second molecule after 

collision, f( 2 ) is the nonequilibrium pair-distribution function; ;l 

~ 

and c2 are the respective molecular velocities of the two molecules; 

k is a unit vector along the line of centers at collision; and g is the 

.... .... 
relative velocity, c2-c1 • Because of the lack of molecular interaction 

between collisions, it may be assumed that the velocity distributions 

of the two molecules are reestablished by the time a second collision 

occurs between them. 

The form of the nonequilibrium pair-distribution function in 

Eq. (I-S2) is therefore taken to be the product of the related 

equilibrium pair-distribution function and the Maxwellian form of the 

singlet-density product of the two molecules. The resulting expression 

for the stress tensor becomes equal to the pressure tensor upon 

substitution of 

{I 
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Comparison of terms then leads to 

'VI "' ~ o( (~T) '( ( .e _ ..!..) 
·~,_ 5 1i \<.T 1J 

for the shear viscosity coefficient. 

A related development for the self-diffusion coefficient (L4) 

establishes 

(r-?s) 

Both coefficients are found to predict values which are a factor of 

two lower than the experimental values~ 
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4. Mixtures 

In principle the formulation of a statistical-mechanical theory 

of solutions should be very similar to that for pure fluids, since both 

problems involve the evaluation of the partition function of a general 

N-body system with many-body interactions. Actually, pure fluids 

exhibit many simplifying features when compared with mixtures, e .. g.: 

(i) In a highly-compressed pure fluid* it is frequently 

assumed that the average positions of the molecules are close to the 

sites of a regular lattice, while in a mixture the differences in 

molecular size resultt at high densities, in a very irregular average 

configuration which depends upon composition. 

(ii) Many theories of the liquid state take advantage 

of the indistinguishability of the configurations resulting from a 

simple interchange of molecules, but in a mixture such an interchange 

necessitates complex order-disorder considerations. One can write the 

pure fluid and mixture partition functions in a form which illustrates 

the order-disorder problem: 

for a pure fluid: 

for a mixture: 

v 
f J ... 

0 

" IJ 

Q- r. i <l!..~p r~ W(~ 1..) /<T 1 d~, d.f'.; 
0 0 

-+ 

( T· 57 ) 

where ri is the position vector of molecule i, and W is the energy of 

a particular confi.guration. In Eq. (1-?7) the symbol < > denotes a.n 

.. 
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average over all possible interchanges of the molecules among these 

positions. 

Difficulties such as these have prevented the establishment of 

a wholly satisfactory theory for mixtures. Thus, for many years the 

theory of nonelectrolyte fluid solutions has been based upon the 

regular solution theory of Hildebrand and Scatchard (H4) and the 

several lattice theories of solution (Gl). These theories are 

semiempirical in nature, since they cannot be derived from a general 

statistical-mechanical formulation in terms of well defined 

approximations, and thus they contain parameters whose exact 

physical definitions are obscure. As the result of a great deal of 

work on solution theory during the last decade, progress has been 

made in more fundamental approaches, such as the extension of the 

radial-distribution-function (RDF) method to mixtures (Fl), and the 

use of perturbation techniques~ in which the perturbation may involve 

a molecular parameter or the intermolecular potential itself, to 

develop improved "mixture theories" (Nl). It is worthwhile to discuss 

here the basic assumptions and principal results of the RDF approach, 

and of the mixture theory that extends the cell model to solutions. 

a. Radial-Distribution-Function Method. From a formal point of 

view, the radial-distribution function can be easily formulated for a 

mixture. For example, the equation of state is given by 

< r- s 3) 

where xi and xj are mole fractions, WiJ is the intermolecular potential, 
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and g .. the pair-distribution function of molecules i and j. In 
lJ 

appearance Eq. ( r- s~) is quite similar to Eq. (!:.·!~ for a one component 

syster, but evaluation of Eq. (r-5~ is much more difficult. 

'l'he added complexity can be illustrated for a binary mixture. 

The potential energy of intermolecular force for the binary mixture 

consists of three terms, rather than one, reflecting the different 

types of molecular interaction: 

w = 
N 

Also, there are now four triplet distribution functions, vi~., g~~l, 

Introduction of the superposition approximation 

leads t f · t 1 t' h for g( 2 ) and (2 ) and two for o our 1n egra equa·1ons, one eac fl, 
CXC1 i3 t3 

(2) g • '£he latter become identical only for the special case of aS 

uaa - use; otherwise, for the general case, the difference between the 

two predicted values of g~~) measures the error caused by the superposition 

approximation. 

b. Cell;-Model Theor;r. 'I'he methods and procedures by which the cell 

model has been modified for mixtures are discussed in the following 

paragraphs. This theory is one of several "mixture-rule" theories that 

have been recently developed, having as their principal goal the 

estimation of the properties of mixtures of spherical molecules in terms 

of properties of characteristic pure fluids. 

In cell-model theory, the "mixture rule" serves to define average 

molecular parameters for the mixture from which one or more mean cell 

potentials can be derived. This can be conveniently illustrated by 
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examination of the one- and two-fluid models proposed by Prigogine (Pl, 

P5, P6, P7, S3). 

The one-fluid approximation,also known as the "random-mixing 

approximation," defines a general cell potential function for the 

mixture by 

(::-Go) 

where wa~ is the potential function for interaction between molecules 

a and 13. Physically Eq. (r.-~o) is equivalent to assuming that the liquid 

is composed of uniform cells with the parameters £~ and dm determined 

by the average environment. 'rhis implies a regular lattice at 0°K with 

all nearest neighbor distances identical. For example, in a binary 

mixture the potential energy is taken to be the sum of 1-1, 1-2, and 

2-2 interactions in the appropriate (random) proportions. Thus the 

reference fluid is seen to be a single substance of N molecules 

interacting with the composition-dependent cell potential given by 

Eq. (-r-c.o). 'rhe corresponding excess free energy for the binary mixture 

with a=l and s=2 is 

.. 

where 
r r 1 

't.,..., -== J 2-Ap ~C [ cu~(y)- L1JM(o'8 / kT S "1-rrr-Jot.....- ( I .. / "') ... '0 :.._ 

ce.t \ 
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and ( . .,.... ' ..., ) ...... .-.;; 

'l'he double subscripts, e.g., in d11 , refer to the properties of the 

pure fluids. 

'rhe two-fluid approximation describes the properties of a 

c-component mixture in terms of a set of c reference fluids. The cell 

potential functions of the reference fluids are given by 

'fhis approach, which is also known as the "semi-random-mixing 

approximation," is an improvement over the one-fluid approximation, 

for the following reasons. If two molecules are of different size, it 

is obviously an oversimplification to assume that even at 0°K they pack 

into a regular lattice with a single lattice parameter dm• 'l'hus, the 

uniform cell model magnifies the effect of differing molecular size 

beyond its real importance, and the energy so obtained represents an 

upper limit. The two-fluid solution was therefore developed to enable 

attainment of a lower potential energy by allowing lattice irregularities. 

Considering the binary mixture again, the two-fluid model assumes 

that there are two kinds of cells, one for type-1 molecules with 

parameters d1 and c~ determined by the average environment of type-1 
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moleculest and another for type-2 molecules with d2 and E2 similarly 

determined. Thus, for type-1 cells the en~rgy is the sum of 1-l and 

1-2 interactions in the proportion x1/x2 of type-1 and type-2 nearest 

neighbors to a type 1 molecule. The cell sizes are chosen so as to 

minimize the free energy. 1'hen the excess free energy of the 

mixture is the sum of the free energies of transferring x1 type-1 

molecules from the pure state to type-1 cells in the solution and x2 

type-2 molecules to type-2 cells in the solution. The resulting 

expression for the excess free energy is 

where ~"' ~ f ex P {- [ W"-1 ~)- L<J"' (ol) / k T} 4lr r'cl.v, 
CP..H 

and the force constants are 

( 1- ' , .. ,) .. - ..,'):;. 

The application of cell-model theories of solution, and in 

particular the two-fluid theory, has achieved a reasonable degree of 
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succes~. Using this theory, Prigogine (P3) was able to demonstrate 

theoretically for the first time that in mixtures of nonpolar 

molecules of the same size, e.g •• neopentane and carbon tetrachloride, 

the excess enthalpy is positive and the excess volume negative. 

Previuusly, all solution theories had predicted that the two quantities 

must have the same sign. 

Nevertheless the cell-model approach does suffer from a 

serious deficiency, which is common to the majority of 11 mixture-rule" 

theories. The problem lies in the breakdown of the random-mixing 

assumption in mixtures composed of molecules of different size (B2). 

'fo accentuate the effect of molecular size differences, Salzburg ( S4) 

considered a mixture of hard spheres. He found that, upon mixing at 

constant temperature and pressure the one- and two-fluid theories 

possessed singularities; for example, for a bi.nary mixture the 

one-fluid theory predicted mixture properties identical to those of 

a pure fluid of large spheres at all compositions, and the two-fluid 

theory was representative of an ideal mixture of molecules of diameter 

d12 and d22 • Thus for a hard-sphere mixture, each theory is singular 

in the limit of all small molecules. 
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B. Fluidized-Bed Phenomena 

The term "fluidization" designates the phenomenon in which 

discrete solid particles are levitated by drag forces resulting from 

upflow of fluid through the interparticle space. The resulting 

"fluidized bed" displays a free upper surface and other bulk physical 

properties characteristic of single-phase true liquids. Fluidized 

beds possess several desirable attributes such as large solid-fluid 

interfacial area, relatively uniform heat distribution throughout 

the bed and ease of solids handling. The industrial importance of 

gas-fluidized beds as catalytic reactors has led to a large number 

of theoretical and experimental investigations of fluidization. 

However, its underlying fluid-dynamic mechanism has not yet been 

fully explained, and the empirical expressions established by various 

investigators do not form a consistent framework. 

As in the theoretical description of real liquids, there are 

two possible approaches to the development of a general fluidized-bed 

theory. One is, from observations of the phenomenalistic behavior of 

the bed, to deduce interrelations between the macroscopic variables 

that characterize the system; this corresponds to the establishment 

of a thermodynamic-like framework. The alternative approach is to 

induce, from the dynamic behavior of the individual particles, the 

general properties of the fluid bed; this is comparable to the 

development of a kinetic theory of fluidized beds. Of these two, the 

thermodynamic approach has received primary attention, since in rr~st 

instances reactor design requires only a factual knowledge of the 
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specific attributes of the bed rather than complete understanding of 

them. In addition, even under the most restrictive assumptions the 

fluid dynamics of a multibody system has not yet proven amenable to 

solution, and a fluidized bed exhibits nonuniformities in behavior 

which further complicate the problem. Nevertheless it appears that 

useful information can be gained from a rudimentary analysis of the 

multibody system. 

1. General Characteristics of Fluidized Beds 

The most obvious physical variable controlling fluidized-bed 

behavior is the upward velocity of the fluid medium. Many observable 

properties of the bed can be specified as a function of the fluidizing 

velocity, subject to still uncorrelated effects of other parameters such 

as bed diameter and the density difference between the solid and fluid 

phases. 

There are well defined boundaries to fluidized-bed behavior. 

At the lower limit a. minimum fluidizing velocity exists for which the 

pressure drop through the pre-existing fixed bed becomes just sufficient 

to support the weight of the particles; at this point 

tl.!;;>= .D.p (1 -£~-t) ~ L 
I (r-?o) 

Here liP is the pressure drop across the bed, p is the solid-particle 
s 

density, and p is the fluid density; e: is the minimum fluidized-bed 
mf 

void-fraction, g is the local gravitational acceleration, and L is the 

bed height. [Eq. (I.-7o) holds throughout the fluidization regime when 

.. 

-' 

.:a 
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the minimum void-fraction £mf is replaced by the void-fraction function 

£.] 

An upper limit to fluid-bed. behavior is furnished by the terminal 

velocity of fall of single particles, which for spheres is given by 

( r -71 ) 

where CD is the particle drag coefficient, a function of Reynolds number 

and particle shape and roughness; ut is the particle terminal velocity, 

and d is the particle diameter. The fluid bed cannot exist for 

velocities greated than the particle terminal velocity, and unless 

restrained the bed is "transported" out of the column. It should be 

noted that the existence of the fluidized state between "fusion" at 

low system energy and "evaporation" at high system evergy seems 

strikingly similar to liquid behavior. In this context, the two 

approaches to fluidized-bed theory mentioned previously can to some 

extent be viewed as extrapolations either from fixed-bed behavior or 

from single particle behavior, much as current liquid theories are seen 

to be solid-like or gas-like. 

The behavior of fluidized beds has been found to fall into two 

general catagories. Systems in which the density difference between 

phases is small usually exhibit relatively uniform expansion behavior 

as flow velocity is increased and are said to be "particulately" or 

"uniformly" fluidized. Systems in which the density difference is 

large are dynamically unstable; such systems are subject to gross 

nonuniformities in particle distribution and flow behavior; and hence 



-42-

are "aggregatively" or "nonuniformly" fluidized. A "dense phase" and a 

"lean phase" can be identified, and in this respect the aggregative 

system is analogous to a partly-evaporated liquid. This nonuniform 

behavior is closely related to several other variables, e.g., local 

gravitational acceleration, bed height-to-diameter ratio, particle 

roughness, and distribution of flow of the fluidizing medium. In 

particular, Simpson and Rodger (S5) have shown that nonuniformity 

in a gas-solid system can be considerably diminished by decreasing 

the phase density difference through gas pressurization. The 

mathematical analysis of aggregative phenomena by Pigford and Baron 

(P8) has emphasized the central role of inertia effects, which are 

directly related to the density difference between phases. 

Because this investigation has the purpose of exploring 

applications of the theory of liquids that will elucidate fluid 

bed phenomena, our interest here will be focused primarily upon 

uniformly-fluidized systems, and upon those attributes most directly 

analogous to liquid behavior. 

2. Specific Fluidized-Bed Phenomena 

1'he macroscopic basis for viewing fluidized-bed behavior as 

similar to that of a liquid has been given above. On a microseopic 

level the similarity in behavior of particles in a uniformly-fluidized 

bed and tha·t of liquid molecules is also quite evident; in both cases 

the particles tend to vibrate around quasi-equilibrium lattice sites, 

with random diffusion between sites. In this regard, numerous 
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investigators (S8, M8, 16) have o·bserved that the extent to which 

particle motion in a fluid bed can be described by its vibratory-migration 

character is strongly dependent upon experimental conditions. 

It is pertinent to review the general nature of those fluidized-

bed properties which should serve to define most clearly the extent of 

the analogy with true liquids: volume expansion, viscosity, self· diffusion, 

multiphase behavior, and surface tension. The first four of these have 

received considerable attention and will be discussed in the following 

paragraphs; surface tension will be reserved for later discussion. 

a. Volume Expansion.. The initial. attempt to correlate the data on 

fluidized-bed expansion was based on the pressure-drop relation for 

fixed-beds developed by Kozeny (K6). Postulating a "tortuous-channel" 

model for streamline fluid flow through the bed, he obtained the 

relationship: 

U 2.1 3 t..p /L .; k, f s 2. ( ,_ e) £ <r-7Z) 

where s is the specific particle surface; k1 is a constant, approximately 

5.0; ~is the fluid viscosity; and£ is the void volume, i.e., fraction 

of bed volume not occupied by particles. 'l'he variable U is the 

superficial flow velocity, that is~ volumetric flow rate per unit bed 

area. Setting this equal to the generalized form of Eq. (r-~10), to 

introduce the effective mass of the bed, yields: 

(I··?,:)) 
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This equation furnishes relatively good agreement with experimental 

data. 

Jahnig (Jl) has suggested the alternative approach of extending 

the single-particle free-fall expression, Eq. (r-71), to particulate 

fluidized beds, and even to fixed beds, by appropriate interpretation 

of the drag coefficient. Essentially he postulates that the intersticial 

flow velocity past a particle in a multi-particle system remains equal 

to its terminal velocity. The drag coefficient is then modified to 

reflect the diminished flow area 

( :r: -74-) 

Here CB is the drag coefficient in the bed, CD is the drag coefficient 

for free fall, and A is the fraction minimum area in the direction of 

fluid flow. He also assumed that the bed expands in a geometrically

uniform manner; thus, for spheres with a cubic packing arrangement 

2-/~ 
1\= 1- 1.2\ (t-f') ( r- r 15") 

'l'his relationship has been found approximately to f'i t the data for 

spheres over the entire range from single particles to the packed bed, 

in viscous, turbulent, or transition region flow. 

Most expansion data have been correlated by a simpler relationship 

derived from dimensional considerations. Richardson and Zaki (R3) have 

established. the following dimensionless form which applies for e:i.ther 

viscous or turbulent fluidizing flow 

•• 
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u I U· 
L 

( I-IC,) 

where U. is the antilog of the intercept at c=l. of the log U vs £ curve, 
~ 

and D is the overall (column) diameter of the fluidized bed. It has been 

empirically determined that this functionality can be represented by 

= (I.-77) 

with ( r-un 

Further, if either the viscous or inertia forces can be neglected, i.e., 

for other than transition region flow, n becomes merely a function of 

d/D. Other investigators have concluded that for d/:0~10 this dependence 

is slight, i.e., "wall effects" are negligible. This relationship has 

been found to be equally valid for liquid-solid systems under fluidized 

and under sedimenting conditions. For small d/D, Richardson proposed 

that n=-4.65. The data of other investigators do not all support this 

figure; for example, Jottrand (J2) suggested a value of -5.63. 

