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ABSTRACT 

In connection with nuclear fission we study the division of an 

idealized charged drop, using.a simplified version of the liquid-drop 

model. The degrees of freedom essential. to a discussion of the di­

vision of a charged drop and the separation of the fragments to in­

finity are taken into account ; . a fragment- separation coordinate, a 

mass-asymmetry coordinate, a deformation coordinate for each frag­

ment. and rotational coordinates for each f:J:agment. To specify frag­

ment deformation, . the fragments are represented by spheroids; a 

.nucleus prior to division is represented. by two overlapping spheroids. 

The Hamiltonian for the idealized system consists of a sum of sur­

face, Coulomb, and kinetic energies .. A study of the saddle-point 

energies and shapes .calculated in this. two-spheroid approximation 

·indicates that the approximation is most useful for discussing the fis-
I . 

sionof elements lighter than about radium. On the basis of this .model, 

we calculate probability distributions for certain observable char­

acteristics of fission fragments at infinity-their totCj.1 translational­

kinetic energy, mass, individual. excitation energies , and individual 

angular momenta. This. is done by applying standard static, dynamical, 

and statistical methods to the Hamiltonian for the system. The pres­

ent treatment, for the most part, . is classical; quantum mechanics is 

considered only in the statistical-mechanics discussion of the behavior 

of the system near the saddle point. 

The predictions of the model are compared with existing experi­

mentaL data for distributions in fragment mass and total translational 
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kinetic energy, for nuclei lighter. than radium. The comparisons are 

made without the use of any adjustable parameters. The theory is 

capable of accounting for the magnitudes of the most probable values 

a,ndwidths of the experimental distributions j as well as some,. but 

not all, finer details of the distributions; The dependence of the ex­

perimental distributions upon nuclear temperature, and the dependence 

of the experimental most probable kinetic energies upon fissionability 

parameter are also approximately reproduced by the calculations. 
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1. INTRODUCTION 

Nuclear fission was discovered by Hahn andStrassma:r:-n 1,2 

In 1938, and yet, in the two and a half decades since its discovery, 

an adequate theory of,the fission process has still not emerged. Nu­

merous papers have been written dealing with various aspects of the 
,/ 

theory, but in no instance has a definite model with a well-defined 

Hamiltonian been chosen and the ,implications of this model systemati­

cally worked out in detail. Such an approach would require that one 

select a model characterized by definite degrees of freedom; apply 

standard static ,dynamical, and statistical methods to the resulting 

Hamiltonian; and compare the predictions of the model withexperi­

ment. In the present study we attempt to do this for a simplified 

version of the liquid-drop model. [A preliminary acc,ount of this work 

(for a restricted case,) is given in reference 3.] 

Shortly after the discovery of nuclear fission, Meitner and 

Frisch emphasized the analogy between the fission process and the 

division of a charged drop of liquid. 4 On the basis of the liquid-

drop model, ,Bohr and Wheeler showed that a s,atisfactory account 

could be given ,of some of the phenomena observed in fission. 5 :These 

early successes of the liquid-drop model and its conceptual simplicity 

firmly established its popularity for discussing fis sion. 

The major effort in the development of liquid-drop theory has 

been concerned with the static problem of calculating the potential 

energy of a deformed charged ,drop. ,The coordinates normally used 

to describe a deformed drop are the coefficients in the expansion of 

the drop' s 'radius vector in spherical harmonics. The energy of a 

nearly spherical drop ,can then be calculated in terms of'thes,e co-

d ' t 'b h 5 -13 A "1 h ' or Ina es as an expanSIon a out a sp ere. ' SImI ar te,c nIque, 

appropriate for shapes not far removed from spheroids (ellips,oids 
, 8-13 

of revolution), is the expansion about a spheroId. For highly 

distorted shapes ,the deformation energy has ,to be calculated nu­

merically. 14-18 The potential energy of charged drops is now fairly 

well understood, particularly with regard to the variation of fis sion 

barriers throughout the periodic table. 



Although statics has been extensively studied, dynamics, on 

the other hand, has not been so exhaustively treated. A fragmentary 

study of the dynamical aspects of fission.was performed by Hill, and 

by Hill and 'Wheeler in connection with the question of massasym-
19-21 

metry. For a few special cases, the division of a charged drop 

was traced out numerically to a short distance before the actual di­

vision of the drop into two fragments (scission). However, ,no re-

,lationship between initial conditions and final results ,was established. 

Some limited aspects of dynamics have als,oheen considered by other 

authors. 8, 22-25 

The statistical mechanics offission has been investigated in 

some detaiL Bohr and ,Wheeler formulated the calculation of fission 

probabilities by applying statistical transition-state methods at the 

saddle poinL 5 (See in particular the recent article by Wheeler. 26) 

The application of statistical mechanics in a somewhat different man­

ner was dis,cussed by Fong, ,whose starting point was the assumption 

f t . . '1 'l'b' h ,. ,27-30 Th' . h ,0, s ahshca equl 1 rlum at t e SCISSIon p,olnt. IS t eory, 

however ,suffers fr~m the fact that the nuclear configuration at the 

s,cission point is not defined (until one has performed a dynamical cal­

culation), Statistical aspects of fission have also been exa,minedby 
31-37 

several other authors. 

, We see that statics, dynamics, and statistical mechanics have 

all been considered to s,ome extent in previous studies of fission. 

Never, however", have they been treated systematically for one and 

the s arne Hamiltonian, 

Here an attempt is made to study ea,ch of these steps ,for a 

simplified version of the liquid-drop model. The outline of our pro­

gram is as follows: 

.• ~. 

(1) Statics: After the coordinates specifying the system have ,been . 

selected, the potential energy of the system (for a given nucleus) is 

mapped as a function of its coordinates , and the saddle point is located 

and its properties studied. 
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(2) Dynamics: The kinetic energy of the system is calculated as a 

function of the coordinates and their conjug;3.te momenta. This makes 

it possible, by solving Hamilton's classical equations of motion for 

the system, to discuss the division of the nucleus and the separation 

of the fragments, from some given initial configuration to infinity . 

. (3) Statistical mechanics: . In analogy to the method employed ,in dis -
.. h . 1· 38 .. f d h cuss1ng cem1ca reactlon rates, attentlon 1S ocuse on t e system 

at the saddle point (transition state). and statistical equilibrium is 

assumed to hold there. In the case of chemical reactions, this pro­

vides information regarding the rate of reaction, and it was for the 

calculation of rates that Bohr and Wheeler used the transition-state 

method.
5 

In our case, however, we use the transition-state method 

to calculate the probability for finding the system in a given state of 

motion close to the saddle point. These probability distributions are 

then combined in the sense of initial conditions with the dynamical 

calculations [step (2.)] .to trace out the separati~)ll of the fragments 

to infinity. This converts the probability distributions of the states 

of motion around the saddle point into the probability distributions of 

observable cha,racteristics of fission fragments: their kinetic energies, 

excitations, and angular momenta. 

Since the difficulty of solving dynamical equations of motion 

increases with the number of coordinates, it is desirable from the 

calculational point of view to have present in one's model as few de­

greesof freedom as possible. Let us .the.refore see what degrees of 

freedom it is essential to consider. Although we will be concerned 

with the liquid-drop model, the discussion that we are about to give 

for the degrees of freedom essential to fission is quite general and 

does not ,depend upon the as sumption of the liquid-drop model. 

A single isolated fission fragment has three rotational degrees 

of freedom and three degrees of freedom associated with its center­

of-mass m.otion .. Thus for a system consisting of two fission frag­

ments a total of 12 coordinates is required to specify the orientation 

in space and the position of the center of mass of each fragment. 
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These 12 coordinates may be distributed as follows: three spatial 

. coordinates for the center of mass of the entire system; two a.ngles 

specifying the direction in space of the line connecting the centers 

of mas s of the two fragments; the distance between the fragments i 

centers of mass; and, for each fragment, three angles (e; g. , the 

Euler angles) indicating its orientation in space. 

In addition .to the above 12 coordinates, further coordinates 

are required to des.c ribe the intrinsic shapes of thefragments .. The 

specification of a Jragment i s extension in three dimensions requires 

three lengths {say three orthogonal axes a, b, c), which means, in 

general, two dimensionless numbers (for exa,mple, the 13 and y de­

formations of the collective model, .orrelated,parameters
39

). This 

means that four numbers. are needed to specify the intrinsic shapes 

of the two fragments. Finally, one coordinate is neededto specify 

the relative sizes of the fragments. This brings to 17 the number of 

coordinates required to describe a system consisting of two separated 

fission fragments (see Fig. 1). 

It is necessary in a model of fission that one be a.ble to describe 

in a continuous manner the sequence of shapes of a fissioning nucleus 

from the original sphere,. through the saddle point and scission config­

uration, to the two fragments at infinity. In order for the number of 

degrees 'of freedom not to change suddenly in the course of the di­

vision, it follows that the number of degrees of freedom specifying 

fission shapes before division into separate fragments must also, in 

general, be 17 or more . 

. One could in principle continue introducing additional deg,rees 

of freedom to describe finer details of the dividing ,nucleus. including 

ultimately single-particle structure, until the number of degrees of 

freedom equaied the sum of the degrees of freedom of all the .indivi­

dual nucleons. We wilL consider explicitly, however, only the 17 

basic degrees of freedom enumerated above. Although the remaining 

degrees of freedom will never be treated explicitly, they will, on the 

other hand, not be dis regarded entirely. Their presence will be recog­

nized implicitly. when .we consider the statistical mechanics of fission, 
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M U- 3 3 372 

Fig. 1. A two-fragment configuration described by 17 degrees 
of freedom. Three (Euler) angles describe the orientation 
in space of one fragment, three of the other, and two angles 
describe the orientation of the line joining their centers. 
One number specifies the relative sizes of the fragments, 
two specify the intrinsic shape of one fragment, two of the 
other, .and one their separation. ,Three degrees of freedom 
describe the location in space of the common center of mass. 
Total: 3 + 3 + 2 + 1 + 2 + 2 + 1 + 3 = 17. 
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when they will be assigned their statistical share of the total energy. 

The question arises of how to choose the deformation co­

ordinates for each fragment. We shall not be concerned here with 

effects arising from deviations of the fragments from axial symmetry w 

We will therefore restrict ourselves from the beginning to fragments 

that are axially symmetric, thus reducing the number of degrees of 

freedom to 15 .. Because spheroids can represent any desired degree 

of prolate and oblate elongation, and because their surface and 

Coulomb energies can be easily calculated, we will use spheroids 

to represent the fission fragments. Following a suggestion by 

Wladyslaw J .. Swiatecki (Lawrence Radia.tion Laboratory, Berkeley), 

we will represent a nucleus prior to division by two overlapping 

spheroids, with the interior surface of each simply "erased. Ii With 

this parametrization, one is able to describe continuously in an 

approximate way the sequence of shapes of a fissioning nucleus from 

the original sphere to the two fragments at infinity. 

Of the 15 degrees of freedom required for specifying.a system 

composed of two axially symmetric fragments, 3 are trivially elimi­

nated by working in the center-of-masssystem. Three more may be 

eliminated U, as will be done in the present work, one restricts the 

discussion to a system with zero total angular momentum. 

This, then, leaves a system possessing nine degrees of 

freedom. In the neighborhood of the saddle point,. these nine degrees 

of freedom correspond to certain characteristic motions of the system. 

The most important of these is the motion in the fission direction-an 

over-all separation of the system leading to its eventual division into 

fission fragments. The potential energy in this direction is of the 

form of a potential-energy barrier. For division of the drop to occur, 

the system must pass over this barrier. 

Most of the remaining motions near the saddle point (motions 

in the non-fission direction) consist, in generaL of bounded small 

oscillations, resulting from the potential energy increasing with 

deviations from the saddle point in these directions. These oscil­

lations involve the relative sizes of the fragments, their eccentricities, 
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and their orientations in space .. The various modes of oscillation 

that occur correspond roughly to (a) a .change in the relative sizes 

of the fragments, (b) an in-phase or out-of-phase stretching and 

contraction of the left-hand and right-hand halves of the saddle-point 

configuration, and (c) a bending and "wriggling" of the saddle-point 

config,uration, In the treatment of these oscillations, theapproxi­

mati on that they are small will be made, .' although there will be some 
'. 

discussion .of higher-order effects. 

The s eparationof the fragments from the saddle point to 

infinity will ~e traced out dynamically. This conve.rts the possible 

states of motion near the saddle point into states of motion of two 

fragments at infinity. The motion of the fragments at infinity con­

sists of a translation of their centers of mass, and rotations and 

vibrations about their centers of mass. 

The states of motion of the fragments at infinity correspond 

directly to observable properties of fission fragments: (a) The 

speed of separation of the fragments I centers of mass determines 

their translational kinetic energies. (b) The relative sizes of the i 

fragments are directly observable. (c) The vibrations of the frag­

ments are associated with their excitation (vibrational or deformation) 
* . energies. (d) The rotations of the fragments are associated with 

their angular momenta. 

We will find that for each of the above quantities we are able 

to discuss not only its most probable value, but also the distributi,on 

about its most probable value. In particular, our theory predicts the 

. - -probability distribution P(E, V, Xi ;.X
2

, L
1

, L
2

) of simultaneously ob-

serving the two fragments at infinity with totaltranslationaJ kinetic 

energy E, fractional mass V, individual excitation energies Xi and 

:!c 
When used in this context, the term "excitation energy" refers to 

the energy of the collective vibrations and deformations of the frag­

ment; it does not include the internal (excitation) energy of the in­

di vidual nucleons. 
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-.. ...... 
X z' and ind~vidual angular :mo:menta L1 and L Z' (An arrow above a 

. sy:mbol denotes a vector quantity.) It proves convenient in practice to 

obtain fro:m this distribution,. by integrating over the quantities not of 

i:m:mediate interest, probability distributions involving aSJ:I?aller 

nu:mber of 01:>s ervable quantities. Three such distributions are 
-+- -t> * P(E, U), P(X1 , XZ), andP(L1 , L Z)' 

Our theory will also predict how these distributions should 

va,ry with the (inte.rnal) excitation energy of the co:mpound nucleus 

undergoing fission, as well as wit~ its charge and :mass . 

.. The i:m:mediate test of the theory will be the co:mparisonof 

predictions with experi:ment for distributions in :mass and total trans­

lational kinetic energy ·l p(E,U)i. t It is hoped that these co:mparisons, 

.as well as those to be :made when :more experi:mental infor:mation be­

co:mes available, will yield a :more accurate idea of the relevance of 

the liquid-drop:model for discussing fissionpheno:mena. Indeed, 

the entire purpose of undertaking this study was to trace out in detail 

the characteristics of the division of an ide.alized droplet whose size, 

surface tension, and charge are those of a nuc;leus, and to co:mpare 

the results with what is observed experi:mentally in the fission of real 

nuclei. Stated in this way, there are no adjustable para:meters 

* The sa:me sy:mbol P is used .throughout this paper to denote each 

of several probability distributions; the argu:ment or subscript will 

indicate which explicit function is being referred to. 

"tExperi:mental infor:mation regarding the other distributions is at 

present not available for the fission of nuclei lighter thanradiu:m. 

We will see later that it is for these nuclei that our model is :most 

. applicable. 

' .. 
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>'~ 
in the problem. Thus, when the comparison is made withexperi-

ment, we shall learn unambiguously to what extent an idealized 

liquid-drop~odel is capable of representing the characteristics of 

fission, as regards both over-all order-of-magnitude agreement and 

also more detailed aspects of the process. 

Concerning the question of the validity of the liquid-drop model 

for discussing fission, we believe that the above clear-cut program 

of an unambiguous comparison of nuclear fission with the division of 

an idealized drop should beca'rried through irrespective of how good 

the liquid-drop model is thought to be; Nevertheles s it is of interest 

to form some a priori judgment as to how well an idealized drop 

might be expected to represent 'nuclear fission: Some comments on 

this subject are made in Appendix A, where we indicate that the sur­

face and Coulomb energies may be regar.ded as the two leading shape­

dependent terms in an expansion of the potential energy in increasing 

powers of th.e small dimensionless number characterizing the nuclear 

problem-the ratio of the range of the nuclear for.ce to the nuclear 

radius. The general conclusion is that the effects arising from the 

discreteness of nucleons (single-particle shell structure) are of a 

lower order in this dimensionles s number, and, barring accidental 

cancellations of the leading terms, should in general be smaller than 

the effects of the surface and Coulomb energies. In the region of the 

heavy elements the changes in the Coulomb and surface energies do 

indeed tend to cancel, and, especially in the case of fis sion at low 

excitation energy, the single-particle effects may then be essential 

for discussing certain aspects of the process. On the other hand, 

for nuclei lighter than about radium" where the cancellation of the 

>'0< 
We have taken the constants of the Bethe- Weizsacker semi-

empirical mas s formula from Green I s analysis of ground- state 

r:p.asses.
40 

The nuclear temperature at the saddle point is deter­

mined from the excitation energy and fission barrier of th~ compound 

nucleus. All other quantities are calculated directly from the model. 
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changes in the Coulomb and surface energies is not so close, single­

particle effects should not have the same relative importance, particu-
- *. 

larly at higher excitation energies 0 A logica..l approach would seem to 

. be to work out the details of the theory first, considering only the sur­

face and Coulomb energies, and later to incorporate single-particle 

e.ffects 0 Even though the liquid-drop theory of fis sionwould not be 

expected to be accurate for a particular nucleus, it can be expected 

to yield the correct average behavior of nuclei throughout the periodic 

table, in analogy to the way the liquid-drop semiempirical mass for­

mula ·;r-eproducesthe correct trends in the masses of nuclei, apart 

from oscillations due to shell structure. 

:.:~ 

We will see later that other properties of the model we introduce 

also make it most suitable for dis.cussing the fi'ssion of elements 

lighter than radium. 

.' 
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II. STATICS 

We shall be concerned in this section with the static properties 

of our model-with mapping .the potential energy of the system as a 

function of its coordinates, and with studyingthe proper!ies of the 

saddle-point configuration. Before proceeding with this study, how­

ever, it will be advantageous for us to take care of some preliminaries . 

A. Units ,Notation, and. Coordinates 

For discus sing fis sion within the framework of the liquid-

drop model, it is convenient to use a system of .units based on the 

original spherical drop, ra,ther than the conventional units of length, 

mass, and time .. The three "natural" units to choosea,re the radius. 

mas s, and surface energy of the original drop. Time is then no 

longer a fundamental unit, but is expressed in terms of a length, a 

mass, and,an energy. This is analogous to the situation in elementary­

particle physics, for example, where the speed of light, Planck's 

constant divided by 21f, and the pion mass are chosen as units. 

In actual applications it is necessary to convert these liquid­

drop units .to conventional units. For the comparison of thetheo­

retical and experimental results discussed here, this conversion is 

made with Green' s .values for the consta,nts in the semiempirical mass 
40* 

formula. . We .. denote by ,A the number of nucleons in the com-

pound nucleus undergoing fis sion. Then the radius of the orig,inal 

drop is 
1/3 . -13 

RO = rO A ,wlth rO = 1.216X10 cm, (1a) 

a,nd its surfa,ce energy is 

E~O) = as A2/3 , with as =17.80 MeV. (1b) 

* When future determinations of thes e constants· are made , the new 

values may be used .since aU theoretical qua,ntities are given here in 

liquid-drop units . 
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The mas s of the original drop, to an a,ccuracy within one part per 

thousand, is equal to the mass unit times the number of nucleons; thus, 

(le) 

. with 

66 -24 / 2 mO = 1. OX10 g = 931 MeV c (reference 41). 

In this .discussionof units the symbol c denotes the speed of light. 

The units fo·r other familia.r quantities may be readily derived 

from these three fundamental ones. For example,the unit of time is 

= (2. 933Xl0- 23 sec)A 1/2 

the unit of linear momentum is 

and the unit of angular rriomentum is 

(2) 

LO = l MoE~O)11/2 RO=(mOa
S

> 1/2r OA 7/6= (o. 793 fl)A 7 /6, 

(3) 

where fl. is Planck l s const.ant divided by 2n. The unit of frequency 

is 

(4a) 

when multiplied byfl this becomes 
- . 

. (4b) 

(0) .1/2 
, Although the unit of charge is formally l RO ES . ] , the 

cha,rgeon the drop is more conveniently specified through the dimension­

less fissionability parameter x, defined by5 
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x= 
2 

(charge) . (5a) 10(volume) (surface tension) . 

2 \ 
(The surface tension multiplied by 4'!Tr 0 is equal to aS~) For a uni-

formlycharged drop with a sharp surface, 

x=E(o)/r 2E(0)l (5b) 
C b. S.J' 

where E6°) is the Coulomb energy of the original drop, given by 

wit h Z th.e number of protons ,e the electronic charge, and the 
40 

constant a C = 0.710 MeV. A third conventional form for x is 

\ 
(5c) 

where 
2 

(Z / A) . 't = 2 as/a C = 50.13. crl . 

When these liquid-drop units are used, the results of our 

calculations can be displayed as functions of a single parameter (e. g. , 

x) rather than as functions of two parameters (e. g., Z and A). 

The notation of this paper will adhere, insofar as is practicable, 

to the following convention: Quantities referring to the left-hand frag­

ment will be distinguished by the subscript 1, and to the right-hand 

fragment by the subscript 2. Furthermore, unless otherwise noted, 

any quantity that is the sum of two quantities, each referring to an 

individual fragment, will be designated by the same~symbol but with-

out subscripts; e. g. ,.the total excitation enerogy of both fragments 

(Xi + X 2) will be denoted by X, 

For specifying the angles involved in our problem, we will 

adopt the following scheme (see the lower part of Fig. 2): We denote 

by a and ~ the two angles specifying the 4irection in space of the 

line connecting the centers of the two fragments. We define a right­

handed coordinate system whose origin is at the center of fragment 1, 
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MUo33547 

Fig. 2. Coordinates used for describing a two-spheroid con­
figuration. The three Elilerangles 8

1
, <Pi' tJ!1 describe 

the orientation in space of the left-hand spheroid (see 
description in text), and 8 2 , <P ,tJ!2 the right-hand 
spheroid; the two angles e ana <I> describe the orienta­
tion in space of the line connecting their centers. The 
fraCtional mass (fractional volume) of the left-hand 
spheroid is denoted by U. The semisymmetry axis of 
t~e left-hand spheroid is deno.ted by c l' and that. of the 
.rIght-hand one by c 2' The dIstance between theIr ' 
centers is 1.. Illustrated in the upper part of the figure 
for overlapping spheroids are the two coordinates 1. 
and c == c

1 
= c 2 ' used for discussing the restricted 

case of completely symmetrical fragments. 
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whose z 1 axis is along the line connecting the spheroid centers 

(positive in the direction fragment Z), and whose xi and y 1 axes 

are perpendicular to one another and .to the z1 axis. We define a 

second coordinate system whose origin is at the center of fragment Z, 

and whose xz' yz' and zz axes are parallel (with the same sense of 

direction) to the xi' y l' and z1 axes, respectively. Then the orien­

tation in space of fragment 1 is specified by the three Euler angles 
. ·4i . 

8
1

, cj> l' and l\J 1 (as defined, fo r example, by Goldstein ), and the 

orientation of fragment Z by 8 Z' cj>Z' and l\JZ. These angles are de­

fined as the (counterclockwise) angles of rotation about three mutually 

inclined axes necessary to bring a fragment froma position with its 

symmetry axis along .the z 1 (or z Z) axis to its final position. For 

fragment 1, say, these rotations are: one through the angle cj>1 

about the z 1 axisJ one through the angle 8
1 

about the new x 1 axis, 

and one through the angle l\J 1 about the new z 1 axis, made in that 

order. The angle 8
1 

is the polar angle of spherical coordinates usually 

denoted by the same symbol: the angle between the z 1 a,xis and the 

symmetry axis of fragment 1. The angle cj>1 is related to the usual 

azimuthal angle of polar coordinates by an additive constant. 

Because of the symmetry of the systelIl, the potential energy 

is independent of all but the following three of the above angles: 8
1

, 

8 Z' and the difference cj> = cj>1 - cj>z between the azimuthal angles of 

the fragments I symmetry axes. 

We choose the four remaining coordinates required for specifying 

a two-spheroid configuration (in the center-of-masssystem) as fol­

lows: (a) the distance 1. between the centers of the two spheroids, 

(b) the fractional mass (fractional volume) U of the left-hand frag-

* ment, and (c) the semiaxes c
1 

.and c z of each fragment along its 

line of symmetry t (see again the lower part of Fig. Z). 

* The fractional mass of the right-hand fragment is 1- U. 

t For example, if spheroid 1 is prolate, then c
1 

is its semimajor 

axis; its s emiminor axis is dete rmined by volume cons ervation. 
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Prior to division into separate fragments ,the nucleus is 

repres ented by two overlapping spheroids. When'the spheroids are 

,overlapping, both the potential energy a~d th~ kinetic energy are much 

more difficult to calculate than when they are sepa,rated, andwe then 

consider only the restricted case of symmetrical fragments , in which 

U = 1/2, c 1 = c 2 == c, ' and () 1 = () 2 = O. (The potential energy is for 

'this ca,se independent of <p.) For this r~stricted case, . the two co­

ordinates 1. and ccompletely specify the system (s,ee the upper 

pCi.rt of Fig. 2). 

B. Potential Energy of the System 

The potential energy of the system is simply the sum of the 

surface energy ES and the Coulomb energyE
C

' The potential energy 

'l of a deformed drop, relative to the original drop, is then 

7 = ES - E (0 ) + E - E (O) sec 

, (6a) 

The functionB
S 

is the total surface energy of the system i~ units 

of the surface energy E~O) of the original drop, andB
C 

is the total 

Gqulomb energy of the system in units of the Coulomb energy E~) 
,of the origiOnal drop. The definition (5b) i's used in going from step 2 

" ' 

to step 3. When the system consists of two separated fragments, the 

potential energy is conveniently written as 

~= {lB(1) + B(2) _ 1} + 2x lB(1) + B(2) + B - tl} E(O) , s s C CIS 
. - , 

The function B~), for example, is the surface energy of fragment 1 

in units of E1P),Bg> is the Coulo~b self-energy of fragment 1 in 

units of E!?), and Br is the Coulomb interaction energy between 
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fragm~nts 1 and 2 in units of E~) In terms of these appropriate 

units, the various energies denoted byB depend upon neither the 

value of A nor of Z of the original nucleus; they are functions .only 

of the shape of the system. 

Different formulae for calculating the energies are used, de­

pending upon whether the system consists of separated spheroids or 

overlapping spheroids. The case in which the spheroids are separated 

is the simpler. The surface energies .and, Coulomb self-energies are 

then expressible in a .closed .form, and the interaction energy may be 

calculated by performing .a triplemultipole summation, Formula,e 

for calculating cy .asafunction of the.coordinates specifying the 

system are given in Appendix B.1. For the restricted case of over­

lapping spheroids , specified by the two coordinates .£ andc, the 

surface energy is again expressible in a closed form, but the Coulomb 

energy must now be calculated by numerically evaluating a double 

integral. The formulae given in AppendixB. 2 for the symmetric 

overlapping casecould.be readily generalized to the case where 

U f 1/2 andc
1 

f c 2 , but not to the non-axially-symmetric case. 

Let us now examine the appearance of the potential-energy 

surfaces .calculated with these formulae. Since the results can be 

displayed easily in at most two dimensions,. we present maps of the 

potentia,l energy as functions of the two coordinates specifying sym­

metrical fragments: the separation coordinate .£ and the deformation 

coordinate c. An examination of the potential energy for this restricted 

case will tell us many things of interest, including the location .of the 

symmetric saddle point. The potential energy is mapped in Fig. 3 

for values of the fissionability parameter x b~tween 0.05 and 1.0, at 

intervals ofO. 05. Shown also in this figure is a map of the surface 

energy BS and the Coulomb energy B
C

' as well as an illustration of 

the configurations of the system for various values of the coordinates. 
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Fig. 3e. Maps of potential energy cy- for x = 0.65, 0.70, 
0.75, and 0.80. The location of the overlapping 
saddle point for x = 0.80 is shown by the cross 
mark; for this value of x there are two saddles 
and a stable minimum point (apart from the original 
sphere). The function ?J is in units of E~) . The 
solutions of the equations of motion corresponding 
to starting from rest at the saddle points are in­
di~ated by the points, which are equally spaced in 
time at inte.rvals of 0.1 TO lsee Eq. (2) for value of 
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An expansion of the potential energy about the sphere indicates 

that for small distortions the contours are portions of ellipses whose 

major a,xes are tilted at angles of about 30.5° from the horizontal 

., (see Appendix B.2). As the drop distorts in the direction of the saddle 

point, the potential energy increases until the saddle point is reached 

and then begins to decrease. For large values of x the potential­

energy surface is much flatter in the overlapping, region than in the 

separated region; the opposite is true for small values of x. The 

potential-energy surface in the separated region is a 81troughll that 

drops off approximately as 1/1 along the separation coordinate. At 

the scission line 1 = 2c dividing the two regions there occurs a cusp 
, * in the energy surface. This results from the discontinuous rate of 

change oLthe surface energy in passing from the region of overlapping 

spheroids, where the surface energy increases with separation", to 

the region of separated spheroids, where the surface energy is in­

dependent of separation. 

The ,results of electronic computer studies of equilibrium con­

figurations of idealized charged drops have recently become available.
1

S-
18 

It is possible, then" to compare with thesees sentially exact results 

various properties of equilibrium configurations calculated in the two­

spheroid approximation. This will provide us with some idea of the 

>:' 
When all coordinates are considered, the cusp occurs at those 

values of the coordinates that correspond to the configuration of 

touching, spheroids. 
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limitations of our model. The following properties of equilibrium 

cOl).figurations are compared as functions of fissionability parameter: 

the total potential energy cy, in Fig. 4;. the individual surface and 

Coulomb energies BS andBC~ in Fig. 5; the saddle-point shape 

of the drop, in Fig. 6; and the drop I s maximum and minimum radii 

R andR., in Fig. 7. 
max' mln 

There are several observations that may be made. One con-

cerns the general appearance of the saddle-point shapes, A striking 

discrepancy between the true saddle-point shapes and those calculated 

in the two-spheroid approximation occurs in the central region of the 

drop (the neck). The restriction that the fragments maintainsphe­

roidal shapes allows the drop very little freedom at its neck. In 

particular, a discontinuity is introduced in the surface of the drop, 

and the radius of the neck (R . ) in its .dependenceon x is repro-
mln 

duced very poorly .. The two-spheroid model is thus not suitable for 

discus sing phenomena that depend upon the properties of the neck. 

In the two-spheroid approximation, when the .fissionability 

parameter x is. between 0 and 0.80, the saddle point lies on the 

scission line, possessing the s.hape of two tangent spheroids. For 

values of x between 0.80 and 1.0, the saddle point occurs for some 

value of 1. < 2c; i. e. , the saddle - point shape is .the configuration of 

two overlapping spheroids. The results of the exact calculations in­

dicate that the saddle-point shapes change from dumbbell-like (approx­

imated by two tangent spheroids) for x ~ 0.67 to cylinder-like (approx­

imated by two overlapping spheroids) for x;? 0.67.15 Thus the transi~ 
tion at x ~O. 80 in the two- spheroid model, . although qualitatively 

correct, occurs at a value of x that is somewhat too high. 

