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STUDIES IN THE LIQUID-DROP THEORY OF NUCLEAR FISSION
James Rayford Nix

Lawrence Radiation La.b,ora'.tory
University of California
Berkeley, California

April 1, 1964
ABSTRACT

In connection with nuclear fission we study the division of an
idealized.charged drop,. using a simplified version.of the liquid-drop
model. The degreesv of freedom essential to a discussion of the di-
vision of a charged drop and the separation of the fragments to in-
finity are taken into-account: a fragment-separation coordinate, a
mass-asymmetry coordinate, a deformation coordinate for each frag-
ment, and rotational coordinates for each fragment. To specify frag-
-ment deformation, .the fragments are represented by spheroids; a
nucleus prior to division is represented by two overlapping spheroids.
The Hamiltonian for the idealized system consists of a sum of sur-
face, Coulomb, and kinetic energies.. A study of the saddle-poiht
-energies and shapes .calculated in this two-spheroid approximation
.indicates that the approximation is most useful for discussing the fis-
sion of elements .lighter:lthan_ about radium. On the basis of this model,
~we calculate probability distributions for certain observable char-
acteristics of fission fragments at infinity—their. total translational
~kinetic energy, mass, individual excitation .energies, and individual
.angular momenta. This is done by applying standard stitic, dynamical,
and.statistical methods to the Hamiltonian.for the system., The pres-
ent treatment, for the most part, is classical; quantum mechanics is
considered‘,only in the statistical-mechanics discussion of the behavior
of the system near the saddle point.

v The predictions of the model are compared'with,existing experi-

‘mental data for distributions in fragment mass and total translational
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~.kinetic energy, for nuclei lighter than radium. . The comparisons are

made without the use of any adjustable parameters. The theory is

capable of accounting for the ma.gnitudes of the most probable values

‘and widths of the experimental distributions, as well as some, but

not all, finer details of the distributions:. The dependence of the ex-

‘perimental distributions upon nuclear temperature, and the dependence

of the experimental most probable kinetic energies upon fissionability

- parameter are also approximately reproduced by the calculations.



I. INTRODUCTION

2

Nuclear fission was discovered by Hahn and Strassmann
in 1938, and ye.t, in the two an‘d‘a half decades since its discovery,
an adequate fheory of the fission proces's has still not erﬁerged. ‘Nu-
‘merous papers have been written dealing with various aspects of the
theory, but in/n'o instance' has a definite model with a _weli—deﬁned
Hamiltonian been chosen and the ,implication‘s_"of this model systemati-
cally worked out in detail. Such an approach would requiré that one
s,élect a model characterized by definite degrees of freedom;. apply
. standard static,dynamicai,‘ and statistical methods to the resulting
Hamiltonian; and compare the predictions of the model with experi-
ment. In the present study we attempt to do this for a simplified
versioﬁ of the liquid-drop model. [ A preliminary account of this work
(for a restricted case) is given in reference 3.‘. 1

Shortlvly after the discovery of nuclear fission, Meitner and
. Frisch emphasized the analogy between the fission process and the
division of a charged drop of liquid. 4 On the basis of the liquid-
drop model, Bohr and Wheeler showed that a satisfactory account
could be given of some of tvhe phenomena observed in fission. > ‘These
early successes of the liquid-drop model and its conceptual simplicity
firmly established its popularity for discussing fission,

The major effoi't invthe‘ development of liquid-drop theory has
been concerned with the static problem of calculating the potential
energy of a deformed charged drop. The coordinates normally used
to describe a deformed drop are the coefficients in the expansion of
the drop's radius vector in spherical harmonics. The energy of a
nearly spherical drop can then be calculated in terms of these co-

. . -13
ordinates as an expansion about a sphere. 5-1:

A similar technique,
appropriate for shapes not far removed from spheroidsv (ellipso_ids
of revolutidn), is the expansion about a spheroid. 8-13 For highly
distorted shapes the deformation energy has to be calculated nu-
merically. 14-18 ‘The potential energy of chérged drops is now fairly
well understood, particularly with regard to the va_riati_on of fission

barriers throughout the periodic table.



‘Although statics has been extensively studied, dynamics, on
the other hand, has not been so exhaustively treated. A fragmentary
s;tudy of the dynamical aspects.of fission.was performed by Hill, and
by Hill and iWheeler in connection with the question of mass .asym-
metry. 19-21 For a few special cases, the division of a charged drop
was trai_ced out numerically to a short distance before the éctuél di-
vision of the .di'op ,info-two fragments (scission). However, no re-
-lationship between initial conditions and final results was estéblished,
Some limited aspects of dynamics have also been considered by other
authors, 8,22-25 ‘

-'vahe statistical mecha.hics of fission has been investigated in
some detail. Bohr and Wheeler formulated the calculation of fission
probabilities by applying statistical transition-state methods at the
saddle point. > {See in particular the recent article by Wheeler., ")

. The application of statisfica,l.mechanics in a somewhat different man-
ner was discussed by Fong, whose starting point was the assumption
of statistical equilibrium at the scission point. 27-30 This theory,
howeyer, suffers ,frém the fact that the nuclear configuration at the
~scission point is not defined (until one has performed a dynamica.-l cal-
cula_tior'l)o Statistical aspects of fission have also been eXa.,mined by
several other authors. 31-37 »- _

. We éee that statics, dynamics, and.statistical mechanics have
all been considered to some extent in'pr-evious studies of fission.
Never, however, have they been treated -8ysvtematica11y_fc.>r one and
the same Hamiltonian. | | |

Here an attempt is made to study each of these stéps,for a
simplified version of the liquid-drop model. . The butline of o{lr pro-
gra_m is .as follows: '

(1) Statics: After the coordinates sp’ecifying the system have been
éelected, ‘the potential energy of the sirsfein (for a given nucleus) is
mapped as.a _function‘of its coordinates, and the saddle «point is located

and its properties studied.,



(2) Dynamics: The kinetic energy of the system is calculated as a
function of the coordinates and their conjugate momenta. This makes
it possible, by solving Hamilton's classical equations of motion for
the system, to discuss the‘division of the nucleus and the separation
of the fragments, from some given initial configuration to infinity.

. (3) Statistical mechanics: In analogy to the method employed in dis-
cussing chemical reaction rates, attention is focused on the system
at the saddle point (transition state), and statistical equilibrium is
assumed to hold.there. In the case of chemical reactions, this pro-
-vides information regarding the rate of reaction, and it was for the
calculation of rates that Bohr and Wheeler used the transition-state
method. 5 In our case, however, we . use the transition-state method
to calculate the probability for finding the system in a given state of
~motion close to the saddle point. These probability distributions are
then combined in the sense of initial conditions with the dynamical
calculations [ step (2)] to trace out the separation of the fragments
to infinity. This converts the probability distributions of the states
..of motion around the saddle point into the probability distributions of
observable characteristics of fission fragments: their kinetic energies,
excitations; and angular momenta.

Since the difficulty of solving dynamical equations of motion
increases with the number of coordinates, it is desirable from the
calculational point of view to have present in one's model as few de-
~grees of freedom as possible. Let us therefore see what dégrees of
freedom it is essential to consider, Although we will be concerned
with the liquid-drop model, the discussion that we are about to give
for the degrees of freedom essential to fission is quite general and
does not depend upon the assumption of the liquid-drop model. A

A single isolated fission fragment has three rotational degrees
of freedom and three degrees of freedom associated with its center-
of-mass motion. .Thus for a system consisting of two fission fré.g-
ments a total of 12 coordinates is required to specif'y the orientation

in space and the position of the center of mass of each fragment.



‘These 12 coordinates may be distributed as follows: three spatial
_coordinates for the center of mass of the entire system; two angles
.specifying the direction in space of the line connecting the centers
of mass of the two fragments; the distance between the fragments!
centers of mass; and, for each fragment, three angles (e: g., the
Euler angles) indicating its orientation in space.

In addition to the above 12 coordinates, further vcoo‘rdinates
are required to describe the intrinsic shapes of the fragments. .The
specification of a fragment's extension.in three dimensions requires
three lengths (say three orthogonal axes a,b,c), which means, in
general, two dimensionless numbers (for example, the  and y de-
formations of the collective model, or ‘rela.ted:parameters'39), .This
means that four numbers-are needed to specify the intrinsic shapes
of the two fragments. . Finally, one coordinate is needed to specify
the relative sizes of the fragments. This brings to 17 the number of
coordinates required to describe a system consisting of two separated
fission fragments (see Fig. 1).

It is necessary in a model of fission that one be able to describe
in a continuous manner the sequence of shapes of a fissioning nucleus
from the original sphere,.through.the saddle point and scission config-
uration, to the two fragments at infinity. In order for the number of

-degrees of freedom not to change suddenly in the course of the di-
" .vision, it follows that the number of degrees of freedom specifying
' fission shapes before division into separate fragments must also, in
general, be 17 or more,.

"One could in principle continue introducing additional degrees
- of freedom to describe finer details of the dividing nucleus, including
ultimately single-particle structure, until the number of degrees of
freedom equ‘-aied the sum of the degrees of freedom of all the indivi-
» dual nucleons. We will consider explicitly, however, only the 17
basic degrees bof freedom enumerated.above. Although the remaining
“degrees of freedom will never be treated explicitly, they will, on the
other hand, not be disregarded entirely. Their presence will be recog-

nized implicitly when we consider the statistical mechanics of fission,



Fig.

1.
_of freedom. Three (Euler) angles describe the orientation

MU-33372

A two-fragment configuration described by 17 degrees

in space of one fragment, three of the other, and two angles
describe the orientation of the line joining their centers.

One number specifies the relative sizes of the fragments,
two specify the intrinsic shape of one fragment, two of the
other, and one their separation. A Three degrees of freedom
describe the location in space of the cornmon center of mass.
Total: 3+3+2+1+24+2+1+3-=



when they will be assigned their statistical share of the total energy.

The queétion arises of how to choose the deformation co-
ordinates for each fragment. We shall not be concerned here with
effects arising from deviations of the fragments from axial symmetry..
We will therefore restrict ourselves from the beginning to fragments
that are axié.lly symmetric, thus reducing the number of degrees of
freedom to 15. .Because spheroids can represent any desired degree
of prolate and oblate elongation, and because their surface and
,Coulofnb energies can be easily calculated, we will use spheroids
to represent the fission fragments. Following a suggestion by
Wladyslaw J. Swiatecki .(Lawrence Radiation Laboratory, Berkeley),
we will represent a nucleus prior to division by two overlapping
. spheroids ,' with the interior surface of each simply "erased. "™ With
this parametrization, one is able to describe .continuocusly in an
approximate way the sequence of shapes of a fissioning nucleus from
the original sphere to the two fragments at infinity.

| Of the 15 degrees of freedom required for specifying a system
compbsed of two axially symmetric fragments, 3 are trivially elimi-
nated by working in the center-of-mass system. Three more may be
eliminated if, as will be done in the present work, one restricts the
discussion to a system with zero total angular momentum.

. This, then, leaves a system possessing nine degrees of
freedom. In the neighborhood of the saddle point,.these nine degrees
of freedom correspond to certain characteristic motions of the system.
The most important of these is the motion in the fission direction—an
over-all separation of the system leading to its eventual division into
fission fragments. The potential energy in this direction is of the
form of a potential-energy barrier., For division of the drop to occur,
the system must pass over this barrier.

Most of the remaining motibns near the saddle point (motions
in the non—fission direction) consist, in general, of bounded small
oscillations, resulting from the /potenfial energy increasing with
deviations from the saddle point in these directions. These oscil-

lations involve the relative sizes of the fragments, their eccentricities,



and.their orientations in space. . The various modes of oscillation
 that occur correspond roughly to (a) a change in the relative sizes
.of the fragments, (b) an in- -phase or out- of-phase stretching and
contractlon of the left-hand and rlght hand halves of the saddle- -point
~ configuration, and (c) a bending and "wriggling" of the saddle-point
'conflguratmn In the treatment of these oscillations, the -approx1-
mation that they are small will be made, :although there will be some
discussion of h1gher order effects.

The separation of the .fragments from the saddle poiht to
in.finity_will be traced out dynamically. .This converts the :possible
states of mot‘ion near the saddle pdint.into states of motion of two -
fragments at infinity. The motion of the fragments at inﬁhity con-
sists of a translation of their centers of mass, and rotations-and
vibrations about their centers .of mass. |

. The states of motion of the fragments at .infinity correspond
‘directly to observable propert1es of fission fragments: . (a) The
speed of separation of the fragments' centers of mass determines
their translational kinetic energies. (b) The relat1ve sizes of the!
fragments are directly observable. (c) The vibrations of the frag-
ments are assocm.ted with their excitation (v1brat1ona1 or deformation)
energles.* (d) The rotations of the fragments-are associated with
théir angular momenta.

-We will find that for each of the above quantities we afe able
to discuss nof only its most prbbable,value, but also the distribution
‘about its most probable value. In pa.rticular, our theory predicts the
probability distribution P(E, U, X XZ’ 1

serv_lng the two fragments. at 1nf1n1ty with total translational kinetic

EZ) of simultaneously ob-

énergy E, fractional mass U, individual excitation energies X1 and

sk : . v
When used in this context, the term "excitation energy'" refers to
the energy of the collective vibrations and deformations of the frag-
ment; it does not include the internal (excitation) energy of fhe in-

dividual nucleons.



X5, and individual aﬁgular momenta '-L>1 ahd -I-:Z ’An arrow above a
.symbol denotes a vector quantlty ) It proves convenient in practlce to
obtain from this d1str1but10n, by integrating over the quantities not of
1mmed1ate interest, probablhty distributions involving a smaller
number of observa.ble quant1t1es Three such dlstr1but10ns are

P(E, U), P(X 2) and P(L 2) '

Our theory will also predlct how these d1str1but10ns should
vary with the (internal) excitation energy of the compound nucleus
undergoing f1SS1on, as well as with its. charge and mass.

.The 1mmed1ate test of the theory will be the comparison of
predlctlons with exper1ment for d1str1but10ns in mass and total trans-
lational kinetic energy [P(E U)] It is hoped that these comparisons,
-as well as those to be made when more experimental information be-
comes available, will yield a more.accurate id_ea of the relevance of
the liquid-drop model for .discussing fission phenomena. Indeed,
the entire purpese of undertaking this study \-;v.a;s to trace out in detail
the charaeteristics of the division of an idealized droplet whose size,
surface tension, and charge are th_os,e of a nuc;l_eus, and to compare

the results with what is observed experimentally in the fission of real

nuclei. Stated in this way, there are no adjustable parameters

The same symbol P is used throughout this paper to denote each
of several probability distributions; the argument or subscript will

indicate which explicit function is being referred to.

T‘Experimenta.}t information regarding the other distributions is at
present not available for the fission of nuclei lighter.than radium.
We will see later that it is for these nuclei that our model is most

- applicable.
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in the problem. i Thus, when the comparison is made with experi-
ment, we shall learn unambiguously to what extent 'a.n.-idea'liz'ed
liquid-drop model is capable of representing the characteristics of
flss1on, as regards both over-all order- of-magmtude agreement and
 also more detailed aspects of the process. ’

| . Concerning the question of the validity of the liquid-d‘rop model
for discussing fivssion, we believe that the above.clear-cut program
of an.unambiguous comparison of nuclear fission with the division of
an ib‘dealli'z'e'd drop should be carried through irrespecti‘vevof how good
the liquid-drop model is thou'ght'to be. Nevertheless it is of interest
to form some a priori judgment as to how well an idealized drep
rnight be expected to represent"nuclea_r fissio.n." Some comments on

| this subject are made in Appendix A, where we indicate that the sur-
face and Coulomb energies may be regarded as the two leadrng shape-
' dep'endent termsin an expansion of the potential energy in increasing
.powers of th,e small dimensionless number characterizing the nuclee,r
problem—the ratio of the range of the nuclear force to the nuclear
‘radius. The general conclusion is that the effects arising from the

' d1screteness of nucleons (single-particle shell structure) are of a
‘lower order in this dimensionless number, and, barring accidental
‘cancellations of the leading terms, should in general be sfhé.ller than
the effects of the surface and Coulomb energies. In the region of the
" heavy elements the changes in the Coulomb and surface energies do
indeed tend to cancel, and, especially in the case of fission at low
excitation energy, the single-particle effects may then be essential
for discussing certain aspects of the process. On the other hand,

for nuclei lighter than about radium, where the cancellation .of the

>;"\I_Ve have taken the constants of the Bethe-Weizsacker semi-
empirical mass formula from Green's analysis of ground-state
masses. 40 The nuclear temperature at the saddle point is deter-
,rnivned from the excitation energy and fission barrier of the compound

nucleus. -All other quantities are calculated directly from the model.
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changes in the Coulomb ‘and surface energies is not so close, single-

particle effects should not have the same relative 1mportance, particu-

larly at higher exc1tat1on energies, A logical approach would seem to T
‘'be to work out the details of the theoryv‘fivrsty .considefing oniy ‘the sur-
face and CQulomb' energies,. and later 'te incorporate single-perticle
‘effects. Even though the liquid-drop theory of fission would not be
expected to be accurate for a particular nueleus, it can be expected
.to.yield the correct average behavior of nuclei thfoughoﬁt the .-periodic
table, in analegy to. the way the -iiquid drop semiemp‘i-ric‘a.l mass for-

mula reproduces ‘the correct trends in the masses of nuclel, -apart

from osc111at10ns due to shell structure,

“We will see later that other prdperties of the model we introduce
also make it most suitable for discussing the f1s31on of elernents

lighter than radium.
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-II. STATICS

We shall be concerned in this section with the static properties
of our model—with mapping the potential energy of the system as a
funct1on of its coordinates, and with studying the propert1es of the
' saddle-point configuration. Before proceeding with this study, how-

ever, it will be advantageous for us to take care of some preliminaries.

A, Units, Notation, and.Coordinates

For dlSCU.S sing fission within the framework of the liquid-

drop model, it is convenient. to use a system of units based on the
v original spherical drop, rather than the conventional units of length,
‘mass, a_ndvtimé. " The three ""matural® units.to choose-are the radius,
‘mass, and surface energy of the original drop. Time is then no

longer a,_fundamental unit, but is expressed in terms of a length, a
mass, ahd-é._n energy. This is analogous to the situation in.elementary-
particle physics, for example, where the speed of light, Pla_.nck' s
_constant divided by 27, and the pion mass are chosen as units.

| | In actual applications .it is necessary to convert these liquid-
drop units to conventional units. For the compa_risbn of the theo-
-retiéa_l and experimental results discussed here, this conversion is
‘made with Green' s values for the constants in the semiempirical mass
formula. 40% -We . denote by . A the number of nucleons in the com-

| pound nucleus‘unde-rgbing fission. Then the radius of the original

drop is _

R, = T, A1/3, with r = 1.216x10~ 13 cm, . (1a)
and its surface ehex_"gy is

Eg’) = ag A2/3 , with ag = 17.80 MeV. (1b)

When future determinations of these constants are made, the new

values may be used since all theoretical quantities are given here in

S liquid—drop units.,
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The mass.of the original drop, to an accuracy within one part per.

thousand, is equal to the mass unit times the number of nucleons; thus,

B My =my A, | | (1c)

. with .o
‘ -24 2 o

m; = 1.660X10° 7" g = 931 MeV/c (reference 41).

In this discussion of units the symbol c¢ denotes the speed of light.

The units for Other*familia,r.q'uantiti‘es may be readily derived

from these three fundamental ones. For example, .the unit of time is

1/2
/»R 2 ,1/2

3 (0), . 1
My /EST] ‘(mo/?‘s)/ To

-
|

(2.933x10" %3 sec)Ai/Z ; o (2)

the unit of linear momentum is
P, = [ MEQ)] 1z (myag) /24578 - (128.8 Mev/e)a®/8,

‘and the unit of angular momentum is

A™6 - (0.7931)a7/®,
(3)

where . is Planck's constant divided by 27,  The unit of frequency

= M, E(O)] / R, = :(m'o"’.‘s)i/zro

is
Q= 1/T0 = (3.,409><1,022/se¢)/A1/2f; . | (4a)

- when multiplied by “h this becomes

nQ, = 22.44 Mev/al/? - 4261 E(O)/A7/6 9 (4b)

| 1/2
- Although the unit of charge is formally [RO Eéo)] , the

charge on the drop is more conveniently specified through the dimension-

less fissionability parameter x, defined,by'5
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(charge) ‘ . (5a)
10(v01ume) (surface tension)

X =

{
. (The surface tensmn multiplied by 4nré is equal to ag ) For a un1—

- 'formly charged drop with a sharp surface, "

weEOfER). <5_b>.'

{fvhere ‘ Eéo) is the Coulomb 'energy of the original drop, given by

e - 3.Z.Ze2/(5R.0)‘= aczz/Ai/"",

' with 'z the number of p.rotons., ‘e the e'lectroni'c_cha._rge, and the .~
40 . :

- constant' ac = 0.710 MeV. A third conventicnal_ form for x is

X = (Z /A)/(Z /A)crlt ' ‘ _ “\ (5¢)
__whef_e ' - '

(2 /A)Crlt , a.S/a.vC = 50.13.

then,these.liquid-drop units are used, the results of our
calculations can be displayed as functions of a single parameter (e. g.,
x) rather than as functions of two parameters (e.g., Z and A).

The notation of this paper will adhere, insofar as is practicable,

. to th_e,' following convention: Quantities referring to the left-hand frag-

ment will be ,distipguished by the subscript 1, and to the right-hand
fragment by the subscript 2. Furthermore, unless otherwise noted,
.any quant1ty that is the sum of two quantities, each,r'e:ferringbto an
-individual fragmené, will be designated by the same.;,‘symbol but with-
out subscripfs; e. g., the to.tal excitation energy of both fragments |
(X + XZ) will be denoted by X, S |

' -~ For specifying the angles involved in our problem, we will
adopt the following scheme (see the lower part of Fig. 2): We denote
by & and & the two angles specifying the d1rect1on in space of the
line connecting the centers of the two fragments.  We define a right-

: vhahded coordinate system -whos.e‘origin is at the center of fragment 1,
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MU-33547

Fig. 2. Coordinates used for describing a two-spheroid con-
figuration. The three Euler angles6,, ¢,, ¥, describe
.the orientation in space of the left-hand spheroid (see
description in text), and 62, b5 tlJZ the right-hand
spheroid; .the two angles ® and & describe the orienta-
tion in space of the line connecting their centers. The

- fractional mass (fractional volume) of the left-hand

- spheroid is denoted by U. The semisymmetry axis of
the left-hand spheroid is denoted by c,, and that of the

" right-hand one by c¢,.. The distance bétween their

centers is £. Illustrated in the upper part of the figure
for overlapping spheroids are the two coordinates
and c=c¢, = c¢,, used for discussing the restricted
case of completely symmetrical fragments.
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Whose z, axis is along the line connecting th¢ spheroid centers
“(positive in the direction fragment 2), and whose Xy and yy axes
~are ‘perpendicular to one another and to the z, axis. We define a
»second coordinate system whose origin is at the center of fragment 2,
,’and whose x,, y,, and z, axes are parallel (with the same sense of
direction) to the X0 ¥y and z, axes, respectively. Then the orien-
tation in space of fragment 1 is specified by the three. Euler angles
1, ¢>1,' ‘and ¢1‘(as def1ned, for example, by Gold_stem ), and the
oriventav.ti'on of fragment 2 by 02, $,, and LPZ. These angles are de-
- fined as the (counterclockwise) angles of rotation about three mutually
inclined axes necessary to bring a fragment from a position with its -
symﬁietry axis along the z, (or ZZ.) axis to its final position. For
fragment 1, say, these rotations are: one through the ang1¢ ¢1

about the z axis,one through the angle 9'1 about the new x, axis,

1 1
and one through the angle ¢1 about the new 2z, axis, made in that

“Ordér. The angle 91 is the polar angle of sphierical coordinates usually
' denoted by the same symbol: the angle between the z, axis and the
~ symmetry axis of fragment 1. The angle ¢1 is . related to the usual
azimuthal angle of polar coordinates by an additive constant.

, Because of the symmetry of the system, theApotentlal energy
’is_lixidependent 6f all but the following three of the above angles: 61,
92, and the difference ¢ = ¢1 - %, betWe'en the azimuthal angles of
" the fragments' symmetry axes.

We choose the four remaining coordinates required for spec1fy1ng

a two-spheroid configuration (in the center-of-mass system) as fol-
lowé: (a) the disvtance y] bétween'the‘centers of the two spheroids,
(b) the fractiénal mass (fractional volume) U of the left-hand frag-

* B .
- ment, ~and (c) the semiaxes c, and c, of each fragment along its

. 1
line of symmetryT (see again the lower part of Fig. 2). . -

* : '
The fractional mass of the right-hand fragment is 1-U.
TFor_ example, if spheroid‘ 1 is prolate, then <y is.its semimajor

- axis; its semiminor axis is determined by volume conservation.
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Prior to divvisvion into separate fria,gments,‘ﬂthe nucleus is
represented by two overlapping s?heroids,‘ When the spheroids are
.overlapping, both the potential energy and the kinetic en'er'gy are much
‘more difficult to calculate than when they are sepa.rated and .we then
: cons1der on].y the restricted case of symmetrical fragments, in which

= 1/2, cy=cy=c, and 6 92 = 0. (The potential energy is for
‘thls case 1ndependent of ¢. ) For this: restrlcted case,.the two co-
ordinates £ and c completely specify the System (see the upper

_pa.rt of Fig. 2)

'B. Potential. Energy of the System

The potent1a1 energy of the system is simply the sum of the
surface energy E.S and the Coulomb energy ,,Eco The potential energy

e ,‘ of a deformed drop, . r_ela.tive. to. the original drop, is then

] 0, 5 _gO
V= Eg-Eg' +E.-E;

O)+ (B - 1)E( )

(B - 1) E{

4[(13 -1)+2x(B -] E(O). - (6a)

The function BS is the total Surface energy of the system in units
of the surface energy E(O) of the original drop, and BC is the total
' ACoulomb energy of the system in units of the Coulomb energy - Eg))
cof the original drop. The definition (5b) is used.ln going from step 2
to step 3. When the system consists of two separated ffa,gments, .the

potential energy is conveniently written as
Y = {[B‘éi) + Béz) -1} 4 2x [B“) ¥ Bg) + B - 1]} g0 (ep)

The function B(i), for example, is the 'sutrféce energy of fragment 1
in units of E! 0),]3&1) is the Coulomb self-energy of fragment 1 in

units of Eg)), and BI is the Coulomb interaction energy between
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(0)

fra,gn'r_xrgnts 1 and_Zvin units of EC . In terms of these. appropriate
‘units, the various energies denoted by ‘B depend upon neither the
value of A nor of Z of the original nucleus; they.:a.r_e functions .only
of the shape of the system. | |
- Different formulae for calculating the energies are used, de-
pending upon whether the system consists of separated spheroids or
overlapping spheroids. . The case in which the spheroids are separated
is the simpler. The surface energies and. Coulomb self-energies are
then expressible in a .closed form, and the interaction energy may be
‘calculated by performing a triple multipole summation. Formulae
- for'calculating 9 as a function of the coordinates specifying the
system are given in Appendix B.1. For the restricted case of over-
vla.pping spheroids, specified by the two coordinates £ and c, the
surface energy is again expressible in a closed form, but the Coulomb
| ‘energy must now bevea.lc.:ulated by numerically evaluating a double
integral. The formulae given in Appendix B.2 for the symmetric
overlapping case could be readiiy generalized to the case where
U#1/2 and <y 7 c,, but not to the n'on-axially—s;?mme'tric case.
‘Let us now examine the appearance of the potential-energy
. surfaces calculated vwith these formulae. Since the results can be
displayed easily in at most two dimensions, we present maps of the
potential energy as functions of the t§vo coordinates specifying sym- .
metrical fragments: the separation -co‘ordina.te £ and the deformation
coordinate c. An examination of the potential energy for this restricted
case will tell us many .things of interest, .including the location of the '
.symmetric saddle 'pOint." The pofentia.l.energy is r_r{apped in Fig. 3
for values of the fissionability pa.rameter 'x between 0.05 and 1.0, at
intervals of 0.05. Shown also in this figure is a map of the surface
energy BS and the Coulomb energy BC’ as well as an illustration of

the configurations of the system for various values of the coordinates.
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- MUB-2416

Fig. 3a. Symmetric two-spheroid configurations for selected.
coordinates (marked by +), Coulomb energy B, and
surface energy Bg. The function Bg is the Coulomb
energy in units of E(é)) , and Bg is the surface energy
in units of E(SO) . The dot-dashed line in each case
corresponds to the scission configuration of tangent
spheroids (£ = 2¢); the long-dashed line corresponds
to the configuration of two separated spheres '

(c/Rq = 1/21/3). -
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MUB-2414

F1g 3b. Maps of potential energy ’V for x = 0.05, 0.10,
0.15, and 0.20. The function V is in units of E(SO)
The solutions of the equations of motion corresponding
to starting from rest at the saddle points are indicated
by the points, which are equally spaced in time at in-
tervals of 0.1 Ty see Eq. (2) for value of Tgl.
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Fig. 3c. Maps. of potential energy ¥ for x = 0.25, 0.30, 0.35,
- and 0.40. The function ¥ is in units of E(g) . The
- solutions of the equations of motion corresponding to
" starting from rest at the saddle points are indicated by
the points, which are equally spaced in time at intervals
of 0.1 Tg [see Eq." (2) for value of Ty].
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Fig. 3d. Maps of potential energy ¥ for x = 0.45, 0.50, 0.55,
and 0.60, The function % is in units of E{0) . The
solutions of the equations of motion corresponding to
starting from rest at the saddle points are indicated
by the points, which are equally spaced in time at
intervals of 0.1 T | see Eq. (2) for value of To] .
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MUB-2417

Fig. 3e. Maps of potential energy YV for x = 0.65, 0.70,
0.75, and 0.80. The location of the overlapping
saddle point for x = 0.80 is shown by the cross
mark; for this value of x there are two saddles
and a stable minimum point (apart from the original
sphere). The function % is in units of E(SO) . The
solutions of the equations of motion corresponding
to starting from rest at the saddle points are in-
dicated by the points, which are equally spaced in
time at intervals of 0.1 T [ see Eq. (2) for value of

Tol-
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MUB-2415

Fig. 3f. Maps of potential energy ¥ for x = 0.85, 0.90,
0.95, and 1.00. The locations of the saddle points
for x = 0.85, 0.90, and 0.95 are indicated by cross
marks.
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An expansion of the potential energy about the sphere indicates
.that for small distortions the contours are portions of ellipses whose
,majof axes are tilted.at angles of about 30.5° from the horizontal
.(see Appendix B.2). As the drop distorts in the direction of the saddle
point, the potential energy increases until the saddle point is reached
and then begins to decrease. For large values of x the potential-
energy surface is much flatter in the overlapping region than in.the
separated region; the opposite is true for small values of x. The
potential-energy surface in the separated regionis a '"trough' that
drops off approximately as 1/4 along the separation coordinate. At
the scission.line £ = 2c¢ dividing the two regions.there occurs a. cusp
in the energy surface. * ‘This results from the discontinuous rate of
change of the surface energy in passing from the region of overlapping
spheroids, where the surface energy increases with separation,.to
the region of separated spheroids, where the surface energy is in-
dependent of separation. |

The .results of electronic comp1‘1ter studies of equilibrium con-
figurations of idealized charged drops . have recently become ava.ilable,15_18
It is possible, then, to compare with these essentially exact results
various properties of equilibrium configurations calculated in.the two-

‘'spheroid approximation. This will provide us with some idea of the

“When all coordinates are . considered, the cusp occurs at those
values of the coordinates that correspond to the configuration of

touching spheroids.
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limitations of our model. The following properties of equilibrium
configurations are compared as functions of fissionability parameter:
the total potential en'ergy' ‘V , .in Fig. 4;. the individual surface and"
_Coulomb energies »BS and "BC3 in Fig. 5; the saddle-point shape
of the drop, in Fig. 6; and the drop's maximum and minimum radii
' ‘Rmax and ‘Rmi-n’ in Fig. 7. _ A
There are several observations that may be made. One con-
cerns the general appearance of the saddle-point shapes. A striking
~discrepancy between the true saddle-point shapes and those calculated
in the two-spheroid approximation occurs in the central region of the
drop (the neck). The restriction that the frégmentsma.intainvsphe:-
roidal shapes allows the drop very little freedom at its néck. In
particular, a discontinuity is introduced in the surface of the drop,
and the radius of the neck (Rmin)' in its dependence on x is repro-
- duced very poorly. The two-spheroid model is thus not suitable for
‘discussing phenomena that depend upon the properties of the neck."
In the two-spheroid approximation, when the ,fissioné.bility

"parameter x is between 0 and 0.80, the saddle point lies on the
scission line, possessing the s,hé.pe of two tangent spherbids. For
values of x between 0.80 and.1.0, the saddle point occurs .for some
value of £ <2c; i.e., the saddle-point shape is the configuration of
two overlapping spheroids. . The results of the exact célculafions in-
dicate that the saddle-point shapes change from dumbbell-like (approx-
imated by two tangent spheroids) for x < 0.67 to cylinder-like (approx-
imated by two overlapping spheroids) for x > O_.67.15 Thus the transi-
tion at x =0.80 in the two-spheroid model, . although qualitatively
correct, occurs. at a value of x that is somewhat too high.

’ In the short interval 0.79 < x < 0.85 there are inthe two-

spheroid model three equilibrium configurations (apart from the

sk

original sphere):. two saddle points and one stable minimum point.

* : ' '
- ‘This is clearly seen in Fig. 3 in the map for x = 0.80 but is not
discernible for x = 0.85. The transition point is at x = 0.80, since

it is for this value of x that the two-saddles have the same energy.
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Fig. 4. The potential energy of equilibrium configurations,
as a function of fissionability parameter x. The re-
sult calculated in the two-spheroid approximation is
given by the solid line, the result of Cohen and
Swiateckil5 by the short-dashed line, and the result
of Strutinskiit? by the dot-dashed line.
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The surface energy B, and Coulomb energy B
of equilibrium configurations, as functions of
fissionability parameter x. The function Bg is
the surface energy in units of E{0) , and B2 is
the Coulomb energy in units of E(Q) . The Fesults
calculated in the two-spheroid approximation are
given by the solid lines, and the results of Cohen
and Swiateckil5 by the dashed lines.

C
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Fig. 6.

5

Saddle-point shapes for various values of the
fissionability parameter x., Shapes calculated
in the two-spheroid appr'oxima'tion are given by
the solid lines, and those calculated by Cohen
and Swiateckil5 by the dashed lines. For x = 0.8
the two saddle-point shapes occurring in the two-
spheroid approximation are shown,

MUR.2411
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Fig. 7. Maximum and minimum radii of equilibrium con-
- figurations, as functions of fissionability parameter x.

