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ABSTRACT 
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The residual terms arising from Bogoliubov-Valatin transformation 

are studied and their roles in even-even spherical nuclei are examined by 

means of simple perturbation theory. It is argued that but for the uncer-

tainty in the number of particles, the quasi-particle formalism simplifies 

the energy matrix even for complicated systems. The simplified equations 

are examined and certain conditions are found nece·ssary in order to be 

consistent with experiments. The approximate formulas are applied to some 

82-neutron nuclei, and the results show qualitative agreement with experi-'. 

ments . 
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1. Introduction 
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In this paper we study the roles played by the residual terms 

arising from the Bogoliubov-Valatin transformation in the low-energy 

properties of even-even spherical nuclei. In the lowest order, the 

application of the superconductivity theory of Bardeen et al. 1 ) (or 

alternatively Bogoliubov's version2 ) seems to already have considerable 

success in explaining some of the properties of finite nuclei3). One 

notable success is, of course, the gap phenomenon which is observed in 

4 
both the superconductivity system and even-even nuclei). 

Besides the energy-gap phenomenon, there are also other features 

in finite nuclei that need to be explained on an equal footing. The 

observation of low-lying "collective" states is not explained by the pair-

correlation pictures. In the lowest-order superconductivity theory, it 

costs more energy to break a pair than to scatter it from one shell to 

the other near the Fermi surface in the J = 0 state. Thus, the existence 

of a level below the energy gap with J f 0 implies that the neglected 

interaction between the quasi particles may play a role that the pairing 

interaction cannot account for. The easiest and perhaps the best method 

of dealing with the residual interactions between the quasi particles is 

the random-phase approximation (RPA)5). However'· unlike the electron-gas 
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problem, for which the RPA is known to be valid in the weak coupling 

6 
limit ), 'the validity of the RPA in finite nuclei still is an open ques-

tion. Here we do not do an RPA calculationj we shall instead take a .. 

somewhat naive approach, and examine by perturbation method the residual 

terms in connection with the low-energy properties of even-even nuclei. 

The starting point is the BCS wave function, which we assume to 

be sufficiently good (the validity of BCS wave functions is examined else

where7), and treat the excitations in the conventional shell-model method. 

When ground-state correlation is considered to be important, then higher-

lying configurations with the same quantum numbers as the ground state are 

taken into account by perturbation theory. The force used is a realistic 

one, being close to that used in the conventional shell-model calculationj 

however, we consider some of the parameters adjustable so that theoretical 

prediction is consistent with experiments. We show that one particular 

set of parameters is preferred over the other on the basis of the experi-

mental trends and on the structure~· of the equations we get. 

Whenever a qualitative discussion is desired, we make a some-

what drastic assumption and take a separable potential [such as the quad

rupole-quadrupole (Q-Q) force8)]j this approximation serves also to aid 

our understanding of the origin of success of such a simple force in a 

nuclear-structure problem. 

First, we give a brief summary of well-known results on the BCS 

equations, which can be found in the papers of Belyaev and Baranger 

(Sec. 2). In Sec. 3, a general discussion of the problem is given so that 

the approximations we make are understood from the beginning. Then in 

Sec. 4 we derive relevant formulas for the quasi-particle spectra and a 

.. 

I 
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calculation of physically measurable quantities (such as en~rgy level, 

electromagnetic transition properties, etc.). In Sec. 5, the effect of the 

ground-state correlation is examined by means of the lowest-order perturba-

tion theory, and in the last section (Sec. 6), we illustrate our previous 

discussions with numerical computations done on some of the single closed-

shell, 82-neutron nuclei. This region has not yet been studied theoretically 

except in the simplified Q-Q model9), and though experimental results are 

scarce, it is one of the simplest systems available. 

2. . Hamil ton ian 

The discussions given in this section are well known, but we repeat 

some of the equations in order to define notation that is used throughout. 

In the conventional fermion operators, the Hamiltonian is given by 

+ 
c a: co: + (l) 

l l 

where the operator c's obey the usual anticommutation rules. After 

performing the Bogoliubov-Valatin transformation2) of the form 

+ 
c a: + = l 

on the Hamiltonian Eq. (l) and eliminating the "dangerous diagrams" to the 

lowest order, one obtains 

H' - U 
0 

(2) 

(3) 
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where u0 a constant term independent of ~ operators, 

(4a) 

[ ( '"1 - A.)2 + ~ 2] 1/2 
Eex = 

1 al 
( 4b) ~· 

1 L sex (ex
1 

~ ex
1

JvJex
2 

- ex
2

) 
2 sex ua va ' a

2 
1 2 2 2 

(4c) 

(4d) 

( 4e) 

where N is a normal-ordering operator, 

and 

The following definitions and notations, which were also used 

above, will be ureful in following the equations we will write down. 

(a) Greek indices denote a complete set of quantum numbers 

labeling a state, while corresponding Roman indices denote all except the 
J 

magnetic quantum number. Thus in the j-j coupling scheme we have 

In the deformed-

shell model, we need only Greek indices, since a state is labeled by the 

projection of total angular momentum. 
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(b) The matrix element of the potential term V should be 

distinguished in the following way: 

This distinction applies also to the coupled matrix element, 

u = u in spherical representation, 
al al 

and = +1 in the deformed field. 

(d) The total angular momentum is labe[ed J. 

In spherical representation, it is more convenient to write Eqs. 

(4b~ and (4c) in the form (n = j + ~ ) 

6. = a 

1-La = - 2:; 
bJ 

v~ (abJ 1\T I abJ), 

(5) 

(6) 
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where in accordance with the definition of paragraph (b) above for the 

coupled scheme, 

(abJ[v[cdJ) = (abJ[vlcdJ) - e(cdJ) (abJIVIdcJ) , (7) 

with e(cdJ) 
j +jd+J 

= (-) c . 

The interaction term H
1 

is given by three terms, 

where (8) 

H4o 
1 c (ex1ex2ex

3
a 4 1 z2 1 o) + + + + + Hermitian conjugate, = 4 bl b2 b4 T)O) 

exlex2ex3ex4 (9) 

H31 
1 L_ (exlex2ex41z31ex3) 

+ + + + Hermitian conjugate, = 2 bl b2 11ex b3 exl ex2ex3ex 4 4 (10) 

with the matrices z
1

, z
2

, and z
3 

defined as 

'f 

(exlex21 zllex3ex4) (ex1ex2 [v[ex
3

ex4)(u u u u + v v v .v (Sa) 
al a2 a3 a4 al a2 a3 a4 J 

.. 
+ 4 (ex1-ex

3
1vlex4-ex2) sex sex u u v v 

2 3 al a4 a2 a3 
~' 

(ex1ex2cx
3

ex4 1 z2 1 o) (exlex21VI-ex}-ex4) sex s u u v v (9a) 
3 ex4 al a2 a3 a4 
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and.· .. _ 

(lOa) 

We see readily that 

(na) 

(llb) 

and 

and 

(lld) 

These relations are useful in computing matrix elements of th~ operators. 

Let us now describe the physical significance of the operators given in 

(8) through (10), though it is rather obvious from the structure. Here H
22 

is the familiar scattering term which "couples·" two-quasi-particle:.states; 

since a quasi-particle is a linear combination of a particle and hole, we have 

two modes of scattering.-particle-particle type and particle-hole type. 

The term H4o couples the vacuum to four-quasi-particle states, two-quasi

particle states to six-quasi-particle states, etc. Notice that this term 

will be important for mainly two-particle-two-hole configurations. We expect 

H
31 

to be significant for odd-A nuclei, since it may couple a single-quasi-
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particle state to a.three-quasi-particle state, with an energy denominator of 

twice the single-quasi-particle excitation energy. For our purpose, we 

neglect this term entirely; the reason for dropping this term is as follows: 

If one constructs an equation of motion by taking the commutator [H,A+] 

and [H,A], where A+ and A are two quasi-particle-creation and destruc-

tion operators, the commutator taken with H
31 

is uncoupled from two-quasi

particle modes, and hence is unimportant in the system with an even number 

of particles. 