In the short intervalO. 79 $ x ~ 0.85 there are in·the two­

spheroid model three equilibrium configurations (apart from the 
>!< 

original sphere): two saddle points and one stable minimum point. 

* This is clearly seen in Fig. 3 in the map for x = 0.80 but is not 

discernible for x = 0.85. The transition point is at x = 0.80, since 

it is for this value of x that the two saddlesha,ve the same energy. 
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Fig. 4. The potential energy of equilibrium configurations, 
as a function of fissionability parameter x. The re­
sult calculated in the two-spheroid approximation is 
gi yen by the solid line, the re s ult of Cohen and 
Swiatecki 15 by the short-dashed line, and the result 
of StrutinskiI17 by the dot-dashed line. 
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Fig. 5. The surface energy BS and Coulomb energy BC 
of equilibrium configurations, as functions of 
fissionability parameter x. The function BS is 
the. surface energy in units of E~O) , and BC is 
the Coulomb energy in units of :E:~) . The results 
calculated in the two-spheroid approximation are 
gi ven by the solid lines, and the results of Cohen 
and Swiatecki 15 by the dashed lines. 
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Fig. 6. Saddle -point shapes for various values of the 
fissionability parameter x. Shapes calculated 
in the two-spheroid appr·oximation are given by 
the solid lines, and those ca1c~lated by Cohen 
and Swiatecki 15 by the dashed lines. For x = 0.8 
the two saddle-point shapes occurring in the two­
spheroid approximation are shown. 
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Fig. 7. Maximum and minimum radii of equilibrium con­
figurations, as functions of fissionability parameter x. 
The results calculated in the two-spheroid approximation 
are given by the solid lines, the results of Cohen and 
Swiatecki 15 by the dashed lines, and the results of 
StrutinskiI17 by the solid points. Note that the minimum 
radius calculated by Strutinskii for x = 0.65 is appre­
ciably lower than that of Cohen and Swiatecki. The 
known limiting form of R . IRO for x -+ 0 is indicated 
by the straight line. mm 
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The occurrence of three configurations of equilibrium is associated 

with a . "dip" in the potential energy as a function of distortion. For 

x close to the respective transition point in both the two-spheroid 

approximation and in the exact calculations, the potential energy be­

comes extremely flat. . A very slight dip occurs in the two-spheroid 

model, resulting in three equilibrium configurations, but does not 
. * occur in the exact calculations. 

The dependence on .x of the remaining properties calculated 

in the two-spheroid approximation is qualitatively correct. The two= 

spheroid model in addition reproduces the exact results both for x 

close to LO, where the saddle-point shape is a single spheroid (a 

single sphere at x = 100), and at x= 0, where the saddle-point shape 

isa pair of tangent spheres. However, it is clear from the figures 

that for the range of x roughly between 0.67 and 0.85 the two=spheroid 

model represents very poorly the true saddle-point properties. Thus, 

for 0.67:5 x :5 0.85 this model.should not be expected to accurately 

<'~Gscribe phenomena associated with saddle-point sh.apes. t Nevertheless, 

. the model is still useful for this ra,nge of x for discussing phenomena 

not related to the saddle point, such as the separation of the fragments 

after scission . 

.. For x :5 0.67 there is fair agreement 1?etween the exact saddle­

point properties and those calculated in the two-spheroid approximation. 

The following major discrepancies should be noted. The fission 

barrier (saddle =point potential energy) calculated in the two- spheroid 

approximation is higher than the true liquid-drop .barrier. This dif­

ference becomes as large as about 23 MeV, where the two=spheroid 

>:< 
Historically, however, it was for a time believed that three 

equilibrium configurations possibly did exist for a short range of x 

close to 0.7. 15 ,43 

t Unfortunately, most experimental information on fis sian is for 

nuclei that lie in this range of x. Some data .exist, however, on the 

iissionof nuclei where x:5 0.67. and more are becoming .available 

as time progresses. 
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barrier is roughly twice as high as the exact one. This .rileans that 

the division of the total energy of the system at the saddle point into 

potential energy and internal excitation. energy will be incorrect. The 

potential energy of deformation will be greater than it should be, and 

the internal excitation energyles sby a corresponding amount. 

Recall that for the lower values of x under consideration 

(x ~ 0.67) the saddle point lies on the scissionline, .whe.re there is a 

cusp in the potential energy. In the direction of motion across the 

saddle point, then, there is a discontinuity in the rate of change of 

the potential energy. In particular, the second derivative, represent-
. . 

ing the (negative) iifission91 stiffness .constant, is not defined. Thus 

both the magnitude of the potential energy q.nd the associated,stiffness 

constant in the fission direction are not well reproduced by the two­

spheroid .modeL 

The failure of the model in these two respects (as well as its 

other failures, including .the more drastic ones for the region 0.67 ;5 

x ;50.85) is due to the lack of freedom of the drop at its neck; At the 

suggestion of Wladyslaw J. Swiatecki, we generalized the two- spheroid 

model by introducing a third conicoidof revolution (a hyperboloid of 

revolution of one or two sheets, or a spheroid) to connect the two end 

* spheroids. By including .one additional coordinate to explicitly de-

'scribe the neck degree of freedom, we found that all the saddle-point 

properties of Figs; 4-7 are reproduced with amazing accuracy. For 

example, over the entire, range of x from 0 to 1.0, the .fission barriers 

calculated in this generalization areaccur~teto within one-half an 

MeV. This .isillustrated by the comparisons .of saddle-point properties 

made in Figs. 8-11. 

One would expect the two-spheroid model (without theconicoidal 

neck) to adequately describe those saddle-point properties not de­

pendent upon details .of the neck. The theory we develop depends in 

* Formulae for calculating the potential energy of such a system 

are given in Appendix B.3. 
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Fig. 8. The potential energy of saddle-point shapes, as a 
function of fissionability parameter x. The result 
calculated by using two spheroids connected by a coni­
coid of revolution is given by the solid line, the result 
of Cohen and Swiatecki 15 by the short-dashed line, 
and the result of StrutinskiJ:17 by the dot-dashed line. 
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Fig. 9. The surface energy BS and Coulomb energy BC 
of saddle-point shapes, as functions of fissionabilIty 
parameter x. The function BS is the surface energy 
in units of E~O), and BC is the Coulom.b energy in un~ts 
of E~). The results calculated by usmg two spherOlds . 
connected by a conicoid of revolution are given by the 
solid lines, and the results of Cohen and Swiatecki 15 by 
the dashed lines . The. known values of BS and BC for 
x = 0 are indicated by open circles. 
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Fig. 10 .. Saddle-point shapes for various values of the 
. fissionability paraITleter x. Shapes calculated by 
using two spheroids connected by a conicoid of revo­
lution are given by the solid lines, and those calcu­
lated by Cohen and Swiatecki 15 by the dashed lines. 
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Fig. 11. Maximum and minimum radii of saddle -point shapes, 
as functions of fissionability parameter x. The results 
calculated by using two spheroids connected by a coni­
coid of revolution are given by the solid line, the results 
of Cohen and Swiatecki1. 5 by the dashed lines, and the re­
sults of Strutinskii 17 by the solid points.

v 
Note that the 

minimurp. radius calculated by Strutinskii for x = 0.65 
is appreciably lower than the other two results. The known 
limiting form of R . IRO for x -- 0 is indicated by the 
straight line, and tIrl~alue of R IRO for x = 0 by an 

. 1 max open CIrc e. 
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part upon the variation 6f the potential energy in the neighborhood 0.£ 

the saddle point-in particular, upon the second derivatives of the 

potential energy evaluated at the saddle point (the stiffnes s constants). 

The increase in potential energy arising from changes in the .fractional 

mass and in the length of the fragments I axes is affected little by the 

presence or absence of a neck. We would thus expect the phenomena 

associated with the second derivatives with respect to fractional mass 

a,nd s emisymmetry axes -the distributions in .mas s, total translational 

kinetic energy, and excitation energies-to be described moderately 

well by the two-spheroid model. On the other hand, the crudeness of 

the neck makes ,the reliability of the stiffnes s constants for the angular 

coordinates les s certain. We therefore do not have a clear idea of 

how well we should expect the distributions in fragment angular mo­

menta (as sociatedwith the angular-coordinate stiffness, constants) 

to be described by the model. 

To summarize, ·we see that the two-spheroid model is in­

adequate in two important respects: First of all, it cannot be reliably 

used for x ::: 0.67, where most of the experimental information on fis­

sion lies. Secondly, even for x .~ 0.67,itdoes not reproduce well 

those saddle-point properties associated with the neck-in particular, 

the fis sion barrier and the fis sion stiifnes s constant. It is thus un-

suitable even in this range of x for discussing quantities dependent 

upon these properties, such as the probability of fis sion. On the 

other hand, the two-spheroid model is expected to be useful for esti­

mating the distributions in mas s» total translational kinetic energy, 

excitation energies, and.angularmomenta of the fragments at infinity. 

The accuracy of the estimated distributions in angular momenta is 

uncertain. As regards the remaining distributions ,. we would expect 

the estimates to be moderately good-better than order of magnitude ~ 

and yet certainly not exact. 
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III. DYNAMICS 

We considered in the last section one part of the Hamiltonian 

for the system: the potential energy; ,we now turn our attention to 

the other part: the kinetic energy. Although the potential energy of 

a liquid drop is uniquely determined as soon as the dropi s boundary 

is given, the kinetic energy, on"theother hand, is not uniquely deter­

mined by specifying the time rate of change of the boundary. One 

must in addition make some statement regarding the nature of the 

hydrodynamic flow of the fluid inside the drop, i. e., the curl (rotation 

or vorticity) in the system must, be specified. A thorough treatment 

of the liquid-drop model would thus require that one study the system 

for various types of hydrodynamic flow, consistent with one and the 

same motion of the boundary. 

We work out the details of the theory for the case of an in­

compres sible fluid in ,which vibrations of a fragment are treated as 

irrotational, whereas ,rotations are treated as if the fragment were a 

rigid body. This. means that the hydrodynamic flow within each frag-
\ 

ment is taken to be a superposition of an irrotational flow and a flow 

corresponding to a uniform rotation; i. e., the curl within eachfrag­

ment is equal to twice the angular-velocity vector ,(which is constant 

throughout the fragment). ,(For abrief dis,cus sion of such composite 

types of flow, see Lamb,'44) 

The type of hydrodynamic flow that we have'chosen to consider 

is, of course! only one of several types ,for which the theory should 

be worked out. " For example, the case in which the flow is completely' 

irrotational (as, regards, both vibrations and rotations), and the case 
>!< 

in which th,e drop is very viscous, $houldalso be ,considered. The 

actual situation in nuclei is presumably intermediate betweeh these 

limiting cases. 

* When we discuss the solutions to the equations of motion we will, 

whenevel' possible, also indicate the' result for the case in which the 

fragments are infinitely viscous, and would therefore separate to 

infinity without oscillating. 
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It is of i'nterest to have some a priori opinion as to how well 

the type of flow we are considering represents real nucleLThe de­

duction.of vibrational inertial parameters and moments of inertia for 

nuclei in their ground states has been extensively considered, (See, 

for example, reference 45,) Estimates of the vibrational inertial 

parameters corresponding to quadrupole vibrations. of even-even 

nuclei about spherical equilibrium shapes indicate that the actual 

. values are considerably greater than the values corresponding to 

irrotational flow. 45 These values ,however •. are strongly influenced 

by the effects .of single-particle shell structure on ground-state nucleL 

For the vibrations of interest in fission-small vibrations of the system 

about a deformed saddle-point shape, and relatively large vibrations 

,of the fragments about their centers following scission-the effects of 

single particles would be expected to be less important. 

Estimates .of moments of inertia corresponding to rotations 

of deformed even-even,nuclei indicate that the actual values are 

greater than the values corresponding toirrotational flow, and less 

than the values corresponding to rigid-body rotation. As the de .. 

formation of the nuclear equilibrium configuration increa.ses,. the 

ratio of the observed moment of inertia to the rigid-body value in-
45 

creas.es. This would imply that for the relatively large fragment 

deformations encountered in fission the fragment moments of inertia 

s.houldnot be too far from their rigid-body values. 

In addition, the fragments in fission will, in general, possess 

some internal excitation, and, as we will discover, are typically 

rotating with .several 1'1 units of angular momentum. One would ex­

pect each of thes eeffectsto increase the moment of inertia. For ex­

ample, since the Coriolis force associated with rotations counteracts 

the pairing ,correlations (that are responsible for the reduction of the 

moment of inertia), the moment of inertia should increase with in­

creasing angular momentum, 46 When the angular momentum of a 

nucleus exceeds a critical value ( :::: 12 1'1 for A:::: 180, and:::: 18 1'1 

for A:::: 238), the moment of inertia is, predicted to equal the rigid-
46 

body value, 
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In.ourdynamical $tudy we shall be concerned with setting up 
>',c 

and solving the classica,l equations of motion of the system. This 

will ma.ke it pos sible to trq.ce out dynamically the motion of the system 

from some given initial configuration near the saddle point to the final 

configuration of two fragments at infinity. The state of motion at 

infinity will correspond directly to .observable cha,racteristics of fis­

sion fragments -the speed of separation of fragment centers. will cor-

. respond to theirtranslatioq.al kinetic energies, the vibratio.ns about 

th~ir centers of mass will correspond to their excitation 

energies" and the rotations about their centers of mass will cor­

respond to their angular momenta, Out of the dynamical study will 

corne, . then, the relationship between the initial configuration of the 

system near the saddle point and the observable quantities of interest 

at infi~ity, This relationship becomes ~xtremely simple when the 

d~viations of the initial configuration from the saddle point are small. 

(In practice, this turns out to be a .good approximation. ) 

For the ,case in which.the saddle point consists of two tangent 

spheroids (x :5 .0,80), we will find a simple equation that ex.pres ses 

very accurately the total translational kinetic energy· E of the two 

fragments at infinity in terms of the initial coordinates and momenta. 

':< , . 
The use of classical equations of motion for discussing the separa-

" . 

tion of th~ fragments to infinity maybe partially justified on the 

grounds that a short distance from the saddle point the de Broglie 

wavelength for translational motion has become relatively small, 

that the vibrations about eachfragment i s center of mass ,involve 

several quanta of energy, and that the angular momentum of each 

.fragment is typically several 1'1 units in rvagnitude. 
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The value of E will be seen to depend primarily upon the initial 

distance between the fragment centers and the product of their charges, 

Since the fractional mass does not change after division into 

two fragments, the fractional mass U at infinity will equal its original 

value at the saddle point. 

The excitation ener gy of an individual fragment at infinity will 

be seen to depend primarily upon its initial elongation, We will content 

ourselves with establishing an equation.for the excitation energy at 

infinity that is valid to first order in the small deviations of the con­

figuration from its saddle-point shape, 

We will find that the angular momentum of an individual frag­

ment at infinity depends primarily upon the initial angular momentum 

it poss~essed near the saddle point. Fragments.that are infinitely vis­

cous and therefore separate without oscillating are capable of acquiring 

some additional angular momentum by virtue of the torque exerted by 

* one. fragment on the other through the electrostatic interaction. The 

amount of such induced angular momentum depends primarily upon the 

fragment I s initial angle e 1 and upon its initial angular momentum 

Pe' Fragments that oscillate with irrotational flow as they separate 
1 

acquire very little angular momentum by, this mechanism because the 

torque decreases as the symmetry axis short'ens, and .even changes 

. sign as the spheroid changes from prolate to oblate, We will establish 

an equation for the angular momentum at infinity that is valid to first 

order in the initial coordinates and momenta, similar to what we did 

for the excitation energy, 

* The angular momentum acquired by a rigid spheroid moving .in 

the electrostatic field ofa sphere has been discussed by Hoffman; 47 
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A. Kinetic En.ergy .of the System 

We shall in this subsection concern ourselves with the'kinetic 

energy of the system. Before launching into this undertaking, let uS 

consider another simplification arising from the smallness of the 

initial deviations from the saddle point. 

Because-as regards angular momenta-we are working only 

to first order inthe initial coordinates and momenta, it is sufficient 

when discussing the separation of the fragments to infinity to consider 

explicitly only configurations in which the symmetry axes are coplanar, 

and .in which the spheroids are not spinning about their symmetry axes. 

This is true because of the symmetries of the saddle-point shape. Con­

sider, say, the x component of angular momentum of a fragment at 

infinity. From symmetry, it will have no linear dependence upon an 

initial rotation of either fragment about its . y or z axis. Similarly, 

it will not depend linearly upon the initic;l y or z components of 

angular momentUm of either fragment. Analogous statements hold 

for the fragment' sy and z components of angular momentum at 

infinity. Indeed, to first order, the fragment's z component of 

angular momentum at infinity is equal to its initial z component of 

angular momentum (near the saddle point). This means, then, that 

to first order in the initial coordinates and momenta, the result for 

the general noncoplanar configuration with rotations about the spheroids' 

symmetry axes is simply a superposition of the results. for two special 

cases: (a) coplanar symmetry axes ,with no rotations about them, and 

(b) rotations about collinear symmetry axes, for which we know the 

result. 

For the sake of clarity the exposition throughout this subsection 

will be as if the symmetry axes of the spheroids were coplanar and 

there were no rotations about them. Thus the difference <I> = <1>1-<1>2 

between the azimuthal angles of the symmetry axes (see Fig. 2) is 

taken to be zero. The results obtained by considering coplanar 

spheroids with no rotations about their symmetry axes will be sub­

sequently generalized to the original case of two-spheroid configurations 
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described by nine degrees of freedom (in a center-of-masssystem 

with zero total angular momentum), It must be. borne in mind, how­

ever, that if one desired to discuss the solutions to a higher order 

. than linear in the initial angles and.their conjugate momenta, . then it 

would be necessary to set up and solve the equations of motion for the 

general. noncoplanar configu~ationwith rotations .al:>out the spheroids I 

symmetry axes, 

As we found to be true with the potential energy, the. kinetic 

energy of the system is simpler when.the fragments are separated 

than,when they are overlapping. We consider first the case in which 

the fragments are separated. 

The total kinetic energy of the system is equal to the .kinetic 

energy of the centers of mass of the two fragments,. plus the kinetic 

energy of motion of each fragment relative to its own cente r of mas s . 

. We will discuss the termsc:ontributihgto1the kinetic energy one by one. 

We denote bye the time rate of change of the angular coordinate 

specifying the orientation of the line connecting the spheroid centers 
. * in the plane formed by the spheroids I symmetry axes. The total 

kinetic energy of motion of the centers. of mass of the two fragments 

is then 

. where Mi is the reduced mass of the two fragments, given by 

(7a) 

• 
andi is the derivCl:tive with respect to time of i . (We shall. consistently 

use a dot above a coordinate to denote a time derivative. ) 

* . • The angular velocity E> will be expressedin terms of e 1 and 

8 2 through the requirement that the total angular. momentum be zero. 

Each of the three angles is measured positively, in the counterclockwise 

direction. 
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The kinetic energy of fragment 1 relative to its center of mass 

is equal to an integral over its volume of one-half the mass density 

times the. square of the local fluid velocity (relative to its center of 

mass).. For the type of flow we a;re considering, the integration can 

be performed exactly (see Appendix C.1), yielding 

The quantity M is the vibrational effective mass of fragment 1, 
c

1 
. b 44 glven y 

U 
+2 

. and Me is the rigid-body moment of inertia of fragment 1 for rotations 

about an1axis through its center perpendicular to its symmetry axis, 

given by 3 
1 ~ 2 URo) . 5" ,c 1 + -c-- UMO · 

1 
I 

i 

(7c) 

The semiaxis of fragment 1 perpendicular to its symmetry, axis is 

denoted by a 1. The kinetic energy of fragment 1 relative to its 

center of mass is thus equal to the kinetic energy of vibration of the 

fragment plus the kinetic energy of rotation about its center of mass 

(with total angular velocity e 1 + 6) . Because of the spheroid ' s 

symmetry, there is present no cross term involving (:1 8
1

. We note 

that M and M£) are functions of the coordinate c 1 as well as U. 
c 1 ° 1 

Results analogous to these hold for fragment 2. 

The total kinetic energy ;;; of the system for the separated 

case in which the spheroids do not rotate about their symmetry axes, 

and the symmetry axes are coplanar, is then 

~ 
1 [MF+M .2 

M 
.2 M 1. 2 el = 2' c

1 
+ c 2 + 1. c

1 
c 2 

1. 

.• . e) 2 
. 

0) 2]. + Me ( e 1 f + Me ( e2 + (8) 
1 2 
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The quantity e is determined from the condition that "the total angu­

lar momentum be zero. The total angular momentum L of the system 

is equal to the angular momentum of the centers of mass 01 the two 

fragments, plus the angular momentum of motion about the centers of 

mass: 

L = M,€'€ 2 e + Me (e 1 + 8) + Me (e z + 8) 
1 Z 

1£ we substitute in (8) the result for e obtained by setting L = 0, we 

find 

~= ;..Z + M CiZ 
°1 e \7Z 

Z 

We note that for the separated case there is no term involving 

(9) 

. 
U In 

the kinetic energy. This is because once the drop has split into two 

fragments. the fractional volume U no longer changes with time. 

From the Lagrangi~n for the system, 

"we find that the momenta" conjugate to the coordinates are 

M · P = c
1 c

1 
c

1 

M 
. 

Pc = c 
C z Z . Z 

Me (Me e 1 + Me e Z) 

· "1 1 'Z 
Pe = Me e1 z 

1 1 M,€ i. + Me1 + Mez 

• 
Me (Me e 1 + Me e z) 

Z 1 Z 
Pe = Me ez 2 , Z 2 M,€ 1. + Me + Me 

1 2 
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The Hamiltonian for the system is then. 

JC = ~ + 7", ( 10) 

where Y' is given by (6b),and 

[~: 
2 ,2 2 2 

P Pc . Pe 1 Pe 
;;)= 

1 . c 1 Z Z 
2 M.£ 

+ ~ + ~ + Me + Me c
1 

Cz 1 2 

When the fragments overlap, the kinetic energy of the system 

is much more difficult to calculate. We thEm specialize, as we did for 

the potentiq.l energy. to the restricted case of fragments that are 

symmetrical. The kinetic energy of the system can theu .. be calcu­

lated approximately by using the'method of Werner and Wheeler 

(see Appendix C.Z). 48 A closed expression is obtained for the kinetic 

energy as a function of the coordinates .£and c, and their time . 
derivatives .£ and c. This method yields the exact· result for two 

limiting cases: (1) when the system consists 6ftwo separated sphe,.. 

roids ,and(Z) for spheroidal distortions when the system consists of 

a single spheroid. The accuracy of the method for the general over­

lapping case i's not. known. However, for the lower values of x, 

where the saddle point consists of two tangent spheroids, this' approxi­

mate method is never used, since we focus attention on the system 

orily from the saddle point to infinity. 

B. Transformation to Normal Coordinates 

A'furidamental aspect of the dynamical discussion of any 

physical system is the question of small oscillations about the positions 
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of equilibrium. In the normal fission process there are three equili­

brium configurations: (1) the initial sphere, (Z) the saddle point, 

and (3) the two spherical fragments at infinity.' Both the initial sphere 

and the two spherical fragments at infinity are pOSitions of stable 

equilibrium. The small oscillations about each of these spherical 

shapes can be readily discussed,by expanding the drop' s radius vector 

in spherical harmonics: The rrlOtionof the drop is a superposition of 

simple harmonic oscillations of different frequencies corresponding 

to the various spherical-harmonic distortions. The question of small 

oscillations about the remaining equilibrium position-the unstable con­

figuration at the saddle point-will now be considered. 

The first step in the discussion of the small oscillations about 

the saddle point is to transform from the original coordinate system to 
* . 

a system of normal coordinates. In terms of the normal coordinates 

and their conjugate momenta, both the "potential energy and the kinetic 

energy are simultaneously diagonalized at. the saddle point; i. e. , 

there appear through seco~d order ~o cross terms of the form c
1 

c Z' 

for example. The Hamiltonian for the system thus separates into a 

sum of terms, each. involving only a single coordinate and its . con­

jugate momentum. iThis .mean physically that the motion of the system 

in the vicinity of the saddle point separates. into several independent 

.modes that may be discussed separately. 

We consider first the case in, which the saddle point consists .of 

two tangent spheroids. 
( 

The normal-coordinate transformation for this 

case is not completely straightforward because of the cusp in the energy 

surface at. the saddle point. The transformation to normal coordinates 

can nevertheless be performed by regarding the cusp as the limiting 

case of a regular (rounded) barrier. As the barrier becomes infinitely 

sharp, all but one of the normal coordinates corne to lie in the subspace 

* See the discussion of normal coordinates in any classical".. 

mechanics textbook, for example, Goldstein. 
49 
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of touching spheroids. In this subspace, the potential energy has no 

irregularities. ~he remaining normal mode of motion-the fission 

mode - retains a well-defined direction. The physical meaning of this 

direction is that it represents the initial mode of motion that would be 

acquired by the system if started with an arbitrary infinitesimal dis­

placement from the saddle point. 

For the discussion of the normal modes we again treat the 

more general case in which we consider the three angular degrees of 

freedom of each spheroid; i. e., the spheroids are permitted to rotate 

about their symmetry axes, and the symmetry axes are not required 

. to lie in the same plane. (We are still considering.a system with zero 

total angular momentum; this will introduce one condition on these 

six angular coordinates.) It is convenient in discussing small~angle 

oscillations to lowest order to use a set of angular coordinates defined 

more symmetrically with respect to the coordinate axes than the Euler 

angles. We denote by 8 1x and 8 1y the angles of rotation of frag­

ment 1 away from the z 1 axis, the rotations being about the x 1 

and y 1 axes, respectively. The angle of rotation of spheroid 1 about 

the z~ axis is denoted by 8 1z ' The angles 8 2x ' 8 2y ' and 8 2z are 

defined in an analogous manner with respect to coordinate system 2. 

We expand the potential energy in the, subspace of touching 

spheroids about the saddle point, retaining terms through second 

order in the coordinates. Let us denote by K , for example, the 
c

1
c 2 

second partial derivative in this subspace of the potential energy with 

respect to c 1 and c 2 ' evaluated at the saddle point. (Since the 

saddle point is a position of equilibrium, all first derivatives are zero.) 

In addition to the usual equalities between the stiffness constants (the 

K' s) obtained by interchanging the order of differentiation, symmetry 

considerations at the saddle point yield the following equalities be­

tween the nonzero stiffness constants: 
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= K = 8
1x

8
1x 

K UC Z 

In addition" with the exception of KUU and K ,all the remaining 
c 1c Z 

stiffnes s constants are seen from symmetr.y to be zero. We are left 

then with only six independent stiffness constants: 

We denote the value of a coordinate at the saddle point by a 

superscript 0; and the differen'ce between a coordinate and its saddle­

point value as follows: 

o 0 
61 = 1 - 1. = 1. - Zc 1 ' 

6U o 
=U-U =u 1 

2' 

o 
68 1x = 8 1x - 8 1x = 8 1x ' 
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082x 82x 
0 

82x = !32x = 

08 1y = 8 
1y 

8 0 
1y = 81y 

oe2y . = 82 
8 0 = e2y y 2y 

The coordinate 1,. which in this subspace is the distance be-

tween the centers of the touching spheroids, is chosen as the depend­

ent variable; it is thus expressed in terms of the other coordinates 

(see Appendix D.1). To second order, the potential energy of the 

system in the vicinity of the· saddle point in this subspace can be 

written in matrix form as 

o o 

o o 

o o 

o o 

K 
c

1
c

1 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o o 

o o 

o o 

o 

o 

o 

o 

o 

o 

o 

oU 

oc ' 
1 

68 
1x 
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The kinetic energy in the neighborhood of the saddle point, to 

second order in the coordinates and velocities (or momenta), is given 
~!c 

by 

(MO~) 2[~1X + 82X) 2 +~+e J 2J 
8z!)} , 1y 2y, 

M 0 (t' 2 -+- e 1z -1 
. 0 o 2 

2M 0 
e

1z 
M.e (2c 1) -+- e

1 

~~: 
2 2 

Pc -+- P . 
1 

. c
2 

= -+-
2 MO M 

0 
§. c· 

1 

2 2 2 2 
Pe -+- Pe -+- Pe -+- Pe 

-+-
1x 2x 1y 2y 

M 0 e . 
1 

(PO + Po )2 + (PO + Po )2 
1x 2x . 1y 2y 

-+- o . 0 2 
M§. (2c 1 ) 

2 2 

J 
Pe -+- Pe 

-+-
. 1z 2z 

. 0 
Me 

1z 

where the effective masses are now constant: 

':c 
When discussing the kinetic energy, we are not restricted to the 

subspace of touc;hing spheroids. 
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] MO ' 

(:0 
This result is obtained by evaluating at the saddle point the effective 

mas ses (7) of our previous expres sions for bJ l Eqs. (9) a,nd (11)]. 

and generalizing the results to include general rotations of the sphe­

roids about the x, y. andz axes (rather than in a plane). The re­

quirement that the total angular momentum be zero introduces the 

condition that 82z = - e 1z (or Pe = - Pe 
2z 1z 

Before listing the normal-coordinate transformation formulae. 

let us describe physically the normal modes of oscillation about the 

saddle-point configuration. We have tried to descriptively name each 

mode; the corresponding normal coordinate is designated by the first 

letter of the name .. Figure 12 has been prepared to aid in visualizing 

the modes, which we now enumerate: 

(a) Fission: This normal mode is di.stinguished. from the others in 

that it is always unstable-the potential energy decreases rather than 

increases as we move away from the saddle point. Because of the 

cusp in the potential energy the stiffness constant for this mode is 

not defined; it would be negative for a saddle point in which there is 

no cusp. The motion of the system is a .simultaneous separation of 

the centers of the spheroids and a decrease in their elongations, or 

vice versa. 

(b) Mass-asymmetry: As will be discussed later, this normal 

mo~e 'is ·stable for x greater than x
BG 

(equal to OA 7 in the two­

spheroid approximation). and unstable lor x less than x
BG

. The 

motion here is all increase in both the Plass (volume) and elongation 

of one spheroid arid a decrease in the mass and elongation of the other 
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(Saddle-point shape) 

fission 0 0 

mass-asymmetry ~ 

~tretching 

~ gistortion-asymmetry ~ 

!;lending 

~ '!!.riggling 

~ ~ .twisting 

~ Qxial-rotation 

Fig. 12. Illustration of normal modes of oscillation about the 
saddle-point shape (when the saddle point is represented 
by two tangent spheroids). The fission mode is always 
unstable; the mass asymm~try mode is unstable for 
x < x

BG
' and stable for x > x

BG
. The bending and . 

wrigglIng modes are each doubly degenerate, cor­
responding to rotations in two perpendicular planes. 
The twisting and axial-rotation modes consist of uni­
form (rather than oscillatory) rotation; for a system 
with zero total angular momentum the axial- rotation 
mode is not excited. 
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spheroid, such that the distance between spheroid centers (as well 

as the total length of the drop) is constant. 