The results calculated in the two-spheroid approximation
are given by the solid lines, the results of Cohen and
Swiatecki}f’ by the dashed lines, and the results of
Strutinskiil” by the solid points. Note that the minimum
radius calculated by Strutinskil for x = 0.65 is appre-
ciably lower than that of Cohen and Swiatecki. The
known limiting form of R_ . /RO for x— 0 is indicated
by the straight line. rn
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The occurrence of three configurations of equilibrium is associated
with'a "dip" in the potential energy as a function of distortion. . For
CX ciose to the respective transition point in-both the two-spheroid
a.ppljoximatibn and in the exact calculations, the potential energy be-
comes. extremely flat. - A very slight. dip occurs in the two-spheroid
~model, resulting in three equilibrium configurations, but does not
occur in the exact calculations. *

The dependence on .x of the remaining properties calculated
in the two-spheroid approximation is. qualitatively correct. The two-
spheroid modeél in addition reproduces.the exact results both for x
close to 1.0, where the saddle-point shape is a single spheroid (a
single sphere at x = 1.0), and-at x = 0,. where the saddle-point shape
is a pair of tangent spheres. However, it is clear from the figures

_that for the range of x roughly between 0.67 and 0.85 the two-spheroid
model represents very poorly the true saddle-point propertieso. Thus,
for 0.67 <x £ 0.85 this model should not be expected to-accurately
describe phenomena associated with saddle-point shapes, Nevertheless,

.the model is still useful for this range of x for discussing_phenomena
‘not related to the saddle point, such as the separation of the fragments

: a,fter.. scission.

.For x 50.67 there is fair agreement betweén the exact saddle-
point properties and those calculated .in,the‘. two-spheroid approximation.

. The following major discrepancies should be noted. The fission
barrier (sadd1e=point potential energy) calculated in the two-spheroid
-approximation is higher than the true liquid-drop barrier. This dif-

- ference becomes as 1arge as about 23 MeV, where the two-spheroid

* 3 -
Historically, however, it was for a time believed that three
equilibrium configurations. possibly did exist for a short range of x

close to 0.7. 15,43

TUnfortuna,tely, .most experimental information on fission is for
nuclei that lie in this r_ahge of x. Some data exist, however, on the

fission of nuclei where x < 0.67, and more are becoming available

as time progresses,
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barrier is roughly twice as high as the exact one. This means that
the division of tile total ,evner.g'y of the system at the saddle point into
potential energy and internal excitation energy will be incorrect. The
potential energy of deforma.fion will be greater than it shoﬁld.be, and
the internal excitation energy less by a . corresponding amount.

Recall that for the.lower values of .x under consideration
(x < 0.67) the saddle point lies on the scission line, where there is a
cusp in the potential energy. In the direction of motion across the
saddle point,. then, there is a discontinuity in the rate of change of
the potential energy. In particula,vr,; the second derivative, represent-
ing the (negative)i'fission" stiffness,consté.nt, is not d.e‘fined, Thus
both the magnitude of the potential energy.and the associated stiffness
constant in the fis_sioﬁ direction are not well reproduced by the two-
spheroid model. - ]

The failure of the model in these two respects (as well -a,s its
other failures, including the more drastic ones for the region 0.67 <
X £0.85) is due to the lack of freedom of the drop at its neck: At the
suggestion of Wladyslaw J. Swiatecki, we generalized the .two-spherbid
.model by introducing a third conicoid of revolution (a._hyperboloid_of
revolution of one or two sheets, or a.spheroid) to connect the two end
.spheroids. * By including one additional coordinate to explicitly de-
‘'scribe theneck degree.offreédom, we found that all the saddle-point
properties of Figs. 4-7 are reproduced with-amazing accuracy. . For
example, over the entire range of x from 0 to 1.0, the fission ba_rbri'ers
calculated in this generalization are accurate to within one-half an
MeV. This is illustrated by the comparisons of saddle-point properties
‘made in Figs. 8-11. .

One would expect the two-spheroid model (without the .conicoidal
neck) to adequately describe those saddle-point properties not de-

péndent upon details.of the neck. The theory we develop depends in

* ' : '
- Formulae for calculating the potential energy of such a system

are given in Appendix B.3.
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The potential energy of saddle-point shapes, as a
function of fissionability parameter x. The result
calculated by using two spheroids connected by a coni-
coid of revolution is given by the solid line, the result
of Cohen and Swiateckil® by the short-dashed line,
and the result of Strutinskiil? by the dot-dashed line.
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The surface energy B, and Coulomb energy B
of saddle-point shapes, ‘as functions of fissionability
parameter x, The function B, is the surface energy
in units of Ego), and B, is the Coulomb energy in units
of E{0), Th& results calculated by using two spheroids"
connected by a conicoid of revolution are given by the
solid lines, and the results of Cohen and Swiateckild by
the dashed lines. The known values of Bgand B for
x = 0 are indicated by open circles.
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MUB-2412

Fig. 10. Saddle-point shapes for various values of the
fissionability parameter x. Shapes calculated by
using two spheroids connected by a conicoid of revo-
lution are given by the solid lines, and those calcu-
lated by Cohen and Swiateckil® by the dashed lines.
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Fig. 11, Maximum and minimum radii of saddle-point shapes,

as functions of fissionability parameter x., The results
calculated by using two spheroids connected by a coni-
coid of revolution are %iven by the solid line, the results
of Cohen and Swiatecki 5 by the dashed lines, and the re-
sults of Strutinskiil’ by the solid points., Note that the
minimum radius calculated by Strutinskii for x = 0,65
is appreciably lower than the other two results., The known
limiting form of R_. /R for x - 0 is indicated by the
straight line, and the Valde of R /R, for x =0 by an
: max’ =0
open circle, o
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part upon the variation of the potential energy in the neighborhood of
the saddle point—in particular, upon the second derivatives .of the
potential energy evaluated at the saddle point (the stiffness constants).
The increase in potential energy arising from changes in the fractional
mass and in the length of the fragments' axes is.affected little by the
presence or absence of a neck. . We would thus expect the V‘phenomena
associated with the second derivatives with respect to fractional mass
and semisymmetry axes—the distributions in mass, total translational
kinetic energy, and excitation energies—to be described moderately
~well by the two-spheroid model. On the other hand, the crudeness of
the neck makes.the reliability of the stiffness constants for the angular
coordinates less certain. We therefore do not have a clear idea of
how well we should expect the distributions in fragment angular mo-
menta (associated with the angular-coordinate stiffness constants)

to be described by the model.

. To summarize, -we see that the two-spheroid model is in-
adequate in two important respects: First of all, it cannot be reliably
used for x ¥ 0.67, where most of the experimental information on fis-
sion lies. Secondly, even for x '< 0.67,it. does not reproduce well
those saddle-point properties associated with the neck—in particular,
the fission barrier and the fission stiffness constant. It is thus un-
suitable even.in this range of x for discussing quantities dependent
upon these prope‘rties, mvsuch as the probability of fission. On the
other hand, the two-spheroid model is expected to be useful for esti-
‘mating the distributions in mass, total translational kinetic energy,
excitation energies, and angular momenta of the fragments at infinity.
-The accuracy of the estimated distributions in angular momenta is
.uncertain. As regards the remaining distributions, we would expect
the estimates to be moderately good—better than order of magnitude —

and yet certainly not exact.
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III. DYNAWCS

We considered in the last section one part of the Hamiltonian
for the system: the potential energy; we now turn our attention to
the other part: the kinetic energy. Although the potential energy of
a liquid drop is uniquely determined as soon as the drop's boundary
is given, the kinetic energy, on.the other hand, is not uniquely deter-
.mined by specifying the time rate of change of the boundary. One
must in addition make some statement regarding the nature of the
‘hydrodynamic flow of the fluid inside the drop, i.e., the curl (rotation
.or vorticity) in the system must be specified. A thoroﬁgh treatment
of 'theiliquid-drc_)p model would thus require that one study the system
for various types of hydrodynamic flow, consistent with .one and the

same motion of the boundary.

We work out the details of the theory for the case of an in-
compressible fluid in .which vibrations of a fragment are treated as
irrotational, whereas rotations are treated as if the fragment were a
rigid body. This means that the hydrodynamic flow within each frag-
ment is taken to be a superposition of an. irrotatic\)nal flow and a flow
corrésponding to a uniform rotation; i.e., the curl within each frag-

) ment is equal to twice the angular-velocity vector (which.is constant
throughout the fragment).  (For a__brief'dis,cussion of such composite.
types of flow, see L‘a_.mb.‘44)

The type of hydrodynamic flow that we have:chosen to éonsider
is, of course, only one of several types for which the theory should
be worked out. . For example, the case in.which the flow is completély :
irrotational (as.regards both vibrations and rotations), and the case
in which the drop is very viscous should also be,consideredo * ‘The

actual situation in nuclei is presumably intermediate between these

limiting cases.

“When we discuss the solutions to the equations of motion we will,
whenever possible'y also indicate the result for the case in which the
fragments are infinitely viscous, and would therefore separate to

infinity without oscillating.
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It is of interest to have some a priori opinion as to how well
‘the type of flow we are considering represents real nuclei. The de-
duction.of vibrational inertial parameters and moments of inertia for

nuclei in their ground states has been extensively considered. (See,

.for example, reference 45.) Estimates of the vibrational inertial
‘parameters corresponding to quadrupole vibrations of even-even
nuclei about spherical equilibrium shapes indicate that the actual
. values are considerably greater than the values corresponding to
irrotational flow. 45 These values, however, .are strongly influenced
by the effects .of single-particle shell structure on ground-state nuclei.
. For the vibrations of interest in fis‘s-ionu_srnall vibrations of the s,ystem'
about a deformed saddle-point shape, and relatively large vibrations
.of the fragments about their centers following scission—the effects of
single particles would be expected to be less important.

Estimates of moments of inertia corresponding to rotations
of deformed even-even.nuclei indicate that the actual values are
greater than the values corresponding to.irrotational flow; and less
than the values corresponding to rigid-body rotation, As the de--
formation of the nuclear equilibrium configuration increases, . the
ratio of the observed moment of inertia to the rigid-body value in-
creases, 4_5 This :would imply that. for the relatively large fragment
deformations encountered in fissicon the fragment moments of inertia
should not be too far from their rigid-body values. ’

- In-addition, the fragments in fission will, in general, possess
some internal excitation, and, as we will discover, are typically
rotating with several h units of angular momentum. One would ex-
-pect. each of these effects to inérease- the moment of inertia.  For ex-
ample, since the Coriolis force associated with rotations . counteracts
the pairing correlations (that are responsible for the .reduction of the
moment of inertia), the moment of inertia should increase with in-

46

cr.eaéing,angular momentum. “When the angular momentum of a
nucleus exceeds a critical value ( = 12 f for A =~ 180, and = 18 H
for A = 238), the moment of inertia is predicted.to equal the rigid-

- body value, 6
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In.our dynamical study we shall be concerned with setting up

X

and solving the classical equations of motion of the system. " This
‘will make it possible to trace out dynamically the motion of the system-
from some given.initial configuration near the saddle ;pbin’_c to the final
configuration of two fragments at infinity. The state of motion at
i_nfinity, will correspond directly to observable characteristics of fis-
sion fragments —the speed of separation of fragment centers will cor-
.respond to their translational kinetic energies, the vibrations about
their centers of mass will correspond to their éxcitation
energies,. and the rotations about their centers of mass will cor-
respond to their angular momenta. Out of the dynamical study will
.come, .then, the relationship between the initial configuration of the
system near the saddle point and.the observable quantities of interest
at infinity, This relationship becomes extremely simple when the
d.eviat.ions of ;he initial conﬁ_g'u‘ration from. the saddle point are small.
(In practice, this turns out to be a.good approximation. ) |

. For the case in which.the saddle point consists of two .tangent
spheroids . (x $0.80), we will find a,simple equation that expresses
.very accurately the total translational kinetic energy- E of the two

fragments at infinity in terms of the initial coor_dinate‘s and momenta.

>=<"I"he use of classical equaitions of motion for diééuséing_ the sepa,ra,?
tion of the fragments to infinity may :be partially justified on the
grounds .that a short distance from the saddle point the de Brogiie
wavelength for translational motioh has become relatively smali,
that the vibrations about each fragment's center of mass involve
several quanta of energy, and that the angular momentum of each

fragment is typically several f units in magnitude.
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' The value of E will be seen.to .depend primarily upon the initial
" distance between the fragment centers and the product' of their charges,

Since the fractional mass does not change after divisibn into
two fragments,. the fractional mass U at infinity will equal it‘s original
value at the saddle point, '

The excitation. energy of an individual fragment at infinity will
be seen to depend primarily upon its initial elongation. We will content
ourselves with establishing an equation.for the excitation.venergy at
infinity that is valid to first order in the small deviations of the con-
figuration from its saddle-point shapee‘ | v

We will find that the angular momentum of an indivi'dual'fra.g-=
ment at infinity depends primarily.up‘on the initial angular momentum
it possessed near the saddle point. ‘Fra,_'gments,that are infinit'elyj vis-~
" cous and therefore separate without oscillatihg.are capable of acquiring
'some additional angular momehtu_m by virtue of the.torque exerted by
one fragment on the other,through'-..the electrostatic interaction. * ‘The
amount of such . induced angular momehtum depends primarily upon the
fr'agmént‘_s;initial angle 01 and upon its .initiai angular momentum

pPg - Fragments that oscillate with irrotational flow as they separate

aéquife very little angular momentum by, thié .mechanism because.the
torque decreases as the symmetry axis shortens, and even changes
.sign-as the spheroid changes from prolate to oblate. We will establish
an equation for the angular momentum at infinity that is valid to first
order in the initial coordinates dand momenta, similar to what we did

for.the excitation energy.

% .
The angular momentum acquired by a rigid spheroid moving in

the electrostatic field of a sphere has been discussed by Hoffman; 47
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A. Kinetic Energy of the System

We shall in this subsection concern ourselves with the kinetic
energy of the system. Before launching into this undertaking, let us
consider another simplification arising from the smallness of the '
initial deviatiohs from the saddle point.

Because—as regards angular momenta—we are working only
to first order in the initial coordinates and momenta, it is sufficient

-when discussing the separation of the fragments to infinity to consider
explicitly only configurations in which the symmetry axes are coplanar,
and in which the spheroids are not spinning about their symmetry axes.
This is true because of the symmetries.of the saddle-point shape. Con-
sider, say, the x component of angular momentum of a fragment at
infinity. From symmetry, it will have no linear dependence upon an
initial rotation of either fragment about its .y or z axis. Similarly,
it will not depend linearly upon the initial y or z components of
angular momentum of either fragment. Ahalogous statements hold

for the fragment's 'y and z cornponentsvof angular momentum at
infinity. Indeed, to first order, the f;'agment' s z component of
angular momentum at infinity is equal to its initial z component of
angular momentum (near the saddle point). This means, then, that

to first order in the initial coordinates and momenta, the result for

the general noncoplanar configuration with rotations about the spheroids'
symmetry axes is simply a ,superi)osition‘of. the results for two speeial
cases: (a) coplanar symmetry _ax'es.'with no rotations about them, and
(b) rotatione about collinear symmetry axes, for which we know the
result. _ , , 4

For the sake of clarity the exposition throughout this subsection
will be f’.f.lf the symmetry axes of the spheroids. were coplanar and
there were no rotations about them Thus the difference $ = 4)1 ¢2
between the azimuthal angles of the symmetry axes (see Fig. 2) is
taken to be zero. The results obtalned by con31der1ng coplanar
spher01ds with no rotat1ons about the1r symmetry axes will be sub-

sequently generalized to the original case of two-spheroid conflguratlons
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described by nine degrees of freedom (in a center-of-mass.system
-with zerov total angular momentum). It must be borne in mind, how-
ever, that if one desired to discuss the solutions to a higher order
.than linear in the initial angles and.their conjugate momenta, then it
would be nécessa,ry to set up and solve the equations of motion for the
. general noncoplanar configux:ation,with-rotations ,abdut the spheroi_ds‘
symmetry axes. : '

As we found to be true with the potential energy, the kinetic
energy of the system is simpler when the fragments are separated
than.when they are overlapping. We consider first the case in which
the fragments are separated. )

. The .total kinetic energy of the s-yste_r_n is equal to the .kinefic
energy of the centers of mass of the two fragments,. plus.the kinetic
energy of motion of each fragment relative to its own center of mass.
- We will discuss the termscontributingto.the kinetic energy one by one.
We denote by ‘® the time rate of chaﬁge of the angular coordinate
specifying the orientation of the line connecting the spheroid éenters
in the plane formed by the épheroids' symmetry axes. * The total
“kinetic energy of motion of the centers.of mass of the two fragments

is .then
(1/2)M, 4% + (1/2)M, 0767,

‘where Mﬂ is the reduced mass of the two fragments, | given by

M, = U(1 ~ U)Mo . | ~(7a)

and £ is the derivative with respect to time of £. (We shall consistently

use a dot above a coordinate to denote a time derivative._)

e : L | . . .
The angular.velocity © will be expressed.in terms of 61 and
éZ throughjthe requirement that the total angular momentum be zero.

. Each of the three angles is measured positively, in the counterclockwise

direction.
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"The kinetic energy of fragment 1 relative to its center of mass
is equal to an integral over its volume of one-half the mass density
times the square of the local fluid'velocity {relative to its center of
mass). For the type of flow we are considering, the integration can

be performed exactly (see Appendix C.1), yielding

.2, W)
_(1/.2.)1\/1C1 c, (1/,2)M91 (6, +©)

The quantity MC is the vibrational effective mass of fragment 1,

1
given by44 » .
2 ’ 3
a R '
_ 1 1 11, _ 1 U 0 ;
M, = 5 [t+ 3 — JUM;= 5 |1+ — JUM,, (7b)
1 c C
1 | 1.
‘and Mg is the rigid-body moment of inertia of fragment 1 for rotations
about a.nlaxis through its center perpendicular to its symmetry axis,
given by : ' o , 3 |
| M.-—1(2+a2)UM iz, DR gy (1e)
6, 51" 0° 51" ¢ 0"

The semiaxis of fragment 1 perpendicular to its symmetry axis is

denoted by a The kinetic energy of fragment 1 relative to its

center of masis is thus equal to the kinetic energy of vibration of the
fragment plus the kinetic energy of rotation about its center of mass
(with total angular velocity é + (L)) Because of the spheroid's
symmetry, there is present no cross term involving c1 91. We note

that MC and MG are functions of the coordinate c, as well as U.
1 1
Results analogous to these hold for fragment 2.

The total kinetic energy < of the system for the separated
case in which the spheroids do not rotate about their symmetry axes,

and the symmetry axes are coplanar, is then

Z\'=l MEZ+M c':2+M 62+M£2@
2 f ey 1 c, 2 1
.. -l 2 e ’o 2 ’
+M91(91+®) +M92(92+@):|. (8)
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The quantity ® is determined from the condition that the total angu—v
lar momentum be zero. The total angular moméntum L of the system
is equal to the angular momentum of the centers of mass of the two
fragments, plus the angular momentum of motion about the centers of
mass: ' '

L= Mﬁ'ﬂzéf M91 (6, +6) + My (b, +0).
If we substitute in (8) the result for © obtained by setting L = 0, we
find

S = % Mli2‘+M éi+M é§+,M9 6% . Mé Gg
| 1 €2 1 1 2
(M é‘ + M, 6 2
-\ g. Yyt Mg U5 |
: 1 2
ST 2™ . ' . A €0
M + + M ‘
£ b, 9,

‘We note that for the separated case there is no term involving U in
the kinetic energy. This is because once the drop has split into two
fragments, the fractional volume U no longer changes with time,

From the Lagrangian for the system,

oG:g‘()) ».

.we find that the momenta conjugate to the coordinates are

P, = Mil .
p. =M ¢, ,
"Ci <y 1
pc2 - Mcz €2 . .
7 MQ (MG 61 + MQ 62)
a 1 1 . 2
Pg, = Mg Oy - Z ’
1 1 MZ 47 + MG + Me2
' Mg (Mg 6, + My 6,)
_ 2 1 2
L
2 - 2 M.Z L7 + M6 + M@
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The Hamiltonian for the system is then.
= T+, oy

where ¥ is given by (6b),and

2 p 2 P ? . p 2

J = 1 i + ! + < +“ 61 4 °
=7z M, M M M, M,
o | €1 €2 Y4 2

‘ 2
(p91 + PQZ-)
(11)

t M, 12

When the fragrnénts overlap, the kinetic energy of the system
is fngch more difficult to calcﬁlate. We then specialize, as we did for
the potential energy, to the restricted case 6f fragments tinat are
- symmetrical. The kinetic energy of the system can .théh,,be calcu-’
lated approximately by using the method of Werner and Wheeler
(see 'Appendix C.2). 48 A closed expression is o‘btainedv'fo_r the kinetic
energy as a function of the coordinates { ‘and c, and their tifnev
“derivatives { and ¢. This method yields the exact result for two
limiting cases: (1) when the system consists of two separated sphe-
roids,and ,(-2-) for spheroidal distortions when the 5ystein consists of
a single spheroid. The accuracy of the method for the general over-
lap'pingvcase'i's not. known. Howéver, for the lower values of x,
- where the saddle point consists of two tangent spheroids'p this approxi-
mate method is never used, since we focus.attention on the sys‘t"em

only from the saddle point to.infinity.

B. Transformation to Normal Coordinates

A funidamental aspect of the dynamical discussion of ai'hy '

physical system is the question of small oscillations a,béuf the positions



-46 -

of equilibrium. In the normal fission process there are three equili-
brium configurations: (1) the initial sphere, (2) the saddle point,
and (3) the two spherical fragments at infinity. Both the initial sphere
and the two spherical fragments at infinity are positions of stable
equilibrium. The small oscillations about each of these spherical
shdpes can be readily discussed.by expanding the drop'!s radius vector
in spherical harmonics: The motion of the drop is a superposition of
simple harmonic oscillations of different fréquencies corresponding
to the various spherical-harmonic distortions. . The question of small
oscillations about the remaining equilibrium position—the unstable con-
figuration at the saddle point—will now be considered.

The first step in the discussion of the small oscillations about
the saddle point is to transform from the original coordinate system to
a system of normal coordinates. * In terms of the normal coordinates
a‘md_.the',ir conjugate momenta,. both the ‘potential energy and the kinetic
energy are simultaneously diagonalized at the saddle point; i.e.,
~there appear through second order no cross terms of the form Cy Cps
for example. The Hamiltonian for the system thus separates into a
sum of terms, each involving only a single coordinate and its. con-
jugate movmeﬁtum, ‘This mean physically that the motion of the system
in the vicinity -of.the saddle point separates.into several independent
~modes that may Abe discussed separately. 4

We coﬁs_ider first the case in which the saddle point consists of
.fwo tangent spheroids. . The normalacoordinate,transforrna;t/ion for this
.case is not completely straightforward because of the cusp in the energy
surface at.the saddle point. The transformation to normal coordinates
can neverthéless be performed by regarding the cusp as the limiting
case of a regular (rounded) barrier. As the barrier becomes infinitely

sharp,. all but one of the normal coordinates come to lie in the subspace

ale
ke

See the discussion of normal coordinates in any classical-. -

mechanics textbook, for example, Goldstein.
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of tou.ching spheroids. In this subspace, the potential energy has no -
irregularities. ’I‘he remaining normal mode of motion—the fission
mode —retains.a well-defined direction. The physical meaning of this
‘v direction is that it represents the initial mode of motion that would be
acquired by the system if s'tarted with an arbitrary infinitesimal dis-
placement from the saddle point. '
For the discussion of the normal modes we again treat the
more general case in which we consider the three angular degrees of
freedom of each spheroid; i.,e., the spheroids are permitted to rotate
' ab.out their symmetry axes, and the symmetry axes are not required
to lie in the same plane. (We are still considering.a system with zero
total angular momentum; this will introduce one condition on these .
six angular coordinates.) It is convenient in discussing small-angle
oscillations to lowest order to use a set of angular coordinates defined
more symmetrically with _réspect to the coordinate axes:than the Euler
angles. We denote by - 61X and '9'1}' ‘the angles of rotation of frag-
- ment 1 away from the z, axis, the rotations being about the X,
and y, axes, respectively. The angle of rotation of spheroid 1 about
the‘ z1 axis is denoted byﬁ@iz. The angles GZX’ Gzy,, and 62z are
' defined in an analogous manner with respect to coordinate system 2.
We expand the potential energy in the, subspac'vé of touching
spheroids about the saddle point, retaining terms through second

order in the coordinates. Let us denote by KC e for example, the
172

second partial derivative in this subspace of the potential energy with
respect to c,

1
saddle point is-a position of equilibrium, all first derivatives are zero.)

and Cys evaluated at the saddle point. (Since the

In addition to the usual equa11t1es between the stiffness constants (the
K's) obtained by interchanging the order of differentiation, symmetry
_considerations at the saddle point yield the following equalities be-

tween the nonzero stiffness constants;
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K c = K c .
c,c, €4cy
K = K = K = K, = K
GZXGZX' ‘ 92y62yu ‘ 9'1X9'1X Q'lye'ly 9101 ’
K = K =K
1x~ 2% '1y62y 6192 ’
K = - K
Uc 1 Uc,
In addition, with the exception of K and K, all the remaining
_ - , . Uuu c1c2

stiffness constants are seen from symmetry to be zero. We are left

. then with only six independent stiffness constants:

Koo Ki Ky o, K., K , and K,
.Uvaci.ci ,6161 Uc, C1C2, | ’9192

We denote the value of a coordinate at the saddle point by a
superscript 0, and the difference between a coordinate and its saddle-

point value as- follows:

60 =4 -1%=0 - 2:9,

su=u-u'=U- 7,
_ 0

6c1—c1—c1 )

6c2=c2-c2:c2-c1,

56, =0, -0
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0
692}( = QZX. - QZX = _QZX ’.
69 =0 6 o _ Gl.
ly = Ay 7 My T Ty
. . 0
v692y-'- Gzy,‘_ 6 =6

2y . 2y

The coordinate {,. which in this subspace is the distance be-
tween the centers of the touching spheroids, is chosern as the depend-
ent variable; it is thus ex’preséed in te'rms éf the otherucoordinates
(see Appendix D.15. To second order, the potential energxy of the
system in the vicinity of the saddle povint in this subspace can be

written in.matrix form as

V- 9= 3 (6U bc, bc, 80y, 865, 80, 865.)

‘KUU _KUCZ' K["JCZ' A 0 8T
Koo, Koo, K < 0 0 0 0 bc
KUCZ Kcic‘z K°1°1 0 0 0 0 5c,
0 0 0 K(__)ie1 Keiez 0 0 _‘ 60,
0 0 0 KG;GZ Ke'191 0 0 86,
0 0 0 0 0 K9191 Keiez 50,
0 0 0 0 0 %192 Keie1 60,
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The kinetic energy in the,neighbbrhood of the saddle point, to

second order in the coordinates and velocities (or momenta), is given

o,
sk

by_

[\S]
+
<>
)
TN
[
L )
+
(w»
oy
b
<>
[
<oy
P
Q)o
o
< N
N

. _ 1 0‘2 P O-Z 1
J = —Z{Mﬂ f..-‘r Mc <c1+§2

o N2 . \ 2 /L 217 ' o
(Mei) Keix ) 62") Uiy 623’) | 0o /:2 :2
- - + M _(61 i 6 ) R

1
[\SIEN

where the effective masses are now constant:

0o 1
My= 7z My,
| 3
R
o _ 1 1 0
Mc"To1+?f<o> My
1 <:1 ,

“When discussing the kinetic energy, we are not restricted to the

subspace of touching spheroids.



3
2 R
o 1 0 0
Me‘ﬁ[‘%’* O]MO’
1 2c
| 1
3
2 R
0 _ 1,0 1 0
Mg "= 5 @) My= 735 \ =5 ] Mg
1z C-'l

This result is obtained by evaluating at the saddle point the effective
‘masses (7) of our previousb ekpressions for & | Egs. (9) .a,nd (11)],
‘and generalizing the results to include general rotations of the sphe- -
roids aboutthe x, y, and z axes (rather fhan in a plane). The re-
vquirement that the total arigular:rriomentur_n be zero introduces the

condition that 62z": - 912 {or . pez = - Py ) .
Z iz

" Before listing the normal-coordinate transformation formulae,
let us describe physically the normal modes of oscillation about the _
saddle-point configuration. We have tried to descriptively name each
mode; the corrésponding normal coordinate is designated by the first
letter of the name. . Figure 12 has been prepared to aid in visualizing
the modes, which we now enumerate:

(a) Fission: This normal mode is di.stinguish'ed‘from the others in
that it is always unstable—the potential energy decreases rather than
increases as we move away from the saddle point. Because of the
cusp in the potential energy the stiffness constant for this mode is
not defined; it would be negative for a saddle point in which .thére is
no cusp. The motion of the system is a simultaneous separation of
the centers of the spheroids and a decrease in their elongations, or
vice versa. , | |

(b) Méss-asyfnmetry:’ As will be discussed later, this normal
-mode is stable for x greater than xBG,.(equal to 0.47 in the two-
spheroid approximation), and unstable ‘for x less than Xpor The
motion here is an increase in both-the mass (volume) and elongation

of one spheroid and a decrease in the mass:and elongation of the other
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Illustration of normal modes of oscillation about the
saddle-point shape {when the saddle point is represented
by two tangent spheroids). The fission mode is always
unstable; the mass asymmetry mode is unstable for

x <X, ~, and stable for x >x_ .. The bending and
wriggling modes are each doubly degenerate, cor-
responding to rotations in two perpendicular planes.
The twisting and axial-rotation modes consist of uni-
form (rather than oscillatory) rotation; for a system
with zero total angular momentum the axial-rotation
mode is not excited.
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spheroid, such that the distance between spheroid centers (as well
as the total length of the drop) is constant.

(c) Stretching: The elonga.tidn of each spheroid increases (or de-
creases) by the same amount, |

(d) Distortion-asymmetry: The elongation of one spheroid increases,
and the elongation of the other spheroid decreases; the distance be-
tween spheroid centers {as well as the total length of the drop) re-
‘mains constant, ‘

{e) Bénding: This mode is doubly‘degenera;te (occurs twice), cor-
responding to rotations in the x-z plane and the y-z plane. For a
given plane,. one of the spheroids rotates clockwise about an axis
through its center perpendicular to the plane, and the other counter-
clockwise through the same angle; the spheroids remain touching.

(f) Wriggling: This mode is also doubly degenerate, cprreéponding _
to rotations in the x-z and yv—z planes. For a given plane, both
spheroids rotate through the same angle either clockwise or counter-
clockwise about axes through their centers perpendicular to the plane;
they remain touching. The entire system rotates in the opposite di-
rection, ensuring conservation of the x and y components of total
angular momentum. |

‘(g) Twisting: One of the spheroids rotates about its symmetry axis
clockwise and the other counterclockwise through the same angle.
The restoring force (stiffness constant) for this mode is zero, re-
sulﬁng in a uniform, rather than oscilla."cbr'y, rotation.

(h) Axial-rotation: This mode would correspond to a uhiform rotation
of the spheroids about their symmetry axes through the same angle in
the same direction. Conse'rvatibn of the z component of total é.ngula,r
‘momentum means that this mode is not excited. _ '

The linear transformation that takes us from the original co-

ordinates to the normal coordinates may be written as



4
6L - (5c, + 8c))

f'= T ’
/2 1+ (ZMCO/MO)]
1
m= 60U , “
o
64 + Z(Mci/MO) (6c, + bc5)
s =
J 21+ (2M O/M )]
' <y 0
d= (1/ 4/2) (- B8U + E)c1 - d¢c,) .
b = (1//2) (66 ,, - 86,.) .
w_ = (1/2) (66 +66, ),
by = (1/4/2) (80 4 - 86,)
W= (1/A2) (86, 1+ 86,),

t=(1/4/2) (66, -060,),

a = (1//ﬁ) (5’91Z +692Z) ’

where the quantity B is 'd,efined-by:ﬁ

is always positive and that

*We will see later (Fig. 13) that K
' Uc2

c,c, is always greater than K ; hence, B is always positive.
171 c4C,
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These formulae may be verified by explicitly demonstrating that both

% and J are diagonalized in terms of the new coordinates and their

)

: e . .
time derivatives (or conjugate momenta). The normal coordinates

are all identically zero at the saddle point. The inverse transformation
is giveh by
- AT 0 |
Y = 2 [, Z(MC1 /MO)‘ffr s ] .
U =m ,
bc,= (1/2) Bm + (1/4/2) (-f+ s + d) ,
8c, = - (1/2) Bm + (1/A/2) (-f + 5 - ) ,

50

(1/2) (b +w ),

1x

650

2% (1/4/2) (-b_+w ),

‘591y = (1/ /2) (bY + wy) ,
86, = (1//2) (-b_ +

2 (4/_[) (B + W),
80, = (1/42) £+ 2a),

]

86, (1/4/2) (-t +a).

Py
In verifying that <J is diagonal in terms of the time derivatives

of the normal coordinates, note that U is zero at the saddle point.
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"In terms of the normal coordinates, the potential energy in
the subspace of touching spheroids is, to second order,

2 2

0 M . .
2 2 b + b
x " Vy

¢ ' -1
V- Y7 5 K m"+ K s+ K 4%+ K
Lrn s

d b
K (wo s wz) } ,
w X )

where the normal-coordinate stiffness constants are expressed in

terms of the'orivginal stiffness constants by

Ken = Kyy ~ BEye,
Ks ='KC'1Ci+ Kc‘icz !
K, =K, . -K__
14 12
Kb:Keiei'Keiez’
Ky = Keie)1 “ Keiez

The kinetic ener'gy_- is similarly given to second order by

o L[ .2 2 2 :2
J= 5 I:Mff M sT 4 My dT 4 M (bx+by)

+ M (\»'v2 + v'vZ) P M 54 M éz]
W X Y t a

2 2 2 pP. +tp
= 1 _1?__ + .p_s + _Iié_ + .bx. bY
2 I\/If Ms '.Md l\/Lb
P 2 P 2 2 2
W N4 P P
( X Yoo, t n a
M M M ’
w t a

where the normal-coordinate effective masses are related to the orig-

inal ones by



oM O .
€1 0
Mf- 1+ i M ,
: 0 €1
ZM,O
1 .C _ .
M=z (P ™ ) Mo
oy O
Md‘Mc ’
M, = My
o 1
ZMO'
0 0
M =} 1 - . , M
W . 0 0 ..61
MO'(Ci) +2M9
| | 74
5
RS o
= 6+—————3-0 ’ Me )
2(01) : 1
_ a0 O
Mt_'"MQV ,
iz
L 0.
Ma,—MG s
1z

a.h"d the momenta conjuga,te'.to the normal coordinates‘ are
pe= M1,

T o]
o o

] ] -

o o
< Y
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pW - Mw\;vx ¢
X
P =M w ,
W W
Yy : Y
p, = Mtt )
P, = Maa

The Hamiltonian (with respect to the saddle point) in the sub-
- space of touching spheroids is then given to second order by (the axial-

rotation kineticienergy term has now been dropped)

' N / , pZ pz
“ar 1 a2 L f 2 L8 1 2 d
(fv > Km‘rn 4 ‘\I{SS II\-/I—S> |<Kdd b M——)

I
!

a
- pbz . pbz
4 Kb(bi+bz)+ lXM b
_ b
! 2 2 pWZ ! pWZ p’
+ Kw (W,X +~ Wy) + XM Y 4 Mz (12)

The frequenéy for a particular normal-mode oscillation ié given by
the square root of the appropriate stiffness constant divided by the
appropriate mass. Ther_e are four well-defined nonzero frequencies
(the bending and wriggling frequencies are, of course, doubly de-

generate):

€
It

1/2
(KS/MS.) , (13a)

€
I

1/2
= (Ky/My) , , | (13b)

{(13¢)

048
!
Z
g
T
~
oo

. 1/2. l '
w = (KW/MW) . e (134d) .