Bena"' (B3) analyzed his volumetric data on uniformly-fluidized 

spherical particles somewhat differently. By dimensional analysis he 

arrived at the general functionality: 
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where the Reynolds' number Re is here defined pUd/~, and the Archimedes' 

number Ar equals p~pgd3/}. From experimental data on two water-fluidized 

syst-ems, 126)J glass beads and 13801J polymethylmethacrylate spheres, he 

empirically established for the laminar regime: 

{ ::r -30) 

He restricted his definition of the purely laminar region to Ar~30. 

b. Viscositl· Nearly all fluidized-bed viscosity measurements 

have been made in gas-fluidized beds. Such measurements have the 

advantage of a negligible viscous contribution from the fluid phase, 

but the true nature of the viscous effect tends to be masked by gross 

convection of the particles. 

An article by Matheson, Herbst, and Holt (M2) seems to provide 

the first description and measurement of fluidized-bed viscosity .• 

Their interest in this property was related to the possibility of 

using it to characterize the flow properties of the bed. They utilized 

a Stormer-type paddle viscometer, whose dimensions were only slightly 

smaller than the gas-fluidized bed~ to investigate the dependence of 

viscosity upon superficial velocity, particle diameter, and particle 

density. Because of the large paddle size bulk acceleration of the 

particles was involved in addition to the normal shear properties. 

Shuster and Haas (S6) recently conducted viscosity measurements 

simi leu· to those of Matheson, Herbst, and Holt, but employing a 
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Stormer-type paddle of much smaller size relative to the bed. They 

found the measured viscosity to be a function of paddle sizt! and 

angular velocity, particle size, density, and size distribution, and 

superficial velocity. They also examined the radial and axial 

variation of viscosity under identical flow conditions and found 

some nonuniformity which was strongly a function of the effectiveness 

of the gas distributor. 

A quite different type of air-fluidized-bed viscosity 

measurement was performed by Daniels (D5). He measured the rate of 

rise and fall of metallic spheres of differing size and density when 

dtawn through a fluidized bed by a fine thread connected by pulleys 

to a weight system. He found that his data for the drag coefficient 

of the moving sphere in 87.5- 175~ glass-sphere beds, with the 

exception of some measurements subject to wall effects, could be 

correlated by: 

-D.ae.-. -(),5"e.'1 

C0 := ~/(p8 V5 cJ.:)= leD(d.f~)("sd../)J) (vt/~ct.) <r-a1} 

Here FD is the measured drag force corrected for buoyancy and pulley 

friction, PB is the bed density, Vs is the velocity of the metallit: 

sphere, ds is the metallic-sphere diameter, and v is the kinetic air 

viscosity. Binnie (B4) then employed an empirical correlation: 

I ( o. i.S1) 
CD :: Z4- Re. · l + 0. 15 g_e., (T-82.) 
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to transform Daniels results into an expression for the apparent 

kinematic viscosity of the bed va: 

( o.~ 2. o{ / o S4 
Va.= o.oo1 K/f~) · v-s· 

where K l.s the bed elasticity. This relationship predicts an infinite 

apparent viscosity as the metallic-sphere velocity approaches zero, 

however, which is clearly fallacious. 
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c. Self Diffusion or Migration. There have been a number of 

experimental investigations of solids mixing in fluidized beds involving 

the use of tracer particles. These tracer particles may be marked in 

a variety of ways to distinguish them from the bulk particle properties, 

e.g., the particles may be irradiated, chemically impregnated, or 

differentiated by thermal content, color, magnetic properties, or 

opaqueness to X-rays. Ideally the tracer particles should be introduced 

in a manner that will least disturb the bedt and samples should be 

removed locally and continously from several points within the bed. 

However, most of the actual investigations have been conducted in 

gas- or liquid-fluidized beds in which no attempt was made to minimize 

the influence of convective currents, and there has been little 

quantitative agreement among the data of the various investigators. 

All the data indicate a general increase of diffusivity with 

increasing superficial velocity and void fraction. 

The earliest quantitative data were those of Bart (B5) for 

air fluidization of cracking catalyst in a 3.2 em. diameter column, 

using tracer particles impregnated with NaCl. The fluidized solids 

were fed continously into the bottom of the bed and removed from the 

top, while the tracer particles were injected at the approximate 

midpoint of the bed. Bart correlated his data for samples taken at 

points upstream of the injector by the diffusive-mixing relation 

Here c is the concentration of diffusing component, c is the concentration 
0 
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of diffusing component at injection point, S is the superficial solid 

velocity, x is the upstream distance of sample point relative to 

injection point, and Es is the solid-diffusion coefficient. For 115~ 

cracking catalyst, this relation yielded diffusivities of 1.3 to 5.0 

kg/m.sec. for superficial gas velocities of 0.1 to 4.0 m/sec. respectively, 

and indicated that the coefficient of self diffusion was directly 

proportional to the superficial gas velocity. 

Nassimilla and Bracale (!14) conducted a similar study with 

0.1 mm. glass beads fluidized by air in a 9 em. column with colored 

tracer particles added at the top and later sampled at a single bed 

height. They also found the diffusivity to be proportional to gas 

velocity and to the percentage expansion, (L-L0 )/L0 , but their values 

were a factor of 15 larger than those of Bart. 

Kennedy and Bretton (K7) measured the axial diffusion of closely

sized glass-bead systems of 1.0 and 2.0 mm. diameter and 1.2 mm. lead 

spheres. The sampling procedure utilized a 0.008 in. nylon-filament 

screen to divide the column into two parts. In transient-type 

experiments the extent of intermixing between equal numbers of marked 

glass spheres, colored by gamma irradiation, and normal spheres was 

ascertained; the two groups were initially segregated by the screen. 

Steady-state-type measurements determined the equilibrium axial size 

gradients. Using Fick 1 s law to interpret the diffusion phenomena, the 

diffusivities were found to be proportional to the superficial 

fluidizing velocity excess over its value at the minimum-fluidization 

point. 

Wilde (Wl) performed a photographic study of glass-sphere beds 
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in which the index of refraction of the fluidizing fluid was matched 

to that of the spheres. He found that the 2~4 - 5.0 mm. particles 

traveled in groups, and tended to have a greater velocity component 

parallel to the direction of fluid motion. The mean speed of the 

particles was seen to be proportional to the superficial fluidizing 

velocity. 

In a recent theoretical study Houghton (H6) developed a 

Markov theory for particle diffusion in homogenous fluidization. 

'l'he model expresses the force balance on a single fluidized particle 

as a nonlinear Langevin equation; it accounts for both particle-fluid 

and particle-particle interactions. Assuming a Gaussian distribution 

of particle velocities, the Uhlenbeck-Ornstein stochastic problem is 

solved to yield particle-diffusion equations in velocity and 

configuration space. Comparing the resultant single-particle-model 

diffusivities with experimental values, however, shows that the 

theoretical values are an order of magnitude too low, even if the 

fluctuation energy approaches that of the local mean flow. Houghton 

attributed the high diffusion rates to spacial variations in mean 

velocity and random macroscopic turbulence. Accordingly, he generalized 

his model to include such effects, but did not completely develop an 

expression for such multiple-particle diffusion effects. 

d. Multiphase Behavior. There has been very little study of 

fluidized-bed multiphase behavior. In the related process of classifi

cation during sedimentation, the occurence of segregation has been 

attributed to differences in Stokes settling velocities of the particles 

in the fluid-solid medium. That is, each particle is assumed to settle 
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as it would in a uniform fluid having the average density and viscosity 

of the suspension. Their relative velocities are then given by 

( I-85) 

where the subscripts denote the properties of the two types of particles. 

In an infinitely long column or when suspended in a column by counter

current fluid flow perfect separation should occur. However, in a fluid 

bed the vibratory motion of the particles leads to the onset of 

diffusive particle motion, as discussed above, and this phenomenon 

partially offsets the tendency toward segregation. As a result, an 

equilibrium is established, characterized by either strong or weak 

phase separation depending upon whether the Stokes segregation or the 

diffusive-remixing tendency predominates. 

Hoffman, Lapidus, and Elgin (H5) observed the occurrence of 

partial phase segregation in their experiments with glass beads fluidized 

by water. They stated that the behavior of a system composed of particle 

types possessing nearly identical properties "suggests strongly the 

analogous behavior of liquid mixtures which may be partially or completely 

.immiscible and in which the degree of miscibility is determined by the 

temperature (here in the form of fluid velocity or energy)." 
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3. Liquidlike Theories of Fluidization Phenomena 

Many investigators have commented on the similarity between 

liquid and fluidized-bed behavior, e.g., Hoffman et al, but only three 

have made specific attempts to interpret fluidized-bed phenomena on this 

basis. The fundamental problem in postulating a kinetic theory of 

fluidization is to establish a relation for the mean kinetic energy 

of particle motion, i.e., a variable analogous to thermal energy kT. 

The approach of the three sets of investigators to this problem, 

including the supporting experimental data of the Japanese and German 

groups will be discussed below. 

a. Work of Furukawa and Ohmae (F2). The essence of the theoretical 

approach of these investigators was that the overall volumetric behavior 

of a fluidized-bed is the resultant of individual "volume vibrations" 

of particle subgroups, in response to slight variations in the fluid-

flow distribution. The dynamic-equilibrium volume of this vibration 

is established by a balance between the "expansive" force per unit 

volume of fluid drag, of the form given by Eq. (r~?2}, and the "contractive" 

force per unit volume given by Eq. (I-7~. When these forces become 

momentarily out of balance, a volume vibration occurs, and the potential 

energy of this vibration is taken to be: 

v 

t =- ).e I lft.- D.P /I..) cJ. v 

Yt 
where le is a characteristic length of the equilibrium cell volume, pe 

is the contn~tive force per unit volume, 6P/L is the expansiye force per 

unit volume, and V is the equilibrium volume. The volumetric dependence e 
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of the potential energy is schematically indicated in Figure~3. with 

superficial fluidizing velocity as a parameter (U2 being larger than U1 ). 

l''urukawa and Ohmae next related bed void. fraction to interparticle 

distance by use of Ergun's (E6) cylindrical-channel model, developed 

for fixed beds, and substituted the resulting expression into the 

relation for the average kinetic energy of a harmonic oscillator: 

where a is the amplitude of particle oscillation, and r is the 
p 

interparticle distance. Based upon their experimental data, the form 

of the resulting expression was 

< r-&S) 

Hence ~U represented the fluidized-bed variable analogous to 

thermodynamic temperature. 

'l'o support their proposal they succeeded in correlating 

experimental data on fluidized-bed expansion, viscosity, surface tension, 

and miscibility, by substituting llU for kT in various empirical 

relationships that have been developed for the analogous liquid 

properties. The nature of their experimental work and the resulting 

correlations is briefly described in the following paragraphs. 

The experiments were performed in a 6 em. i.d. glass tube 

using particles in the 160 - 750 ll size range. The expansion and 

viscometry measurements were conducted on air-fluidized polyvinylacetate 
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Fig. I-3. Schernatic of Furukawa and Ohmae's volurne'-vibration 
potential energy. 
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beds,. vhile the surface tension and miscibility experiments employed 

vater fluidization of sand, with some miscibility data obtained for a 

charcoal--sand system. 'l'he specific experiments were as follows: 

(i) Expansion. The expansion data were correlated by the 

use of three liquidlike relationships, each applicable to a different 

expansion range: 

( 
I;; 

1- Yr...;. /v ) ~ ;:::- 1.5 <. V/llv.1 f.. "- 4.0 (I"-") 0 ) 

I 
where of, of , Gf' Vmax' Umax are empirical constants. The first of 

these relations is clearly a power-series fit; the second is related to 

free-volwnc theory; and the third is analogous to an empirical equation 

developed from the principle of corresponding states. 

(li) Viscosity. The viscosity data were obtained using a 

modified Stormer viscometer, and agree with the results of !Vla.t;heson, 

Herbst, and Holt (ttQ) and Diekmann and Forsythe (D6)e The correlating 

equation employed was similar to that developed by Andrade (A2) for 

liquids: 

( - " I .L .. l2. I 
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where Ff and Er are empirical constants for a given system with Ef 

directly proportional to dp2 ~ The viscosity data also displayed an 

inverse proportionality to free volume, V - Vmf' as suggested for 

liquids by Batschinski (B6). 

(iii) Surface Tension. Furukawa and Ohmae are the only 

investigators to have explored experimentally this property of fluidized 

beds, although the passage of bubbles through aggregatively-fluidized 

beds has offered ample evidence of the existence of some form of 

stability at interfaces between empty fluid and the fluid-solid mixture. 

Their measuring technique consisted of determining the number and shape 

of air bubbles injected at known volumetric rates into a water-sand 

fluidized system. They correlated their data by the relation 

( 
Yrv.t- ). o/~ [ . 

':81. - ,_ 

v 

where omf is an empirical constant of the system. 

(iv) Miscibility. ltiscibility data were obtained for several 

mixtures of sands of two different diameters, and for sand and charcoal 

which differed both in density and diameter. In the sand-sand system, 

segregation increased with increasing superficial fluidizing velocity, 

while in the charcoal-sand system the inverse effect was observed. 

Furukawa and Ohmae commented that the former behavior is similar to 

solvation phenomena in liquids, while the latter corresponds to polar-

nonpolar interactions. They correlated their data by 

where p and q are empirical constants. 
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b. Work of Schllgerl, et al (SJ). These investigators analyzed 

their experimental data on fluidized-bed viscous effects so as to 

enable comparison with the ~ring rate theory of viscosity (ES). They 

thereby established a thermal-energy function for the fluidized bed. 

A rotating-cylinder viscometer was employed in the ex:perirnental 

investigation. The outer cylinder was held fixed, and both inner and 

outer cylinder surfaces were roughened by affixing a layer of 500u 

glass spheres. X-ray measurements were made concurrently at the mean 

level of the cylinder in order to assess the extent and influence of 

nonuniformiti.es in the fluidization. 

The nature of their results for "stably" fluidized beds is 

illustrated by Figures I-4 -I-~. These figures present different 

aspects of a stress-shear curve for a llOu glass-sphere bed fluidized 

by air. Figure r-4 displays the nature of the results obtained in the 

bob rotational-velocity range employed in the current investigation. 

They obtained measurements over a much larger rotational-velocity 

range, however, and Figure1-5 gives the overall form of the flow curve. 

Obviously, the curve does not tend to approach linearity at w "'30 min-l 

as might be suspected from Figure t'-<\-. In fact, its general nature 

cannot be truly inferred from data restricted to low bob rotational 
-1 

velocities (w ~ 60 min ). 

Figurer-~ shows the excellent fit to their data achieved by 

Schllgerl, et al using a hyperbolic-sine function: 
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where w is the shear rate which results from an imposed shear stress t, 

and Ao and Bo are experimentally determined constants. The method of 

Pawlowski (P9) was then employed.to obtain the corresponding friction 

law, which was found to be also of hyperbolic-sine form, e.g., .. 

where D(t) is the strain function, i.e., velocity gradient. The para~ 

meters A, and B1 were fit by: 

( 3/2...) 
o(. e""t;;.. - a- B d. 

fJ o I 

where c4, a function of particle shape, equals 0.325 for glass spheres. 

The effective viscosity is then given by 

(r-'1'7) 

which at low rotational velocities approaches a Newtonian limit of (AB}-
1

• 

The resulting effective viscosity for the flow system considered in the 

figure is 18.1 poise. (Note: when multiplied by their calibration 

constant, 0.6'(, the corrected value of viscosity for this case is 12.1 

poise.) 

The form of Eq. (I -13~) is identical to that of eyring' s rate-theory 



expression for viscosity, 

Here a is the diffusion "jump-distance", k 1 is the frequency of 
0 

diffusion jumps in the absence of external forces, oois the distance 

between molecular layers (quasi-crystal), and n is the particle number 

density. F, the diffusive force per unit area, equals shear stress 

for a Newtonian fluid. By comparing Eqs. (~~b) ('!-~~ to (T-tot>), 

Schllgerl, et al established an expression for the "thermal energy" of 

a fluidized bed 

(1:-lOI) 

Some doubt is raised, from the theoretical and experimental studies of 

the present paper, that (U-Umf) best represents the system energy. 

Schllgerl et al also abstracted an expression for fluidized-bed 

self diffusion from their viscosity correlation. In eyring 1 s development 

. l 2 
the self-diffusion coefficient of a liquid is g~ven by D = 1t0 t\, ; a. 

comparison of Eqs. (J:-%) and (:r:-tcq yields the following fluidized-bed 

relation for k 0
1 : 

(r-1o2.) 

Schllgerl noted that the diffusion data of May (M3) exhibited this general 

form. i.e., a linear dependence of log Don the reciprocal of (U-Umf)• 
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c. Work of Ruckenstein (R4). A recent theoretical study by 

Ruckenstein was concerned primarily with the influence of particle 

motion upon mixing in the fluidized phase, rather than in establishing 

a liquidlike theory of fluidization. However, it furnishes a relatively 

complete and ingenious extension of single-particle theory into a 

multiparticle framework, and illustrates the complex character of the 

particle kinetic energy. Ruckenstein indicated that his theory can be 

used to modify liquid theory for application to fluidized-bed behavior, 

but made no attempt to do so. 

Ruckenstein assumes that, as originally postulated by Schllgerl 

et al, (S7) the energy for particle support remains equal to its value 

at the point of incipient fluidization, II mr· 'rhus the rate of energy 
s J. 

dissipation due to particle motion is given by 

(T-io3) 

This particle motion is assumed to be a unidimensional harmonic oscillation 

in the vertical direction, about an equilibrium position or "lattice site." 