3. General Considerations 

Our aim here is to construct an equation to find the solution of 

(12) 

The symbol a denotes a set of all quantum numbers labeling the state, and 

A serves as an extra label to distinguish one state from the other within 

the set a. [ For example, since H(~) is rotation-invariant, a labels 

the angular momentum of the state JM, and within the states of JM, 

A = 1,2, ·!:, n span the space.] If one expands <P in terms of eigenstates 

(13) 

one obtains the usual eigenvalue equation 

'. ,. 

J 
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The symbol [~] denotes a complete set of quantum numbers, since Eq. (13) is 

a linear combination of various numbers of quasi-particles. As an example, 

consider an excited state in even-A nuclei. For this case, Eq. (13) may 

read 

(15) 

where n runs over n = 2, 6, · · ·, m<, where mt. ~ N, N being the number of 

protons or neutrons (or both) that are effectively taken into account. The 

sum over ~ ~2 ... ~ takes into account all the effective single-particle 
l n 

levels considered in the problem. In practice, for the nuclei with many 

particles, the bookkeeping, and also the normalization, gets tremendously 

complicated; thus the RPA: certainly does have the advantage--or, probably, 

is the only means of practical calculations. In particular, an RPA 

amplitude is defined by (¢0 1Aa(n
1
n2) I¢~ ) , where ¢

0 
is the exact ground 

state [an eigenstate of H(~)] and¢~ is an excited eigenstate of H(~) 

with the quantum number a and a label A, and Aa is an operator which 

destroys two quasi particles with the total quantum number a. Then we have 

L 
[~] ['y] 

The last factor is just the matrix element of Aa(n
1
n

2
) between nonperturbed 

states, and can be calculated once the representation of ¢'s is given. In 

m-scheme, it is just 

( ~P. T}p_ 
l-'n -2 ~--'n-3. 
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The relation (16) thus shows that the RPA amplitude consists of components 

with various quasi-particle numbers. Suppose the gil:louiid state is the quasi-

particle vacuum. Then Eq. (16) shows that 

(17) 

which is just the two-quasi-particle amplitude. ~hus the ground-state 

correlation is the main feature of the RPA, as is well known. 

Returning to the matrix equation (14), we see that the complete 

matrix will consist of various b~ocks connecting states that differ by 

four quasi particles. Now if one considers a spherical nucleus, the quasi-

particle energy E is on the average about 1 MeV; hence, the second block 

already involves an excitation of around 4 MeV beyond the lowest block. Since 

only the low-energy properties are of particular interest here, it is in 

practice a good approximation to drop all the other blocks and keep the 

lowest one only. This is in fact born out by actual numerical calculation 

10 done by Ariveu et al. ). One advantage of the quasi-particle method in 

spherical nuclei is precisely this fact: for low-energy spectra, one needs 

to consider only the two-quasi-particle configurations, thus reducing the 

d.imension of the matrix to a tractable size, unlike the usual shell-model 

calculation. 

If one desires, one could also write a set of coupled equations 

correspond~ng to Eq. (14). Then for the ground state, one has 11) 

(18) 
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(u>- C EK)( <t>("l_ .. ''\) lc 15) " (<t>("l_ · "'\) IHI0) 
K=O:l· • ·~ 

+ L <<~><a. .. ·a.> IHI<t><~l· • ·(34))(¢(~ ···"··.~4J:I¢·J:o> (31 .•• (34 l I+ .. 1 ... 

+ L (<t>(a1 .. ''\) I H l<t>(51 .. ·Be)) (<t>(B1 .. ·Bel I c 10> (19) 
51· •. 58 

and for an excited state 

(w - Et3
1 
~~2 ) (¢(t31t32) jcjq,(al,a2)) = (¢((31(32) jHjq,(a

1
a2)) (<t>(~a2 ) jc jq,(a1a2)) 

+ ~ (<t>(~1~2) IHI<t>(~1~2))(<t>(~1~2) lclq,(a1a2)) 
'YiY2 

+ L (<t>( ~1~2) I HI <t>( B1' .. 56) ) (<t>( B1' .. 56) I c I <t>( '\ "2)) 
5 .•• 56 ~ 

l . 

(20) 

(21) 
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In Eqs. (18) through (21), we have suppressed the subscript in the unperturbed 

quasi-particle wave function cj:J (if in a J scheme, one should put the total 

angular momentum of the state). Notice that Eqs. (18) through (21) generate 

the Wigner-Brillouin perturbation series. ,, 

4. Excited States 

4.1 EIGENVALUE EQUATION 

In this section, we discuss the excitation spectra of even-even 

spherical nuclei. We assume the Hamiltonian in the form 

H HO + H22 (22) 

Then II 

L CJA(ab) cpJA - cj:JJ (ab), 
ab 

(2~) 

with the double prime on the sum denoting the restriction a ~b. 

(23b) 

-i 

J2 
,cj:JJ(ab) 

J (J + 1) 
cpJ(ab) 

(23c) == 

cpJA cpJA 

lr' 

(ci>JA lct>J •.t\) 'OM' '6JJ' (23d) 
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(23e) 

. . 12) From now on, we shall take the phase convention taken by Edmonds ; the 

phase of the two-quasi•pa:tticle wave function is dictated by the definition 

(24) 

Then, using Eqs. (8), (Sa), and (lla), we easily obtain13) 

(25) 

+ X(acbd)(abJIUkdJ) - e(cdJ) X (adbc)(abJIUidcJ)], 

where 

(26a) 

X (acbd) = ~ u vbvd + v v QUd, ·a c a c b 

and 
(abJ!ulcdJ) _ -L (2J'+l)W(aabc;J'J) (daJ'lVIbcJ'). (26b) 

J' 

The matrix equation now reads 

(27) 
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An explicit form of the matrix element (25) may be obtained for a given nuclear 

21 force ). If one considers only a central force and one kind of particle, 

then the matrix element can be written 

(28) 

where the first term corresponds to a term with a separable angular part and 

the second to a nonseparable term that contains two terms. It should be noted 

that in the first term of Eq. (28) the rank of tensor k is replaced by J, 

and hence if one wants to compute the J state, the first term contributes 

only through the k = J component. As it stands, even the first term in 

Eq. (28) is not completely separable because of the presence of the radial 

term R. In a schema"tic work, it is usually taken to be also separable9)i.e., 

(29) 

It turns out that if one uses the quadrupole-quadrupole (Q-Q~ force used in 

many schematic studies, we may neglect the second term in Eq. (28) as it is 

small compared with the first. 

·If we write (30) 

then 

(31) 
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where 

l/2 

[

(2ja+l)(2jb+l)] l l . 
------· .;___ C(j jb2j -2 - -2 o) (u vb+ v u.. )R2 (ab) 

207T (l+ 5ab) a a a b 

and 

With (31) and (27), we obtain the well-known wave function
14) 

where the eigenvalue ill is obtained from 

Lu B2 (ab) 

ab E + E - ill 
a b 

-l/2 

= A.. 

(32) 

(33) 

(34) 

(35) 

We do not indulge in any detailed discussion of Eq. (34) and (35), since 

they have been extensively studiedj let it suffice to say that the solutions 

(34) and (35) are not suited for very low-lying statesj Le., when~<< 1. 

In such cases, one is required to use the random-phase approximation or 

the adiabatic approximation given by Kisslinger and Sorensen9). However, 

we will use (34) and (35) to compare two-quasi-particle interactions in the 

Q-Q force with those interactions in a more general force. 
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4.2 MATRIX ELEMENT OF SINGLE-PARTICLE OPERATORS 

Now, assuming we have obtained wave functions through Eq. (27) 

for a certain potential, we demonstrate some results that have experimental 

significance .. What we show is rather heuristic and qualitative, but will 

be of help in understanding the results of numerical computations given 

later. The experimental situation goes as follows: (a) in spherical 

nuclei, the lowest 2+ state is collective and lies lower than the energy 

gap (2 6), and the E2 transition from the first 2+ to the ground state is 

greatly enhanced in comparison with the single-particle estimate; (b) 

the crossover transition from the second 2+ to the ground state is very 

much smaller than (a); (c) the E2 transition from the first 4+ to the 

first 2+ transition is sometimes observed to be largely retarded in 

comparison with the single-particle estimate. We shall in the following 

disucssion denote such reduced transition probabilities by B(E2;a), B(E2;b), 

and B(E2; c) respectively. We denote the single-particle estimate as B(E2k. 