(c) Stretching: The elongation of each spheroid increases (or de­

creases) by the same amount. 

(d) Distortion-asymmetry: The elongation of one spheroid increases, 

and the elongation of the other spheroid decreases; the distance be­

tween spheroid centers (as well as the total length of the drop) re­

mains constant~ 

(e) Bending: This mode is doubly degenerate (occurs twice), cor­

responding to rotations in the x-z plane and the y-z plane. For a 

given plane, one of the spheroids rotates clockwise about an axis 

through its center perpendicular to the plane, and the other counter­

clockwise through the same angle; the spheroids remain touching. 

(£) Wriggling: This mode is also doubly degenerate, corresponding 

to rotations in the x-z and y-z planes. For a given plane, both 

spheroids rotate through the same angle either clockwise or counter­

clockwise about axes through their centers perpendicular to the plane; 

they remain touching. The entire system rotates in the opposite di­

rection, ensuring conservation of the x and y components of total 

angular momentum. 

(g) Twisting: One of the spheroids rotates about its symmetry axis 

clockwise and the other counterclockwise through the same angle. 

The restoring force (stiffness constant) for this mode is zero, re­

sulting in a uniform, rather than oscillatory, rotation. 

(h) Axial- rotation: This mode would correspond to a uniform rotation 

of the spheroids about their symmetry axes through the same angle in 

the same direction. Conservation of the z component of total angular 

momentum means that this mode is not excited. 

The linear transformation that takes us from the original co­

ordinates to the normal coordinates may be written as 
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m= oU , .. 

o 
oJ. + Z (M / MO) (0 c 1 + 0 C Z) c

1 
. 

s = 
.J"""2l 1 + (Z M O/MO)] 

. c 1 

b =( 1/ !z) (08 1 - 08 Z ) , x N~ x x 

Wx = (1/,(2) (08 1x + 08 Zx) , 

by = (1/,(2) (08 1y - 08 Zy) , 

t = (1/./21 (08 1z - 08 ZZ ) , 

a = {1/ fi)(&8
1 

+ 08Z } , z . z 

. . . * 
where the quantity B is defined by 

>:<We will see later (Fig. 13) that K is always PQsitive and that 
UC Z 

Kc 1 c 1 is always great,er than henGe, B is always positive. 
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These formulae may be verified by expl~citly demonstrating that both 

'Y and J" are diagonalized in terms of the new coordinates a:nd their 
~:( 

time derivatives (or conjugate momenta). The normal coordinates 

are all identically zero at the saddle point. . The inverse transformation 

is given by 

61. = ~ l Z (M 0 / MO) f + s ] , 
. c 1 , 

6U = m , 

6c
1
= (1/Z) Bm + (1/-/2) (-f + s + d) , 

6c
Z 

= - (1/Z) Bm + (1/,.[2) (-f + s - d) , 

68 Zy = (1/.[2) (-b + w ) 
. y y 

68
1z 

= (1/fl) (t + a) , 

68 Zz = (1/,/2) (-t + a) . 

* In verifying that;;; is diagonal in terms of the time derivatives 

of the normal coordinates, note that U is zero at the saddle point. 



. In tenns of the normal coordiri'ates, the potential energy in 

the subspace 'of touching spheroids is, to second order, 

')r _ . ')/0" -z1 Lf Km m Z + K sZ + K d
Z 

+K (b2 
-1- b

2
) 

s d b x y 

. 2 Z ] 
-i K (w -:- w ) . w x y , 

where the normal-coordinate stiffness constants are expressed in 

terms of the original stiffnes s constants by 

K 
s 

Kd 

~ 

K 
w 

= 

= 

= 

K K 
c 1

c
1 

c
1

c Z 

K 8
1

8
1 

K 8
1

8
Z 

K 8
1

8
1 

K 
8

1
8

Z 

The kinetic energy is similarly given to second order by 

M ( . Z . Z) ·Z 
M a2

] + w + w + M
t 

t -j 
w x y a 

( 2 
Z Z 

Z Z 
Pb + Pb 

i. Pf P s P d x y = + + + Z M M Md 1,,\ f s 

Z Z 
Z 

2 ) 
Pw +P w Pt Pa x y + +_.- + M M

t Ma ' w 

where the normal-coordinate effective masses are related to the orig­

inal ones by 



-S'il-

" 

arid the momenta conjuga,te ,to the normal coordinates are 

p = M s, s s 

. 
Pb =~b , 

Y Y 
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M 
' . 

Pw = w 
w x 

x 

Pw = M w 
w Y y 

Pt = Mt 
t 

Pa = M a 
a 

The Hamiltonian (with respect to the saddle point) in the sub­

space of touching spheroids is then given to second order by (the axial­

rotation kinetic':"energy term has now been dropped) 

I",.r­
(,\,.I = 

(' 

- rn + t 1'K' . 2 2 m 
\ 

+ [~(b: + b~)+ 

+ ~ w (w~ + w~) + 

2 2 'l P, b + Pb 
,x Y 
" M 

b 

(12 ) 

The frequency for a particular normal-mode oscillation is given by 

the square root of the appropriate stiffnes s ,constant divided by the 

appropriate ma,ss. There are four well-defined nonzero frequencies 

(the bending and wriggling frequencies are, of course, doubly de­

generate) ; 

W = (K /M ) 1/2 
s s s· 

( 13a) 

w = d 
( 13b) 

Wb = (~/~) 1/2 (13c) 

W = (K /M )1/2,. 
w w w 

( 13d) 
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Since the (negative) fission stiffness constant K
f 

is not defined, the 

(imaginary) frequency w
f 

is also not defined. It is shown in Appendix 

D,2 that, because the drop's minin1.um radius is zero, the mass-

* asymmetry effective mass Mm is infinite. The corresponding fre-

quencyw
m 

is therefore zero. t The twisting frequencyw
t 

is also 

zero, because the stiffness constant K
t 

is zero. 

A straightforward numerical method was used to locate the 

saddle point and calculate the stiffness constants (see Appendix G). 

The results are presented as functions of fissionability parameter 

from 0 to 0.80 in a series of graphs. The value of c~ defining 

the saddle-point shape (when the saddle point consists of two tangent 

spheroids) can be obtained from the R curve in Fig. 7 max 
(R = 2 c 0

1
), The stiffnes s constants for the original coordinate 

max 
system are given in Fig. 13. 

The normal-coordinate stiffness constants are shown in Fig. 

14. Four of these constants are always positive; the mass:-asymmetry 

stiffness constantKm changes sign at x = x
BG 

::::: 0.47. This value 

of x is the two-spheroid approximation to the true value of 0.39
4

, 

where the Businaro-Gallone family of asymmetric equilibrium shal~s 

bifurcates from the family of symmetric equilibrium shapes. 15,43 

* This result states physically that the kinetic energy associ~ted with 

a finite flux of matter through an aperature of infinitesimal radius is 

infinite. This follows from the fact that the velocity of ,flow through 

the aperture is infinite, and that the kinetic energy depends upon the 

product of the amount of matter and the square of the velocity. 

t The reason for the vanishi;ng of wm is that in the two-spheroid 

model the neck radius of the saddle-point shape is zero. For the 

exact saddle point the neck radius is not zero but is small, and W 
m 

is not zero but is small in comparison with the other frequencies. 

:i: The two-spheroid model thus predicts this bifurcation point at a 

value of x that is somewhat too high, in analogy to its prediction of 

a transition region at x::::: O. 8q" whe,n the true transition region occurs 

at x::::: 0.67. 
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Fig. 13. Saddle-point stiffness constants (second derivatives 
of the potential energy, evaluated at the saddle point) 
for the original coordinate system, as functions of 
£is sionability parameter x. The constant KUU is 1n 
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Kw 
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Fig. 14. Saddle-point stiffness constants (second deriyatives 
of the potential energy, evaluated at the saddle point) 
for the normal-coordinate system, as functions of 
fissionability parameter x. The constant K is in 
units of E~O), Ks and Kd are in units of m 

E~O)/R6' and Kb and K are in ~nits of E~O)/rad2. 
The two-spheroid approxiri'1:ation to the Businaro- Gallone 
value of x is indicated by the arrow. 
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For x > x
BG 

the symmetric equilibrium shapes are stable against 

changes in asymmetry, and for x < x
BG 

they are unstable. Thus, 

for x > x
BG 

the symmetric equilibrium shapes are unstable with 

respect to displacements along only one normal coordinate (the fis sion 

coordinate), and for x < x
BG 

they are unstable with respect to two 

(the fission coordinate and the mass-asymmetry coordinate). This 

rneans physically that for x > x
BG 

the equilibrium configuration 

defines a barrier energy, whereas for x < x
BG 

the equilibrium con­

figuration is at the "top of a hill" and therefore does not define a 

b
. 15,43 

arrler energy. 

The effective masses are shown in Fig, 15. The frequencies 

for the four nonzero modes of oscillation are given in Fig. 16 in 

liquid-drop units. In Fig, 17 the corresponding quantum energies 

(11 times the frequencies) are given in units of MeV for nuclei along 

the line of beta stability, 50 For"the region in which we will be most 

interested (x ;::: 0.67), the stretching and bending quantum energies are 

each about 1 Me V, the distortion-asymmetry quantum energy is about 

1,5 MeV, and the wriggling quantum energy is about 2 MeV. 

For values of x 2: 0,80, where the saddle point is represented 

by overlapping spheroids, we again restrict ourselves t~ the case of 

symmetrical fragments, specified by the two coordinates £ and eo 

Since there is no cusp in the potential energy at the saddle point, the 

normal-coordinate transformation for this case is straightforward, 

There result two norn1.al modes: a stable oscillation (stretching) and 

an unstable motion in the fission direction, We shall not present here 

the numerical results obtained for the frequencies of the normal modes. 
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Fig. 16. Saddle-point frequencies of normal-mode oscillations, 
as functions of fissionability parameter x. The fre­
quencies are in units of nO l see Eq. (4) for value of 
nO] • 
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Fig. 17. Saddle-point quantu.m energies of nor.mal-.mode 50 
oscillations for nuclei along the line of beta stability. 
as functions of fissionability para.meter x. 



-66 -

C. Solution of Equations of Motion 

We consider in this subsection the solution of Hamilton l s 

clas sical equations of motion for the system. For given initial con­

ditions, solution of thes e equations gives the subs equent motion of 

the system. The question naturally arises of what initial conditions 

to use. One could, for example, study the behavior of the system by 

always starting with the original sphere, giving it different sets of 

initial momenta. Because most of this work will be concerned with 

tracing out the cons equences of as suming statistical equilibrium at 

the saddle point (see Section IV), we examine the solutions for initial 

conditions that are specified in the neighborhood of the saddle point'o 

We have seen that for both the potential energy and the kinetic 

energy different formulae are used, depending upon whether the 

system consists of spheroids that are separated or spheroids that 

a;re overlapping. The equations of rrlOtion are also diffe"rent for thes e 

two caseso We will consider first the simpler case in which the 

saddle point consists of two tangent spheroids (x:s 0.80); then, in 

the region from the saddle point to infinity, the system consists of 

two separated spheroids. 

We saw from the Hamiltonian (12) that four of the normal 

modes at the saddle point- stretching, distortion-asymmetry, bending) 

and wriggling-are simply bounded harmonic oscillations with fre­

quencies given by (13). The mas s -asymmetry normal mode, on the 

other hand, was seen to be stable for x > x
BG 

and unstable for 

x Since the effective mass for this mode is inf~nite, the mass-

asymmetry coordinate changes with time infinitely slowly at the saddle 

point. Because the restoring force for the twisting mode is zero, this 

mode consists of uniform rotations of the fragments. 

The remaining normal mode-the fission mode-is always un­

stable, taking us out of the subspace of touching spheroids. It is 

motion in the (positive) fission direction that causes the two fragments 

to start their eventual separation to infinity. Attention is first focused 

on the system at the critical moment when it is passing over the saddle 

.. 
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point; i. e., the time is chosen to be zero when the fission coordinate 

f is zero. Our solutions .to the equations of motion will then depend 

upon the values of the remaining normal coordinates and momenta 

when f = O. 

The equations of motion themselves are obtained for the sepa­

rated case by differentiating the Hamiltonian (10) with respect to the 

coordinates and momenta. For the case of coplanar symmetry axes 

with no. rotations of the spheroids about them, there result ten. first­

order linear differential equations, which are listed in Appendix C.1. 

These equations are given in terms of the original cqordinates, since 

the normal co~rdinates have m,eaningas such only in the vicinity of 

the saddle poinL The equations are solved numerically for given 

initial conditions, determing 1., c
1

, c 2 , 8
1

, and e
2

, along with their 

conJugate momenta, as functions of time. By carrying.a solution out 

. to infinity (in practice, to 1. = 25 R
O

)' one finds the values at infinity 

of the quantities of interesL A summary of the numerical procedure 

is given in Appendix G. 

Let us now examine the qualitative features of the solutions 

for various initial conditions. We have indicated in Fig. 3, on. each 

potential-energy map in the range 0.05 ~x ~0.80, the solution cor­

responding to starting from rest at ~he saddle point. For each case 

the points along the path are equally spaced in time at intervals of 

0.1 TO l see Eq. (2) for the value of TO]' The motion of the system 

is a fairly rapid oscillation of the fragments, superi~posed on a sepa-

. ration of thei r cente rs. 

Starting, the system from the saddle-point configuration cor­

responds to the case in which all normal coordinates are.initially 

zero. When a particular normal coordinate is initially nonzero, the 

solution is altered in a manner characteristic of that normal co­

ordinate: 

(a) Mass-asymmetry:. The fragITlent with greater volume and larger 

semisymmetry ax;is oscillates wi~h ~ la,rger amplitude but with a 

smaller frequency than the other fra.grnenL 
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(b) Stretching: When s is positive (corresponding to fragInents 

that are ihitiaily Inore elongated than at the saddle point), both frag­

Inents oscillate with greater aInplitude and separate Inore slowly. 

Conversely, for negative s, the fragInents oscillate with less aInpli­

tude and separate Inore rapidly. 

(c) Distortion-asyInInetry: The fragment with the larger semi­

sYInInetry axis oscillates with greater aInplitude than the other frag­

Inent. 

(d) Bending: In a bent configuration each fragInent experiences a 

torque froIn the electrostatic field, . resulting in an induced angular 

InOInentUIn. One fragInent rotates clockwise and the other counter­

clockwise; The period of rotation is Inuch greater than the period 

of oscillation. 

(e) Wriggling: Both fragInents rotate clockwise (or counterclock­

wise) simultaneously. As with the bent case, the fragInents oscillate 

Inany tiInes during a single period of rotation. 

In general, the initial conditions include several nonzero co­

ordinates, and in addition several nonzero InOInenta. The corre­

sponding solutions then consist of a superposition of the characteristic 

features arising froIn each norInal coordinate, Inodified by the effects 

of the initial InOInenta. The Inotion of the systeIn is thus in general a 

separation of the two fragInents froIn the saddle point to infinity, with 

each fragInent siInultaneously oscillating fairly rapidly and rotqting 

rather slowly. 

What is desired is a relationship between the initial conditions 

and the observable properties of fission fragments at infinity. FroIn 

this we will be able to obtain, by perforIning suitable integrations 

over probability distributions for the initial conditions (see Section IV), 
• 

probability distributions for· the observable quantities of interest. 

Each quantity of interest depends strongly upon only a few of the initial 

coordinates and InoInenta, and very weakly upon the remaining ones. 

The practicability of our approach lies in being able to neglect the 

weak dependences of each quantity of interest on Inost of the initial 

conditions. 
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From a consideration of the numerical solutions corresponding 

to a large number of combinations of initial conditions, we have de­

termined simple approximate equations expressing the quantities of 

inte.rest in terms of the initial coordinates and momenta. The equations 

are, in general, valid for small deviations of the coordinates from the 

saddle point and for small values of the initial momenta. However. we 

were able to find for the total translational kinetic energy an equation 

that works well even for moderately large deviations from the saddle 

point. The accuracy of each equation cq.n be seen from Table E.l (in 

Appendix E). where we have listed forty~four sets of initial conditions 

for a particular value of x, along with the values for the quantities of 

interest determined exactly by+"solving the equations of motion and .de­

termined approximately from the equations listed, below. For a given 

x the constants appearing in each equation are calculated numerically 

from the solutions to the equations of motion, as described in 

Appendix G, 

The equation established for the translational kinetic energy E 

of both fragments at infinity is 

4U(1 - U) EO 
2 

E= 
p,€ 

1 + as + 
2Mi 

CMc~ Pf 

2 

(1 _ 4m2) EO 
+M.€ ~) ,(14) = + 1 + as M

O 
M

f 
M '. 

s 

where EO and a 'are constants (for a given x), The second result 

is simply the first result expres sed in terms of the normal coordinates 

and momenta. This equation can be interpreted physically as giving 

the final kinetic energy that would result from two effective point 

charges of relative strengths U and (1. - U) initially separated a 

certain distance and moving with relative momentum Pi 

The fractional mass U at infinity is equal to the initial frac­

tional mass, since after scission this coordinate does not change with 

time. Thus, the fractional mass at infinity is related to the mass­

asymmetry normal coordinate m by the exact equation 
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1 
U = '2 + m (15 ) 

The relationship (14) forE reproduces .the ~xact result 

extremely well-more accurately than do the equations we established 

* for the individual excitation energies and angular momenta. For 

these quantities we retain only terms linear in the more important 

initial coordinates and momr::nta: t 

Xi = xO + X s + Xi, d d + X m 
1 1, s 1, m 

( 16a) 

X z = XO + X s - X 1 ,d d X m 
1 1, s 1, m 

( 16b) 

( 17a) 

( 17b) 

( 17c) 

L
Zy 

- - L P + L Pw L 1, b by + L w 
1, Pb by 1, P 1,w Y w Y 

( 17d) 

Liz = Pe = (1/ rV2) (p
t + Pa.) , 

1z 
( 17e) 

L Zz = Pe = (1/ fl.) (-pt + Pa ) 
2z 

( 17f) 

~:::: 

There is currently no experimental information on excitation 

energies and angular momenta for the fission of elements lighter 

than radium. We content ourselves at this time with treating these 

quantities to a lower order than the translational kinetic energy. 

t It should be recalled that the excitation energy calculated here is 

the energy associated with the collective vibrations and deformations 

of the fragments. Any internal excitation energy that a fragment has 

at the moment of division would be added to the excitation energy we 

calculate, to obtain the final total excitation energy. 
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where the quantities 
o 

Xi' Xi, s' Xi, d' Xi, m' L1 ,L1 ,L1 b' 
,Pb 'Pw ' 

and L
1

, ware constants (for a given x), 

for example, the partial derivative of Xi 

We are denoting by Xi ' 
• s 

with respect to s, evaluated 

at the saddle point. Symmetry arguments have been used to relate the 

constants in the equation for :XZ to ,thos ein,theequation for . Xi' 

Similarly, ,the constants ,in the equations for L 1x' L Zx ' L 1y" andLZy 
are related by symmetry. The equations for Liz and L Zz express 

the approximate conservation of the zcomponents of angular mo­

mentum, since to first order in ,the angles the z . components of the 

torque are zero, Each of the remaining equations also has a simple 

physical significance, which we will discuss when we present graphs 

of the 'constants appearIng .inthem. 

Complete symmetry in the observable quantities of interest 

could be achieved by a simple transformation from E and U to the 

individual translational kinetic energies E1 andEZof the two frag­

ments at infinity. The conservation of linear momentum implies that 

UE 1 = (1 - U) E Z . 

From this one finds that 

E1 = (1 - U) E, 

E Z = UE; 

the inverse transformation is 

( 1,8a) 

(18b) 

An expres sion for E to the same order as the equations for 

, excitation energy and angular momentum can be obtained by expanding 

(14) a,nd retaining only the linear term: 

. 0 0 
E = E -(aE.) s . (19) , 
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The individual rotational energies at infinity are of second order in 

the initial coordinates and momenta, since they are proportional to the 

square of the individual angular momenta at infinity, which in turn de­

pend linearly upon the initial coordinates and momenta. Also, the 

(initial) energy of the system in the neighborhood of the saddle point 

is of second order in the initial coordinates and momenta. ,Therefore, 

to first order, the sum at infinity of the total translational kinetic 

energy and the individual excitation energies is a constant: 

(20) 

The constant Xi is thus not independent but is instead given by 
, s 

o 
Xi = aE /20 , s 

(21 ) 

A series of graphs (Figs. 18-27) has been prepared giving 

each constant as a function of x from 0 to 0.80. The solid line in 

each case represents the result for the case we have been considering: 

incompressible, nonviscous fragments with hydrodynamic flow con­

sisting of a superposition of an irrotational flow ,and a flow correspond­

ing to a uniform rotation. We also indicate (by a dot-dashed curve) 

the result for the limiting case of infinitely viscous fragments, which 

would separate to infinity (as rigid bodies) without oscillatingo This 

limiting cas e would be approached physically if the fragm.ents were 

sufficiently viscous such that their period of oscillation was large in 

comparison with the time of separation to a few nuclear diameters. 

Figure 18 gives the dependence on x of EO, the total trans-

1ational kinetic energy at infinity that would result from fragments 

initially starting from rest at the saddle point. Note that the trans-

1ational kinetic energy that would result if the fragments were ex­

tremely viscous (top curve) is larger than the kinetic energy cor­

responding to nonviscous fragments with irrotational flow (middle 

curve}o The difference between these two curves represents the 

portion of original interaction energy which, for the nonviscous 
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Fig. 18. The total trarislational kinetic energy EO corresponding 
to the case in which the fragments initially start from rest 
at tlie saddle point, as a function of fissionability parameter 
x. The result calculated for nonviscous fragments is given 
by the solid line, the result for infinitely viscous fragments 
by the dot-dashed line, and a simple approximation to the 
former (see text) by the short-dashed line. 
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irrotational case, is converted into excitation energy rather than into 

translational kinetic energy. We also present the result (short-dashed 

curve) obtained using the very simple approximation that the kinetic 

energy is equal to the product of the charges of the spheroids divided 

by the initial distance between their centers. Of course, this is 

equivalent to replacing the oscillating spheroids by two rigid spheres 

whos e centers initially coincided with the spheroid centers • That this 

procedure should give a result that is close to the nonviscous irrota­

tional limit is phySically very reasonable, since the fairly rapid oscil­

lations of the fragments tend to cancel the opposing effects of the pro­

late and oblate shapes. 

In Fig. 19 is shown the result for th~ constanta; as with EO, 

we also present the result (short-dashed curve) that"would be obtained 

by replacing the spheroids with rigid spheres whose centers initially 

coincided with the spheroid centers. 

The constant X~, the excitation energy of fragment 1 that would 

result from initially starting the fragments from rest at the saddle point, 

is given in Fig. 20. We note that the sum of EO and2X~, which is the 

energy difference between the two~spheroid saddle point and the config­

uration of two fragments at infinity, is larger than the corresponding 

sum would be if calculated from the exact liquid-drop saddle point. 

This discrepancy is equal to the difference between the energy oJ the 

two-spheroid saddle point and the exact liquid-drop saddle point, which, 

as we noted before, is due principally to the inadequate repres entation 

of the neck in the two-spheroid model. One might argue that this dis­

crepancy is therefore more likely to affect the estimates of fragment 

excitation energies rather than their kinetic energies, but this con­

clusion cannot be :regarded as reliable. 

The excitation-energy derivatives Xi ,Xi d' and Xi ,s, ,m 
are presented in Figs. 21 - 23, respectively. The physical content 

of the equations for Xi and X 2 can be easily seen if we substitute 

the values of the constants and transform back to the original co­

ordinate system. We find then that, for typical values of the initial 
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Fig. 19. The constant a l see Eq. (14)], as a function of fis sion­
ability parameter x. The result calculated for nonviscous 
fragments is given by the solid line, the result for infinitely 
viscous fragments by the dot-dashed line, and a simple 
approximation to the former (see text) by the short-dashed 
line. 
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Fig. 20. The excitation energy x~ of a single fis sion fragment 
corresponding to the case in which the fragments initially 
start from rest at the saddle point, as a function of fis­
sionability parameter x. The result calculated for non­
viscous fragments is given by the solid line, and the re­
sult for infinitely viscous fragments by the dot-dashed 
line. 
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calculated for nonviscous fragments is given by the solid 
line, and the result for infinitely viscous fragments by the 
dot-dashed line. 
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Fig. 22. The excitation-energy derivative Xi d l see Eq. (i6)], 
as a function of fissionability paraITletet x. The result 
calculated for nonvis cous fragITlents is given by the solid 
line, and the result for infinitely viscous fragITlents by 
the dot-dashed line. 
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Fig. 23. The excitation-energy derivative Xi l see Eq. (16)], 
as a function of fissionability parameter~. The result 
calculated for nonviscous fragments is given by the solid 
line, and the result for infinitely viscous fragments by the 
dot-dashed line. 
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coordinates, the excitation energy of a fragITlent at infinity depends 

priITlarily upon its initial elongation, is .less dependent upon the frac­

tional ITlass, and is still less dependent upon the initial elongation of 

the other fragITlent. Note, as we discussed in connection with the re­

sult for EO, that if the fragITlents were infinitely viscous they would 

ha,ve less excitation energy than nonviscous fragITlents oscillating with 

irrotational flow. 

The angular-ITloITlenturn derivatives L1 ., L1 ,L1 b' 
,Pb 'Pw ' 

and L1 are shown in Figs. 24 - 27, respectively. By substituting 
,w 

these values for the constants in the equations for the x and y COITl-

ponents of angular ITlOITlentUITl, andtransforITling back to the original 
~I; 

coordinate systeITl, we learn the physical content of thes e equations. 

For typical initial conditions, the x cOITlponent of the angular ITlO­

ITlentUITl at infinity of fragITlent 1, say, is found to depend priITlarily 

upon its own initial value, is les s dependent upon ,the initial angle 
\ 

e ix' and is still less dependent upon the initial.x COITlponent of angu-

lar ITlOITlentUITl of fragITlent 2 and the initial angle e 2x. If the frag­

ITlents did not acquire any additional angular ITlOITlentUITl by virtue of 

the torque exerted by one fragITlent on the other through the electro-

static interaction, then L1 and L1 would each equal 
,Pb 'Pw 

1/ r{2, and L 1 , band L 1• w would each be zero. Note that the torque 

ITlechanisITl is capable of inducing in infinitely viscous "fragITlents 

roughlyfour tiITles as ITluch angularITlorhentuITl as in nonviscous frag-

ITlents oscillating with irrotational flow. This ,is because for an oscil-

lating fragITlent the torque is reduced as the elongation of the spheroid 

.~:c 

The relationships Pb 
x 

= (1/fi> (Pe - Pe ) and 
1x 2x 

Pw = (1/.,J2) (Pe + Pe ) etc., obtained froITl the norITlal-coordinate 
x 1x Zx 

transforITlation and the definitions of the ITlornenta, are uS eful for this 

purpose. The value at infinity of Pe ,for exaITlple, is L
1x

. 
1x 
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Fig. 24. The angular-momentum derivative Li [see Eq. (17)], 
, Pb . 

as a function of fis sionability parameter x. The result 
calculated for nonviscous fragments is given by the solid 
line, and the res,ult for infinitely viscous fragments by the 
dot-dashed line. The short-dashed line represents the 
result that would follow if the torque exerted by one frag­
ment on the other through the electrostatic interaction 
were zero. 
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Fig. 25. The angular-momentum derivative L1 l see Eq. (17)], 
c 'Pw 

as a function of fissionability parameter x. The result cal­
culated for nonviscous fragments is given by the solid line, 
and the result for infinitely viscous fragments by the dot­
dashed line. The short-dashed line represents the result 
that would follow if the torque exerted by one fragment on 
the other through the electrostatic interaction were zero. 
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Fig. 26. The angular-:mo:menturn derivative L
1

, b l see Eq. (17)] , 

as a function of fissionability para:meter x. The result 
calculated for nonviscous frag:ments is given by the solid 
line, and the result for infinitely viscous frag:ments by 
the dot-dashed line. For the value of LO see Eq. (3). 
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Fig. 27. The angular-momentum derivative L1 l see Eq. (17)], ,w 
as a function of fissionability parameter x. The result 
calculated for nonviscous fragments is given by the solid 
line, and the result for infinitely viscous fragments by the 
dot;..dashed line. For the value of LO see Eq. (3). 
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is reduced, even changing sign when the spheroid changes from pro­

late to oblate. 

When the saddle point occurs for 1. < 2c (x 2:0.80), it is nec-

es sary to consider the equations of motion for overlapping spheroids. 

As before, we specialize for the overlapping case to symmetrical frag­

ments, specified by the two coordinates .R. and c. Hamilton's equa­

tions of motion for this cas.e are listed in Appendix C.2. In ,the vicinity 

of the saddle point, the motion of the system consists of a superposition 

of the two normal modes: bounded oscillations in one direction and 

unbounded motion in the fis sion direction. 

The equations of motion for the overlapping case have been 

solved for only a few isolated values of x and initial conditions. We 

will here only briefly discuss the solution for x = 0.90 corr:esponding 
, * 

to initially starting the system from rest at the saddle point. This 

solution is presented in Fig. 28. The semisymmetry axis c at first 

increases more rapidly than the distance.R. between spheroid .centers 

increas es; this continues until the system has become fairly elongated. 