'l'he net rate of energy transferred from the fluid to the particles during 

this motion is taken to be proportional to the average particle kinetic 

energy p d ¥;-r', where ";'Z is the mean-square oscillation velocity and t '-is 
s 

the oscillation period. This rate of energy transfer is equated to the 

rate of energy dissipation in the fluid phase; hence, 

( r-:o4) 
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where N is the total number of particles in the bed, equal to (l-£)V/v • p 

Ruckenstein next considered the equation of motion of a single 

particle in a fluid: 

~ ~ 

where v is the particle velocity, w the relative velocity between fluid 

and particles, and ma is a factor which when multiplied by (n/6)pd3 equals 

the "apparent mass." The left term represents the particle acceleration 

and the three terms on the right relate respectively to buoyant, drag, 

and inertia effects. By a mean-value type of evaluation of this differ-

ential equation Ruckenstein was able to establish a second relation 

between V? and T~ which with Eq. (~-~V enabled solution for these two 

quantities. Of more interest to Ruckenstein than t~ however, is the 

variance of the void fraction, o£2=(c:-T) 2 where~ is the mean void 

fraction of the bed, and c: is the instantaneous void fraction in the 

vicinity of a particle during its vibration. 

I related to T by 

The mean deviation o is 
£ 

(I·- I Ob) 

v.-ht::l"E: ';( ls t.ht: characteristic length of the "atmosphere" around the 

vibrating particle. 

'l'he final expressions developed by Ruckenstein for -:;;z and o £ are 

quite complex, e.g., 

vz"" 3a 0- ~~~)0~)(A;~et/~tl (~~f (r-,o1) 
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and 

'rhe expression for ~ should prove useful for a kinetic theory of 

fluidized particle motion and a relates the effect of this motion to 
E 

fluid phase mixing. 

.. 
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II. THE PROBLEM: CHOSEN FOR STUDY 

The premise of this investigation is that the similarity between 

particulately fluidized beds and liquids is sufficient to justify the 

employment of the latter as a model for the former. Such a possibility 

has been expressed previously (F2, S7, R4), but a complete and 

self-consisten~reatment has not been effected. In this chapter 

aspects of the similarity between the two systems are considered, and 

the scope of the study is defined. 

A. Phenomenolosical Similah.ties between Liquids and Fluidized Beds 

The occurrence of fluidization phenomena analogous to solid-to

liquid melting and liquid-to-gas critical-point behavior was mentioned 

in the Introduction ( pp 40·-~ I ) • Between these two limits continuous 

expansion occurs in particulately fluidized beds as the superficial 

fluidizing velocity is increased. This may be likened. to the thermal

expansion behavior of liquids; in which case the fluidized-bed variable 

equivalent to thermodynamic temperature should be some function of the 

fluidizing velocity. 

Another characteristic of particulate fluidization is the 

relatively -quiescent free upper surface of the bed. Very few particles 

attain sufficient energy to rise far above it; in this sense the bed 

resembles a liquid having low vapor pressure. In addition, the surface, 

when disturbed, will support wave propagation so that a finite surface 

tension may be associated with it. 
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The viscous behavior of the fluidized bed has been studied by 

a number of investigators (1~, D5, S7), as discussed in the Introduction. 

It was found that while uniform fluidization is maintained, the apparent 

viscosity of the beds decreases as the fluidizing velocity is increased. 

Thus, if the bed thermal energy is directly related to the fluid flow 

energy as indicated by the volumetric behavior, then the thermal behavior 

of the viscosity resembles that of liquids, rather than gases. 

Phase separation and partial miscibility have also been observed 

in fluidized beds. Furukawa and Ohmae (F2) found that in some systems 

an increase in fluidizing velocity produced greater segregation, nilllil<...r 

to solvation phenomena in liquids. In others segregation. diminished 

as the fluidizing velocity was increased, much like polar-nonpolar 

behavior in liquids. 

The above paragraphs have briefly stated those liquid-like 

characteristics of particulately fluidized beds which prompted this 

investigation. In the next section, the dynamics of liquid-molecule and 

fluidized-particle motion, which give rise to the observed phenomena, 

are compared. 
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B. Dynamics of Liquid-Molecule and Fluidized-Particle Motion 

A reasonably complete discussion of the theory of nonpolar liquids 

was given in the Introduction (pp I -39 ) • The dynamics of each molecule's 

motion is determined by the conservative potential field formed by the 

other molecules, plus any imposed external field, e.g., a shearing stress. 

'l'he mathematical difficulties involved in relating system properties to 

particle dynamics led in all cases to the consideration only of particle 

subgroups. In the basic cell model, the subgroup is the single molecule 

and its nearest neighbors. The molecular motion consists of vibrations 

within the cell with infrequent random diffusion between cells. 

'l'he fluidized particle's motion, on the other hand, is controlled 

by a different variety of forces. At steady state the downward force 

of gravity upon the particle is exactly matched by the upward drag force 

of the fluidizing flow. The force of gravity is here equivalent to a 

e0hesive, or attractive, force between the particles, while the fluid 

drag is of expansive, or repulsive, character. Particle motion occurs 

because the local fluid-dynamic force fluctuates about its mean value 

and direction. This fluctuation is largely attributable to the presence 

of the surrounding particles, and will be assumed to have no preferred 

direction due to the flow distribution properties of those particles. 

The net force acting upon the particle is then effectively isotropic. 

If the particles are smoothly fluidized, i.e., the flow of the 

fluidizing fluid is uniform spacially and timewise, the fluidized particles 

should behave in a manner similar to sedimenting particles, which retain 

their position relative to their neighbors. Thus, if attempts are made to 

establish relatively uniform flow of the fluidizing medium throughout the 
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bed the particles should tend to remain localized in their motion, i.e., 

oscillate about quasi-equilibrium positions. Particulate fluidization 

is of this character by definition. 

Finally, since at steady state there is no translation of or 

rotation about the particle system's center of gravity, the net external 

forces and torques exerted upon that system must equal zero. 'l'hus, it 

is meaningful to describe the fluidized system in terms of an apparent 

interaction potential of the particles themselves. The fluidizing 

fluid then acts as an "ether" which transrnit.s the interparticle forces. 
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c. Scope of the Work 

In the preceding two sections the phenomenological and particle-

dynamic similarities between liquids and pa.rticulately fluidized beds 

have been considered. Both liquid molecules and fluidized particles 

were said to move, within the potential field established by their 

neighbors, in an isotropic mode about quasi-equilibrium sites, with 

random diffusion between sites. In both cases a large number of particles 

are present (of the order of 10
23 

in liquids and 10
6 

in our fluidized 

beds). To the extent then that particulately fluidized particles conform 

to our model, the statistical thermodynamic theories of liquids may be 

used to interpret fluidization phenomena. 

'I'herefore, the objectives of this investigation were set as the 

establi.shment of a statistical-thermodynamic theory of fluidization on a 

self-consistent basis, and the experimental exploration of the meaning-

fullness of this representation. As a first step, experimental measurements 

of expansion, viscosity, miscibility, and surface-wave behavior were made 

on water-fluidized glass-sphere systems; the fluidization apparatus, 

experimental measurements, and their evaluation are discussed in the next 

chapter. Then an appropriate liquid model is chosen, the fluidization 

parameter equivalent to thermodynamic temperature is identified, and our 

experimental data, plus some from the literature, e.g., self-diffusion 

data, are interpreted using the statistical-thermodynrunic relations. 
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III. EXPERH1ENTAL STUDY 

In this section tl:ie essential aspects of the fluidization system, 

i.·e., the flow system, column, and packing, are described. Then the 

equipment employed, operational procedures, and measurement results are 

discussed .for the four experimental phases of the investigation -

expansion, viscosity, miscibility, and surface-tension measurements. 

A. Fluidization A~paratus 

1. Flow System 

The general characteristics of the flow system are schematically 

illustrated by Figure1II-1. The constant-head tank, located 25 feet 

above column inlet, served as the water source. Flow control to the 

column was maintained by three parallel Fi~er-Porter rotameters, whose 

calibration curves are given as Figure A -I in the Appendix. To improve 

theE~ven'less of the water feed, the end of the 1/2-inch copper inlet tube 

vas formed into a sparger by bending it into a )-inch-square configuration, 

set horizontally, and drilled evenly at l-l/8-inch intervals along its 

length by 3/64-inch holes pointing downward. 

'l'he flow then preceded through the six-inch distributor section 

filled with a homogeneous mixture of 0.375-inch ceramic spheres and 0.45-

inch lead shot. (At a superficial velocity of 1. 0 em. I sec. the pressure 

drop through the distributor section was 0.32 psf.) From there the 

water flowed through and fluidized the glass spheres in the visually 

moni tared bed section, then out the overflow pipe and do\m the drain. 



-73-

Constant- head tank 

Rota meters 

To drain 

Fluidized bed 

Distributor 
L----::1=:=-.._l_ 

XBL673-2269 

Fig. III-1. Flow system. 
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2. Column 

The column and some of its accessory equipment are pictured in 

F'igure m-2. As can be seen in this photograph, the column (having a 

nominal nine-inch inside diameter) was assembled from aluminum 

end-sections and a glass-pipe center-section. The glass section was 

mounted on an aluminum base plate through which a nine-inch hole had 

been drilled. The base plate was upheld by the double-unistrut 

support frame; and the bed-support screen and lower column section 

were attached to its underside. 

'rhe platform seen in the picture permitted easy access to the 

upper parts of the column, and a guard rail was placed at waist height 

above it. The jack mechanism shown beneath the column, bolted to the 

table which was on rollers, was used to support the 80-lb. bottom 

column section whenever that section was removed. 

a. Bottom Column Section. The bottom section, detailed in Figure 

lll-3, was 1-ft. long by 9-in. inside diameter. It was attached to the 

3/4-in.-thick base plate by a ring of eight equally-spaced 7/16-in. by 

l-l/2-in. bolts, which passed through identically-located 7/16-in. 

clear-drilled holes in the support-screen flange. The support-screen 

flange was further secured to the base plate by a hinge at the right 

side and a catch latch located diametrically opposite. With this 

arrangement, the bottom section could be removed while the 200-mesh 

stainless-steel support screen remained in place. To empty the bed 

material a large collecting vessel was placed beneath the screen, and 

the screen lowered. 

The bottom section was divided into two parts by the distributor 
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Fig . III-2 . Col Qmn assembly. 
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support plate, a top view of which is given in Figure IU-1. This 1/2-

inch-thick aluminum plate had 13 concentric rings of 1/4-in. holes for 

fluid passage; a l/16 by 1/16-in. triangular trough was machined between 

the holes in each ring to prevent the total blockage of a hole by one of 

the distributor particles. 

The 13/16-in. aluminum tube, welded to the top of the distributor 

plate, formed a channel through the distributor material for the 

sampling tube used in the miscibility measurements. In all other 

experiments the solid brass rod was inserted to block the channel and 

prevent disruptively-high flow rates through that passage. 

b. Glass Center-Section. The bed itself was contained by a section 

of industrial glass pipe 5 ft. long by 9 in. in nominal inside diameter, 

with a 3/8-in.-thick wall and flanged ends, manufactured by Q.V.F. Ltd. 

Examination of the pipe showed that along most of its length the inside 

C!ia.meter was constant at 8-17/32 inch; but the 4-3/8-inch-long flange 

sections attached at each end widened conically to the 9-inch value stated 

by the manufacturer. Cast-iron attachment collars around the flanged 

ends enabled the glass pipe to be mounted securely. 

c. Calming Section. The top calming section, shown in Figure II:C·· s·, 

identically matched the bottom section in general detail, but did not 

have the flow-distribution devices of the latter. This section helped 

to eliminate end effects in the fluidized bed proper. It also served 

as a mounting platform for the two types of viscometers used. There 

were two pressure taps drilled through its lower flange, located 

diametrically opposite each other. (Similarly-located pressure taps 

were present in the column base plate.) 
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3. Glass-Sphere Packing 

The glass beads used were "Superbrite" brand obtained from the 

Minnesota Mining and 1>1anufacturing Company. The beads were spherical in 

shape, as is illustrated by a 100:1 microphotograph of several 191-u 

particles (Figurelil>G:,), and had a particle density of 2.5 g./cc. 

Particle-size distributions were ascertained from microphoto-

graphs; the distributions for several sizes are given as Figures f.\·1. 

~-5 in the Appendix. The arithmetic-mean diameter was used to 

characterize the particles, and the related minimum-fluidization and 

terminal-settling velocities for the particles are given in Table :tn-1 • 

Figure 1.1 of Zenz (Zl) was used to determine the minimum-fluidization 

velocity, and Figure 6.4 enabled the calculation of the terminal 

settling velocity. Our observed particle sizes matched closely those 

of Hoffman et al (H5) who appear to have employed particles from the 

same source. 

Table III-l. Glass-sphere properties. 

Manufacturer
Listed Diameter 
JJ4icr~·o~n~s~) ________ _ 

lqo 

290 

200 

150 

100 

6o 

Measured Minimum Fluid-
Diameter izatjon velocity 
( Mi c ron sj_ ______ _,_( c-'-_ m.....~../..c.:.s'-"e-"c-<-) __ 

~55 2.63 

270 1.09 

191 0.629 

142 0.285 

95-5 

52.2 

0.196 

0.005 

~'erminal 

Velocity 
--~h_ecl 

10.5 

3. 73 

2.61+ 

l. 40 
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XBB67S-2703 

Fig. III-6 . Photomicrograph of 191-micron glass spheres. 
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B. Volumetric Measurements 

1, Equipment Description 

The volumetric behavior of the system may be simply assessed by 

observing the height of the bed relative to its unfluidized height as a 

function of the fluidizing velocity. To do this an inch-scale was taped 

to the side of the glass column; this scale is clearly visible in 

Figure 1!I.- 2. • 

2, Operational Procedure 

It was found that the bed attained equilibrium more rapidly 

during contraction than during expansion. For this reason, the expansion 

measurements for the six particle sizes were made by ov.er-expanding the 

bed and then measuring the expansion states for a sequence of decreasing 

fluidizing velocities. At least 3 to 5 minutes were allotted for the 

bed to reach equilibrium at each fluidizing velocity, In a number of 

instances, no observable volumetric change occurred when the fluidizing 

velocity was held constant over a period of several hours. 

Wnter t.empera.ture was 20 ± 2o C in ~11 runs. 

3. Experimental Results and Analysis 

The expansion data, i.e., bed height h versus fluidizing velocity 

U, for the six particle sizes are tabulated in Table 1.["- "2 • In order 

to determine the void-fractions £ (given in column ? ) from the observed 

bed heights it was necessary to make a minor correction for the effect 

of the conical entrance section, As described on p. 77 , the glass pipe 

contracted conically in 4-3/8-inches from a 9-inch initial flange diameter 
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Table III-2. Ex;12ansion data. 

Particle Unfluidized Fluidizing Fluidized Void 
Di.ameter Height Velocity Height Fraction 
(Microns) (inches) (em/sec) (j_ncrJec;) a 

c 

52.2 10 0.065 24.37 0.772 

0.054 22.37 0.752 
0.044 20.78 0. 73:'5 
0.033 19.0 0.708 
0.024 16.12 0.655 

0.0177 1~·.37 0.612 

o.on6 12.19 0.5~2 

95·5 10.)7 0.366 38.s 0.850 
0.296 30.75 0.815 
0.248 26.37 0.781 
0.204 22.)1 0.745 
0.185 20.19 0. 729 
0.165 20 0.712 

0.128 n.56 0.672 

0.096 15.12 0.625 
J.!t2 10.78 0.517 32.41 0.806 

0.~41 28.03 0. 776 

0.)69 2lt. Jn 0. 741+ 

0.293 21. ~-1 0.708 

0.215 18.34 0.659 

0.172 16.78 0.627 
0.1)0 15.28 0.590 
0.108 1)+. ~-7 0.'567 
0.087 13.66 o.51j2 
0.065 12.72 0.50'7 

a 0. 41~3 in all E ·- cases. 0 --------
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Table III-2. ~Continued) 

Particle Unfluidized Fluidizing Fluidized Void 
Diameter Height Velocity Height Fraction 
(Mj_crons) (inches) (em/sec) (inches) a 

E 

191 12.25 0.888 3).50 0.802 

0. 739 30.12 0.768 

0.589 25.56 0.727 
0. )+l+l 21.62 0.679 

0.293 18.25 0.621 

0.218 16. ~'iO 0. ~-)82 

0.174 15.50 0.556 

0.131 14.25 0.518 

270 12.22 1.038 27.03 0. 7lt8 

0.888 24.10 0.718 

0. 739 21.66 0.636 

0.589 19.5 0.651 
0 .ltlil 17.34 0.608 

0.293 15.47 0.560 

0.218 14·.22 0.521 

0.174 13.41 o.Lr92 

455 8.38 1.183 12.28 0.620 

1.038 11.59 0.598 
0.888 11.03 0.577 

0.739 10.47 0.554 

0.589 9·87 0.528 
o.4ln 9.28 0.49? 

a 
Eo := 0. 44-3 in all cases. 
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to a 6-1'7/32-inch tubing diameter. The greater volume per unit length 

in the conical section was taken into account by defining an equiyaJ.ent 

length of 8-17/32 tubing, which in this case is 4-5/8-inches (0.25 inches 

longer than the actual length of the conical section.) From the 

continuity-equation, for the same volumetric flow the mean superficial 

fluid velocity through the conical section is 0.945 times that through 

the straight tubing. Bena's (B3) relation, Eq. (T-Bo), predicts then 

that due to the lower flow rate the void-fraction in the conical section 

will be (0.945) 1/ 4•65, or 0.988, times that in the remainder of the bed. 

Assuming conservation of particles, the relationship between the void-

fraction in the straight-tubing section t: and the measured bed height h 

is determined to be: 

·-· _,., ..... ~-···~--·~~··•• "••••n·•·., .• ~,¥~"""''"''"'"'''' '•'•'' '' ·~• •••'< - ~ 

Here h is the unfluidized-bed height, and t: is the minimum void-fraction 
0 0 

which for our systems was found to be 0.443 (loosely-packed). 