An arbitrary single-particle operator in quasi-particle second-

quantized form is given by 

where T is a tensor of rank K, ll = -K, . - K + 1, · · ·, Kj and 
Kj.l 

S = · +1 (or -1) if T is even (or odd) under time-reversal operation. 

·. 
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4.2.1 Transition Between the Unperturbed Ground State and an Excited State 

It is obvious that in this case, we have 

(37) 

Now, by using (23), (24), and (37), one can easily obtain 

In deriving Eq. (38), we have assumed 

(39) 

We are interested in the absolute square:~of the matrix element; thus, by 

triangular inequality, we have 

r I (aliT lib) ~ b CJ" (ab) Ia J5 M ' ab K a l~ K, ~' 
(40) 

where we have put for convenience ~~ab = ( ua ~ + v a~) . 

The dominant component for the first 2+ (i.e., J = 2, A= 1) does 

not contribute sufficient strength to the matrix element to fit the experi-

mental data of 2+ ~ 0+ transition; therefore, all the components of the wave 

function should contribute coherently to build up the needed strength. Thus 

we desire to find the condition such that the equality in (4o) holds. One 

can easily show in Q-Q force that the equality in (4o) holds provided the 
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lowest 2+ state energy is smaller than Ea+Eb for any a and b. To see this, 

put K=2, 

then we see 

Now substituting (34) and (43) into (38), we have 

= 

e(M) 

~5 

' 

(42) 

(43) 

- : -1/2 

-1/2 (44) 

provided Ea + Eb -m21 > 0 for all a and b, which shows the equality. 

Let us now examine the case of a more realistic force. Taking the Morse

Feshbach phase convention15) for harmonic-oscillator radial integrals, and 

examining the Clebsh-Gordan coefficient, one can obtain 

(45) 

where 
N -£ a '~a 

Tl = 2 (46) 
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and where N and £ are the oscillator quantum and orbital-angular momentum 

of the state, respectively. Since we have 

~N = 0, ±2, (47) 

we take N's out of ~' and noticing 

b.£ = o, ±2, (48) 

we have the possibilities as given in Table I. 

Table l. The signs of 2+ 4 0+ transition matrix elements. 

(-)11 o(ja,jb -1) o{ja' jb) Configuration Examples 

-1 0 0 l 
2 2 

(2d
5

; 2),(lg
7

/ 2),etc. 

+l 0 0 0 (2d5/2 2d3/2) 

-1 0 l 0 (2d3/2 2d5/) 

+l ±2 l 0 (2d5/2 lg7/2) 

-1 +2 0 0 (lg7/2 2d5/2),(lg7/2 2d3/2) 
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The last TOW.· entry corr~sponds to a case of ja ::: jb +l. Thus, if we 

choose ja > jb (except for the case whe~e 6£ ' 
j = a jb + l, in which case 

we choose ja Jb - l) we aiways get the same sign. Then, once such a 

representation is chosen, the coherence of the matrix element is guaranteed 

if 

where E is a constant phase factor. The condition for this can be easily 

deduced; i.e., if E + E -a b 
for all a and a sufficient 

condition is to have all negative (attractive) off-diagonal elements in the 

H22 matrix. Thus we hav~ to choose force parameters that give .correct energy 

spectra as well as all attractive off-diagonal terms, still consistent with 

other.experimental results. Notice this condition is not so obvi6us from 

the matrix-element formula itself, since it is a linear combination of 

particle-particle and particle-hole matrix elements. 

Assume we have obtained the lowest eigensolution satisfying 

Eq. (49); for the same parameters, the next 2+ state would have a wave 

function that possesses incoherent components, since this has to be orthogonal 

to the lowest. Aside from different coefficients, the interference effect 

in the components alone wou~d reduce the matrix element from the previous 

case, because of inevitable cancellation, which is expected to be consider-

able. The magnitude of reduction, of course, depends upon parameters 

involved, but this at least shows B(Eg;b) < B(E~.;a). . . 

.• 
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4.2.2. Transitions Between Two-Quasi-Particle States 

The operator connecting two-quasi-particle states is given from 

(36): 

The matrix element between states J1~ and JA is then given by 

(<I>J
11

\ITI<t>JA) = ·~· (aiT141 1~) (uau, - tvavb) CJ1~ (k1q1 ) CJA(kq) 

kl>ql 
k > q 

Using Eq. (24), we obtain, after straightforward algebra, 

where we have introduced a symbol Pkq which is defined to act on a 
klql 

function f as 

(50) 

(51) 

(52) 
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In deriving Eq. (52), we have again used Eq. (39). For electric-quadrupole 

transition, we have ~ = +l,.and T was given before. 
K]..t 

Examinipg "Eq ;_ (52), ~:we·;see~tthat 

{a) the Racah coefficient is usually much less than unity; 

(b) in general, we have ICJCJ (uu-vv)l << 1; 

(c) cancellation among the components occurs. 

Therefore we may expect the quantity in (52) to be in some cases considerably 

smaller than the single-particle strength. Of special inter~st in this matrix 

element is the E2 transition between a 4+ and a 2+ state. For example, in 

Ce
140

, experimental findings show B(E2;c)/B(E2) ~ 1/17, indicating a large sp 

retardation compared with B(E2;a)
16

). Since the cancellation effect is very 

sensitive to the coefficients of the wave functions, the B(E2;c) is expected 

to be strongly dependent upon the parameters of the force used. Therefore, 

if too drastic a change oc~urs in B(E2) for a small variation of the para-c. 

meters, it should not be taken too seriously. 

4.2.3. Magnetic Moment of an Excited State 

To supplement the energy spectra and transition rates computed above, 

it is also useful to compute the magnetic moment of a two-quasi-particle 

state to .see how good the wave function is. Experimentally, not many nuclei 

have been explored for their magnetic moments of excited states. But in the 

14o region that we will consider later, the moment of the 4+ state in Ce has 

recently been measured. 

Within two-quasi-particle subspace, the magnetic-moment operator is 

given by 

!-lop (54) 
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The positive sign in the u and v factor is, as is well known,·due to the 

odd-time-reversal property (i.e., s = -1). Now, using 

1.1. I gv j - -v 
(55) 

v 

J = ~ 
+ . 
~ (55) 

~ J l '(J2 + . 2 j2 ) 
2 ~ . ..,.,.. J.,k wq 

and Eq. (23) for the wave function, we get 

I.I.J g J = 
J 

l 

(2J+l) 
{(~ +gq) J(J +l)+(gk -gq) (jk (jk +1) -jq (jq + l) ]} 

(57) 

where g.'s are magnetic g factors for the orbital denoted by i (i.e., 
~ 

g. = g. ) . 
l Ji 

Notice that the u and v factors do not appear here, since 

2 2 
~ + vk = 1 for all k. Thus, except for the different coefficients of the 

wave function, the equation is exactly the same as the ordinary shell-model 

result. 

5. Lowest-Order Ground State Correlation 

So far all the calculations have been made under the assumption that 

the ground state is uncorrelated; that is to say, the ground state is a 

pure quasi-particle vacuum. Such an assumption is a convenient one in many 

algebraic manipulations, and furthermore may be a good one in spherical 

nuclei. But in many cases, the ground-state correlation turns out to be 
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very important17). One notable example is the enhanced E2 transition from a 

ttcollective" 2+ state to 0+ ground state in even-even -nuclei. 

In this section, we take the lowest-order perturbation terms, and 

consider configuration mixing of higher-lying states with the vacuum, and 

study specifically what effects they have on the E2 transition from 2+ to 

0+ state. Because of the large ntimber of configurations that could be mixed 

in (constructed from a set of single-quasi-particle states) a complete treat-

ment (of even the lowest order) is a rather tedious procedure. We shall 

therefore take only a few configurations in our numberical calculation and 

see the qualitative effect. 