Since>the (négative) fission stiffness constant Kf is not defined, the
(imaginary) frequency we is also not defined. It is shown in Appendix
D.2 that, because the drop's minimum radius is zéro, the mass-
-asymmetry effective mass M,p, is infinite. * The corresponding fre-
quency . is therefore zero.! The twisting frequency w, is also
zero, because the stiffness constant Kt is zero.

A straightforward numerical method was used to locate the -
saddle point and calculate the stiffness constants (see Appendix G).
The results are presented as functions of fissionability parameter
from 0 to 0.80 ina éeries of graphs. The value of c? defining
ithe'saddle-poirit shape (when the saddle point consists of.two fangent
spheroids) can be obtained from the Rmax' curve in Fig. 7
: (Rmax =2 c?) . The stiffness constants fqr the original coordinate
system are given in Fig. 13.

The normal-coordinate stiffness constants are shown in Fig.
14. TFour of these constants are always positive; the mass-asymmetry
stiffness constant Km changes sign at X = Xp o %0.47. This value
of x is the two-spheroid approximation to the true value of_O.394',
where the Businaro-Gallone family of asymmetric equilibrium shapes

- } i\'
bifurcates from the family of symmetric equilibrium shapes. 15,43

>:‘This result states physically that the kinetic energy associated with
a finite fiux of matter through an aperature of infinitesimal radius is
‘infinite. This follows from the fact that the velocity of .flow through
the aperture is infinite, and that the kinetic energy depends upon the
pfoduCt of the amount of matter and the square of the velocity.

TThe reason for the vanishing of w is that in the two-spheroid
model the neck radius of the saddle-point shape is zero. For the
exact saddle point the neck radius is not zero but is small, and w
is not zero but is small in comparison with the other frequencies.

: IThe two-spheroid model thus predicts this bifurcation point at a
value-.of x that is .someWhat_ too high, in ahalogy to its prediction of
a transition region at x ® 080, when the true transition region occurs

at x =0.67..
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Fig. 13. Saddle-point stiffness constants (second derivatives
of the potential energy, evaluated at the saddle point).
for the original coordinate system, as functions of

fissionability parameter x. The constant K is in
units of E‘SO), K and K are in units of
c,Cy ¢,

(0) /2 is i i (0
E§ /R4, KUC‘2 is in units of ES )/RO, and K9191 and

K are in units of E(O)/ra.d2 .
9192 S
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Fig. 14. Saddle-point stiffness constants (second derivatives
of the potential energy, evaluated at the saddle point)
for the normal-coordinate system, as functions of
fissionability parameter x. The constant K_ 1is in
units of E(0), K, and K, are in units of

E(O)/Rz, and K,_ and KW are in units of E(O)/radz.
The two-spheroid approximation to the Businaro-Gallone
value of x is indicated by the arrow.
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-For x> XBG the stmetric equilibrium shapes are stable against
changes in asymmetry, and for x < Xp o they are unstable. Thus,

for x > x the symmetric equilibrium shapes are unstable with

respect to c]?i(;placements along only one normal coordinate (the fission
coordi}nate), and for x < XpG they are unstable with respect 'fo two
(the fission coordinate and the mass-asymmetry coordinate). This
means physical_l.y that for x > X8G the equilibrium configuration
defines a barrier energy, whereas for x < Xp G the equilibrium con-
figuration is at the '"top of a hill** and therefore does not define a
barrier energy. 15,43

The effective masses a,:re shown in Fig. 15. The frequencies
for the four nonzero modes of oscillation are given in Fig. 16 in
liquid-drop units. In Fig. 17 the corresponding quantum energies
(h times the frequencies) are given in units of MeV for nuclei along
the line of beta stability. 50 For'the region in which we will be most
interested (x = 0.67), the stretching and bending quantum energies are
each about 1+ MeV, the distortion-asymmetry quantum er}ergy is about
1.5 MeV, and the wriggling quantum energy is about 2 MeV.

For values of x > 0.80, where the saddle point is represented
by overlapping spheroids, we again restrict ourselves to the case of
symmetrical fragments, specified by the two coordinates £ and c.
Since there is no cusp in the potential energy at the saddle point, the
normal-coordinate transformation for this case is straightforward.
There result twonormal modes:a stable oscillation (sfretching) and
an unstable motion in the fission direction. We shall not present here

the numerical results cbtained for the frequencies of the normal modes.
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Fig. 15, Saddle-point effective masses, as functions of

fissionability parameter x. The masses Mg, Md’ :
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16. Saddle-point frequencies of normal-mode oscillations,
as functions of fissionability parameter x. The fre-
quencies are in units of QO [ see Eq. (4) for value of
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Saddle-point quantum energies of normal-mode -
oscillations for nuclei along the line of beta stability,
as functions of fissionability parameter x.
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C. Solution of Equations of Motion

We consider in this subsection the solution of Hé.milton‘ S
classical equations of motion for the system. For given initial con-
ditions, solution of these equations gives.the subsequent motion of
the system. The question naturally arises of what initial conditions«
to use. One could, for example, study the behavior of the system by
always starting with the original sphere, giving it different sets of
initial momenta. Because most of this work will be concerned with
tracing out the consequences of assuming statistical equilibrium at
_the saddle point (see Section IV), we examine the solutions for initial
conditions that are specified in the neighborhood of the saddle point.

We have seen that for both the potential energy and the kinetic
energy different formulae are used, depending upon.whether the
system consists of spheroids that are separated or spheroids that
are overlapping. The equations of motion are also different for these
two cases. We will consider first the simpler case in which the
saddle point consists of two tangent spheroids (x < 0.80); then, in
the region from the saddle point to infinity, the system consists of
two separated spheroids. '

We saw from the Hamiltonian (12} that four of the normal
modes at the saddle point—stretching, distortion-asymmetry, 'bending,
and wriggling—are simply bounded harmonic oscillations with fre-

" quencies given by (13). The mass-asymmetry normal mode, on the
other hand, was .seen to be stable for x > Xpq and unstable for

X . < X Since the effective mass for this mode is infinite, the mass-

Aasymrrl?ect}ry coordinate changes with time infinitely slowly at the saddle
point. Because the restoring force for the twisting mode is zero, this
mode consists of uniform rotations of the fragments.

The remaining normal mode—the fission mode—is always un-
stable, taking us out of the subspace of touching spheroids. It is
motion in the (positive) fission direction that causes the two fragments

to start their eventual separation to infinity. . Attention is first focused

on the'system at the critical moment when it is passing over the saddle
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point; i," e., the time is chosen to be zero when the fission coordinate

f is zero. Our solutions to the equations of motion‘w.il_l.the'n depend
| upon t'h_e.value_s of the remaining normal coordinates and momenta
when £ = 0. , _ ‘ o _

‘The equations.of motion themselves are obtained for the sepa-
-rated case by differentiating the ﬁamiltonia.n (10) with respect.‘to the
coordinates and_momenté, For the case of coplanar symmetry axes
with no rétations of the spheroids about them, there result ten first-

order'_linea'.rdifférential equations, which are listed in Appendix C.1.
These equations are given in .terms of the original c.oorldinates, sincel
~ .the normal coordinates have meaning as such only in the vicinity of
the saddle point. The equations are solved numerically for given
ihitial coﬁditions, determing £, Cys Coo 61, a,an 62, along_with their
conjugate momenta, as functions.of time. By carrying.a solution out
. to infinity (in praﬂcficel, tod = 25 RO), _one.finds the values at infi'nity’
of the quantities of interest. A summary of the numerical procedure
is given in Appendix G. |

Let us now examine the qualitative features of the solutions
for various .initial conditions. We have indicated in Fig. _3, oﬁ,each
.pqténtia.l-ene_rgy map in the range 0.05 <x $0‘.80,  the solution cor-
reépgnding t_é starting from rest at the saddle point. For each case
‘the p\oini»s along the path are eqﬁally spaced in time at intervals of

0.4 T [sée Eq. (2) for the value of TO],_ The motion of the system
is a fairly rapid oscillation of the fragments, superimposed on a sepa-
-ration of their centers.

' Starting the system from the saddle-point configuration cor-
.reéponds_to the. case.in whichva_.ll normal coordinates are. initially
_zero. .When a particular norma.l_ coordinate.is.initia.lly nonzero, the
solution is} alterea in a manner characferistic’: "of that normal co-
ordin‘ate:; o ‘

(2) Mass-asyrﬁnmetr"y.:__ The fragment with greater volume and larger
semisymmetry é,xis oscillates with a larger amplitude but with a .

smaller freqﬁency than the. other fra’_.;gment. )
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’ (b) _' Stretching: When s 1is positive (corresponding to fr‘agfnents '
that are initially more elongated than at the saddle point), both frag-
ments oscillate with greater amplitude and separate more slowly.
Conversely, for negative s, the fragments oscillate with less ampli-
tude and separate more rapidly.

(c) Distortion-asymmetry: The fragment with the larger semi-
symmetry axis oscillates with greater amplitude than the other frag-
ment. '

(d) Bending: In a bent configuration each fré.gment experiences a
torque from the electrostatic field, "resulting in an induced angular
‘momentum. One fragment rotafes clockwise and the other counter-
clockwise. The period of rotation is much greater than the period
- of oscillation.

(e) Wriggling: Both fragments roté.te clockwise (or counterclock-
wise) simultaneously. As with the bent case, the fragments oscillate
‘many times during a single period of rotation. '

In general, the initial conditions include several nonzero co-
ordinates, and in addition several nonzero momenta. The cofre-
sponding solutions then consist of a superposition of the characteristic
features arising from each normal coordinate, modified by the effects
of the initial momenta. The motion of the system is thus in general a
separation of the two fragmehts from the saddle point to infinity, with
each fragmenf simultaneously oséillating fairly rapidly and rotating
rather slowly.

~What is desired is a.relationship between the initial conditions
‘and the observable provperties of fission fragments at infinity. From
- this we will be able to obtain, 'by performing suitable integrations
over probability distributions for the initial conditions {(see Section IV},
probability distribhtions for the observable quantities of interest."
Each qua/ntity of interest depends strongly upon only a few of the initial
~coordinates and momenta, and very weakly upen the remaining ones.
The practicability of our approach lies in being able to neglect the
weak dependences of each quantity of interest on most of the initial

conditions.
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From a consideration of the numerical solutions corresponding
to a large number of combinations of initial conditions, we have de-
termined simple approximate equations expressing the quantities of
inferest in terms of the initial coordinates and momenta. The equations
are, in gevneral, valid for small deviatioﬁs of the coordinates from the
saddlé point and for small values of the initial momenta. However, we
were able to find for the total translational kinetic energy an equation
that works well even for moderately la.rgev deviations from the saddle
point. The accuracy of each equation can be seen from Table E.I (in
-Appendix E), where we have listed forty-four sets of initial conditions
for a particular value of x, along with the values for the quantities of
interest determined exactly byi.solving the equations of motion and de-
termined approximately from the equations. listed.below. . For-la._giv,en
x the constants appearing in each eqﬁa.tion are calculated numerically
from the solutions to the equations of motion, as described in
Appendix G.

- . The equatioh established for the translational kinetic energy. E

of both fragments at infinity is

0 ‘ 2
g- 4UUL-UE" Py
- 1+ as M,
2
0
2M P
- 4m2) E + M °1 * + s | (14)
1+ as 4 M0 Mf MS j?

where _Eo and a are constants (for a given x). The second result
is simply the first result expressed in terms. ofi the normal coordinates
aﬁd momenta. This equation can be interpreted physically as giving
the final kinetic energy that would result from two effective point
charges of relative strengths U and (1 - U) initially separated a
certain .dista_.ncevand'movinngith‘ relative momentum Py - |

The fractional mass U at infinity is equal to the initial frac- .
tional mass, since after scission this coordinate does not change with
time. Thus, the fractional mass at infinity is related to the mass-

asymmetry normal coordinate m by the exact equation
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The relationship (14) for E reproduces the exact result

extremely well—more accurately than do the equations we established

P
*

for the individual excitation energies and angular momenta. For
these quantities we retain only terms linear in the more important
initial coordinates and mom=nta: f
0 :
Xi_X1+A1,ss+X1,dd+X1,mm’ (16a)
X:X0'+X s - X d - X m (16Db)
2 1 1,s 1,d 1, m ’
Lix:Lispb Py +L1,p Py, +L1,b’bx+ Li,vwwx’ A(i?a)
X W X
szz-Lvapb +L1,p Py, _Li,bbx.+ Li,wwx" (17b)
b Tx w X
L, =1L P +L‘ P + L b + L W, (17c)
iy 1,pb bY 1,pw WY 1,b7y Ti,w 'y .
L, =-L p, + L p -L, . b +L w o, (174d)
2y 1,pb by 1,pw Wy 1,b 'y 1, w 'y
L, = Py, * (1/~2)(p, + p,) (17¢)
L,, =Py - (1/ A/2) (-p_ + p,) - {174)
. &~

“There is currently no experimental information on excitation
énergies and angular momenta for the fission of elements lighter
than .radium. We content ourselves at this time with treating these

quantities to a lower order than the translational kinetic energy.

T

It should be recalled that the excitation energy calculated here is
the energy associated with the collective vibrations and deformatlons
of the fragments. Any internal excitation energy that a fragment has
at the moment of division Would be added to the excitation energy we

calculate, to obtain the final total excitation energy.
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0 .
where the quantities X1 . Xi, s’ Xi, a X1’_m, Li”pb ) 1.41’ pw-, Li,,b"
- and L1 w are constants (for a given x)., We are denoting by ‘Xi 5’

for example, the partial derivative of X1 with respect to s, evaluated
at the saddle point. Symmetry arguments have been used to relate the
constants in the equation for XZ'.to ‘those in.the .equa'gion for -Xi.
Similarly,.,the constants .in the equations for Lyxr Loy L1y’ 1 and L,
are related by symmetry. The equations for L1Z and L,, express
the approximate conservation of the z components of angular mo-
mentum, since to first orde‘r in.the angles the z. components of the
.torque afe zero, Each of the rema.ining equations also has a simple
physical significance,. which we will discuss when we present graphs
of the ‘constants appearing in-them.

Complete symmetry in the observable quantities of interest
could be achieved By a simple transformation from Eb and U to the
individual translational kinetic energies E1 and E, of the two frag-

ments at infinity. The conservation of linear momentum implies that

UE, = (1 - U)E,

From this one finds that

E =(1- U)E,

1

_E2 = UE;

the inverse transformation is

E

E, +E,, o ' | (18a)

(18b)

U EZ/(E1 + E,) .

An expression for E to the same order as the equat1ons for
: exc1tat1on energy and angular momentum can be obta1ned by expanding

(14) and’ reta1n1ng only thé linear term:

E = .EO - (aE ,)s . - _. (19)
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‘The individual rotational energies at infinity are of second order in
the initial coordinateé and momenta, since they are proportional to the
square of the individual angular momenta at infinity, which in turn de-
’ pend liﬁearly vup’on the initial coordinates and momenta. Also, the
(initial) energy of the system in ’;hé neighborhood of the saddle point

is of second order in the initial coordinates and momenta, :Therefore,‘
to first order, the sum at infinity of the total translational kinetic
energy and the individual excitation energies is a constant:

E+X1+X2=EO"+2X(1’:E0+XO. (20)

The constant X1 s .is thus not independent but is instead given by

3

-0
X, 4 =aE%2 @y

A series of graphs (Figs. 18-27) has been-pre'pa.red giving
each constant as a function of x from 0 to 0.80. The solia line in
each case represents the result for the case we have been considering:
incompressible, nonviscous fragments with hydrodynamic flow con-
sisting of a superposition of an irrotational flow and a flow correspond-
ing to a uniform rotation. We also indicate (by a dot-dashed curve)
the result for the limiting case of infinitely viscous fragments, which
would separate to infinity (as rigid bodies) without oscillating. This -
limiting case would be approached physically if the fragments were
sufficiently viscous such that their period of oscillation was large in
comparison with the time of separation to a few nuclear diameters.

Figure 18 gives the dependence on x of EO, the total trans-
lational kinetic energy at infinity that would result from fragments
initially starting from rest at the saddle point. Note that the trans-
lational kinetic energy that would result if the fragments were ex-
tremely viscous (top curve) is larger than the kinetic energy cor-
respon;iing to nonviscous fragments with irrotational flow (middle
curve). The difference between these two curves represents the

portion of original interaction energy which, for the nonviscous
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Fig. 18. The total translational kinetic energy EO corresponding
to the case in which the fragments initially start from rest
at the saddle point, as a function of fissionability parameter
x. The result calculated for nonviscous fragments is given
by the solid line, the result for infinitely viscous fragments
by the dot-dashed line, and a simple approximation to the
former (see text) by the short-dashed line.
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irrotational case, is converted into excitation energy rather than into
translational kinetic energy. We also present the result (short-dashed
curve) obtained using the very simple approximation that the kinetic
energy is equal to the product of the charges of the spheroids divided
by the initial distance between their centers. Of c.ourse, this is '
equivalent to replacing the oscillating sph'eroids. by two rigid spheres
whose centers initially coincided with the spheroid centers, That this
procedure should give a result that is close to the nonviscous irrota-
tional limit is physically very reasonable, since the fairly rapid oscil-
‘lations of the fragments tend to cancel the opposing effects of the pro-
late and oblate shapes. -

' In Fig. 19 is shown the result for the constant a; as with EO,
.we also present the result (short-dashed curve) that'woul.d be obtained
by replacing the spheroids with rigid spheres whose centers initially
coincided with the spheroid centers,

The constant Xci), the excitation energy of fragment 1 that would
result from Iinitially starting _thé fragments from rest at the saddle point,
is given in -Fig. 20. We note that the sum of EO and .ZXSl), which is the
energy difference between the twouspheroid saddle point and the config-
uration of two fragments at infinity, is larger than the corresponding
sum would be if calculated from the exact liquid-drop saddle point.

This discrepancy is equal to the differénce between the energy of the
two-spheroid saddle point and the exact liquid-drop saddle point, which,
as we noted before, is due principally to the inadequate representation
of the neck in the two-spheroid model. One might argue that this dis-
crepancy is therefore more likely to affect the estimates of fragment
excitation energies rather than their kinetic energies, but this con-
clusion cannot be regarded as reliable.

The excitation-energy derivatives Xi, 57 Xi,d’ and Xiym
are presented in Figs. 21 - 23, respectively. The physical content

of the equations for X, and X, can be easily seen if we substitute

1
the values of the constants and transform back to the original co-

ordinate system. We find then that, for typical values of the initial
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Fig. 19. The constant a [ see Eq. (14)], as a function of fission-
ability parameter x., The result calculated for nonviscous
fragments is given by the solid line, the result for infinitely
viscous fragments by the dot-dashed line, and a simple
approximation to the former (see text) by the short-dashed
line,
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Fig. 20. The excitation energy" X0 of a single fission fragment
corresponding to the case in which the fragments initially
start from rest at the saddle point, as a function of fis-
sionability parameter x, The result calculated for non-
viscous fragments is given by the solid line, and the re-
sult for infinitely viscous fragments by the dot-dashed
line.
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Fig. 21. The excitation-energy derivative X s [ see Eq. (16)],
as a function of fissionability parameter x. The result
calculated for nonviscous fragments is given by the solid

line, and the result for infinitely viscous fragments by the
dot-dashed line. '
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. 22. The excitation-energy derivative X [see Eq. (16)],
as a function of fissionability paramete? x. The result
calculated for nonviscous fragments is given by the solid
line, and the result for infinitely viscous fragments by

the dot-dashed line.
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' Fig. 23. The excitation-energy derivative X [see Eq. (16)],
as a function of fissionability paramete? "x. The result
calculated for nonviscous fragments is given by the solid
line, and the result for infinitely viscous fragments by the
dot-dashed line.
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‘coordinates, the excitation energy of a fragmeht at infinity depends
primarily upon its initial elongation, is.less dependent upon the frac-
tional mass, and is still less dependent upon the initial elongation of
the other fragment. Note‘, as we discussed in connection with the re-
sult for EO,, that if the fragments were infinitely viscous they would
have less excitation energy than nonviscous fragments oscillating with

irrotational flow.

,» L , L

The angular-momentum derivatives L, _
1, Py 1, p

1,b’

and L1 w 2re shown in Figs. 24 - 27, respectively. By substituting
these values for the constants.in the equations for the x and. y com-

ponents of angular momentum, and transforming ,ba,-ck to the original

e
b3

coordinate system, we learn the physical content of these equations.
For typical initial conditioné, the x component of the angular mo-
mentum at infinity of fragment 1, say, is found to dépend primarily
upon.its own initial value, is less dependent upon.the ir\litial "angle
eix’ and is still less dependent upon the initial x component of angu-
lar momentum of fragment 2 and the initial angle Ozxa If the frag-
ments did not acquire any additional angular momentum by virtue of

the torque exerted by one fragment on the other through the electro-

‘static interaction, then L, and L would :each equal
R 1, pb 1, Py

1/4/2, and Li,b and Li,w would .each be zero. Note that the torque
mechanism is capable of inducing in infinitely viscous fragments
roughly four times as much angular mornentum as in nonviscous frag-
ments oscillating with irrotational flow. This is because for an oscil-

lating fragment the torque is reduced as the elongation of the spheroid

“The relationships p, = (1/4/2) (pg - Py )and
' : 5 1x 2x

= (1/4/2) (p6 + Py ) etc., obtained from the normal-coordinate
x 1x 2x ’ ' ' :

transformation and the definitions of the momenta, are useful for this

purpose. The value at infinity of Pg for example, is L1x
. : : 1x
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MU-33552

Fig. 24. The angular-momentum derivative L, b [see Eq. (17)],
'b

as a function of fissionability parameter x. The result
calculated for nonviscous fragments is given by the solid
line, and the result for infinitely viscous fragments by the
dot-dashed line. The short-dashed line represents the
result that would follow if the torque exerted by one frag-
ment on the other through the electrostatic interaction
were zero, - '
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Fig. 25. The angular-momentum derivative L [see Eq. (17)],

1, Py
as a function of fissionability parameter x. The result cal-
culated for nonviscous fragments is given by the solid line,
and the result for infinitely viscous fragments by the dot-
dashed line, The short-dashed line represents the result
that would follow if the torque exerted by one fragment on

the other through the electrostatic interaction were zero.
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Fig. 26. The angular-momentum derivative L, b[‘see Eq. (17)],

as a function of fissionability parameter x. The result
calculated for nonviscous fragments is given by the solid
line, and the result for infinitely viscous fragments by
the dot-dashed line. For the value of LO see Eq. (3).
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Fig. 27. The angular-momentum derivative -I_,1 w [see Eq. (17)],

as a function of fissionability parameter x. The result
calculated for nonviscous fragments is given by the solid
line, and the result for infinitely viscous fragments by the
dot-dashed line. For the value of LO see Eq. (3).
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is reduced, even changing sign when the spheroid changes from pro-
late to oblate. o ,

When the saddle point occurs for £ < 2¢ (x > 0.80), it is nec-
essary to consider the equations of motion for overlapping spheroids.
As before, we specialize for the overlapping case to symmetrical frag-
ments, ‘spveciﬁed.by' the two coordinates £ and c.- Hamilton's equa-
tions of motion for this case are listed in Appendix-C.2. In.the vicinity
6f the saddle point, the motion of the system consists of a superposition
of the two normal modes: bounded oscillations.in one direction and
unbounded motion in the fission direction.

' The equations of motion for the overlapping case have been
solved for dnly a few isolated values of x and initial conditions. We
will here only briefly discuss the solution for x = 0.90 corresponding
to initially starting the system from rest at the saddle point. This
solution is presented in Fig. 28. The semisymmetry axis c at first
increases more rapidly than the distance £ between. sphero:id centers
increases; this continues until the system has b‘ecome.v,fairi-y elongated.
Then, as the distance between centers continues to increase, the semi-
symmetry axis starts to decrease., When scission occurs, the frag-.
ments are already moving apart with a translational kinetic energy of
the order of 25 MeV. The scission configuration is:less eccentric
(and the fragment ‘centers closer together) than the configuration ob-

tained by minimizing the potential energy of symmetric tangent

>kSince.’che saddle poiht is a position.of (un_.stéble» equilibrium, a
system initially at rest at the saddle point would remain.there (classi-
cally) for an infinite time; we imagine an infinitesimal push in the
fission direction to start the system moving. An analytic solution,
valid in the neighborhood of the saddle point, is used until the system
is a short distance from the saddle point, where the numerical inte-

gration begins.
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Fig. 28. Solution of equations of motion for x = 0.90 corresponding
to initially starting the system from rest at the saddle point.
The points are equally spaced in time at intervals of 0.107 T
[ see Eq. (2) for value of T_]. Note that the scission con-
figuration is less eccentric than the configuration of tangent
spheroids of minimum potential energy, whose location on the
scission line is indicated by the open circle.
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spheroids. This results in about a 20 MeV additional gain in trans-
lational kinetic energyJ at 1nf1n1ty over the kinetic energy that would
result fro‘mylmtlally starting the system at rest from the configuration
of téngent spheriods whose eccentricities are obtained by minimizing
the potential energy. For this x = 0.90 case, the total translatlonal

' vkmetlc energy E was found to be 0. 3155 Eéo)_ , and the total excitation

energy X .was found to be 0.091 E(SO) »
For the higher values of x, where the saddle point is not near

" the scission configuration, the very subtle queétio’n of the dynamics

: of the motion from saddle to scission becomes important in determin-

ing what fraction of the total energy goes into trénslational kinetic

energy and what fraction into excitation energy. Therefore, for the

higher _va.hies of x, a calculation of the precise division of the total

énergy into kinetic and excitation energies based on optimum tangent

spheroids is likely to be in error.
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IV. STATISTICAL MECHANICS

We have obtained approximate formulae/| (14), (15), (16}, and
(17)] relating the observable properties of fission fragments at infinity
to the initial values of the coordinates and momenta (when the saddle
point is the configuration of two tangent spheroids). We now consider
the determination of the probability for the system possessing a given
set of initial coordinates and momenta. These two results will be
“combined in the next section.to yield the probability for the two frag-
ments at infinity possessing given total translational kinetic energy,
fractional mass, and individual excitation energies and angular mo-
menta. |

The conditions at the saddle point would.in general depend upon
the past history of the system—upon how the system was formed and
upon-the path it took in reaching the saddle point.- Howevef, the system
typically undergoes about 106 fissionlike oscillations after formation
before it reaches the saddle point (if it ever does),Si’This provides
ample opportunity for many interchanges of energy, making it unlikely
that at the saddle point the system "remembers!' the way it was formed
or most of its previous motion. It is thus likely that at the saddle point
thermal equilibrium is established. This is the central hypothesis of
the transition-state method used for discussing the reaction rates of
chemicallor'nuclear 5ystems,38 and we will base our further consider-
ations on this standard assumption,

The statistical-mechanics discussion is essentially the same
for both the case in which the saddle point is represented by tangent
spheroids and the case in which it is represented by overlapping
spheroids. In the following discussion we will explicitly consider
probability distributions for the normal coordinates appropriate to the
case in which the saddle point consists of two tangent spheroids; for
the other situation (again considering the restricted case of symmetrical
fragments) there are simply fewer probability distributions.

The determination of the probability of given initial conditions

is very simple in classical statistical mechanics. The probability P
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‘that the system possesses a given set of coordinates and momenta,

~with the c.'orrespondingvtotal energy J{ given by (10), is simply
P= Nexp{(-3/0), o (22)

‘where © is the nuclear temperature at the saddle point (measured
in energy units), and N is a normé.lization.eonstant.  (Use of the
stBol © to denote nuclear temperature should cause no confusion
‘with its earlier use in connection with angles.). When the actual
- Hamiltonian (10) is used, this expression for P is exact (classically)
to all orders in the coordinates and momenta. |

If one expands the Hamiltonian about the saddle point and re-
tains only quadratic terms (harmonic apprdximation), then the praba.'-
bility distribution.for each normal coordinate and.its conjugate mo-
‘mentum is simply a Gaussian in.the normal coordinate or momentum
[w1th the exception of P(p ) and P(f), which are discussed separa.tely

below] - Thus, for example,

P(s‘) = (217 Q/KS)-‘i/Z exp (_ %_ Ks sz/_@)» _ (23a) |
Plp,) = (2 7 M_ o) 1/2 exp[—- pi/(zMs eg . (23b).
P(Pf) - 2(2.m Mf @)‘1/2 exp l:- pi/(ZMfQEI . (23c)

"Equations analogous . to thes e  hold for the remaining normal coordinates
and momeénta. For one of the momenta and two of the coordinates the
. -Gaussian‘distribut_iOns become infinitely broad and hence reduce to con-

stants. This occurs for P(pm) because the mass-asymmetry effective

>kAll proba.b_ility- distributions in this paper are nor_malize.d such
-that unity is obtained when the functions are integra_ted over the allowed
range of variables, which is \isually taken to be from - to 4o . .The
‘range of integration for P is taken to be from 0 to o, since for
.negative values of pf the system does not fission but 1nstead returns
to the pre-saddle-point configuration; this results in.the additional

factor of 2 .in the expression for P(pf).
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. b3 . . . . .
mass Mm is infinite, and for P(t) and P(a) because.the .twisting
and axial-rotation stiffness constants are zero. |

Because of the condition that the total angular momentum of
the system be zero, the distribution in.the axial-rotation momentum

is a Dirac delta function:

P(p,) = 8(p,) .

We recall finally that we do not need a probability distribution in f
because our solutions to the equations of motion are in terms of £ = 0 .
initially. ‘ '
As the nuclear temperature approaches zerc, the classical

.distribution for each normal coordinate and momenturmn approaches a
- . Dirac delta function. However, we know from thei Heisenberg quantum-
mechanical uncertaihty principle that simultaneous localization of the
system in a position and conjugate-momentum coordinate can be
achieved only within limits. Even at zero temperature each of the
distributions should, in geﬁeraLiHave a nonzero width, associated with
the .quantum-mechétnical zero-point vibrations. As we shall see, the
quantum-mechanical effects may be important at typical nuclear tem-
peratures.

Although the qua,ntum~meciha.'nica1 determination of the prob-
ability distr:ibuti‘ons would be difficult if one used.the complete
Hamiitpnia.n (10), the problem can be readily solved in the hafmonic
approximation. Then, fhe individual terms.ihi the Hamiltonian (12)
are the Hamiltoniaf;s for simple hafmonic oscillators. (The effect

bon the distributions of the ihfinite éffective mass Mm and the Zero

The Gaussian distribution in.the mass-asymmetry velocity be-
comes, on-the other hand, infinitely narrow and hence reduces to a
Dirac delta function. This means physically that the mass-asymmetry

' coordinate changes with time infinitely slowly at the saddle point.
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stiffness constant Kt -will be discusseti later.) In our discussion
below we will refer only to the stretching mode; results for the.re-
Inaining modes are completely analogous. ‘

In.the coordinate representation.the quantum-mechanical solu-
tion of the stretching mode yields the .harmonic,-osc_;iliator wave_ func-
tions LlJn.(s), -with .co—rreSponding,energy levels EIS1 = (n.+ —;-.)ﬁws
‘'When .the oscillator is known to be in the quantum-mechanical state n,

the probability that its position coordinate has a given value s is
- 2
P_(s) = |4_s)|

In particular, when the oscillator is in the ground state n.= 0, the

probability distribution for the coordinate issz

Pyls) = |4J0(s_)|2'= (Tr’ﬁws/Ks)_i/Z exp [- K, sz’:/(ﬁo'.)s_):'.

| |  (24a)
Analogous results for the momentum Pg "ya,re obtained just as readily
by solving Schrédinger’s equation for.the stretching mode in.the mo-
mentum representation. 52 For example, the ground-state probability

distribution for the momentum is
Pylp,) = (v M_ ﬁw) / exp[ P /(M # w)] (24b)

We note that for the stretching oscill,a"tor' in the ground state, both
the distribution.in- s and the distribution.in P a‘re Gaussians, with
nonzero widths proport;onal to (h w /K )1/2 and (M A W )1/2
respectlvely ‘ »

Havmg thus determined probablhty dlstrlbutlons for an oscil-
lator in a g1ven quantum mechamcal state, we are now in a position
to determine proba.blllty_ dlstr1_but10ns ._for an oscillator 1n»stat1st1c~a1
.equilibrium with its surroundings. The quantum-mechanical proba-
bility for finding the stretching oscillator, in statistical equilibrium

with its surroundings at a.temperature O, at position s is given.by
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P(s) - > P 4 (0]
. n=0

where
s _. s
P =Nexp (- En/®)

is the statistical probability that the oscillator is.in the quantum-
‘mechanical state n. Determination of the normalization constant N
yields (the same symbol N is used in.this paper to denote each of

several normalization constants ).

N = 2 sinh [hw/(20)] .

By using prdperties of the harmonic-oscillator wave functions, this

infinite summation can be performed explicitly, y1e1d1ng the re-

markably 31mp1e resu1t53 54%

- P(s) = (w 'cs:)"i/2 exp (- sZ/CS) - (252)

where the temperature-dependent constant ~Cs is given by

) 2@/KS 5 @ >“> ﬁws

"ﬁws ’ﬁws
Ve s COth(—Z@_ he_ /K_, © <<h
@gl Bg SN
The temperature dependence of Cs can be seen from the graph of
coth [hw /(28)] vs 20/(hw) in Fig. 29. Note that for high temperatures
’ the.qué,‘ntum-’rnechanical ekpvrerssi‘on (253) for P(s) reduces to the clas-

sical result {23a), whereas in.the low-temperature limit it reduces to

“An analogous-formula has been used by Marshall Blann (University
of Rochester) and Wladyslaw J.. Swiatecki (University of California
Lawrence Radiation Laboratory, Berkeley) in connection with fission-

fragment charge distributions {unpublished work).
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1 ! ! | 1 | !
% | 2 3 4

20/ (hw)

MUB-2404

Fig. 29. Coth [hw/(2©)], as a function of 20/(fw). The temperature
' dependence of the constants appearing in the probability distri-
butions for the initial conditions is given by this function.

Shown also is the asymptote of the function (dashed line).



‘the distribution (24a) for the quantum-mechanical zero-point motion
of a harmonic oscillator. '

An analogous probability distribution for p, is o_btained from
the momentum-representation solutions to Schrddinger's equation for

the stretching mode. The result is5

P(p,) = (1C )2 exp (-pi/cp ) (25b)
S : S

where

2M 8, & > > hw
. s s
hw

: CPS = M ‘h wsCOth<7@§ —- |
Msﬁws, (S <<’ﬁms .
For high and low temperatures this expression reduces to (23b) and
(24b), respectively. .