For comparison, sedimentation data were obtained for the l91V 

system. 'l'he fluidizing flow to an expanded bed of void-fraction £ was 

cut off and the settling velocity of the upper bed surface measured, As 

shown in Table Tir-~, a close correspondence exists between the sedimentation 

velocity and the fluidizing velocity for that void-fraction. 
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Table III-3. 191 1-l sedi.mentation data. 

Uni'luicl:L zed Flui.di zi.ng Fluidized Flu1dized Sedimenting 
H ei. gl: t, Velocity Height Vo1d Veloci. ty 

(em) a (em/sec) (em) Fracti.on (em/sec) 
E 

20. '( o. 7L~o 1q .1 0.745 0.706 ... 
0.589 41.1 0.707 0."'159 

0. 2~42 35.9 0.6611 o.1122 

0.369 33 .1~ 0.639 0.)')8 

0.293 31.2 0.613 0.292 

0.218 28.8 0.')80 0.2)] 

0.205 28.6 0.579 0.209 
o.rrL, 27.3 0.5''!7 o.n6 

0.1)0 25.4 0.527 0.122 

0.109 22.9 0.508 0.109 
a 0.4!+3 E-:0 
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C. Viscosity !J!easurements 

Two discrete methods were employed to measure viscous effects. 

The Brookfield viscometer measures t!1e torque on a rotating bob as a 

function of rotational speed; and the moving-sphere determines the 

terwinal velocity of a large sphere moving through the bed under a set 

weight difference. 

l. Brookfield Viscometer 

a. Equipment Description. A Brookfield Model LV'.L' "Synchro-lectric" 

viscometer ·.ras employed for the more extensive set of fluidized-bed 

viscosity measurements. 'l'his instrument can produce eight rotational 

speeds - 60, 30, 12, 6, 3, 1.5, 0.6, and 0.3 rpm. - and has a spring 

constant of 6,737 ergs per degree of deflection. 

'rhe rotating spindle used with this viscometer was suppLied by 

the manufacturer, on special order, Figure'Jl\"·.,7 is a photograph of i.t. 

The central portion of the 3/4-in.-high by 3/l~-in.-diameter cylinder 

was hollowed out to minimize its interference with the water flow. 

exterior surface vas roughened with regularly-spaced 0.005-inch-deep 

vertical smrtooth cuts 0.0327-inch apart to promote more complete 

momentum transfer during particle impacts. 

Since the bob geornetry was designed so as to min:i.rrri.ze the 

influence of the vertical flow of the fluidizing fluid, resistance to 

bob rotation should arise nearly entirely from particle impacts. 'l'his 

premise was confirmed by a series of measurements made in the absence 

of particles,which showed that the viscous effect of the flowing fluid 

alone was more than an order of magnitude less than the smallest values 
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ZN - 4080 

Fig . III- 7 . Spindle for Brookfield viscometer. 



-89-

observed in any of the fluidized beds. 

'l'he viscometer was mounted on the top plate of the column, and. 

could be stationed at three radial locations - centered, or at elther 

2.0 or 3.5-inches off centerline; these are the locations of holes in 

the top plate as shown in Figure .W··S". The spindle could be situated 

at vari.ous depths in the bed, ranging in 6-in. intervals from 3 to 33 

inches of scale height, by employing a number of flexible extension wires. 
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b, Operational Procedure. As the first step in the Brookfield 

measurements for each bed, the viscometer spindle was lowered into the 

colunm by a number of 1-foot extension wires, hooked end to end. A 

3-inch and a 6-inch segment were also available., perrni tting greater 

latitude in setting the spindle height above the support screen. In our 

measurements, heights of 9, 15, and 18 ·inches were used, as these placed 

the spindle u.t the approximate rn:i.dpoint of the expanded beds.. 'l'he height 

was maintained constant for each set of measurements. 

'l'he uppermost extension wire was passed through the hole in the 

top plate of the calming section, and hooked to the lower shaft of the 

viscometer. The viscometer was then mounted on the cover plate by its 

two screws. and leveled using the bubble level on its casing. 

'I'o make a set of measurements, the bed was expanded to the desired 

level, the spindle rotation rate w varied over the available range, and 

the resulting viscometer-pointer angular deflection 8 recorded. At least 

1) minutes were allotted to insure expansion equilibrium prior to starting 

the viscosity measurements. The physical properties of our system were 

such that only the three higher rotation rates, i.e., 60~ 30, and 12 rpm, 

yielded meaningful values for 8. 'l'hese rotation rates were traversed 

twice, in descending and ascending order. Three minutes were needeclto 

come to equilibrium at each rotation-rate setting. and the readings were 

checked at least three times. 
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c. Measurement Results and Anal;lsis. Brookfield measurements were 

made for 52.2, 95.5, 142, 191, and 270~ particle-diameter beds, and the 

results are tabulated in Table ![-1'. Fluctuating particle-convection 

currents present in the 4S5j.! bed• however, precluded viscosity measurements 

for that system, i.e., it was not possible to obtain steady-state values 

for the local shearing stresses. 

As may be seen in the tablet the magnitude of the viscometer-needle 

angular deflection 6 was 10 or less in most instances, even for the higher 

rotation rates. 'l'his was due to the relatively small (3/4-in.)(J/4-in.) 

viscometer bob, which had been designed to yield point-viscosity values 

and to minimize flow-field interference. 'l'he two-ordexs-of-magni tude 

fall-off in water-fluidized-bed viscosities relative to the comparable 

gas-fluidized-bed values (S7) had not been anticipated. Unfortunately, 

the resulting low angular deflections for bob.,rotation rates of less than 

12 rpm could not be accurately measured. This problem was accentuated 

by an insensitivity of the Brookfield viscometer at its lower range of 

operation. Angular deflections of 2° or more were found to be reproducible 

and self-consistent, but values of less than 2° were not, As a result, 

only those data corresponding to e~:!' are treated as meaningful in the 

following discussion. 

The angular deflections e are plotted as a function of spindle

rotation rate in Figures :nr-e. - 1II -:2.. 'rhe form of the shear curves is 

seen to be quite similar for the four larger particle sizes. The curves 

are clearly nonlinear, and an inflection point n~y be present at the 

higher void-fraction; the existence of such an inflection point in the 

52.2~ curves seems apparent. The limited number of data points (2 or 3) 
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Table III-4. Brooldield viscosity data. 
-------

Spindle Particle Fluidizing Void e(6o) 8(30) e (12) Vi.scosHy 
hei.ght and d5.arneter velocity Fraction (deg) (deg) (deg) based on 
location (microns) (em/sec) E in.ttial slope 
(inches) ( cc:nti.poise) 

9(c1.) 95·5 0.442 0.892 4.0 2.4 1.1 9· '( 

0.369 0.850 4.0) 2.2 1.1 9.8 

0.293 0.812 L1. 4- 2.) 1.1 10.6 

0.248 0.'781 L~ .6 2. L~ l.l 11.1 

0.204 o.'(45 4.9 2.6 1.4 11.9 

0.187 0. 713 !+.9 2.6 1.4 11.9 

0.16~i o .'Ill 5.3 2.6 1.4 12.8 

0.131 0. 6'{1 5.5 2.9 1. l.~ l3 ·3 
0.096 0.618 ).9 2.9 1.5 J ), 0: 

- T •_) 

o.o6j 0.542 7.0 ).6 1.6 16.9 

0.0)2 0. 498 8.0 5. )_~ 2.l.J. )0.2 

9(cl.-3.5) 9~5. 5 0.36C 0.852 !+.1 2.1 l.l 9·9 
0.296 0.815 4.1 2.1 1.2 9.0 . / 

0.248 0, r(SJ !.~.) 2.3 1.2 10.9 
0.2Ql.j. 0. '(116 l.~. () 2.3 1.1 11.1 

0.185 0.730 4.6 2.1.,. J.2 11.1 

0.165 0.711 4.8 2.5 1.3 11.6 

0.123 0.672 s.o 2.6 1. lj. 12.1 

0.096 0.625 ~). 9 2.9 1.6 Jll.) 

0.06~; 0. 5'(6 '7.1 ).0 l.C'3 L7 .2 

0.045 0.538 8.1 4.1 2.0 19.11 

9(c1.) 191 0.8(38 0.!302 7.5 )!. 2 2.2 28.2 

0. 739 0. 768 7.6 4 /. .) 2.2 28.6 

0.589 0. 727 7.7 4.4 2.2 29.0 

0. L~41 0.679 8 ..-:; .__, 4.8 2.3 )2.0 

0.293 0.621 9·5 5.5 2.7 36 • r( 

0.218 0 ·582 10. ~) 6.3 3.0 40.) 
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Table III-1+. (Continued) 

Spindle Particle Fluidizing Void e(6o) e (3o) e (12) Viscosity 
ht~ight and diameter velocity fraction (deg) (deg) (deg) based on 
location (microns) (em/sec) E initi.a1 E>lope 
(inches) (centipoise) 

o.n4 0-556 12.0 7.0 ).4 lJ-5.1 

0.131 0. 51Cl 18.9 10.9 5.0 62.9 

0.087 0. 458 79.0 53.0 31.4 29.7 

9( cl.) 270 1 .038 0. 7lt8 7. 1+ 4.0 1.8 20.3 

0.888 0.718 8.3 4.2 1.9 22.8 

0. 739 0.686 9.0 4.7 2.1 24.7 

0.589 0.651 9.4 5-1 2.1 25.8 

0.441 o.6o8 10.3 J·9 2.6 31.9 

0.293 0. :5(:)0 13. )+ 7-9 3.6 45.9 

0.218 0.)21 19.1 lJ..1t 4 ,:e . ,) 65 . 1+ 

0.174 0.492 35.0 23. )+ 13.2 120.0 

18 ( cl.) ':!2.2 0. 06~-) 0.772 2 c:: 
.)·_..1 1.8 l.l 

o .osL,. 0-752 3-9 1.8 1.3 

0.044 0-733 lt .• 7 2.2 1.5 

0.033 0.(05 5-l 2.3 1.5 
0. 02lt 0.655 6.1 2.5 1.9 

0.018 0.612 8.1 3.1 2.0 

18 (cl.) 270 1.038 0. 71+8 8.4 Lt.2 2. ~5 20.3 

0.888 0.718 8.7 4.6 2. 1+ 2(3 .) 

0. 739 0.686 10.4 5-5 2.1 33.8 

0.589 0.651 10.6 6.0 2.6 34. ~-) 

0. 411-1 0.60() 11.9 '{.0 3.0 3(3.7 

0.293 o.s6o 15.0 (.6 3.0 51.4 
15(cl.) 111-2 0.517 0.806 4.6 2.9 1.5 11.1 

... 0 .l.l-41 o.n6 4.6 2.9 1.7 11.1 

0.369 0. 74lj. lj., 9 2 "-·) 1.9 ll.f) 

0.293 0 . 708 5-3 ).2 2.0 12.3 

0.215 () .659 6.1 2.9 1.9 14.7 
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Table III-4. (Continued) 

Particle Fluidizing 
diameter velocity 
(microns) (em/sec) 

Void 9(60) 9(30) 9(12) Viscosity 

0.172 

0.130 

0.108 

0.087 

0.065 

0. 052 

fraction (deg) (deg) (deg) based on 
E 

0.627 C).O 1+.2 

o.590 10.1 5.0 

0.567 10.8 6.1 

0 .51+2 n.8 6.9 

0.507 14.1 8.8 

25.3 13.9 

3.1 

3.0 

3.1 

3.7 

1+. 5 
'7 "Z 
I •.) 

initial slope 
(centipoise) 

21.8 

24.4 

)+:5. ~) 

L~8. 3 

58.0 

101+.0 
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Fig. III-9. Brookfield shear curves for 191f.1 particles. 
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Fig. III-10. Brookfield shear curves for 142fJ. particles . 
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Fig. III-11. Brookfield shear curves for 95.5f-L particles. 
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for each curve prevents complete definition of the shear curves, and 

prohibits a comprehensive discussion of bed viscous effects. Fortunately, 

for our statistical-thermodynamic model we are primarily interested in 

the initial curve slopes, which may be determined with a reasonable 

degree of accuracy. 

The bed viscosities may be determined from the stress curves by 

consideration of the equation of motion. The 6 component of the equation 

of motion, written in cylindrical coordinates, is: 

which integrates to: 

where T is the tangential shear on the fluid element and K1 is an integra-

tion constant. The velocity gradient in cylindrical coordinates is 

defined by: 

Here v9 is the angular velocity and w is the angular rotation rate, y.jr. 

The integral of Eq. (nJ~-<t ) for a spindle rotating in an infinite medium J.s 

(11f" .. :::; ) 
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which with the help of the differential form of Eq. ("ll.r-:.): 

becomes: 

W-
0 

Differentiating Eq. (TJJ~-7) with respect to 1 leads to: 

o~_,(.J 

~A."t-' 

By definition the apparent Newtonian viscosity is: 

1: 
--7 -- l) 0' )) 

which by Eq. (TIT -8) is, therefore: 

1 

2. 

(TII-8) 

rro employ Eq. (TIJ-•0) to interpret the shear curves, the shear 

stress 1 must be related to the measured viscometer-needle angular 

deflections 0. 1'he viscometer itself had been fully calibrated by the 

manufacturer, i.e., the spring constant had been carefully established. 

It was necessary, however, to empirically calibrate the viscometer-, bob 

system since this bob differs from those conventionally employed. This 
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was done using Newtonian fluids of known viscosities. The measurement 

results are listed in TableTif~S, and the calibration curves are plotted 

in FigureiF-i3. From these curves the relationship equivalent to Eq. (nrM•r·) 

between viscosity and the observed angular deflection as a function of 

rotational bob velocity was found to be: 

where e is the angular deflection in degrees~ and w is the rotational bob 

velocity in rnin.-
1

• 

By Eq. (1Ir ~I!) an apparent Newtonian viscosity based on the local 

curve slope may be determined for each point on the shear curves. As 

:indicated on p. \0\ we are primarily interested in the initial curve slope, 

which we assume represents a Newtonian limit. This assumpt1on seems 

justified based on a comparison with the results of Schllgerl et al (S7} 

for gas-fluidized beds of glass spheres and quartz sand, discussed on 

pp. ss
1 

bl.:·b3 of the Introduction. As illustrated by Figure ::r.·- 4· , the 

form of their shear curves is identical to ours for the same spindle-

rotation velocity range. Since they obtained data over a larger ro"tational 

velocity range, however, they were able to more completely define the 

shear curves, as shmm in Figure I-:>. 'rhey determined thei.r bed viscosities 

in the manner present above, except that for a concentric-cylinder vi.sr;ometer 

with the inner cylinder moving and the outer cylinder held fixed • Eq. (-r:rr--7) 

becomes 

·~ . ! 1)(1::) aLi:' 
2 j 1:! 

( -rr;--. 7) L..l.4.. ........ 

(Vi/V)z_1:: 

... 
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Table III-5. Brookfield-viscometer calibration data. 

Material Temperature Reference Spindle Angular 
(deg em) Viscosity Rotation Rate Deflect :Lon 

(centi:poise)a m(RPM) (deg) 

Castor oil 25 490 12 1~4. ~· 

6 23.5 

3 12.5 

22.5 670 12 56.6 
6 28.6 

3 15.1+ 

Ethylene 21.9 19.2 60 8.9 

Glycol 30 4.0 

12 2.0 

Cyclo- )6.0 29.1 6o 12.0 

hexanol 30 5-7 
12 2.9 

Glycerine 41.0 6o 34.5 

( 93%) 30 n.o 
12 7.2 
6 ).6 

25.8 285 6o 86.1 

30 42.1 
12 17.1 
6 9.0 

3 5-3 
1.5 3.1 

aHandbook of Chemistry, N. A. J.Bnge, Ed. (Handbook Publ., Sandusky, 
Ohio). 
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i=36.ooc 
Cy clohex onol ~:.;:.:;:.:....;,._.-~ 

Ethylene glycol T= 21.9o C 

12 30 60 
Spindle rotation rote w (rpm) 

XBL673-Z27B 

Fig. III-13. Brookfield viscometer calibration data. 
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where r. and r are the inner and outer cylinder radii. The resulting 
1 0 

expression for the shear rate is 

which Pawlowski (P9) pointed out is equivalent to 

( TIT- <4) 

where w' denotes dw/dT. SchUgerl et al. graphically determined that their 

data when substituted in Eq. (m- \"\-) could be correlated by: 

where A
1 

and 1\, defined by Eqs. (:!:'- '17) and (:I: -1 !?) , are functions of the 

particle properties and flow velocity v. Since the form of Eq. (r-q~) 

is identical to that of Eyring's (E5) rate-theory expression, Eq. (I-100), 

Schtlgerl et al. interpreted their results on that basis (as disc!USsed 

on p. t;:;,;. ) • One facet of the Eyring expression for viscosity is that it 

approaches a Newtonian limit as the shear rate goes to zero. 'l'hus, SchUgerl. 

et al!s viscosities, and our own by similarity, approach a Newtonian limit 

~rhe Newtonian viscosities n0 are tabulated 'in column e, of 'I'able ·r:cc--··1 

and plotted as a function of fluidizing velocity in Figure J1T~14. Since the 

fluidizing velocity U is directly related to bed "temperature" (as shown 

in Chapter IV), the temperature dependence of the viscosity is seen to be 
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2701-'- (!)Spindle height of 18 in. 

270fL (2)Spindle height of 9 in. 

0.50 0.75 

Fluidizing velocity U (em/sec) 

1.0 

XBL673-2280 

Fig. III-14. Brookfield viscosity data plotted as a function 
of fluidizing velocity U. 
270(1) spindle height of 18-inches 
270(2) spindle height of 9-inches 
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liquid-like, i.e., the viscosity decreases with increasing temperature, 

rather than gas-like, i.e., increasing viscosity with increasing 

temperature. In addition, the 20-80 centipoise magnitude of the viscos

ities is roughly two orders of magnitude less than the values reported 

by Schllgerl et al. for the corresponding gas-fluidized beds • 'I'he viscos

ity data are correlated by our (liquid-like) statistical-thermodynamic 

model in Chapter IV, and the relationship between water-fluidized-bed 

and gas-fluidized-bed. viscosities is discussed at that time. 