In Eq. (19), take only the lowest-order term, getting the first-

order correction to the wave function of the ground state: 

Thus we have 

(¢(a1···~) IHIIo> 
(1)-\ E 

L K 

K=O)_ • • ·~ 

In the following, we make a further approximation by setting 

0 

Then, of course, Eq. (59) becomes the first-order Rayleigh-Schrodinger 

(58) 

(59) 

( 60) 

expansion for the wave function. Now if we were to include the second term 

of (20), with the approximation of (58), this term would correspond to 
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interactions between the four-quasi-particle states. Such a term might be 

very important, but for reasons of simplicity, we shall neglect it in the 

computation. 

In order to compute (58), we need to construct four-quasi-particle 

wave functions, with total angular momentum J = 0. It is well known in 

shell-model theory that for a state with more than two particles in one 

j-shell, the straightforward method of constructing a wave function by 

angular momentum coupling successively and then antisymmetrizing runs into 

difficulty, for then we obtain redundant states (i.e., wave functions with 

different intermediate J' are not necessarily orthogonal to each other), 

and the true state might be a linear combination of them~8 ). 
The group theory, however, tells us how ,macyr:stares :of given angular 

momentum J are present. For example, consider four particles in the j 
a 

shell. We know that for ja~ 7/2, there exists only one J = 0 state. 

Therefore, if we construct an antisymmetrized and normalized wave function 

as ~[(j~)J(j~)J,; 0], where the first two and the remaining two are coupled 

to J' respectively and finally J' is coupled with J' to give J = 0, 

with antisymmetrization being ensured by use of second quantized operators, 

then one would expect the J = 0 state to be described by 

(61) 

provided ja .;;( 7/2. 

1 
One can show by actual computations that FJ -A, where A= number of J' 's 

that are allowed by the angular-momentum coupling rule (Le., 2ja~ J'~ 0). 

I 
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Or, we have 

1 
= A (62) 

for any allowed J 1
• The most convenient one is J 1 = 0, which we may use in 

actual calculations. In the same way, one can construct a correct state for 

states with three particles in the a shell, and one particle in the b 

shell, etc. For ja '). 7/2, one could find sets of functions satisfying 

Eq. (62)j then each different set (totality corresponding to the number of 

J 0 states) may be orthogonalized by the Schmidt process. For example, 

ja = 11/2 has two states with J = 0. In our numerical work, we take only 

J' 0 (seniority zero) assuming the seniority four states to be negligible. 

From the foregoing discussion, it is clear that we can simply 

write the four-quasi-particle wave function as (where NabcdJ 1 is the normali

zation constant) 

N abcdJ' 

X 

( -)M i c (. . J I 
JaJb 

+ - + + + 
Tlo: TJI3 Tly Tlo I o > 

m m. M 1 ) C (j j J' ·m m M') 
a o c d ' c d 

which also defines our phase convention 
Jl 

[we have multiplied by (-) ]. We 

will simply understand that whenever more than two particles occupy one 

j-shell, we take precautions not to add redundant states as described above, 

and in the rest of this section, we do not make any distinctions. 

\ 
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Let us how compute the matrix element of HI between the vacuum 

and a four-quasi-particle state. By use of Eq. (63) and the relations given 

by (9a) and (llc), it is straightforward to obtain 

(¢0J 1 (abed) I HI I '0 ) = (¢0J 1 (abed) I H40 I o ) 

= NabcdJ 1 [-X(abcd) (abJIVIcdJ) + X (adbc) (abJIUicdJ) 

-e(cdJ)X(acbd) (abJiuldcJ)] , (64) 

where X is as defined previously. Now by comparing Eqs. (64) and (25), we 

can write 

where H1

22 may be obtained by comparing Eqs. (8) and (Ba)j we do not need 

its explicit form herej let it suffice to say that H1

22 
is in a similar 

l 
form to H22 with an additional factor NabcdJ 1 [(l+oab) (l+Ocd) ]2 to take 

into account the different normalization. What is important is that H1

22 

replaces the coupling of four-quasi-particle states to ground state (vacuum) 

by an effective two-body scattering term. Thus, the next higher order 

approximation to Eq. (59) would be a replacement of ¢ on the right-hand 

side of Eq. (65) by ~' and the noninteracting quasi-particle energies by 

This is equivalent to a "two-phonon" approximation. It 

should be noticed, however, that for J 1 = 0, such a procedure is dangerous, 

since the two-quasi-particle state with J 1 = 0 has a spurious component due 
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to the fluctuation of a number of particles. If we assume J' = 2 is the 

only important component for the 2+ ~ 0+ (ground-state) transition, then we 

can see that higher order corrections could be easily computed within two-

quasi-particle configurations by repeated use of H'
22

. 

In the following, we confine ourselves to the lowest order 

approximation for simplicity. Of particular interest is the effect of the 

ground-state correlation on B(E2;a), i.e., the first 2+ ~ O+,trarisiti:o"n;·r;;); 

hence, we shall discuss only this point, though it is also of importance 

for the ground-state energy. 

The operator which connects two-quasi-particle states to four-

quasi-particle states was already given .in Eq. (37). Taking a matrix element 

of T' between ct>JA_ab) and ¢0J,(pqrs) as given by Eq. (63), we get after 

an easy algebra 

(2J'+l) N o(M,- ~)e(M) pqrsJ' 

(66a) 

L /::,. (flf2f3f4;pqrs)-yab(flf2)sf3f4 {f311T2ilf4)~ (flf2f3f4) 
flf2f3f4 

where, for compactness,.we have used the following relations: 

(66b) 

+ 

.. 
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(66c) 

has the properties: 

-r/3 (pqrs) $ (rspq) = (66d) 

tfJ (prqs) = 1tJ (qspr) = -e(ps) W (pqrs;J'2), (66e) 

'& (qrps) = 7-tJ(psqr) -e(ps) W (pqsr;J'2); (66f) 

and s was defined in Eq. (40). 

Notice that the two-quasi-particle coefficients should be taken in 

accordance with the representation we have chosen for diagonalization of the 

H22 matrix. Thus, if we took (f
1f 2 ) for f 1 f f 2 , then C(f2fl) = 0. 

Now suppose we take the 11 two-phonon" approximation (that is, let 

a pair of fermion operators obey Bose statistics); then the matrix element 

(66a) involves an evaluation of the following vacuum expectation value: 

(let A come from the operator T) 
t?>lt32 

In this case, we get a simplified equation from (66a) by setting Eqs. 

(66c) and (66f) to zero. Then only J' = 2 contributes to the transition 

probability. We can then easily discuss what the second-order contribution 

looks like19). 
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We have 

X['' 
ab 

L 
pqrs 

" (¢0J 1 (pqrs) IT I C'P2A) 

where ~~ contains only the first two terms of Eq. (66b). A similar 

argument to that in the previous section holds, and hence, as long as 

(6@) 

(¢OJ I (pqrs )·I c I o) > 0' the above quantity contributes coherently. In turn, 

this inequality always holds, provided we drop the (abJ!VIcdJ) term in 

Eq. (64). We have already asserted that this could be done for the Q;-Q 

force, for whichEq. (68) reduces to 

~M= 
2 ---

.fs 
A.e e(M) 5 (M, -1-1) 

l 
2 
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which clearly has the .same sign but is much smaller than Eq. (44). In the 

actual numerical computation, we do not~ake the two-phonon approximation 

and hence no such conclusive remark could be made. But except for pure 

four-quasi-particle configurations, where the V matrix element is usually 

dominant, other configurations seem to enhance the matrix element. Of 

course a pure four-quasi-particle state lies lowest and hence the cancella

tion effect causes the contribution to be in general rather small. This 

effect can be seen qualitatively from Eqs. (66a) and (64). 
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6, Applications 

In thi.s section, we apply the fo:rmulas discussed in the preceding 

sections to the practical computations of some single-closed-shell nuclei. 

Calculations of nuclear spectra with a. general force have been done by 

Arvieu et al. for Sn and Pb regions
10

f;but the 82-neutron nuclei do not seem 

to have been investigated except by Kisslinger and Sorensen (KSf);who tried 

their schematic model. We study this region. Our treatment goes beyond the 

KS study in three aspects: 

(a) In ·pairing-correlation calculations, we do not ta~e a constant matrix 

element; instead we introduce general pairing-type matrix elements with a 

finite range. 