Then, as the distance between centers continues to increase, the semi­

symmetry axis starts .to deer.ease. When scission occurs, the frag-. 

ments are already moving .apart with a translational kinetic energy of 

the order of 25 MeV. The scission configuration is less eccentric 

(and the fragment 'centers closer together) than the configuration ob­

tainedby minimizing the potential energy of symmetric tangent 

)'( 

. Since the saddle point is a position of (unstable) equilibrium, a 

system initially at rest at the saddle point wouldremain,there (classi­

cally) for an infinite time; we imagine an infinitesimal push in the 

fis sion direction to start the system moving. An analytic solution, 

valid in the neighborhood of the saddle point, 'is used until the system 

is a short distance from the saddle point, where the numerical inte­

gration begins. 
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Fig. 28. Solution of equations of motion for x = 0.90 corresponding 
to initially starting the system from rest at the saddle point. 
The points are equally spaced in time at intervals of 0.107 TO 
l see Eq. (2) for value of T Ol. Note that the scission con­
figuration is Jess eccentric than the configuration of tangent 
spheroids of minimum potential energy, whose location on the 
scission line is indicated by the open circle. 
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spheroids. This resu~ts in about a 20-MeV additional gain in trans-
J 

lational kinetic energy at infinity over the kinetic energy that would 

result from initially starting the system at rest from the configuration 

of tangent spheriods whose eccentricities are obtained by minimizing 

the potential energy. For this x = 0.90 cas~, the total translational 

kinetic energy E was found to be 0.315
5 
E~O) , and the total excitation 

energy X was found to be 0.09t 3 E~O) 
For the higher values of x, where the saddle point is not near 

the scission configuration, the very subtle question of the dynamics 

of the motion from saddle to scission becomes important in determin­

ing what fraction of the total energy goes into translational kinetic 

energy and what fraction into excitation energy. Therefore, for the 

higher values of x,· a calculatiOh of the precise division of the total 

energy into kinetic and excitation energies based on optimum tangent 

spheroids is likely to be in error. 
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IV. STATISTICAL MECHANICS 

We have obtained approximate formulael (14), (15). (16), and 

~(17)] relating the observable properties of fis'sion fragments at infinity 

to the initial values of the coordinates and momenta (when the saddle 

point is the configuration of two tangent spheroids)o We now consider 

the determination of the probability for the system possessing a given 

set of initial coordinates and momenta o These two results will be 

combined in fhe next section,to yield the probability for the two frag­

ments at infinity possessing given total translational kinetic energy, 

fractional mas s, and individual excitation energies and angular mo­

rnenta o 

The conditions at the saddle point would in general depend upon 

the past history of the system-upon how the system was formed and 

upon the path it took in reaching the saddle point.' However, the system 

typically undergoes about 10
6 

fissionlike oscillations after formation 

before it reaches the saddle point (if it ever does)o 51 This provides 

ample opportunity for many interchanges of energy. making ,it unlikely 

that at the saddle point the system liremembers ll the way it was formed 

or most of its previous motion. It is thus likely that at the saddle point 

thermal equilibrium is establishedo This is the central hypothesis of 

the transition-state method used for discussing the reaction rates of 
38 

chemical or nuclear systems, and we will base our further consider-

ations on this standard assumptiono 

The statistical-mechanics discussion is essentially the same 

for both the case in which the saddle point is represented by tangent 

spheroids and the case in which it is represented by overlapping 

spheroidso In the following discussion we will explicitly consider 

probability distributions for the normal coordinates appropriate ,to the 

case in which the saddle point consists of two tangent sphe:r;oids; for 

the other situation (again considering the restricted case of symmetrical 

fragments) the re are simply fewer probability distributions 0 

The dete rmination of the probability of given initial conditions 

is very simple in classical statistical mechanicso The probability P 



that the system. possesses ,a given set of coordinates and momenta, 

with the corresponding total energy X given by (10), is simply 

P = N exp(- 'x/e) , (22) 

where e is the nuclear temperature at the saddle point (measured 

in energy units), and N is a normalization constant. (Use of the 

symbol e to denote nuclear temperature should cause no confusion 

with its earlier use in connection with angles.). When the actual 

Hamiltonian (10) is used, this expression for P is exact (classically) 

to all o.rders in the coordinates and momenta. 

If one expands the Hamiltonian about the saddle point and re­

tains only quadratic terms (harmonic approximation), then the proba­

bility distribution for each normal coordinate and its conjugatemo­

mentum is simply a Gaussian in the normal coordinate or momentum 

l with the exception of P(p) and P(f), which etTe discussed separately 
a * 

below]. Thus, for example, 

(2 3a.) 

(23b) 

(23c) 

Equations analogous .to these hold for the remaining normal coordinates 

and momenta. For one of the momenta and two of the coordinates. the 

Gaussian distributions become infinitely broad and hence reduce to con­

stants. This occurs for P(p ) because the mass-asymmetry effective 
m 

* All probability distributions in this paper are normalized such 

that unity is obtained when the functions are integrated over the allowed 

range of variables, which is usually taken tobe from _00 to -too. The 

range of integration for Pf is taken ~o be from 0 to 00 ,. since for 

negative values of Pf the system does not fis sion but instead returns 

to the p:re-saddle-point configuration; this results .inthe additional 

factor of 2 in the expression for P(Pf). 
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~~ 

mass M 
m 

is infinite, and for P(t) and P(a) because the .twisting 

.and axial-rotation stiffness constants are zero. 

Because of the condition that ,the total angular momentum of 

the system be zero, the distribution in the axial- rotation momentum 

is a Dirac delta function: 

We recall finally that we do not need a probability distribution in f 

because our solutions to the equations of motlon are in terrns of f = 0 

initially. 

As the nuclear ternperature approaches zero, the classical 

distribution ·foreach norrnal coordinate and rnornenturn approaches a 

.. Dirac delta function. However, we know frorn the Heisenberg quanturn­

mechanical uncertainty principle that sirnultaneous localization of the 

systern in a position and conjugate-rnornenturn coordinate can be 

achieved only within limits . Even at zero ternperature each of the 

distributions should,in general.(have a nonzero width, associated with 

the quantum-mechanical zero-point vibrations. As we shall see, the 

quantum-mechanical effects may be irnportant at typical nuclear tem­

peratures. 

Although the quantum-mechanical determination of the prob­

ability distributions would be difficult if one used the cornplete 

Hamiltonian ( 10), the problem can be readily solved in the harmonic 
. , 

approximation. Then, the individual terrns in the Harniltonian (12) 
, '. 

are the Hamiltonians for simple harmonic oscillators. (The effect 

on the distributions of the infinite effective mass M and the zero 
m 

*The Gaus sian distribution in the mass -asymmetry velocity be­

comes, on the other hand, infinitely narrow and hence reduces to a 

.Dirac delta function. This means physically that the mass-asymrnetry 

coordinate changes ,with tirne infinitely slowly at the saddle point. 



-91-

stiffness constant K
t 

will be discussed later.) In our discussion 

below we will refer only to the stretching mode; results for the re­

maining,modes are completely analogous. 

In the coordinate representation,the quantum-mechanical solu­

tion of the stretching mode yields the harmonic-oscillator wave func­

tions l\Jri(s), withcorrespondingenergylevelsE: = (n+ ~)1iWs 
When,the oscillator is ,known to be in the quantum-mecha:nic~l state n, 

the probability that its position coordip.ate has a given value s is 

P n (s) = 1l\J n (s) I 2 . 

In particular, when the oscillator is in the ground state n,= 0, the 

probability distribution for the coordinate is 52 

Po(s) = ll\Jo(s) I 2 = (1T1iWs /Ks )-1/2 exp[- K
s

s2j(1iW
s

D. 
(24a) 

Analogous results for the momentum ps are obtained just as readily 

by solving Schr6dingeri s equationJor the stretching ,rnodein the mo-
52 ' 

mentum representation. For example, the ground-state probability 

distribution for the momentum is 

(24b) 

We note that for the stretching oscillator in the ground state, both 

the distribution in's and the distribution in pare Gaussians, with 

nonzero widths proportional to(1iw /K ) 1/2 a:d (M ,1iw )1/2 , 
. ,s s s s 
respectively. 

Having thus determined probability distributions for an oscil-
" . 

lator in a given quantum-mechanical state, we are now in a position 

to determine probability distributions for an oscillator in statistic,al 

equilibrium with its surroundings. The quantum-mechanical proba­

bility for finding the stretching oscillator, in statistical. equilibrium 

with its surroundings at a, temperature a, at position s is gi venby 
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O(), 

P(s) =L pS 
n 

n=O 

where 

pS = N exp ( _ E S Ie) 
n n 

is the statistical probability that the oscillator is in the qua,ntuin~ 

ITlechanical state n. DeterITlination of the norITlaliza,tionconstant N 

yields (the saITle syITlbol N is used in.this paper to denote each of 
'. 

several norITlalization constants). 

N = 2 sinh [1'1w/(2E>)] • 

By using properties of the harITlonic-oscillator wave functions, this 

infinite sUITlITlationcan be perforITled explicitly, yielding the re-
. 53 54* 

ITlarkably siITlple result ' 

,-1/2 2/ P(s) = (n C ) exp (- s C) 
s s 

where the teITlperature-dependent constant C is given by 
s 

C 
s 

'hw 
s 

= -r­
s 

(
1'1W ) 

coth 28 ' 

, e < < 1'1w s 

(25a) 

The teITlperature dependence of C
s 

can be seen froITl the graph of 

coth t1'1 w /(28)], vs 2e/(1'1w) in Fig. 29. Note that for high temperatures 

. the quantuITl-ITlechanical expres sion (25a) for P(s) reduces, to the clas­

sical result (23a)~ whereas in the low-teITlperature liITlit it reduces to 

* . An analogous forITlula has been used by Marshall Blann (University 

of Rochester) and Wladyslaw J. Swiatecki (University of California 

Lawrence Radiation Laboratory, Berkeley) in connection with fission­

fragITlent charge distributions (unpublished work)o 
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Fig. 29. Coth l11w/(2E»], as a function of 2E>/(11w). The temperature 
dependence of the constants appearing in the probability distri­
butions for the initial conditions is given by this function. 
Shown also is the asymptote of the ftinction (dashed line). 



the distribution (24a) for the quantum-mechanical zero-point motion 

of a harmonic oscillator. 

An analogous probability distribution for p is obtained from 
s 

the momentum- representation solutions to Schrodinger I s equation for 

the stretching mode. The result is
53 

P(p ) 
s 

(25b) 

where 

2M e, e > > 1'1w 
s s 

M 1'1w, e «1'1w • 
s s s 

For high and low temperatures this expres sion reduces to (23b) and 

(24b), respectively. 

We saw earlier (Section IILB) that the mass-asymmetry and 

twisting normal modes have zero frequencies. Thus, 1'1w and 
m 

1'1wt are always small in comparison with E), which means that for 

these modes we are always in the h.igh-temperature (classical) limit. 

Thus, the constants C 
m 

and C are always given by 
Pt 

C m = 2 elK . m 

= 2 M ,0 tV. 

):c 

)~ 

Recall that for x < x
BG 

the mas s -asymmetry stiffnes s constant 

Km is negative. Thus for x < x
BG

' the probability P(m) increases 

rather than decreases with increasing absolute value of m. 
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We have thus derived in the harmonic approximation expres­

sions that are valid quantum-mechanically at any temperature for the 

distributions in both coordinates and momenta for the normal modes 

(except the fis sion mode), Each distribution is a Gaus sian with a 

temperature~dependent width that has simple high- and low-tempera­

ture limits. 

The probability distribution for the fission momentum Pf is 

difficult to calculate quantum-mechanically both .because this mode is 

unstable and because the stiffness . constant K
f 

is not defined. For 

this distribution we use the classical result (23c); rewriting,. this is 

with 

c = 2M e 
Pff 

Any attempt to improve this result should include an improveddescrip­

tion of the shape of the fission barrier, The inaccuracies ariSing from 

using the classical expression for P(Pf} are probably not serious for 

our purposes, since the equations relating the quantities of interest 

at infinity to the initial conditions fre to first order independent of Pf' 

An error in P(Pf} would thus affect the distributions of the quantities 

of interest only in second order. 

For a given normal mode the probability distribution for the 

coordinate is independent of the probability distribution for the mo­

mentum, Also, each normal mode is completely independent of all 

the others. Therefore, the probability for observing the system with 

a given set of initial coordinates and momenta.is simply the product 

of the individual probabilities for each coordinate and momentum. 

The probability distributions for the initial conditions are in 

terms of stiffnesses, masses, and frequencies (all calculated and 

graphed as functions of x in Section III.B), and the nuclear tem­

perature e at the saddle point. The temperature is a function of 

the internal nuclear excitation energy at the saddle point. The dis­

cussion of the determination of e in terms of the internal excitation 

energy will be given in Section VI. 
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V, PROBABILITY DISTRIBUTIONS FOR OBSERVABLE 
QUANTITIES OF INTEREST 

Inthis section we derive expressions for the probability of 

simultaneously observing the two fragments at infinity· with given 

values of the quantities of interest: total translational kinetic en­

ergy, fractional mass, individual excitation energies, and individ­

ual angular momenta. The derivation utilizes the results obtained 

in the two preceding sections: the equations relating the observable 

quantities of interest to the initial conditions, and the probability 

distri butibns for the initial conditions, Since the equations relating 

the quantities of interest to the initial conditions are for the case in 

which the saddle point is represented by two tangent spheroids 

(x $ 0,80), the probability distributions that we derive for the quan­

tities of interest will be for this case also • 

.... -+ 
A. The Distribution P(E, U, Xi' XZ' L 1, L Z) to Lowest Order 

We first consider the ca:lculation of the probability 
-0- -0-

P(E, U, Xi' XZ' L
1

, L Z) of simultaneously observing the two frag-

ments at infinity with given total translational kinetic energy E, 

fractional mass U, individual excitation energies Xi and X Z' and 
-0- -0-

individual angular momenta L1 and L
Z

' For this derivation we 

use the consistent set of lowest-order equations (15), (16), (17), and 

(19) expressing the quantities of interest in terms of the initial con­

ditions. The resulting probability distributions will then be valid 

only to lowest order in the quantities of interest. We will later use 

(14) and (15) to calculate the distribution P(E, U) to a higher order 

In E and U than that used in the present calculation. 

The probability distribution for the observable quantities of 

interest is 0 btained by multiplying the probability distribution for 

the initial coordinates and momenta by the Jacobian for the trans­

formation from the initial coordinates and momenta to the quantities 
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of interest, and then integrating over the remaining coordinates 
~<: 

and momenta. 

Since E, Xi' and X
2 

are not independent,. but are related 

to first order by the conservation-of-energy equation (20), the prob-
-+ -+ 

ability. distribution P (E, U, Xi' X 2, L
1

, L 2 ) contains the Dirac 

delta function o(E + Xi + X
2 

- EO - '2 X~). This probability distribu­

tion is then given by 

where a particular choice has been made for the remaining variables. 
-+ -+ 

In order to calculate P( U, Xi' X
2

, L
1

, L 2 ) we need to invert 

the set of equations (15), (16), and (17) to obtain nine of the initial 

conditions as functions of the nine quantities of interest and there­

ma~ning initial conditions. (Each component of angular momentum 

of each fragment is regarded here. as a separate quantity of interest. ) 

If we choose m, s, d, Pb ' Pw ,Pb ,Pw.,J/t,and Paas dependent 
o bl thO 0 • xo x y y var1a es, 1S 1nverS1on glves 

m U -
1 

= 2 (26a) 

X 1+ X 2 - 2XO . 1 
= s 

2X
1 , s 1 

Xi ~ X - 2X (U - -2) 
= _~ __ 2~:--_1-",:...m ____ _ 

2X1 d , 

'(26 b) 

d (26c) 

= L 1x - L 2x - 2L1, b bx (26d) 

* For a discussion of coordinate transformations, see any advanced-

calculus textbook, for example, Brand. 55 
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L 1x + L - 2L· w 
2x 1, w x 

Pw = 
2L1 x ,pw 

(26e) 

L1 L Z - 2L1 b by 
Pb = Y Y , 

2L 
Y 1,Pb 

(26f) 

L 1y + L Z - 2L1 w 
Pw = Y ,w Y 

ZL
1 Y ,pw 

(26g) 

L - L
Zz 1z 

Pt = 
,,[T 

(26h) 

L 1z + L2z 
Pa = 

..}2 
(26i) 

With this choice of dependent variables, the equation transforming 

the initial probability distribution into the desired probability distri­

bution is 

-00 -00 -00 . -00 

dw 
y 

X P(m, s, d, b ,w ,b ,w ,0. ,p ,Po, P. 'Pt ' P ) x x y Y ~D W ~D W a 
. .x x y y 

8(m,s,d,% 'Pw'Pb'Pw,Pt'Pa ) 
X I __ ~~-=~~-=_x __ ~x __ ~y~~y~-= __ ~~ 

8 (U,X1, XZ,. L1x' ~x, L 1y' ~y' L1z' ~z) 

we have already integrated over the initial coordinates and momenta 

not involved in the transformation, obtaining unity in each case. The 

pro bability distri bution in the integrand is given by the product of the 

probability distribution for each normal coordinate and momentum 

appearing in its argument, as determined in Section IV. It is under­

stood that this probability function has the set of equations(26) substi-

tuted for the variables m, s, d, P b ' Pw ' P b ' Pw ' Pt' 
x x y y 

and P . a 
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The absolute value of the Jacobian for the transformation is given by 

We note that the transformation equations for In, s, and d 
-I> ...... 

are independent of L1 and L Z; and the equations for 

Pb ' Pw ' Pb • Pw ' Pt' and Pa are independent of U, Xl' and X Z' 

Be~aus:of this, the probability P(U, X
1

' XZ' L
1
,'L

Z
) split.s into a 

product of two marginal probability functions: 

with 

and 

o Z 
(X 1+ X Z-, ZX

1
) 

4X Z C 
1, s s 

[X -
1 

1 Z 
( U ~2) 

c 
In 

( 
1 . )Z f::. (;J:: f+d: 

ZL . L . x Je x y y 
1,0 . 1,p ~OO -00 -00 -00 

, ,~b w . 

Z 
ZL

1 
'W ) + (L

1 
. + L ,w x . y-z.y 

'(L - L )Z1 1z Zz 
- 'ZC . ' .. 

" ' Pt 



* We have used the abbreviations 

, 
Z L Z C = C 

Pb 1, Pb 

, Z 
C = Z L1 C 

Pw 'Pw 
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(L _ L )Z} 
lz -Zz O(L + L ). 
ZC lz Zz 

Pt 

Z 
+ ZL 1 b C b , 

Pb , 

ZL Z + C . 
Pw 

1, w w 

-+ -+ 
The distribution P(E, U, X

1
, X

Z
' L

1
, L

Z
) is of the form 

(Z8) 

exp [ -Q(E, U, Xi' X Z' L ix' L Zx' L iy ' L Zy ' L lz ' L Zz )] times two Dirac 

delta functions, where. Q(E, U, X 1, X Z' L ix' L Zx' L 1y ' L Zy ' Liz' L Zz ) 

is a positive -:definite quadratic function of its ten variables. In the 
-+ -+ 

language of statistics, P( E, U, Xi' XZ' Li' L Z) is a iO-variate normal 

distribution56 multiplied by two delta functions. Similarly, the mar­

ginal probability function P(U, Xi' XZ) is a trivariate normal distri-
-+ -+ 

bution, and P(Li' L
Z

) is a 6-variate normal distribution multiplied 

by a delta function. 

i. Distributions Obtained from P(E, U, Xi' X
Z

). 

We have derived the lowest-order result for the probability of 

observing the two fragments at infinity with given values of total trans­

lational kinetic energy, fractional mass, and individual excitation 

energies: 
·00 

P(E, U, Xl' XZ) = P( U, Xi,XZ} c5(E +X{+ X Z- E - ZX i ), 

where P(U,Xi,XZ) is given by (Z7). By integrating over the quantities 

t,c 
If there were no angular momentum induced by the torque arising from 

I . 

the presence of the electrostatic field, then C would equal C , since for 
Pb Ph' 

this case Ll = 1/,,[2, and Li b= O •. An analogous statement holdS for C • 
'Pb ' Pw 
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not of immediat.e. interest in this probability distribution, we obtain 

marginal probability distri butionsJorthe 0 bservation of a smaller 

number of quantities. Each of the resulting probability functions is 

also a normal distribution (multiplied possibly by a delta function). 

For example, we obtain 

= 

and 

p (U) 

1 

2 . 2 . 2 .2 1/2 
(41T Xi C (Xi C +X1d C d )] ,s s ,m m , 

2 ] 
(X - X ) . 1 2 

1 

. 2 2 2 1/2 
[1T(X 1 C + Xi C + Xi d Cd)] . ,m m ,s s , . 

X 2 
1,m 

1 2] (U - -) 
2 

C . 
m 



-102-

We can also obtain from (27) the probability distribution for 
. 

mass and total excitation energy X by substituting 

):c 
and integrating over X

2
: 

P(U,X) = 1 
1/2 

(4TT 2 e X 2 e ) 
m 1,s s 

1 2 ° 2 J (u- 2) .. (X-X.) 

e 4X
1 

l e . 
m ,s s 

An integration over U in this equation then gives 

P(X) = 
[

(X _ XC) 2 ] 
exp -

4X 2 e 
1,s s 

Since the total translational kinetic energy and the total ex­

citation energy are related to first order by the conservation~of-energy 

equation (20), the two preceding equations are completely equivalent 

to 

exp [ -

i 2 0 2] 
P(E, U) 

1 (U - 2) (E - E ) 
(29) = 

[TT 2e ale (EO)l] 1/2 . em -. a 2e (E O)2 
m s s 

and 

exp [ -

2 ] ; P(E) 
1 (E-EO) 

= . l 1/ l 2 
[TT a 2e (EO) ] ale (EO) 

s s 

>Ie 
This equation is also obtainable directly from P(m,s) andthe 

equations U = ~ + m and X = xO + 2X
1

, s s [obtained from (16) by 

adding Xi and Xl]' 
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we have also used the relationship (21) between X 1, s ° and aE . 

Similarly, Eq. (27) is equivalent to' 

-- P(E, U, Xi) = 1 

[

--1 2 

_ (U --) 
- 2 exp -

C 
_ m, 

- 2 
(E _ EO) 

a 2C_ (EO) 2 
s 

. 01 ° 12} [X..,X +-(E-E')-X (U--)] - 1 1 2 1,m 2 
2 . 

Xi d Cd , 

This result is useful for discussing, for example, the excitation 

energy of a single fragment, for given values of the total translational 

kinetic energy and fractional mass. 

From the expression (29) for P(E, U) and the transformation 

-( 18) relating the total translational kinetic:energy E and the fractional 

mass U to the individual translational kinetic energies E1 and E
2

, 

we obtain the probability distribution for individual translational 

kinetic ene r gies : 

P (E 1,E2) = P(E, U) 
8 (E, U) 
8(E

1
,E

2
) 

2 
(E1+E2-E~ 
a 2C (EO) 2 

s 

tl'ie;equation resulting from the transformation has been reduced to 

lowest order in E1 and E
2

• By integrating over E2 in this equation 

we obtain the distribution in translational kinetic energy of a single 

fragment: 

1 
P(E 1) = ------~-~--'::j}""""­

_ - 2 - ° 2 ~2 
[JT( 4C +aC HE1 ) ] m -s 

e"P [-

" ! 
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It should be recalled that for x < x
BG 

' em is negative,re = 

suIting in the mas s distribution increasing rather than decreasing 

with mass asymmetry. Thedistdbutions involving U then approach 

infinity for large values of U and are thus not normalizable. In a 

contour plot of P(E, U) vs E and U, for example, the lines of con­

stant probability are not ellipses for x < x
BG

' but instead are two 

families of hyperbolas. One family represents lines of increasing 

pro bability for increasing mas s asymmetry. whereas the other family 

represents lines of decreasing probability for deviations in the kinetic 

energy from its most probable value. 

Since the above probability functions are normal distributions 

(of one or more variables), all the information they contain can be 

represented in terms of means, variances, and correlation coeffi= 

cients (or alternatively, covariance s). 56 For example, a monovariate 

normal (Gaussian) distribution is completely specified by two quanti-
* ,ties: the mean and the variance (s quare of the standard deviation). 

From the standard form for a Gaussian distribution (whose mean is 
2 

x and whose variance is a ), 
x 

P(x) = 

(27T 

1 
2 1; 2 

a ) 
x 

- 2] (x = x) 
2 ' ' 

2a x , 

we can determine by inspection the mean and the variance of each of 

the Gaussian distributions above. 

~( 

. The mean x of the distribution P(x) is defined by 

x = I x P(x) dx, 

where the integration is over the allowed range of x. The variance 
2 

ax' which is proportional to the square of the width of the distribution, 

is defined by 

2 a 
x I - 2 

= (x - x) P(x) dx. 
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To specify a bivariate normal distribution, five quantities are 

required ih general: themeail and variance of each variable, and the 

correlation coefficient (or alternatively, the covariance).' The cor-

relation coefficient p of the distribution P(x; y) is defined by57 
. xy . . 

p xy 

f dxfdY (x-x) (y-y) P(x, y) 

- .----~----------------------(J 
x 

(J 
y 

. :. . 

The value of the correlation coefficient, which has a range of values 

from -1 to +1,57 indicates the degree of correlation of the vari­

ables. A positive value of this coefficient means that the two variables 

are more likely to be simultaneously large or else simultaneously 

small; a negative value means that if one variable is large, the other 

is more likely to be small. The distributions P(U, X) andP(E, U) are 

seen to have correlation coefficients that are zero. On the other hand, 

the correlation coefficient for the distribution P(X1, X
2

), for example, 

is nonzero; we find that it is given by 

= (30) 

, 
Coefficients of correlation could be similarly calculated for the other 

di sttibutions. 

To illustrate the magnitudes of the widths of these distributions, 

we present sample graphs of some of the more important functions 

derived above. The results are for nonviscous fragments with the type 

of hydrodyna~ic flow we have been considering: a superposition of an 

irrotational flow and a flow corresponding to a uniform rotation. All 

graphs refer to the fission of the compound m.lcleus 8~t2~3, with a 

nuclear temperature at the saddle point of e = 1.13M~V. (This sit­

uation may be obtained experimentally, for example, by bombarding 

83Bi 209 with 65-IvieV alpha particles.) In two of the graphs we 
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illustrate the effect of temperature on the widths by also presenting 

the result for e = O. In Fig. 30 is presented a contour map of 

P(X1, X
2

) vs Xi and X
2

. Figure 31 shows the distribution in exci­

tation energy of a single fragment: P(X
1

) vs Xi' The distribution 

in total excitation energy [p (X) vs X]. which is equivalent to the 

distribution in total translational kinetic energy [p (E) vs E], is 

shown in Fig. 32. The lowest-order result (29) for the distribution 

ln mass and total translational kinetic energy is presented in Fig. 33 

as a contour map of P (E, U) vs E and U. 

An interesting feature of the theory is the prediction that the 

excitation energies should be anticorrelated-if one fragment has a 

large excitation energy, then the other fragment is more likely to 

have a small excitation energy, and vice versa. This can be seen 

either from the contour map of P(X
1

, Xi) in Fig. 30, or from eval-
213 

uating Eq. (30) for the correlation coefficient. For 85At and 

8= 1.13 MeV, we find that PX X = - 0.46. For this same nucleus 

in the high-temperature (class[ca1) limit, P Xi xt - 0.44, whereas 

in the zero -temperature limit, P Xi X 2 = - 0.58. Thus the excitation 

energies are predicted to be somewhat more strongly anticorrelated 

at low temperatures than at high temperatures. 

The physical reason for the anticorrelation in the excitation 

energies is very simple in the classical limit. The result can be 

interpreted in terms of the relative amplitudes of the stretching and 

distortion-asymmetry modes, since the excitation energy of a frag...: 

ment at infinity depends primarily upon its initial elongation. Pure 

stretching-mode oscillations correspond to completely correlated 

fragment excitation energies, whereas pure distortion-asymmetric 

oscillations correspond to completely anticorrelated fragment excita­

tion energies. The potential energy in the neighborhood of the s.addle 

point is found to be "stiffer" with respect to stretching than with 

respect to distortion-asymmetry. The distortion-asymmetric oscil­

lations therefore possess larger amplitudes than the stretching oscil­

lations -hence, anticorrelation. 
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Fig. 30. Contour map of the probability distribution of individual 
fragment excitation energies, P(X1.' X 2) vs X

1 
and X 2; 

The lines of constant probability (el.lipses witli axes rotated 
/45 0 with respect to E and U axes) are labeled by rela­
tive probability .. The value of X~ is 21.3 MeV. The cal­
culations are for the case of the compound nucleus 85At213 
(x == 0.677) at a nuclear temperature of 1.13 MeV 
(R3Bi209 + 65-MeV a., for example). 
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31. The probability distribution of excitation energy of a 
single fragment, P(X 1 ) vs Xi' The value of X~ is 
21.3 MeV. The calculations are for the case of non­
viscous fragments and the fission of the compound 
nucleus 85At213 (x = 0.677), at two different values of 

the nuclear temperature 8. 
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The mean (or most probable) value of each of the quantities 

of interest is seen to be independent of nuclear temperature. How­

ever, since the constants C s etc. are temperature -dependent, the 

widths (or variance s) of the distributions are functions of nuclear 

temperature. As the temperature approaches zero, the widths of 

the distributions approach finite values determined by the quantum­

mechanical zero-point vibrations of the appropriate oscillators. 

(Exceptions occur for the mass distribution and the distributions in 

the z-component of angular mom~ntum. Since the mas s -asymmetry 

and twisting frequencies are zero, the widths of these distributions 

approach zero as the nuclear temperature approaches zero.) For the 

fission of a typicallighter-than-radium nucleus, the zero-point full 

width at half maximum of the distribution in total translational 

kinetic energy is ::::: 10 MeV. The width of the kinetic-energy distri­

bution arises primarily from oscillations in the distance between 

fragment centers (stretching mode). Because of the near cancella­

tion of the opposing effects of the surface' and Coulomb energies near 

the saddle point, the potential energy in the stretching direction is 

very flat. This means that a very small quantum:"mechanical un­

certainty in the stretching-mode potential energy (::::: 0.3 MeV) is 

"amplified" into a rather large zero-point width in the total trans-

1ational kinetic -energy distribution. As the nuclear temperature in­

creases, the uncertainty in the stretching-mode potential energy 

increases, resulting in a corresponding increase in the wldth of the 

kinetic -energy distribution. 3 
-+ -+ 

2. Distributions Obtained from P(L
1

, L
2

) 

-+ -+ 
From Eq. (2.8) for P(L

1
, L

2
) we can obtain several useful 

formulae involving the fragments' angular momenta. We first con­

vert from cartesian coordinates to spherical coordinates through the 

tr ans formation 
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L
ix = LI sin 8 1 cos <Pi' 

L
Iy 

::: LI sin8 I sinq,I' 

LIz = LI cos 8
1

; 

an analogous set of equations holds for fragment 2. The magnitude 
. -of Ll is L

I
, the angle between the angular-momentum vector of 

fragment 1 and the zi axis (the line connecting the fragment 

centers) is 8
1

, and the azimuthal angle is <P
1

, We further define 

<\> = 4>1 -4>2' , 
<\> = ( rtj> 1 + 'G>2 )/ 2 ; 

if one looks along the line connecting the spheroid centers, then q, 

is the angle between the fragments' components of angular ITlomentum 

perpendicular to this line. , 
Equation (28 ) becomes, after an integration over <\> ( upon 

which the probability function does not depend) is performed (the nor­

malization is such that the range of <P is from 0 to 11'), 

4..[2 L~ L~ sin8! sin82 

(rrC ) 1/2 rrC' C' 
Pt Pb Pw 

""! 