'rhe two sets of measurements in the 95. 5P system represent, as 

indicated, two radial locations of the viscometer spindle - on the 

centerline and 3.5-inches off the centerline (within 3/4-inch of the 

colurrm vrall). The results lie within 10~~ of each other for all but the 

lowest void-fraction, and no consistent trend is discernible. Likewise, 

the axial variation of viscosity may be ascertained from the two sets of 

data' for the 21011 system, in which the spindle height was set at 9- inches 

for one set and at 18 ,inches for the other. Here the agreement is to 

within 30%, with lovrer viscosity values measured in the lower section of 

the bed. 'rhus • relatively uniform particle dispersion and motions are 

indicated throughout the bed, with slightly greater particle velocities 

indicated i.n the upper bed section. 
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2. Moving-Sphere Viscometer 

a. Esuipment Description. A schematic diagram of the moving-sphere 

viscometer apparatus is given in Figure Tir:-:5'. It consisted of the moving 

sphere, tvo pulleys, a veight-pan and veights, and a length of l01J line. 

Two types of moving spheres were employed. A 1/2-inch-diameter 

aluminum sphere was used for the initial set of measurements. This sphere 

was then coated with a layer of 1911-1 glass spheres, sealed on by epoxy 

cement; and a number of "rough" sphere measurements made, Some additional 

"smooth" sphere data were later gathered using a second (uncoated) 1/2-

inch aluminum sphere. The characteristics of these moving spheres are 

summarized in 'I'able ]I- ft.,. 

The two pulleys were Lucite c.liscs of l-inch diameter and 3/32-inch 

thickness, mounted on 1/4-inch bearings. One pulley was so located on 

the top plate that the moving sphere traveled along the centerline of the 

colwnr1, and the other overhung the edge of the top plate so that the 

n1otion of the external-weight system vas not impeded by the col~~n flanges. 

Care vas taken to minimize pulley friction; ·by a series of measurements 

in air and in quiescent •rater, the pulley friction coefficients were 

determined to be: 

0 .') !"; 0, 0 . ,_~ ...... ..1 ~. (-r.~.r-,::n 

where 7i is the pulley friction and N is the net downward weight upon the 

pulley. 

-4 
'ren-micron nylon line, weighing 2.2"10 g/cm., was used to link 

the moving sphere to the external veight system. At one end it was tied 
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w 

XBL673-2279 

Fig. lll-'15. Moving-sphere viscometer. 
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Ta1)le III-6. Physical properties of the moving spheres. 

33 

No. l 

No. l 

No. 2 

Moving-sphere 
diameter 
d (em) 

s 

a 1.27 

J .308
11 

1.27c 

modified by a coating of 191~ glass spheres 

Moving-sphere 
weight 
w (g) 

s 

2.9763 

3.1778 

2. 9691+ 
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to a short piece of six-micron nylon line sealed with epoxy into a 

small nole in the top of the sphere; at the other it was connected to 

the support strings of the weight pan. 

b. OI)erational Procedure. 'l'he direction of passage of the moving 

sphere through the fluidized bed was controlled by choice of the external 

weight w. An excess, or deficit, in w relative to the buoyed sphere 

weight caused the sphere to rise, or fall, through the bed. In general 

a sequence of weights was used which straddled the sphere weight, so that 

both rising and falling sphere data were obtained for each bed state. 

The value of the sphere's terminal velocity was measured by clocking 

ti1e visually observed motion of the external. weight between two reference 

heights by means of a. hand-held stopwatch. Two passage lengths were 

clocked in each case to insure that a true terminal velocity had been 

achieved. 
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c. Neasurement Results and Analysis. The moving-sphere measurement 

results are presented in Table 1K-7. The ·deduced viscosities are also 

included in the table, and some discussion of their derivation is 

worthwhile. 

Although the flow field in the vicinity of the moving sphere 

cannot be described analytically, an apparent viscosity can be determined 

in the following manner by use of the standard drag correlation for 

spheres. Assuming that the drag effects on the moving sphere of the 

fluidized particles and the fluidizing flow are additive, the drag 

force attributable to the particles F when the moving sphere is at its 
s 

terminal velocity is: 

IW··W b.J t- r.-:-:s I I .f 
Pv-/! :. 

Here w denotes the external weight, wa is the sphere weight, p is the 
~ !US 

moving-sphere density, and t:,.p is the difference between the moving-sphere 

and mean-bed densities, i.e., £(pms-p). The friction force~ is given 

by Eq. (Ii.C'·I5), and the buoyed-line-weight difference lllw is based on the 

mean· Location of the sphere during the run. The fluid drag forc:e Yr to 

be used in l:.:q. (111"··1") is calculated by: 

2.. 
!j u ,. f 

.:= (' ( P-.e \ (~-~~-I 
'-1) +) 2. 

( 
, .•. _ ) 
i.U ·· i7 

where the fluid Reynolds number Ref is defined as plJ d Ill "lith d being 
rel s s 

the moving-sphere diameter. The relative velocity between the sphere 

and fluid U 1is defined as the sphere velocity v plus or minus the re s 
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_ _; 

Table III-7. Moving-sphere measurements. 

Bed- Moving- Fluidizing Void External Moving- Vi.scosi ty Revised Revised Mean 
particle sphere velocity fraction \Ieight sphere [Based on c] void viscosity viscasi.ty 
diameter diameter (em/sec) {dyne) velocity (cp) fraction {cp) (cp) 
(micron) (em) (em/sec) E£ 

95·5 1.2'7 0.369 0.852 1939 -15.9 22.9 0.87il 14.6 19 
(smooth) 1890 -12.7 35.2 21.5 

1841 - 9.77 49.1 27.0 

1547 6.35 <0 12.7 
1li49 11.5 6.69 19.5 
1351 15.4 12.0 21.0 

0.339 0.339 1939 -15.9 28.3 0.880 13.9 17 
1890 -12.7 42.5 19.6 
1841 - 9.41 66.6 28.8 

1351 15.9 6.59 19.0 
1302 17.7 8.28 19.2 

1253 21.8 2.08 10.4 

0.293 0.813 1939 -18.1 20.9 0.840 15.1 16 

1890 -15.9 24.3 16.0 
1841 -12.7 37.8 22.9 
1449 8.47 l.bl 18.2 

1351 12.7 10.7 21.9 
1302 15.9 '7.87 15.3 
1253 18.1 7.77 14.2 

0.233 0.772 1841 -14.9 34.3 o.8;,o 13.4 16 

1743 -11.5 35.9 6.)0 

1714 - 8.47 G6.8 11.0 
16911 - 6.68 94.1 13.8 

1351 9·77 6.87 50.1 

1253 16.9 1.')8 17.3 
1204 18.1 5.1) 20.1 

1155 2).6 <0 6.05 
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Table III -7. 
Bed- Moving- Fluidizing Void External Rev:isecl Revised !\lean 
particle sphere velocity fraction weight void vlscos:Lty viscosity 
Llia!neter diameter (em/sec) (dyne) fraction (cp) (cp) 
(oticron) (em) Ef 

95·5 1.2'7 o.1r;s 0. 715 18111 -15.9 49.6 0.77'! 21t.O 23 

(smooth) 1743 -12.7 55.8 21.11 

12J3 12.7 <O 22.) 

0.109 o.ti43 171,3 -18.1 29.5 o.G911 1'/.) 27 

16')4 -1).9 38.1 19.2 

161+5 -12.7 59.1 30.8 

1596 -lO.G 7LG 33.1 

125) ).91 <O 74.0 

1204 8.47 <O 27.2 

1155 10.2 ).613 )3.0 

191 1.27 0.739 0. 761l Hl41 -111.1 51.2 0. 793 3'/. 5 1+:3 

(S!IIOOth) 1743 - 9.76 n. e 50.1 

1)51 7.01, 15.9 115.3 

1253 n.6 '21.5 36.8 

0.5.39 o. 727 1711) -10. G 90.6 0. i75 50.2 1111 

1(;1+5 - 7 .1;() 100.0 3lL1 

1253 7.46 35.6 100.0 

1155 l3.5 l'7. 4 43.1 

o.1.,111 o.li79 16it5 -11.9 53.4 0.714 31.9 33 

1511'7 - 7.2(, 811.7 110.1 

1253 8.115 <0 12.1 

ll55 11.3 10.5 28.0 

0.293 0.621 1547 -111.1 23.9 0.603 32.9 110 

1itll9 - '/.06 80.7 106.0 

959·3 U.35 192.0 158.0 

8liL3 9·53 152.0 130.0 
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Table III-7. {continued) 

Bed- Moving- Fluidizing Void External Moving- Viscosity Revised Revised Mean 
~ particle sphere velocity fraction >~eight sphere [Based onE} void viscosity viscosity 

diameter diameter (em/sec) E (dyne) velocity (cp) fraction (cp) (cp) 
(micron) (em) (em/sec) E i 

:C')l L)l o. 739 0.7C8 2037 -19.5 21.9 o. 779 19.7 40 

(rough) 1890 -12.1 48.6 110.4 

1841 - 9· 75 60.5 50.6 
11<119 G.69 22.11 37.11 

1351 lO.G 29.8 39.2 

0.589 0. 727 2037 -19.5 31.5 0.740 28.1 26 

1841 -10.6 77.0 68.1 

1351 9.06 16.2 26.5 

1253 13.4 l(i. 7 22.5 

0.441 o.Li79 1939 -19.5 26.9 0.686 25.0 30 
1841 -15.9 35.4 31.9 

1351 5.44 3.49 12.4 

1253 9.07 23.2 30.1 
1204 10.6 29.1 34.8 

0.293 o.G21 1939 -21.2 29.6 0.621 29.6 31 
1841 -18.1 34.8 34.8 

1253 2.82 48.3 48.3 

ll55 8.46 32.0 32.0 

0.218 0. ~'62 17:>3 -15.9 116.2 0.582 46.2 51 
1645 -12.7 58.0 58.0 

1155 j.30 98.4 93.11 

1057 8 .li6 51.7 51.7 

0.131 0.518 1547 -11.3 84.2 0.495 100.0 100 
I 1449 - 9.25 76.2 100.0 

86Lj 8.46 112.0 81.1 

763.3 9·53 146.0 119.0 



-115-

mean intersticial fluid velocity (given by U;s.), where the sign depends 

UlJOn whether the sphere rose with or fell against the rising fluid stream. 

The standard sphere drag correlation is assumed for CD(Re). (Refer to 

Zenz (Z\), Figure 6.3] 

An apparent drag coefficient may be defined for the solid particles 

by: 

---~,. .............. . 

( IJL-; 8) 

where the Reynolds number f'or moving-sphere motion through the fluidized 

particles is: 

and pb j c: tllP. me~m bed density t.P + ( 1 - E) p • s 

The CD(He) relation for the moving-sphere interaction with the fluidized 

particles is, as for fluid drag, assumed to conform to the standard sphere 

drag correlation given in Figure 6.3 of Zenz (Zl). With the measured 

terwina1 sphe:r·e velocity \J< a function of external weight ·.r, the 
--· 

apparent viscosity of the bed na may now be calculated by Eqs. (Tir·<S") -

'l'he viscosity values obtained by this procedure are listed in 

column l of Table ill-7. A clear asymmetry about the point of zero 

weight difference is discernible. The rising-sphere viscosities are a 

great deal larger than the falling-sphere values, and the largest value 

occurs just above the balance point. 'l'he balance points Here calculated 

using the void-fractions (given in column 4-) determined frorll the bed 
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expansion data. An obvious possibility is that the sphere tends to see 

a local particle concentration which differs from the average value 

throughout the bed. froCf';edi.ng on this basis a trial-and-error method 

vias employed to determine for each bed-state that value of local 

void-fraction which yielded the most self-consistent set of apparent 

viscosities. The results are given as columns 9- )0 in T'ableTu·-·'7. 

Clearly, the approach met with relatively good success,since by the 

adjustment of the void-fraction a single value for apparent viscosity 

emerged for each bed state and a plausible trend of viscosity with bed 

void-fraction could 1Je perceived. In the next section these moving

sphere viscosity results are compared with our Brookfield viscosities for 

the same 3ystems. 
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3. Comparison of the Brookfield and Moving-Sphere Results 

'I'he results of both the Brookfield and moving-sphere viscosity 

measurements for the 95.5 and 191~ systems are plotted as a function of 

fluidizing velocity in Figures 11t-H. and Tir-n· • The general agreement is 

seen to be quite good. The slightly larger and more erratic values for 

the moving-sphere results are not surprising in that, moving along the 

axis of the bed, the sphere is more strongly influenced by any vertical 

convective currents that exist. In addition, during each measurement 

the moving-sphere travels the length of the bed, consequently encountering 

any nonhomogeneities that 111ay be.present. Conversely, the rotating 

Brookfield-viscometer spindle remains in one location throughout a 

measurement, and its geometry was designed to minimize the effect of 

vertical convective currents. 'l'herefore, the accord achieved between 

the results of the two measurement techniques suggests both that a true 

measure of viscosity was effected and that relatively homogeneous 

fluidization was achieved. 
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Fig. III-16. Comparison of Brookfield and moving-sphere 
viscosity data for 95.5fJ. particle beds . 
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Fig. III-17. Comparison of Brookfield and moving-sphere 
viscosity data for 191p. particle beds. 
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D. Miscibility Measurements 

l. i'~9.uipment Description 

The sampling device used for our miscibility measurements was 

inserted vertically upward through the bottom column section, separated 

from the distributor material by th+luminum tubing provided. The 

device, shown in Figure JJ.r-H~, was located two inches off the colunm 

centerline. Thus, the two-inch offset of its upper section of 5/d-inch 

copper tubing enabled, by rotation, sampling at any radial distance 

from the centerline to within 1/4-inch of the column wall. In addition, 

its 4-ft. straight section of 3/l~-inch brass tubing (i-lith l/8-inch wall) 

permitted sampling at bed heights from 6 inches to somewhat over 3 feet. 

'l'he Teflon cap of the sampling tube was controlled by the length 

of #33 piano wire passing, within the l/8-inch copper tubing, up the 

interior of the sampling tube. The copper tubing was centered at three 

points by a triangular-strut construction. The Teflon cap could be 

raised and lowered by the screw-type control mounted at the lower end of 

the tube. 

The l/2-inch line at the bottom of the sampling tube was controlled 

by a special self-cleaning valve. Following a sampling, it was attached 

to the collecting device shown in Figure'I.ll-:7. The line was then opened 

and the sample U.rained into the collector. The 400-mesh stainless-steel. 

screen in the collecting device served to separate the spheres from the 

fluidizing water. The l/4-inch tubing on the side wall was attached to 

the house vacuum to hasten the drainage process; when separation was 

comp.lete, the water was removed through the spigot at the bottom of the 
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Fig. III-18. Sampling tube. 
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Fig. III-19. Collecting device. 
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collector. 'rhe 1/4-inch valve at the lower end of the sampling tube 

was next opened for the first of two water washes. 

The conical shape of the top and bottom of the collector was designed 

f'or ease of particle and fluid removal. 'l'he union at its upper end 

permitted detachment of the collecting device when sampling in the lower 

part of the bed. The sampling tube could then be lowered until its lower 

end contacted the floor, which corresponded to a bed height of 6 inches 

for the tube opening. 
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2. .2l?..?rational Procedure 

Prior to obtaining a sample, the samp)..ing tube was evacuated 

by connecting it to the house vacuum line. The Teflon cap was then 

raised, u.nd 10 seconds allotted for the local fluidized liquid-solid 

mixture to enter the tube. The Teflon cap was then firmly secured, 

and the sample drained into the collecting device through the 1/~~-inch 

line. 'l'he house vacuum to the collecting device was maintained during 

drainage to assist the gravity flow from the sealed sampling tube, and 

to promote rapid liquid-solid separation. 

After complete drainage, the water was removed via the bottom 

spigot to prevent its level nearing the height of the vacuwn line. 

The sampling tube was then reevacuated, and the 1/4-inch valve opened 

to conduct a water wash. The draining procedure was repeated, and 

another water wash carried out to insure that all solid material had 

been removed from the sampling tube. 

The drained sample was next removed from the collection device 

and segregate<l into its two size fractions by sieving. The particles 

were then oven-dried for several hours at l20°C, and weighed on a 

Mettlar balance. 
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3. Measurement Hesults and Analysis 

l•lisc ibili ty measurements were made for three binary systems --

9). 5/191, 142/191, and 191/2701J. 'l'he results are presented in Tuble JJr-:~. 

The mole-fractions given ln the table are calculated from the measured 

weight-fractionsby equations of the form: 

if'!; I 
(rr-- ·.io) -- ...... 

xi,- _-:. ..... 
·-w\1 

where x11 denotes the mole-fraction 'of type-1 particles in phase l, i.e., 

that phase in which type-1 particles predominate; w11 and w21 represent, 

respectively, the weight-fra~tion in phase 1 of type-1 and type-2 particles; 

and vpl and vp2 are the particle volumes of type-1 and type-2 particles. 

The interface between phases could be visually located, as 

illustrated by the photograph of a )2.2/~?.701J interface given in Figure 

TIJ-2(). In most instances, two samples were taken from each phase -- one 

well removed from the interface and the other within 2 to 3 inches of it. 

rl'he samples taken near the interface confirmed its location, and indicated 

that the concentration was relatively uniform within each phase to within 

a few inches of the interface. A few data points from near 142/191~ 

interfaces, however, were midway between the correspoudi.ng bulk phase 

data, suggesting difficulty in interface definition for that syntem. 

rrhe changes in bed height (or volume) attributable to mixing u.re 

given in column 13 of the table. These figures represent the differenc::es 

between the measured bed heights and the equivalent-total heights of 

type-1 and type-2 particles fluidized separately at the s&~e flow 
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Table III-8. Miscibility data. 

