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ABSTRACT 
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The results of two previous papers are carried on to a formulation 

of the Fadeev equations due to c. Lovelace. This allows showing that t'he 

nonrelativistic scattering amplitude for an elementary-particle on a bound 

state is a meromorphic function of the total angular momentum.-- An extension 

ofthehelicity amplitudes to complex values _of the total angularmomentum 

and of the spin of thebound state.is indicated-<> One isthus able to define 

the scattering amplitude for: a particle on a Regge pole when the energy of 

the Regge pole is in the physical sheet. 
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In two previous papers1 we have s.hown how the scattering amplitude 

for a three-particle collision can be extended to complex values of the total 

angular momentum J • We found·· that this extended amplitude satisfies an 

integral equation· whose•.kernel has elements. that are ··analytic·· functions of J • 

Obviously~ thh is not_ enough to.prove that the amplitude is a meromorphic 
-· 

function of J and this problem needs further- investigation• However~ ·if we 

reduce the kernel to values of the magnetic quantum numbers M and Mv smaller 

than~ say g an integer N ~- this truncated kernel is operator-analytic as a 

function. of J _, On the other hand~ the scattering amplitude deduced from the 

truncated kernel is a meromorphic function of· J which coincides with the 

physical amplitude for all integral values of J smaller than M • This is, 

in our opinion~ a very strong hint that the true amplitude itself is meromorphic 

although one must recognize that the convergence of these truncated amplitudes 

has to be considered carefully. Anyway, we, shall in the·present paper accept 

as an ansatz that the three-body scattering amplitude is ··meromorphic. 

This discussion in papers I and II has been restricted to-the case 

in which no pair of particles can give rise to a bound state. This leaves out 

of the discussion.the fundamental.problem of the scattering of a particle on a 

bound state. Arguments ·have been advanced by. Udgaonkar- and .. Gell-Mann ' 2 on the 

basis of a model~ andby Newton3 in a workwhich we have alr-eady discussed 9 

4 that the corresponding amplitude has cuts.- Onthe other·hand, J. B. Hartle~ 

in a work ·which closely- parallels that of Newton-, did not·· find any· evidence for 

these cuts.5 Applying the method of the two-preceding papers;-we shall show 

that~ actually~·the amplitude· is a meromorphic function J. 

In order to formulate-the equations-for this problem,·we use an extension 

of the Fadeev equations6 which have-been given· byC;, Lovela.cec7_ The. necessary 

background is provided in Sec• 2. In Sec. 3; one shows how to extend the 
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scattering amplitude of-a particle on a-bound-state-to a complex value of the 

angular momentum.; In:Sec~-4, one-considers--the-extension-to complex values of 

J of. the Born approximation·towhich the resultsof:Sec.-3 do·not,apply. 

directly. In Seco 5~-we show how the helicity amplitude for physical or complex 

values of J can be-extended ·to complex values of the spins of the bound 

states 9 ioe. 0 we define the scattering a.mplitude.for a particle-on a Regge pole 

in nonrelativistic theory. 
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2. THE LOVELACE EQUATIONS 
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i 
I 

In the two preceding papers,·we have used the·Fadeev equations as they 

were originally written by Fadeev himself6 and we have indicated.how the. results 

compare to .another set~of·equations found by Weinberg. 8 When· one·want.s to 

consider explicitlythe possibility of bound·states,·it is·convenient to work 

with a third formulation of the· problem, due to Lovelace'9 . which·. is very close 

to the original Fadeev equations·. Needless to say, all-these formulations are 

actually-equivalent. 

Whereas we considered· only a· scattering amplitude:. for· the reaction 

3 particles-+ 3 particles. which we called. T(z) , we-now consider also states 

made up by one particle,and a bound stateofthe .two.others. We label by an 

index 0 a state of three particles and by an index 1, for instance, the state 

made up.by particle 1 andabound state ofthe pair (23). Accordingly, we 

introduce a set of sixteen amplitudes TaS(z) , where a, S = o, 1, 2, 3; it is 

convenient to call v1 . the potential of particles 2 and.3 and v0 a three­

body potential which we shall suppose to be identically zero• Accordingly, we 

call T1 (z) the two-body scattering amplitude of particles 2 and 3 and T0 = o. 

Lovelace has shown that-one can:write the:following set of-equations, 

I. (1) 

where T 
00 

is the three-body scattering amplitude. The amplitude for the 

scattering of particle 1 on abound·state of particles 2 and 3 with wave 

function ¢(g23 ) is equal to 
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(all notations unexplained here are to be found in the two preceding papers.) 
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3. EXTENSION TO COMPLEX VALUES OF J 

The kernel of the Lovelace Eq. (1) is in fact identical to the kernel 

of the Fadeev equations~ so that our preceding analysis applies to this equation. 