+ C
1 

Ll L2 cos 81 cos 82j 
Pt 

6(L1 cos 8 1+ L2 cos ( 2 ), 

(31 ) 
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32. The probability distribution of total fragment excitation 
energy, P(X) ys X. The value of xO is 42.6 MeV. The 
calculations are for the case of nonvis cous fragments and 
the fission of the compou'nd nucleus .85At213 (x = 0.677), 

at two different values of the nuclear temperature e. 
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Fig. 33. Contour ITlap of the probability distribution of total 
trans lational kinetic energy and fractional ITlas s, 
P(E, U) vs E and U, calculated to lowest order 
l Eq. (29)]. The lines of constant probability (ellipses 
with axes parallel to the E and U axes) are labeled 
by relative probability.· The value of EO is 151.4 MeV. 
The calculations are for the case of nonvisco~s fragITlents 
and the fission of the cOITlpound nucleus 85At 13 (x = 0.677) 
at a nuclein teITlperature of 1.13 MeV (83Bi209 + 65-MeV 
a, for example). 
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The integration ov~r q, in this result can be performed explicitly to 

'yield a probability distribution that is independent of azimuthal angles • 
. ' 58 

Since 

J" exp (x cos <I> ) d<p = " 10 (x) = "J 0 (ix) 

o 

= 'IT [1 + (x/zl + ~x/zt + 
1 • Z 

(x/ z ) 
6 

+ J ( 3 Z ) 
Z Z Z ... ' 

1 • Z • 3 

where J 0 denotes the Bes sel function of the first kind of order zero 

(10 is the modified Bessel function of the first kind of order zero); 

the, expression for P(L1, L Z' 8 1, 82 ) ,can be obtained from (31) by 

inspection. Also, because of the presence of the delta function, an 

integration over anyone of the four variables L 1" L Z' 8 1, 8 2 can be 

performed immediately. 

In the zero-temperature limit the twisting mode is not excited, 

and the twisting-momentum constant C approaches zero. This 
p 

means physically that the z component tof angular momentum of each 

fragment is zero, and the angular -momentum vector of each fragment 

is perpendicular to its direction of motion. The integrations over 

both 8 1 and 8
2 

in (31) can then be easily performed, yielding the 

* zero.:temperature result; 

~:c 

4L
1

L
Z 

,I I 
'lTC C 

Pb Pw 

exp 

cos <1>] 

This expression could alsobe obtained directly from the set of 

equations (17) and P(bx'wx ' by;wy,Pb 'Pw ,Pb 'Pw ) by integrating over 

the bending and wriggling angles, ancftran~forfuingYthe result to cylin­

drical coordinates. 

• 
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i 

it is understood that the zero-temperature limits of C -and C 
Pb P 

are to be used. By employing (32) the zero .. temperature result for 

P(L
1

, L
2

) can also be written down by inspection. 
. -+ -+ 

If, in the original expression (28) for P(L
1

, L
2

), we integrate 

with respect to L 2x' L 2;, and L 2z ' we obtain the probability distri­

bution for the angular momentum of a single fragment: 

[ 

2 2 
exp _ ,-2_( ~r-1_. x_+_L-'11~y;...-) 

C + C 
Pb Pw 

2L2 ] 1z 

C 
Pt 

If we transform to spherical coordinates and integrate over the azi­

muthal angle (upon which the probability function does not depend), 

we obtain 

4,J"Z L~ sin e 1 

= (lTC' p2(C' + C' 
Pt Pb Pw 

- 2 L1 cos (71 . 2 2 II ] 

An integration over e 1 can be carried out to give the probability of 

observing a single fragment with given magnitude of angular momen­

tum: 

4L1 , 
= 

[( C I + C t )( C i + C i _ C )] 1/2 

Pb Pw Pb Pw Pt 

XH 

where H(x) is the error function, defined by59 

H(x) = r 
o 

2 
exp(-a)da. 

." 
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In the zero-temperature limit, 

pression reduces to 
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C approaches zero, and this ex­
Pt 

- -The various probability functions obtained. from P(L
1

, L
2

) 

are useful as regards specific information on the fragments' angular 

momenta a,t infinity. One has available in these formulae predictions 

regarding the magnitudes of the angular momenta, the angles between 

the angular momenta and the line connecting fragment centers, and 

the angle between the components. of angular momentum perpendicular 

to the line connecting fragment centers. These predictions include 

the correlations between the various quantities, as well as their de­

pendences upon nuclear temperature and fissionability parameter. 

As a single example, we present in Fig. 34 the curve P(L1 ) 
213 

vs L1 for the compound nucleus 85At and E> = 1.13 MeV. The 

result for nonviscous fragments with hydrodynamic flow of the type 

we have been considering is given by the solid line,. and the result for 

infinitely viscous fragments by the dot-dashed. line. We also indicate 

the result (short-dashed line) that would follow if the torque exerted 

by one fragment on the other through the electrostatic interaction 

were zero-this represents physically the distribution of angular mo­

mentum at the scission configuration. At scission, the most probable 

magnitude of the angular momentum of a fragment is seen to be about 

8. 511. The corresponding most pro bable value at infinity is about 1011 

for the nonviscous case, and about 1511 for the viscous case. The 

relatively large difference in the predicted angular-momentum distri­

bution between the case of viscous fragments and the case of nonviscous 

fragments will perhaps make it possible to estimate experimentally the 

degree of nuclear viscosity. For this to be practicable, of course, the 
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Fig. 34. The probability distribution of the magnitude of angular 
momentum of a single fragment, P(L

1
) vs L

1
. The result 

that is calculated for nonviscous fragments (with hydro­
dynamic flow consisting of a superposition of an irrota­
tional flow and a flow corresponding to a uniform rotation) 
is given by the solid line, and the result for infinitely 
viscous fragments by the dot-dashed line. The short­
dashed line represents the result that would follow if the 
torque exerted by one fragment on the other through the 
electrostatic interaction were zero. The calculations 
are for the compound nucleus 8SAt213 (x = 0.677) at a 

nuclear temperature of 1.13 MeV (S3Bi 209 + 65-MeV a, 
for example). 

" 
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present theory of fragment angular~momentum distributions would 

have to be refined to the stage where predictions can be trusted to 

within considerably better than 50 0/0. 

H. The Distribution P(E, U) to Higher Order 

We have seen [Eq. (29) and Fig. 33] that to lowest order in 

thevariables E and U, the probability function P(E, U) is a bivariate 

normal distribution; in a contour map of P(E j U) the lines of constant 

probability are' ellipses whose axes are along E and U. This lowest­

order result for P(E, U) is completely specified by EO (the mean value 

of E; the mean value of U is one-half from symmetry) and the two 

variances <Ti and <Tt', which measure the widths of the distributions 

in E and U, respectively. By use of this result we are able to dis~ 

cus:s the distribution in mass and total translational kinetic energy in 

the immediate vicinity of the most probable values. 

If one desired to discuss the deviations of the distributions.in 

mass and total translational kinetic energy from a bivariate normal 

distribution, then it would be necessary to inClude in the expression 

for P(E, U) higher-order terms in the variables E and U. Whereas 

in the bivariate normal distribution the exponent contains only the two 

quadratic terms (E':'EO)2 and (U - ~ )2, the exponent of the distribu­

tion to the next higher order contains in addition the two cubic terms ° 12 03 14>:~ (E-E )( U - 2) and (E - E ) , and the quartic term (U - 2)' In 

addition to "the mean EO and the two variances, three additional quan­

tities, the coefficients of the two cubic terms and the quartic term, 

are needed to specify P(E, U) to this order. These coefficients have 

~~The other two cubic terms, (E_EO)2(U_ ~) and (U..,~)3. are absent 

because P(E, U) is an even function of (U - ~). The absence of the 

(U -i)3 term means that the (U -i)4 term is responsible for the first­

order deviation of the distribution in mass from a Gaussian, and must 

then be considered to this order. The distribution P(E. U) would also, 

in general, have a pre -exponential dependence upon E and U. 
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. ° 3 simple physical significances: The coefficient of the (E -E ) term 

strongly affects the skewne s s 60 of the distribution in E, and deter­

mines the lowest-order deviation of the distribution in E from a 

pure Gaussian-whether the distribution has a high-energy or a low­

energy tail; and by how much. Similarly, the coefficient of the 

(U - ;)4 term strongly affects thekurtosis 60 (peakedness or flatness) .... 
of the distribution in U, and determines the lowest-order deviation 

of the distribution in U from a pure Gaussian-whether the distribu­

tion is more peaked than a Gaussian or has a flatter top. We will 

find that the coefficient of the (E - EO) (U - i)2 term determines both 

how rapidly the most probable (or mean) value of Eas a function of 

U falls off with (U - f)2, and also the derivative .with respect to E 

(evaluated at E = EO) of the variance of the mass distribution as a 

function of E. To the next higher order beyond including these three 

terms, the exponent of the P(E, U) distribution would contain the quar­

tic term(E - EO)4, the sixth-order term (U_~)6, along with cross 

terms in E and U; and so on. 

The derivation of the bivariate normal distribution (29) utilized 

a combination of two lowest-order results: (a) the equation (19) relating 

E linearly to the initial conditions, and the exact equation (15) for U, 

and (b) the initial-conditions probability distributions obtained in SeC­

tion IV by expanding the potential energy about the saddle point and 

retaining only quadratic terms (harmonic approximation). We have 

available [Eq. (14)] a much more accurate equation relating E to the 

initial conditions than the fir st-order equation (19). In addition to 

taking into account the dependence of E on the mas s -asymmetry coor­

dinate m and the fission and stretching momenta Pf and Ps' Eq. (14) 

also includes a more precise dependence of E on the stretching 

coordinate s. However, the harmonic ~oscillator probability distri bu­

Hons that we have used for the initial conditions represent the most ac­

curate quantum-mechanical re sult that can be easily 0 btained. In order 

to obtain the best expression for P(E, U) that still incorporates initial 

conditions determined quantum-mechanically, we will use the same 

probability distributions for the initial conditions as before, but will 

, . • 



-119-

use the more accurate equation (14) for E and the· exact equation 

(15)for U, Although the resulting expression for· P(E, U) will be 

strictly accurate only to lowest order in E and U, it will in addition 

contain higher -order terms inE and U, The higher -order terms 

represent the effect of the nonlinear transformation (14) expressing 

E in terms of the initial conditions. Since there are two separate 

steps involved in the calculation of ptE, U), the treatment of one step 

essentially exactly and the other step to lowest order in E and U is 

not completely inconsistent, 

We will later calculate an expression for P(E, U), valid in the 

classical limit, in which we use probability distributions for the initial 

conditions obtained by retaining certain anharmonic terms in the ex­

pansion of the potential energy about the saddle point. 

1. P(E, U) for Initial Conditions Determined in the Harmonic 
Appr oximation 

In order to calculate P(E, U) we need to invert the two equations 

(14) and (15) to obtain two of the initial conditions as functions of E 

and U and the remaining initial conditions, If we choose m and s 

as dependent variables, this inversion gives 

U 
1 

m = - "2' (33a) 

1 4~10U)EO - 1 s = 2 a. 
M Pf 

~ ) c
1 E ~M£ + 

MO M f s 

(33b) 

With this choice of dependent variables, the transformation from the 

initial probability distribution to the desired pro bability distribution is 

given by 

+00 

J dps 
o -00 

a(m, s) 
P(m, s, Pf'ps ) a (E, U) 
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we have already in~egrated over the initial coordinates and momenta 

not involved in the transformation. It is understood that the set of 

equations (33) is substituted for m and s in P(m,s, p£,ps)' which 

is given by the product of the probability distribution for each normal 

coordinate and momentum appearing in its argument, as determined 

in Section IV. 

The double integral over p and Pf cannot be expressed in a s . 
closed form. ( By an appropriate change of varia bles, the double 

integral can be reduced to a single integral in which the new integrand 

includes an error function; in practice, this transformation is not very 

useful.) However, if we expand the expression (33b) for s in powers 

of the small quantity 

(

. 2M ° c Pf 
M 1 
.. £ M M 

° f 
E 

everywhere it appears in the integrand, we can integrate the resulting 

expansion term by term, obtaining an asymptotic series expansion for 

P(E, U). The result is found to be 

P(E, U) 

where 

F(E, U) 

exp J (U - .!.)2 
_ 2 

1 c 
L m 

F(E, U} is the asymptotic series 

= 1 + r1 + 4U(1-U) EO[E - 4U(1 -
~. a 2 C E2 
L s 

c 1 

~:2J 

[E-4U(1- U)EO] 2 
a 2C E 2 ·· 

s 

+ .!". 

} 
(34) 

(35) 

The function F(E, U) is close to unity, except where the term in braces 

becomes very large. This occurs only when E and/or U are far 
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from their most probable values. (Since this is an asymptot'id: series 

rather than a power series, the expansion converges for a definite 

range of the variables E and U. rather than for an infinite number of 

terms retained in the expansion.) Thus, the approximation F{E, U) = 1 

is a very good one. [Setting F(E. U) = 1 is equivalent to neglecting in 

(14) the dependence of E on the initial momenta Pf and ps.] 

An alternative way of writing peE, U) is more useful for some 

purposes than (34). 1£ we collect terms in (34) according to powers 

of (U - ~). we 0 btain 

peE, U) exp [-

(36) 

wher·e the quantities· G and H(functions of E) are defined by 

1 
G = C- + (37a) 

m 

H= (37b) 

It is instructive to compare the current higher-order result 

for peE, U) with the lowest-order expression (29) derived earlier. 

Whereas (29) is a bivariate normal distribution, the current result is 

not-in a plot of peE, U) vs E and U, the lines of constant prob­

ability are not ellipses. In Fig. 35 is presented a contour map of the 

current result for peE, U); this may be compared directly with the 

map of the lowest-order result shown in Fig. 33. Near the position of 

maximum probability the contour lines are close to ellipses, but in the 

region of smaller probability they tend toward a triangular shape. The 

reason for this can be seen mathematically from Eq. (36) and the 
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20 <8>=\.\3 MeV 

\0 -> 
Q) 

~ 

0 
0 
lLJ 
I 

lLJ 

"'"\0 

-20 

o o. \ 
U -\/2 

MU·33548 

Fig. 35. Contour map of the probability distribution of total 
translational kinetic energy and fractional mas s, 
P(E, U} vs E and U, calculated for initial conditions 
determined in the harmonic approximation l Eq. (36)] . 
The lines of constant probability are labeled by rela­
tive probability. The value of EO is 151.4 MeV. The 
calculations are for the case of nonviscous fragments 
and the fission of the compound nucleus 85At213 

(x = O.677) at a nuclear temperature of 1.13 MeV 
(S3Bi209 + 65-MeV a, for example). 
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definition (37a) for * 1 2 G. Since G is the coefficient of the (U - '2 ) 

term in the exponent, 1/.fG is proportional to the width of the mass 

distribution [as. long as the coefficient H2 of the (0- ~)4' term is 

small]. Because G increases 'with increasing E ( and vice versa), 

the mas s distribution is narrow for high E and broad for low E. 

This means that the lines of constant pro babilityac:quire the appear­

ance of rounded triangles in a plot of P(E, U) vS'E and U. 

If one extrapolates' Eq. (36) for P(E, U) to very low values. of 

the total translational kinetic energy E, then the lines of constant 

pro bability begin to curve in the opposite direction in the region near 
1 2 

.. symmetry. [This occurs because the coefficient G of the (U - '2) 

term becomes negative for sufficiently low values of E. This is just 

beginning to occur in Fig. 35 for the contour lirie of one-tenth maximum 

pro bability.] This would mean physicaliy that the probability for 0 b­

taining a given mass is greater for asymmetric· divisions than for sym­

metric ones. However, this aspect of the theory is changed if, when 

determining the pro ba bility distributions for the initial conditions, one 

takes into account terms beyond quadratic in the expansion of the poten­

tial energy about the saddle point (to be discussed in Section V. B.2). 

When the lowest~order anharmonic terms are retained, this effect 

starts occurring at a much lower value ofE than that given by (36). 

[The: Gontour',plot of P(E, U) for the case in which these anharmonic 

terms are included is shown in Fig. 39.] It is not clear what effect 

the inclusion of still further anharmonic terms would have on P(E, U}. 

* The triangular appearance of the contour lines results physically from 

a combination of two things: (a) the total translational kinetic energy 

has a linear term in the stretching coordinate s, but only a' quadratic 

term in the mass-asymmetry coordinate m, and (b) the probability 

distributions in both sand mare Gaussians. 
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From the distribution P(E, U) one may obtain, by performing 

suitable integrations o.r by differentiating, other quantities of physical 

interest. We now consider the calculation of approximate analytical 

expres sions for such quantities; for these derivations, we use the 

very good approximation F(E, U) = 1. 

By integrating over the total translational kinetic energy E, 
>:c 

we obtain the distribution P(U) for fractional mass: 

00 
( 

P( U) = I 
-" o 

P(E, U) dE 
[ 

(U ~ ~)2 J' 

exp . - ---=c-~ . (38) 

The mean total translational kinetic energy, as a function of 

fr actional mas s, is defined by 

E(U)= 

00' r E P(E, U) dE 
JO 
·--_··--P( U-) -

If we use the result (34) for P(E, U), with F(E, U) = 

(38) for P( U), we obtaint 

(39 ) 

1, and the re·sult 

':CThis result follows directly from the equation U = i + m and the 

distribution for P(rh), without the use of the approximation F(E, U) =1. 

, It may also be obtained by substituting (34) for P(E, U), with FlE, U) = 1, 

and integrating. 

tWe note that as it stands this integral diverges logarithmically (at 

the upper limit)! This occurs because both the expression (14) for 

E as a function of s and the probability distribution (25a) in s 

are incorrect when s is far from zero-in particular, when the two 

fragments are so close together that they produ,ce an infinite kinetic 

energy_ In reality,as the distance between the two fragments ap­

proaches zero, the actual probability P(s) , falls off much more rap­

idly than ,a Gaussian distribution, because the potential energy in­

creases much more rapidly than a parabola. Thus there should actually 

appear in the integrand ,an additional \I damping" factor for large E, 

which would make the integral converge. 



f 
o 

dE 
E 

-125-

. 0 2} 
[E-4U(1-U)E] 

a 2 C E2 
s 

If we now make the substitution 

* this becomes 

E(U) = 4U (1 - U)E
O 

(rrC.) 1/2 
s 

4U(1 - U)E
O 

E = 1 + as 

r 
-00 

ds 
exp ( _ S:.). 

1 + as 

where we have replaced the lower limit -1/ a by -00. By expanding 

the denominator of the integrand and integrating term by term, we' 
. 2 

obtain an asymptotic series expansion in powers of a C
s 

for E(U): 

(40) 

The variance of the distri bution in total translational kinetic 

. energy? as a function of fractional mass, is defined by 

',; r [E E( U)] 2 P(E, U) dE 

2 
( U) 0 

O"E = 
P( U) 

We obtain, by methods analogous to those used in calculating E( U), 

the asymptotic series expansion 

2 1 0 2 2 2 
O"E (U) = 2" [4U (1 - U)' E] a C s( 1 + 4a. C s + .•• ). 

~( 

This result could also have been obtained-more easily-directly from 

(14), with the neglect of the initial momenta, and the probability P(s). 
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Higher statistical mome nts of the distribution in total translational 

kinetic energy (as functions of fractional mass) could be calculated 

in a similar manner. 

One may also obtain from P(E, U) the most probable total 

translational kinetic energy, as a function of fractional mass, by 

solving the equation 

8P(E, U) = 
8E 0. 

If we use the expression (34) for P(E, U), with F(E, U) = 1, we obtain 

4U(1 - U)EO[(1 + 4 a 2e )1/2 - 1] 
s 

° . 2 = 4U( 1 - U)E (1 - a· e + ..• ) 
s 

(41 ) 

It is interesting to note that the most probable total translational 

kinetic energy (fora given U) is slightly less than 4U(1 - U) EO, 

whe~eas the mean value [Eq. (40)]is slightly greater. This is because 

the distribution P(E, U) is not a normal distribution but instead has a 

small high-energy tail. The difference between E
MP

( U), E( U), and 

4U(1 - U)EO is small, however, since o.2e is typically:::: 0.005. 
5 

We now consider the calculation of integrals with respect to U 

over the distribution· P(E, U). The distribution of total translational 

kinetic energy is defined by . 

P(E) = / P(E, U) dU . (42) 

° 
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If we substitute (36) for P(E, U), with F(E, U) = 1, and make the 

change of variables m = U - i, this becomes 

P(E) 
" [ (E_E

b)2] 
exp - 2 ,2 

a. C E 
s 

too 

J 2 2 4 2 
X dm(1-4m )exp(-H m -Gm), 

-00 

where we have replaced the limits -1/2 and t 1/2 by -00 and too, 

respectively. 

The resulting integral is not expressible in terms of elemen­

tary functions. We find it convenient for the present purposes to 

express it in terms of the functions I (13) that are defined, for all 
n 

values of n greater than -1/2, by the equation 

In(P) =!~ x2n exp(_x4 _Px
2
)dx = J~ 

, - 00 ° 
n-( 1/2) 2 

Y exp(-y -!3y) dYe 
\ 

(43 ) 

Properties of these functions, including the differential equation satis­

fied by I (13), recurrence relations, and asymptotic expansion, as well n I, 

as their relationship with the repeated integrals of the error functioxP,1-63 

are given in Appendix F. We present in Fig. 36 graphs of the func­

tions I (!3)vs!3 fox n=O,1,and 2.. n ' , 

The total translational kinetic-e.nergy distribution can then be 

written in terms of these functions as 

EO 
P(E) = 2 2 )'1/.2

EZ (11" C a.C . m s 

X 
1 _ 4 I f (G / H) l' , 

H ' (44) 

where the energy-dependent quantities G and H are defined by (37). 

The second term in the brackets is much smaller than IO(G/H) and 

can usually be neglected. 
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n=1 

2.0 

1.5 

1.0 

f3 
MU .33384 

Fig. 36. The functions I (13) [defined by Eq. (43)] vs 13, 
for n = 0, 1, and n 2. 
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The variance of the fractional mass, as a function of total 

translational kinetic energy, is defined by 

/ 2 
( U - ~) P( E, U) d U 

o:2(E)= _0 ________ _ 

U P(E) 

. We obtain, in a manner analogous to the calculation of P(E), the 

result 

(45a) 

If we neglect the second term in the numerator and the second term 

in the denominator, we obtain the simple result 

2 1 Ii (G/H) 
aU (E) ::::: H I fGjH) . 

o 
(45b) 

A graph of the function 1
1

(13 )/1
0

(13) vsl3 is given in Fig. 37. From 

the asymptotic expansion of I (13) listed in Appendix F, we find that 
n 

for large values of G/H 

aG (E) -- 1/(2G).·· (45c) 

Higher statistical mom:ents of the distributiqn in fractional 

mass ( as functions of total translational kinetic energy) are obtainable 
2 . 

just as readily as a U(E). For example, the fourth central moment is 

given by 

P(E) 
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Left scale 

Fig. 37. The function Ii ((3)/1
0

.((3) vs (3. 
are defined by Eq. (43). 
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0.05 

MU·33385 

The functions I ((3) 
n 
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where we have neglected all but the leading terms .. Then, the kurtosis 

of the distribution60 .is given by· . 

a (4)(E) ~ 
U 

fl(4)(E) 
U· 

= 3 ::::: 
12(G/H) IO(G/H) 

I~ (G/H) 
3. (46) 

A positive value of this coefficient means the distribution in mass is 

more peaked than a Gaus sian, while a negative value means the dis;.. 

tribution has a flatter top and is more rectangular than a Gaus sian. 

We consider finally the calculation of quantities obtained by 

integrating over both E· and U in P(E, U). The mean total transla­

tional kinetic energy (integrated over fractional mass) is defined by 

1 . 1 ~ f dU P(.E, U) = J dU J dE P(E, U)E. 

o 0 0 

If we use the definitions (42) and (39), respectively, we may write 

this as 

1 

E P(E) dE = J E(U) P(U) dU. 

o 

This is more easily evaluated in the second form; if we substitute 

(38) for P(U) and (40) for E(U), and integrate, we obtain 

The variance of the total translational kinetic energy distribu­

tion is defined by 

0:
2 = jr<XJ 

E 
o 

J1 dU P(E, U) 

o 
dU r dE P(E, U)(E _ E)2. 

o 

The second form may be integrated, by methods analogous to those we 

have been using, to give the asymptotic series 

4C + 
m 

.16 C 
m 

2 

+ 0 0 4! ) 0 
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Since the distribution P(E, U) is symmetric inU about 

U ::: 1/2, the mean fractional mas s (either as a function of E or 

integrated over E) is 1/2. The variance of the distribution in frac­

tional mass is obtainable directly from the Gaussian (38) for P(U): 

2 O'u = 

We shall postpone presenting any graphs of the quantities 

derived from P(E, U) until we get to Section VI, where we compare 

the predictions with experimental data. 

2. The Effect of Anharmonicity on P(E, U) 

We are able to easily calculate quantum-mechanical probability 

distributions for the initial conditions only in the harmonic approxima­

tion. However, if the nuclear temperature is sufficiently high that 

classical statistical mechanics is valid for determining the initial con­

ditions, then the probability distributions may be obtained to any de­

sired order in the initial coor.dinates and momenta, or even exactly, 

from Eq. (22). 

If we expand the potential energy about the saddle point and 

retain anharmonic terms in the coordinates, then we' are able to dis­

cuss classically the effect of the anharmonicity of the potential energy 

on the distribution P(E, U). By retaining appropriate anharmonic 

terms, we will be able to obtain classically the coefficients of the 
o 12 03 14 

(E - E ) (U - 2') , (E - E ) , and (U - '2) terms to a completely con-

sistent order of approximation in both the initial conditions and the 

equations relating E and U to the initial conditions. We will then 

be able to discus s clas sically, to a consistent order of approximation, 

not only the mean EO and the variances (Ji and (JG, but also, for 

example, the decrease in the most probable (or mean) value of E 

with (U - i)2, the skewness of the total translational kinetic-energy 

distribution, and the kurtosis of the mass distribution. 

We consider, then, the retention of anharmonic terms in the 

expansion of the potential energy about the saddle point. In order to 



-1.33-

discuss the distribution P(E, U) to the next higher o.rder beyond a 

bivariate normal distribution, we need keep only those terms in the 

expansion o(the potential energy that'will affect the coefficients of 
0' 12 03 14 , 

the (E - E )( U - 2) , (E - E ) , and (U - 2:) terms In the exponent 

of the P(E, U) distribution. Because the equations (14) and (15) for 

E and U depend only upon the mass -asymmetry coordinate m and 

the stretching coordinate s (disregarding, for the moment, the ini­

tial momenta Pf and ps), it suffices to consider (in addition to the 

harmonic terms) only the three anharmonic termsm
2
s, s3, and m

4 

,'c 
in an expansion of the potential energy.' We therefore expand the po-

tential energy about the saddle point with respect to the variables m 

and s, retaining terms as follows: 

C)f. __ ()}.O i 2 1 K 2 1 2 1 K 3 1 K 4 
JI }' +ZKmm +'2 SS +'2 Kmms ms +6 ssss +24 mmmmm 

P(m, s) = N exp - e ;' 

where N is a normalization constant. 

Figure 38 shows graphs of the third derivatives K and mms 
K (evaluated at the saddle point) .as functions of fissionability pa-sss 
rameter. In the range of x below 0.78, the third derivative K nuns' 
which couple s the mas s -asymmetry coordinate and the stretching 

coordinate, is positive. This means that the most probable value of 

s decreases with increasing m
2

; i. e., the most probable distance 

between spheroid centers decreases as the mass ,asymmetry increases. 

This results in a greater translational kinetic energy at infinit'y than if 

':CThe two cubic terms ms 2 and m 3 are absent because 'Y is an even 
2 function of m. Nonzero cubic terms of the form sd , for example, 

introduce only pre-exponE;,ntial dependences on E and U after the in­

tegration over d is performed. 
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Fig. 38. Third derivatives of the potential energy, evaluated 
at the saddle point, as functions of fissionability parameter 
x. The quantity K is in units of ES(O) IRO' and K 

mms sss 
is in units of E~O) IR6 . 
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the distance remained'unchanged. Over the entire range of x 

(between ° and 0.80) the stretching third derivative K is neg-. sss 
ative. The effect of this is a contribution toward a low -energy tail 

on the distribution in E. A rough estimate of the mas s -asymmetry 

fourth derivative K (evaluated at the saddle point) indicates 
mmmn1. 

that it is negative and fairly independent of x. For the x = 0.677 

the estimate yields K ::::: - 15 ES( 0 ). The effect of this term is 
mmmm 

a contribution toward a pea:ked mass distribution, but the effect is 

small, since this: term accounts for only about ZO% of the final value 

of the (U - i)4 term in the exponent of P(E, U). (In, all numerical 

results involving anharmonic terms that we present, the quantity 

K is taken to be ·zero. mmmm 
On the scale of the graphs presented 

here, these results are indistinguishable from those calculated by 

using the above estimate for K . ) '. '. mmmm 
By using the set of equations (33) for m ands, and by taking 

into account also the classical probability distributions in the momenta 

Pf and Ps' we find for the desired distribution 

P(E, U) 

1
Z 

= 4U( 1 - U)NEOF(E, U) exp f _ Km (U - 2") 

aEzl Z6 

K [E - 4U(1 - U)EO] Z K (U - Z1 )Z[E - 4U (1 _ U)EO] 
s + mms . ' 

zeaZ E Z Z eaE 

. Ksss[E - 4U(1 7" U)E
O

] 3 
+ 

6 e a 3 E3 

K (U ·1)4 , 
mmmm -2' ~ 

Z48 J 
(47) 

The function F(E, U) is given by (35), where it is understood that the 

classical limits are to be used for the constants 

ing in it. 

c 
s 

and C 
Ps 

appear~ 

1 
If we collect terms in (47) according to powers of (U ~ 2")' we 

can alternatively write P(E. U) as 
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P(E, U) 

(48) 

where G and H (functions of E) are now defined by 

K (E '-EO) 2K EO(E- EO)2 
mms sss 

2 e o.E --e---o.-,;3:-
E
----,;-3--

8K (EO)2(E - EO) K· J1/2 
s s s mmmm 

3 3 + 24 e . eO. E 

We present in Fig. 39 a contour map of P(E. U) vs E and U 

for the compound nucleus 85At213 and e = 1.13 MeV. calculated by 

using the completely classical result (48). (The nuclear temperature 

is sufficiently high that classical statistical mechanics is valid for 

determining the initial conditions.) By comparing this with Fig. 35 we 

can see the effect of the anharmonicity. of the potential energy on the 

final distribution (see also Fig. 33). The lines of constant probability 

still tend toward roundedtriangles. but not as markedly as in Fig. 35. 

If we neglect the (U - ~)6 term in the exponential of (48). the 

resulting expres sion is of the same form as (36). Thus we are able to 

use the results previously derived for those quantities obtained by in­

tegrating over fractional mass: Eq. (44) for P(E). Eq. (45) for (J~E). 
and Eq. (46) for o.ii)(E). Closed expressions for the quantities that 

result from integrating over E are not so readily obtainable because 

of the prese?ce of the cubic term in E in the exponential of P(E. U). 

The two equivalent expressions (47) and (48) for P(.E, U), al­

though strictly corr,ect only to the next higher order beyond quadratic 

in E and U. contain further higher-order terms representing the 
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Fig. 39. Contour map of the probability distribution of total 
translational kinetic energy an'd fractional mass, 
P(E, U) vs E and U, including effects of anharmonicity 
l Eq. (48)]. The lines of constant probability are labeled 
by relative probability. The value of EO is 151.4 MeV. 
The calculations are for the cas e of nonviscous fragments 
and the fission of the compound nucleus 85At213 (x = 0.677) 

- 209 at a nuclear temperature of 1.13 MeV (Bi + 65-MeV a, 
for example). . 83 
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effects of the nonlinear equation (14) for E. If we retain in either of 

these expressions only terrns that are one order higheJ;" than quadratic 

in E and U, we obtain (we regard any pre-exponential factors as 

of higher order) 

(8~S 
e (49) 

This result represents a consistent order of approximation in both the 

initial conditions and the equations for E and U. 