Run System Fluidizing Interface Bed Sampling Lo'\'Jer phase Upper phase Height Change 
velocity height height height wn w2l wl2 w22 lS.l x12 due to mixing 
(em/sec) (inches) (inches) (inches) (inches) 

35 191/95-5 0.293 9-772 20.5 8 127.582 ).2938 0.829 -2.16 

(1)/(2) 

36 0.428 10.147 27.897 15 66.73581 1.000 () -3.10 

9 133.8730 I 
0.192 8.397 15.64'1 10 1.6507 131.958 } 0.880 0.012 -4.60 

0.182 8.147 ].!1.782 7 144.3881 2.4728 

41 0.371 13.397 28.647 23 0.0'(68 59-16751 0.976 0.19 

15 5-9540 80.4141 ) - 0.009 0.69 

11 8o.8B26 0.2494 

J 0. 987 8 83.0507 0.1377 1.19 

0.292 ll. 709 22.115 9 172.9866 0.4619 
{ 0.979 o.JJ1 -0.58 

15 0.4229 104-5582 

0.218 10.272 17.897 13 5.8260 128. 8124) 0. 979 0.006 -0.66 
8 105.3757 1.6331 

0.157 9.08!, l4.G47 n! 195.9534 16.6289 
91. 761,;} 0. 596 0.001 -0.96 0.9888 

42 0.183 10.647 19.897 14 0.8998 122.36761 0. 931 0.001 0 
7~ 53.5702 0.4992 

47.8384 0.6975 f 0.8g6 o.46 
,; 1<?.5947 0. 7321 0.890 0.90 

,t 
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Table III-8. (continued) 

Run System Flu\d\z\ng Interface Bed Sa!!tpling Lo1.1er phase Upper phase Height change 
VP)Ocity height height he.ight wll w2l wl2 H22 xn x12 due to mi xi np.: 
(c,n/sec) (inches) (inches) (inches) (inches) 

37 191/142 o.G63 37.397 30 30.1268J 0.226 0.202 
(1)/(2) 12 46.8891 . 66.171 

0.369 13.647 23.397 16 17.5140 114.9922} 0.93.5 0.059 -0.84 

10 156.01 l1. 4605 

o. 739 37.397 18 80./8')0 6.8584 0.882 -2.54 

0.218 lO.G47 16.522 13 54.8748 103.1525} 0.'/99 0.179 -1.33 

7~ 106.7612 11.0229 

38 0.813 22.397 45.397 30 0. 9457 17.8179) 0.983 0.021 5.42 

30 8.5116 69.1498 - 0.048 5.72 

24 0.1666 6. 5625 ( 0.10 6.01 

20 73.10T7 5.5644 : 0.844 6.31 

10 49.1416 0. ~461 

0.517 16.397 23.959 12 42.8367 1.3878 - 0. 927 . 0.007 -1.67 

20 o. 5044 32.4332} - o.oo6 -1.21 

16.897 23.772 20 3.2365 80.1001\ 0.01G -0."(6 

20/90' 1.8o69 86.4876/ 0.009 

20/180' 1.5712 86.3009 -0.30 

0.222 10.147 14.897 12 l7 .4036 27. ~201} 0. 942 0.209 -0.15 
7 ?8.02RE; 1. 9758 

I 

39 0.118 9.272 14.709 '( 53.1813 5.8247 - l 0."790 0.190 -0.65 

10~ 78.0401 91.4909( - 0.26o -0.47 

12~ 19.2641 33.7103' 

·• 
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Table III-8. (cant inued) , 
Run System Fluidizing Interface Bed Sampling LO'Her phase Upper phase Height c:l1ange 

veloc:i ty height height height wll wn w12 w22 xu x12 due to !Tlixi ng 

(em/sec) (inches) (inches) (inches) (Inches) 

40 270/191 0.963 18.897 37.6117 30 3.8783 88.2557 0.931 0.015 

(1)/(2) 21 7 ."('772 80.2887 0.33 

15 6u.4C)Ct'> 12.1014 0.660 

8 131.0420 3. 4450 

0.813 15.1117 31.897 '7 6?..9898 1.6577 0.931 0.0011 

12 45.899'• 2.4901 0.867 

18 61.9169 68.8125 0.242 

25 0.9309 89.9130 

o.GG/1 13.397 27.472 211 o.G229 7J.1272 0.871 0.00) 

15t 53.9283 85.5631 0.182 

JOt 90.5465 8.2566 0.795 

73.2364 3.825'• 

0.51"( 1).662 24.897 18 29.6777 28.837'7 0.267 -<J.57 

18/90" 12.7352 92.2)50 0. '(68 0.0117 -0.57 

77.1242 8.6281 0.870 -O.Jil 

9/90" 56.11582 6.0339 

0.370 10.897 21.147 8 1q .4-~oo 4.8382 0.776 0.027 -0.19 

8/90" 62.1686 7. 9219 0. 735 0.02 

16 4.0863 52. 4298 

16/90° 10.3870 46.9695 0.073 0.211 

0.192 10.14"1 17.647 12 39.4342 37.0835 0.273 0. 44 

12/90" 311.7555 25.6012 0.249 0.61 

7 118.3696 19.7153 0.465 0. 79 

7/90" 51.334'7 18.1654 0.500 0.97 

~easu.red at center line, except where jndicated. 
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ZN-4078 

Fig. III-20. Two-phase system at u = 0.055 em/sec: upper 
phase, 52~ beads, E = 0.748; lower phase, 270~ beads, 
E = 0.469. 
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conditions. 'l'he decrease in the total particle count due to sample 

removal was taken into account. The data indicate that very little, 

if any, volume change occurred upon mixing. 

Another parameter of interest, potentially determinable using 

our sampling device, is the local particle concentration, as compared 

to the mean bed concentration.. During our experiments, however, it 

proved difficult to completely close the Teflon cap. Strong tension 

on the piano wire provided a tight seal, but then the wire tended to break. 

'rherefore, a lower tension was applied which was sufficient to completely 

seal the tube to further solid-material entrance and permitted very little 

water leakage. With this mode of operation, it was not possible to 

accurately assess the local particle concentration. 

'l'he mole-fraction of large particles in each phase is plotted as 

a function of fluidizing velocity in Figures "Jll~2.I,J!·2Z, and Ul-2.~. 'l'he 

data for the two phases appear to be relatively synunetric and indicate 

that the mutual solubility decreases as the velocity increases. The 

symmetry is more clearly displayed by the solubility plots given in 

Figures]1-2."1-,Jli":"25, and](-~"· With the exception of the 142/19lu data 

points evidently taken at the interface, the solubility data for both 

phases can be fit by a single curve, as indicated in the figures. 

The equilibrium which is established at each fluidizing velocity 

represents a balance between the familiar diffusive mixing and the 

segregating effect of fluid drag on the different particle types. As 

the fluid velocity is increased the drag forces come to predominate. 

'This is a continuous process where only particle size differences are 

involved. Furukawa and Ohmae's data (F2) for different-size sand 
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Fig. III-23. Velocity dependence of the mole-fraction of 
191fl particles in a 95.5/191fl system. 
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particles exhibit the same behavior as our own data. Their results for 

the 755/200~ and 755/160~ charcoal-sand systems, with the charcoal larger 

and lighter, however, appear to behave in an opposite manner. This is 

an inversion phenomenon, as may be shown by considering Eq. (I-8~ for 

suspended particles: 

( I-B5) 
L-t, 

For the charcoal p 2=1.2 g/cc and d2=755~; and for the sand p
1

=2.65 and 

d1=200~ (or 160~). At low velocities where CD~~-~. u2>u1 so that the 

charcoal particles are at the bottom of the bed. At high velocities CD 

approaches a constant value (independent of d): thus u
2

<u
1 

and the sand 

particles move to the bed bottom. Consequently, as the velocity is 

increased from a low value, an intermediate region, in which nearly total 

mixing occurs, is encountered. Further increase in velocity brings 

passage through an inversion point followed by increasing segregation with 

the heavier particles now on the bottom. Furukawa and Ohmae•s data for 

the charcoal-:>and system, therefore, lay below the inversion point for 

that system, 
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4. Proposed Use of Sampling Tube 

The techniques and apparatus used for obtaining the miscibility 

data also could be employed in an experimental assessment of self-diffusion. 

'I'he only operational changes would be the marking and deployment of tracer 

particles in the bulk fluidized phase and the taking of samples at well

defined times. In addition, Sutherland (88) 1 who used a similar sampling 

technique for mixing studies in gas-fluidized beds, stated that it is 

statistically necessary to acquire simultaneous samples at several points 

in the bed. The importance of more than one sample point is a function 

of the smoothness of fluidization, however, and should be less necessary 

in a liquid-fluidized bed. If desired, a second sampling tube could be 

easily employed in our system. 
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E. Surface ..o ·wave I-teasurement 

The objective of this part of the study was to evaluate surface

tension effects in fluidized beds by the ripple, or surface-wave, 

technique. Although experimental difficulties precluded other than a 

few visual measurements of surface-wave properties, a description of 

the entire system is felt to be appropriate since future work may be 

done along these lines. 

1. Eq,uipment Description 

A schematic diagram of the equipment assembled for use in the 

surface-wave measurements is given in Figure 11I'- 2(. The Decker unit 

depicted is an instrument which converts minute changes of capacitance 

(1-50 rrunf) into large analogous output voltages (30 volts ~imum); 

it utilizes an ionization transducer to perform this function. The 

output from the Decker (Model 904-1 Delta) unit was sent to a Brush 

(Model BL-212) oscillograph, which was capable of chart speeds up to 

125 mm/sec and voltage amplification ratios up to 2000. 

The initiator is a push-button switch which energizes the 

solenoid control mechanism for the drop rod, and simultaneously causes 

a "zero" time mark to be made on the oscillogr~ph record. The support 

ring is a 3/4-inch-high collar, expansion fitted into the column. 

Teflon sleeves, seated within vertically-oriented cylinders a.ttached 

to str~ts from the collar, provided lateral support at the approximate 

ruidpointsof both the drop rod and capacitor-lead rod. 

The drop rod was centered in the column as accurately as possible, 

because radial symmetry improves the precision and ease of measurements. 
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The 1-1/d-inch-long by 7/8-inch-diameter stainless-steel cylinder, which 

creates the surface-wave motion when dropped vertically-downward through 

the bed surface, was affixed to a 65-inch-long segment of 3/8-i.nch 

stainless-steel rod. The motion of the rod, which was separable into 

two equal-length sections for ease of handling, was controlled by the 

mounting and sleeve combination shown in Figure IIT-2& The rod passed 

through the 3/8-inch channel in the sleeve, and· was held to it by the 

set screw; thus, the cylinder height could be easily adjusted. The 

mounting was secured to the top plate of the calming section by four screws, 

and was leveled prior to each measurement. A solenoid control mechanism 

and pin were emplaced where indicated on the side of the mounting. To 

set the cylinder for a measurement, the rod sleeve was raised 1.0 or 1.25-

inches and the pin inserted into one of the slots in its side. To make 

the measurement, the solenoid was energized, causing pin withdrawal, thus 

permitting the cylinder to fall through the bed surface. The Teflon 

sleeve in the mounting enabled the rod to fall smoothly and accurately, 

and the felt pad softened the rod-mounting impact. 

The capacitor was mounted 3 inches from the bed centerline; this 

allotted ample distance for wave development, but did not lead to 

).nterference effects from the column wall. Additional detail for the 

capacitor and its lead rod is given in Figures :m:2qa...and :Ill-ztfb. The slip 

collar around the top of the lead rod permitted matching the capacitor 

height to that of the bed surface for each measurement. The capacitor 

output was transmitted by low-capacitance coaxial cable (65 pfift) to the 

Decker probe mounted at the upper end of the 3/8-inch stainless-steel 

lead rod; low-capacitance connectors were used at all points. The 

.. 
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Fig. III-28. Drop-rod sleeve and mounting . 
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utilization of such low-capacitance equipment helped to alleviate the 

problen1 of capacitor-signal degradation introduced by the long lead-rod 

length (66 inches) necessary for stationing the capacitor at the less

expanded bed surfaces. In addition, a guard section on the capacitor 

plates minimized capacitor edge losses, thus strengthening the original 

signal. 

2. Operational Procedure 

'I'he nominal procedure for using the surface-wave -measuring 

apparatus is as follows. Measurement is started by depressing the 

initiator, which energizes the solenoid, and simultaneously marks the 

"zero" time on the Brush-recorder oscillograph. 'I'he drop rod then falls, 

and the cylinder penetrates the bed surface. 'l'he resulting sequence of 

surface waves is monitored by the capacitor stationed at the bed surface. 

'l'he output from the capacitor is transformed by the Decker unit into an 

equivalent voltage, which is then transmitted to the Brush oscillograph 

and recorded on its high-speed print out. 

Since the capacitor did not successfully perform its function, the 

wave motion was monitored visually during the actual measurements. The 

times of intersection with the column wall of the first two waves created 

by the dropping cylinder were clocked with a hand-held stopwatch. ... 



-146-

3, Measurement Results and Discussion 

As mentioned, it was anticipated that a more thorough investigation 

of surface tension would be made than was actually effected. The use of 

the capacitor to monitor wave characteristics. i.e., speed and amplitude, 

depended upon the capacitor's sensitivity to changes in the dielectric 

constant of the particle-fluid medium (t-15, D7). Unfortunately, dissolved 

electrolytes in the available (industrial) water supply led to a conduc-

tivity for the fluid medium that was too large to permit sensitive 

capaci.tance measurements. This problem is mentioned in Reference PlO: 

11 '1'he difficulty of preventing contammination of .liquids of higher 

dielectric constant has effectively prevented their use for capacitors." 

Future efforts to employ a capacitor to characterize waves in the 

fluidized bed must, therefore, use fluidizing fluids of low dielectric 

constant. In our case, the fluidization system should be modified to 

permit recycle and storage of such fluidizing fluids. 

The results of the three visual measurements of surface waves in 

the 95.5\J system are reported in •rable11i~~. The wave frequency v was 

ascertained from the time lapse between the first and second wave 

intersections with the column wall, the speed c was calculated from the 

time taken by the first wave to reach the wall, and the wave length A 

... equals c /v • 

As discussed on PP·l~ -'),.5', the equation for wave propagation 

in a deep fluid may be rearranged to yield an expression for surface 

tension: 

( r--44':..) 



Table 

Particle Fluidizing Void 
diameter velocity fraction, 
(micron) (em/sec) E 

95.5 0.248 o. 781 

0.163 0.711 

0.097 0.625 

III-9. Surface-tension measurements. 

Fluidized Frequency, Speed, C 
hei12:ht -1 (em/sec) 
(em) v(see ) 

66.3 0.7 3.81 
49.9 0.9 4.31 
40.0 1.2 4.7 

Wave 
length, 
\(em) 

5.44 

4.79 
3.82 

Surface 
tension, cr 
(d;yne/ em) 

4.12 

6.15 
7.69 

I 

1-' 
+:
-J 
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where p is the fluid density. The second term in this equation pertains 

to gravity waves, which predominate .at long wave length. In our system, 

however, the gravitational force upon the fluidized particle is balanced 

by the fluid-drag force, so that the effective gravitation force is zero. 

Eq. (:J:-"'lz.i then becomes: 

0-

Here the effective density p is the mass density of solid particles, 

given by: 

(!It-22.) 

The surface tension values listed in Tableln~~ were calculated 

by Eq. (nT··2.2). 'fhe values are of the same order of magnitude as those 

for hard-sphere-type liquids, e. g., argon at 85°K has a surface tension 

of 13.2 dyne/em (H6). 



IV. THEORY AND DISCUSSION 

In this chapter a liquid model is chosen for use in the interpre

tation of fluidization phenomena. The fluidized•bed variable equivalent 

to thermodynamic temperature is then specified; and the experimental 

data presented in Chapter III, plus some diffusion data from the 

literature, are analyzed using statistical-thermodynamic relations. 

The comparison of our experimental data to that of other investigators 

was made in Chapter III, and will not be considered here, except when 

it bears upon the validity of our statistical-thermodynamic model. 

A. Choice of Model 

In Chapter II the motion of particulately-fluidized particles 

was said to be localized and isotropic. Further, the particles are 

clearly hard spheres, and move in a force field resulting from a 

balance between the expansive pressure of fluid drag and the cohesive 

pressure of gravity. All of these attributesmay be contained within 

the square-well form of the cell model t termed the "smoothed-potential" 

by Prigogine (P3). Therefore, this intuitively -satisfying model, the 

ma.in points of which were given on pages IS and \ c~ of the Introduction, 

serves as a logical starting place for the use of liquid theory to 

analyze fluidization phenomena. 

The parameters in the smoothed-potential model are readily 

interpreted for the case of the fluidized bed. The diameter d of the 

fluidized particles can be directly measured; and the free volume vf 

can be ascertained through observation of bed-volume expansion. 'rhe 
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third parameter, the characteristic energy of particle interaction w(O), 

is not known directly, but its volume derivative (at constant temperature) 

can be obtained from the equation of state (see Eq. (r.~~~)]. The prime 

requisite for the use of the cell model to interpret fluidization phenomena, 

however, is the identification of the fluidized-bed equivalent of 

temperature. This will now be considered. 



-151-

B. Energetic Equivalent of 'l'empera.ture 

The fundamental attributes of the thermodynamic function known as 

temperature are the following: 

(a) It is a statistical quantity that must be the same for any two 

vicin:.1l bodies. 