. We saw earlier (Sec'tionv 1I1.B) that the mass-asymmetry and
twisting normal modes have zero frequencies. Thus, ﬁwm and
’ﬁwt are always small in comparison with &, which means that for
these modes we are always in the high-temperature (clalssical) limit.

Thus, the constants Cm and C are always giveﬁ by’s

Py
C =2M ©O.
P t
t
"Recall that for x <x"BG the mass-asymmetry stiffness constant

Km is negative. Thus for x <Xpqg the probzibility P{m) increases

rather than decreases with increasing absolute value of m. -
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We have thus derived in the harmonic approximation expres-
sions that are Valid.quantum-mec.hahi/cally at any temperature for the
distributions. in both coofdinates and momenta for the normal modes
(except the fission mode). Each distribution is a Gaus_sia.n,-with a
temperature-dependent width that has simple high- and low-tempera-
ture limits. ‘ |

The probability distribution for the fission momentum Ps is
difficult to calculate quantum-mechanically both because this mode is
unstable and because the stiffness,cons‘tant . Kf is not defined. For

this distribution we use the classical result (23c); rewriting,. this is

P(py) = 2 <Tr Cpf >'1/2 exp:‘(— 'Pi/Cpf >,

C =2M_0Q.
P¢ £

with

Any attempt to improve this result should include an improved descrip-
tion of the shape of the fission barrier. The inaccuracies vari'sing‘from
using the classical expression for P(pf_) are.probably not serious for
our purposes, since the equations relating the quantities of interest

at infinity to the initial conditions are to first order independent of Py
A.n errorin P(pf) would thus affect the distributions of the quant1t1es |
of interest only in second order.

For a given normal mode the probability distribution for the
coordinate is independent of the probability distribution for the mo-

_ mentum. Also, each normal mode is completely independent of all
.the others. Therefore, the probability for observing the system with
a given set of initial coordinates and momenta is simply the 'pi'oduct
of the individual probabilities for each coordinate and momentum.

The probablhty distributions for the 1n1t1a1 conditions are in
terms of stlffnesses, masses, and frequenmes (all calculated and -
graphed as functions of x in Sectlor_l II1.B), and the nuclear tem-
perature © at the saddle point. The temperature is a function of -
the internal nuclear excitation energy at the saddle point, The dis-
cussion of the determination of @ in terms of the internal excitation

energy will be given in Section VI,
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V. PROBABILITY DISTRIBUTIONS FOR OBSERVABLE
QUANTITIES OF INTEREST

In this section we derive expressions for the probability of
simultaneously observing the two fragme.‘nts at infinity with given
values of the quantities of interest: total translational kiﬁetic en-
erAgy,A fractional mass, individual ‘excitation energies, and individ-
ual angular momenta. The derivation utilizes the results obtained
in the two preceding sections: the equations relating the observable
quantities of interest to the initial conditions, and the probability
distributions for the initial conaitiohs, Since the equations relating
the quantities of interest to the initial conditions are for the case in
which the saddle point is represented by two tangent spheroids
(x< 0.80), the probability distributions that we derive for the quan-

" tities of interest will be for this case also,

b= d

A. The Distribution P(E, U, X,, X,, L, 'IZZ) to Lowest Order

We first consider the calculation of the probability
P(E, U, Xi’ XZ’ Li’

ments at infinity with given total translational kinetic energy K,

fz) of simultaneously observing the two frag-

frac.ti_onal mass U, individual excitation energies X1 and XZ’ and
1 ‘and LZ"

use the consistent set of lowest-order equations  (15), (16), (17), and

individual angular momenta T For this derivation we
(19) expressing the quantities of interest in terms of the initial con-
d‘itions, The resultihg probabiiity distributions will then be valid
only to lowest order in the quantities of intérestc We will later use
(14) and (15) to calculate the distribution P(E, U) to a higher order
in E and U than that used in the present calculation,

| The probability distribution for the observable quantities of
interest is obtained by multiplying the probability distribution for:
vthe initial coordinates and momenta by the Jacobian for the trans-

formation from the initial coordinates and momenta to the quantities
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of interest, and then 1ntegrat1ng over the remaining coordinates

b3

and momenta

- Since E, X and X, are not independent, but are related

to first order by threl conservition of- energy equation (20), the prob-
- ability  distribution P(E, U, X X 1, fz) contains the Dirac
delta function 6(E + X, + X, - EO - zx.‘z ). This probability distribu-
tion is then given by ' ' '
P(E, U, X, X,, ,L ) = P(U, X, X,, T, ) 8(E+X, + X, - E*-2X)),
i 1 2 1 2 1

where a particular choice has been made for the remaining variables.
In order to calculate P(U, X XZ’ Li’ T ) we need to invert
the set of equations (15), (16), and (17) to obta,ln nine of the initial
conditions as functions: of the nine quantities of interest and the re-
maining initial cohditions. (Each compf_;nent of angular momentum
of each fragment is regarded here,as a separate Quantity of interest. )
I1f we choose m, s, d, Py » Py ,pb ,p ,pt,‘aﬁd p, as dependent.
X y_ ‘

variables, this inversion gives

m =U- &, - o (26a)
2 . .
: X + X, - ‘
_ 1 2 T : »
5 - 2X T , (26b)
1, s .
X =X, -2X (U - 3)
a =tz Lm , (26c) -
1,d . '
L'lx h LZx - ZLi, b bx
pb = 2L, ) - ’ (Zéd)
X 1, pb '

J

For a. d1scussmn of coordlnate transformations, see any advanced-

calculus textbook, for example, Brand, 85
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CMx T Mex T M, w Yk o
pW - ZL bl . ) - (266)
X 1, Py, .
L, -L, -2L b
- iy Z'Y 19 b y N V C (26f)
Py 2L ’ :
y | 1, py,
. + L - 2L w .
- iy 2y i,w 'y (26g)
Pw 21, ’ - &
y 1, p,
L, - L
1 2
P, = ——==, v : _ (26h)
N2 |
L, + L , :
p, = 2 —°% | | (261)
. N .

With this choice of dependent variables, the equation transforming
the initial probab111ty distribution into the desired probability distri-

" bution is

+co + o0 .+oo +o0
P(U,X,,X,,L,,L,) =[ dbxf dw[ db[ dw
-0 - 00 =00 - 00

X P(m, s, d, b_, w prbp pbp,pt,p)
. ) y

Om, s, d ‘.,pb, A,ptp)
-X

(U, 1’)%’ LZX iy? LZy 1z’ LZ)

)

we have already integrated over the initié,l coordinates and momenta
not involved in the transformation, obtaining unity in each case. The
probability distribution in the integrrand-is given by the product of the
-probability distribution for each normal coordinate and momentum
appearing in its argument, as determined in Section IV, It is under-
stood that this probability function has the set of equations(26) substi-
tuted for the variables m, s, d, pbx, pr, Py > p,W » Pps and P,
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The absolute value of the Jacobian for the transformation is given by

2

" 3_(m,3,d,Pb ,Pwppb ,-,'PW‘,Pt:pa) / . ’ . - : '
X ® y Y ! 4 1
laj(q’xr}%’lﬂx’gc’ L1Y’L®*lfiz’ Lo, \2X1,s Xi,d> (21"1 Py Ly, R >
We note that the transformation equations for m, s, and d
are independent of ii and 'i:z' and the equations for
P X, p x, Py » Py + Pp and p, are 1ndependent of U, X and XZ'
Because of tKis, t)ﬁe probability P(U, X X L1, LZ) _ sphts into a
product of two marginal probability functlons. '

P(U,X,,X,, L, T) = P(U,Xx,) PL,TL,),

2’
with
. | . 1)2
P(U,X, ,X,) = 1 : 17z exp ( - (—%—
3 .. 2 2 m
(4 C:m_xi,sCsXLdCd)
| 02 R 1' 2
_ (X, + X, - 2X)) [Xi- X, - 2-x1, m(U-z)] | .(27)_.
2 . ™ «. 2 T ]
' 4X1,s Cq : _ 4X1,d‘ Cq
and .
o0 +o00 +oo
L, L) = dh fdw fdbfdw
e o) 9c202c 2 WY lzo fx *Jo V)Y
_ (m’CLC . C°C ¢ 1,p)’ Ly p
W B, By Py
B2+ b2 (w rw ) [(Ly,-L, -2, b+ (L -L, -2, b)7
Xexp - XY _ LZ 'l,bx '1 L‘Zy~ 1,by') !
b Po 5
i [yt Ly - Z»Li,vézwx Ly +L2 ,w V) ]
aL, “C_ .
’Pw 'pw
X S
(Ly, = Lyy,) 6<L1z + L >
B 2C !
NZ
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2 2
N2 [(Lix- LZx) * (Liy- I'Zy) ]
1/2' 7 T exp ¢~ - T -
(nC )""nm C C - 2C
Py Py, Py Py

_ [_(Lix+ LZ:JZ+‘L1Y+ Lly’z] _ (Liz-l'?z)2

: 65(L, +L, ). (28)
2C | 2C 1z ez
. ‘ «
We have used the abbreviations
1
C = 2L 2 C + 2L 2 C,,
1
c =L, °C + 2L, 2 C
P, Py, Py, ,
The distribution P(E, U, X, X,, '131, L,) is of the form
exp [ -Q(Ef U, Xi’ XZ’ L1 , sz, Liy’ L Liz’ LZz)] times two Dirac
delta functions, where. Q(E, U,'X X Li , L Liy’ LZy’ Liz’ LZz)

is a positive-definite quadratic functmn of 1ts ten variables. In the
language of statistics, P(E, U, X,i, XZ’ _1:1’ —I:Z) is a 10-variate normal
distribution>? multiplied by two delta functions. Similarly, the mar-
ginal probability function P(U, X , X ) is a trivariate normal distri-

but1on,_ and P(Li’ LZ) is a 6-var1ate normal distribution multiplied

. by a delta function.

1. Distributions Obtained from P(E, U, X1, XZ)_'

We have derived the lowest-order result for the probability of

observing the two fragments at infinity with given values of total trans-
lational kinetic energy, fractional mass, and individual excitation

energies:

: : -0 0
P(E, U, xi,_xz) = P(U, X,, X,) 8(E+X+ X,- E"- 2X ),

where P(U,Xi,XZ) is given by (27). By integrating over the quantities

If there were no angular momentum induced by the torque arising from
the presence of the electrostatic field, then Ci) would equal C , smce for

this case L *1/r\/_, and 0. An analogoubs statement holdbs for Cp .

w

1b
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not of immediate intereSt in this probability distribution, we obtain
marginal probability distributions for the observ.a.ti_on of a smaller

number of quantities, KEach of the resulting:probability functions is
. also a ﬁormal distribution (multiplied possiblybby a delta function).

- For example, we obtain

|

P %) = 2, 2 . . 2 2 1/2
‘ [.4“ X'i, s cs (Xi,mcmfxi,d Cd)]
40,2 _ B .2
. X+ X, -2X)) Xy “.XZ)
,Xexp - T 2 = -2 2 s
, , 4}(13S C, 4(X1, Cm+X1,d‘Cd)
. | . r w ;% .
PO, Xy = S N T
. [w Cm.(xi,s C .+ Xi,d Cyl _ |
[(X4-Xy" = Xy, ;o (U= )]
- 2 _ Z ’
X1’ C +‘X1,d Cq
, ' ~ 1 :
P(-X1) ) 2 2 2 1/2
[w(x1 m Gt X1’ csfr Xi,d'cd),] _
 2
- (X, - XJ)
Xexp| - — z z ’
Xym CntXy o C +X, 4Cq
- and 4
. : 2
. 1
. 1 (U - '2")
P (U) = ————Uf exp |~ :
' ' (mC_) Cm
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We can also obtain from (27) the -probébilityi distribution for
mass and total excitation energy X by substituting

dj¢

and integrating over XZ:

2

4.2 w0 2
: 1 (U~ '2‘) (X-XY)
P( U, X) = 1/2 exp| - . 5
(-'-hr2 C_ X 2 c ) Cm 4X1,scs
m 1,s "s :

An integration over U in this equation then gives

0 2
P(X) = 1 exp | - (X-X)_
2 . /2 4x, % C
(47 X C ) 1,s 7s
1,s ~s .

~ Since the total translational kinetic energy and the total ex-
citation energy are related to first order by the conservation-of-energyv
equation (20), the two preceding equations are completely equivalent

to

1,2 0%
P(E, U) ! 92 EEE
U= <177 °XP | - - = -
[w°c_a’c (E%)?] / Cm efcEY
m S S
and
2
- -1 (E-E7) .
P(E) = . 5 V) exp| - —2—————2— H
[ra“C_(E") ] a CS(EO)

; v_ _ |
“This equation is also obtainable directly from P(m,s) and the

equations U = % +m and X = X0 + ZX1 ¢S [obtained from (16) by

adding X, and XZ].
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we have also used the relationship (21) between X ~and aEO.

i, s
Similarly, Eq. (27) is equivalent to’ S
(U -3)

i 2

_ 3 2 0.2 m.
[v'C_a“C_(E”) X, 4G4 |

0 2)

1

o’c (%)% | x. % c

(E ..'E_O)Z X, -X

1 0 1
+ > (E-E) —Xi,m(U—-Z-)]

This r_e'sult' is useful for discussing, for example, the excitation _
energy of a single fragment, for given values of the total translational
kinetic energy and fractional mass.

- From the expression (29) for P(E, U) and the transformation
"(18) relating the total translational kiné’tic.:en:ergy E and the fractional
~mass U to the individual translational kinetic energies E1 and EZ’
we obtain the probability distribution for individual translational

kinetic energies:

| L oy 9 (E, U)
P(_E,l, E,) = P(E, U) _G_W
1 0)2 | 2
) N (EgtE-E) (E1'Ez)2 ,
‘ ' 172 ) 0.2 , ;
[w%c_d’C (EO)‘*]i e G (ET) ac_(EY)
m S m

the.equation resulting from the transformation has been reduced to

lowest order in E1 and E2° By integrating over EZ in this equation -

we obtain the distribution in translational kinetic energy of a single

| fragment: 2
. E - EO.) §

exp -

. 2 °
2.y 0
(4C_, + 0 C ) (Ey)

P(E) = ‘ . 2 12
[m4G, +a’CE)) T
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It should be recalled that for x < XBG, Cm is negative, re-
sulting in the mass distribution increasing rather than decreasing
with mass asymmetry., The distributions involving U then approach
infinity for large values of U and are thus not normalizable, In a |
contour plot of P(E, U) vs E and U, for example, the lines of con-
stant probability are got ellipses for x < Xpa but instead are two '
families of hyperbolas, One family represents lines of increasing
probability for increasing mass asymmetry, whereas the other family
r’epfesents lines of decreasing probability for deviations in the kinetic
energy from its most probable value,

Since the above probability functions are normal distributions
(of one or more variables), all the information they contain can be
represented in terms of means, variances, and correlation coeffi-

56

| cients (or alternatively, covariances), For example, a monovariate
normal (Gaussian) distribution is completely specified by two quanti-
ties: the mean and the variance (square of the standard deviation),
From the standard form for a Gaussian distribution (whose mean is

- . . 2
x and whose variance is o, )s

=2

_ 1 (x - %)
Pl = =7z o* |- T |
X )

(2™ Ox)

we can determine by inspection the mean and the variance of each of

the Gaussian distributions above,

“The mean X of the distribution P(x) is defined by
x = [ x P(x) dx,

where the integration is over the allowed range of x., The variance
o which is proportional to the square of the width of the distribution,

is defined by

oi = [(x-%°% Px) dx.



-105-

To specify a bivariate normal distribution; five quantities are
réquired in ‘general: the mean and variance of each variable, and the
correlation coefficient (or alternatively, the covariance). ' The cor-

“relation coeff1c1ent Py of the dlStI‘lbuthn P(x,y) is defined by57

IdedY (x -X) (y-¥) P(x,V)

,Y

The value” of the correlation coefficieut, Which has a rarlge ofs}alues
from -1 to +1 57.indicates the degree of correlation of the .Vari~
. ables A pos1t1ve value of this coefficient means that the two variables
~are more 11kely to be S1multaneously large or else s1mu1taneously
| small a negative value means that if one variable is large, the other
: is more likely to be srnall The d1str1but10ns P(U, X) and P(E, U). are
seen to have correlatlon coefficients that are zero, On the other hand,
the correlat1on coefficient for the d1str1but10n P(X XZ)’ for example,

1s nonzero; we find that 1t is given by

2 .2

: X‘l,s Cs ) X'l,m'cm } Xi,d c'd o
Px X, T T2 7 < 2o " (30)
172 X s Cet XY Cm %4, Ca

Coefficients. of correlation could be s1m11ar1y calculated for the other

d1str1but10ns

To illustrate the magnitudes o‘f the widths of these distributions,
‘we present sample‘ graphs' of some of the more important functions
derived above, The results are for nonviscous fragments with the type
,of hydrodynamic flow we have been con51der1ng a superposition of an
irrotational flow and a flow corresponding to a uniform rotation. All

‘ graphs refer to the fission of the compound nucleus 85At 13, with a

' nuclear temperature at the saddle pomt of ©=1.13 MeV. (This sit-

uation may be obtalned exper1menta11y, for example by bombarding
5:209°
Bi

83 W1th 65 MeV alpha partlcles ) In two of the graphs we
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illustrate the effect of temperature on the widths by also presenting
the result for ©= 0. In Fig. 30 is presented a contour map of .
P(Xi’ XZ) Vs X1 and XZ' Figure 31 shows the distribution in exci-
tation energy of a single fragment: P(Xi) Vs Xi' The distribution
in total excitation energy [P(X) vs X], which is equivalent to the
distribution in total translational kinetic energy [P (E) vs E], is
shown in Fig. 32. The lowest-order result (29) for the distribution
in mass and total translational kinetic energy is presented in Fig. 33
as a contour map of P (E, U) vs E a,nd u.

An interesting feature of the theory is the prediction that the
excitation energies should be a_.ntiéorrelated—if one fragrhent has a
large excitation energy, then the other fragment .is4more likelry to
have a small excitatioh energy, and vice versa. This can be seen
either from the contour map of P(Xi’. XZ) in Fig. 30, or from eval-

uating Eq. (30) for the correlation coefficient. For At213 and

©=1.13 MeV, we find that Px. X - 0.46. For this 8sixme nucleus
in the high-temperature (classical) limit, px'i X - 0.44, whereas
in the zero-temperature limit, pX1X2 = - Q.58. Thus the excitation
energies are predicted to be somewhat more strongly anticorrelated
at low temperatures than at high temperatures.

‘ The physical reason for the anticorrelation in the excitation
energies is very simple in the classical limit. The result can be
interpreted in terms of the relative amplitudes of the stretching and
distortion-asymmetry modes, since the excitation energy of a frag-
ment at infinity depends primarily upon its initial elongation. Pure
sfretching—mode oscillations correspond to completely correlated
fragment excitation energies, whereas pure distortion-asymmetric
oscillations correspbnd to completely anticorrelated fragment excita-
tion energies. The potential energy in the ’neighborhood of the saddle
point is found to be 'stiffer" with respect to stretching than with
" respect to ‘distortion—asymmetry. The distortion-asymmetric oscil-
lations therefore possess larger amplitudes than the stretching oscil-

lations ~hence, anticorrelation,
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Fig. 30. Contour map of the probability distribution of individual
fragment excitation energies, P(X,, X,) vs X, and X,.
The lines of constant probability (ellipses with axes rotated
,45° with respectto E and U axes) are labeled by rela-
tive probability. The value of X0 is 21.3 MeV. The cal-
culations are for the case of the compound nucleus 85At 1
(x = 0,677) at a nuclear temperature of 1.13 MeV
(83Bi209 + 65-MeV a, for example).
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Fig. 31. The probability distribution of éxcitation energy of a
single fragment, P(X,) vs X,. The value of x0"is
- 21.3 MeV., The calculations are for the case of non-
viscous fragments and the fission of'the compound
nucleus 85At213 (x = 0.677), at two different values of

the nuclear temperature @,
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The mean (or most probable) value of each of the quantities
of interest is seen to be independent of nﬁclear temperature. How-
ever, since the constants Cs etc, are temperature-dependent, the
widths (or variances) of the distributions are functions of nuclear
temperature, As the temperature approaohes zero, the widths of
the distributions approach finite valuesv determined by the quantum-
»mechanicalvzero -point vibrations of the appropriate oscillators.
(Except1ons occur for the mass distribution and the dlstrlbutlons in
the z- component of angular momentum Since the mass- asymmetry
and twisting frequencies are zero, the widths of these distributions
approach zero as the nuclear temperature approaches zero.,) For the
fission of a typical lighter -than-radium nucleus, the zero-point full
width at half maximum of the distribution in total translational
kinetic energy is = 10 MeV, The width of the kinetio-energy distri-
bution arises primarily from oscillations in the distance between
fragment centers (stretching mode). Becaose of the near cancella-
tion of the opposing effects of the surface and Coulomb energies near
the saddle point, the potential energy in the stretching direction is
very flat. This means that a very small quantum-mechanical un-
certainty in the stretching-mode potential energy (* 0.3 MeV) is
"amplified'" into a rather large zero-point width in the total trans-
lational kinetic-energy distribution. As the nuclear temperature in-
creases, the uncertainty in the strétching-mode potential energy
increases, resulting in a corresponding increase in the width of the
kinetic-energy distribution, 3
2. Distributions Obtained from P(_I_Zi, T:Z)

From Eq. (28) for P(T:'l’ -Ijz) we can obtain several useful
formulae involving the fragments' angular momenta. We first con-
vert from cartes1an coordinates to spherical coordinates through the

transformatmn
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L1X, ]__"1 S1n91 cosq)i,_

Liy L1 51n6,1 51n¢1,

Liz L,1 cos 91;
an analogous set of equations holds for fragment 2. The magnitude
of L

fragment 1 and the 2z, axis (the line connecting the fragment

1 is Li’ the angle between the angular-momentum vect'orvof

centers) is 91, _a.nd the azimuthal angle is 4‘51. We further define

= (8, + 8,)/2;

if one looks along the line connecting the spheroid centers, then ¢
is the angle between the fragments' components of angular momentum
perpendicular to this line, |

‘ Equation (28) becomes, after an integration over 4; { upon
which the probability function does not depend} is performed (the nor-

malization is such that the range of ¢ is from 0 to m),

2
Lo
1 1
(vCc_ )% e ¢
pt pb Py

4NZ 1% L% sin6, sino
1 1 2

P(Ly, L,,0,,0,,¢) =

N o1/ 1\ .2 2
Xexpt'g(‘(—:—r‘Jr—c—'—)(L1+ L)

C C

:/' i % - 1,, >(Li c05261+'L§ COSZGZ)
NPy Py Pe/

+<—T—--—T—-‘; L, L sinG1 sinG2 cos ¢

T

+ L, L,cos 6, cos 6, 5(L1‘ cos 6,+ L, cos 6,).
Py

(31)
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Fig. 32, The probability distribution of total fragment excitation
_energy, P(X) vs X. The value of X0 is 42.6 MeV. The
calculations are for the case of nonviscous fragments and
the fission of the compound nucleus’ 85At213 (x = 0.677),

© at two different values of the nucl,ea.f temperature O,
. N\ - . . ’



-110-

I J 1 ! ' |
20+ 5A1-2|3 ®=1.13 MeV —
3 10 ]
()
= | _
O L pu—
o
wl
' : _
w B
10 ]
-20— ]
| | | l |
-0.| 0 ol
u-t/2
MU.33550

Fig. 33. Contour map of the probability distribution of total
translational kinetic energy and fractional mass,
P(E,U) vs E and U, calculated to lowest order
[ Eq. (29)]. The lines of constant probability (ellipses
with axes parallel to the E and U axes) are labeled
by relative probability., The value of EQ is 151.4 MeV.
The calculations are for the case of nonviscogs fragments
and the fission of the compound nucleus ,.At 13 (x = 0.677)
at a nuclear temperature of 1.13 MeV (83Bi209 + 65-MeV
a, for example). ’
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The 'integration over ¢ in this result can be performed explicitly to
“yield a probab111ty d1str1but10n that is mdependent of az1muthal angles.
| Smcve58 |

- “ | | |
j’ exp (xﬂcesq))‘dcp = Io(x) = In_JO(ix)
0 ‘ )

1225 1%t

4 6
=w[1+(x/2')2+ (x/2) , (x/2) +...},(32)
2 2
o 3

where JO denotes the Bessel function of the first kind of order zero
(Io. is the mod1f1ed Bessel funct1on of the f1rst kind of order zero);
_the expressmn for P(L L , 6 ) can be obtamed from (31) by
1nspect1on. Also, because of the presence of the delta funct1on an

6,, 8, can be

integration over any one of the four variables Li’ g 92

,
performed 1mmed1ate1y ‘ ’
In the zero-temperature limit the tw1st1ng mode is not excited,
and the twisting-momentum constant Cp approaches zero, This
means physic_a‘.lly that the z component bt angular momentum of each
fra.grhent is zero, and the angular-momentum vecter of each fragment
is perpendicular to its direction of»motiorr. The integrations over
both 61 and 62 in (31). c:n then be easily performed, yielding the

zero-temperature result.

4L, L |
172 1(1 1 2 2
P(L, L,,¢)= ——7 exp|-5(——+——|(L]+ L3)
' "C, C,

This expression could also be obtained directly from the set of _
equations (17) and P(b W b y W ,pb » Pw ,pb ’Pw ) by integrating over
the bending and wrlggllng a.ngles, ancf(transformlngythe result to cylin-

drical coordinates.
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' ' g '
it is understood that the zero~temperature limits of C_ and C_
are"to be used. By employing (32) the zero-temperatur}% result %r
P(L L ) can also be written down by inspection. _ |
' If, in the or1g1na1 expression (28) for P'(Li’ fz), we integrate
_with respect to sz, LZy’ and LZz’ we obtain the probability distri-

bution for the angular momentum of a single fragmenit:

- | 2, . 2 2
P(f: ) = 2N2 exp | - Z(Lix +.L1y) _ ZLiz
1! 172 T 7 ‘p T T
(nC_)/ "w(C_+C_ ) C + C C
Pt Pp Py Py Py Pt

If we transform to spherical coordinates and integrate over:the azi-
muthal angle (upon Wthh the probab111ty function does not depend)

we obtain

| C 4NZ L% sin6. 212
) g sin 0, _ 1

P(L,, 0,) = ——pp———tr  exp |- ——ir
(nC- )" (C_ +C ) cC +C

P, Py Py P, Py

An integration over- 91 can be carried out to givé the probability of

observing a single fragment with given magnitude of angular momen-

tum:
4L, o ZLi
P(Li) = T T 172 exXp | - ————
[(C +C C_ +C_ -C_ ) C +C
pb p pb PW Pt - Pb pW
o v a1/2
Z(Cp + Cp - Cp )
X H b : W : t Li‘ ,
(C + C )
Py Py Py
"where H(x) is the error Ifunction, defined bys9
- rx Lo T
2
H(x) = J exp (-az)da.

¢ 1T 0
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In the zero-temperature limit, Cp approaches zero, and this ex-

pression reduces to ot
AL 212
P(Ly)= —7—— exp |~
C +C C +C
Pp, Py Pp Pw
The various probability functions obtained from P(i{l’ L’Z.)

are useful as regards specific information on the fragments’ angular
momenta at infinity, One has available in these formulae predictions
regarding the magnitudes of the angular momenta, the angles between
the angular momenta and the line connecting fragment centers, and
‘the angle between the components. of angular momenturﬁ perpendicular
. to the line connecting fragment centers, These prédicti_()ns include v
. the co_r'relatiorvls‘between the various quantities, as well as their de-
pendences upon nuclear temperature and fissionability parameter,

As a single exampler, we present in Fig. 34 the curve P(Li)

for the compound nucleus At‘213 and ©= 1.13 MeV. The

ve Ly 85

result for nonviscous fragments with hydrodynamic flow of the type

we have been cons_idéring is given by the solid line, and the. result for
infinitely viscous fragments by the dot-dashed line., We also indicate
the result (short-dashed line) that would follow if the torque exerted

by one fragment on the other through the electrostatic interaction
‘were zero-this represents physically the distribution of angular mo-
mentum at the scission configuration. At scission, the most probable
magnitude of the angﬁlar momentum of a fragment is seen to be about
8.5%. The corresponding most probable valué- at infinity is about 10*
for thé nonviscous case, and about 15+% for the viscous case. The
relatively large difference in the predicted angular -momentum distri-
bution between the case of viscous fragments and the case of nonviscous
fragments will perhaps make it possible to estimate experimentally the

degree of nuclear viscosity, For this to be pr_acticable, of course, the
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Fig. 34, The probability distribution of the magnitude of angular
momentum of a single fragment, P{(L,) vs L,. The result
that is calculated for nonviscous fragments (with hydro-
dynamic flow consisting of a superposition of an irrota-
tional flow and a flow corresponding to a uniform rotation)
is given by the solid line, and the result for infinitely
viscous fragments by the dot-dashed line. The short-
dashed line represents the result that would follow if the
torque exerted by one fragment on the other through the
electrostatic interaction were zero.  The calculations
are for the compound nucleus 5At213 (x = 0.677) at a

nuclear temperature of 1.13 MeV (83Bi209 + 65-MeV a,
for example).
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present theory of fragment angular-momentum distributions would
‘have to be refined to the stage where predictions can be trusted to

within considerably better than 50%.

B. The Distribution P(E, U) to Higher Order .

_ ~ We have seeﬁ [Eq. (29) and Fig. 33] that to lowest order in
the variables 'E and U, the probability function P(E, U) is a bivariate
normal distribution; in a'contour map of P(E; U) the lines of constant
probability are ellipses whose axes are along E and U. This lowest-
order result for P(E, U) is completely specified by EO.(the ‘mean value |
of E; the mean value of U is one-half from symmetry) and the two

variances ,0'2 and o"2 which measure the widths of the distributions

A "y
in E and Uf: respec?ively, By use of this result we are able to dis-
cuss the distribution in mass and total translational kinetic energy in -
thé immediate vicinity of the most probable values. )

If one desired to discuss the deviations of the distributions .in
mass and total translational kinetic energy from a bivariate normal
di’stribution, then it would be necessary to include in the expression
for  P(E, U) higher-order terms in the variables E and U. Whereas
in the biv;ariate normal distribution the exponent contains only the two
‘quadratic terms (F.,-'EO')'2 and (U - %)2, the exponent of the distribu-
tion to the next higher order contains in addition the two cubic terms
(E-EO)(U - %)2 and (E - EO)3, and the quartic term (U - %)4 * in
addition to'the mean EO and the two variances, three additional quan-
tities, the coefficients of the two cubic terms and the quartic term,

are needed to specify P(E, U) to this order., These coefficients have

"'chh'e other two cubic terms, (E - EO)Z(U - %) ‘and (U —%)3, are absent

_beéauise P(E, U) is an even function of (U - 1), The absence of the

2 v v :
(U -%)3 term means that the (U ——;-)4 term is responsible for the first-
order deviation of the distribution in mass from a Gaussian, and must
then be considered to this ordef, The distribﬁtion P(E, U) would also,

in general, have a pre-exponential dépen'dence upon E and ‘U,
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simple physical significances: The coefficient of the '(E'_—EO)3 term

strongly affects the skewne'ssé.0 of the distribution in E, and deter -
mines the lowest-order deviation of the distribution in E from a
pure Gaussian-whether the distribution has a high-energy or a low-
energy tail, and by how much. Similarly, the coefficient of the

(U =%)4 term strongly affects the kurtosi-560 (peakedness or flatness)
of the distribution in U, and determines the lowest-order deviation
of the distribution in U from a pure Gaussian-whether the distribu-
tion is more peaked than a Gaussian or has a flatter top. We will
find that the coefficient of the (E - EO) (U - %)2
how rapidly the most probable (or mean) value of E as a function of

term determines both

U {falls off With (U -—;:—)2, and also the derivative with respect to E
(evaluated at E-= EO) of the variance of the mass distribution as a
function of E. To the next higher order beyond including these three
terms, the exponent of the P(E, U) distribution would contain the quar-
tic term (E - EO)4, the sixth-order term (U-%)é, along with cross

-terms in E and U; and so on,

The derivation of the bivariate normal distribution (29) utilized

a combination of two lowest-order results: (a) the equation (19) relating
E linearly to the initial conditions, and the exact equation (15) for U,
and (b) the initial-conditions probability distributions obtained in Sec-

tion IV by expanding the potential energy about the saddle point and
retaining only quadratic terms (harmonic approximation). We have
available [Eq. (14)] a much more accurate equation relating E to the
initial conditions than the first-order equation (19). In addition to
taking into account the dependence of E on the mass-asymmetry coor-

dinate m and the fission and stretching momenta Ps and Pg» Eq. (14)
also includes a more precise dependence of E on the stretching
coordinate s. However, the harmonic-oscillator probability distribu-
tions that we have used for the initial conditions represent the most ac-
curate quantum-mechanical result that can be easily obtained. In order
to obtain the best expression for P(E, U) that still incorporates initial
éondit_ions determined quantumemechaniéally, we will use the same

probability distributions for the initial conditions as before, but will

-
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use the more accurate equation (14) for E and the exact equation .
(15) for U. Although the resulting expression for P(E, U) will be -
strictly accurate only to lowest order in E and U, it will in addition
contain higher-order terms in E and U. The higher-order terms
| reprvesent the effect of the nonlin'eartra.‘n‘sformation (14) expressing
E in tei'ms of the ini:tial conditions, = Since there are two separate
steps involved in the calculation of P(E, U), the treatment of' one step
essentially exactly and the other step to lowest order in E and U is
not completely inconsistent. '

We will later calculate an expression for P(E, U), valid in the
classical limit, ‘in which we use probability distributions for the initial
conditions obtained by retaining certain anharmonic terms in the ex-
pansion of the potential energy about the saddle poinf.