(b) All components of force are taken into account, whereas KS uses quad-

rupole-quadrupole force. 

(c) The pairing and quasi-particle interaction strengths are not two 

independent variables. We assume that either the same force is operative 

in both cases or one is related to the other, the difference being due to 

neglect of forces which act in a different way for different J (for example, 

tensor force). 

In the numerical calculations, we make the following approximations: 

(a) The neutron closed sh'ell is completely inert, and hence the behavior 

of the neutron is completely neglected. The proton closed shell (50) is 

also inert, and hence only the protons outside the 50-proton-closed shell 

are taken into account. 

(b) We neglect the Coulomb, tensor, and spin-orbit forces, and thus the 

force consists of the simple central force. 
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In the following subsections, we describe the experimental and 

theoretical aspects, give plausible justifications for taking a particular 

set of parameters, and suggest possible imp~ovements. Rather than a quanti-

tative agreement, a precise interpretation of the solutions of the equations 

considered in the previous sections is emphasized. 

The outline of calculations is as follows: 

(a) We solve the BCS equations (see Sec. 2) with a general force and a 

set of single-particle energies (defined byE in Sec. 3). This then gives 

the BCS wave functions (i.e., u, v, 6, etc.), and also independent quasi-

particle energies. 

(b) Next, we diagonalize the H22 matrix as given by Eqs. (2q) and (25) 

with the wave functions defined by Eq. (24). The eigenvalues then give the 

excitation spectrum for various J. (We do not give the results for J~o, 

since they are mainly spurious.) 

(c) We use the wave functions obtained in step (b) to calculate single-

particle matrix elements (see Sec. 4 for the relevant equations) and compare 

the results with experimental :$(E2) values and magnetic moments, etc. 

(d) Then we take into account the ground-state correlations by first 

order; in so doing, we choose only a few configurations to see how large 

they contribute to the B(E2) for 2+ ~ 0 + (ground) transition. 

6 .1. SINGLE-PARTICLE LEVELS (E) 

In the absence of better knowledge, we choose single-particle levels 

(E ) that are essentially the same as the KS values. ·Only a small variaa 

tion was made in our calculation so that an approximate fit could be made 

with the known levels in odd-A nuclei in this region. We take lg7/ 2 ' 2d
5

/ 2 ' 

2d
3

/ 2 ' lh11; 2 , lh
9
/ 2 ' and 3s1; 2 with Ea's as given in Table 2. Set I of 
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·20' 
Table 2 corresponds to that used by Tamura and Udagawa ) with the spacing 

between g
7

/
2 

and d
5

/ 2 exactly the same as the KS value of 1 MeV; Set III 

has an increased level spacing between d
5

/ 2 and h11; 2 and a lower spacing 

between d
5

/ 2 and g
712

. This choice turns out to give better quasi-particle 

energy spacing between the ground state and the first excited state in Lal39 

and Pr141 . Set II is changed slightly from Set III. The separation of 1 

MeV between d
5

/ 2 and g
7

/ 2 seems to be better than anything smaller, on the 

ground of theoretical level density in the multiplets arising from these two 

single-particle states. 

6.2. RANGE OF FORCE 

We take the interactim between nucleons to be of a Gauss:ian form, 

and thus the radial dependence is given by 

f(r) 
2 -t3r 

= e ' 

where 13 -l/2 in Fermis corresponds to the range of the interaction. The vaJmes 

-1/2 we have used are 13 = 1. 755 for Sets II and III and 1. 732 for Set I. 

These values have been extensively used in shell-model calculations. 

In the interaction matrix element, the radial part is dependent on 

the product B = v 
~ , where v is defined below. For the radial wave function, 

we choose the harmonic-oscillator wave function. It is believed that the 

harmonic-oscillator wave function is a fairly good approximi:l.tion for finite 

nuclei except perhaps for heavy nuclei. 
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Table 2. (a) Unperturbed single-particle energies (€ ) used for computations 
of quasi-particle energies and -wave functions;. (b) Fo~ce constants, and 
ranges used -with (a). 

Set I Set II Set III 

§ex €a; €a; 

g7/2 0 0 0 

d5/2 1.00 1.00 0.75 

a d3/2 2.88 2.90 2.90 

8
1/2 

3.20/ 3.40 3.40 

hll/2 2.18 2·.6o 2.60 

h9/2 00 5.40 5.40 

v -32.9XMeV -32. 4~-Y MeV -32. :4'_y MeV 
0 

b 
-l/2 

~ l. 732F l.755F l.755F 

X = 1.0, 1.15, 1.20 

y = 1.0, 1.05, 1.1 
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The radial wave function has the form 

= 
v 2 ·; 

- - r £ £+1 2 (vr2), 
e 2 r Ln+£+l/2 

where L is the associated Laguerre polynomial, and v, which is needed for 

the computations, is determined from the harmonic-oscillator spacing given 

by 

4i A-l/3 MeV. 

6.3. FORCE STRENGTH 

In the absence of n-p interactions, only sipglet-even and triplet-

odd parts of the central force contribute. Thus, our force is 

where VSE and VTO are singlet-even and triplet-odd force strength:respectively, 

P's are projection operators and t is triplet-to-singlet force ratio. In 

principle, one could use a force more general than above. A sophisticated 

shell-model calculation would involve. a force more close to a fi'ee nucleon-

21)' nucleon force . 

We take ... the depth of the potential close to v0 = -33 for the range 

~ l.73F. We have determined v0 by computing odd-even mass differences in 

BCS approximations. Theoretical mass difference is given approximately by 

P ~ 2 E . , where E . is the lowest odd-A quasi-particle energy. One mln mln 

could improve the estimate by using a four-point formula given by23), 
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Table 3. Gap solutions (v , E , ~, ~ ) calculated by using Set I of Table 2, 
a a a 

-l/2 vTO 
v0 = -1.15 X 32.9 MeV, ~ = l.732F, - = o. 

vSE 

A (... g7/2 d5/2 d.3/2 sl/2 hll/2 

~ o. 706 0.587 0.586 0.490 o.6oo 
a 

134 -0.522 v 0.450 0.183 0.085 0.065 0.109 a 

Ea 0.878 1.631 3.452 3·755 2. 768 

t::.a 0.926 0.826 0.825 0.692 0.794 

136 -0.216 v 
a 

0.622 0.294 0.130 0.100 0.159 

E 0.950 1.470 3.204 3.486 2.524 a 

~a 1.047 1.006 1.005 0.846 0.908 

138 0.094 v o. 738 a 0.407 0.172 0.133 0.204 

E 1.051 1.354 2.962 3.220 2.275 a 

~ 1.116 1.145 1.144 0.972 0.980 a 

140 0.411 v 
a 

0.820 0.521 0.215 0.167 0.250 

E 
a 1.189 1.288 2. 721 2.954 2.022 

~ 
a 

1.161 1.248 1.246 1.075 1.031 

142 0. 738 v 0.876 0.630 0 .. 260 0.204 0.305 a 

E 1.375 1.275 2.479 2.687 l. 773 a 

.1a 1.204 1.321 1.319 1.164 1.079 

,. 144 1.067 v 0.912 0.725 0.309 0.247 0.376 a 

Ea 1.609 1.323 2.242 2.430 1.550 
~ 

~a 1.251 1.372 1.370 1.242 1.129 

146 1.381 va 0.933 o. 796 0.362 0.295 o.46o 

Ea 1.863 1.424 2.030 2.203 '1.383 
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6. 5. TWO-QUASI-PARTICLE SPECTRA 

The zero•order wave functions are those given by the BCS prodecures; 

proper angular-momentum coupling and anitsymmetrization by ~eans of second 

<±uantization are as given before. Equation (27) is then solved by the IBM 

7094. We include all the two-quasi-particle configurations except those 

involving s 1; 2 and' h9/ 2 ; i.e., (g~/2 ), (g7/ 2d5/ 2 ), (d~/2 ), (d~/2 ), (h~/2 ), 
(g

7
/ 2d

3
; 2 ), (d

5
/ 2d

3
/ 2 ). We believe that the neglect of s 1/ 2 and h

9
/ 2 does 

not cause a serious error in the results owing to the fact that they are 

rather high lying. 