( o) It is the integrating factor that converts the infinitesimal 

heat flux dQ into the differential of a function of state dS. 

(c) It is formally identifiable with (aw;as)v,N in the differential 

form of th~ fundamental relation for internal energy ii(s,v,rO. 

'l'he first of these attributes introduces the concept of thermal 

equilibrium: if two particle systems are immersed in the same heat Lath, 

and kept there, the temperatures of the two systems become the same. For 

such thermal equilibrium to occur in the case of dissimilar particle types, 

e.g., differing in size, shape, or density, the fluidization parameter 

equ.ival.ent to thermodynamic temperature must depend solely upon fluid 

properties, and not upon particle properties. This will be set as an 

essential requirement in our development of a nominal temperature function 

for the fluidized bedt to be designated a. 

It seems. reasonable to identify the flow energy of the "ether" 

as the heat source of the fluidized bed (see p.70). A measure of the 

nominal temperature may be gained then in two equivalent ways. f'irst, it 

is the temperature, in energy units, associated with the particles; 

alternatively, it is the effective thermal energy of the medium with 

which the particles are in equilibrium. Viewed from the Ja.tter standpoint 

the nominal temperature 8 should be related to the kinetic enerf!.Y of the 

2 
eti1er, pU • It will be shown through analysis of our viscosity da.ta that 
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indeed e is proportional to u2• Invoking the requirement that e depend 

solely upon fluid properties, which may be functionally stated 

(TI·-1) 

2 
dimensional considerations require that, if e is proportional to U , it 

must be given by 

( rsr -·· 2.) 

where Q is a numerical constant. The validity of this nominal-temperature 

function rests, of course; upon the extent of success achieved by its use 

in cell-model expressions to describe fluidized-bed properties, such as 

the viscosity behavior. 

It is of interest to compare Eq. (IY-L) with the nominal-temperature 

expressions of the three other investigators, discussed in Chapter I (pp53-

~3 ), who have related fluidized beds to liquids. Furukawa and Ohmae 

(F2), basing their arguments upon a harmonic-oscillator model and empirical 

considerations, postulated that the nominal temperature should be 

proportional to ~U. While this function exhibits the necessary independ-

ence from particle properties, a number of steps in its development are 

somewhat arbitrary; and is was not applied in a consistent manner to 

interpret their fluidized-bed experimental data on expansion, viscosity, 

surface tension, and miscibility behavior. 

Schllgerl et al.(S7) arrived at Eq. (;r-101), i.e., 

-- (I-10\) 
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by comparing their gas-fluidized-bed-viscosity data correlation with 

Eyring's rate-theory expression. An expression may be established for 

the minimum-fluidization velocity Umf by equating Eqs. (r-?n) and (.r~72.): 

i I --u .c m, 

~ 

E ;;:.;. 
--~ 

( Wf-3) 

(_1- ~W!f) 

Then, since the specific particle surface s equals 3/(2d) for spheres, 

the particle number density is (1-c)-1 , and in most applications a/6 

equals unity, Eq. (:r-t'::'l') becomes: 

2 

Plotted as a function of superficial velocity, this expression exhibits 

particle diameter and density dependence both in slope and intercept (or 

zero point). It does t therefore, not permit the possibility of thermal 

equilibrium in a two-phase system. 

Although Ruckenstein (R4) did not develope a specific expression 

for nominal temperature, his mean vibration velocity ~~ given by Eq. (I··ta{), 

sh;)uld be directly related to thermal energy, e.g.tkT~m;T where m is the 

particle mass. In that case, the resulting nominal temperature possesses 

a dependence upon particle properties similar to that of Schllgerl 1 s 

expression. 

In light of the above, it was felt worthwhile to establish a 

"universal" temperature function for fluidization, and to use it within 

a single liquid model to interpret fluidized-bed behavior. It will be 

shown that our data support the relationship gl.ven by Eq. (IV-2) .. 

·-
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c. Expansion Behavior 

'I'he free volume per cell in the smoothed-potential model, as for 

hard spheres, is given by Eq. (J:-2l)): 

'l'he "free-volume length" (v1 / 3-v l/3) may be equivalently expressed for 
0 

fluidized beds in terms of void-fraction: 

1/'5 ,- - ll,. -'1 '\ -u LC~- £1 ·_,_ ,11 _ $ '; ::. '1 . F ' ' ... o ""' 

where vp is the particle volume and e:
0 

is the void-fraction corresponding 

to the minimum compressible volume v • Therefore 1 to establish the 
0 

temperature dependence of the free-volume length, our expansion data were 

-1/3 
plotted as (1-e:) versus U. As shown in Figure Ir-t , our data are 

well fit by a linear dependence of (1-e:)-l/3 upon U, and the curves for 

the six particle sizes converge to a common intercept. To determine the 

particle-diameter dependence, the slopes of the six curves are plotted 

as a function of d in Figure 1.5l: ··· 2. • The curve drawn through the data 

l.'{ 
points indicates that the curve slopes are inversely proportional to d • 

Our expansion data are~ therefore, represented by 

- lj.._ 4 I I 7 (1- f.) -- i. 2. ! - 7. I -;/.. I D- u rA . ( "'["':...... . ... \ u ,.>it)) 

as shown in Figure 11- -~ • 'l'he free-volume length is then 
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where the intercept 1.21 has been equated to (1-E )-l/3. 
0 

'l'he excellent fit to our data furnished by Eq. ( -rr:-fl) is 

(Ir-7) 

encouraging in that it lends support to our premise that the free-volume 

length is a fundamental parameter for fluidized beds. Also, the common 

intercept ( 1- £ ) -l I 3 may be identified with the zero point of temperature. 
0 

That is, since we have dealt solely with geometrically similar bodies, 

(spheres) we would expect the nondimensional cell volume (1-e:)-l to 

-1 
approach a universal limit, e.g., (1-£ ) , as the temperature 6 goes to 

0 

zero. Out data indicate that the volumetric condition at zero temperature 

is £ =0.436. Since we have identified the fluidized bed with the liquid 
0 

state and the fixed bed with the corresponding solid state, we would not 

expect to ever achieve the geometric condition given by E • Viewed in 
0 

this light the relatively large value of E suggests that bed expansion 
0 

takes place in a near cubic manner with a minimum-fluidization void 

fraction Emf of roughly 0.476, and that void fractions of less than this 

are the result of geometric rearrangements caused by the relatively 

nonuniform flow conditions near the minimum-fluidization point. The 

lower velocity data points in Figure I'l-l do indeed tend to fall below the 

curve fitting the higher void-fractions. Thus, we conceptionally 

hypothesize that in the solid state, i.e. 1 U""U f' particle "interpene·m 

tration" occurs. 'l'his enables identification of zero temperature with 

zero velocity rather than with the particle-dependent minimum-fluidization 

velocity, given by Eq. (Cl-3), and is in accord with our statistical-
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thermodynamic needs as well as the observable existence of a solid state 

at lower superficial velocities. 

A more general form of Eq. (nT-~) can be established by 

dimensional analysis and use of the forc_e balance on the particle. The 

relation for bed void-fraction may be functionally written: 

which by dimensional analysis simplifies to: 

- /J 
(t- 'i) ':._ 

where pUd/~ is the Reynolds number Re and p~pgd3/~2 is the Archimedes 

number Ar. Comparing Eqs. (N-C::.) and (N-<~),the exponents of the Reynolds 

number and Archimedes number can be immediately determined from the 

measured velocity and diameter dependence to be: 82=1 and v2=-0.9. 

Since measurements were made for only a single particle density, 

determination of the exponent of the densi.ty-ratio factor requires 

additional information. This is available from consideration of the 

force balance on the particle, which yields for the terminal velocity of 

a single particle (as discussed in Chapter I): 
.. 

We assume that in the region of validity of the cell model the free-
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-l/3 -l/3 
volume void-fraction [(1-£) -(1-£ ) ] serves as a measure of the 

0 

open area of the cell, and from our experimental data we know this 

function is linearly dependent upon the superficial velocity U 

Therefore, employing Jahnig's (Jl) argument that the intersticial 

velocity past a particle in the multiparticle system remains equal to 

its terminal velocity, the relation between the superficial and 

terminal velocities is assumed to be: 

Crl··!o) 

where K4 is a proportionality constant. The drag coefficient CD may be 

expressed as: 

(rr- \ 1) 

where K5 and a 1 depend upon the flow regime. Substituting Eqs. (~id 

and (Iil.-11) into Eq. Cr-11) leads to: 

(DT-i"Z.) 

Comparing this to Eq. ("I:l-6) and equating the exponents of the diameter 

factors, we find: 

C{l = 0.5'39 



As a result, the exponent of the 6p factor is -0.9; hence in Eq_. (II···)) 

YzO· Therefore, the more general correlation of our expansion data is 

This is of the same form as llena's (B3) result for the laminar 

flow regime given by Eq. (r-eo): 

4.&5 0 A -0.9'~ 
'E. = 12.8 r-::...(1 .. , r (r-l3o) 

In FigureW~~it is shown that 

( - fl·:; 
1- ~) - 1. 21 ( t:.r-15) 

'l'herefore, Benu. 1 s relation may be stated 

(IY ·-I"-) 

which is in excellent agreement with Eq. ( 1\f. --11), and confirms our 

density-ratio analysis since his experimental data encompassed density 

ratios of 0.2 and 1.5. .. 
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Fig. IV -4. Relationship between Bena 1 s void fraction function 

c4 · 65 and our own (1-E)- 1/ 3 - 1.21. 



D. Viscosity Behavior 

In Chapter III the two types of viscosity measurements (using 

Brookfield and moving-sphere viscometers) were interpreted, and a 

close correspondence was found between the results of the two techniques. 

'l'hun, it is felt that a true measure of bed viscous effects was 

attained. 

F'rom our statistical-thermodynamic model the fluidized-bed 

viscosity should be given by Collins and Haffel's (C4) collision-based 

relation ( p .. "31 ) : 

(r-s4} 

where pK is the kinetic pressure as given by the second term in Eq. (I-32): 

~ .k_ 

I.; -r
"'- I --..-....--...... ----~-~ 

( fl-n l 

The internal pressure does not contribute since action at a distance is 

neglected in Collins and Ha.ffel's development. The viscosity of the 

fluidiz.ed bed, with El ::kT, is then 

·u 

i/';i ·v .. 
--~--·-···-
1) lj~- 1)~~·~ ( N·· !3) 

This expression may be rearranged to solve for 0~ 

.• 
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8-

and from our expansion data 

Therefore 

8= (N-2.1) 

As stated previously (pl5l), for thermal equilibrium to occur in two-

phase systems this expression should be independent of particle properties. 

Accordingly our experimental viscosity data for three particle diameters 

4 2 
and two measurement techniques are plotted in Figure T[·Sas ~v/d • 

versus U • A~reasonable fit to the data is offered by the indicated 

constant value of 62; therefore, our data support a temperature function 

given by 

Q = 0. 03:,0 u .z.. 

From dimensional considerations (p.l54), this may be generalized to 

/ -~-; )( 'o e = ::. . ~.; ')(._ 1 o 
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Fig. IV -5. Viscosity-data correlation 
Brookfield measurements: o 142f.L • 191f.L II 270f.L 
Moving-sphere measurements: t:. 191f.L (smooth sphere) 

V' 191f.l (rough sphere). 

.. 
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where the constant Q in Eq. (1~-2..) has now been specified. !l'~erefore, 

the definition of the nominal-temperature function for the fluidized bed 

has been completed, and our viscosity data attest to the lack of particle-

diameter dependence in it. 

A further check on the validity of Eq. (n-~) is available from 

the viscosity behavior of gas-fluidized beds. Substituting Eqs. ('!Y<Z.I.>) 

and (]f~23) into Eq. (11:.-Z~ we arrive at a general viscosity expression: 

The experimental data of SchUgerl- et al. (S7) for rotating-concentric-

cylinder,viscometer measurements in three quartz,.;.sand and one glass-ball 

systems fluidized by air are tabulated in Table J:S[- I In the last two 

columns the experimental values for nv are compared with those predicted 

by Eq. (IT-~). The agreement is to within a factor of three, which 

seems quite reasonable in view of the two-order,s-of-magni tude difference 

between the viscosities of the air-fluidized systems and those of the 

water-fluidized systems upon which Eq. (N-2"i) was based. Therefore, 

although the air-fluidized bed data do not suffice to confirm the absence 

of Ap dependence in the nominal-temperature function, Eq. (Cf-2~, they 

do attest to the basic soundness of our model. 

Heturning to Figure TI-l, some comments may be made with regard to 

a region of validity for the cell model. A concave-upward ·bow shape can 

be perceived in the set of viscosity data for each particle size, i.e., 

at both ends of the velocity scale the viscosity values tend to rise 



Table IV-1. Comparison of Schugerl, et al., data to Eq. IV-24. 

Material Density Particle Fluidizing Void Viscosity 
(6·cm2/sec) 

(rro)Eq.IV-24 
difference diameter velocity fraction 

(poise) 6p(9/cc) (micron) (em/sec) E 

Quartz 2.65 350 18.7 0.598 18.42 1.03x10-3 2.8x1o-3 

sand 16.42 0.582 27.40 1. 4 7xlO-3 2.8x1o-3 
(sharp 
edged) 275 19.0 0.622 9.18 0.264xlo-3 l.OlXl0- 3 

15.1 0.585 11.85 0 ·3lx10-3 l.OlX10-3 

13.2 0.573 13.73 0.35xlo-3 l.OlXl0-3 

11.6 0.567 16.54 o.416xlo-3 l.OlXl0-3 

9.14 0.537 54.9 l.29Xl0-3 1.01X10-3 

11.76 0.746 - -4 -4 
175 7.71 o.85x10 l.53Xl0 

I 

7.38 6.76 o. 725x1o- 4 -4 1-' 
0. 739 1.53x1o 0\ 

-4 -J 

4.80 8.77 o.845xl0-4 
I 

0.709 l.53Xl0 

Glass balls 2.88 250 15.0 0.570 14.27 2. 71Xl0- 4 8.29Xl0- 4 

(smooth) 13.1 0.563 11.52 2.16x10 -4 8.29Xl0- 4 

ll.l 0.554 11.32 2.08xlO -4 8. 29Xl0- 4 

9.12 0.529 29.14 5.05x10 -4 8 .29Xl0- 4 

; 
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above the mean value predicted by our cell model. The larger values 

at the higher fluidizing velocities are attributable to the onset of 

convective motion and the beginning,, of cell breakup: as the interparticle 

distance increases. The tendency for cell disruption in the relatively 

nonuniform lower-flow regime was mentioned on page 1c;,.z in regard to the 

expansion data. As a result, the accessible volume for motion diminishes 

more rapidly at the lower fluidizing velocities due to cell rearrangement 

than predicted by the cell model which assumes constant geometry; 

consequently, higher viscosity values are observed. Therefore, our 

cell model is strictly valid only in the intermediate region of most 

uniform fluidization, but may be extended into the higher and lower 

velocity regions as a relatively good approximation. 



E. Miscibility Behavior 

The equation of state for the smoothed-potential cell model 

yields for the vapor pressure (p. \9 ) : 
,, 

h =- l [Jw(o),J + 
1 ·2.. d. u 1<. T 

( r-23) 

or 

In the fluidized bed, a balance exists between the "thermal energy" 

supplied to the particle by the "ether" and the consolidation pressure 

of the gravitational force acting on the system. The vapor pressure p 

may be taken to be essentially zero, as indicated by the near absence 

of particles above the bed. Setting p to zero in Eq. (Uf-2~ and solving 

for the internal pressure pi: 

e 

where again a=kT. 

With this knowledge of the internal pressure, an approximate analysis 

of miscibility behavior may be.made within the context of the one-cell~ 

or random-mixing, model (p. ~~ ). This model assumes that the fluid is 

composed of uniform cells having mean molecular parameters determined 

by the average environment. The excess free energy of mixing fE is given 



"' 
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by Eq. (I-G-1): 

where the cell partition function ~ is identical to the cell free volume 

v f in the smoothed-potential model. The first term in Eq. (:r>c:...t) ,reflects 

the energetic changes involved in mixing, and the second term is related 

to the entropy difference resulting from free-volume changes. Hoffman 

et al. (H5) reported little volume change on mixing in two-and three-phase 

fluidized-bed systems, and our data appear to bear this out (see 'l'ableJ!r-8). 

It will be assumed, therefore, that there is no volume change upon 

mixing, hence the second term in Eq. (r-~' ) goes to zero. 

The cell potential w(O) will be approximated by an inter~l-

pressure-based relationship, which for the unmixed state is: 

and in the mixed state is: 

The geometric-mean form will be used for the mean cell volume v and 

internal-pressure cross-term (pi)12 , i.e., v=Vv11 ·v22 and (pi) 12=(p1 )1
112 

• ( ) 1/2 
Pi 2 • The excess free energy of mixing is then given by: 

( TV-28) 
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and the activity coefficients may be directly determined, e.g., 

d (Vl,+fla,) t "E. ---S«" 
Gcin, 

where y12 is the activity coefficient of type-1 particles in phase 2, and 

x
22 

is the mole fraction of type-2 particles in phase 2. From Eq. (lf-,5): 

( tsl-30) 

which when inserted into Eq. (ii··tj) leads to 

( 1/; , I~ !ci 1 2.. 
L 1>/' [ -v,''~ (t>,)~!!> 1-11,1~[-:.J;~w(zJi!'. )~J s 

-·----
(1J?) ~ler.Lr '7),-t_w.)·~Jf-v '1-a_f!) )'~1.J 

\ l.- I It) 2. '"·'l-o 

From the discussion of our miscibility data in Chapter III we know 

that in the three systems studied the solubility curves for the two phases 

may be reasonably approximated by a geometric-mean fit. For such systems, 

the particle activity coefficients can be expressed in the symmetric form: 

( '}Y-~2.) 

where A*>2 must be true for immiscibility to occur. Substituting Eq. (t1~3Z) 

into the relations expressing the necessary equality of the activities of 

each particle in the two phases, e.g.& 

... 