By solving 

() P{E, U) 
(}E = 0 

we obtain the most probable total translational kinetic energy as a 

function of fr actional mas s: 

E ( U) = E O [1 _ 4 (1 _ u K mm s) (U _ .!) 2 + ••• J. ( 50 ) MP ... 8K 2 
s . . 

It is instructive to compare this classical result with the result (41) 

obtained by use of the harmonic approximation for the initial conditions. 

For x in the neighborhood of 0.67, u. K /(8K"> ;:::: 1/5; thus, the 
mms s 

most probable total translational kinetic energy decreases with increas-

ing (U - ~)2 only about four-fifths as rapidly in (50) as in (41). The phys­

ical reason for this difference is that in (41) the decrease in total trans­

lational kinetic energy with increasing mass asymmetry results solely 

from the decrease in the product of the charges of the two fragments, 

whereas in (50) account is also taken of the decrease in distance between 
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spheroid centers (which tends to increase the kinetic energy) as the 

mass asymmetry increases. 

In addition to determining the rate of decrease of E
MP

( U) with 

(U _~)2, the coefficient~f the (E - EO) (U _·i)2 term also gives the deriv­

ative of the variance of the f:ractional mas s at E = EO. From (49) We 

find that 

and that 

8(8K - uK ) 
s mms = 

Since 8K > uK, the derivative is negative. , 
s mms 

For values of x of interest in fission, the magnitude of the 

negative quantity Ksss/(6u) is roughly one-half Ks;thus, the coefficient 

of the (E - EO)3 term in (49) is positive, indicating that the deviation of 

P(E, i/2) (the distribution in E for a symmetric mass division) from a 

pure Gaussian is toward a high-.energy tail (positive skewness). The 

origin of the Ks term, which contributes toward the high-energy tail, 

is the nonlinear relationship (14) between E and s. The opposing con­

tribution from the K
sss

/(6u) term toward a low-energy tail arises phys­

ically because the potential energy increases more rapidly as the frag­

ments approach one another than as they separate. 

An examination of the coefficient (including the over-all minus 

sign) of the (U - i)4 term in (49) indicates that it is negative. ,Thus, the 

prediction is that P(EO, U) (the distribution in mass for E = EO)is less 

peaked and more rectangular than a Gaussian distribution (negative 

kurtosis ). 

In this section our concern has been the mathematical derivation 

and compilation of the formulae relevant to a discussion of the distribu­

tions in fragment total translational kinetic energy, mass, individual ex­

citati9n energies, and individual angular momenta. By using these for­

mulae and the graphs presented earlier for the constants appearing in 

then)., curves expressing the theoretical predictions may be prepared for 

direct comparison with experiment. This will be done in the next sec­

tion for distributions in total translational kinetic energy and fragment 

mass. 
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VI. COMPARISON OF THEORY WITH EXPERIMENT 

In the previous section we derived probability distributions 

for certain observable characteristics .of fission fragments at infinity: 

their total translational kinetic energy, fractional mass p individual 

excitation energies, and individual angular momenta. From our ear­

lier discussion regarding the applicability of the two-spheroid model 

(Section II. B), we know that these distributions are expected to de­

scribe only the fission of nuclei that have values of the fissionability 

parameter x $ 0.67. 

Experimentally, there is observed a marked transition in the 

properties of fission at about radium (x = 0.684)-mass divisions are 

predominantly symmetric for elements lighter than radium and pre­

dominantly asymmetric for elements heavier than radium. It is not 

clear whether this experimentally observed transition is as sociated 

with the transition in saddle-point properties at x ~ 0.67; no expla­

nation of asymmetric fission for the heavier elements is foreseen 

within the framework of the two-spheroid model. We will neverthe,;. 

less use the experimentally observed transition between symmetric 

and asymmetric mass divisions as the dividing point for determining 
~:< 

what data the theory should be compared with. We will therefore 

compare the theoretical predictions of the model with existing exper­

imental data for the fission of nuclei lighter than radium. 

~A recent experimental determination of the fission barrier of 8iTl201 

indicates that (Z 2/ A) "t has a value 64 of 48.4 ± 0.5 (rather than 
40 cn 

Green's value of 50.13 that is used here). When this value of 

(Z2/ A) "t is used, the value of the fissionability parameter x for crl 
each compound nucleus is increased somewhat. For the comparisons 

between theory and experiment that are made here, the largest value 

of fissionability parameter that occurs is 0.677 when Green's value 
2 

of (Z / A) "t is used, and 0.701 when the newly reported value is crl 
used. '. 
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Fission-fragment mass distributions, obtained by use of 

radiochemical techniques, are available for the fission of several of 

th l ' h 1 65-70 S' 1 f 1" 1 k' , e 19 ter e ements. lng e - ragment trans atlona lnetlc-

energy distributions have been determined for the fission of a number 

of light nuclei. 71 , 72 In addition, two-dimens'ional distributions in 

mass and total translational kinetic energy, obtained by use of semi-
~< 

conductor detectors and two-dimensional analyzers, have recently 

b t d f ' 1 ' l' ht th d' 71,73-78 ° h een repor e, or varIOUS nuc el 19 er an ra lum, n t e 

other hand, for the fission of the lighter elements, there exists at the 

present time no experimental information regarding the distributions 

in individual excitation energies and individual angular momenta, 

The immediate test of the theory will therefore be the comparison of 

predictions with experiment for distributions in total translational 

kinetic energy and mass [P(E, U) and quantities derived from it], 

The more detailed comparisons will be made with the data of 

Burnett 76 and with the data of Plasil,77 whose experiments were 

carried out at the Lawrence Radiation Laboratory, Berkeley, simul­

taneously with the development of the 'theory. Burnett bombarded 

83BiZ09 and 79Au 197 with alpha particles of energies 65.0 and 

70.0 MeV, respectively, to form the compound nuclei 85At213 and 

8 i T1
20 

i The correspon,ding values of the fis sion,ability parameter 

x are 0;677 and 0,651, respectively, Plasil studied the heavy-ion-
186 198 

induced fission of the compound nuclei 760s (x = 0,619) and 82Pl:5 

(x = 0.677) at several bombarding energies ranging from 101.~lto 165 

MeV. The 
170 

68Er ~, + 
"11. 8 i. 

74'" + 

former was produced in two ways from the reactions 
1.6 174 12 , 

80 and 70 Yb + 6 C • and the latter from the re~actlOn 

0
16 

8 

':CThese experiments consist of measuring in coincidence the transla­

tional kinetic energies ,E
1 

and E2 of the two fission fragments at 

infinity and r~cording the corresponding number of events. From this 

experi~ental1y constructed distribution P(E
1

, E
2

). the experimental 

distribution P(E, U) is obtained by use of the transformation (18), 
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We will also refer frequently to the data of Britt, Wegner, 

and Gursky,75 and the data of Unik and Huizenga.78 The former 

have studied the 25.5-MeV 2He3 -induced fission of 79Au 197, 81Tfat, 

82 Pb
206

, and 83 Bi 
20

9; for the 83 Bi 209 case; a bombarding energy 

of 22.1 MeV was also used. The latter authors have studierl the 

42-MeV helium-ion-induced fission of 83Bi209. Comparisons will 

also be made with other data. 

The theoretical distributions depend upon the nudear temper­

ature e at the saddle point,which is a function of the internal ex­

citation energy ESP at the saddle point. The determination of e 
ex 

in terms of ESP is subject to an appreciable error. For the com-
ex 

parisons between theory and experiment made in this work, we use 

th 0 0 0 I I ·t o f t t 79 e semlemplrlca nuc ear equa lon 0 s a e 

ESP = (A/8) (i - e, 
ex 

where both e and ESP are in MeV, and A is the number of nude-
ex • 

ons in the compound nucleus. The excitation energy at the saddle 

point is inturn given by the total born barding energy in the center -of­

mass system, plus the binding energy of the projectile to the target, 

minus the fission- barrier energy. The fis sion- barrier energy is 
15 17 )!c 

equal to the liquid-drop fission-barrier energy, ,. minus the 
80 81 shell correction to the ground- state mas s, ' plus the shell correc-

tion to the saddle-point mass. The saddle-point shell correction is 

not known, but probably does not exceed about 2 MeV -it was neglected 

here. These considerations are for a compound nucleus that is not 

rotating. The determination of the fission-barrier energy and the nu­

clear temperature for a rotating nucleus is discussed by Plasil; 77 

his procedure is briefly touched upon below. 

);C A plot of the liquid=drop £is sion- barrier energy vs x is given in 

Figs. 4 and 8. For the determination of e, the true liquid-drop £is­

sion- barrier energy is used rather than the two-spheroid approxima­

tion to the barrier. 
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Two complications present in the heavy-ion-induced fission 

reactions should be mentioned. Fir st of all, because' of the high ex­

citation energies involved, it is possible that the compouhd nucleus 

will fission following partial de-excitation by the emission of one or 

more neutrons. If this occurs, there' will be asprea:d in the saddle­

point exCitation energy (and hence the nuclear temperature 8) at the 

time of fission. Secondly, heavy ions are capable of creating com­

pound nuclei possessing large amounts of angular momentum. Because 

the ions strike the target with varying impact parameters, the angular 

momentum range s from zero to some maximum value. Since the fis­

sion barrier is a sensitive function of angular momentum;7, 82, 83 it 

will have a range of v::alues,resulting in a spread in the saddle-point 

excitation energy (and hence 8). The effect of both these complications 

on nuclear temperature was taken into account by Plasil.?7 He obtained 

an average value of e by calculating the competition between fission 
~:c 

and neutron emis sion throughout the de -excitation chain, and by inte-

grating over the distribution of angular momentum. 

Although the effect of ang~lar momentum on the nuclear temper­

ature can be taken into account as described above, it should be re­

called that the entire theory developed here is restricted to the case of 

a nonrotating compound nucleus. This must be borne in mind when 

comparing the theoretical predictions with the data for the heavy-ion­

induced reactions. All conclusions drawn on the basis of such com­

parisons are thus subject to the provision that angular momentum has 

little effect on the fission process, except in determining the average 

nuclear temperature at the saddle point. 

The theoretical distributions are calculated for fragments ob­

served (at infinity) before they have emitted any neutrons, whereas the 

expedmental kinetic-energy measurements are made after the emission 

~:CFor the cases studied it was found that the average number of neutrons 

emitted before fission seldom exceeds orie; this means that the uncer­

tainty in the nuclear temperature arising from this effect is small. 
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of neutrons from the fragments. Fragment neutron emission de­

creases the average translational kinetic energy and introduces a 

dispersion in the distributions, thereby increasing the variances. 

When comparing theo~y and experiment, it is desirable to correct 

the experimental results for such neutron-emission effects. The 

problem of neutron-emission corrections has been discussed 1>y 
84· . 85 76 

Terrell, by Halnes, and by Burnett. By making certain 

standard assumptions regarding the neutron emission, it is possible 

to derive fc;>rmulae for correcting the mean total translational kinetic 

energy E (U), the variance (J~ (U) of the total translational kinetic­

energy distribution, and the variance (J ~(E) of the mass distribution. 

Using Burnett's neutron-correction formulae~ Burnett and 

Plasil have corrected all statistical moments obtained from their 

data. (The formulae of Burnett differ slightly from those of Haines 

because certain higher-order terms are retained by Burnett.) With 

the exception of the. mean total translational kinetic energies, . the 

data of Britt, Wegner, and Gursky 75 have not been corrected for the 

effects of fragment neutron emission. The data of Unik and Huizenga78 

have been corrected for neutron-emission effects as regards the mean 

total translational kinetic energy and the full width at half maximum 

of the over-all total translational kinetic-energy distribution, but not 

otherwise. 

Although neutron-emission corrections can be made for the 

statistical moments of the distributions, it is not possible to easily 

correct the distributions themselves. Thus, when comparing theo­

retical and experimental distributions, it must be borne in mind 

that the former refers to pre-neutron-emission and the latter to post­

neutron~emission. To distinguish these two cases we denote by a 

superscript asterisk a quantity measured after neutron emission has 

* occurred; e. g., E is the total translational kinetic energy measured 

following neutron emis sion. 

We begin our cOJ;nparison of theory with experiment by 

exa~ining a series ·of graphs. [ With the exception of Figs. 40 

and 46, these figures. have been reproduced (with additions, 

and changes in notation and format) from references 76 and 77.] 



-145-

While making these comparisons it should be kept in mind that no 

arbitrary parameters have been adjusted-that the theoretical and ex­

perimental distributions have not been normalized to one another in 

any way. Also, it should be remembered that the theory is strictly 

valid only in the neighborhood of the most probable events; we will, 

however, extrapolate the theoretical curves to cover the entire region 

for which there are experimental data. 
):C 

Figure 40 shows the experimental contour map of P(E , U) 

vs E~:( and U for thecompoul!ldnucleus 85At213, for which the nu­

clear temperature at the saddle point is e = 1.13 MeV. 86 Apart from 

the effects of neutron emission, as discussed above, this experimental 

contour map may be compared directly with the theoretical maps cal­

culated for this experimental situation in each of the three successively 

improved orders of approximation discussed in . Section V- see Figs. 

33, 35, and 39. (The same relative scale s for E and U are used for 

all four graphs. However, the experimental contour lines ar·e labeled 

differently from the theoretical ones.) Since the nuclear temperature 

is sufficiently high that classical statistical mechanics is valid for de­

termining the initial conditions, the completely classical map calcu­

lated by including the effects of anharmonic terms on the initial condi­

tio:L,-s (Fig. 39) represents the best theoretical estimate available, and 

we will confine our discussion to a comparison with it. 

The first thing to look for in comparing the theoretical and ex­

perimental distributions is how well the most probable values are re­

produced; the experimental and theoretical most probable values of 

total translational kinetic energy are seen to agree remarkably well. 

In addition the theory predicts that the most probable value of U should 

be one -half, and this is verified experimentally-the fis sion events are 

predominantly symmetric in mas s rather than asymmetric. The sec-

0nd thing to compare is the widths of the distributions in E and U;. 

the widths of both distributions are seen to compare excellently. 

Finally, we may compare the shapes of the distributions with the the­

oretical predictions of approximately bivariate normal distributions 
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Fig. 40. Experimental contour map of the probability distribution 
of total translational kinetic ener gy and fractional mass, 
P(E'~, U) vs E':' and U. The superscript asterisk denotes 
that E is measured after neutron emission from the frag­
ments has occurred. The data are those of Burnett86 for 
the compound nucleus 85At213 (x = 0.677), formed from 

the reaction 83Bi209 + 65-MeV a, for which e = 1.13 MeV. 

The labels on the lines of constant probability have the fol­
lowing significance: the' contour labeled by 10, for example, 
passes through those regions of the E'~ - U plane where an 
area of 6 MeV by 3 amu contains 1% 6f the total number of 
events. 
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modified by certain characteristic higher -order terms. , The over -all 

agreement between the shapes of the experimental and theoretical con­

tour lines is strikingly good. In the region of maximum probability 

the experimental contour lines are approximately ellipses~ whereas 

in the region of smaller probability they tend ,to become rounded tri­

angles, as predicted by the the0ry: The experimental mass distribu­

tion, as predicted, is broader for low values of the total translational 

kinetic energy than for high values. Other details of the agreement 

between the theoretical and experimental maps will be compared later 

in the form of, statistical moments. 

In reference 77 comparison is made by Plasil between theoret­

ical and experimental contour maps of P(E, U) for the fis sion of two 

heavy:"ion-induced reactions. The agreement presented there is not 

as good as for the 8sAt213 case we have discussed. However, the 

theoretical maps there are calculated using the intermediate approx­

imation for P(E, U) in which the initial conditions are determined in 

the harmonic approximation. The agreement is significantly im­

proved when the effects of anharmonicity on the initial conditions are 

taken into account. Also, the compound nuclei undergoing fis sion 

possessed considerable angular momentum, ~hich could possibly af­

fect the experimental distributions. 

Figure 41 show.s the theoretical and experimental distributions 

in mas s, P( U), and the theoretical and experimental distributions in 

total translational kinetic energy, P(E), for the compound nucleus 

82Pb198, each at two different nuclear temperatures. The theoretical 

curves are calculated in the intermediate approximation for P(E, U) 

in which the initial conditions are determined in the harmonic approx-
::c 

imation. As before, we first compare the most probable values of 

* . Although the approximate formulae derived in Section V for P( U). 

P(E), and the various statistical moments are sufficiently accurate 

for calculating the theoretical curves of this section, the curves have 

actually been calculated by numerical integrations over the full ex­

pression (36) [or.the full expression (48)] for P(E. U), with F(E, U) 

retained. 
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Fig. 41. Probability distributions for fragment mass (top) and for 
total translational kinetic energy (bottom). The theoretical 
curves (solid lines) are calculated for initial conditions de­
termined in the harmonic approximation l from Eq. (36)]. 
The data are those of Plasil 77 for the compound nucleus 

198 
82Pb (x = 0.677), formed from the heavy-ion-induced 

, W 182 0 16 h 1 f b b d' reaction 74 + 8 T e resu ts or a om ar Ing 

energy of 102 MeV (8 '" 1.37 MeV) are given by the solid 
points, and for a bombarding energy of 165MeV (8 = 2.07 
MeV) by the open circles. The superscript asterisk de­
notes that E is measured after neutron emission from 
the fragments has occurred. 
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the total translational kinetic energy, which are seen to agree fa­

vorably. Next, the widths of the experimental distributions in both 

kinetic energy and mass are seen to be reproduced well by the theory. 

In addition, as the nuclear temperature increases, the theory is seen 

to correctly predict an increase in width of each distribution. Finally, 

we note that the over -all shap~§ of the experimental and theoretical 

distributions in bothE and '; U are in approximate agreement (each 

distribution is approximately Gaussian). Because of experimental 

uncertainties, including the uncertainty of the effects on the distribu­

tions of neutron emission from the fragments, we will not compare 

numerical results for skewnes s .in P.(E) and kurtosis .in P (U) . 

We turn now to a comparison of the mean values of the total 

translational kinetic energy as functions of fragment mass. Shown 

in Fig. 42 isE( U) 

At
213 

T1
201 

85 ' 81 ' 

vs fragment mass'· AU for the compound nuclei 
198 

and 82Pb ,the latter for two temperatures. 

In this figure, as well as in the two succeeding ones, we indicate by a 

solid line the result obtained by use of the intermediate approximation 

(36) for P(E, U), .in which the initial conditions are determined in the 

harmonic approximation. The dashed line represents the result cal­

culated from the expression (48) for P(E, U), in which anharmonic 

terrns. are considered in determining the initial conditions. Since the 

nucle~r temperature is sufficiently high that clas sical statistical me-

. chanics is valid for determining the initial conditions, the dashed line 

in .each case represents the bett~r theoretical estimate, and we will 

confine our discussion to a comparison of·the experimental results 

with it. 

We note first of all in Fig. 42 that for three of the four cases 

the agreement between theory and experiment as regards the mean 

total translational kinetic energy at symmetry is excellent. For the 

remaining case (8ZPb198 at E>= 2.07 MeV) the experimental value is 

slightly higher than the theoretical one. For the 85Ai213 and 81 T~ 201 

cases the experimental decrease in E( U) with increasing mass asym­

metry is essentially .as predicted by the theory, although the exper­

imental points lie somewhat above the theoretical curves. However, 
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Fig. 42. _Mean total translational kinetic energies, as functions of 
fragITlent ITlass AU. The theoretical results that are calcu­
lated for initial conditions deterITlined in the harITlonic approxi­
ITlation l froITl Eq. (36)] are given by the solid lines, and the 
results that are calculated by including effects of anharrrionicity 
lfroITl Eq. (48)J are given by the dashed lines. The data 
(solid points) are as follows:' Burnett:16 83.Bi209 + 65-MeV 
a = 85At213 (x::: 0.677, e = 1.13 MeV), ana 79Au197 +70-MeV 
a::: 81 T1201 (x = 0.651, e = 1.28 MeV); Plasil:77 74 W 182 + 102-MeV 

16 198 . 182 
80 :: 82 Pb . (x = 0.677, e = 1.37 MeV), and 74 W + 165-MeV 

8016 ::: - 82Pb198 (x:: 0.677, e = 2.07 MeV). Note that the left-hand 
scale and the right-hand scale are different. 
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for the two 8ZPb198 cases (formed by heavy-ion bombardments)" 

the experimental points do not drop off with increasing asymmetry 

nearly as fast as the theoretical curves. Indeed, for the case in 

which e = Z.07 MeV" the experimental values are essentially .inde­

pendent of asymmetry. 

The data of Britt, Wegner, and Gursky indicat~ that E(U) 

decreases with increasing mass asymmetry, although they find in 

some cases (in particular, 83BiZ09 + Z5.5-MeV zHe
3

) a tendency 
. -' 75 

for E (U) to actually increase at large asymmetry. (Note that these 

authors plot their data as functiDns. of fragment mas sratio rather than 

fragment mass or fractional mass.) The experimental E(U) curve 

of Unik and Huizenga also decreases with increasing mass asymmetry.78 

As Haines has pointed out, the discrepancy between the calcu­

lated and experimental E(U) curves would be reduced somewhat if ac..;. 

count were taken of the change in the mean charge density of fission 
85 fragments with a change in mass asymmetry~ On the average, the 

lighter fragment acquires a slightly larger number of protons than its 

proportionate share, and the heavier fragment acquires a slightly 

smaller number. The product of the charges of the two fragments, 

and hence their translational kinetic energy at infinity, is thus in­

creased somewhat over the corre sponding value calculated here (in 

which both fragments have the same charge density). This effect is 

of the same order of magnitude as the effect of the anharmonicity of 
Z13 Z01. 

the potential energy, and in the case of 85At and 81 TI tabng 

this effect into account would come close to removing the difference 

between the calculated and experimental E( U) curves. On the other 

hand, the large discrepancy between the calculated and experimental 

curves for the 8ZPb198 cases would still exist e~en if the effect arising 

from the difference in fragment charge densities were taken in account. 

The suggestion has been made by PlasH that the angular mo­

mentum present in the 8ZPb198 cases is possibly responsible for the 

marked. deviation of the experimental E( U) curves from the theoret­

ical ones. 77 This suggestion is consistent with the fact that for the 

two cases in which very little angular momentum is present (85AtZ13 
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and 81 Tl
20 

\ formed by alpha-particle bombardments) the theory 

and experiment are in substantial agreement, and for the . 82Pb198 

case in which there is less angular momentum present (8= 1.37 MeV) 

the agreement is better than for the case of greater angular momentum 

present (8 = 2.07 MeV). To. see if this actually is the explanation, the 

theory should be worked out taking into account angular momentum; 

this presents an interesting problem for the future. 

In Fig. 43 we compare the theoretical and experimental var­

iances. of the total translational kinetic energy distributions as func­

tions of fragment mass· [ai (U) vsAU] for the same experimental 

situations as in Fig. 42. The agreement near symmetry is excellent 
. 213 20.1 198 0 

for the 85At and 81Tl cases. For 82Pb (heavY-lon re-

actions) the agreement near symmetry is good for the 8= 1.37-MeV 

case p but for the 8 = 2.07-MeV case the experimental points are some­

what higher than the theoretical values. In all cases the theoretical 

curves decrease with increasing mass asymmetry. This prediction is 
213 201 

not borne out experimentally in the 85At and 81 Tl cases-these 

experimental variances increase with increasing mass asymmetry. 

The trends of the two 82 Pb 198 variances with mas s asymmetry are 

rather uncertain. 

Britt p Wegner, and Gursky have found in three of the four cases 

reported that the varianceai (U) is essentially independent of fragment 
75 0209 3 2· 

mass. In the fourth case (83 Bl . + 25.5-MeV 2He ) ui;< U) was ob-

served to remain essentially constant near symmetric mass divisions 

and to increase for more asymmetric divisions. The data of Unik and 

Huizenga also indicate that . (T~ U) is essentially independent of fragment 
78 mass. 

The comparisons made for ,ui( U) indicate a fairly significant 

disagreement between theory and experiment. The theoretical curves 

would be scarcely changed if one were. to take into account further· an­

harmonic terms in the potential energy-any pure liquid-drop result 

that predicts that the mean total translational kinetic energy should de­

crease with increasing mass asymmetry (see Fig. 42) will also predict 

that the variance of the total translational kinetic energy should decrease 
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Fig. 43. Variances in the distributions of total translational 
kinetic energy, as functions of fragment mass AU. The 
theoretical results that are calculated for initial conditions 
determined in the harmonic approximation l from Eq. (36)] 
are given by the solid lines, and the results that are calcu­
lated by including effects of anharmonicity l from Eq. (48)] 
are given by the dashed lines. The data (solid points) are 
as follows: Burnett: 76 83Bi209 + 65-MeV a = 85At213 

(x :: 0.677, e == 1.13 MeV), and 79Au197 + 70-MeV 

a == 81T1201 (x::: 0.651, e = 1.28 MeV); Plasil: 77 

W 182 + 102-MeV 0 16 = Pb 198 (x = 0 677 74 8 82 ., 
e::: 1.37 MeV), and 74 W182 + 165-MeV 8016 = 82Pb198 
(x = 0.677, e::: 2.07 MeV). 
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with increasing mass asymmetry. It thus appears that the exper­

imental constancy or increase in <Ti< U) with inc reasing mas s asym~ 
metry is caused by some effect other than those pr-esent in a pure 

liquid-drop model. 

Burnett has suggested that the discrepancy between theory and 

experiment as regards <T~ (U) may pos sibly arise from the effects of 

single-particle shell structure. 76 If the doubly-closed shell at frag-

. ment mass 132 tended to make the heavier fragment nearly spherical 

a portion of the time, then the separation of the fragment centers 

would decrease a portion of the time, resulting in an increase in trans­

lational kinetic energy. Since only some fraction of the total fission 

events would be affected by the doubly~closed shell, there would also 

still be normal fissions with lower translational kinetic energy. This 

mixture of fission events-some predominantly low in kinetic energy 

and some predominantly high-would cause the variance to be greater 

than it otherwise would be •. The suggestion that shell effects are re ~ 

sponsible is consistent with two pieces of experimental evidence: First 

of all, as was pointed out by Burnett. the increase in <Ti( U) begins for 
213 201 

both 85At and 81 TI at fragment masses 120-125 rather than 

at a constant mass ratio. Secondly, the 'increase in .<Ti< U) with mas s 

asymmetry becomes less pronounced as the nuclear temperature in­

creases; indeed, for 82Pb198 at 8= 2.07 MeV~' <Ti(U) is essentially 

independent of mass asymmetry. This disappearance of the marked 

disagreement between theory and experiment as the temperature in~ 

crease s would correlate with the disappearance of single -particle shell 
~:c 

structure at high excitations. Work on the cause of the discrepancy 

represents another interesting problem. 

Variance s of the mas s distributions as functions of total tr ans ~ 

lational kinetic energy [<T~ (E) vs E] are shown in Fig. 44. The 

magnitudes of the theoretical and experimental variances of the mass 

~:<The lar ge amount of angular momentum pre sent in the two 82 Pb 198 

cases could. of course, be responsible for the near-constancy of 
2 

<TE (U) as a function of U (rather than a disappearance of shell struc-

ture ). 
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Fig. 44. Variances in the distributions of fragment mas s, as 
functions of total translational kinetic energy E. The 
theoretical results that are calculated for initial conditions 
determined in the harmonic approximation l from Eq. (36)] 
are given by the solid lines, and the results that are calcu­
lated by including effects of anharmonicity l from Eq. (48)] 
are given by the dashed line~. The data (solid points) rre 
as follows: Burnett: 76 83B1209 + 65-MeV u = 85At21 

(x ::: 0.677, e = 1.13 MeV), and 79Au197 + 70-MeV 

U::: 81 Tl201 (x = 0.651, e = 1.28 MeV); Plasil: 77 

182 16 198 
74 W + 102-MeV 80 = 82 Pb (x = 0.677, e = 1.37 MeV), 

182 16 198 
and 74 W + 165-MeV 80 = 82Pb (x = 0.677, e = 2.07 MeV). 
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distributions at the most probable total translational kinetic energy 
213 201 

are in excellent agreement for the 85At and 81 Tl cases, and 

in good agreement for the two 82Ph198 cases, Furthermore, for the 

two former cases the theoretical curves correctly predict the over-all 

shape of the curves, including a flattening at high E and a very rapid 

rise at low E, At both high and low E, however, the experimental 

points deviate somewhat from the theoretical curves, The experimental 

curves for the two 82 Pb 198 cases do not pos ses s the characteristic 

"hyperbolic" shape predicted by the theory, and observed in. the former 

cases. Indeed, for the 8= 2.07-MeV case the experimental curve is 

essentially linear, It is again possible that the discrepancies between 

theory and experiment for the two 82 Pb 198 cases arise from the ef­

fects of angular momentum; this possibility should be investigated. 

We -have thus far been mainly concerned with comparing details 

of the distributions in mas s and total translational kinetic ener gy for a 

given nucleus and excitation energy (or rather four such combinations). 

The theory we have developed also predicts the dependence of the distri­

butions on nuclear temperature, and their dependence on fissionability 

parameter, 

We turn now to a comparison of theory and experiment as regards 

the temperature dependence of the distributions, The mean total trans­

lational kinetic energy i,sprediced by the theory to be (for all practical 
" 

purposes) independent of nuclear temperature,. Plasil finds that for five 

different nuclear temperatures, ranging from e = L 37 MeV to e = 2.07 

MeV, the mean total translational kinetic energy E for the Pb
198 

82 
case varied by 3 MeV (with experimental errors on the values of E 
set at ± 5 Me V), 77 For 76 Os 186 (formed in two ways) he found that for 

six different nuclear temperatures covering the range 1,49 MeV ~ e ~ 
2.06 MeV the values of E varied by 5 MeV (errors on E of ± 6 MeV). 

The se data are thul? in substantial agreement with the theory. 

The variances of the distributions in E and in U are pre­

dicted to increase with increasing nuclear temperature. The compar­

ison of theory and experiment as regards this point is made for the 
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agreement between the magnitudes of the theoretical and experimental 

variances in both mass and total translational kinetic energy. Further­

more, theory and experiment are in substanital agreement as regards 

the dependence of the variances upon nuclear temperature. t This is 

especially true for the 82 Pb 198 case; for 76 Os 186 the experimental 

slopes for both '.,U G and ui are somewhat, smaller than the 

theoretical slopes. 

The theoretical dependence of the most probable total transla­

tional kinetic energy on fissionability parameter is compared in Fig'. 