1. P(E, U) for Initial Conditions Determined in the Harmonic
Approximation

In order to calculate P(E, U) we need to invert the two equations
(14) and (15) to obtain two of the initial conditions 2as functions of E
and U and the remaining initial conditions, If we choose m and s

as dependent variables, this inversion gives '

m=U-2, (33a)
0
s = 1 4U(1 - U) E -1 (33b)
a MO 2 )
cipf ps
E-MA\s—r t ™
0 ""f s

With this choice of dependent variables, the transformation from the -
initial probability distribution to the desired probability distribution is
given by

9 (m, s)

P(E, U): f dpff dpS P(m: $9 Pf:PS) B(E—, U ‘) 5
. 0 . o
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“we have already integrated over the initial coordinates and momenta
not involved in the transformation. It is understood that the set of '
equatlons (33) is substltuted for m and s in P(m, s, s Pp Py ) which
is glven by the product of the probability distribution for each normal
coordinate and momentum appearing in its argument, as determined
in Section IV, , v |

_ The double integral over Py and Ps cannot be expressed in a
closed form. (By an appropriate change of variables, the double
. integral can be reduced to a single integral in which the new integr'a.r_ld
includes an error function; in practice, this transformation is not very
useful. ) However, if we expand the expression (33b) for s in powers'

of the small quantity

c, - f s
_Mz 1 + = >
My Mg~ M
E

everywhere it appears in the integrand, we can integrate the resulting
expansion term by term, obtaining an asymptotic series expansion for

P(E, U). The result is found to be

, . 1.2
_ '4U(1-U)E0F(E, U) expj (U-3) ) [E 4U(1 UE L L

P(E, U) = Xp ( -
(r2C_alc P r? 7 Cm ‘c_ E° j
m s L .
(34)
where F(E, U) is the asymptotic series '
0. |
F(E,U)=1+ 1+ 4U('1U)E[E—4U(1—U)E]
' ' L a C E
0 W2 3
4(MC1/MO) Cpf _ Cps B M,
X . > + > =t - (35)
Mf _ Ms

The function F(E, U) is close to unity, except where the term in braces

becomes very large. This occurs only when E and/or U are far
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from their most probable values. (Since this is an asymptoti¢ series
“rather than a power series, the expansion converges for a definite
range of the variables E and U rather than for an infinite number of
terms retained in the expansion.) Thus, the approximatioﬁ, F(E,U)=1
is a very good one, .'[Sétting F(E, U)= 1 is equivalent to neglecting in
(14) the dependence of E on the initial momenta Ps and Pg- ]

An alternative way of writing P(E, U) is more useful for some
purposes than (34). If we collect terms in (34) accofding to powers

of (U - %), we obtain

0 02"
) e’ rE, U) (E- &Y
P(E, U) = ! exp { _—]
(n? cmazcs)“/ZEZ aZCSEZ
2 4
‘>__<I[1-4(U-%)2] exp[- G(u - 3)-u(U- 3 } , ©(36)

where the quantities 'G and H (functions of E) are defined by

0, ~ .0
G = + 8E2('E'f), (37a)
a CSE

1
C
m

0 .
4E ) | (37b)

H =
(a® CS)T/ZE

It is instructive to compare the current higher-order result
for P(E, U) with the lowest-order expression (29) deri\?ed,earlier.
Whereas (29) is a bivariate normal distribution, the current result is
not—in a plot of P(E, U) vs E and U, the lines of constant prob-
» abilif}} are not ellipses, In Fig. 35 is presented a contour map of the
‘current result for P(E, U); this may be compared directly With the
mép of the lowest-order result shown in Fig. 33. Near the position of
maximum probability the cohfoﬁr liﬁes are close to ellipses, but inthe
region of smaller probability they tend toward a triangular shape. The

- reason for this can be seen"mathemat'i,cally from Eq. (36) and the

N
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Fig. 35. Contour map of the probability distribution of total
translational kinetic energy and fractional mass,
‘P(E, U) vs E and U, calculdted for initial conditions
determined in the harmonic approximation | Eq. (36)].
The lines of constant probability are labeled by rela-
tive probability. The value of EO is 151,4 MeV. The
calculations are for the case of nonviscous fragments
and the fission of the compound nucleus 85A’t 1

(x = 0.677) at a nuclear tebmperature of 1.13 MeV
(8351209 + 65-MeV a, for example).
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definition (37a) for G,* Since G is the coeff1c1ent of the (U - -—)
term in the exponent 1/NG is proportlonal to the Wldth of the mass
dlstrlbutlon [as long as the coefficient H of the (U - Z) term is
small]. Because G increases with ,1ncreas1ng E (and vice versa),
the mass distributioh is narrow for high E and broad for low E.
This means that the lines of constant probability acquire the appear-
ance of rounded triangles in a plot of P(E,U) vs 'E and U.

If one extrapolates Eq. (36) for P(E, U) to very low values of
the total translational kinetic energy E, then the lines of constant
probability begin to curve in -the opposite direction in the region near
. symmetry., [This occurs because the coefficient G of the (U - ;)Z
term becomes negative for sufficiently low values of E, This is just
beginning to occur in Fig. 35 for the contour line of one-tenth maximum
probability, | This would mean physiCally that the probability for ob-
taining a given mass is greater for asymmetric divisions than for sym-
- metric ones, However, this aspect of the theory is changed if, when
deterrhining.the probability distributions for the initial conditions, one
takes into account terms beyond quadratic in the expansion of the poten-
tial energy about the saddle point (te be discussed in Section V., B,2).
When the lowest-order anharmonic terms are retained, this effect
starts occurring at a much lower value of E than that given by (36).
_[The contour.plot of P(E, U) for the case in which these anharmonic
terms are.included is shown in Fig. 39.] It is not clear what effect

the inclusion of still further anharmonic terms would have on P(E, U).

*The triangular appearance of the‘co‘ntour'ylines results physically from
a combination of two things: (a) the total translational kinetic energy
has a linear term in the stretching coordinate s, but only a quadratic
‘term in the mass- asymmetry coordlnate m, and (b) the probability

- distributions in both s and m are Gauss1ans,
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"From the distribution P(E, U) one may obtain, bjr performing
suitable integrations or by differentiating; other quantities of physical
interest. We now consider the calculation of approximate analytical
expres sions for such quant1t1es for these derlvatlons we use the
very good approximation F(E U) = 1. _

By integrating over the total translatlonal k1net1c energy E,

we obtain the distribution P(U) for fractional mass:

' K : | : | 1,2

The mean total translational kinetic energy, as a function of
fractional mass, is defined by
e P(E, U) dE

E(u)= 2 0y maal o (39)

If we use the result (34) for P(E, U), with F(E, U) = 1, and the result
(38) for P(U), we obtain'T ’

“This result follows directly from the equation U = %+ m and the
distribution for P(rn), without the use of the approximation F{E, U) =1.
. It may also be obtained by substituting (34) for P(E,U), with F{E,U) =1,

and integrating.

TWe note that as it stands this integral diverges logarithmically (at

the upper limit)! This occu#s because both the expression (14) for

E as a function of s and the probability distribution (25a) in s

are incorrect when s .is far from zero-in particular, when the two
fragments are so close together that they produce an infinite kinetic
energy. In reality, as the distance between the two fragments ap-

- proaches zero, the actual probability P(s) . falls off much more rap-
idly than a Gaussian distfibu’cion, because the potential energy in-

_ creases much more rapidly than a parabola, Thus there should actually
appear in the integrand .an’ additional '"damping'" factor for large E,

which would make the integral converge,



-125-

o o ' O'z
4U(1 - U)E f dE | [E-4001-0)ET]
(m az,cs’)i/z = e qZ-CS B’

E(U) =
: 5

If we nbw make the substitution

4u(t - EY
1+ as ?

E =
this becomes
[+e]

E(u) - 2400 - 0)E’ f _ds exp<_ ii)
| (11'C')17.2‘ w LTS . Cs)

where we have replaced the lower limit -1/a by -«. By expanding

the denominator of the integrand and integratingterm by term, we

obtain an asymptotic series expansion in powers of az Cs for E (U):

2¢ 4 °;°). | - _ (40)

= i 0 1
E(U)= 4U(1 - E (1 + 7 o C_

The variance of the distribution in total translational kinetic
-energy, . as a_funct_ioh of fractional mass, is define‘d by '
f [E - E(U)]2 P(E, U)dE
0

2
.. (U) =
E P(U)

We obtain, by methods analogous to those used in calculating E(U),

-the asymptotic series expansion

| , |
2 1 0,% 2 2
om(U) = 2—[4U(1-U)zE] a“C (1 + 40°C + 1),

b . . o
. This result could also have been obtained-more easily~directly from

(14), with the neglect of the initial momenta, and the probability " P(s).
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Higher statistical moments of the distribution in total translational
kinetic énergy (as functions of fractional mass) éould be calculated
in a similar manner.

One may also obtain from P(E, U) the most probable total
translational kinetic energy, as a function of fractional mass, by
solving the equation

3P(E, U) _
8B(E 1) .

9 0.

If we use the expression (34) for P(E, U), with F(E, U) = 14, we obtain

4U(1 - U)EO[(i + 4 aL"‘cs)i/2 - 1]

E, o(U)
MP Zo.ZCs

au(1 - WE(1 - u?cs boen)

2
E%1-4U- 3)T0-afc ey, (41)

It is interesting to note that the most probable total translational
kinetic energy (for a given U) is slightly less than 4U(1 - U)Eo,
~whereas the mean value [Eq. (40)]is slightly greater. This is because
the distribution P(E, U) is not a normal distribution but instead has a
.small high-energy tail, The difference between EMP(U), E(U), and
4U(1 - U)E0 is small, however, since o.ZCs is typically = 0,005,
_ We now consider the calculation of integrals with respect to U

over the distribution P(E, U). The distribution of total translational
kinetic energy is defined by . |

| 1

P(E) = f P(E, U)dU. i (42)
0
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If we substitute (36) for P(E, U), with F(E, U) = 1, and make the

change of variables m = U - 1 this becomes

2’
0 . . 02
P(E) = — zE 17z -2 °*P| - (E_Ef )2
A Cmo. CS) E a CsE

400 o

XJ, dm(1 - 4m2') exp(-=H2 m? - sz),

_.0.0'

where we have replaced the limits -1/2 and + 1/2 by -o and +eo,
respectively. | ‘

The resulting integral is not expressible in terms of elemen-
tary functions. We find it convenient for the present purposes to
‘ expreés it in terms of the ft‘mctions In(ﬁ) that are defined, for all

values of n greater than -1/2, by the equation

_ + 00 00
1.(8) =f =" eXP(-,X4-Bx2)dx =f Yn-(i/z_\) eXP(-YZ-BY) dy. = (43)
ST , 0 ’ '

"Properties of these functions, iﬁcluding the differential equation satis-
fied by I ([3), recurrence relations, and asymptotic expansion, as well
as their relationship with the repeated integrals of the error functlor? 163
are given in Appendlx F. We present in Fig, 36 graphs of the func -
tions I(B) vs B for n=20,1, and 2. |

The total translational k1net1c-energy distribution can then be

written in terms of these functions as

0 0.2
) E & - )
P(E) = exp| - —s————s—
.(TrZCmazcs)’ Vege o’ C E 2
| - 411,(G/H)..: , '
X ——7— I(G/H) - ——— |, - (44)

where the energy-dependent quant1t1es G and H are defined by (37).
The second term in the brackets is much smaller than IO(G/H) and

can usually be neglected.



-128-

2.5

2.0

In(B)

v 0.5

MU.33384

Fig. 36. The functions I_(B) [ defined by Eq. (43)] vs B,
n
for n=0, 1, and = 2.
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- The variance of the fractional mass, as a function of total

vtranslation__al kinetic erergy, is defined by

1 , .
[ 2
f (U->) P(E, U)dU

aé(}«:)= 0

P(E).

. We obtain, in a manner analogous to the calculation of P(E), the

result _
RS y -4IZ(G/H)
, I1,(G/H) - ——— :
E)= & |1 H . (452)
: : 41,(G/H)
1,(G/H) - —F—

H

" If we neglect the second term in the numerator and the second term

in the denominator, we obtain the simple result

5 E) i 11(G/H) _ (45b)
0. = 5 g .
U H 1016‘7_YH_ | | -

A graph of the function bli(ﬁ)/lo(ﬁ) vs ﬁ‘[3" is given in Fig. 37. From
the asymptotic expansion of In(ﬁ) listed in Appendix F, we find that
for large values of G/H '

of (E) = 1/(2G) . o (as0)

‘Higher statistical moments of the distribution in fractional
‘mass ( as functions of total translational kinetic energy) are obtainable

: ju_st as readily as aé(E).v For example, the fourth central moment is

given by 1

- 14 |
(U - 3 P(E, U)dU _
(4) 2 q »IZ(G/H)

= ~0 - = —
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LoF Ho.l0
Right scale
: E B Left scale -
-
~ R
2
—~ 0.5} 0.05
t
o 1 1 1 { I 4 i - .1 l | L 1 1 O
-5 -0 5 10

MU.-33385

Fig. 37. The function Ii(ﬁ)/IO(B) vs B. The functions I_{(B)
are defined by Eq. (43), n
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where we have neglected all but the leading terms. Then, the kurtosis

.of the d1str1but10n60 is given by
' (4) . ' - ‘
by (E) 1,(G/H)1,(G/H) : ' |
oBEy - U — o5 20 S3. 0 (46)
GE  I(G/H) -

A positive value of this coefficient means the distribution in mass is
more peaked than a Gaus s1an, wh11e a negatlve value means the dis-
tribution has a flatter top and is more rectangular than a Gaus sian,

- We consider finally the calculation of quantities obtained by‘
integrating over both E and U in P(E, U). The mean total transla-
tional kinetic energy (integrated over fractional mass) is defined by _
1

, % 4 1 e
E':f EdE[ dU P(E, U)=f dU»f. dE P(E, U)E
"0 0 . 0 0 '

If we use the definitions (42) and (39), respectively, we may write
this as_'
.OO

E :f E P(E) dE =[Y E(U) P(U) dU.
) : 0 ’ .

This is more easily evaluated in the se:cond form; if we substitute

(38) for P(U) and (40) for E(U), and integrate, we obtain

— 0, 12 0,1 2.

“E E(i«ZCm)(1+2a’Cs+ .) = E(1+z_a Cs ZCm+ ).
The variance of the total translational kinetic energy d1str1bu— ‘

tion is defined by )
o0 - 1 v 1

2 f —=.2 [ - (- ]
o =j (E-E)°dE | dU P(E, U) =j du_f dE P(E, U)NE - E)°.
' 0 0 0 0 ' _ ‘

The second form may be integrated, by methods analogous to those we

have been using, to give the asymptotic series

: . 2

S 16 C

12 0,2 2 m

O'E = zﬂ. CS(E) (1+4:CL CS -4Cm+ T + -). -
' » : ) . S
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‘Since the distribution P(E, U) is symmetric in .U about

U = 1/2, the mean fractional mass (either as a functionof E or
integrated over E) is 1/2. The variance.of the distribution in frac-
tional mass is obtainable directly from the Gaussian (38) for P(U):

2 _ 1
O'U = z‘ Cmo

We shall postpone presenting any graphs of the quantities
derived from P(E, U) until we get to Section VI, where we compare

the predictions with experimental data.

2, The Effect of Anharmonicity on P(E, U)

We are able to easily calculate quantum-mechanical probability

distributions for the initial conditions only in the harmonic approxima-
tion. However, if the nuclear temperature is sufficiently high that
classical statistical mechanics is valid for determining the initial con-
ditions, then the probability distributions may be obtained to any de-
sired order in the initial coordinates and momenta, or even exactly,
from Eq. (22). . : .

If we expand the potential energy about the saddle point and
retain anharmonic terms in the coordinates, then we are able to dis-
cuss classically the effect of the anharmonicity of the pbtenfié.l energy
on the distribution 'P(E, U). By retaining appropriate anharmonic
terms, we will be able to obtain classically the coefficients of the
(& - B9 (U - 1)
sistent order of approximation in both the initial conditions and the

, (E -'E0)3, and (U - %)4 terms to a completely con-

equations relating E and U to the initial conditions. We will then
be able to discuss classically, to a consistent order of approximation,

- not only the mean EO and the variances 0'2 and 02 but also, for

’
example, the decreasé in the most prbbabi (or mian) value of E
with (U - %)2, the skewness of the total translational kinetic-energy
distribution, and the kurtosis of the mass distribution. '

We consider, then, the retention of anharmonic terms in the

expansion of the potential energy about the saddle point. In order to
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discuss the distribution P(E, U) to the next higher order beyond a
bivariate normal distribution, we need keep only those terms in the
expansion of the potential energy that will affect the coefficients of

the (E - EO)(U - —;:)Z, (E - EO)3, and (U - %)4 terms in the exponent
of the P(E, U) distribution. Because the equations (14) and (15) for
E and U depend only upoh the mass-asymmetry coOrdinlate m and
the stretching coordinate s (disregarding, for the moment, the ini-
tial momenta Py and ps), it suffices to consider (in addition to the
harmonic terms) only the three anharmonic terms m"s, s3, and m
in an expansioh of the po_te'n'cial energy. : We therefore expand the po-
tential ehergy_ about the saddle point with respect to the variables m
and s, retaining terms as follows: | ’

V= (VO +% Kmm2+ %—Ks SZ.I_% Kmrns mzs“+21>-Kss.s's3+'Zi4‘-. mmmm'™ 4’ '
The classical probabilify distribution for the coordinates m and s

is therefore given to this order by

iq 2 1 2 1 2 1 31
"z Kmm +7Kss +7Kmmsms+€Kssss vy Kmmmmm

P(m, s) = N exp | -

where N 1is a normalization constant.

Figure 38 shows :graphs of the third derivatives K and
: mms

KSSS (evaluated at the saddle point) as functions. of fissionability pa-

rameter. In the range of x below 0.78, the third derivative Krnms’
which couples the mass-asymmetry coordinate and the stretching’
coordinate, is positive, This means that the most probable value of

s decreases with increasing mz; i.e., the most probable distance
between spheroid centers decreases as the mass:asymmetry increases.

This results in a greater translational kinetic energy at.infinit'y than if

- "The two cubic terms rnsz and rn3 are absent because 7 is an even
function of m., Nonzero cubic terms of the form sdz, for example,-
introduce only pre-exponential dependences on E and U after the in-

tegration over d is performed,
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(liquid-drop units)

Saddle-point third derivatives

0 0.5 1.0

MUB-2425

- Fig. 38. Third derivatives of the potential energy, evaluated
at the saddle point, as functions of fissionability parameter
x. The quantity K ms is in units of E,(so)/Ro’ and Ks

- : (0)/n3
is in units of Eg /R0 .

SS

-

3]



-135-

the distance remained'ﬁnchanged. Over the entire range of x
(between 0..and 0.80) the stretching third derivative K-Sss is-neg-
ative, The effect of this is a contribution towar‘d‘a_ low-energy tail

on the distribution in E, A rough estimate of the mé.ss-,a_SY_mmetry

fourth derivative. Kmrhmnl (evaluated at the saddle point) indicates

that it is negative and fairly independent of x. For the x = 0,677

‘the estimate yields  K_ = -15E, (0) The effect of this term is
: mmmm S

a contribution toward a peaked mass distribution, but the effect is.
small, since this: term accounts for only about 20% of the final value
of the (U- 3)* |

results involving anharmonic terms that we present, the quantity

term in the .exponent of P(E, U). (In all numerical

is taken to be .iero. On the scale of the graphs presented
mmmm :
here, these results are indistinguishable from those calculated by
using the above estimate for K o) .
T , mmmm .
By using the set of equations (33) for m and s, and by taking
into account also the classical probability distributions in the momenta

p; and p_, we find for the desired distribution

2
i
P(E, U) = 4U0(1 - U)NEOF(E, U) oy [_ KnlU- Z)
s - 2 P . 2?'3..;
- _aE
: 1 0,2 1.2 - : 0
] K [E -4U0(1-UE"] . K slU-3) [E-4U(1 -U)E"]
20q% E? | 2 ©uE
K [E-40(1-U)EY? -~ (u-1y4 9
sSss mmimim 2 i
+ T - . (47)
v _6@ a” E 240
The function F(E, U) is given by (35), where it is understood that the
classical limits are to be used for the constants Cs' and Cp appear -~
ing in it. » S . |
1f we collect terms in (47) according to powers of (U - %),- we

can alternativeiy write ‘P(E',‘U') as
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. 0.2 0.3
P - NEOF(E, U) Ks(EﬂE ) . Ksss(E-E ) ,
(E, U) = ———>>— exp| - >—— + ——3
o E L 200 E 60O a’E
. 1 e 2 2 1.4
X[1 - 4(U- 37 exp |- G(U-2)% - HYU-

32 KSSS(EO)‘3,(U - %)6
4 s , (48)
30c”E
where G and H (functions of E) are now defined by

K sk % e-% kK (E®-8Y) 2 ©e%r-£%°
G = m + S . . mims . SSsS i ,
770 P ZOE s

' ' 2

sk (E9% 2k Y sk (2%%E-Y) K 4

H = S - mms - SS8S8S + rrzr;lrgm
@azEZ OaE ®a3E3 -

- We present in Fig. 39 a contour map of P(E, U) \}s E and U
213

for the compo‘und nucleus 85At and © = '1.,'13 MeV, calculated by
using the completely classical result (48). (The nuclear temperature
is é_:ufficiently ﬁigh that classical statistical mechanics is valid for
determining the initial conditions,) By comi:a.ring this with Fig. 35 we
can see the effect of the anharmonicity. of the potential energy on the
final distribution (see also Fig. 33). The lines of constant probability
still tend toward rounded triangles, but not as markedly as in Fig., 35.
If we neglect the (U - %)6 term in the exponential of (48), the
resulting expression is of the same form as (36). Thus we are able to
use the results previously derived for those quantities obtained by in-
tegrating over fractional mass: Eq. (44) for- P(E), Eq. (45) for Q"Z“](E),
and Eq. (46) for a(t;l)(E). Closed expressions for the quantities that
result from integrating over E are not so readily obtainable because
of the presence of the cubic term in E in the exponential of P;(E, u).
The two equivalent expressions (47) and (48) for P(E, U), al-
though strictly correct only to the next higher order beyond quadratic

in E and U, contain further higher-order terms representing the
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i ' —
20~ ggAt2" ®=1.13 MeV
< 1ol .

[+3]
= | 1
o or ]
wJ
{
[ |
_|O_ —
_20,_ p—
| | | | ]
~0. 0 o.l
| u-1/2-
MU-33549

Fig. 39. Contour map of the probability distribution of total
translational kinetic energy and fractional mass,
P(E, U) vs E and U, including effects of anharmonicity
| Eq. (48)]. The lines of constant probability are labeled
by relative probability. The value of EO is 151.4 MeV.
- The calculations are for the case of nonviscous fragments
and the fission of the compound nucleus 85At213 (x = 0.677)

at a nuclear temI;erature of 1.13 MeV (8 31209 + 65-MeV a,

- for example). ‘ 3
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effects of the nonlinear equation (14) for E, If we retain in either of
these expressions only terms that are one order higher than quadratic
in E and U, we obtain (we regard any pre-exponential factors as

.of higher order)

|k (0-3?  x (m-5%?
P(E, U) = ET) exXp | - mz@ -2 Z.0.2
aE , ' 20a°(E")
8K - oK e-E%U-4% [k +KSSS (E-£%3
_( s~ @ mms)( -EN T2 + s A
2.0 2 0.3
200 E ©a” (E)
SKs ZKmms n Kmmmm (U 1-)4
2 T a 24 "2 :
-2 : : ‘ . (49)

©

" This result repfesents' a consistent order of approximation. in both the
initial conditions and the equations for E and U,

By solving

O P(E, U) _
oK -

we obtain the most probable total translatiénal kinetic energy as a

function of fractional mass:

0 a Kmms 1,2
EMP(U) =E '_1=4.<1-—TK—S——>(U-E) SETICIT (50)
It is instructive to corripare this classical result with the result (41)
obtained by use of the harmonic approximation for the initial conditions,
For x inthe neighborhood of 0.67, a K__ /(8K ) = 1/5; thus, the
most probable total translational kinetic energy decreases with increas—-
ing (U -%)2 dnly about four-fifths as rapidly in (50) as in (41)., The phys-
ical reason for this difference is that in (41) the decrease in total trans-
- lational kinetic energy with inéreasing mass asymmetry results solely
from the decrease in the product of the cl.lvarges of the two fragments,

whereas in (50) account is also taken of the decrease in distance between
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spher01d centers (Wthh tends to 1ncrease the klnetlc energy) as the

mas s asymmetry increases.

In addition to determining the rate of decrease of EMP(U) with

2 1.2

_ (U -—) the coeff1c1ent ‘of the (E E )(U-—) term also gives the derlv—

2
ative of the variance of the fractlonal mass at E = EO " From (49) we

find that

2,0, _
| o (ET) = ©/K
‘and that
2,..0
d o (E7) - Q8K - aK__ )
—dE " > 250
: m

" Since 8Ks’>aKmms’ ‘the derivative is negva.ti-v'e.
For values of x of interest in fission, the magnitude of the
negative quantity Kgss/(6a) is roughly one-half Kg; thus, the coefficient
" of the (E - EO)3 term in (49) is positive, indicating that the deviation of
P(E, 1/2) (the distribution in E for a symmetric mass division) from a
pure Gaussian is toward a high-energy tail (positive skewness), The
origin of the Ks term, which contributes toward the high-energy tail,
is the nonlinear relationship (14) between E and s. The opposingcon-
tribution from the K S/(()o.) term toward a low-energy tail arises phys-
ically because the potential energy increases more rapidly as the frag-
ments approach one another than as they separate,
An examination of the coefficient (including the over-all minus

sign) of the (U - 1)4 term in (49) indicates that it is negative, Thus the

2
prediction is that P(E0 U) (the distribution in mass for E = E )is less
peaked and more rectangular than a Gaussian d1str1but10n (negative

kurtosis). ‘
In this section our concern has been the mathematical derivation

and compilation of the formulae relevant to a discussion of the distribu-
tions in fragment total translational kinetic energy, mass, individual ex-
citation energies, and individual angﬁlar momenta, By using these for-
mulae and the graphs presented earlier for the constants appearing in
them, curves expressing the theoretical predictions rhay be prepared for
direct comparison with experiment. This will be done in the next sec-
tion for distributions in total translational kinetic energy and fragment

mass,
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VI. COMPARISON OF THEORY WITH EXPERIMENT

In the previo‘us section we derived pi'obabilit};' distributions
for certain observable characteristics of fission fragments at infinity:
their total translational kinetic energy, fractional mass, individual
excitation energies, and individual angular momenta, From our ear-
lier discussion regarding the applicability of the two-spheroid model
(Section II.B), we know that these distributions are expected to de- .
scribe only the fission of nuclei that have values of the fissionability
parameter x < 0.67. _

Experimentally, there is observed a marked tfansition in the
properties of fission at about radium (x = 0.684)~mass divisions are-
predominantly symmetric for elements lighter than radium and pre-
dominantly asymmetric for elements heavier than radium, It is not
clear whether this experimentally observed transition is associated
with the transition in saddle-point properties at x = 0.67; no expla-
nation of asymmetric fission for the heavier elements is foreseen
within the framework of the two-spheroid model. We will neverthe-
less use the experimentally observed transition between symmetric
and asymmetric mass divisions as the d1v1d1ng po1nt for ‘determining
what data the theory should be compared with. We will therefore
compare the theoretical predictions of the model with existing exper-

imental data for the fission of nuclei lighter than radium,

B3
A recent experimental determination of the fission barrier of 8'1T1201

indicates that (ZZ'/A)C ., has a value64 of 48,4+0.5 (rather than

rit
Green's va.lue4 of 50.43 that is used here). When this value of
(ZZ/A) is used, the value of the fissionability parameter x for

crit v
each compound nucleus is increased somewhat. For the comparisons

between theory and experiment that are made here, the largest value
of fissionability parameter that occurs is 0.677 when Green's value
of (ZZ/A)Crit is used, and 0,701 when the newly reported value is

used.
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Fission-fragment mass distributions, obtained by use of

» '-;r:adioc.her‘niéal techniques, are available for the fission of several of

| the.lighter ele_rnents.65--70' Single-fragment translational kinetic-

energy distributions have been determined for the fission of a number -

71, 72

of light nuclei, In addifion, two-dimensional distributions in

mass and total translational kinetic energy, obtained by use of semi-
conductof detectors and two-dimensional .21naLlyzers,>:< have recently
been r,épo’rte’d for Variéus nilélei lighter than ra.diurn,?1’73—_78_ | On the '
other hand, for ‘the' fission of the lighter elements, there exists at the
present time no experimental information regarding the distributions
~in iridividu'al excitation energies and individual angular momenta.,
“The immediate test of the theory will therefore be the comparison of
predictions with experiment for distributions in total translatiohal
kinetic energy and mass [P(E, U) and quantities derived from it].
The more détailed comparisons will be made with the data of
Burnett76 and with the data of Plasil,-77 whose experiments were
'carrie.d out at the Lawrence Radiation Laboratory, Berkeley, simul-

taneously with the development of the ttheory. Burnett bombarded

83Bi409 and 7'9Au197 with alpha particles of energies 65,0 and
' 243

70.0 MeV, respectively, to form the compound nuclei 85At and

T1201. The corresponding values of the fissionability parameter

81
x are 0,677 and 0.651, respectively. Plasil studied the heavy-ion-

induced fission of the compound nuclei 7605186 (x = 0.619) and 82Pbi98 '

(x = 0.677) at several bombarding energies ranging from . 10Zto 165

MeV. The former was produced in two ways from the reactions

170 16 : 174 12 At
Er + 8O and 70Yb + 6C , and the latter from the reaction
182 16 :
74.,./' + 80 . :

¥These experiments CIOnsist‘ of measuring in coincidence the transla-
tignal kinetic energies .E1 and E2 of the two fission fragments at
infinity and recording the corresponding number of events. Fromthis
experimentally constructed aistribution P(Ei’ :EZ)’ the experimental

distribution ‘P(E, U) is obtained by use of the transfor_matidn (18)..
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We will also refer frequently to the data of Britt, Wegner,
78

The former

have studied the 25.5-MeV _He>-induced fission of . Au 27 TP
o pp296 g 209 e 209 o o

82 0 TRC g3t TOTIRE g3
of 22,1 MeV 'was also used, The latter authors have studie<d the

1209.

and Gursky,75 and the data of Unik and Huizenga,
case, a bombarding energy

42-MeV helium-ion-induced fission of B Comparisons will |

also be made with other data. 5
The theoretical distributions depend upon the nuclear temper-

ature © at the saddle point, which is a function of the internal ex-

- citation energy ESE at the saddle point, The determination of ©

in terms of Eex is subject to an appreciable error. For the com-

parisons between theory and experiment made in this work, we use

the semiempirical nuclear equétion of sta’ce79
SP 2 :
E__ = (A/8) €& -0,

where both © and Eil: are in MeV, and A 1is the number of nucle-
ons in the compound nucleus. The excitation energy at the saddle
point is in turn given by the total bombarding energy in the center-of-
mass systém, plus the binding energy of the projectile to the target,
minus the fission-barrier energy. The fission-barrier energy is

15,47 *

equal to the liquid-drop fission-barrier energy, minus the

80,81 plus the shell correc-

shell correction to the ground-state mass,
tion- to the saddle-point mass. The saddle-point shell correction is
not known, but probably does not exceed about 2 MeV —it was neglected
here. These considerations are for a compound nucleus that is not
rotating, The determination of the fission-barrier energy and the nu-
clear temperature for a rotating nucleus is discussed by Plasil;

his procedure is briefly touched upon below,

of.

“A plot of the liquid-~drop fission-barrier energy vs x is given in
Figs. 4 and 8. For the determination of ©, the true liquid-drop fis-
sion-barrier energy is used rather than the two-spheroid approxima-

tion to the barrier.
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Two complications present in the heavy-ion-induced fission
reactions should be mentioned. First of all, because of the high ex-
citation energies involved, it is possible that the co’rhpoﬁ'nd nucleus
will fission following partial de=excitatiqh by the emission of one or
more neutrons. If this occurs, there will be a spread in the saddle-
point excitation energy (énd hence the nuclear temperature ©) at the
time of fission, Secondly, heavy ions Vare capable of creating com-
pound nuclei possessing large amounts of angular momentum. Because
' the ions strike the target with varying impact parameters, the angular
momentum ranges from zero to some maximum value. Since the fis-
sion barrier is: a sensitive function of angular momentum?7’82’83 it
will have a range of values, resulting in a spread in the ‘éaddlenpoint
excitation energy (and hence 9). Thé effect of both these complications
~on nuclear temperature was taken into account by Pla.sil.77 He obtained
an average value of © by calculating the competition between fission
and neutron emission throughout the de-excitation chain,* and by inte-
grating over the distribution of angular momentum.

Although the effect of angular momentum on the nuclear temper-
ature can be taken into account as described above, it should be re-
called that the entire theory developed here is restricted to the case of
a nonrotating compound nucleus., This must be borne in mind when
comparing the theoretical predictions with the data for the heavy-ion-
induced reactions. All conclusions drawn on the basis of such com-
parisons are thus subject to the provision that angular momentum has
little effect on the fission process, except in determining the average
nuclear temperature at the saddle point.

| ' The theoretical distributions are calculated for fragrhents ob-

served (at infinity) before they have emitted any neutrons, whereas the

‘experimental kinetic-energy measurements are made after the emission

Y

"‘For‘the cases studied it was found that the average number of neutrons
emitted before fission seldom exceeds one; this means that the uncer-

tainty in the nuclear temperature arising from this effect is small,
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of neutrons from the fragments. Fragment neutron emission ‘de-
creases the average translational kinetic energy and introduces a
dispersion in the distributions, thereby increasing the variances.
When comparing theory and experiment,. it is desirable to correct

" the experimental results for such neutron-emission effects., The
problem of neutron-emission corrections has been discussed by

'7 Terrell, 84 by Haines, 85 and by Burnett, 76 By making certain
standard assumptions regarding the neutron emission, it is possible
to derive formulae for correcting the mean total translational kinetic
energy E(U)" the variance O'EZ:(U) of the total translational kinetic-
energy distribution, and the variance qS(E) of the mass distribution.

Using Burnett's neutron-correction formulae, Burnett and
Plasil have corrected all statistical moments obtained from their
data. (The formulae of Burnett differ slightly from those of Haines
because certain higher-order terms are retained by Burnett, ) With
the exception of the. mean total translational kinetic energies, the
data of Britt, Wegner, and Gursky75- have not been corrected for the
effects of fragment neutron emission. The data of Unik-and Huizenga78
have been corrected for neutron-emission effects as regards the mean
- total translational kinetic energy and the full width at half maximum
of the over-all total translational kinetic-energy distribution, but not
otherwise, _

Although neutron-emission corrections can be made for the
statistical moments of the distributions, it is not possible to easily
correct the distributions themselves. Thus, when comparing theo-
retical and experimental distributions,; it must be borne in mind
that the former refers to pre-neutron-emission and the latter to post-
neutron-emission, To distinguish these two cases we denote by a
superscript asterisk a quantity measured aftér neutron emission has
occurred; e, g., Em is the total translational kinetic energy measured
following neutron emission. |

We begin our comparison of theory with experiment by
- examining a series of graphs., [ With the exception of Figs., 40
and 46, these figures have been reproduced (with additions,

and changes in notation and format) from references 76 and 77.]
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While making these comparisons it should be kept in mind that no
arbitrary parameters have been adjusted-that the theoretical and ex-
perimental distributions have not been normalized to one another in
any way. Alsd, it should be remembered that the theory is strictly
valid only in the neighborhood of the most probable evehts; we will,
howevgr, extrap'olate the theoretical curves to cover the entire region
for which there are experimental data. '

' Figure 40 shows the experimental contour map of P(E*, u)
Vs »E* and U for_the compound nucleus 85At213’ for WéléiCh the nu-
clear temperature at the saddle point is © =-1,13 MeV., Apart from
the effects of neutron emission, as discussed above, this experimental
contour map may be compared direétly with the theoretical maps cal-
culated for this experimental situation in each of the three. successively
improved orders of approximation discussed in Section V— see Figs,
33, 35, and 39. (The same relative scales for E and U are usedfor
all four graphs, However, the experimental contour lines are labeled
differently from the theoretical 'ones, ) Since the nuclear temperature
is sufficiently high that classical statistical mechanics is valid for de-
termining the initial conditions, the completely classical map calcu-
lated by including the effects of anharmonic terms on the initial condi-
tions (Fig. 39) represents the best theoretical estimate available, and
we will confine our discussion to a comparison with it,

The first thing to look for in comparing the theoretical and ex-
perimental distributions is how well the most probable values are re-
produced; the experimental and theoretical most probable values of
total translational kinetic energy are seen to agree remarkably well,
in addition the theory predicts that the most probable value of U should
be one-half, and this is verified experimentally—the fission events are
predominantly symmetric in mass rather than asymmetric. The sec-
ond thing to compare is the widths of the distributions in E and U;.
the widths of both distributions are seen to compare excellently,
Finally, we may compare vthe shapes of the_.distributions with the the-

oretical predictions of approximately bivariate normal distributions
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. Experimental contour map of the probability distribution
of total translational kinetic energy and fractional -mass,
P(E™,U) vs E* and U. The superscript asterisk denotes
that E is measured after neutron emission from the frag-
ments has occurred. The data are those of Burnett8® for
the compound nucleus 85At213 (x = 0.677), formed from

" the reaction 8331209 + 65-MeV a, for which ® = 1.13 MeV.