It is therefore possible 

L V0 o;&e 

to state .a system of integral equations for the a.mpli-

projected on well-defined values J of the total 

angular momentum. The inhomogeneous terms of these equations as well as the 

terms of the kernel are holomorphic functions of J • Although this is not 

enough to make sure that the solution is a meromorphic function of J ; we 

shall accept this result as an ansatz. We shall therefore.define reduced matrix 
~ ... 

elements 

';fj and 

~ u (w 0 w) which we shall split into the first Born approximation MOM 9 j) 

the rest ~ 9 as follows: 

(3) 

Let us recall that w stands for the set (w1 ~ w2 9 w
3

) of the kinetic energies 

of the three particles in the total center-of-mass system~ and M and M9 are 

respectively the projections of the total angular momentum J on two axes 

invariantly .related to the momenta. '-.!:1 ~ ~R-3 ) and {_~ 91 ~1:' 2 1£' 3 ) • In 

practice 9 in the following~ these·axes will be chosen along 21 ·and g 0
1 so 

that 9 when we consider the scattering of particle· 1· ·on a bound state of 

particles 2 and 3 M and W will be the initial and final helicities of 

the bound states. (For simplicity~ we always suppose·that·the·three particles 

1 9 2 9 3 are spinless.) 

·As shown in II 9 the momentum•space·matrix elements··are related·to the 

reduced matrix elements by 
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= constant (4) 

where {~~ e, ¢) are the Euler angles of the rotation, which carries a reference 

system linked to (p1 ,22 •23 ) to a system linked to (gv1 •E' 2 ,~' 3 ) • 
\ 

Let us now consider in more detail the scattering of particle l on a 

bound state of particles 2 and 3 • We choose the initial reference system as 

having its z axis along ~l and its x axis in the-plane determined by 

(p P o ) If one calls- a the spin of the bound state~ then the wave -1 ~ -2 '.;.3 • • 

function is given py 

( 5) 

where 
;!23 

is the relative momentum of particles- 2 and 3 in the center-of-

mass system of the bound state and yl is the angle between J?l and s23. 

The formulas that more precisely define these kinematical variables can be 

found in I. 

If one introduces a fixed reference-system with its -z axis along 

calling X and xo the azimuthal angles of 
123 

and ' ~23 ' 
noticing that 

and ¢ are the polar angles of I 

..E 1' 
and that everything-isinvariant with 

glll 

8 

respect to a rotation along g1 , then, introducing Eqs. (2) and (5) into Eq. (4) 9 

one gets 

• 
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= constant I (2J + 1) i(M-M')¢ d J(ej A J(w
1 

,w
1 

,z) (6a) 
J 

e M'M · MM'aa' 1 

where 

J f ¢a(q;3) 
M' ' 

AMMvaag (wl ,wl ,z) = p (cos y 1). a 

( 6b) 

where~ for instance,_ Comparing this· result 

with the Jacob-Wickformula shows·that·the integral in·Eq• (6b) is the 

helicity amplitude for the scattering of particle 1 on the·bound state. 

~ 
Now 9 the matrix ~ 

11 
that appears in Eq. (6b) consists of the two 

parts {j 
11 and ru 

11 • We have agreed that ?1 
11 

is a meromorphic 

function of J · • Moreover, the position of its·· poles ·depends only. on z • 

Therefore; the-contribution of- -U to thehelicity·amplitude·is·a meromorphic 

function of- J as long as· the- integral in-Eq• ( 6b} converges uniformly. The 

domain of convergence will depend on the asymptotic properties of UJ as 

well as the value-of J .-However, we don't know enough yet about these 

asymptotic properties to find out-the-convergence domain. 
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4. ANALYTIC PROPERTIES OF THE BORN APPROXIMATION 

The foregoing discussion does not apply to 13 J 
11 

, namely to the 

matrix element of the potentials v
2 

and v3 • We shall now show directly 

that the contribution of v2 , for instance, is a meromorphic function of J • 

Let us use the same fixed reference system where the polar angles of 

v v 

.Pl ll !123 ~ ~23 ll .£. 1 are ( 0 $ 0) (a ~ x ) j ( a 0 
, x v ) 11 ( e ~ 0) t with y 1 = a and 

v v 
cosy 1 =cos a cos e +sin a 0 sine cos (0- x 0

) • (7) 

Let us consider, for simplicity 9 the case in which the potential v
2 

is a pure Yukawa potnetial with range Its contribution to the helicity 

amplitude is given~ according to Jacob and Wick, by 

X 1 

I g • 12 2 
i. 13 - .:!13 + lJ 

d cos 6 d0 • (8) 

Noticing that the quantity to be integrated depends only upon u = x- 0 and 
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J0 (qv ) p M'(y') e-iM'u' d J(e) eiMu 0 (q23) _P aM(y1) 
a 23 a 1 MM' a 

X d COS a d COS a 0 d COS 6 du du 1 
t ( 9) 

where, in the case-of equal masses, 

' + 2 q
23 

q23 [cos a cos a' +sin a sin a' cos (u- u')] 

+ 3 p 9

1 q
23 

[cos a cos. 9 + sin a sin e cos u] 

- 3 p' 1 q~3 [cos a' cos e +sin a' sine cos u'] • (10) 

Let us consider Eq. (9). The integrations upon u -and u' can be split into 

an integration upon ~(u + u) and upon ~(u --u') • The integration upon 

~(u + u 9 ), taking Eqso (7) and (10) into account will give (sin g)IM-M' I 
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times a function analytic in cos 6 in a neighborhood ·of the ·segment .( ... 1, +11). 