46 with the data of Viola and Sikkeland. 7
2 

(This figure is reproduced 

from reference 3.) As in Fig. 18 the solid curve represents the result 

for nonviscous fragments with hydrodynamic flow of the type· we have 

been considering (a superposition of an irrotational flow and a flow 

corresponding to a uniform rotation). The dot-dashed curve represents 

the result for infinitely viscous fragments (which would separate to 

lnfinity without oscillating), and the short-dashed line represents a 

simple approximation (see Section III. C) to the former curve. In ad­

dition to the data for nuclei with fissionability par.ameter x:5 0.67, 

we have also included the data for heavier elements, with fissionability 

parameters up to x = 0.807. The experimental most probable kinetic 

energies for nuclei with x :5 0.67 are seen to be reproduced well both 

>!c 
For the benefit of those making a comparison between this figure and 

Fig. 6 of reference 3~ the preliminary data presented there were over­

corrected for the effects of neutron emis sion from the fragments; the 

agreement is better than indicated there. 

tIt should be recalled that the variance u G retains its linear depend­

ence upon e at low temperatures in the two-spheroid model because 

the mas s -asymmetry frequency is zero (as a consequence of the zero 

neck radius of the saddle-point shape), In the actual situation, of 

course, the neck radius of the saddle-point shape and the mass-asym­

metry frequency are not zero, but are small. The variance u G of 

the mass distribution should therefore approach in the real case a 

small finite value, rather than zero, as the temperature goes to zero. 
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Fig. 45. Variances in the distributions of fragment mass (top), and 
variances in the distributions of total translational kinetic 
energy (bottom), as functions of nuclear temperature 8. 
The theoretical curves (solid lines) are calculated for initial 
conditions determined in the harmonic approximation l from 
Eq. (36)]. The data are those of Plasil. 77 The compound 
nucleus 82Pb198 (x = 0.677) was formed from the reaction 

182 16 186 
74 W + 80 ,and the compound nucleus 76 Os (x = 0.619) 

from each of two reactions: 68Er170 + 8016 (solid points) and 

70 Yb 174 + 6 C 12 (open circles). 
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Fig. 46. Most probable total translational kinetic energy, as a 
function of fissionability parameter x. ,The result calcu­
lated for nonviscous. fragments is given by the solid line, 
the result for infinitely viscous fragments by the dot­
dashed line, and a simple approximation to the former by 
the short-dashed line. The data are, those of Viola and 
Sikkeland. 72 
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in magnitude and in their dependence on x by the solid line (nonvis­

cous fragments). For x:2 0.67 the experimental points are higher 

than the theoretical estimate represented by the solid line. Recall 

that for x ~ 0.67 the two-spheroid model is inadequate, among other 

respects, in that its saddle -point configuration is more elongated than 

the true liquid-drop saddle -point shape. Thus, the translational kinetic 

energies predicted by the model for x:2 0.67 are expected to be too 

low. 

The comparison between theory and experiment as regards the 

variation of widths with fissionability parameter has not yet been made. 

There are insufficient data on either the widths of the mas s distributions 

or the widths of the total translational kinetic -ener gy distributions to 

establish their dependence on x. However, the single-fragment trans­

lational kinetic-energy distributions of Viola and Sikkeland 72 cover a 

wide range of x. In the region O. 569 ~ x ~ 0.650 they have reported 

the full widths at half maximum of single -fragment kinetic -ener gy dis­

tributions for nine nuclei. Since the reactions studied were formed by 

heavy-ion bombardments, considerable analysis (similar to that per­

formed by Plasil77 ) is required to determine the average nuclear tem­

perature at the saddle point. If the nuclear temperature for each of 

these reactions were determined, the experimental widths could then 

be compared directly with those predicted by the theory. 

The remaining comparisons between theory and experiment will 

be made in a series of three tables. We compare in Table I. for sev­

eral compound nuclei and nuclear temperatures the over -all mean 

total translational,kinetic energy E, the over -all variance (J~ of the 

total translational kinetic-energy distribution, and the over -all variance 

(J ~ of the mass distribution. Table II is a similar com.parison, but 

in terms of full widths at half maximum of the distributions rather than 

variances. (For a Gaussian distribution, the full width at half maximum 

is equal to the square root of the variance multiplied by 2. 3548.) In 

Table III we compare with theory the full widths at half maximum of 

mass distributions obtained by use of radiochemical techniques. From 

the, comparisons made in these three tables there is no indication of any 

significant disagreement between theory and experiment. 



Table 1. Moments of distributions in total translational kinetic energy and mass. The calculated mean total translational 
kinetic energy E, the variance a ~ of the distribution in total translational kinetic energy, and the variance a t of 
the distribution in fragment mass are compared with the data of Britt, Wegner, and Gursky 75 for 2He3 - induced 
fission reactions. The experimental values of a~ and at are not corrected for the effects of neutron emission 
from the fragments. 

e E 2 2 
Ok au 

Target Compound x Bombarding (MeV) Theory Exp. Theory Exp. Theory 2Exp. 
nucleus energy (MeV) (MeV)2 (amu) 

(MeV) 

A 197 
79 u 81 

Tl 200 0.654 25.5 0.65 143 140.3 39 55 73 96.7 

. Tl nat 
81 

B·(208) 
83 1 0.661 25.5 0.53 148 141.7 35 50 61 89.0 

Pb
206 P 209 -84 0 0.673 25.5 0.57 149 145.4 38 50 62 79.1 0" 82 -I 

B· 209 
83 _ 1 85 

At212 0.680 25.5 0.54 151 147.3 37 57 58 85.0 

B· 209 
83 1 85 

At212 0.680 22.1 0.40 151 146.5 30 48 43 72.7 



Table II. Properties of distributions in total translational kinetic energy and mass. The calculated mean total translational 
kinetic energy E, the full width at half maximum (FWHM)E of the distribution in total translational kinetic energy, and 
the full width at half maximum (FWHM)U of the distribution in fragment mass are compared with experimental data. 

Target Projectile Compound x Bombarding e E (~WHM)E (FWHM)U 
nucleus energy (MeV) Theory Exp. Theory Exp. Theory Exp. 

(MeV) (MeV) (MeV) (amu) 

B· 209 
83 1 

a A2B 
85 t 0.677 42 0.65

a 
151 150 15

a 16b 
20

a 24c ,d 

B· 209 
83 1 

a 
85 

At
213 

0.677 43 0.68 151 148 15 20d 20 26c ,d 

82 
Pb

nat 
a P (211) 

84 0 0.667 43 149 146 

81 
Tl

nat 
a B·(209) 

83 1 0.658 43 147 143 

A 197 
79 u a 

81 
Tl

201 
0.651 43 143 138 

"B· 209 
83 1 

d p211 
84 0 0.667 21.5 0.35 149 143 12 19

d 

a 1n reference 78 the experimental (rather than calculated) fission barrier is used to obtain e = 0.8 MeV; using this value, 
(FWHM)E = 16 MeV. and (FWHM)U = 22 amu. 

bValue is corrected (in reference 78) for fragment neutron emission and experimental dispersion . 

. cValue is read off experimental curve. 

dValue is not corrected for fragment neutron emission and experimental dispersion. 

Ref. 

78 

71 

71 

71 

71 

71 

.... 
0' 
N 
I 



Table III. Widths of fragment-mass distributions. The calculated full width at half maximum (FWHM)U of the 
distribution in fragment mas s is compared with data obtained by radiochemical techniques. 

Target Projectile Compound x Bombarding e (FWHM)U 
nucleus energy (MeV) Theory Exp. Ref. 

(MeV) (amu) 

82 
Pb

206 
0. 

P 210 
84 0 0.670 42 0.62 20 21

a 
70 

B· 209 
83 1 P 

P 210 
84 0 0.670 36 0.76 22 18

a 68 

B· 209 P 210 24a 68 
.,. 

83 1 P 84 0 0.670 58 1.20 27 -0"-
\.N 
I 

A 197 
79 u 0. 

81 
T1

201 
0.651 42 0.72 21 34 67 

82 Pb
204 

0. 
P 208 

84 0 0.677 42 0.71 20 27a 67 

82 Pb
206 

0. 
P 210 

84 0 0.670 42 0.62 20 22 67 

B· 209 
d 

211 
0.667 22 0.38 15 . 17 65,66 83 1 84 Po . 

aValu~ is read off experimental curve. 
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To summarize this section, we have compared the predictions 

of our model with existing experimental data for the fis sion of nuclei 

lighter than radium-distributions in mass and total translational ki­

netic energy. From these comparisons we have learned that the two­

spheroid model is capable of accounting for a large number of the ob­

served properties of the distributions, but that some discrepancies 

remain. The significance of the comparisons will be discus sed in 

Section VII. 

.-
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VII. SUMMARY AND CONCLUSION 

We have studied in connection .with nuclear fission the division 

of an idealized charged drop, using a simplified version of tl;te liquid­

drop model. The coordinates for our model were selected so as to 

take into account the appropriate degr.ees of freedom es.sential to a dis­

cussion of the division of a charged drop and the separation of the frag­

ments to infinity. To the Hamiltonian' of our idealized system we have 

,applied standard static, dynamical, and .statistical methods in order 

to trace out the essential features ,of the process. 

This has included, first of all, the calculation of the potential 

energy of the system (a sum of surface and Cou1<;)mb energies), and 

the location and study',of the properties of the saddle point. From such 

a study we learned that our model is expected to be useful for discus­

sing certain aspects of the fission of nuclei with fissionability param­

eter x ~ 0.67 (nuclei lighter than about radium), but not, in general, 

for discussing the fission of heavier e,lements. 

The dynamical study was, concerned with calculating the kinetic 

energy of the system, with setting up the equations of motion, and with 

solving them in terms of given initial conditions. This made it possible , ' " . , 

to trace out the division 6fthe nucleus and the separation of the frag­

ments from some given initial configuration to infinity. For the major 

portion of the study we worked out the theory for completely nonviscous 

fragments, with hydrodynamic flow consisting of a superposition of an 

irrotationalflow and a flow corresponding to a uniform rotation. For' 

certain aspects of the theory we also considered the case of infinitely 

viscous fragments. 

In the application of statistical mechanics we focused attention 

on the system at the saddle point, making 'the standard transition-state­

method assumption of statistical equilibrium at the saddle point. This 

made it possible to calculate the probability of observing the system 

in a given state of motion close to the saddle point. 
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The results of the dynamical and statistical studies were then 

appropriately combined to give the probability of observing the two 

fragments in a given state of motion at infinity. This probability 

corresponds directly to the probability of certain observable charac­

teristics of fission fragments: their total translational kinetic energy, 

fractional mass, individual excitation energies, .and individual an­

gular momenta. 

As stated in the introduction, our purpose has been to study 

III detail the properties of the division of an idealized liquid drop 

whose size, surface tension, and charge are those of a nucleus; and 

to compare the results with what is observed experimentally in the 

fis sion of real nuclei. From this point of view there are no adjust·­

able parameters in the problem. The comparison between theory 

and experiment is thus expected to tell us unambiguously to what ex­

tent an idealized liquid-drop model is capable of accounting for the 

propertie s of fis sion. 

We have been able to make comparisons of calculations with 

.. experiment for several nuclei lighter than radium as regards distri­

butions in mass and total translational kinetic energy. These pre­

liminary comparisons suggest the following conclusions. First and 

most important, the magnitudes.of the experimental most probable 

kinetic energies and masses are reproduced by the calculations -the 

experimental and theoretical most probable (or mean) kinetic energies 

agree to within a few percent, and predominantly symmetric rather 

than asymmetric mass divisions are observed, as predicted. Secondly, 

the magnitudes of the experimental widths of the distributions in both 

kinetic energy and mass are essentially as calculated, usually to 

within several percent. 

As far as the finer details of the distributions are concerned, 

the calcu!ations are capable of reproducing the correct trend in two 

out of the three details that we have compared. There is es sential 

agreement as regards the decrease in average total translational ki­

netic energy with increasing mass asymmetry, and as regards the 
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rapid broadening of the mass distribution at low values of the total 

translational kinetic energy, The experimental constancy or increase 

of the widths of the kinetic-energy distributions with increasing mass 

asymmetry is not reproduced by the theory, which predicts a slight 

decrease. 

The dependence of the experimental distributions on the nuclear 

temperature of the system is in basic agreement with the theory. The 

theory predicts, and experiment seems to confirm, that the most prob­

able kinetic energies should be essentially independent of temperature. 

The variances (squares of widths) of the distributions in both mass and 
, 

total translational. kinetic energy are predicted to increase in a char-

acteristic way with increasing nuclear temperature. Experimentally, 

the variances of both the kinetic~energy distributions and the mass 

distributions were observed to increase with temperature, some with 

slopes in approximate agreement with theory. There were no exper­

imental points in the interesting region of very low temperature, where 

the variances of the kinetic-energy distributions are predicted to be~ 

come independent of temperature. 

The experimental trend of the most probable kinetic energies 

with fissionability parameter x was approximately reproduced by 

the theory for those nuclei with x;S 0.67. No comparisons of theory 

and experiment have been made as regards the variation of the widths 

of the distributions with fissionability parameter. 

On the whole, the preliminary comparison of theory with ex­

periment suggests that the limitations of the liquid-drop model-in its 

simplifiedtwo-spheroid approximation-are not yet in evidence to a 

serious degree for the fission of the lighter nuclei. The model has 

stood the test of comparison with an impressive number of properties 

of the distributions in mass and total translational kinetic energy, 

without the introduction of adjustable parameters. The model seems 

capable of accound.ng not only for the over-all orders of magnitudes of 

the most probable values and the widths of the distributions in kinetic 

energy and mass, but also more detailed properties of the distributions. 

It appears from preliminary comparisons that for the fission of ele­

ments lighter than about radium, single -particle effects are of little 
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importance in influencing the distributions in kinetic energy and mass. 

The conclusions drawn must not be regarded as final, however, 

since only a fraction of the full predictive power of the two-spheroid 

model has been subjected to experimental verification. Even as 

regards distributions in kinetic energy and mass, there are several 

remaining areas of exploration. The experiments that have been per­

formed have provided us with information regarding the mean values 

and variances of the distributions, including the dependence of the 

mean value and variance of one distribution on the other variable, and 

vice versa. Future experiments of this type should aim at determining 

not· only these quantities but, in addition, the further deviations of the 

distributions from' normal distributions -the skewne s s of. the kinetic­

ener gy distribution, and the kurtosis of the mas s distribution, for 

example. In addition, experimental points at higher and at lower nu­

clear temperatures are necessary to establish definitely the dependence 

of the variances of the distributions on nuclear temperature, in partic­

ular, whether or not the variance of the kinetic-energy distribution 

"flattens" to a constant value at low temperatures. 

The extension of the measurements of mas s and kinetic -energy 

distributions over a range of fissionability parameter is necessary to 

establish the trend of the widths with x, and to better confirm the 

trend of the most probable kinetic energies with x. It would be par­

ticularly desirable to perform experiments in the neighborhood of the 

Businaro-Gallone bifurcation point at x = x
BG 

::::: 0.39
4

, which would 

include elements in the neighborhood of silver. 15,43 At x= xBG' there 

. should be a transition in the qualitative feature s of the two -dimension-

al distributions in total translational kinetic energy and mass. For 

x >x
BG i, the lines of constant probability should be ellipses (to lowest 

order), whereas for x < x
BG 

they should consist of two families of 

hyperbolas. The distribution in mas s should become extremely broad 

for. x ::::: x
BG

' and for :x < x
BG 

the division process should become 

one of fragmentation, as distinguished from fission, 43 with the prob­

ability for obtaining a given mass increasing with increasing mass 

asymmetry. 
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A major area of experimental exploration that is untouched 

for nuclei lighter than radium is the study of the distributions in in­

dividual fragment excitation energies,. The most direct way of exper­

imentally determining these distributions is to measure the distri-
, ' , 87-89* 

butlons of the number of neutrons emltted from each fragment. 

Aless direct method of obtaining such information is the measure­

ment of the dishi butions of kinetic energies of the neutrons emitted 

from each fragment; 88-90 this method would involve the use of the 

relationship between fragment excitation energy and the resulting 

k ' " d" 'b' f h' '. d 79,91-94 lnetlc -energy· 'lstn utlon 0 t e evaporate neutrons •. 

Experimental information on distributions of individual frag­

ment excitation energies would serve a twofold ~urpose .. First of all, 

the information is needed for comparison with the theoretical pre­

dictions of the model. . A:. particularly important experimental deter­

minationsis; the correla,tion coefficient of fragment excitation energies, 

which could be compared directly with the prediction that fragment ex~' 

citation energies should be rather. strongly anticorrelate9,. Secondly, 

such informatlon could be used to accurately correct experimental 

distributions inm,ass and total translational kinetic energy for frag­

ment neutron-emission ef£ects~. This would make the conclusions 

drawn froIn'comparisons of ,these experimental distributions with theory 

more reliable. 

The determination of the distributions of individual fragment 

angular moment;;t for the lighter elements represents another new area 

of experimental exploration. Experimental information regarding 

these distributions is potentially obtainable from at least three differ-

eIlt types of experiments. One is a measurement of the distributions 

>:c 
Note that a measurement of the distribution of the total number of 

neutrons emitted (from both fragments) would determine only the diS­

tribution in total excitation energy, which would be equiv'alent (to 

lowest order) to the distribution in total translational kinetic energy. 
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... 

of the total prompt gamma-ray energy emitted by each fragment. * 
The distribution of individual fragment angular momenta could then 

be estimated from a knowledge of the effect of angular momentum on 

the competition between neutron emission and gamma-ray emission 

i~ the fragment de-excitation process, 10?-102t The second method 

involves the measurement of the angular distributions of prompt 

gamma rays emitted from the fragments. 47t. The third method, which 

would yield information only for specific fragment mas ses, is the 

t d f h ' ld d ' o. h f" d t 103, 104 § s u y 0 s le e lsomer rabos ln t e lSSlon pro uc s, 

,'-
"'For the heavier elements the average total gamma-ray energy per 

fission (for both fragments) has been found experimentally to be about 

8 MeV.9 5-98 Fragment de-excitation calculations made for nonrotating 

fragments indicate that roughly one-half this amount of gamma-ray 

energy is expected.88 - 90 ,99 It has been suggested that this discrepancy 

is due to the presence of a total fragment rotational energy of several 

MeV. 

t 213' 
Recall (Section V.A. 2) that for the compound nucleus 8SAt and a 

. nuclear temperature at the saddle point of 1.13 MeV, the most probable 

value of the angular momentum of each fragment at infinity is estimated 

as about 101'1 if the fragments are nonviscous and about 151'1 if the frag­

ments are infinitely viscous. If one uses for the moment of inertia of 

the fragments at infinity the rigid- body moment of interia of a sphere, 

for example,' this corresponds to total rotational energies for both 

fragments of about 3 MeV for the nonviscous case and about 7 MeV for 

the viscous case. 

t For the thermal-neutron-induced fission of heavier elements, this 

method indicates that the average angular momentum per fragment is 

about 71'1. 47 

§The angular momentum per fragment in the low- and medium-energy 

fission of heavy elements deduced by this method is about 6 to 101'1.
104 

: 
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The experimental determination of the distributions of individual 

fragment angular momenta could possibly be of value 'in helping decide 

the important question of the degree, of nuclear viscosity. 

The large number of predicted quantities ,for which ther,e is 

little or no experimental information available perhaps calls for a re­

examination of the directions in which basic experimental fission re­

search should proceed. For the ,past quarter of a century experimen­

talists have concentrated on the more easily accessible region of the 

heavy elements, and have accumulated a prodigious amount of data. 

Until a more adequate theory of the fission of the heavy elements is 

worked out that is capable of explaining more of these data, it appears 

that a larger fraction of the future experiments might profitably be 

diverted to the region of the lighter elements. 

Further progress in our understanding of fission involves, of 

course, not only further work on the experimental side but also on the 

theoretical. Ultimately, any theory of £is sion ~ill have to take into 

account single -particle effects. but, even apart. from that, there are 

several important refinements that should be studied within the liquid­

drop model. 

The present work has been concerned with tracing out the im­

plications of the two-spheroid model on an essentially classical basis. 

The entire treatment of that stage of the fission process from the sad­

dle point to infinity has involved the solution of classical equations of 

motion. Only in the neighborhood of the saddle point have we attempted 

to discuss the effects that quantum mechanics would be expected to have 

on the proces s, and it is not. clear that quantum mechanics has been in­

troduced in a consistent way. Our quantum-mechanical discussion in­

volved the determination of the probability for initially finding the sys­

tern in a given state of motion near the saddle point. These quantum­

mechanical probability distributions were then combined in the sense of 

initial conditions with solutions to clas sical equations of motion.· 

The classical solution of the equations of motion corresponding 

to the two-spheroid Hamiltonian represents an essential step in our 
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understanding.· An important next step would involve the completely 

consistent quantum-mechanical soiution of Schrbdinger ' s equation 

corresponding to the Hamiltonian- both in the vicinity of the saddle 

point and in the s"eparated region. This would involve, among other 

things, a study of the restrictions imposed by symmetry upon the 

wave functions for the system, for which there are no clas sical an-

alogues. From such a complete quantum-mechanical solution, the 

classical solutions discussed here could be obtained as a limiting 

case. (For most of the data compared here, however, the nuclear 

temperature is ~;ufficiently high that classical statistical mechanics 

is valid for determining the initial conditions, and the ambiguities 

associated with this mixture of classical and quantum mechanics are 

not present. For these cases the entire treatment given here may be 

regarded as completely clas sical. ) 

There is a second important investigation that remains to be 

carried but for the two-spheroid model. The discussion iIi this paper 

was restricted to a system with zero total angular momentum. The 

theory should also be worked out in which account is taken of the three 

rotational degrees of freedom of the system as a whole. This would 

make it possible to draw stronger conc~usions when comparing predic­

tions of the theory with data from heavy-ion-induced reactions, in 

which there is considerable angular momentum present. Explicit con­

sideration of the system' sthree rotational degrees of freedom would 

also make it pos si ble to incorporate the existing discus sions of angular 

d · t 'b t' f f' . f 51,105-108 18 r1 u Ions 0 IS slon ragments. ". 

A third extension of the work of this paper is possible. By re­

laxing the restriction that the charge density be constant throughout the 

nucleus, and by" taking into account a charge -fluctuation degree of free­

dom, the discussion of fission-fragment charge distributions could be 

included. 
"­-.-

::C 
Historically, the (unpublished) work of Marshall Blann and Wladyslaw 

J. Swiatecki· on fis sion-fragment charge distributions led to some of 

the ideas presented in this paper. 
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To us the most exciting prospect for the future is the exten­

sion of the two -spheroid model by the introduction of a conicoid of 

revolution between the two spheroids (see Section II. B and Appendix 

B. 3). By use of this extension of the model, one should be able to 

discuss certain aspects of the fission of nuclei over the entire range 

of fissionability parameter from 0 to 1. Since the saddle -point 

energies and shapes calculated in this extended model agree so remark­

ably well with the true liquid-drop saddle-point energies and shapes 

(see Figs. 8 - 11), the model should make practicable the calculation­

of the predictions of the liquid-drop model not only as regards the 

distributions discussed in this paper, but also as regards such ques­

tions as the probability for fission-cross sections for induced fission, 

and half lives for sp·ontaneous fis sion. 

The general version of the extended model has· the capability 

of representing the transformation of the hyperboloidal neck into a 

spheroidal third body between the two side fragments. This provide s 

the possibility for the division of the nucleus into three fragments. 

Thus it might be possible to discuss with this three-spheroid approx­

imation the interesting questions of ternary fission and long-range 

alpha-particle emis sion, in particular the angular distributions and 

the kinetic-energy distributions of the long-range alpha particles. 

. In conclusion, we would like to suggest that the procedure to be 

adopted in discussing any extensions of the theory should be identical 

as far as possible with that underlying the present work-the writing 

down of the Harniltonian describing the idealized situation, followed 

by the systematic application of standard static, dynamical, and sta-· 

tistical methods. In this way a degree of unity and continuity could be 

achieved in the development of fis sion theory. 
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APPENDICES 

A. Comments on the Validity of the Liquid ... Drop 

Model for Discussing Fission 

A nucleus can be regarded for practical purposes as consisting 

of protons and neutrons held together by short-range nuclear forces. 

Solution of the resulting many-body problem would presumably yield 
I 

an accurate description of all fission phenomena. However, this prob­

lem is at present impossible to solve both because of the mathematical 

difficulties associated with the existence of a large number of particles 

and because the potential between nucleons is not accurately known. 

The short-range character of the nuclear force provides a 

means for approximate solution. The dimensionless ratio character­

izing the nuclear problem-the range of the nuclear force divided by 

the nuclear radius -is for all but the lightest nuclei a small quantity. 

The energy of the system (apart from the Coulomb energy) may then 

be calculated as an expansion in increasing powers of this dimension­

les s ratio. The coefficients of the various terms, which will in gen­

eral depend upon nuclear composition (the difference between the num­

ber of neutrons and the number of protons), are determined by fitting 

the resulting expansion to experimental masses. The four leading 

terrns in such an expansion of the energy are of order (RO/rn)3, 

(R
o
/r

n
)2, (RO/rn)1, and (Ro/rn)o, where R O is the radius of the un­

distorted nucleus, and r is the range of the nuclear force. With 
n 

respect to the number of nucleons A, the expansion has leading terms 

1 2/3 1/3 ° of order A ,A ,A ,and A . 

A physical interpretation may be attached to each term in the 

expansion of the energy. The term of order A 1 represents the ap­

pro~imation in which the size of the nucleus is infinite compared with 

the range of nuclear forces, i. e., the nuclear -matter approximation. 

The contribution to the energy ~ssociated with the A
i 

term is a neg-
) 

ative quantity proportional to the volume of the nucleus; for a heavy 

nucleus its magnitude is a few thousand MeV. This volume energy, 

which is independent of the shape of the nucleus, represents the energy 

decrease arising from the binding of each nucleon with its close neigh­

bors. Since it is a constant for a particular nucleus it need not be 
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considered when discussing fission, where only shape -dependent 

ene rgie s are relevant. 

The term of order A 2/3 represents the approximation in 

which the range of nuclear forces is no longer neglected in relation 

to the size of the nucleus. This term represents the loss of binding 

of nucleons near the surface of the nucleus, but since one is consider­

ing this effect only to lowest order, the approximation is equivalent 

to assuming a semi-infinite distribution of nuclear matter bounded by 

a plane surface. In this approximation the effect of the A 2/3 term 

may be represented as the loss of binding per unit area of the bound­

ing surface, i. e., as a surface energy proportional to the surface 

area of the nucleus. The size of this term depends on the shape of 

the nucleus -a typical value for a heavy nucleus is several hundred 

MeV. 

The actual. value of the specific surface tension depends in a 

very complicated way on the details of nuclear forces and nuclear 

structure. On the other hand, the proporti~nality of the A 2/3 term 

to the nuclear surface area is a consequence only of the smallness of 

rn In comparison with RO' i. e., of the assumption that the causes 

for the decrease of binding at the surface can be localized to the im­

mediate neighborhood of a given nucleon. The situation is analogous 

to the case of ordinary liquids: despite the immensely complicated 

nature of intermolecular forces the proportionality of the surface 

ene rgy to the area of the drop is extremely accurate except for drop­

lets whose radii become comparable with molecular distances. 

A
1/ 3 The term of order represents a number of corrections 

to the volume and surface energies associated with the finite 'rather 

than infinite size of nuclei. In particular, the compres sibility correc­

tion to the volume energy, and the curvature correction to the surface 

energy appear at thi~ stage'. 18 The available information regarding 

these term~.is very inadequate; in order of magnitude, they are some 

tens of MeV. Since these terms are smooth functions of the neutron 

and proton numbers, our ignorance regarding them is compensated 

to a certain extent by a readjustmenf of the empirical coefficients of 

the volume -, surface -, and electrostatic -energy terms. 
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o 
The correction terms of order A are presumably even more 

subtle and less well understood. Insofar as these terms are smooth 

functions of the neutron and proton numbers they are also partly ab­

sorbed in the leading terms. We note, however, that single-particle 

effects may be formally regarded to be of order A O-biriding-energy 

anomalies associated with a single nucleon (a few MeV in practice) 

are of order A times smaller than the total binding of all nucleons. 

Because of the characteristic oscillating dependence of the single­

particle correction on neutron and proton numbers, this correction is 

presumably the most important of the A 0 terms. Some information 

on this correction is directly available from the study of ground -state 

masses of nuclei in the periodic table and from theories of the observed 

oscillations (see, for example, references 80 and 81). 

We have thus far considered only the energy associated with the 

nuclear forces. The electrostatic repulsion of the positively charged 

protons gives rise to a Coulomb energy, which is also a function of 

the shape of the nucleus. This energy is of order aA 5/3, where 

a ;::: 10-
2 

is the ratio of the electromagnetic coupling cOristant to the 

nuclear coupling constant. For a heavy nucleus the Coulomb energy 

is of the order of a thousand MeV. 

In connection with the Coulomb ene rgy it should be pointed out 

that the discussion of the Coulomb energy of a deformed drop with a 
80 

thin diffuse surface is as easy as that of a drop with a sharp surface. 

Consider the expansion of the Coulomb energy of the drop in increas­

ing powers of the ratio of the "thickness" of the surface to the radius 

of the drop. The first term in such an expansion is the Coulomb energy 

o~ a deformed sharp surface and is a function of the shape of the drop. 

It can be shown, using Gauss' theorem in electrostatics, that the next 

term is exactly independent of the shape of the drop. 80 Thus the 

lowest-order diffuseness correction to the Coulomb energy could be 

included simply by adding a (negative) constant to the Coulomb energy; 

this would simply alter somewhat the value of the fissionability param­

eter x. 

We see that the leading terms of interest in fission-the shape­

dependent ones -are of order aA 5/3, A 2/3, A 1/3, and A O. The liquid-
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drop model consists of treating only the first two, the Coulomb and 

surface energies. ' Barring accidental cancellations of the changes in 

Coulomb and surface energies, the remaining terms should in general 

'he less important. In the region of the heavy elements the changes in 

the Coulomb and surface energies do indeed tend to cancel, and. the 

remaining terms may then be essential for discussing certain aspects 

of the process. On'the other hand, in the region of the lighter elements, 

the changes in Coulomb and surface energies do not cancel so closely, 

and the remaining terms should not have the same relative importance. 

The point of view that we are trying to bring out is that t~e 

liquid-drop model is not to be regarded as a "right" or a Ilwrongll 

model of fission, but as a first stage in the development of an approxi­

mate theory of nuclear fission that takes into ac~ount the principal 

components of the energy and that may be improved in a systematic 

way by the inclusion of corrections of higher order. 

B. Formulae for Potential Energies 

We give here the formulae used for calculating the surface and 

Coulomb energies of a system consisting of (1) two arbitrarily oriented 

separated spheroids, (2) two overlapping symmetric spheroids, and 

(3) two symmetric spheroids connected by a conicoidal neck. 

1. Separated Spheroids 

The total potential energy of two arbitrarily oriented separated 

spheroids is written in the form of Eq. (6b): the sum of two individual 

surface energies, two individual Coulomb self-energies, and the 

'Coulomb interaction' energy. We will consider these terms one by one. 

However, let us first take care of some pr~liminary definitions. 