The labels on the lines of constant probability have the fol-
lowing significance: the contour labeled by 10, for example,
passes through those regions of the E* - U plane where an
area of 6 MeV by 3 amu contains 1% of the total number of
events,
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‘modified by certain characteristic higher-order terms. 6 The over-all
agreement between the shapes of the experimental and theoretical con-
tour lines is strikingly good. In the regidn of maximum probability
the experimehtal contour lines are é,pprOXimately ellipses, whereas

in the region of smaller probability they tend £6 become rounded tri-
“angles, as predictéd by the theory: The experimental mass distribu-
tion, as predicted, is broader for low values of the total translational -
kinetic energy than for high values, Other details of the. agreement
between the theoretical and experimental maps will be compared later
in the form of statistical moments.

| In reference 77 comparison is made by Plasil between theoret-
ical and éxperimental contour maps of P(E, U) for the fission of two
heairy'—ion--induced reactions, The agreement presented there is not
as good as for the 85At213 case we havé‘ discussed. However, the
theoretical maps there are calculated using the intermediate approx-
imation for P(E, U) in which the initial conditions are determined in
the harmonic approximation, The agreement is significantly im-
proved when the effects of anharmonicity on the initial conditions are
taken into account, Also, the compound nuclei undergoing fission
possessed considerable angular momentum, which could possibly af-
fect the experimental distributions, ' ‘ v

By Figure 41 shows the theoretical and experimental distributions

in mass, P(U), and the theoretical and experimental distributions in

total translational kinetic energy, P(E), for the compound nucleus
198

82Pb

curves are calculated in the intermediate approximation for P(E, U)

, each at two different nuclear temperatures, The theoretical

in which the initial conditions are determined in the harmonic approx-

imation,  As before, we first compare the most probable values of

>kAlthough the approximate formulae derived in Section V for P(U),
P(E), and the various statistical moments are sufficiently accurate
for . calculating the theoretical curves of this section, the curves have
actually been calculated by numerical integratiéns over the full ex-

| pressAi‘on (36)[.orv.th_e full expression (48)] for P(E, U), with F(E, U)

retained,
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Fig. 41. Probability distributions for fragment mass (top) and for

total translational kinetic energy (bottom). The theoretical
curves (solid lines) are calculated for initial conditions de-
termined in the harmonic approximation [ from Egq. (36)].
The data are those of Plasil /7 for the compound nucleus

2Pb198 (x = 0.677), formed from the heavy-ion-induced

8
reaction 74W182 + 8016. The results for a bombarding

energy of 102 MeV (©® = 1.37 MeV) are given by the solid

_points, and for a bombarding energy of 165MeV(0® = 2.07

MeV) by the open circles. The superscript asterisk de-
notes that E is measured-after neutron emission from
the fragments has occurred.
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the total translational kinetic energy, which are seen to agree fa-.
vorably. Next, the widths of the experimental distributions in both
kinetic energy and mass are seen to be reproduced‘welll, by the theory.
In addition, as the nuclear temperatur'e..increaéés, the theory 'is seen
to correctly predict an increase in width of each distribution. Finally,
we note that the over-all shapes of the 'expe_riméntal and theoretical
distributions.in both E and i U are in approximate. agreerﬁent (each
distribution is approximately Gaussian). Because of e__xperimental‘
uncertaintiés, including the uncertainty of the effects on the distribu-
tions of neutron emission from the fragments, we will not compare
~numerical results for skewness in P(E) and kurtosis in P(U).

We turn now to a comparison of the mean. values of the total
-~ translational kinetic energy as functions of fragment mass. Shown
in Fig. 42 is E(U) vs fragment mass’ AU for the compound nuclei
85At2’13, 81T1201’ and 8.2Pb198, the latter for two tempera.tuxlves.'
In this figure, as well as in the two succeeding ones, we indicate by a
solid line the result obtained by ﬁse of the intermediate approximation
" (36) for P(E, Ut), in which thev initial conditions are determined in the
harmonic approximétion. The dashed line represents the result cal-
_culated from the expression (48) for BP(E, U), in which anharmonic
terms are cbnsid‘ered_in determining the initial conditions. Since the
nuclear temperature is sufficiently high that classical statistical me-
-chanics is valid for determining the initial conditions, the dashed line
in each case represents the better théoretical estimate, and we will
.confine our discussion to a comparison of the experimental results
with it -

We note first of all in Fig. 42 that for three of the four cases
. the agreement between theory and experiment as regards the mean
total translational kinetic energy at éymmetry is excellent, For the

198 at ©= 2.07 Me'V) the experimental value is
slightly higher than the theoretical one. For the 85Aﬁ213 and 81T1 201

cases the experimental decrease in E(U) with increasing mass asym-

remaining case (82 Pb

metry is essentially as predicted by the theory, although the exper-

'imentav]v. points lie somewhat above the theoretical curves, However,
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Fig. 42. Mean total translational kinetic energies, as functions of

8

fragment mass AU. The theoretical results that are calcu-
lated for initial conditions determined in the harmonic approxi-
mation [ from Eq. (36)] are given by the solid lines, and the
results that are calculated by including effects of anharmonicity

[ from Eq. (48)] are given by the dashed lines, The data

(solid points) are as follows: Burnett:’ Bi209 4+ 65-MeV

a = At213 (x = 0.677, © = 1.13 MeV), an Aul97 4 70-MeV

a= o,T1201 (x = 0.651, © = 1.28 MeV); Plasil 7 74W182+102.Mev
olt 82Pb1?8 (x = 0.677, © = 1.37 MeV), and 74w18~’~+ 165-MeV
06 - Pb198(x = 0.677, © = 2.07 MeV). Note that the left-hand

gc’ale and the right-hand scale are different.
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: 198
for the two 82Pb

the experimental points do not drop off with 1ncreasmg asymmetry

cases. (formed by heavy-ion bombardments),

nearly as fast as the theoretical curves. Indeed, for the case in
which @@= 2.07 MeV, the exper1mental values are essentlally inde-
pendent of asymmetry

The data of Britt, Wegner, and Gursky indicate that E(U)
decreases with increasing mass asymmetry, although they find in
209 + 25.5-MeV He3) a tendency

, 83 2
for E(U) to actually increase at large asymmetry, 75 (Note that these -

some cases (in particular,

_ authors plot the1r data as functibns. of fragment mass ratio rather than

fragment mass or fractional mass.) The experimental E(U) curve

of Unik and Huizenga also decreases with increasing mass asymmetry. 78

As Haines has pointed out, the. d1screpancy between the calcu-
‘la.ted and experlmental E(U) curves would be reduced somewhat if ac-,
_count were taken of the change in the mean charge density of fission
fragments with a change in mass asymmetry 85 On the average, the
l1ghter fragment acquires a slightly larger number of protons than its
proport1onate share, and the heavier fragment vau1res a sllghtly
smaller number, The product of the charges of the two fragmerts,
and hence their translational kinetic energy at infinity,' is thus in-
creased somewhat over the corresponding value calculated here (in.
’which both fragments'have the same charge density). This effect is

of the same order of magn1tude as the effect of the anharmonicity of

the potentlal energy, and in the case of 85At213 and 81Tl20 taking

this effect into account would come close to removing the difference
between the calculated and experimental E(U) curves. On the other

hand, the large dlscrepancy between the calculated and experimental

198

curves for the Pb cases would still exist even if the effect arising

82 ,
from the difference in fragment charge densities were taken in account,

The suggestion has been made by Plasil that the angular mo-

198

mentum present in the Pb cases is poss1bly respons1ble for the

82
marked deviation of the experimental E(U) curves from the theoret-

ical ones, T This suggestion is consistent with the fact that for the

213

two cases in which very little angular momentum is present (85At



and T1201, formed by alpha- part1cle bombardments) the theory

and efpieriment are in substantial agreement, and for the 82Pb198
case in which there is less angular momentum present (O= 1,37 MeV)
the agreement is better than for the case of greater angular momentum
present (O= 2.07 MeV). To see if this actually is the explanation, the
theory should be worked out taking into account angular kmomentum;
this presents.a.n interesting problem for the future.

In Fig. 43 we compare the theoretical and experimental var -
iances of the total translational kinetic energy distributions as func-
tions of fragment mass. [crzv(U,) Vs ~AU] for the same experimental
situations as in Fig. 42. The agreement near symmetry is excellent

for the . At213 and .leo'icases. For 82 Pb 198

85 81 _
actions) the agreement near symmetry is good for the ©= 1,37-MeV

(heavy-ion re-

case, but for the ©= 2,07-MeV case the experimental points are some-
what highervthan the theoretical values, | In all cases the theoretical
curves decrease with increasing mass asymmetry,’ This”prediiction is

- not borne out experlmentally in the 85At213 and 81T1201 cases~these
experimental variances increase with increasing mass asymmetry.

The trends of the two Pb198

82 variances with mass asymmetry are

rather uncertain,
Brltt Wegner, and Gursky have found in three of the four cases

reported that the variance 0 (U) is essentially 1ndependent of fragment

75 E 209
mass, In the fourth case (83B1- + 25.5-MeV 2‘I-Ie ) O'E(U) was ob-
served to remain essentially constant near symmetric mass divisions
and to increase for more asymmetnc divisions, The data of Unik and |
Huizenga also indicate that - O‘E‘( U) is essentlally 1ndependent of fragment
mass. _

The comparisons made for ,o*é(U) indicate a fairly significa_nt
disagreement between theory and experiment. The theoretical curves
would be scarcely ché.nged if one were to take into:é.ccount further an-
harmonlc terms in the potential energy any pure 11qu1d drop result
that predicts that the mean total translational kinetic energy should de-
crease w1th_.1ncreas1ng mass, asymmetry (see Fig. 42) will also predict

that the variance of the total translational kinetic energy should decrease
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Fig. 43. Variances in the distributions of total translational

kinetic energy, as functions of fragment mass AU. The

‘theoretical results that are calculated for initial conditions

determined in the harmonic approximation [ from Eq. (36)]
are given by the solid lines, and the results that are.calcu-
lated by including effects of anharmonicity [ from Eq. (48)]
are given by the dashed lines. The data (solid points) are
as follows: Burnett: /© 83B1209 + 65-MeV a = 85At213

(x = 0.677, © = 1.13 MeV), and 79Au197 + 70-MeV

a= 81T12_01 (x = 0.651, © = 1.28 MeV); Plasil: '

wi82 L 102.Mev 016 - g2 PP 178 (x = 0.677,

74 8
182 16 _ 198
77MeV), and - W + 165-MeV gO = g,Pb

1.3
0.677, © = 2.07 MeV).
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with.increasing mass asymmetry. It thus appears that the exper-
imental constancy or increase in O':E:(U) with increasing mass asym-
metry is caused by some effect other than those present in a pure
liquid-drop. model,

- Burnett has suggested that the discrepancy between theory and
experiment as regards 0'}23 (U) may possibly arise from the effects of
single-particle shell structure.76 If the doubly-closed shell at frag-

-ment mass 132 tended to make the heavier fragment nearly spherical

a portion of the time, then the separation of the fragment centers

- would decrease a portion of the time, resulting in an increase in trans-
lational kinetic energy. ' Since ohly some fraction of the total fission
events would be affected by the doubly-closed shell, there would also

- still be novrrrilal fissions with lower translational kinetic energy. This

| mixture of fission events—-some predominantly low in. kinetic energy
and some predominantly high-would cause the variance to be greater
than it otherwise would be, ' The suggestion that shell effects are re-
sponsible is consistent with two pieces of experimental evidence: First
of all, as wasv pointed out by Burnett, the increase in oé(U) begiris for
both 85At213 and 81Tl201 at fragment masses 120-1225 rather than
at a constant mass ratio, Secondly, the increase in ,_O'E(U) with mass
asymmetry becomes less pronounced as the nuclear temperature in-

creases; indeed, for Pb198 at ©= 2,07 MeVy UE(U) is essentially

independent of mass aSimmetry, This disappearance of the marked
disagreement between theory and experiment as the temperature in-
creases would correlate with the disappearance of single-particle shell
structure at high excitations, * Work on the cause of the discrepancy
represents another interesting problem,

Variances of the mass distributions as functions of total trans-
lational kinetic energy [_q’é(E) vs E] are shown in Fig, 44. The

magnitudes of the theoretical and experimental variances of the mass

ot

" The large amount of angular momentum present in the two 82Pb1

98

cases could, of course, be responsible for the near-constancy of
2 .
_O'E-(U) as a function of U (rather than a disappearance of shell struc-

ture),
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Fig. 44. Variances in the distributions of fragment mass, as
functions of total translational kinetic energy E. The
theoretical results that are calculated for initial conditions
determined in the harmonic approximation [ from Eq. (36)]
are given by the solid lines, and the results that are calcu-
lated by including effects of anharmonicity | from Eq. (48)]
are given by the dashed lines, The data (sohd po1nts ?re
as follows: Burnett: 0 83BiZO9 + 65-M€eV a = 85

(x = 0.677, © = 1.13 MeV), and 79Au197 + 70-MeV

a= 81"1"1201 (x = 0.651, © = 1.28 MeV); Plasil: /7

182 16 198
74W + 102-MeV 80 = 82Pb (x =0.677, ® = 1.37 MeV),

and 74W182 + 165-MeV 8016 82Pb198 (x = 0.677, © = 2.07 MeV].
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distributions at the most probable total translational kinetic energy

are in _.excellent agreement for the 85At213 and 8,ITIZ(M cases, é.nd
in good agreement for the two SZPb"198 cases, Furthermore, for the
two former cases the theoretical curves correctly predict the over-all
shape of the curves, inéluding a flattening at high E and a very rapid
rise at low E, At both high and low E, however, the experimental
points deviate somewhat from the theoretical curves. The experimental

198

curves for the two Pb cases do not possess the characteristic

""hyperbolic'" shapegpzredicted by the theory, and observed in the former
- cases. Indeed, for the ©= 2,07-MeV case the experimental curve is
essentially linear. It is again possible that the discrepancies between
theory and experiment for the two 82Pb198 cases arise from the ef-
fects of angular momentum; this possibility should be investigated.

We have thus far been mainly concerned with comparing details
of the distributions in mass and total translational kinetic energy for a
given nucleus and excitation energy (or rather four such combinations).
The theory we have developed also predicts the dependence of the distri-
butions on nuclear temperature, and their dependence on fissionability
parameter,

We turn now to a comparison of theory and experiment as regards
the temperature dependence of the distributions, The mean total trans-
lational kinetic energy is prediced by the theory to be (for all practical
_purposes) independent o% nuclear temperature, = Plasil finds that for five
different nuclear temperatures ranging from ©= 1.37 MeV to ©= 2.07
MeV, the mean total translational kinetic energy E for the 82Pb198
case varied by 3 MeV (with experimental errors on the values of E
set at =5 MeV), 77 For 7605186

- six different nuclear temperatures covering the range 1.49MeV <9 <

2.06 MeV the values of E varied by 5 MeV {(errors on E of + 6 MeV).

(formed in two ways) he found that for

These data are thus in substantial agreement with the theory.
' The variances of the distributions in E and in U are pre-
dicted to increase with increasing nuclear temperature. The compar-

ison of theory and experiment as regards this point is made for the
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198
82Pb

: _ | . |
and 76Os186 cases in Fig, 45. We again note the significant
agreement between the magnitudes of the theoretical and experiméntal

variances in both mass and total translational kinetic energy. Further-
more, theory and experiment are in substanital agreement as regards

the dependence of the variances dpon nuclear temperature.T This is
Pb198 186

82

slopes for both c;_o-S. and o are somewhat smaller than the

especially true for the the experimental

case; for 76Os
theoretical slopes.

The theoretical dependence of the most probable total transla-
tional kinetic energy on fissionability parameter is compared in Fig,
46 with the data of Viola and Sikkeland. 2 (This figure is reproduced
from reference 3.,) As in Fig, 18 the solid curve represents the result
for nonviscous fragments with hydrodynamic flow of the type we have
been considering (a superposition of an irrotational flow and a flow
corresponding to a uniform rotation), The dot-dashed curve represents
the result for infinitely viscous fragments (which would separate to
infinity without oscillating), and the short-dashed line represents a
simple approximation (see Section III, C) to the former curve, In ad-
dition to the data for nuclei with fissionability parameter x < 0.67,
we have also included the data for heavier elements, with fissionability
parameters up to x = 0.807. The experimental most probable kinetic

energies for nuclei with x < 0.67 are seen to be reproduced well both

s
For the benefit of those making a comparison between this figure and

Fig. 6 of reference 3, the preliminary data presented there were over-
corrected for the effects of neutron emission from the fragments; the

agreement is better than indicated there.

1.It should be recalled that the variance o"2 retains its linear depend-

ence upon @ at low temperatures in the t\EvIo-spheroid model because
the mass-asymmetry frequency is zero (as a consequence of the zero
neck radius of the saddle-point shape). In the actual situation, of
course, the neck radius of the saddle-point shape and the mass-asym-
metry frequency are not zero, but are small, The variance GLZI of
the mass distribution should therefore approach in the real case a

small finite value, rather than zero, as the temperature goes to zero,
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Fig. 45. Variances in the distributions of fragment mass (top), and

variances in the distributions of total translational kinetic
energy (bottom), as functions of nuclear temperature O,
The theoretical curves (solid lines) are calculated for initial

. conditions determined in the harmonic approximation [ from

Eq. (36)]. The data are those of Plasil. 77 The compound
nucleus ‘82Pb198 (x = 0.677) was formed from the reaction

W182 + 016, and the compound nucleus Os186 (x = 0.619)
74 8 76 _
from each of two reactions: 68Er170 + 016 (solid points) and
174 8

Yb

70 + 6C12 (open circles).
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Fig. 46. Most probable total translational kinetic energy, as a
function of fissionability parameter x. -The result calcu-
lated for nonviscous fragments is given by the solid line,
the result for infinitely viscous fragments by the dot-
dashed line, and a simple approximation to the former by
the short-dashed line. The data are.those of Viola and
Sikkeland. 72
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in magnitude and in their dependence on x by the solid line (nonvis-.
cous fragments). For x 2> 0.67 the experimental points are higher

- than the theoretical estimate represented by the solid line. Recall

that for x > 0.67 the two-spheroid model is inadequate, among other
respects, in that its saddle-point configuration is more elongated than
the true liquid-drop saddle-point shape. Thus, the translational kinetic
energies predicted by the model for x > 0.67 are expected to be too
low.

The comparison between theory and experiment as regards the
variation of widths with fissionability parameter has not yet been made.
There are insufficient data on either the widths of the mass distributions
or the widths of the total translational kinetic-energy distributions to
establish their dependence on x. However, the single-fragment trans-
lational kinetic-energy distributions of Viola and Sikkeland72 cover a
wide range of x., In the region 0,569 < x < 0,650 they have reported
the full widths at half maximum of single-fragment kinetic-energy dis-
tributions for nine nuclei, Since the r eactions studied were formed by
heavy-ion bombardments, considerable analysis (similar to that per-
formed by Plasi177) is required to determine the average nuclear tem-
perature at the saddle point. If the nuclear temperature for each of
these reactions were determined, the experimental widths could then
be compared directly with those predicted by the theory,

The remaining comparisons between theory and experiment will
be made in a series of three tables, We compare in Table I for sev-
eral compound nuclei and nuclear tempefatures the over-all mean
total translational kinetic energy E, the over-all variance O'EZ of the
total translational kinetic-energy distribution, and the over-all variance
ULZI of the mass distribgtion. Table II is a similar comparison, but
in terms of full widths at half maximum of the distributions rather than
variances, (For a Gaussian distribution, the full width at half maximum
is equal to the square root of the variance multiplied by 2.3548.) In
Table III we compare with theory the full widths at half maximum of
mass distributions obtained by use of radiochemical techniques. From

the comparisons made in these three tables there is no indication of any

- significant disagreement between theory and experiment,



Table I. Moments of distributions in total translational kinetic energy and mass. The calculated mean total translational
kinetic energy E, the variance 02 of the distribution in total translational kinetic energy, and the variance ¢ of
the distribution in fragment mass are compared with the data of Britt, Wegner, and Gursky’5 for He3 - induced
fission reactions. The experimental values of o and g are not corrected for the effects of neutron emission
from the fragments,

. o © E % %
Target Compound x Bombarding (MeV) - Theory Exp. Theory Exp. Theory ZExp.
. nucleus energy (MeV) (MeV) (amu)
" (MeV)

79Au“” 81T1200 0.654 - 25,5 0.65 143 140,3 39 . 55 73 96.7
g T17 83}31(20_8) 0.661 25.5 0.53 148 1417 35 50 61 89.0
82Plo206 84P0209 0.673 25,5 0.57 149 145.4 38 50 62 79.1
83131209 85At‘“2 0.680 25.5 0.54 151 147.3 37 57 58 85.0

51209 242

AtT 0,680 22,1 0.40 151 146.5 30 48 43 2.7

_'[9-[_



Table II. o
kinetic energy K, the full width at half maximum (FWHM)

Properties of distributions in total translational kinetic energy and mass. The calculated mean total translational
of the distribution in total translational kinetic energy, and

the full width at half maximum (FWHM)U of the distribution in fragment mass are compared with experimental data.

Target Projectile Compound X Bombarding e E (FWHM)g (FWHM)y Ref.
: nucleus energy (MeV) Theory Exp. "Theory Exp. Theory Exp. :
(MeV) (MeV) (MeV) (amu)

g381°07 a L N 42 0.65* 151 150  15% 16" 20* 24%9 78

5380 a g5 at™ 0.677 43 0.68 151 148 15 20% 20 26% 74
nat (211)

52FP a gaFo 0.667 43 _— 149 146 —_ = _ - T
nat {209) '

g1 11 a g3Bi 0.658 43 _ 147 143 _ _ 1.
197 201 ’

79Au a ! 0.651 43 —_ 143 138 —  — _ — T

4381207 d gaPo M 0.667 21.5 0.35 149 143 12 199 _

2In reference 78 the experimental (rather than calculated) fission barrier is used to obtain © = 0.8 MeV;

(FWHM)E = 16 MeV, and (}?WHM)U = 22 amu.

Value is corrected (in reference 78) for fragment neutron emission and experimental dispersion.

c . .
."Value is read off experimental curve,

d . s . - .
Value is not corrected for fragment neutron emission and experimental dispersion.

using this value,

~Z91-



The calculated full width at half maximum (FWHM)

of the

Table III. Widths of fragment-mass distributions.
distribution in fragment mass is compared with data obtained by radiochemical techniques.
Target Projectile Compound x Bombarding (FWHM)y ‘
nucleus energy (MeV) Theory Exp. Ref.
(MeV) _ (amu)
206 210 a
SZpb a 84P0 0.670 42 0.62 20 21 70
.209 210 : a ,
8-3B1 p 84P° 0.670 36 0.76 22 18 68
.209 210 a
8381 P 84P0 0.670 58 1.20 27 24 68
197 201 '
79Au a 81Tl 0.651 42 0.72 21 34 67
204 _ 208 a
82Pb a 84Po 0.677 42 0.71 20 27 67
206 210 :
82_Pb a 84P0 0.670 42 0.62 20 22 é?
.209 211 |
83B1 d 84P° ‘ 0.667 22 0.38. 15 . 17 65, 66
Value is read off experimental curve

-¢91-
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To summarize this section, we have compared the predictions
of our model with existing experimental data for the fission of nuclei
lighter than radium—distributions in mass and total translational ki-
netic energy. From these comparisons we have learned that the two-
spheroid model is capable of accounting for a large number of the ob-
served properties of the distributions, but that some discrepancies
~remain. The significance of the comparisons will be discussed in

Section VII.
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VII.. SUMMARY AND CONCILUSION

We have studied in connection with nuclear fission the division
-of an ideali_zéd charged drop, using a simplified version of the liquid-
~drop model. The cbordinates for our model were selected so. as to
take into éccount- the appropriate de_gr‘ees'of'free'dom essential to a dis-
cussion of the division of a charged drop and the separation -of the frag-
" ments to infinity. To the Hamilto'nianxof our ideélizéd syStem we have
. applied standard static, dynamical, and statistical methods in order
to trace out the essential fe,atu}resfof the procéss. ‘
| ‘This has included, first of all, the calculation of the potential
energy of the system (a sum of surface and Coulomb energies), and
.the location and study of the properties of the saddle point. From such
"a study we learned that our model. is expected to be useful for discus-
sing certain aspects of the fission of nuclei with fissionability param-
eter x < 0.67 (nuc'lei lighter than abdut radium), but not, in general,
for discussing the fission of heavier elements. |

The dynamical study was,concer_ned with calculating the kinetic
energy of the system, with setting up the equatiohs of motion, and with
solving them in terms of'giv.en initial conditions. This. made it possible
to trace out the division of the nucleus and the separation of the frag-
ments from.some given initial configuration to infinity. For the major
portion of the study we worked out the theory for completely nonviscous
fragments with hydrodynamic flow consisting of a superposition of an
irrotational flow and a flow corresponding to a uniform rotation, For
certain-aspects of the theory we also considered the case of infinitely
viscous fragments, |
' ' In the application of statistical mechanics we focused attention
on the system at the saddle point, making the standard transition-state-
method assumption of statistical equilibrium at the saddle point, This
made it possible to calculate the probability of observing the system

in a given state of motion close.to the saddle point. -
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The results of the dynamical and statistical studies were then
appropriately combined to give the probability of observing the two
fragments in a given state of motion -at infinity. This probability
corresponds directly to the probability of certain observable charac-
teristics of fission fragments:. their total translational kinetic energy,
fractional mass, individual excitation energies, .and individual an-
gular momenta." '

As stated in the introduction, our purpose has been to study
in detail the properties of the division of an idealized liquid drop
whose size, surface tension, and charge are those of a nucleus; and
to compare the results with what is observed experimentally in the
fission of real nuclei, From this point of view there are no adjust-

able parameters in the problem. The comparison between theory

and experimenf is thus expected to tell us unambiguously to what ex-
tent an idealized liquid-drop model is capable of accounting for the
properties of fission, |

We have been able to make comparisons of calculations with
"experiment for several nuclei lighter than radium as regards distri-
butions in mass and total translé,tional kinetic energy. These pre-
liminary comparisons suggest the following conclusions, First and
most important, the magnitudes.of the experimental most probable
kinetic energies and masses are reproduced by the calculations—the
experimental and theoretical most probable (or mean) kinetic energies
agree to within a few percent, and predominantly symmetric rather
than asymmetric mass divisions are observed, as predicted. Secondly,
the magnitudes of the experimental widths of the distributions in both
kinetic energy and mass are essentially as calculated, usually to
within several percent.

As far as the finer details of the distributions are concerned,
‘the calculations are capable of reproducing the correct trend in two
out of the three details that we have compared. There is essential
agreement as regards the decrease in average total translational ki-

netic energy with increasing mass asymmetry, and as regards the
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rapid broadening of the mass distribution at low vallue‘s of the total
translational kinetic energy. The expeljimental'constancy or increase
of the widths of the kinetic-energy distributions with iﬁcreasing mass
asymmétfy is not reproduced by the theory, which predicts a slight
decrease. :  ‘ A ; |

‘The dependence of the experimental distributions on the nuclear
temperature of the system is in basic agreement with the theory. The
theory predicts, and experiment seems to confirm, that the most prob-
‘able kinetic energies should be es sentially independent of temperature.
The variances (squares of widths) of the distributions in both mass and
total translational. kinetic energy are predicted to increase in a char-
acteristic way with increasing nuclear temperature. Experimentally,
the variances of,bot_h the kinetic-energy distribufion_s and fhe mass
distributions were observed to increase with temperature, some with
slopes in ap'pr.o‘ximate agreement with theory. There were no exper-
imental points iﬁ the interesting region of very low temperature, where
the varianceé of the kinetic-energy distributions are predicted to be-
come independent of temperature, _

The experimental trend of the most probable kinetic energies
with f15510nab111ty parameter Xx was approximately reproduced by
the theory for those nuclei with x < 0 67. No comparisons of theory
and experiment have been made as regards the variation of the widths
of the distributions with fissionability parameter.

On the whole, the preliminary comparison of theory with ex-
periment suggests that the limitations of the liquid-drop model—ih its

-simpliﬁed_,t"wo-spheroid approximation-are not yet in evidence to a
serious. degree for the fission of the lighter nuclei. @ The model has
stood the test of comparison’with an impressive number of properties
of the distributions in mass and total translational _kinetié energy,’
without the introduction of adjustable parameters., The model seems
capable of accounting not only for the over-all orders of magnitudes of
the most probable values and the widths of the distributions in kinetic
energy and mass, but also more detailed properties of the distributions.
It appears from preliminary comparisons that for the fission of ele-

ments lighter than about radium, single-particle effects are of little
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importance in influencing the distributions in kinetic energy and mass.

The conclusions drawn must not be regarded as final, however,
since only a fraction of the full predictive power of the two-spheroid
" model has been subjected to experimental verification. Even as _
regards distributions in kinetic energy and mass, there are several
remaining areas of exploration. The experiments that have been per-
formed have 'provide‘d us with information regarding the mean values
and variances of the distributions, including the_dependence of the
" mean value and variance of one distribution on the other variable, and
vice versa. Future experiments of this type should aim at determining
not only these quantities but, in addition, the furth‘er deviations of the
distributions from® normal distributions-~the skewness of the kinetic-

- energy distribution, and the kurtosis of the mass distribution, for
example, 'In addition, experimental points at higher and at lower nu-
clear temperatures are necessary to establish defikni‘.cAely the dependence
of the variances of the distributions on nuclear temperature, in partic-
ular, whether or not the variance of the kinetic-energy distribution
""flattens'' to a constant value at low temperatures.’

The extension of the measurements of mass and kinetic-energy
distributions over a range of fissionability parameter is necessary to
establish the trend of the widths with x, and to better confirm the
trend of the most probable kinetic énergies with x. It would be par-
ticularly desirable to perform experiments in the neighborhood of the
| % 0.39,, which would
15,43 LfAt X =x - there

BGY

'should be a transition in the qualitative features of the two-dimension-

‘Businaro-Gallone bifurcation point at x = Xpo

" include elements in the neighborhood of silver.

al distributions in total translational kinetic energy and mass., For

‘x >xBG‘; the lines of constant probability should be ellipses (to lowest

order), whereas for x < x they should consist of two families of

_ BG

hyperbolas. The distributionin mass should become extremely broad
L~ « < P :

for, x gBG’ v and for Xx _XBG the division procesi3shou1d belcorr.le

one of fragmentation, as distinguished from fission, with the prob-

ability for obtaining a given mass increasing with increasing mass

asymmetry,
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A major area of experimental exploration that is untouched
for nuclei lighter than radium is the study of the distributions in in-
dividual fragment excitation energies,. ‘The most direct way of exper- _
-imentally determining these distributions is to measure the distri-
butlons of the number of neutrons emitted from EEEE fragment. 87-89"
Aless dlrect method of obtaining such information is the measure-
ment of the distributions of kinetic energies ‘of the neutrons emitted

889

from each fragment; this method would involve the use of the

relat10nsh1p between fragment excitation energy and the resulting
kinetic- -energy d1str1but10n of the evaporated neutrons, 79,91-94

‘ Exper1menta1 1nformat1on on d1str1but10ns of 1nd1v1dua1 frag-
‘ment excitation energles would serve a twofold purpose. First of all,
the information 1s needed for comparlson with the theoretical pre-
dlctlons of the model A part1cu1ar1y 1mportant exper1menta1 deter-
m1nat1onu1s the correlatlon coefficient of fragment excitation energies,
which could be compared directly with the prediction that fragment ex-
c1tat10n energ1es should be rather strongly anticorrelated. Secondly,
such 1nformat10n could be used to accurately correct experimental
distributions in mass and total translational kinetic energy for frag-
ment nentron-emi:s‘siqnv effects, _l"I‘hisv.'\{((oul_d make the eonélnsions
drawn from“comp_arisone ef these experimental distributions withtheory
more rehable B o _

The determination of the d1str1but10ns of individual fragment
angular momenta for the lighter elements represents another new area
of experimental ex'ploration' ’Experimental information regarding
these d1str1but10ns is potent1a.11y obtainable from at least three differ-

ent types of experiments., One is a measurement of the dlstrlbutlons

sk : : ' o ' L

Note that a measurement of the distribution of the total number of
neutrons emitted (from both fragments) would determine only the dis-
tribution in total excitation energy, which would be equiv‘alent (to -

lowest order) to the distribution in total translational kinetic energy.
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of the total prompt gamma-ray energy emitted by each fragment. *

The distribution of individual fragment angular momenta could then

be estimated from a knowledge of the effect of angular momentum on
-the competition between neutron emission and gamma-ray emission

1n the fragment de-excitation process.'io_o')IOZT The second method
involves the measurement of the angular distributions of prompt
gamma rays emitted from the fragments, 471‘ The third method, which -
would yield information only for specific fragment masses, is the |

study of shielded isomer ratios in the fission products. 103, 1049

*For the heavier elements the average total gamma-ray energy per

fission (for both fragments) has been found experimentally to be about
8 MeV.gS_98
fragments indicate that roughly one-half this amount of gamma-ray

energy is expec:ted.s-s—go’99 It has been suggested that this discrepancy

Fragment de-excitation calculations made for nonrotating

is due to the presence of a total fragrr{ent rotational energy of several

MeV,

213° and a

TRecail (Section V. A, 2) that for the compound nucleus 85At
‘nuclear temperature at the saddle point of 1.13 MeV, the most probable
value of the é,ngular momentum of each fragment at infinity is estimated
- as about 10t if the fragments are nonviscous and about 15% if the frag-
ments are infinitely viscous. If one uses for the moment of inertia of
the fragments at infinify the rigid-body moment of interia of a sphere,

_ for example, this corre.sponds to total rotational eﬁergie.s for both
fragments of é.bout» 3 MeV for the nonviscous case and about 7 MeV for

the viscous case,

) IFor the th.ermal—neutron—induced fission of heavier elements, this

method indicates that the average angular momentum per fragment is

about 7. 47 ,

§The angular momentum per fragment in the low- and medium—energy

fission of heavy elements deduced by this method is about 6 to 1.0"’?1.104
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The experimental determination of the distributions of individual
fragment angular momenta could poésibly be of value in helping decide
the important question of the degree. of nuclear viscosity.