This is precisely the factor-that allows one to apply the reciprocity formula 

between-Jacobi functions ofthe first and second kinds (Eqs. A=lO and A-12 of 

II), Thereforet when· J is an integer, Eq. (9) can be replaced by 

u 2 
(q q23) 

23 

X d COS a d COS a 1 d COS eJ du du' , 

where the integration upon cos 8 is 

the singularity of [1~132 - ~~3 1 2 
now made 

+ ~ 2] -1 

(11) 

along·a contour r which encloses 

The integral (11) converges 

for any value of· J , since the singularities enclosed by r are only simple 

poles. 
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5. EXTENSION TO CONTINUOUS VALUES OF a 

Let us see if it is possible to extend Eq. (6b) to values of a and 

a 6 which are-not-the spins-of physical bound.states·but·any number, the wave­

function- -- 0 being- the_ wave -• function- of a- Regge- pole with- spin a- .; 9 First, 
a 

in order not, to spoil· the convergenc_e -of the integrations upon q
23 

and qb , 

one will have- to 'keep-. 0- ( q ) and 0 v ( q e ) square-integrable. This means 
- -- _ a 23 - a 23 

that the mass m- of-the-bound···state will have to be taken in-the physical 

sheet (namely in-- the complex· kinetic- energy- plane- cut from· 0 to- infinity), 

while a will take-its-values on the·Regge·pole trajectory.- Since a(m) is 

bounded in that sheet of m in which the-potential is-a-superposition of 

Yukawa- potentials; -there--does -not -seem to be· any -,reason-- to- pass- from formula 

- - . M -
(6b)·to an analogous·formula·with-the·Legendre·functions--P0 - replaced. by 

M - 10 
functions of-the second--kind -0 , as in the Froissarto.Gribov·formula. 

a 

(Moreover 9 there· is··no evidence that. such a transformation- is possible here.) 

·Anew difficulty-that appears when a takes:on.continuous values is 
- M M 

that the point cos--y = -1 in P ( y ) becomes- a singular point- where P _ 
_ . 1 a l - a 

behaves like (sin y
1

)-M/2 • We have·then to·show that the integral (6b) keeps 

a meaning;,--- We shall give· a different justification --for the--contributions to 

(6b) of - V. and· of .73 
ll ll 

Let us first· consider the contribution of · ·· U --.;- If Eq. (l) is written 
- v ll 

in the same form as Eq•- ( 2) of II~ ·where the terms of the kernel as· well as the 

inhomogeneous terms-have a form analogous to Eq;, (25).of·II, then one can see 

'that the kernel contains a factor d J(-8°.j) and the inhomogeneous term 
MM" 1 -

contains a factor-like- dM 0 M3 (eij)~ where ei.j , forinstance,is the angle 

between thereference axis i and ·pj • For-physical values· of- J, one can 

solve the-one·iterated-Fadeev equations-by-iteration, since the kernel is 

completely continuous• --Taking·intoaccount theforegoingremark and the 
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explicit form (14) of II of the-rotation matrices, one sees that 

· t · 1 t ( · a )M ( · a i )M" h th t · 1 ~s proper ~ona · o s~n Qij sln Qij w en e r~ang e J?l ~ ~3 

collapses• Then Eqs• (20a) and (20b) of I show that 2{llMiMJ is proportional 

y' tends to zero. 
1 

This behavior.can 

be extended by continuity to complex values of J , and it allows the integration 

upon and y' 
1 

in Eq. (6b) to converge. 

The same result can be-shown for the contribution by 

use Eq. (9) and integrate upon u, accoring.to Eq. (11); it 

times an analytic function of cos a , which is what we need. 

$
11 9 namely~ 

M 
will give (sin a) 
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6. CONCLUSIONS 

We have shown that if a.r ansatz of meromorphy for the solution of the 

extended Fadeev equations is correct, the scattering amplitude of a particle 

on a bound state is a meromorphic function of the total angular momentum J • 

Moreoverg it is possible to define the scattering-amplitude-of-a particle on 

a Regge pole as long as the energy of this Regge pole is kept within the 

physical sheet. ,This is not·enoughtobeable-to·define the-scattering of a 

t . 1 db z . . 11 par ~c e on a resonance~ as was propose y wanz~ger. 

There remain two important mathematical problems-to solve: 

(a) to justify correctly the meromorphy of·the solution, 

(b) to investigate the limit process when z ' the complex energy, tends to 

the physical energy. 

These· two·problems will eventually be difficult but; according to the importance 

of the applications one can get from· the notion of scattering of a particle 

on aRegge pole~ it seems.worthwhile to investigate them in order to work on a 

firmer basis. 

A fundamental question would be why the scattering of·· two elementary 

particles and the scattering on a bound state, which are described by such 

different equations., have so similar analytic properties. The elucidation of 

the property and its connection with the basicgroups-(like the Galilean group) 

could shed new light on the problem of the formulation of-good axioms for 

s~matrix theory. 
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