To determine the force parameters, we have varied t for a fixed VSE 

which was determined in the gap solutions. We have also attempted to vary 

VSE and VTO at the same time in both the gap equations and the quasi-particle 

interactions, but it was found to be difficult to fit simultaneously odd-even 

mass difference and energy .spacings in the two-quasi-particle spectra. At 

present, we take v8E as given by odd-even mass differences. Then the result 

of such variation in Ce140 is given in Fig. 6. This graph shows the values 

of V8E and t at which 2+ and 4+ in Ce140 are fitted, with u and v values 

held fixed for one particular VSE' At about t ~ 0.3 and v
8
E ~ -1.6 X 32.9 

MeV the agreement is the best, and then for t > 0.8 the second-best agreement 

is obtained. Howeyer, as we shall discuss later, the B(E2) values and mag-

netic g factor seem to rule out the first one. Even though the whole pro-

cedure is artificial (more experimental studies will help), the determination 

of t at the same value of v
8

E as used in gap solutions is meaningful. As 

is well known, a repulsive odd-force is necessary for low·- energy nuclear 

properties, and the usual shell-model calculations also include such a 

component. Here we shall try to give a plausible explanation why t in the 

quasi-particle interaction turns out to be larger than that in the pairing 

interaction in our calculations. 
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21)'. (a) The study by Kim shows that inclusion of a tensor force [in 

our case, the tensor-triplet-odd (TTO) part]affects mostly the states with 

J = o, whereas it modifies very little the states with J > 0 in a system of 

one kind of particles. 

(b) The inclusion of TTO in the analysis of free-nucleon-scattering 

phase shifts with the Brueckner-Gammel-Thaler (BGT) force turns out to be 

equivalent to taking t > o, say t ~ -0.4, although this is strictly true for 

only J = 0 (for J > 0, this may not hold) 29) . 

(c) Since, as we have shown before, only J = 0 states are involved 

in pairing interaction, we should perhaps compute the gap solutions with 

t ~ -0.4. This was not a proper choice of t because of the discrepancy on 

odd-even mass differences. Let us suppose that for some reason (say, a 

renormalization of force strength), we have t ~ 0 in the pairing interaction. 

(d) We are primarily interested in the states with J > 0 arising 

from the quasi-particle interactions. Then, according to the statement (a), 

we may neglect TTO. 

Now, if we assume that the renormalization acts in the same way 

(though perhaps not exactly in the same amount) in the pairing and quasi-

particle interactions, then the statements (a) through (d) imply that it is 

reasonable to use a larger t for calculations of two-quasi-particle spectra 

than for the pairing interactions. With this much justification, we shall 

from how on take t ~ 1 for all quasi"'-particle interactions, and the results 

are given in Figs. 7, 8, and 9 and some wave functions in Table 4. 

The 2+ states are of special interest for microscopic or macro-

scopic theories because of their collective nature. One can see from Figs. 

8 and 9 that both sets of Ea' s give "satisfactory" results if we choose t 

between 0. 6 and 1. 4. One can see in the results that the lowest 2+ in Nd
142 
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lies higher than that ~n Ce140 . This seems to disagree with the experiments. 

The reason why the theory fails there is as follows: though the zero-order 

quasi-particle description identifies the ground state in Nd
142 

to be (d~/2 ), 

the interaction among them brings down (g~/2 ) below (d~/2 ). Since the zero

order quasi-particle energy of (g~/2 ) in Nd
142 

is higher than that .in ce
140

, 

it is expected that the 2+ in Nd142 is higher than that in Ce
140 

The 

remedy is obvious: one should either take a smaller separation of d
5

; 2-g
7

/ 2 
142 or renormalize the force strength for Nd· . 

Also the reason why Sets I and III give a completely different 

picture at Gd
146

is::trntfue 2+-with Set I has the dominant component of (h~1;2 ), 
2 while Set III has that of (d
5

/ 2 ). This is of course due to the choice of 

d
5

; 2-h11; 2 separation. In Set I, the diagonal element of (h~1;2 ) is large 

enough to give a depression that is observed in our result. Experimental 

data30) on Eu147 and Eu
149 which has 63 protons put the h level about 

11/2 

500 keV above the ground state d
512

. The first excited state is g
712

, making 

us suspect that I Eh11; 2 -Ed
5

; 2 1>1 Ed
5

/ 2 -Eg
7 
; 2 1. Though this statement is not 

strictly correct--for, in these nuclei, one has to take into account also 

the proton-neutron interaction--it seems likely that one has to choose the 

spacing somewhat larger than we have in Set I. This, of course, is the 

motivation for including Set III. 

We believe that the higher-lying states such as 3+ and 4+ can be 

fairly well described by H22 alone. There is only one experimentally known 

4+ level in this region (4+ in Ce140), and it seems that the theoretical 

spacing between 2+ and 4+ in this nucleus is cons is tent with experiment. The 

experimental 3+ level, which also is observed only in Ce
140

, is lower than 

the Set I result (about 150 keV) and higher than the Set III result (about 

70 keV). The only low-lying 3+ state is of the configuration (d
5

; 2g
7 
; 2 )

3
+, 
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. - Table 4 . Eigenvalues and eigenvectors for 2+ and 4+ states computed with 
-1/2 V0 = -1.15 X 32.9 MeV,~ = 1.732F, Set I 

VTO 
m(a) 2 2 2 2 

A d5/2 g7/2 ~/2 h11/2 d5/2g7/2 d5/2~/2 g7/2~/2 vSE 

J = 2+ 136 0.8 1.3o8 0.183 0.973 0.036 0.017 -o.o66 -0.037 0.110 
2.316 0.210 -0.110 0.012 -0.061 -0.968 -0.011 0.046 
2.432 0.949 -0.169 0.034 -0.101 0.235 0.023 0.063 

1.0 1.243 0.189 0.967 0.039 0.038 -0.097 -0.056 0.118 
2.256 0.331 -0.165 0.016 -0.101 -0.919 -0.016 0.089 
2.400 0.912 -0.142 0.022 -0.098 0.369 -0.001 0.033 

138 1.0 1.397 0.305 0.931 0.046 0.076 -O.lll -0.076 0.121 

2.287 0.914 -0.318 0.027 -0.154 -0.196 -0.018 0.038 

2.413 0.230 0.042 0.000 0.035 0.971 0.010 -0.027 

140 1.0 1.558 0.424 0.871 0.056 0.148 -0.111 -0.103 0.126 

2.307 0.889 0.072 -0.003 0.081 0.990 0.011 -0.008 

2.535 0.099 -0.234 0.009 0.956 -0.069 -0.097 0.083 

142 1.0 1. 741 0.534 o. 758 0.074 0.290 -0.101 -0.144 0.140 
2.384 0.808 -0.410 0.025 -0.421 -0.020 -0.020 -0.036 
2.669 0.138 -0.094 -0.000 0.309 0.936 -0.004 0.013 

1.2 1.614 0.496 0.753 0.078 0.337 -0.121 -0.175 0.148 

2.350 0.806 -0.336 0.020 -0.477 -o.o68 -0.061 -0.039 
2.644 0.221 -0.177 0.001 0.377 0.881 -0.023 -0.010 

J = 4+ 136 0.8 1. 713 0.074 0.992 0.000 -0.087 -0.043 0.040 

2.310 o.o82 -0.096 -0.016 -0.990 -0.052 0.015 

2.645 0.990 -0.070 -0.051 0.093 -0.057 0.032 

1.0 1.687 0.090 0.982 0.006 -0.141 -o.o68 0.047 

2.297 0.163 -0.161 -0.036 -0.970 -0.062 0.041 

2.595 0.970 -0.072 -0.056 0.186 -0.125 0.283 

138 1.0 1.889 0.159 0.963 0,017 -0.192 -O.o89 0.045 

2.359 0.359 -0.246 -0.044 -0.894 -0.084 0.035 

2.478 0.908 -0.099 -0.049 0.398 -0.094 0.016 

140 1.0 2.106 0.297 0.908 0.034 -0.264 -0.122 0.051 

2.428 0.826 -0.393 -0.074 -0.383 -0.098 0.025 

2.501 0.459 0.107 -0.013 0.881 -0.004 -O.Oo8 

• 
142 1.0 2.342 0.647 0.657 0.061 -0.336 -0.169 0.062 

2.544 0.746 -0.620 -0.147 0.195 0.003 -0.012 

2.659 o.o89 0.385 0.045 0.917 0.027 -O.Oo8 

1.2 2.275 o.6o8 0.658 0.073 -0.371 -0.220 0.076 

2.530 0.755 -0.611 -0.179 0.150 -0.055 -0.012 

2.679 0.141 0.377 0.073 0.912 -0.008 -0.029 
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and the other configurations which might pe:tturb the lower 3+ state are 

(d
5

; 2d
3

; 2 )
3

+ and (d
3

/ 2g
7
; 2 )

3
+. But the last two states are veryhigh in 

energy, and thus one would expect the lowest 3+ to be an almost pure 

(d
5

/ 2g
7
; 2 )

3
+ two-quasi-particle state. This is borne out bycthe result. 