The large nﬁrﬁber of predicted quantities for which there is
little or no experimental information available perhaps calls for a re-
examination of the directions in which basic experimental fission re-
search should proceed, For the past quarter of a century experimen-
talists have concentrated on the more easily accessible regibn of the
heavy elements, and have accumﬁlated a prodigious amount of data.
Until a mére adequate theory of the fission of the heavy elements is
worked out that is capable of explaining more of these data, it appears
that a larger fraction of the future experiments might profitably be
diverted to the region of the lighter elements, -

' Furthevr' progress in our undervstanding of fission involves, of
course, not only further Worl{von the experimental side but also on the
theoretical. Ultimately, any theory of fission will have to take into
account single-particle effects, but, even apart from that, there are
several important refinements that should be studied within the liquid-
drop model. ‘

The present work has been concerned with tracing-out the im-
plications of the two-spheroid model on an essentially classical basis. .
The entire treatment of that stage of the fission process from the sad-
dle point to infinity has involved the solution of classical equations of
motion, = Only in the neighborhood of the saddle point have we attempted
to discuss the effects that quanturﬁ mechanics would be expected to have
on the process, and it is not clear that quantum mechanics has been in-
troduced in a consistent way. Our quantum-mechanical discussion in-
volved the determination of the probability for initially finding t'hev sys -
tem in a given state of motion near the saddle point. These quantum-
mechanical probability distributions were then combined in the sense of
initial conditions with solutions to classical equations of motion,-

- The classical solution of the equations of motion corresponding

to the two-spheroid Hamiltonian represents an essential step in our
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uride‘rstanding.' "An important next step would involve the completely
consistent quantum-mechanical solution of Schr8dinger's equation .
corresponding to the Hamiltonian~both in the vicinity of the saddle
point and in the separated region. This would involve, .among, other
things, a study of the restrictions imposed by symmetry upon the
wave functions for the system, for which there are no classical an-
alogues. From such a complet'e quantum-mechanical solution, the
classical solutions discussed here could be obtained as a limiting
case. (For most of the data compared her.e, however, the nuclear
temperature is sufficiently high that classical statistical mechanics
is valid for determining the initial conditions, and the ambiguities
associated with this mixture of classical and quantum mechanics are
not present. For these cases the entire treatment given here may be
regarded as completeiy classical, ) |

There is a second important investigation that remains to be
carried out for the two-spheroid model. The discussion in this paper
was restricted to a system with zero total angular momentum. The
theory should also be worked out in which account is taken of the three
rotational degrees of freedom of the system as a whole. This would
make it possible to draw stronger conclusions when comparing predic-
tions of the theory with data from heavy-ion-induced reactions, in
‘which there is considerable angular momentum present, Explicit con-
sideration of the sysfem's three rotational degrees of freedom would
also make it possible to iﬁcorporate the existing discussions of angular
distributions of fission fragments.51’195—108

A third extension of the work of this paper is possible., "By re-
laxing the restriction that the charge density be constant throughout the
nucleus, and by taking into account a charge-fluctuation degree of free-
dom, the discussion of fission-fragment charge distributions could be

ale
b

included,

e

b3

Historically, the (unpublished) work of Marshall Blann and Wladyslaw

J. Swiatecki on fission-fragment charge distributions led to some of

the ideas presented in this paper.
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To us the most exciting prospect for the future is the exten-
sion of the two-spheroid model by the introduction of a conicoid of
revolution between the two spheroids (see Section II. B and Appendix
B.3). By use of this extension of the model, one should be able to
discuss certain aspects of the fission of nuclei over the entire range
of fissionability parameter from 0 to 1. Since the saddle-point
energies and shapes calculated in this extended model agree so remark-
ably well with the true liquid-drop saddle-point energies and shapes
(see Figs, 8 - 11), the model should make practicable the calculation
of the predictions of the liquid-drop model not only as regards the
distributionsdiscussed in this paper, but also as regards such ques-
tions as the probability for fission-cross sections fof 1induced fission,
and half lives for spontaneous fission, 1

The general version of the extended model has the capability
. of representing the transformation of the hyperboloidal neck into a
spheroidal third body between the two side fragments. This provides
the possibility for the division of the nucleus into three fragments.
Thus it might be possible to discuss with this three-spheroid approx-
imation the interesting questions of ternary fission and long-range
alpha-particle emission, in particular the angular distributions and
the kinetic-energy distributions of the long-range alpha particles,

| In conclusion, we would like to suggest that the procedure to be
adof)ted in discussing any extensions of the theory should be identical
as far as possible with that underlying the present work—the writing
down of the Hamiltonian describing the idealized situation, followed
by the systematic applicatioh of standard static, dynamical, and sta-
tistical methods. In this way a degree of unity and continuity could be

achieved in the development of fission theory.
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APPENDICES

A. Comments on the Validity of the Liquid-Drop

Model for Discussing Fission

A nucleus can be regarded for practical purposes as cons1st1ng
of protons and neutrons held together by short-range nuclear forces.
Solution of the resultlng many—body problem would presumably yleld
an accurate _description of all fission phe,nomena..- However, this prob-
lem is at prese'nt impossible to solve both because of the rnathernatical
difficulties assoCiated withvthe-existence of a large number of particles
and because the potent1al between nucleons is not accurately known.
| The short-range character of the nuclear force prov1des a
means for approx1mate solution. The dimensionless ratio character-
izing the nuclear problem’-—the range of the nuclear force divided by
the nuclear radius—is for all but the lightest nuclei a small quantity.
The energy of the system (apart from the Coulomb energy) may then
be calculated as an expansion in increasing powers of this dimension-
less ratio. The coefficients of the various terms, which will in gen-
eral depend upon nuclear composition (the difference between the num-
ber of neutrons and the number of protons) are determined by fitting
the result1ng expans1on to exper1mental masses. The four leading
terms 1n such an expansmn of the energy are of order (Ro/r 3,
(RO/r (Ro/r , and (Ro/r , where» RO is the radius of the un-
distorted nucleus, and T is the range of the nuclear force. With
respect to the number of nucleons A, the expansion has leading terms
of order ', A%/, a1/3 and a°. |

A phys1cal 1nterpretatlon may be attached to each term in the
expans1on of the energy. The term of order A represents the ap--
proximation in Whlch-the size of the nucleus is infinite compared with
the range of nuclear forces, i.e., the nuclear matter approximation.
The contribution to the energy assoc1ated W1th the A term is aneg-
ative quantity proportional to the volume of the nucleus for a heavy
nucleus its magn1tude is a few thousand MeV. Th1s volume energy,
~which is independent of the shape of the nucleus, represents the energy
decrease ar1s1ng from the b1nd1ng of each nucleon with its close neigh-

bors. Since it is a constant for a partlcular nucleus 1t need not be
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con31dered when discussing fission, where only shape- dependent
energles are relevant. ‘

The term of order A / v represents the approximation in
which the range of nuclear forces is no longer neglected in .re.ls.tion
to the size of the nucleus. This term represents the loss of binding
of nucleons near the surface of the nncieus, but since one :is consider-
ing this effect only to lowest order, the appfoximation is equivalent
to assuming a semi-infinite distribution 6f nuclear matter bounded by
a gl_e&sur'face. In this approximation the effect of the AZ/3 ‘term
may be represented as the loss of binding per unit area of the bound-
ing surface, i.e., as a surfaoe energy propoftional to fhe surface’
area of the nucleus. The size of this term depends on the shape of
the nucleus~a typical value for a heavy nucleus is several hundred
MeV. ' |

The actual value of the specific snrface tension depends in a
very complicated way on the details of nuclear forces and nuclear
structure. On the other hand, the proportionality of the AZ/3 term
to the nuclear surface area is a consequence only of the smallness of
‘rn in comp'arison With RO, i. e., of the assnmption thaF the causes
for the decrease of binding at the surface can be localized to the im-
mediatevneighborhood of a given nucleon. The situation is analogous
to the case of ordinary liquids: despite the immensely complicated
nature of 1ntermolecular forces the proportlonahty of the surface
energy to the area of the drop is extremely accurate except for drop-
lets whose radii become comparable with molecular distances.

~ The term of order Ai/3 representS a number of corrections

to the volume and surface energies associated with the finite rather
fhan infinite size of nuolei. In particular, the compress(ibility correc-
tion to the volume energy, and the curvature correction 'to the surface
energy appear at th1s stage 18 The available information regarding
..these terms is very 1nadequate, in order of magn1tude they are some
tens of MeV. S1nce these terms are smooth functlons of the neutron
and proton numbers, our ignorance regard1ng them is compensated
to a certain extent by a readJustment of the empirical coeff1c1ents of

the volume -, surface-, and electrostatlc -energy terms.
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~The correction terms of order AO are presumably even more
subtle and less well understood. Insofar as these terms are smooth
functions of the neutron and proton numbers they are also partly ab-
sorbed in the leading terms. We note, howeve.r,_ that single-particle
effects may be formally regarded to be of order AO.'—bind_ing -energy
anomalies associated with a single nucleon (a few MeV in practice)
_are of order A times smaller than the total binding of all nucleons.
Because of the characteristic oscillating dependence of the single-
particle correction on neutron and proton numbers, this correctidn is
presumably the most important of the A0 terms. Some information .
on this correction is directly available from the study of ground-state
masses of nuclei in.the periodic table and from theories of the observed
oscillations (see, for example, references 80 and 81)."
We have thus far considered onl'y the energy associatéd with the
nuclear forbces. The electrostatic repulsion of the positively charged
- protons gives rise to a Coulomb energy, which is also a function of
the shape of the nucleus. This energy is of order aA5/3, where
a = 10-2 is the ratio of the electromagnetic coupling constant to the
nuclear coupling constant. For a heavy nucleus the Coulomb energy
is of the order of a thousand MeV.
In connection with the Coulomb ene rg‘y it should be pointed out
thaf the discussion of the Coulomb energy of a deformed drop with a

thin diffuse surface is as easy as that of a drop with a sharp surface.

" Consider the expansion of the Coulomb energy of the drop in increas-
ing powers of the ratio of the ''thickness'' of the surface to the radius
of the drop. The first term in such an expansion is the Coulomb energy
of a deformed sharp surface and is a function of the shape of the drop.
It can be shown, using Gauss' theorem in electrostatics, that the next
term is exactly independent of the shape of the drop. 80 Thus the
lowest-order diffuseness correction to the Coulomb energy could be
included simply by adding a (negative) constant to the Coﬁlomb energy;
this would simply alter somewhat the value of the fi’ssionability param-
eter x. ‘

We see that the leading terms of interest in fission—the shape -

dependent ones ~are of order aA5/3, A2/3, A1/3, and AO. The liquid-
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drop model consis'ts of treating only the first two, the Coulomb and
‘surface en.ergies. " Barring accidental cancellations of the changes in
Coulomb and surface energies, the remaining terms should in general -
"‘be less important.  In the region of the heavy elements the changes -in
the Coulomb and surface enevrgies do indeed tend to cancel, and the
‘remaining terms may then be essential for d'iscussing certain aspects
of the process. On the other hand, in the region of the lighter elemehts,
the chang‘es in Coulomb and surface energies do not cancel so closely,
‘and the remaining terms should not have the same relative importance.
 The point of view that we are trying to bring out is that the
liquid-drop model is not to be regarded as a "right' or a "wrong'
model of fission, but as a first stage in the devélopment of an approxi-
mate theory of nuclear fission that takes into account the p'finéipal
'comp'one-nts of the enei'gy and that may be ifnprovéd in a systematic

way by the inclusion of corrections of higher order.

: B. Formulae for Potential Energies

We give here the formulae used for calculating the surface and
Coulomb ehergies of a system consisting of (1) two arbitrarily oriented
separated spheroids, (2) two bve-rlapping symrﬁetric spheroids, and

(3) two symmetric spheroids connected by a conicoidal neck.

1. Separated Spheroids

The total potential energy of two arbitrarily oriented separated
- spheroids is written in the form of Eq. (6b): the sum of two individual
surface energies, two individual Coulomb self-energies, and the
‘Coulomb interaction energy. We will consider these terms one by one.
" However, let us first take care of some preliminary definitions.

Recall that ¢, denotes the semisymmetry axis of spheroid 1,

1 .
and ay its transverse semiaxis. When spheroid 41 is prolate its
eccentricity e, 1is defined by -
' a.2 U R3 -
2 1 - 1 i - 0
©1 7 z - 3
4 1
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When spheroid 1 is oblate we denote by €4 the quantity

2 3
2.2, %% 2
‘477z T 73 -

<y o

(Note that ¢, is not the eccentricity of an oblate spher‘oid;) The
quantities e, and € , are defined in an analogous way for spheroid 2.

When spheroid 1 is prolate 1ts surface energy is given by13

' : : . -1
P4 : = sin “e
, (1) _ 1 ..2/3 2,1/3 g
Bg =g U h-e) Tt 7y
By use of this formula and the relation109
sin1ix=iln[x+(1+x2)/] ' o (BU)

we obtain the result for the surface energy of fragment 1 when it is

oblate:.

_ . / | [ 21/2]
_ 5 1/3 Inle , .+ (1+¢,)
BS(1) _ 1 U2/3 (1 1) 1+ 1 1
o2 , 2,1/2
€q{ltey)

By expanding either of these formulae we obtain a result that is useful
for calculating the surface energy when spheroid 1 1is nearly spherical

(either prolate or oblate):

]3(1):Uz/3(1+ 2 . 4, 116 6 104 8 1252 e10+,,_>‘

S 25 1 2835 71 2835 71 ° 40095 1

When spheroid 1 is prolate its Coulomb energy is given by1.3

1/3 1+ e
(1) _ 1 5/ . 1)
'BC .__2— - e) vg1ln<1-e1>

By use of this formula and the relation!09

tan—1 ix = é—iln<1+x>',v

1 -x

we obtain the result for the Coulomb energy of fragment 1 when it is

oblate:



-180-

B . . —1
1/3 tan’" e
5/3 (1“?) an. ¢
€4

(1) _
B.'=1U

When spheroid 1 is nearly spherical, the series expansion is useful:

(1) _ ..5/3 1 4 64 6 58 8 1024 10 S\
Be U \1- 251" 3835 °1 " 7835 °1 " 56133 °1 :

Formulae for the surface energy and the Coulomb self energy
of spheroid 2 are completely analogous.

We consider now the derivation of the Coulomb interaction
energy E =B EC('?) between spher01ds 1 and 2. For this energy,
closed formulae are not available; the final result will be expressed
as the sum of two closed formulae and a triple multipole summation.
The derivation consists of reducing (for the case of two spher01ds) the

110 for the

. general formula given by leschfelder, Gurtiss, and Bird
interaction energy of two completely separated charge distributions.

The interaction energy of two separated charge distributions

1 and 2 can be written as a fivefold multipole summation:110T
m,-|lm,|-m,+|m,| n, + m
B é P D L AR AP
- My ’ . .
My
m o mi* m
1 2 ‘ = = 2
_ (n1—lr:nil)l(rxz—lrn2 / n +n )!Q(1)n QZ)nv :
' 4 : - 1 2 X

i/2.

_[(ni+?|'m|)!(n1~|m|)!' (n'1ﬁ+ |m11)' (n2+|ml)!(nzflml)!(n2+|m2‘])!}‘:,

- This expansion is given,, through the e? term, in reference 39.
A

In comparing with Eq. (12.1-33) of reference 110, note that a factorial
sign is missing there from the last factor in the denominator. A suf-
ficient condition for the convergehee of this 'expression is that one of
the charge distributions be cofnpletely outside an imaginary sphere

in which the second charge distribution is completely enclqsed..
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(n,) - (n5)
b 1 f‘z

(—4’1:61’:4‘1) m‘im D (¢2: eZ’quZ’ )mzm

X ", 40,1
ByFhpTd

i
' v ., my - v ‘
In this expression .Q(i)'n- is the multipole moment of charge distribu-

tion 1, vca‘lculate_d'with reispec’; to a body-fixed coordinate system

X, ¥, 7,

1 Y4 2q°

’ m : Pon m, im, ¢
o — o Am Wy 194 —
CIONES fpi(r1,91,¢1) Ty Py (cosTe dT,

where pi(?i’ @1, .$1) is the charge density of charge distributién 1,
1 — - . , -
Pn (cos 61) is the associated Legendre polynomial, and d7-1 denotes

an element of volume. An asterisk denotes complex conjugation. The
orientation of the body-fixed system §1 -3;1 21 with respect to the
space-fixed system .xi Yy 24 is .speciﬁed b%rl'/the three Euler angles
61, ¢1, qu (see Fig. 2). The coefficients D 1 (¢1,6_‘1,¢1)m m are the
representation coefficients of the three-dimensional rotation group.iio
(The representation coefficienfs being used ére identical to those of
Malrgenaiu and Murphy. ,111) The distance between the origins of co-.
ordinate systems §1?1E1 and §2§é—z—2 is 4. | |
For uniformly charged spheroidal charge distributions we
choose the body-fixed 21 axis to lie along the symmetry axis of
sph%oid 1. Then, because of azimuthal symmetry about the —z'i axis,

1

=0 for m1'74 0. For m, = 0, we obtain explicitly

aw, ;
Q(1)n: Py Ty, Pn (cos 61) d'r1
1 J. 1 v
+1
ZTrp1 » » : . n1+3
= —_— dp, P (H)[R(H)} )
(n1+3) | 1_ vn1 17 1 |

-1

where ’Pn‘i (pi) is the (ordinary) Legendre polynomial, p4 =cos -6_1,
and '
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a4

a S0
P PRI ) PV

- ) My
1
is the equation in polar cvoordinate's'of the radius véctor of sPheroid 1.
' " For n, an odd 1nteger, the integrand is an odd funct1on of

1
My and Q(i)o = 0. By use of the result?12

1 |
(1) du B 2(-k)" = :
45 n+(3/2) S - n+(1/2) : .
L (1+kp®) (2n+1) (14K)
"we obtain, for rii. even,
: L2 2.mq/2

' 3q,(c, - a,)
—, .0 111 7 34
Q“)“n: m+1) (my+3)

»where qy is the total charge of spher01d 1

| Since Q(1), 1_ 0 for mi;fo and Q(Z) 2 0 for mZ;ZO the
flvefold summatlon reduces to a triple summat1on Furthermore,
since Q(i) = 0 for ny odd, and - Q(Z)O2 0 for n, odd:, the n,
and n, summations need be taken over even integers ‘only. We thus
change summation variables by defining

ny = 2§
n, = 2k.
The formula for the interaction energy becomes, upon simplifying:
: ©, oo =, 0 =,5,0
L Q(1)5;D(2)
1 g 2jt2k+t
j=0 k=0 _

¥

(2 - 2K .
P2+ 20 D (g 04 D (6 05)

xz .
e (2_]+|rn!) 1(2j - Iml) 1 (2k+ |m|)!(2k— lmlf)!]if2

2

where m, is the minimum of 2j and Z2k.
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The representation coefficients with'one zero subscript can be

written in terms of spherical harmonics':110'

'__D('n)(q.” % %) grn = (?%T) RERUL

where 6,¢ are the usual polar angleé specifying the orientation of the

body ~fixed z axis with ‘respect to the space-fixed z axis (see Fig. 2).

‘The spher1cal harmomcs are in turn deflned byiio

| 1/2 .
m L lml| -m [ (2n+1) (n-.|m m | im¢e -
(6,¢) = 1‘ v [ 411 o l-mf)! Pn (cos B)e,. -

‘The focrmula for EI then.becorﬁes

— = 0~ 0

AN z Q1),5 D (2)y
I ' g 23t2k+1

j=0 k=0 :

tm

XZ (1) (23+2k)'P (cose VP oy (cose )e “im{e1-$2) -

m=-m_ (ZJ+ Iml)!(2k+ ;|m|‘).

We may eliminate the appearance of imaginary quantities and absolut___e—
value signs to obtain '

0~,.. 0

AN 6(1)2j Q(Z)Zk(2j+2k) ! PZJ.-I(‘cos ei)pz-k(cos_ 6,)
1 g 2jtek+l ‘ ’ (2j)1(2k)!

j=0 k=0 ' '

m

+2

(‘1)mP2?(COS 9,1)P2Ln(cos 62) cos rnda} '
(2j+m) 1 (2k+ m)! !

where b=y - ¢, (When either j or k is zero, the sumrﬁation

over m does not occur.)

“We find it convenient at this point to introduce the definitions

3
UR
2 .2 ci'— 0
)\2__ (:'1 —a1 - B C1
1 - T2 T Z '



B | (1 -U)R>
2 0
2 ‘ €2 - c
2. 2 &2 "2
2 2 | I

If we use these def1n1t1ons and the result prev1ously obtained for the '

multlpole moments, we obtam

| qiqz Z | o
Ep= (zJ+1)(zJ+3) (2k+1)(2k+3)

<

- . . o ' _ (ZJ)'P (cos@ )
(25+2K)1 .2j .2k | , E m 2j |

m=1

X — cos mé¢ -

(Zk)'P (cos@ )- . -i
.(2k+m). :

When either j=0 or k=0 in this result, the single rema1n1ng

summatlon can b_e perfo_rmed exp11c1tly‘. 113 We thus flnd it convenient
to write EI in the form . v v

B - 12 (X 0,) +s(n,,0 )'-1.+S()\ a0, 0.,0)]

17 T S O F8(R, 0, 10 220 O 2’¢J’
where _ ) ‘
. 3 )\ P (cos 6) . v : .
s(n,0) Z 2n¥ 1) Creaymi - (B.2a)
n=0 '

(explicit formulae are given later), and

o0 0

3

SN, N5, 0,,05,0) = —_—
17722 71 72 ' . s
j=1 k=1 (ZJ+1)(23%’3)

3 (2j+2K)1 ,2j,2k

X RTI(2RF3) ZH2HT M 2

‘ - L (Zj)!_Pl; (cos 6,)
X [sz(cos 91)P2k(cos 62)+2 Z ‘(—1)n\q (ZjJ+m)! — X

m=1 -




-185-

/-(Zk)!Pgll{(eos'Bz) ,
ZkT )l cos mo-| .

Written in this form, the interaction energy has a s1mple

X

phys1cal interpretation: 43 If spheroid 2 becomes a sphere, =0,
and the 1nteract10n energy 1s given by ( qy qz/ﬁ) s )\1, 91). Avaf spheroid
1 becomes a sphere,. 17 =0, and the 1nt_eract10n‘ energ'y_is ,
: (q1 q2/£ S()‘Z’-GZ)' Thus, 'according.to this equation for EI’ the inter-
action energy Of two arbitrarily oriented separated spheroids may be .
regarded as the sum of what the interaction energy would be if one of
‘the spher01ds were a sphere, plus what the interaction energy would
be if the other were a sphere, minus the 1nteract10n energy of two '
spheres, plus a correctlon glven by S()\i, )\2, 61, 62, $). ‘ »
The interaction energy of a sphere and a sphero1d (either pro—_
late or oblate) is discussed by Webster. 113 We have transformed the

formulae given there into a form more convenient for our purposes.

For a prolate spheroid we find that
| 3 /9 2. 3\ 17, (g+\)
S()\», 9) = [ﬁ - <71- CQS 6 - -4-) ;\-:—,)-} ln<—H——> )

2, 2, | |
2\ g 4\ hf

where g and h are defined by

.gZ: %{1+)\2+ [1-2(2c0526-1))\ +)\] 1/2}

n’= 2 {1 24 [1-2(2 cos? o - 1) A% 4nY 1/2]'
For an oblate spheroid,

sv()\, 0) :[-2?36_ +<% cosZG - %) —%—] tan-'1<§>

_v3“c02326 3 g sin’ 0 T (B.2¢)
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A graph of the function s(A, ) is given in Fig. B.1 as a function
of )\2 for fixed values of 6, and in Fig. B.2 as a function of. 6 for
fixed values of )\2 Note in Fig. B.2 that s(X\, 8) becomes unity for -
approximately. the same value of 0, 1ndependently of )\2 This value -
of O is given by the solution of .Pz(cos 8)=20; phys1ca11y th1s result
states 'simply that the quadrupole interaction term is the most impor-
‘tant of the multiple terms (apart from the monopole)

7 '~ We have thus derived the general result for the Coulomb inter-
actlon energy between two arbltrarlly oriented separated sphero1ds
For a number of special cases, ‘the general result simplifies con-
siderably. First of all, if the syrhmetry axes of the spheroids lie in
‘the same plane, 4;: 0, and oos md = 1; th_is eliminates one factor in S,
but.the triple summation remains. l bb ‘

If, in addition to ¢ =0 the symmetry axes are parallel
, (91: 62,‘-— 0), then a great simplification occurs. By using propertles

of the representation coefficientsii'4 we can show that

: m< (2j)!1 P (cos 9).
P, ;(cos ) Pyy(cos 0) + E: (-0 '(Zjiﬁn)!
1 : -

m=

m
(2k) ' P, (cos 8)
2k P

ZRrm)T - Fzjrekfcos o)

X

Then, the formula for S reduces to43

SIOTR TR o, 0:) = 2{: ZE: (23+1)(23+3)
751 k=1
% 3 (2j+2K)y 2], 2k cos 8). .

CRTINZET3) @yIeR! M M2 Fajrek!

If, further, the spheroids are collinear (6= 0) then sz+2k(cose)=1,,
and the result for S simplifies slightly. For this case, however,
there is considerable simplification in the formulae for s, and we then

obtain the formulae given by Cohen and Swiatecki:
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l.OG T ) — T — — T - T T
| §=07
.04 - | d
k_g=90°
|.02.—8o° ' | | ]
70° o
< 60° , _
- 1.OO- ' ‘ ]
e  50°
v (7] i lv —
40° 7%
0.98 30° 900,—
205 ' | - | ]
. 10° »
096 7. T | |
0.94 | | ] v| | | ] L |
-02 -0.1 @) 0.1 0.2
)\2

MUB-2424

Fig. B.1. The function s(\,0) [ defined by Eq. (B.2)] vs )\2, for '
fixed values of 6, _
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] [ | [ I | | |
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Fig. B.2. The function s(\, 0) { defined by Eq. (B.2)] vs 6,
for fixed values of A&,
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2. Overlapping Syrhmetric -Spheroids

The total potentiaﬁl energy of a system ’c'onsisfing‘of two over-
lapping symmetric spheroids is written in the form of.v Eq. (6a): the
| sum of a surface energy and a-Coulomb eriérgy. We will éonsider '
. these energies in turn. Howevei‘, let us vag"ain first take.care df some
preliminaries. _ - | _ ‘

" Recall that for the symmefric case the semisymrhetry axis
of either spheroid is denoted by ¢, and the transverse semiaxis of
either spheroid by a; the diétanceibefween spheroid centers is £ (see
. the upper part of Fig. 2). It is convenient to defir}‘e the dimensionless

quantity B by
e
P==c

The semiaxis a is determined in terms of £ and ¢ by volume
conservation. If we equate the volume of the original drop to the re-

sult obtained from a straightforward volume integration of a deformed

2R M2
a_ _ 0 B
Ry [c<2+36r- 8°) ]

- When the spheroids are prolate, the eccentricity is defined by

2
e2:1:_—a—2.
C

drop, we find that

For oblate spheroids we denote by e the quantity

: 2
ez:ia—2—1=—e
C

2

(Again, note that € is not the ecentricity of an oblate spheroid.) We

further define the quantities g and-y by
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g=pe.,.
Yy=pe.

The surface energy of the system is obtained by performing a
stfaightfbrwa,r__d surface integration. When the spheroids are prolate,
the total surface energy can be written as

_ IR 9 : 1/21 - '
'BS = __'3%___ [Sin 1 e+ sin 1g + e(1 - e2)1/2+g(1 - gz) /2] (B. 3a)
: 0¢€ _ ' _ _ .
From this equation and the relation (B.1) it follows that when the

spheroids are oblate,

B = _a;__ {ln {e + (1 +€2_)1/2] +ln[y+(1 +y2)'1/2]
2R;€e . ‘ . )

' v ' 1/2 ‘ -
re(t+e)2 Ly } (B.3b)
The"Coulomb energy of the systerﬁ is calculated by performing
numerically a double integration. We use a cylindrical coordinate
system, with the z axis’‘along the system's symmietry axis, and. p
the perpendicular distance from the z ‘axis to the surface of the drop.

We dénote by,‘pev:/t_he (constant) charge density of the drop.
' ' (0)

. The total Coulomb energy EC = BGEC of the system can be
written 3.51%l ' c K '
E. - te V(z) R3(z) aa (B.4a)
C 5 , ’ : '

where R(z) is the distance from the center of the drop to a point on
the surface specified by p and z, V(z) is the electrostatic potential
on the surface of the drop, and dQ2 denhotes an element of solid angle.
Because of azimuthal symmetry, a single numerical integration is re-
quired to obtain EC once V(z) is known.

The electrostatic potential on the surface of the drop is in turn

given byl 9-21

dz'et {lp + o+ (2 -2 G2] K(K) - 20D(R)}
‘ ; 17z . (B4b)

[(p+pM% + (2 -2")%]
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~ where _
kZ _ ' 4pp’ ’
(p+pN° + (z-21)°
and . ) ‘

- The quantities K(k) and E(k) are the complete elliptié in_teg'rals in
standard notation. Since excellent approximate-répresentations exist
115

the resulting expression for .E . can be -

for the elliptic integrals, C

evaluated by performing numerically a double integration.

- We give finally the series expansions about a sphere of the
surface and Coulomb energies of the overlapping system. It is con-
venient for this purpose to define the dimensionless quahtities 6 -and
¢ by : : S

) .
S=r—

oy

s

The series expaﬁsion for the surface ehergy may be obtained
either by expand1ng the integrand of the surface integral for BS and-
1ntegrat1ng, or by expanding the final result for BS 1‘;self We find,

through terms of third order,

- 9 2 2 5071 3 657
BS—1+-266 +-Zo-§e+-5-e —7—53706 mSe

99 2 52 3 .
= 1T Se - 10 € +
~ The series expansion for the Coulomb energy is not so readily
obtainable because a closed formula for the Coulomb energy is not
available. An expansion to second order may be carried out as fol-
lows. First, expand. to flrst order the radius vector R(O) of the System

in sphe rical harmonics:

.R(6) = R0 |:1 +<-1%- o + e) Pz(cos 6)

4 T TS :
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‘where aTS "denotes the expansion coefficients for a pair of tangent

spheres: 43

_a’llf‘lS; (_1)(n+2)/; 2(2n + 1) H:_:_ , (n.even) .

Second, insert the coefficients a, of this expansion of the radius

vector.into the general result for BC (to second.or_der):ii’ 12_,

. : . |

' - 1) 2
B.=1 =5 E (n a“ ...
© L (zn+ 12 B

~ We then find tha,tv, to second order,

-4 kg2 .9 1 2
Bc—i-Kv6 -4—0—6€—-§€ + oo e,

where the constant k is given by

o = | L N
. 81 5 E f (n - 3)!! _ :
“* 1280 ' 1 (nfi)[fa;;—ETTT]; = 0.06556 -
n=4

(even)

3. Symme't'ric Spheroids with Conicoidal Neck

In this generahza.tlon of the two spheroid model the spheroids
may be connected by the conicoidal neck either smoothly or in 4 ‘way
that makes.the surface discontinuous (as in the original two- Spher01d
model). Inthe case of a smooth connection, the requirement of tan-
gency of the conicoid and:the spheroids eliminates one of the degrees
of freedom. Wé will consider here only thié case. This. means, then,
that for the symmetric case there are three degrees of freedom, which
will be chosen as follows: (1) the distance between spheroid centers,
(2) the sem15ymmetry axis of either of the two spher01ds, and (3) the

neck radius of the drop (the transverse semiaxis of the conicoid).
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The totalA potential energy of the system is written in the form
of Eq. (6a): the sum of a surface energy and a Coﬁlomb energy. We
again use a éylindrical coor’dina,t‘e system, with the z axis anng the
system's symmetry axis, and | p the perpendicular distance from the
z axis.to the surface of the drop. o

We denote the semlsymmetry axis of either of the two symmetric
sphero1ds by ci, and the other semiaxis of either spheroid by ay,. The
quantities ‘a .and c are defined in terms of the equatmn of a hyper-

'_b0101d of revolutlon

0 N
v
|
[N

2

P .
2

a v

When a? is positive, a is the heck.rédius of the drd‘p."When 2
is negative and a® is positive, the hyperboloid of revolution becomes
a third spheroid. When a2 and /cz are both negé,tive, the conicoid .is
a hyperboloid of revolution of two sheets. '

The requirements that the volume of the drop be constant and
‘that the coni‘coid_bevtangént to the spheroids determine a, and c
in terms of the other variables. As before, £ is the distance between
spheroid centers. Let Zy be the value of z at which the third coni-

coid is tangeht to the two end spheroids. We obtain

L . 4c2 o o
2 = L1 2L (4.2 "~ (B.5a)
t 2 ' 122 2 R )
a .

In terms of z,c and the remaining coordinates, c2 is found to be
given by

v ” aZ CZ _

Pt T (B.5b)

2
(€/2)-7,)a7 |
By performlng a straightforward volume integration, the total volume

4nR /3 of the drop is found to be g1ven by



a3 _4n 33 T 34
TR0 3% |ZT T3 Za a.
ay "1 1
. 4 .
- £ L3 —Z’ZZ' R —Z——z:t (B.5¢)
© 46¢c; a; . 2- a1 4c : . 2c,a

171 1 ’ 171
o | By simuitaneously éolving (B ‘5a) and (B 5c') we" c_ouid deter-
mine a, -and zZ; then, ¢ would be given by (B. 5b) ~Since no easy
solution of (B.5a) and (B.bc) exists it is more convenient in practice
to follow an alternat1ve procedure: If we use as our unit of d1stance
a1 (rather than R )then zt, c, and R0 are readily obfcamed from
the set of three equatmns (B 5).

The eccentricity of the spher01ds, when they are prolate, is

deflned by

2
2 _, el
€47t Z
€4

For oblate spheroidé,we dehote.by €y the quantity (not the éccentricity)

2_ %1, .2
17 7T T %
.'Ci :

The dlmensmnless quant1ty Bi is defined by v‘

(£/2) - 2,
ﬁ. T ———— ,
' r

and the quantities. g4 and Y, by
g1 = Pyeyo

Y1=ﬁ1.€1-

When the third conicoid is either a hyperboloid of revolution

of one sheet or a prolate spheroid we define its eccentricity by
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When it is an oblate spheroid we denote by e the qiiantit'y'_

- The dimensionless quantity (B is defined for. all cases,by

24

B = —I?T i

the quantities g and vy are defined by
g = Be,
Y= PBe .