.-
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V V - 'i, \ )( II 
0 1'2. ":z. 

and 'J 'A. - ,,, X. 
1!22. 2.4- t.z..l :Z..I 

A pair of relations may be established which enable us to evaluate A* 

from the experimental data: 

{ TIL> j'5) 

and 

'rhe mixing data have been numerically interpreted in this manner, 

and the results are presented in Table T1-2 and Figure 1:2-- ("" • A1 * and 

A2*, which are identical when Eq. (a:. =-li is exactly true, are found to 

be nearly equal for the two more closely-sized systems, i.e., the 142/191~ 

and 191/270~ mixtures, but diverge for the 95.5/191~ system. Apparently 

a 2:1 diameter ratio is too large to be described satisfactorily by the 

one-cell model. The A* values for the 142/191~ and 191/270~ systems approach 

the immiscibility limit of 2 at low fluidizing velocities, but increased 

immiscibility occurs at the higher velocities. 

'l'he statistical-thermodynamic relation for A* may be easily identified 



* (IV-32). Table IV-2. Experimental and theoretical A values for Eq. 

* * A* System Fluidizing Mole fraction of Mole fraction of Al A2 
velocity larger particles larger :particles JT 

(em/sec) in lower :phase in upper :phase 

191/270J..L 0.963 0.931 0.020 4.019 3.063 0.0124 

0.813 0.900 0.100 2.747 2.727 0.095 

0.664 0.850 0.150 2.4(8 2.478 0.57 

0.517 0.800 0.050 3.215 2.444 0.62 

0.370 0.750 0.050 3.224- 2.384 1.09 

142/191J..L 0.813 0.983 0.021 4.014 4.197 o.ooo48 I 
I-' 

o. 739 0.882 0.200 2.370 2.594 0.00053 .......J 
\jJ 

I 

0.517 0.927 0.010 4.647 3.034. 0.267 

0.369 0.935 6.059 3.135 3.069 0.44 

0.220 0.900 0.200 2.387 2.701 0.43 

0.118 0.700 0.240 2.195 2.150 1.18 

95-5(191J..L 0.371 0.980 0.009 4.778 4.o64 1.656 

0.292 O.Q50 0.001 6.887 3.318 2.26 

0.218 0.890 0.006 5.123 2.779 3.2 

0.183 0.890 0.002 6.198 2.784 3.95 
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by comparing Eqs. ("[Q":·! I) and (V,;.. ~ 2): 

---·-~ _ ........... ,._,_, ........ --~·~ ....... ;. ....... _,.,......-_,....._... ............ 040, ....... ,. ........ -,.~h;: ..... ~ .... 

The calculated values for As•r* have been listed in the last column of 

Table TSI.-2.. For the lower velocities (U<0.7)~ at which our cell model 

is valid (see p. l <..~ ) , the results agree with the experimental data to 

within an order of· magnitude, but do not exhibit the·correct velocity, 

i.e., "temperature'', dependence. 

Although the failure to predict the proper velocity dependence 

indicates a defect in our present miscibility expression, the order-of-

magnitude agreement is encouraging and suggests that use of a refined 

definition for the internal pressure pi could bring the statistical-

thermodynamic prediction into line with the experimental observations. 

Examination of particle terminal-velocity behavior and the transition 

from particulate to aggregative fluidization should enable resolution 

of a nonzero vapor pressure p. Then the revised internal pressure, 

given ·by Eq. (17-2.1), may be used with Eq. (~·~8) to predict mixing 

behavior. Alternatively, by definition p. can serve to define the cell 
1 

partition function w(O): 

v 

z. W(<>) ~ J p~ dv 

1)4 



-176-

which with Eq. (~&I) more directly defines the miscibility behavior. 

A further improvement would be to utilize the two-cell model (p~~ ) 

to describe mixture properties. This should lead to better results for 

systems of large diameter ratio, e.g., d1 /d2>1.5, but requires very 

accurate volumetric data for definition of the cell parameters, ll and vf2• 

In summary then, use of the one-cell model and assumption of zero 

vapor pressure yields a zero-level approximation to miscibility behavior. 

In effect, we have conducted a feasibility investigation;the results of 

which indicate that our smoothed-potential cell model can be used to 

predict fluidized-bed miscibility behavior. 
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F. Surface -Wave Behavior 

The cell-model expression for surface tension, modified to be in 

accord with EBtvos' law (E2), is given by Eq. (l>~?), with O::kT: 

()'-Vl./3 :-:. W-s.(o)-wlo) 

2.. 

where the configuration-energy difference w (0)-w(O) and the free-volume s 

ratio vs/vf are assumed to be independent of the temperature e. In accord 

2/3 
with this equation, our experimental data for o are plotted as ov versus 

') 

u" in Figure W-7. From the intercept and slope of the linear fit to the 

tlrree data points, the following values are ascertained: 

vl.,(o)-t.J(o) ... (I1-1o) 
-..... --...-~ :. 

and ( TT-11) 

Eq. (W-"fl) states that the free volume of the surface particles is 

less than the free volume of the bulk particles. This is true in liquid 

molecular structure due to the asymmetric net-downward force on the surface 

molecule caused by a larger number of attractive-force centers (molecules) 

below it than above it. In the fluidized bed, the surface particle lies 

at the point of flow-channel expansion, with associated fluid-velocity 

diminishment. The surface particle, thus, senses a flow velocity somewhat 

• 
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Fig. IV -7. Surface -tension correlation from surface -wave 
m.easurements for 95. 5fl fluidized particles. 
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less than the intersticial-flow velocity through the bed, and does not 

require as great a volume. The lower free volume of the surface particles, 

predicted by Eq. (Tir-11), is, therefore, in line with physical reality. 
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G. Self - Diffusion Analysis 

An expression for the self-diffusion coefficient D , related to 
s 

Eq. (~-St) for the viscosity, is given by Eq. (r~~~), with 8:kT: 

trr- 1-z) 

INserting the expression for pK given by Eq. (I:g::.zs): 

D :;:. 
'S ( ~ )'/z. 

1TI¥ ( 1T-'+3) 

l/3 l/3 l/3 
and replacing (v -v )/v and 0 by their fluidized-bed relations, 

0 0 

Eqs. (l'T-$'), (fY-1'1), and (ff-Z3), we arrive ~:~.t a general expression for 

the diffusivity: 

(R- 14) 

Kennedy and Bretton ( K'T) have recently made diffusi vi ty measurements 

in closely-sized glass-sphere systems fluidi:z.ed by water. A comparison of 

their experimental results with diffusivities calculated by Eq. (LJI.~"f1) is 

given in Table 'fl~ 3. Our predicted values are seen to be roughly two orders 

of magnitude lower than their experimental values. 

'l'his discrepancy may be attributable in large measure to the possible 

existence of strong convective effects in their system. In our 455~1 system 
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Table IV-3. Comparison of Kennedy and Bretton's data wi.th Eq. IV-45. 

Particle Density Fluidizing Void Kennedy and (Ds)Eq. IV-45 diameter difference velocity fraction Bretton's 
(micron) !:::.p(6/cc) (em/sec) E explanat:i.on 

diffusiv:i.ty 
(cm2/sec) 

912 1.862 2.09 0.511 0.96 0.0145 • 
946 1.862 2.06 0.513 0.60 0. Ol-3~ 
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we observed the onset of convective currents (see p. ~ l.) not present in . 

the smaller-diameter systems on which Eq. (lY-4CS) is based. In their 

study they employed only particles that were more than twice as large, 

i.e., 912 - 913\l, as those which we found to be unstable. Wilde (~H) in 

his photographic study of water-fluidized glass spheres of slightly larger 

diameter, i.e., 2400- 5000\l, found convective currents to be significant. 

In addition to comparably large particle diameters, Kennedy and 

Bretton employed a relatively small column diameter, i.e., 1.0 inch. 

Therefore, the influence of the wall is felt to a greater extent in their 

system than in our nruch larger 8-17/32-inch-diameterbed. 

For both these reasons, it is suspect·ed that convective currents 

were significant in their bed, and led to larger measured diffusivities 

than predicted by our statistical-thermodynamic model, which assumes 

smooth, nonconvective fluidization. Thus, it was proposed in section E.4 

of Chapter III that a careful experimental study of diffusion be made with 

our fluidization system using the sampling tube employed for the miscibility 

measurements. 
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APPENDICES 

A. Rotameter Calibration 

The three parallel rotameters were calibrated by collecting and 

weighing the outflow from each over a specified time interval. The 

measured weight-flow rate of water w was converted to the superficial 

velocity U through our 8-17/32-inch-diameter column by 

U:::.. w 
pA 

:::: . ( A -J ) 

The calibration curves in Figure A-1 were established by this procedure. 

B. Particle - Size Distributions 

The actual size distribution for each of the six nominal particle 

diameters was established by counting and measuring the particles in 

microphotographs (see Figure"[[-"). The distributions for the 52.2, 95.5, 

142, and 191\l sizes are given in Figures P..-1 - A-~. The arithmetic-

mean diameter was used to characterize the particles: 

t 

L. t/!·d· 
j~>l j J _________ .............. 

i' 
'L h· . . J 
:.1%1 

( A.-l.. ) 

where Vlj is the number of particles of diameter dj observed in the micro

photograph. For example, in the case of the 142\l particles, from Figure A·"t : 

i(IL~()·)·< 2(1?-"~)• i(tzs') -+·4(1:'1(:))+· ;a.(l:;-s/+- C.(t"h:>1 

+ 4(14<;·) + "\ (!.;'o) '1" 2 (p;:,r;/j + .2.(\~0) 

I +2..+·1...,.'4+Z+l0+4·'1'-.:..t+ 2.-t-4 

3'08.:.?;" ....,._ .................... , .... 

z.e 

(.t:>..-3) 
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Fig. A-1. Rotameter calibration chart velocity values 
based on 8-17/32-inch diameter column. 
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Fig. A-4. Size distribution of 142!J. particles. 
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NOl"!ENCLA'rURE 

Latin Letters 

a cell radius 

a diffusion "jump distance" 

a amplitude of particle oscillation 
p 

A number of nearest neighbors (p. I~) 

A Molecular shielding factor (p.3D) 

A fraction minimwn area in direction of fluid flow 

A* parameter in Eq. (.ri 3J-) for the activity coefficient 

A experimentally- determined constant 
0 

A
1 

parameter defined by Eq. ( 1. '11 ) 

Ar Archimedes' number 

B
0 

experimentally-determined constant 

B parameter defined by Eq. ( -:r- C,te:,) 
1 

c wave velocity (p.~) 

c concentration of diffusion component (p. t.i"\) 

"' molecular velocity 

-+ 
c mean molecular velocity 

0 

function of particle shape in Eq. ( 'I '1 e.) 

CB dr~g coefficient in bed 

CD particle drag coefficient for free fall 

c 0 concentration of diffusion component at injection point 
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d lene,rth parameter in Lennard-Janes potential (p. 1\:> ) 

d particle diameter (p. '-tl ) 

ct
1 

length parameter in the two-cell model 

d distance parameter in the one-cell model 
m 

d metallic sphere diameter 
s .. 

dp. volume element in momentum space 
l 

dr. volume element in position space 
l 

dQ infinitesimal heat flux 

D ove~all column diameter of bed 

D. equilibrium value of a representative property in the jth quantum 
J 

state 

D sel.f-diffusion coefficient 
s 

D(r) strain function, i.e., velocity gradient 

Ef empirical constant in Eq. ( l. 'l~) 

E 
j 

B s 

energy of the jth quantum state 

solid-diffusion coefficient 

nonequilibrium pair-distribution function 

excess free energy of mixing (Helmholz) .. 
f(q, p, t) nonequilibrium distribution function 

F force; llelmholz free energy 

F 
D 

measured drag force corrected for buoyancy and pulley friction 

Ff fluid drag force 

Ff empirical constant in Eq. ( :rq-y) 

F fluidized-particle drag force s 
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pulley friction 

g gravitational acceleration 

~ ~ ~ 

g relative velocity of two molecules, c1-c 2 

triplet distribution function 

g. . pair-distribution function of molecules i and j 
:l.J 

g(r) radial distribution function 

( 2) ( ) g r 
0 

equilibrium radial distrj.bution function 

Gf empirical constant in Eq. ( :r.<1t.) 

h fluid depth ( p. ') 5. ) 

h bed height (p. <il d-) 

n unfluidized bed height 
0 

ri Hamiltonian 

H rate of energy dissapation at minimum fluidization 
s, mf 

J flux tensor 
"' 

k Boltzmann constant 

k
1 

constant in Eq. ( :r;,.) 

frequency of diffusion "jump distances" in absence of external forces 

·+ 
k unit vector along line of molecular centers at collision 

K empirical constant in E8tvos 1 Law 

K
1 

integration constant in Eq. ( "'Ql. .. ~ ) 

r.:4 proportionality constant in Eq. (~It>) 

K5 proportionality constant in Eq. (Ji \\ ) 
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1 characteristic length of equilibrium cell volume 
e. 

L bed height 

characteristic length of the "atmosphere" around vibrating particle 

m apparent particle density 
a 

(l) 
n average molecule number density 

N number of molecules ( p. ,} ) 

N net downward weight on pulley (p. \e>l) 

N number of molecules per unit interfacial area 
s 

p vapor pressure (p. IJ}) 

p empirical constant in Eq, ( ~'l't) 

p 0 uniform isotropic bulk pressure 

pi internal pressure 

PK ldnetic pressure 

q empirical constant in Eq. ( "1-'1t) 

Q heat content 

r interparticle distance 

r 0 cuter radius of concentric-cylinder viscometer 

r. 
~ 

-+ 

inner radius of concentric-cylinder viscometer 

r radial location 

-1> 

r. position vector of molecule i 
~ 

He Heynolds' number 

• 



T 
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Re fluid Reynolds' number 
f 

s specific particle surface 

s superficial solid velocity (p. s~) 

s entropy ( p. \ St ) 

t time 

'l' absolute temperature 

'l'
0 

empirical constant in E8tvos 1 Law 

ut particle terminal velocity 

U superficial flow velocity 

u 
i 

antilog of intercept at £=1 of log U vs E curve 

U empirical constant in Eq. ("l'H) max 

u reJ. 

v 
0 

relative velocity between sphere and fluid 

terminal moving-sphere velocity 

cell volume of closest packing 

vf free volume 

v particle volume of type 1 particles 
pl 

v
5 

free volume in surface phase 

vti angular velocity 

mean cell volume 

~ mean square oscillation velocity 
.... 
v particle velocity 

V volume 
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v equilibrium volume 
e 

v empirical constant 
max 

in Eq. ( -:x:-q I ) 

vrnf minimum-fluidization volume • 
v velocity of metallic sphere 

s 

w external weight 

w we·ight -fra:.ct ion in phase l of type-1 particles 
ll 

w
21 

weight-fraction in phase l of type-2 particles 

w
5 

sphere weight 

-7 

w relative velocity between fluid and particles 

W potential energy of system 

wij intermolecular potential 

x cartesian coordinate (p. d3) 

x upstream distance of sample point relative to injection (p. r:p) 

x1 mole-fraction of type-1 molecules 

x11 mole-fraction of type-1 particles in phase l 

x 22 mole-fraction of type-2 particles in phase 2 

x. mole-fraction 
l. 

x. mole-fraction 
J 

y cartesian coordinate 

z cartesian coordinate 

z' distance away from plane of surface 

Z partition function 
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zint internal partition function 

ztr translational partition function 

Greek Letters 

B reciprocal of kT 

y empirical packing parameter 

y
12 

activity coefficient of type-1 particles in phase 2 

6 friction eonstant 

6 distance between molecular layers 
0 

of empirical constant in Eq. (I <2;<7) 

LiP 

!J.P/L 

e:* 

c* 
m 

empirical constant in Eq. (:r ~) 

buoyed-line-weight difference 

difference between moving sphere and mean bed density 

pressure drop across bed 

expansive force per unit volume 

void-fraction function 

minimum void fraction 

minimum-fluidized-bed void-fraction 

energy 

energy parameter in the one-cell model 

c* energy parameter in the two-cell model 
1 

£ mean void-fraction of bed 

n apparent-fluidized-bed viscosity a 

e viscometer-pointer angular deflection 

A wave length 
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~ fluid viscosity 

v kinetic air viscosit¥ (p. "tl ) 

v 

p 

0 

(J 

mf 
0 

£ 

T 

T I 

<I> 

cjl (r) 

ljJ 

ljJ (r) 
2 

ljJo-<Po 

w 

w 

w(O) 

w(r) 

§ 

wave frequency ( p. \~(., ) 

coupling parameter 

fluid density 

bed density 

contractive force per unit volume 

solid-particle density 

surface tension 

empirical constant in Eq. ('!.<B) 

mean deyiation of void fraction 

tangential shear on fluid element 

oscillation period 

small time increment 

plateau time 

bulk, or dilational, viscosity 

intermolecular potential 

quantity being transferred (see Eq. ( :t S~)) 

perturbation function 

potential energy of surface creation 

energy of molecule in its average potential field (p. llf- ) 

shear rate resulting from an imposed shear stress 1 

configuration energy of particle at cell center 

configuration energy of molecule in a syllllnetric cell 

potential function for interaction between molecules CL and 8 

dimensionless constant j,n Eq. (Ol'l--) 

autocorrelation function 
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u unit tensor 
"' 
K bed elasticity 

Other Symbols 

< > indicates ensemble average 

double subscripts indicate properties of the pure fluids 
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