The wave function turns out to be (for Set I, t = 1.0) 

Now, since this state is almost pure, the fit with experiment may be obtained 

by adjusting parameters used for pairing solutions. This could perhaps be 

put to advantage in determining some of the parameters, but in practice we 

found that if we fitted theory to the experiment for the 3+ state, the spac-

ing between 4+ and 2+ was upset. 

6.6. B(E2) FOR 4+ ~2+ TRANSITIONS 

It has been observed experimentally that in Ce
140

, the electric-quadru-

pole transition from the 2.08-MeV 4+ state to the 1.6-MeV 2+ state is very 
B(E2) 

retarded; ·in fact we havesp ~ 17, where B(E2) is the single-particle 

B(E2) unit defined by 

B(E2) sp 

B(E2)exp sp 

As we have discussed before, theoretically we expect this transition to be 

considerably slower. The calculation results are shown in Table 5 for the 

choice of parameters as given by Set I. In all nuclei, one observea, the 

transitions are markedly retarded. The only possible explanation is that 

there is a large cancellation in the transition-matrix elements, as was dis-

cussed already. 

• 
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Our value of 
B(E2) sp 

= 28 seems to be considerably larger than the 

experimental value 17 but at least it shows the correct behavior of 

large retardation. One should note, however, that B(E2;c) (for 4+ ~ 2+ transi-

tion) is extremely sensitive to wave functions when a large calcellation occurs, 

and hence a too large value of the ratio (such as Ba138 ) should not be taken 

. too seriously. 

Although no exper~mental results are available in this region, we 

have also computed B(E2) for 2' + ~ 4+ transitions, where 2 '+ means the second 

2+ state. This is also shown in Table 5. The results $(E2; 2'+ ~4+) are 

comparable in magnitude of retardation to the B(E2; 4+ ~ 2+) 

6.7. B(E2) FOR 2+ ~0+ TRANSITIONS 

This quantity is of special interest, since experimentally the first 

2+ ~0+ ground-state transition even in spherical nuclei is enhanced by more 

than ten times the single-particle estimate, and a reasonable theory should be 

able to display this characteristic. We have shown previously that in order 

to obtain such a large enhancement, the matrix elements have to be mostly 

coherent, and hence the coefficients c21 (ab) have to be mostly of the same 

sign for the choice of configuration we discussed before. Actual numerical 

computation shows that such a condition fails to hold for small positive values 

of tor negative t. Already at t ~ 0.5, the cancellation occurs appreciably 

and the theoretical value becomes too small compared with experiment; this 

shortcoming is believed to be remedied neither by higher-order terms, since 

they are in general fairly small, nor by increasing VSE' since it is only an 

overall multiplicative factor. Thus within the region of agreement with other 

data, t close to l seems to be the most favorable value. As can be seen from 

the wave functions, at this value of t, the coefficients c
21 

(ab) are all of 

the same sign in the phase convention adopted before. 
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Table 5 contains the transition probabilities computed"With the same 

parameters as used in t"Wo-quasi-particle excitation spectra (i.e., t = 1.0). 

Still, the computed B(E2) is not quite sufficient to fit the experimental 

results .. One can easily guess that this insufficiency 'W·ill be more marked 

the lo"Wer-lying the 2+ state is. This is because a very lo"W-lying solution 

may not be obtained from our treatment. 

To see "What can be done to lessen this defect, "We have introduced 

independent four-quasi-particle states into the ground state. The four-quasi-

4 3 
particle states taken into account are (g

7
; 2 ) v=O' (d

5
; 2g

7
; 2 ) v=3' 

2 2 4. 4 2 2 
[ (d5/2)J(g7/2)J]O' (d5/2)v=O' (hll/2)v=O' [ (hll/2)J(g7/2)J]O' 

2 2 2 2 2 2 
[(hll/2)J(d3/2)J]O' [(hll/2)J(d5/2)JJO' [(d3/2)J(g7/2)J]O' and 

2 2 
[(d

3
; 2 )J(d

5
; 2 )J] 0 . Here v denotes the seniority quantum number and J goes 

over all al~o"Wed values. 

·The trend of the B(E2) is rather obvious; as Z is increased, the 

contributions from both the H22 term and the H40 term increase. If one 

exa.m:d.nes the matrix element of H40 bet"Ween the grol.lild state and a four-quasi

particle state, one can see that the particle-particle and particle-hole 

interactions compete, i.e., they have opposite signs. ·Since in a pure config

uration (i.e., [j 4J), "We have G>>F, it is clear that such a pure configuration 
a 

y~elds a repulsive matrix element in (4jH40 jo). On the other hand, configura-

tions of the form [(ja
2

)J (jb
2

)J] have a large F terms, and hence mainly 

enhance the transition probability. It is thus a reasonanle conclusion that 

a model calculation by KS amounWto taking only the second type of matrix 

elements, including the pure configurations in the form [(ja
2

)J(ja
2
)J]' "With 

J = 2 (it is easy to see that these are all of a coherent sign). 



• ) 

Table 1 ~ • B(E2) values for 2+-->0+ and 4 + 2 + transitions in units of 10- 48 em 4 2 __, e Wave functions used in the 

calculation correspond to those obtained with vo = -32-9X MeV for 

Set I (eeff = 2e). 

2+ -->0+ transitions 

X First 2 + _, 0 + second 2 

B E2 B E2 

a b B~E2~calb B~E2~e!S/2 
a 

H22 H22+H40 H22 B E2 sp E E2 sp 

T 134 
1.15 0.101 0.101 4.9 

52 e 1.20 0.103 0.103 5-0 

X 136 
1.15 0.178 0.169 8.1 0.0122 

54 e 1.20 0.180 0.174 8.3 

Bal38 
1.15 0.228 0.231 10.8 0.0103 

14 
56 1.20 0.237 0.24o 11.2 

14o 1.15 0.271 0.284 13.1 0.0038 
58Ce 1.20 0.283 0.300 13-9 

17 

142 1.15 0.331 0.358 16.1 ).02XJ.O 
6oNd 1.20 0.353 0.385 17-3 

15 

s 144 1.15 0.417 0.458 20.2 0.0007 

62 m 1.20 0.436 0.481 21.1 

146 1.15 0.431 0.469 20.3 0.0365 
64Gd 1.20 0.453 0.495 21.5 

a· the effect of the H
22 

term on the B(E2; 2 + -->0 +) 

b: the effect of the H22 + H4o on the B(E2; 2 + -->0 +) 

-1 
VTO 

X = 1.15 and 1.20, 2 
t3 = 1. 732 F, 

VSE 
= 1.0 , and 

4+ __, 2+ transitions 

+-->0+ 4 + -->First 2 + Second 2+ __, 4 + 

B(E2 B~E2~s;e B E2 cal 
B(E2) s 

B E2 sp B E2 cal B"E2"cal 

0.993 2.0 56 

1.05 1.8 

0.58 0.203 10.0 415 

0.233 9.0 
-4 4 

49 0.48 0.29xl0 7·2xl0 

0.29xlo-2 7-2xl02 

0.18 0.079 28 14 

0.052 42 17 

0.014 0.084 26 20 

0.025 

0.077 29 
-3 4 

0.16x10 1.5x1o 17 

0.026 86 

1.58 1.003 2.3 6.6 

0.879 2.6 

I 
~ 
-J 
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Now, in the nuclei of lower z, the only energetically favored states 

are the first four configurations listed above. Among these, [g
7
/ 2

4]
0 

with 

seniority zero gives the largest contribution to the transition-matrix element, 

but with an opposite sign to the H22 contributions. Thus the four-quasi-particle • 

states either lower the B(E2) or make no significant difference. 