The surface energy of the system is determined by performing
a straightfovrwa,rd surface integration. The result may be written as

a sum of two terms:

spheroids conicoid
S = BS + B,S
The expressions for B;phermds (for prolate and oblate spheroids)

are-identical in form to (B.3); simply use the current definitions

of ay Cy €y B €y and Yy for the analogous .quantities a, c, e,
g, €, and v, respectively, a’;ppearirig there. ' ‘
When the third. conicoid is a. hyperboloid of revolution of one _

sheet .we find that S

o | -, /2
» - 2.1/2
BgonlCOld - ac {vln [g_+ (1 +g )1/ jl (1 t 8 ) }
- ZRO;e : ' - .

When it is a prolate spheroid. we find.that

conicoid alc - 1/2
BS __ o= _LZ_L .8in g +.g(1l - g ) B
' ' ZRO' e
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and when it is an oblate spheroid

B§0n1co.1.(‘i = &
‘ ZRO
' o , 1/2
) + y(1 +vy7)
The Coulomb energy of the system is calculated by using the
set of equations (B.4), in a manner analogous to that described in

connection with two overlappiﬁg symmetric spheroids
C. Formulae for Kinetic Energies and Equations of Motion

Coplanar Separated Spheroids
single incompressible fluid spheroid for the type of hydrodynamic flow
a superposition of an irrotational flow and a flow

We consider first the determination of the kinetic energy of a

1.

‘we are considering:
correspondlng to a uniform rotation of the spher01d as a whole,.
The semisymmetry axis of
The

We choose a body-fixed xyz coordinate system whose 2z axis
and its transverse semiaxis by a.

is along the spheroid's symmetry axis
for the irrotational flow is given by Lamb

the spheroid is denoted by ¢
velocity potential ¢ ‘
4 fa 2.4 2 ¢ 2
®ir =7 2 <‘5 * gy tg* )
The velocity v of the irrotational motion is the_n' -
— - _ é'. — é__ - _('1 > . .
= gradq;ir a’xex+ayey+czez‘,.
The condition

V.
ir
is a unit vector in the x direction, etc

- - -
that the total volume of the drop be constant implies that
P :

“where e
o1
2

o | o

The velocity

.

Consider now the uniform rotation of the spheroid as a whole

about the y axis with angular velocity of magnitude w
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v rot of this rotational mot1on (relatwe to space- -fixed axes that are

1nstantaneously comc1dent w1th the body flxed axes) is

— ! - -

V. . Twze -wxe ,
rot X Tz
(We note that curl v, = 2 w E’ )
: ot .

The total velocity _\: of the mot1on con81st1ng of a superpOS1t10n _

of these- two types of flow (relatlve to space f1xed axes) is. then

> .= 14 & -
v =V v —(—-2- E—Yey

< =
+ (-2 - wx)e
e ‘ z

o|n-
(RN

. X+ w3z e -
ir rot ) :

From this result we find that the square'o.f the velocity (.relative to .
space-fixed axes) is given by A e

2 2 '0 » . . '
vo=1 %(x.2 +y )+ zz], (%)2 - 3:xz w% + (x2+ zz) wz, .

The total kinetic energy & of the drop is

o .
RS ’z‘pmf_" a7,

where P is the (coﬁstant_) mass density, and d7 denotes an ele-
: " : 2 )
ment of volume. If we substitute for v "and perform the straight-

b

forward volume integrations we obtain

where

™

, 1, 4 oat
Mc_ g(i‘f?'c—z')M,

1, 2 2.
'Mez g'(c +a’)'M;

‘The. result for Mc can also be deduced directly from Eq. (12) of:

refe rence 44.
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the total mass of the sbhelioid is M. We note;thé;';. the vcross',,t'e'rni in- -
volving w ¢ 'is zero because vthe'ihte‘gfatid'n of xz overvthe‘\.rﬂolume of
the symmetric spheroid gives zero. _ | |

We now list Hamilton's equations of mot1on for a 5ystem con- '
sisting of two coplanar separated sphero1ds " They are obtained by
d1fferent1a.t1ng the Hamiltonian ('10) w1th respect to the five momenta

and. the f1ve coorchnates that are changlng ‘with time.

‘M,
Pc
L] -— " 1
€17 M,
1 ,
) p‘z
C2 M
€2
Py . Pg T Pez.
1 My M, 12 ’
1 My 2
P Pyt P
5 6, . 0, 0,
2 M, " ) ’
- QZ M, £
. S 5
(pe +p9)
_ 8y 172
)
. pcz :nd pGZ dMg
P = - ai?‘ * 12 dc s 12 dc -
€4 1 2M_“ 1 2M,, 1
1
2 2 \
8 Pep dMCz b6, d\/19.2
p = - + B + 2
c2 8c2 ZMCZ dc2 Z‘Me dc2
2 - 2
b = - D%
6, 691
o . 2%
6, 90,
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The derivatives of the effective masses are in turn given by

dM 2 3
. 3U% Ry M,
dey 10 o2
1
dM, U R
4. U (e o200 Vo
3(:1 B 1 2 0’

'analogous equations hold for dMC /dcz- and ~dM9 /dc2 . The deriva- -
2 .

tives of the potential energy % with respect to the ~ coordinates are

obtained by straightforward—but lengthy and tedious —differentiations

of the results given in Appendix B.1.

2. FOve'rla.ppingf; Symmetric Spheroids

We now derive the formula for the kinetic energy of two
symmetric ove’riapping spheroids by _usé of the approximafe method
of Werner and Wheeler. 48 For this purpose we use a cylindrical co-
ordinate system, with the z axié parallél to the symmetry axis, and
p the .perpendic{llar distance to the surface of the drop.
The method of Werner and:Whee.ler_may be stated as follows:
First of all, imagine the drop sliced into an infinite number of slices,
with the slices":bounding surfaces perpendicular to the syrﬁmetry axis.
Then, demand that the internal flow be such that when the drop under- '
goes a displacement all points in one slice remain in that slice —of
. new position, thickness, and radius—after the displacement. The .
slice of material undergoes a uniform contraction in the p direction
and a volume-compensating expansion in the z dir‘ectiony or vice
versa, Werner and Wheeler call this ‘mbtion a '"p-independent trans-
port and shear.' The motion is consistent with thé displacements of
the bounding surface, but may deviate from the unique irrotational
motion. However, from Kelvin's mihimurri—'energy theorem regarding
irro{:atiorial motion, the error in the kinetic energy calculated by this
method will be of sepond order in the deviation of the motion from

116

irrotational motion.
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'The'approiimatio'n that we are makiﬁg may be stated mathe-
matically in terms of a single equation:
. P . ' . : ’
p__0_2a B o (C.1)
where pg denotes the value of p on the surface of the drop, and a.
is the transverse semiaxis of a spheroid. . The equation states simply
that the transverse displacement of a point in a slice iis proportional
“ to its p coordinate. , _ '
- The kinetic energy & of the system is given, without approxi-

mation, by -

. 1 [ .2 S [oa a2, 52

g._ > pmfv .de“pmdeIPdp_(p +z7),
where P, is the (constant) mass density. If we substitute for e

. the result »p 60/90 obtained from (C.1), f_he integration with respect

to p .can be performed to give

The quantity Po is given explicitly in.terms of =z -thrbugh .the equa-
tion for the surface of the drop.

- The time rates of change of Py and ° 2z are determined in
terms of the time rates of change of the two coordinates £ and ¢
that spe-c»ify the system:

Po "\ T8I dc ’

The derivation from this point o_n'is.fai'rl'y stré.ightfofw’ard,

but length'yvl and tedious. It involves taking partial devr'iv;aftive's of the
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equation for the surface of the drop and.the equation for the volume
of the drop, 'usi_ng_the second part of (C.1), and performing several.
,integratibns. The final result is found to be

1. .2

I T T |
IS Z_M“{z + M, L&+ M &7,

‘where the effective masses (functions of position) are given by

- , ,
_ 9(1 B) (8 9(3+313) a ]
M = — M_,
“, 160(1+(3)(2 B) c -0

_ | 3(1-B) 3(1+8°) (4- B) (8- 9{3 + 3£5 ) 2 ]
M = , + — M
fe | 8(2-F) ‘ 40(1+43) (2- ﬁ) . et 0

v - |z-zpizp 2,353.3p%) (11875 (8- 9B+3ﬁ ) 227
. hce ‘ 5(1+B)(2 [3) ‘ 10(14B) (2 5) > 0"

—

We have defined by -8 the dimensionless qua,ntity

)i
P72 -
2,2 .
The ratio a“”/c” is given by

3
0

c>(2+38-B")

2 R

'o(\lmw

The formula for & obtained by this method simpiifies.to the
known exact result for two special cases: (1) For a system consisting

.of two tangent or separated symmetric spheroids we set B = 1; then

Myy = g M,
MIC:O’

_ 1 1 a
Mcvc— §(1+ 2 __Z)MO



-202-

(2) For spheroidal distortions (£ =0) _of'_é. system éonsisting‘of a.
single spheroid, only a single term contributes to &. Then,; for
. B = O 3 .
' : 2

1, .1 a. R
Mee= 5 vz 20 M
From the Lagrangian for the system we find that the momenta

vconjugate'to £ and c¢ are

Py = Mgy b+ M c,

oM, B el
Pe Mlc ‘f.M_ccc'
Then the Hamiltonian is given by
1 2. . 1 2
=M p, -M,_p,p t 5 M,p
4 £ y4 )
gc___;vcc_- c cZZH £C+‘))
My Mcc? Mﬂc '

Hamilton's -equations of motion can-then be written as

i = Moo Py - My Pe
- N . . N 2 ’
00 Moo - My

oMy Pyt My b

M -M°
cc Lc

0O~
t

Mgy

pc:_

.o_ e
Pp” " B
a5C
ac
The partial derivatives of JC are obtained by straightforward—but
lengthy and tedious —differentiations; formulae for ) as functions of

£ and c¢ are given in Appendix B.2,
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D. Normal-Coordinate Transformation

Our purpose here is. to discuss, for the case in which the
saddle point consists of two tangent spheroids, two unrelated aspects
of the transformation.to normal coordinates: the distance between

two touching spheroids, and the mass-asymmetry effective mass,

1. Distance Between Two Touching Spheroids

We consider fifst the determination of the distance £ between
two toﬁching spheroids as a function of the remaining 4coordinateis. We
need the final result lonl}r, ’Fo second ord.er in the angles eix’ 62?;, eiy’
and 62 ~(see their definition in Section III.B); because of symmetry
at the saddle point the distance £ is independent of terms involving
01X91§, 61x62y’ szeiy, and. 62x62y" We therefore consider from
the beginning the case in which the symmetry axes of the spheroids
are coplanar. (Thus we use the angles 61 and .92 illustrated in
Fig. 2, with ¢ = ¢1 - ¢, = 0.)

- We define a coordinate system whose origin is at the point of
tangency of the two spheroids, whose y  axis is along the line of
tangency, and whose x axis is pefpendicular to the y . axis. (The x
axis is positive-in.the direction of fragment 2.) Let (xi, y1) denote
- the coordinates of.;he center of fragment 1, and '~(x2-’Y2) the coordinates
of the center of fragment 2. Then the distance £ between fragment
centers is | ‘ v

o 1/2
L=1(x, - x1)2 tlyy - Y1)2] /

' The coordinates (xi,yi) and (x,,y,) are determined in terms
of the variables U, CyrCps 61, and 92 by a geometrical mgthod. The
method involves uniformly 'squeezing" each spheroid parallel to its
5ymmeti‘y axis.into a sphere, leaving all dimensions perpendicular
.}to.{;he symmetry axis unchanged. Then, from the geometry of the

sphere and the use of several trigonometric relations, we find that
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'.1/21

- 2 2
X'l— ' C1(1 - eicos Y1) )
ez"s'n COS Y o
E v, = ‘-C-i 1 1 V_Yiﬂ Yi .
1 2 2 1727
(1-e1cos.y1) _
~ 1 . 2 2 ‘ .1/2 ‘
= CZ( - e, cos YZ'), o,

-c, e, siny, cos y, .

. ,(1 -.e, cos yz) |

where -

(n/2) -0, - a,

s
-
H

-
)
fi

(n/2) +62 +a x
and o

‘ _1<Y2"7”Y1>
cesten {Tx,
‘ N2 1

The eccentricities e, and e, are defined for prolate spheroids by

.'1_.

2 ai‘ UR(3)

ey=t- 7/ =t —=
C C
Sy 1

5 ag (1-U)Rg

32:1_T-:1_ _7_
€2 ¢

"2

sk . i N ) :
Since the saddle point consists of two prolate spheroids, we need .

not consider oblate spheroids here.
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Phys1cally, Y4 and Y, are the angles betWeen the .y axis and the
symmetry axes of fragments 1 and 2, respectlvely, a is the angle
between the x axis and the line connectlng spher01d centers

For the general case in W.h1ch _61 and 92_ are arbitrary, no
easy solution exists for the above set of equations. However, it is
possible to obtain an explicit expression for ¢ torsecond order in 6
-and 92. We give here the result to second order for the spec1al case
in which U = 1/2, Cy 2‘=‘ C (e = e2 = e) and the angles 9 and 9
are equal in magn_itude Then, when the fragments rotate in oppos1te

directions (62 = - 9 = 9),

=C

L=2c(1- 5 0%+ o)
When the fragments rotate 1n the same direction ( 92 = 61 = .-9),

zzz[i-ee }
: © »2(1 ez) |

We note that for the same angle of rotatlon the fragment centers ap-
proach more closely for rotations in the same direction, '

2, Mass- Asymmetry Effective Mass

For the case of actual saddle p01nt shapes that have small

'neck radii (low values of x), the mass-asymmetry effective mass can
be estimated by neglect1ng the kinetic energy of motion everywhere ex-
cept in the neighborhood of the neck, Consider then, for the moment
that the flow of matter from one fragment to the other proceeds through
a small neck of effective radius r and effective length d. * Then the
mass of the matter flowing through the neck is M0 Tr d/V where MO
is the total mass of the drop, and V is the volume of the drop. The

kinetic energy associated with this flow is
o o o,
g= 1 Morr d V2
2Tz \T v )V

“An analogous method has been used by Marshall Blann and Wladyslaw

J. Swiatecki for estimating the effective mass as sociated with charge

fluctuations (unpublished work).
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‘where v is the velocity of flow, ' The velo'city of flow is in turn de-
' termined in terms of U, the time rate of change of the fractmnal mass

U of the left- hand fragment
ml v = VU .
If we subetitute for v inthe equation for &, we obtain

g-1 (..TMO'Vd ) 0.
-2 e
The effective mass for.the flow, M Vd/('nr ), is seen.to approach
\,1nf1n1ty as the effective neck radius .r approaches zero, provided the
effective neck length d does not‘approach zero as fast as rz. _F‘or
actual saddle-point Vsha'pes, d 1s comparable to r, and the effective
‘mass for the flow is .then proportlonal to 1/r.

For the case of a saddle point consisting of two tangent sphe---»
roids, the situation is somewhat different from the case of a saddle point
with a well-defined neck. The flow of matter from one spheroid to the
other is then. analogous to the flow of an incompresSible fluid through :
a circular aperture in a plane wall of 1nf1n1te extent and infinitesimal
th1ckness, a problem that is discussed by Rayleigh. 117 -From his re-
sults we find that the corresponding effective mass for flow through an
| ideal apertnre of radius r is MO ‘.V/(Zr), which is approximately the
~ same result that would be obtaining by simply setting d = r in our
earlier 'result As before the mass- aSymmetry effectwe mass ap-

proaches 1nf1n1ty as r approaches zero.

E. Aocuracy of Approximate Formulae Relating
Observable Properties of Fragments to the
Initial Conditions at the Saddle Point

Our purpose here is to give some indication of the accuracy
of Eqgs. (14), (16), and (17), which relate the observable properties of
fragments at infinity to the initial conditions at the saddle point. For -

a large number of combinations of initial conditions and several values

}
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of x, we have numerically integrated the equations of motion and
determined the corre,sponding: values of the observable quantities o_f
interest at infinity., These exact results may then Pe compai‘ed with
the results calculated by use of (14), (16), and (17).4‘

We present in Table E.I a comparison of the exact and approx-
imate results for cases in which the fissionability parameter x is
equal to 0.677.T Forty-four sets of initial conditions were selected
in such a-way as to illustrate, for the most part, the accuracy of the
formulae as regards a particular coordinate or momentum or group
of coordinates and momenta, Consequently, each set of initial condi-
tions includes, in general, several coordinates that are equai to their
-'saddle -point values and several zero momenta,  For the last four sets
of initial conditions, however, the initial conditions were determined
in a completely random manner ~whether. avpartic‘:ul.ar momentum or
the deviation of a‘coordina’ce'fr‘om its saddle-point vallue was taken to
be positive, zero, or negative was determined by a roll of a die,

| The magnitude of the various momenta and deviations of the
coordinates from the saddle point were selected to correspond very
roughly to one-tenth the maximum probability of occurrence (fof a

i209

system such as B + 65-MeV a, for example). This means that

the actual deviatiizls from the saddle point are for the most part much
smaller tﬂan those chosen here, Since the approximate formulae are
designed 'specifically) for small deviations, the agreement between the
approximate and exact results is considerably better for typical devi-

ations than for the cases presented here,

*The equations of motion, recall, are numerically integrated for con-
figurations in which the symmetry axes are coplanar, and in which the
spheroids are not spinning about their symmetry axes, For this pur-
pose we use the two angular coordinates 61 and 92 (see Fig.2), with
¢ =, -, =0,

TThis is the value of the fissionability parameter for such compound
t213 PO208 and Pb198

nuclei as 85A ' 84 R 82 .
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Table E.I. Observable properties of fragments at infinity corresponding to 44 sets of initial
conditions, for x = 0.677.- For a given set of initial conditions, the values of the
total translational kinetic energy E, the individual excitation energies X, and XZ’
and the individual angular momenta L, and L, that are determined exact&y by
solving the equations of motion are comparedzwith the values that are determined
from the approxi(n)ate formulae (14), (16), and (17). The energies E, Xi’ and X
are in units of ESO ; the angular momenta L, and I_,2 are in units of-L,” The quan-
tities 6C1 and 5c2are in units of R; 561 and 80, arée in radians; Py P, ,and p

. . c,are .
in units of Po; Py and pg_are in units of LO' (See discussion of unitd in Sectfon ILLA.)

In each case the vialue tak%an for 84 is 6c1+ Gcz.

sU 6c1 6c2 661 692 E (exact) X1(exaqt) Xz(exact) L1 (exact) L2 (exact)
P, pc1 pcz pe1 peZ E (approx.) Xi(approx.)XZ(approx.)Li(approx.) Lz(approx. |
. 0.0 0,2 0.0 0.0 0.0 0.2214 0,0544 0,0321 0.0 0.0
0.0 0.0 0.0 0.0 0.0 ) 0,2243 0.0536 0.0318 0.0 0.0
0.0 -0.2 0.0 0.0 0.0 0.2586 '0,0148 0,0355 0.0 0.0
0.0 0.0 0.0 0.0 0._0 0,2584 0,0433 0,0352. 0.0 - 0.0
0.0 0.2 0.2 0.0 0.0 0.2065 0,0528 0,0528 0.0 0.0
0.0 0.0 0.0 0.0 0.0. 0.2065 0,0520 - 0,0520 0.0 0.0
0.0 0.2 -0.2 0.0 0.0 0.2388 0,0567 0,0137 0.0 0.0
0.0 0.0 0.0\' 0.0 0.0 - 0,2384 0,0553 0.0117 0.0 0.0
0.0 -0,2 -0,2 0.0 0,0 0,2822 0,0164 0.0164 0.0 0.0
0.0 0.0 0.0 0.0 0,0 0,2821 0,0450 0.0150° 0.0 0.0
0.0 0.0 0.0 0,2 0.0 0.2382 0,0328 0,0334 0.0053 0.0010
0.0 0.0 0.0 0.0 0.0 0.2384 0,0335 0.0335 0.0058 0,0041
0.0 0.0 0.0 0.2 0.2 0.2378 0,0326 0.0326 0.0059 0,0059
0.0 0.0 0.0 0.0 0.0 0.2384 0,0335 0.0335 0,0069 0.0069
0.0 0.0 0.0 0.2 -0,2 0.2381 0,0328 0,0328 0,0043 -0,0043
0.0 0.0 0.0 0.0 0.0 0.2384 0,0335 0,0335 0,0046 -0,0046
0.0 0.0 0.0 0.0 0.0 0.2430 0,0328 0.0328 0,0 0.0
0.04 0.0 0.0 0.0 0.0 0,2416 0,0335 0.0335 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0,2383 0,03614 0,0328 0,0 0.0
0.0 -0,02 0.0 0.0 0,0 0.2384 0.0335 0,0335 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2387 0.0334 0.0369 0.0 0.0
0.0 0.02 -0.02 0.0 0.0 0,2384 0,0335 0,0335 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2382 0,0354 0,0354 0.0 0.0
0.0 -0.02 . -0.02 0,0 0.0 0,2384 . 0,0335 0,0335 0.0 0.0
0.0 0.0 0.0 .0,0 0.0 0.2424 0.0350 0,0350 0.0 0.0
0,04 -0.02 -0,02 -0.0 . 0.0 0.2416 - 0,0335  0,0335 0.0 0,0
0.0 0.0 0.0 0.0 0.0 0.2433 ©0.0327 0,0362 0,0 0,0
0.04 0.02 -0.02 0.0 "0.0 0.2416 0.0335 0.0335 0,0 0,0
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Table E.I {(cont, )
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0.2409 0.0356 0,0356

: 0.0 0.0
0.2416 0.0335 0.0335 0.0 0.0
0.2361 0.0319 0.0319 0.0417 -0,0417
0.2384 0.0335 0.0335 0.0476 -0,0476
0.2288 0,0257 0.0420 0.0 0.0
0.2289 0.0251 0.0448 0.0 0.0
0.2423 - 0.0446 0.0407 0.0 0.0
0.2124 0.0453 0.0402 0.0 0.0
0.2484 0.0096 0,0437 0.0 0.0
0,2481 0.0050 0.0435 0.0 0.0
0.2425 0.0242 0.0646 0.0 0.0
0.2124 0,0234 0.0620 0,0 0.0
0.2481 0,0278 0.0244 0.0 0.0
0.2481 0.0268 0,0217 0.0 0.0
0.4980 0.0429 0.0632 0.0 0.0
0.1982 0.0436 0.0603 0.0 0.0
0,2290 0.0470 0,0200 0.0 0.0
0.2289 0.0470 0.0200 0.0 0.0
0.2295 0,0085 0.0664 0.0 0,0
0.2289 0.0033 0.0637 0.0 0.0
0.2710 0.0111 0.0226 0.0 0.0
0.2708 0.0067 0.0234 0.0 0.0
0.2287 0.0254 0.0418 0.0042 0.0009
0.2289 0.0251 0.0418 0.0058 0.0014
0.2285 0.0257 0.0412 0.0008 0.0058
0.2289 0.0251 0,0418 0.0044 0.0058
0.2282 0.0251 0.0408 0.0047 0,0063
0.2289 0.0251 0.0418 0.0069 0.0069
0.2284 0.0252 0.0413 0.0034 -0,0050

0.2289 0.0251 - 0.0418 0,0046 -0,0046
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Table E.I (cont,)
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662 E (exact) Xi(exact) Xz(exact) Li(exact) Lz(exact)
Py E (approx.) Xi(approx.) Xz(approx.) Li(approx.) LZ(approx.)
0.0 0,2359 0.0304 0.0319 0.0443 -0.0408
-0.04 0,2384 0,0335 0,0335 0.0534 -0,0465
0.0 0.2363 0,0316 0.0347 -0,0384 0.0425
0,04 0,2384 0.0335 0,0335 -0.04149 0,0488
0.2 -0.2361 0.0302 - 0,0315 0.0448 -0.0378
~0.04 .0.2384 0,0335 0,0335 0.0545 -0,0407
-0,2 ©0,2358 0,0306 0,0306 0,0435 . =0,0435
-0,04 0,2384 0.0335 0,0335 0.0523 -0,0523 -
-0.02 0,2366 0.0347 0.0317 -0,0393 0.0393
0.04 0,2384" 0.0335 0,0335 -0.0430 0.0430
0,0 0,2060 0.0521 0,0527 0,0085 0.0018
0.0 0,2065 0.0520 0.0520 0.0058 0,0041
0.0 0,2382 0.0557 0.0136 0.0104 0.0007
0,0 0,2384 0,0553 0.0116 0,0058 0.0011
0.0 0.2388 0,0133 0,0567 0,0017 0.0008
0,0 0.2384 0,0116 0.0553 0,0058 0,00114
0.0 0.2822 0,0158 0.0164 0.0018 0.0004
0.0 0.2821 0,0150 0,0150 0,0058 0.0041
0,0 0,2208 0.0535 0.0349 0,0092 ’ 0.0013
0,0 0,2243 0.0536 0.0318 0,0058 0.0011
0,0 0.2586 0,0443 0,0355 '0.0017 0,0006
0,0 0.2584 0.0133 0,0352 0.0058 0,0011
0.0 0.2378 0,0164 0.0544 0.0398 0,0433
0.04 0,2384 0,0116 0,0553 0,0447 0,0493
0,2 0.2262 0.0477 0,0197 -0,0428 0,0403
0,04 0,2289 0,0470 0,0200 -0,0465 0.0432
0.0 0,2581 0,0372 0,0134 0,0051 0.0403
0,04 0,2584 0,0352 0.0433 0,0072 0,0502
0.2 0,1960 0,0616 0.0446 0,0454 - =0,0401
-0,04 0,2015 0,0603 0.0436 0.0488 -0.0419




-211-

It is seen that, for the most part, the approximate eduatiOn'
for E reproduces the exact results more accurately than do the
equations for X{l X L‘.l’ and LZ" The approximate equations for

L and L2

1ar momenta at 1nf1n1ty, this is because for the large values of the

are seen, for example, to give overestimates of the angu-

initial momenta con51dered here we are out51de the reg1on of linearity.
Also, since the equatlons for L and L contam no terms represent-
ing the dependence of the angular momentum upon fragment elongatlon

their accuracy is reduced wheén <5c1 and/or f)c2 are not close to zero..

F. Properties of Certain Integrals

We give here various prvoperties of the integrals I (ﬁ) defined
by Eq. (43). We first show the relationship between these integrals
61-63

and a generalization of the repeated 1ntegrals of the error function

The complement of the error function is defmed by

: o :
eirfc B _=. 2 f exp‘(-kz)dx .
N
p
The nth repeated 1ntegra1 of the (complement of) the error funct1on
" is then defined, for n=1, by 61, 62 '
S ) : ‘
i"erfc B = f in-—'i erfc x dx, ‘  (F.1a) -
. 5 :
with _
i%rfc p = erfc p. ’ - (F.b)

*The functions discussed in reference 63 are closely related to the
repeated integrals of the error function; they are defined in such a
way as to be more useful for statistical applications., If reference 63
is consulted, note that the same symbol In is used to denote the func -

tions considered there,
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Explicit evaluation of this expression.gives

00 -

i"erfc B = —2— f x" éxp[-(x + B)Z]dx, : (F.2)
g N Mn+1) 0 .

where I denotes the gamma function [[(n+1) = nf]. Although the
definition (F.1) defines i"erfc B only for integral values of n
greater than or equal to zero, the result (F.2) defiﬁes the function
for all values of n greater than -1, 63 ’ _ ;

From a comparison of (F.2) and (43) we obtain the desired

relatiorship between the functions:
1 1 8,% | .n(1/2) B '
I(8)=5~NwT(n+slexp |(5) |i erfc (5), (F.3a)

or, alternatively,

iPerfc g = 2 exp (-p%) I 28) F.3b
1ercﬁ—ﬁnn+i) n+(1/2)(‘3" (F.3b)

For our purposes we are interested in In(ﬁ) for integral values of n,
which means repeated integrals of the error function of half-integral
order, Tables of the functions i erfc B (or related functions) are
available for integral values of n,éi-63 but not for fractional values
of n, . . : .
The folldwihg'properties of the integrals In(p) can be deter-
mined either directly from the definition (43), or else from the a-
nalogousrp'ropertiesf’iof i"erfc B and the relationships (F. 3):

(a) Differential equation' satisfied by In(p):'

4‘12 2p 4 2n+ 1) 1.(B) =0
d—B'z"Bqﬁ--(n nﬂ_—-_
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(b) Recurrence formulae:

L) = 3 [(nf 1,6 -8 In_im)J ,

1 1 .
3B In(ﬁ) = > (:[3 I B)--5) In_1(ﬁ)1-
(c) Asymptotic expansion: |

: F(n‘+ %)
;n(ﬁ) B 'bn T {1/2)

(d) Integral relation:

«

. _1- 1 62 "x . o |
In(‘5)= > (n - 2—) exp (7> © exp| - <7> In-'i(x) dx .

G. Numerical Procedures

Thée numerical calculations of this work were performed, for
the most part, on an IBM 7094 computer, by use of codes written in
FORTRAN,  We will summarize here the numerical methods that were
used in performing some of the more important of these calculations.

- When calculating the interaction energy and derivatives of the
interaction energy, the triple multipole summations were performed
by ‘explicitly summing ovér each of the three summation indices until
~ terms were reached. that were.less in magnitude than some specified
-value. . The actual value that was .speciﬁed.ranged from 1OL (when
integrating the equations of motion) to 10-14 (when calculating the

stiffness constants). Ih'p'e-rforming these Summafions, the associated
| Legendre polynomials and their derivatives were evaluated by use of
standard,reéurrence formulae. 118 _ |
- The double integ‘rations_requi.r'evd for the calculation of the

Coulomb energy for the case of twb overlapping spheroids and for
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the case of two spheroids connected by a conicoidal neck were per-
formed by repeated applications of a ten-point Gaussian quadrature
routine. 119 . The complete ellipti'c.integra;ls. appearing in the .integrand
were evaluated by use of approximate representations that are accurate
vto within 1.5X10-8, 115 -The same number of integration points was
used in the evaluation of the first integral (for the electrostatic po-
tential on the surface of the drop) as in the evaluation of the second
integral (for the Coulomb energy.itself). For one of the two halves

of a drop, the actual number of points used in the evaluation of one of
these two integrals ranged from 10 (when integrating the equations of
motion) to 30 (when calculating the Coulomb energies presented in
Fig. 3a). For the case of two spheroids connected by a conicoidal
neck, the corresponding number of f)dints used was 20. * When 30
such points were used the calculated Coulomb energies BC were
typically accurate to within a few units in the sixth‘.decimal; for 20
points and 10 pbints they were typically accurate to within a few units
in the fifth and fourth decimals, respectively.

For the case.in which the saddle point consists of two tangent
spheroids, the precise location of the saddle point was determined by
finding the minimum of the potential energy along the scission line
£ = 2c.. This was done by an iterative scheme involving the single
variable ¢ = £/2. An approximate location of the saddle point was
used to define a starting value of c. Three evaluations of the potential
energy were then made (at this value of ¢ and to either side of it),

and a quadratic expression in c was fitted to these values. The value

of ¢ co'rresponding to the minimum of the energy for this quadratic

Slnce at the point of connectlon of the third conicoid with the two
sphero1ds there is a discontinuity in the second derivative of the co-
~ordinate p with . respect to z (cy11ndr1ca1 coordinates), it is crucial
that the interval of a single ten- point quadrature does not extend

across this point of connection.
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expression was used as the starting point for a repetition of the cal-
culation. When the iterations.led.to a change in c less than a specified

amount (taken to be 10~ 10

RO), the calculation was terminated, and the
value of ¢ was taken to be the value corresponding to the saddle point.

After the saddle point was located (for the case of tangent
spheroids) the stiffness constants were determined by making further
evaluations of the potential energy in the immediate neighborhood of
the saddle point and by fitting a quadratic expression in several variables
to these values. In order to maintain sufficient accuracy in the final
result, the location of the saddle point and the calculation of the stiffness
constants were performed by use of double-precision arithmetic; the
stiffness constants determined in this way are accurate to within a few
units in the fifth decimal (when expressed in liquid-dropunits). *

For the case in which the saddle point consists of overlapping
spheroids, and for the case of two Spheroids connected by a conicoidal
neck, the saddle point was d'etermined-by an iterative scheme similar
to that described above. A quadratic expression in two or three vari-
ables, respectivély, was fitted to values of the potential energy in the
neighborhood of an approximate saddle point, and the extremum of the
energy for this expression was used as a better approximation to the
- saddle point. For these cases, the (single-precision)'saddle-point-
searching code of Cohen and Swiatecki was used. 15 l v v

The equations of motion for the system were numerically inte-
grated by use of a routine employing Adam's method. 120 This routi.ne
numerically integrates. a system of simultaneous first-order differential"
equations, maintaining at each step of the integration a prescribed ac-

curacy (by changing the integration step if necessary). For this work

“The saddle-point third derivatives Kmms' and Ksss (Fig. 38)
were calculated on a desk calculater by use of tables of the potential

energy, and may consequently be slightly in error. -
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the maximum allowed error at each.integration step in each of the
.coordinates and momenta was -ﬂspeci,fied.'_to be 10-,5; in practice, the
actual errér was much less. With this specification of accuracy,
about 400 to 500 integration steps were required, in general, to inte-

. grate the equations of motion from the neighborhood of a tangent-sphe-
roid saddle point to a separation distance of £ = 25 RO"- The values of
-the quantities of interest at infinity are determined sufficiently well

at £ =25 R0

. the total translational kinetic energy at infinity was then taken to be

that the integrations were stopped there. The value of

equal to its value at £ = 25 R0 plus the current interaction energy of
either the two spheroids or of two -spheres with coincident centers
(there is negligible difference at this distance). . The values of the re-
maining quantities of interest at infinity were taken to be equal to their
values at £ = 25 RO.

The accuracy of the solutions of the equations of motion for the
case of overlapping spheroids was not as great as for the case of sep-
arated spheroids. This is because of the relatively large amount of
computing time required for the calculation of the .Coulomb energy and
its derivatives. These quantities were calculated for the purposes of
the integrations from a quadratic expfession in £ and c¢ that was
fitted to values of the Coulomb energy calculated .in the immediate
neighborhood of the current location of the system. The solution for
x = 0.90 presented in Fig. 28 may consequently be slightly in error.

The constants .appea_ring in the approximate formulae (14), (16),
and (17) were determined (for a given value of x) from the solutions of
the equations of motion.corresponding to a sufficient number of sets of
initial conditions. Consider, for example, the determination of the con-
0 and X of Eq. (16). The constant XO

1 1,s 1
tion of the equations of motion corresponding to starting the system from

stants X is given by the solu-

.- rest at the saddle point. Let X, denote the excitation energy corre--

1
sponding-to the solution in which all initial conditions are zero except

the stretching coordinate s, which is taken to be small in magnitude.

Then X,1 s is determined from
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In the calculation of the constants for Eqs. (14), (16), and (17),
as well as iﬁ the calculation of the stiffness cohstants, care must of
" course be taken that the calculated values are inde?enden’c of the choice
of increments in the.colordinates. '

The integrals In(ﬁ) defined by Eq. (43) were evaluated nu-

merically by use of a fen-point Gaussian quadrature routine. 119
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