However, as more particles are added, all the states become gradually 

more important, and the net effect is to increase the B(E2) values, since 

there are more configurations of the form [(ja
2

)J(jb
2

)J] than pure ones. 

Comparison with experimental results (though<~ not abundant enough~to 

be conclusive) shows that the theoretical trend fails to be consistent with 

the experimental one. Since the four-quasi-particle effect is' fairly small 

in general, the main theoretical trend is dictated by the two-quasi-particle 

interactions (through H22 ). We have already observed a similar discrepancy 

between theory and experiment in the two-quasi-particle spectra, ·and as 

pointed out in Sec. 6.5, a renormalization of the force constant seems to be 

present in both the energy spectra and the electric-quadrupole transitions. 

Though not tabulated here, a calculation with a higher t shows the lowering 

of the B (E2) for the nuclei with Z > 58. The monotonic increase of B (E2) was 

also observed by KS9}; their B(E2) results are, however, larger than the experi-

mental results by almost a factor of two, whereas ours are lower by about lCf'/o 

( . c 140 f 1n e , or example). In our case, the interaction betw·een four quasi-

particles may also be significant; this point needs further study if the 

importance of four-quasi-particle states in the ground state is to be understood 

more rigorously. 

As a side interest, we have also computed B(E2) for the second 2+ ~0+ 

ground-state transition. It is known experimentally that this transition is 

highly retarded compared with the first 2+ ~ 0+ transition. Our -results 

• 
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(Table 5) seem to be consistent with experimental results. Kisslinger and 

Sorensen computed these also by an extended RPA, and one finds that their 

results are frequently lower by an order of magnitude that the experimental 

values3l). We have not much to compare with theirs except Ce140 . They find 

B(E2) 2 ,+ -? O+ in Ce
140 

to be Rj 0.0001, while our results give Rj 0.004. ' 

6.8. .MAGNETIC g FACTOR OF 4+ STATE 

There seem to be no experimental data for magnetic g factors of 

. t d t t . th" . t f th 4 1 l . c 140 h" h excl e s a es ln lS reglon, excep or e + eve ln e , w lC was 

recently measured. However, we believe it is ·. wo;r-:thwhile to calculate this 

quantity also as an additional test of the wave functions of 4+ states. The 

results are shown in Fig. 10. In computing the g factor of the 4+ state, the 

values of gj for d
5

/ 2 and g
7

/ 2are taken from neighboring odd-A nuclei (i.e., 

2 2 
g factors are 0.79, 1.76, and 1.17 for (g

7
; 2 ),(d

5
; 2 ) and (d

5
; 2g

7
; 2 ) 

respectivel;
2

)) and those for d
3

/ 2 and h
11

; 2 are estimated with 

{ 

5.585} 

-3.826 

where the upper entry corresponds to the proton and the lower to the neutron . 

Since the configurations involving d
3

/ 2 and h11; 2 have very small amplitudes 

in Ce140, the contributions from them are negligible. Thus the g factor can 

also tell us something about the degree of mixing among the configurations 

I 2 I I 2 140 g 7; 2 /, ,d
5

; 2g
7
; 2 ) and .d

5
; 2). Our result, g = 0.92 for Ce is somewhat 

lower than the experimental value of l.ll measured by Bodenstedt et a1. 33 ). 

According to this, it seems that the 4+ level is either the (d
5

/ 2g
7
/ 2 )' state, 

or a mixed configuration with the dominant configuration being the (d
5

/ 2g7; 2 ) 

state. Our calculation shows, on the other hand, that (g~/2 ) is more likely 
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to be the dominant state with a mixture of (d~/2 ) and (d
5

; 2g
7
; 2 ) (i.e., 

14+)~ 0.30id~/2) + 0.91Jg~/2) - 0.26jd5/2g7/2)). 

It is interesting to note that, as Fig. 11 shows, if one takes the 

wave functions for t < 0 as one does in the conventional shell-model calcula-

tions, then agreement gets better; in fact at t ~ -0.5, a fair agreement, 

w·fthin experimental error, can be found if contributions from all the components 

of the wave function are taken into account. But the value t ~ -0.5 is ruled 

out, since energy spectra cannot be fitted by such t and also theoretical 

B(E2) values fail to fit the experiments. Notice that t ~ 0.3 seems to give 

the lowest g factor in disagreement with experiment. 
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Fig. 1. Odd-even mass differences in 82-neutron nuclei. Theo
retical values are obtained by 2E . • m1n 

Set I; 

Set III; 

••~~•• experimental points (estimated from the 
four-point equation with total binding 
energy); 

~ theoretical values obtained by using the 
complete formula of BCS ground-state energy 
including self-energy term (y=l.05, Set III).' 
Notice that the approximation ~in is in 
excellent agreement with the exact theoretical 
value. 
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Fig. 2. Theoretical single-quasi-particle energies of 82-neutron 
odd-A nuclei, given in relative scale (relative to the lowest 
level). --
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Fig. 4. Self-energy matrix elements for various triplet-to
singlet force ratios, computed with v0 = -32.44 MeV, 
~-172 = 1.755 F, v-1/ 2 = 2.288 F. 
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Fig. 5. Effect of self-energy terms on the occupation factor 
v2 in 82-neutron nuclei, computed withy= 1.05 in Set III. 
--- v2 with self-energy terms, v2 without self-energy 
terms. 
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Fig. 6. "Equi-energy" diagram for Ce
140

. Drawn are f(x,t) 
= constant where x = singlet-force strength, and t = triplet
to-singlet ratio; the figure gives the motion of x and t 
values which give the correct location of 2+ (1.60 MeV) and 
4+ (2.08 MeV) levels. Thus, the closest point of approach 
of the two lines gives the correct 2+ - to - 4+ level spacing. 
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Fig. 7. Theoretical two-quasi-particle spectra for 82-neutron 
even-A nuclei computed with all seven configurations, t = 1.0. 
Experimental points are given in solid squares, with known 
spins in parenthesis. If spins are unknown, or tentatively 
assigned, question marks are put in the parenthesis. 

e ---- -1.15 X 32.9 (Set I) 0---- -1.20 X 32.9 (Set I) 

!:::. ---- -1.05 X 32.4 (Set III) 
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Fig. 8. Theoretical 2+, 3+, and 4+ states in A = 136 to A = 142 
with slight changes in t. Differences in t show the re
normalization of force as a function of number of particles 
outside the core. 

X = 1.15 with Set I. 

J = theoretical; 

(J) = experimental; 

(?) = experimental with spins unidentified 
or tentative. 
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Fig. 9. Theoretical 2+, 3+, and 4+ states in A = 136 to A = 142 
with slight changes in t. Differences in t show the re
normalization of force as a function of number of particles 
outside the core. 

y = 1.05 with Set III. 

J = theoretical; 

(J) = ~xperirnental; 
xxxx theoretical 2+ for t in parenthesis; 

++++ theoretical 2+ for t in parenthesis; 

(?) experimental with spins unidentified 
or tentative. 
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Fig. 10. Magnetic g factor of 4+ states in 82-neutron, even-A 
nuclei computed with wave functions obtained with x = 1.15 (Set I) 
and t = 1.0; g factors for noninteracting configurations 

(d
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; 2
2 ), (d

5
/ 2 g

7
; 2), and (g

712
2) are taken from empirical 

results of neighboring odd-A nuclei, the rest are taken from 
Sclunidt values. 
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Fig. ll. Variation of magnetic g factor for Ce140 as a function 
of t. Only (d5; 2

2 ), (d
5
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2 ) components 

calculated with x = 1.15 (Set I) are taken into account. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com~ 
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method~ or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