Recall that c
1 

denotes the semisymmetry axis of spheroid 1, 

arid a
1 

its transverse semiaxis. When, spheroid 1 is prolate its 

eccentricity e 1 1S defined by 

I 

2 
e = 1 

1 - 1 -

., 
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When spheroid 1 is oblate we denote by E 1 the quantity 

'2 U R3 
2 a

1 0 
- 1 

2 
E 1 - --1 = = - e 1 2 3 

c
1 

c
1 

(Note that E 1 is not the eccentricity of an oblate spher'oid.) The 

quantities e 2 and E 2 are defined in an analogous way for spheroid 2. 

When spheroid 1 is prolate its surface energy is given by13 

l . -1 ] Bs(1)=~u2/3(1_e21)1/3 1+" sm e 1 ,.' 
c. 2 1/2 

e
1
(1-e

1
) 

By use of this formula and the relation 109 

, -1. .' 2 
[ 

, 1/2] 
s ln l,X = 1 In x + (1 + x ) • 

we obtain the result for the surface energy of fragment 1 

oblate: 

{
' r 2 1/2] } 

(1) 1 2/3 2 1/3 InlE 1 + (1 + E 1) 
BS = 2' u (1 + E 1) 1 + . 

2 1/2 
E1 (1+E 1 ) 

(B.1 ) 

when it is 

By expanding either of these formulae we obtain a result that is useful 

for calculating the surface energy when spheroid 1 is nearly spherical 

(either prolate or oblate): 

BS( I) = U
2

/
3 (1 +;5 e~ + ii;5 e~ + 2~~15 e~ + 4~~;25 e!O + ... ) 

When spheroid 1 is prolate its 

B (1) = ~ U 5/ 3 (1"" 2 1/3 1 
C 2 e 1 ) e

1 

Coulomb energy is 

(
1 + e 1 ) 

In 1 _ e 
1 

By use of this formula and the relation 109 

-1 . 1 . I (1 ~ ~ ) tan lX = '21 n 1 

. b 13 glven y 

we obtain the result for the Coulomb er;ergy of fragment 1 when it is 

oblate: 
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. -1 
( 1 ) 5/ 3 . 2 1/3 tan ~1 

B C = U (1 + E 1) . 'E 1 . 

When spheroid 1 is nearly spherical, the series expansion is useful:':< 

(1) _ 5/3 ( 1 4 64 6 58 8 1024 10 ... ) 
B C - U 1 - 45 e 1 - 283 5 e 1 - 283 5 e 1 - 56133 e 1 + .' 

Formulae for the surface energy and the Coulomb self-energy 

of spheroid 2 are completely' analogous. 

We consider now the derivation of the Coulomb interaction 

energy EI = BIE~) between spheroids 1 and 2. For this energy, 

closed formulae are not available; the final result will be expressed 

as the sum of two closed 'formulae and a triple multipole summation. 

The derivation consists of reducing (for the case of two spheroids) the 

general formula given by Hirschfelder, Curtiss, and Bird
110 

forl;he 

interaction energy of two completely separated charge distributions. 

The interaction energy of two separated charge distributions 
. 110t 

1 and 2 can be written as a fivefold multipole summatlOn: 

E"= \ I'L 
n 1 n 2 . 

m 1 m 2 

m 1 -1 mil -m2+ I m21 n 2 + m 
i' (-1) 

':< This expansion is given,. through the e~ term, in reference 39., 

t In comparing with Eq. (12.1-33) of reference 110, note that a factorial 

sign is missing the re from the last factor in the denominator. A suf­

ficient condition for the convergehce of this expression is that one of 

the charge distributions be completely outside an imaginary sphere 

in which the second charge distribution is completely enclosed .. 
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(n1) ':' (n2 ) 

[

D (<I>1,81,t\J1) rn m D (<1>2' 8 2 "t\J2')m m 
X· .. 1 . 2 

. n
1

:tu
2

+1 
i. 

] 
_ m1 . 

In this expression Q(1) is the multipole moment of charge distribu-. n
1 

. 
tion 1, calculated with respect to a body-fixed coordinate system 

m 
Q( 1) 1 = 

n1 

where Pi (r1 , e1'~1)is the charge density of charge distribution 1, 
m1 _ . . 

p n1 (cos 8 1 ) is the associated Legendre polynomial, and dT1 denotes 

an element of volume. An asterisk denotes complex conjugation. The 

orientation of the body-fixed system xi y 1 z1 with respect to the 

space -fixed system Xi y 1 z1 is specified by the three Euler angles 
. (n

i
) 

8 1 , <1>1' t\J 1 (see Fig. 2). The coefficients D (<1>1,8 l' t\J1)m m are the 

representation coefficients of the three -dimensional rotatio~ group. 110 

(The representation coefficients being used are identical to those of 

Margenau and Murphy. 111) The distance between the origins of co­

ordinate systems Xi Y 1 z1 and x2~z'2 is i.. 

For uniformly charged spheroidal charge distributions we 

choose the body-fixed z 1 axis to lie along the symmetry axis of 

Then, because of azimuthal symmetry about the z1 axis, 

o for m
1 

I 0. For m
1

= 0, we obtain explicitly 

wherePn1 (fl.
1

) is the (ordinary) Legehdre polynomial, fl.1 = cos 81 , 

and 



-18Z-

R1 (f.L1) (Z -/ . h:-<i )~~ r 2 

is the equation in polar coordinates of the radius vector of spheroid 1. 

For n 1 an odd integer, the integrand is an odd function of 

f.L1' and Q( 1 )~1 = O. By use of the result11Z 

£
+1 

F Zn (f.L) df.L 

-1 .. Z n+(3/Z) = 
.. (1 + kf.L ) __ 

n+(1/2) 
(Zn+1) (1+k) .. 

we obtain, for n
1 

even, 

-_ Z Z n1/ Z 
_ '0 3q1(c1 - a 1 ) 
Q( 1). -= -,-------=-:-­

n 1 (n1 +1) (n1+ 3 ) 

(-1< k< +1) 

whe te q1 is the total charge of sphe roid 1. 

Since Q( 1 )::1= 0 for milO, and Q(Z)~Z= 0 for mzl 0, the 

fivefold summation reduces to a triple summation. Furthermore, 
- 0 ~ 0 

since Q(1)n1 = 0 for n1 odd, and Q(Z)nZ= 0 for n Z odd:, the n 1 
and n

Z 
summations need be taken over even integers only. We thus 

change summation variables by defining 

n
1 

= Zj, 

n Z = Zk. 

The formula for the interaction energy becomes, upon simplifying: 

~.~ 
Er= L L 

j=O k=O 

- 0":'" 0 
Q(1)Zj Q(Z)Zk 

i. Zj+Zk+1 

where m< is the minimum of Zj and Zk. 
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The representation coefficients with one zero subscript can be 

, tt 't f h ' 1 h ,11 0 wrl enln erms 0 sp erlca armonlCS: . 

(n) . 4rr m ~ )

1/Z 
D (<1>, e,4J)OYIl = Zn + 1 Yn (e, <1» 

where e, <I> are the usual polar angles specifying the orientation of the 

body-'fixed z axis with respect to the space-fixed z axis (see Fig. Z). 

Th h ' 1 h ' , d f' d'b 110. . e sp e'rlca armonlCS are ln turn e lne y 

The formula for Er then becomes 

00 00 

LL 
j=O k=O 

- 0-0 
Q(1)Zj Q(Z)Zk 

I. Zj+Zk+1 

m 'm m -im(<j> -<I> ) (-1)(Zj + 2k).! P Z ' (cos e1 )P
Zk 

(cos eZ)e 1 Z 
J . 

( Z j + I m I ) ! ( Z k + ; I ml ) ! 

We may eliminate the appearance of imaginary quantities and absolute­

value signs to obtain 

00 00 - 0- 0 
Q(1)Zj Q(Z)Zk (Zj + Zk) 

I. Zj+Zk+1 . (Zj)!(Zk)! 

( -1 ) .p Z j (c 0 s e 1 ) P Z k (c 0 s e Z) cos m<l> , m m m J 
(Zj + m)! (Zk+ m)! 

where <I> = <1>1 - <l>Z· (When either j or k is zero, the summation 

over m does not occur. ) 

We find it convenient at this point to introduce the definitions 

Z UR
3 

Z Z 
0 

A,Z 
c 1 - a 1 

<::1 c 1 
= = 

I.
Z 1 I.

Z 



·2 
c 2 -

-184-

(1 - U)R~ . 

c· 2 

If we use these definitions and the result previously obtained for the· 

m.ultipole m.om.ents, we obtain 

00 00 

LL 3 3 
(2j+1)(2j+3) (2k+1)(2k+3) 

j=O k-=O 

x (2j + 2k)! A 2j A 2k 
(2-j) ! (2k) ! 1 2 

(2k)! P~ (cos e2 ) I 
X (2k+ in)! cos m<\> .1' 

When either j=O or k=O in this result, the single remaining 

- b - f d 1" 1 113 W 1 f' d 't . t summatIon -can e per orme . exp lClt y. e t lUS In 1 Convenlen 

to write Er in the form. 

where 

S(A,e) = 

00 

L 
2n 

3 A P2n (cos e) 

(2n+ 1) (2n+ 3) 
(B.2a) 

n=O 

(explicit form.ulae are given later), and 

00 00 

LL 
j=1 k=1 

3 

(2j+1)(2j+3 ) 

X 3 (2j+2k)! A2j A2k 
(~k+1)(2k+3) (2j)!(2k)! 1 2 

m< 

X [PZj (cos 9 1 )PZk(cosllZ) + Z L 
m=1 

(2j) !p
m
2J

- (cos e.1 ) 
(_1)m, X 

(2j + m) ! 
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x 
m 

(Zk)! P
Zk 

(cos 8 Z) 

(Zk+ m)! cos m<l>] . 

Written in this form, the interaction energy has a simple 

physical interpretation: 43 If spheroid Z becomes a sphere, . A
Z 

= 0, 

and the interaction energy is given by (q1 qZ/£) s(A 1, 81 ), If spheroid 

1 becomes a sphere, Ai = 0, and the interaction eJ;lergy is 

(q1 qZ/£) s(A Z,8Z)' Thus, according to this equation for EI' the inter­

action energy of two arbitrarily oriented separated spheroids may be 

regarded as the sum of what the interaction energy would be if one of 

the spheroids were a sphere, plus what the interaction energy would 

be if the other were a sphere, minus the interaction energy of two 

spheres, plus a correction given by S(A 1 , AZ' 81 , 8Z' cj». 

The interaction energy of a sphere and a spheroid (either pro­

late or oblate) is discussed by Webster. 113 We have transformed the 

formulae given there into a form more convenient for our purposes. 

For a prolate spheroid we find that 

r 3 (9 Z 3:) 1] (g + A \ 
S(A, 8) = lZA - "4 cos 8 -' '4 A3 In\-';-j 

where g and h are defined by 

3 g sin
Z 

8 

4 A Z h Z 

gl= .~ {1+\l+ [1_l(lCOSlS_1)\l+\4j1/l} 

. , 
h l =i {1 _ \ l + [1 _ l (l cos l S _ 1) \ l + \ 4]1/ l j 

For an oblate spheroid, 

s(\, S) = [iw +(~ coslS - 1) ~1 4 w 
-1(W) tan -

g 

(B.Zb) 

(B.2c) 
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A graph of the function S(A, e) is given in Fig. B.1 as a function 

of A 
2 

for fixed values of 17, and iIi Fig. B.-Z as a function of 17 for 

fixed values of A 
2

. Note in Fig. B.2 that S(A, e) becomes unity for 

approximately the same value of 17, independently of A 
2 

This value 

of 17 is given by the solution of P2 (cos e) = 0; physically this result 

states simply that the quadrupole interaction term is the most impor­

tant of the multiple terms (apart from the monopole). 

We have thus derived the general result for the Coulomb inter­

action energy between two arbitrarily oriented separated spheroids. 

For a number of special cases, the general result simplifies con­

siderably. First of all, if the symmetry axes of the spheroids lie in 

the same plane, cj> = 0, and cos mcj> = 1; this eliminates one factor in 5, 

but the triple summation remains. 

If, in addition to cj> = 0 the symmetry axes are parallel 

. (17
1 

= 172 == e), then a great' simplification occurs. By using properties 

of the representation coefficients 114 we can show that 

m< 

P2/cOS e) P 2k(cos 17)+ 2 I (_1)m 

m=1 

m 
(2k) ! P

2k 
(cos 17) 

X (2k+ m)! = P2j+2k (cos e). 

Then, the formula for 5 
43 reduces to 

00 00 

3 

(2j)! P~ (cos 17) 

(2j+m) ! 

5('1"2,0,0,0.,)" L L 
j=1 . k=1 

(2J + 1)(2j + 3) 

x 3 (2j + 2k) !i 2' 2k 
(2k+ 1)\2k+ 3) ·(2j)!(2k)! A1

J 
A2 P 2j+ 2k(cos e). 

If, further, the spheroids are collinear (17 = 0) then P~j+2k(cOS17)=1" 

and the result for 5 simplifies slightly. For this case, however, 

there is considerable simplification in the formulae for s, and we then 

obtain the formulae given by Cohen and 5wiatecki: 43 
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Fig. B.t. The function, s(A.,e)l defined byEq. (B.2)] vs A.2 , for 
fixed values of e. 
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Fig. B.2. The function s (A. • e) l defined by Eq. (B. 2)] vs e, 
for fixed values of >,.2 . 
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S(A,O)= 

oblate.(w2 = _ x,2) 

2. Overlapping Symmetric Spheroids 

The totq.l potential energy of a system consisting of two over­

lapping symmetric spheroids is written in the form of Eq. (6a): the 

sum of a surface energy and a Coulomb energy. We will consider 

these energies in turn. However, let tis agf1.in first;tci.ke . .:car:e df some 

preliminaries. 

Recall that for the symmetric case the semisymmetry axis. 

of either spheroid is denoted by c, and the transverse semiaxis of 

either spheroid by aj the distance between spheroid centers is J.(see 

the upper part of Fig. 2). It is convenient to define the dimensionless 

quantity 13 by 
L 

13 =zc 
The semiaxis a is determined in terms of Land c by volume 

conservation. If we equate the volume of the original drop to the re­

sult obtained from a straightforward volume integration of a deformed 

.drop, we find that 

a 2RO 1/2 . 

"""IL"'" = [ 3]' o c(2+313"' 13 ) 

When the spheroids are prolate, the eccentricity is defined by 

2 a 2 
e = 1 : .... -2- . 

c 

For oblate spheroids we denote by E thequantity 

2 
E 

2 a . 
= ---z-1= 

c 

2 
-e 

(Again, note that E is not the ecentricity of an oblate spheroid.) We 

further define the quantities g and· y by 
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g = 13 e 

'( = ~ E 

The surface energy of the system is obtained by performing a 

straightf6rward surface integration. When the spheroids are prolate, 

the total surface energy can be written as 

B - ac 
S -, 2 

2ROe [ 
. -1 . -1· 2 1/2 2 1/2] SIne + SIng + e (1 - e ) . + g( 1 - g) .' (B.3a) 

From this equation and the relation (B.1 )it follows that when the 

spheroids are oblate, 

+«1 +<2)1/2 + Y(1+ i )I/2}. (B.3b) 

The· Coulomb energy of the system is calculated by performing 

numerically a double integration. We use a cylindrical coordinate 

system, with the z axis 'along the system1s symmetry axis, and .p 

the perpendicular distance from the z axis to the surface of the drop. 

We denote bYPethe(constant) charge density of the drop . 

. The total Coulomb energy EC = Be E~O) of the system can be 

written as 14 

(B.4a) 

where R(z) is the distance from the center of the drop to a point on 

the surface specified by p and z, V(z) is the electrostatic potential 

on the surface of the drop, and drl dehotes an element of solid angle. 

Becaus e of azimuthal symmetry, a single numerical integration is re­

quired to obtain EC once V(z) is known. 

The electrostatic potential on the surface of the drop is in turn 

given byt9-21 

V(z) 

'. . dp' ... J dz'p' {[p + p~+(z _'Z') dz i '] K(k) -, 

= 2p ----~.------~----~~~--~----------
e . ·2· '2 1/2 

[(p+pl) +(Z-Z')] 

2pD(k) } 

(B.4b) 
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where 

2 4pp' k = ----".l-...:...---_=__ 

(p + p,)2 + (z _ z,)2 

and 

D(k) =K(k) - E(k) 
. k 2 

The quantities K(k) and E(k) are the complete elliptic integrals in 

standard notation. Since excellent approximate representations exist 

f h 11 ' .. 1 11 5 hI' . f or t e elptlc lntegra s, t e resu tlngexpresslOn or Ec can be 

evaluated by performing numerically a double integration. 

We give finally the series expansions about a sphere of the 

surface and Coulomb energies of the overlapping system. It is con­

venient for this purpose to define the dimensionless quantities 6 and 

E by 

c .. 
E =.-- - 1 

RO 

The series expansion for the surface energy may be obtained 

either by expanding the integrand of the surface integral for BS and 

integrating, or by expandin'g the final result for BSitself. We find, 

through terms of third order, 

3 2 9 2 2 
BS = 1 + W 6 + W 6E + "5" E 

5071 s:3 657 
- 53760 U - TTZIT 

99 2 52 3 
- 112 6 E - --ro5 E + .... 

The series expa,nsion for the Coulomb energy is not so readily 

obtainable because aclosed formula for the Coulomb energy is not 

available. An expansion to second order may be carried .out as fol­

lows. First, expand to first order the radius vector R(8) of the system 

in spherical harmonics: 

. R(8) = RO [1+( ~ b + .) P2(cOS 8) 

ClO· 

+ .! 6 L a. TS P (cos 8) + .J 4 
n='t' 

n n 

(even) 



-192-

wherea~S denotes the expansion coefficients ,for a pair of tangent 

spheres :43 

. TS = (-1) (n+2)/2 2(2n + 1) (n - 3)! ! 
an (n + 2)! ! (n.even) . 

Second, ins ert the coefficients a of this expansion of the radius 
n 11 12 

vector into the general result for Be (to second order): ' 

GIl 

B = 1.-5 \' e L 
n=2 

(n - 1) 
Z 

(2n + 1) 

We then find that, to second order, 

2 
a + 

n 

2 9 1 2 
Be = 1 - K 0 - 40 0 € - "5 E + ... 

where the constant K is given by 

K 
81 5 

1280 + 4" 

GIl> 

L 
n=4 

[ 
( 3)! ! ] 2 

(n-1) (~~ 2) t:! ' = 

(even) 

3. Symmetric Spheroids with eonicoidal Neck 

0.06556 ... 

In this generalization of the two-spheroid model the spheroids 

may be connected by the conicoidal neck either smoothly or in a way 

that makes the surface discontinuous (as in the original two-spheroid 

model). In the case of a smooth connection, the requirement of tan­

gency of the conic bid and, the spheroids eliminates one of the degrees 

of freedom. We will consider here only this case. This means, then, 

that for the symmetric case there are three degre~s of freedom. which 

will be chosen as follows: (1) the dLstance between spheroid centers, 

(2) the semisymmetry axis of either of the two spheroids, and (3) the 

neck radius of the drop (the tra,nsverse semiaxis of the conicoid). 

.' 
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The total potential energy of the system is written in the form 

of Eq. (6a): the sum of a surface energy and a Coulomb energy. We 

again use a cylindrical coordinate system,. with thez axis along the 

system I s symmetry axis, and p the perpendicular distance from the 

z axis to the surface of the drop. 

We denote the semisymmetry axis of either of the two symmetric 

spheroids by . c 1 ~ and the other semiaxis of either spheroid by a 1 . The 

quantities a . andc are defined in terms of the equation of a hyper­

boloidof revolution: 

2 2 
p z = -Z-- -Z 1. 
a: . c 

When a 
2 

is positive, a is the neck r~diU:s of the drop .. When c 2 

is negative and a 
2 

is positive, the' hyperboloid of revolution becomes 

a third spheroid. When a
2 

and ,c
2 

are both negative, the conicoid.is 

a hyperboloid of revolution of two sheets. 

The requirements that the volume of the drop be constant and 

that the conicoid.be tangent to the spheroids determine a
1 

andc 

in terms of the other variables. As before, 1. is the distance between 

spheroid centers. Let Zt be the value of z at which the third coni.;. 

coid is tangent to the two end spheroids. We obtain 

(B.5a) 

In terms of Zt and the remaining coordinates, 

given by 

(B.5b) 

By performing a straightforward volume integration, the total volume 
. 3 
4lTRO /3 of the drop is found to be given by 
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-~ 

U 
2, 

41TR 3 411 3 
a.Z 

3 1 c
1 . t 

3" a
1 ----'"-5 + --+ 5 0 a

1 
4 a

1 
a

1 

1
3 

3 Z V2 -I) Ii l + . t t 

6 2 . 
- 2 . 

1 c
1 

a
1 

2 ~ 4c~ 2c
1

a
1 

(B.5c) 

By simultaneously solving ,(B.5a) and (B.5c) we could deter­

mine a
1

and Zt; then, c would be given by (B.5b). Since no easy 

solution of (B.5a) and (B.Sc) exists it is more convenient in practice 

to follow an alternative procedure: If we tis e as our unit of distance 

a
1 

(rather than RO) then Zt' c, and RO are readily obtained from 

the set of three equations (B.5). 

The eccentricity of the spheroids, when they are prolate, is 

defined by 

For oblate spheroids we denote by E 1 the quantity (not the eccentricity) 

2 
2 

E = 1. 

a
1 
~ .1 
c.

1 
. 

The dimensionles s quantity f3
1 

is defined by 

f31 = 
(1/2) - Zt 

c~ 

and the quantities. g1 and y 1 by 

. y 1 = f3 1 .E 1 . 

When the third conicoidis either a hyperboloid of revolution 

of one sheet or a prolate spheroid .we define its eccentricity by 
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2 
a 

= 1 + --z 
c 

When it is an oblate spheroid we denote by E the quan,tity 

2 
.E 

2 
a =----z-1 
c 

2 
e 

The dimensionless quantity 13 is defined for. all cases by 

~t 
13= IcT ; 

the quantities g and yare defined by 

g= !3e , 

The surface energy of the system is determined .by performing 

a straightforward surface integration. The result maybe written as 

a sum of two terms = 

spheroids Bconicoid 
BS= BS + S . 

spheroids· 
The expressions for BS (for prolate and oblate spheroids) 

are identical in form to ,(B.3); simply use the current definitions 

of ai, c 1 ' e 1, g1' E 1 , and Y1 for the analogous.quantities a, c, e, 

g, E, and y, respectively, appearing there. 

When the thirdconicoid is a.hyperboloidof revolution of one 

sheet .we find that 

B conicoid _ ac 
S - Z 

2R
O

·e 
{ [ 

2 1/2J 2 1/2} In g + (1 '+ g) . + g( 1+ g) ..' 

When it is a prolate spheroid. we find,that 

Bcsonicoid __ .a.1 c c I. [-1 2 1/2J ~ . sin g + g(1 - g ), 
. 2RO e 
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and when it is an oblate spheroid, 

Bconicoid alcl rn [Y + (1 l 1/2 ] = + ", ) . S .... ·lR~ EO 

+ ,,( 1 + ,,2) . 
. 1/l} 

The Coulomb energy of the system is calculated by using the 

set of equations (B.4), in a manner analogous to thatdescribe:d in 

connection with two overlapping symmetric spheroids. 

C. Formulae for Kinetic Energies and Equations of Motion 

1. Coplanar Separated Spheroids 

We conside r first the determination of the kinetic energy of a 

single incompressible fluid spheroid for the type of hydrodynamic flow 

we are considering: a superposition of an irrotational flow and a flow 

. corresponding to a uniform rotation of the spheroid as a whole. 

We choose a body-fixed xyz coordinate system whose z axis 

is along the spheroid's symmetry axis. The semisymmetry axis of 

the spheroid is denoted by c, and its transverse semiaxis by a. The 
44 

velocity potential <p. for the irrotational flow is given by Lamb: 
lr 

The velocity 

--+ 

--+ 
v. 
lr 

-+ 
v. 
lr 

<p. = - .! .. (a xl + ~ yZ + C zZ). 
lr l a a c 

of the irr()tational motion is then 

= grad <p. 
lr 

a --+ a -= -xe +-ye 
a x a y 

+ c z ; 
c z 

where e is a unit vector in the x direction, etc. The condition 
x 

that the total volume of the drop be constant implies that 

Consider now the uniform rotation of the spheroid as a whole 

about the y axis with angular velocity of magnitude w. The velocity 

I' 
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-v of this rotational motion (relative to space-fixed axes that are 
rot 

instantaneously coincident with the body-fixed axes) is 

- - -v , = wz e' - w x e 
rot x 'z 

- '-(We note that curl v = 2 we. ) , ,- rot _ y 
The total velocity v of the motion consisting of a superposition 

of these two types of flow (relative to space-fixed axes) is then 

. 
-+ .... -+ '- + (~z 

c 
-v = v. + v t 1r ro ye 

y 
w x) e 

From this result we find that the square of the velocity (relative to 

space-fixed axes) is given by 

z 

2 (1 2 2 2] (e)2 _ c 2 2 2 
v = t 4" (x t y ,), + z 'c 3 xz w <;: + (x + z ) w • 

The total kinetic energy '(;1' of the drop is 

1 J 2 ,~ = '2 Pm ,v d l' , 

where P is the (constant) mass density, and d1' denotes an ele-
m 

ment of volume. If we' substitute for v
2 

and perform the straight­
>',c 

forward volume integrations we obtain 

where 

M 
c 

1 1 a 2 -
= 5' (1 + '2 -z ) M, 

c 

1 2 2 
Me = 5' (c + a)M 

* The result for M can also be deduced directly from Eq. (12) of 
c 

reference 44. 
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the total mass of the spheroid is M.We note that the cross.term in­

volving we is zero becaus e the integration of xz over the volume of 

the symmetric spheroid gives zero. 

We now list Hamilton's equations of motion fora system con­

sisting of two coplanar separated spheroids. They are obtained by 

differentiating .the Hamiltonian (10) with respect to the five momenta 

and the five coordinates that are changing with time. 

Pe 
= Z + 

Me 
2 

Z 
dM 

Z 
dMe Pc Po 

a ev' + 
1 c 1 1 1 

Pc - - aC i ZM Z dC 1 
+ -Z dC A 1 ZMe .1 

c 1 1 
P Z dM P Z dMe 

Pc 
a')t Cz Cz 8 z Z - - + + GC z ZM Z 

de ... 
ZM 2 

, 
dC Z Z Z 

Cz 8 Z 

a')t 
P8 - -

~' 1 1 

aY 
P8 - - ~. . Z Z 

, 
/ 
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The derivatives of the effective masses are in turn given by 

analogous equations hold for dM
c2

/dc
2 

and dM
e2

/dc z . The deriva­

tives of the potential energy cy- with respect to the coordinates are 

obtained by straightforward-but lengthy and tedious -differentiations 

of the results given in Appendix B.1. 

2. Overlapping; Symmetric Spheroids 

We now derive the formula for the kinetic energy of two 

s'ymmetric overlapping spheroids by: use of the approximate method 
. 48 

of Werner and Wheeler. For this purpose we use a cylindrical co-

ordinate system, with the z axis parallel to the symmetry axis , and 
" 

p the perpendicular distance to the surface of the drop. 

The method of Werner and. Wheeler may be stated as follows: 

First of all, imagine the drop sliced into an infinite number of slices, 

with the slices'-boundiJ;lg surfaces perpendicular to the symmetry axis. 

Then, demand that the internal flow be such that when the drop under­

goes a displacement all points in one slice remain in that slice""';of 

new position, thickness, and radius-after the displacement. The 

slice of material undergoes a uniform contraction in the p direction 

and a volume-compensating expansion in the z direction, or vice 

versa. Werner and Wheeler call this motion a 11 p..:independent trans-

port and shear. II The motion is consistent with the displacements of 

the bounding surface, but may d,eviate from the unique irrotational 

motion. However, from Kelvin" s minimum-energy theorem regarding 

irrotational motion, the error in the kinetic energy calculated by this 

method will be of second order in the deviation of the motion from 
. t t'· 1 .116 ' lrro a lona mohon. 
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The approximation that we are making maybe stated mathe­

matically in terms of a single equation: 

(c. 1) 

where Po denotes the value of P on the surface of the drop, and a 

is the transverse semiaxis of a spheroid. ' The equation states simply 

that the transvers e displacement of a point in a slice is proportional 

to its P coordinate. 

The kinetic energy g of the system is given,' withoutapproxi­

ITlation,by 

J 2 Jr. (.2 .2 v dT = 'TTpm ' . dz) P dp p-t z ), 

where P is the (constant) mass density. If we substitute for p 
m 

the result P pol Po obtained from (C.1l, the integration with respect 

to P can be performed to give 

The quantity Po is given explicitly in.terins of z through the equa­

tion for the surface of the drop. 

The time rates of change of .. Po and z are determined in 

terms of the time rates of change of the two coordinates 1. and c 

that specify the system: 

. (a po). + (aaPco \ . 
Po = ----aIi. ) c, 

. _ ( a z ) ';' (a z ) . 
Z-~L+--C 

ax 8c' . 

The derivation from this point on is fai'riy straightforward, 

but lengthy and tedious. It involves taking partial derivatives of the 
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equation for the surface of the dropand,the equation for the volume 

of the drop, using the second part of (C.l), ,and performingsevera,l 

, integrations. The final result is found to be 

r-f 1 M Ii 2 M n ~ ,,1 M' . 2 
c:J = '2 .£ 1. x. + .£ c x. c + '2 cc c ' 

where the effective masses (functions of position) are given by 

M = (2-213+ 2 13 +313 -313 ) +(1+13 ) (8-913+313 ) 7 MO' ~ 
2 3 4 32 2 2J 

'cc ,5(1+~)(2-13), 10(1+13)3(2-13)3 c ' 

We have defined by "'~ the dimensionles s quantity 

The ratio 

1. 
13;=ZC 

2/ 2 a c 

2 
a -c:= 

,c 

is given by 

. 3 3 
c (2+313-13 ) 

The formula for ;;r obtained by this method simplifies to the 

known exact result for two special cases: (1) For a system consisting 

of two tangent or separated symlnetric spheroids we set 13 = 1; then 

M1. c = o , 

1 1 
2 

M = "5 (1 + 2' 
a, ) M 

cc ~ 0 
c 
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(2) For s pheroidcd distortions (£ = O)of a system consisting of a 

single spheroid, only a single term contributes to d. Then, for 

13 = 0 , 

M 
cc 

1 1 2 
= "5 (1 +"2 ..;) MO 

c 

From the Lagrangian for the system we find that the momenta 

conjugate to £ andc are 

Then the Hamiltonian is given by 

:JC = 
p + 

c 
M 2 

.R.c 

Hamilton 1 sequations of motion can then be written as 

£ = 

, -M£c P£ + MH Pc 
c = 

M M M 
2 

.R.£ cc- £c 

Pi = - aJe 
1fT' 

Pc 
aJe 

= - ac 

+ y 

The partial derivatives of JC are obtained by straightforward-but 

lengthy and tedious -differentiations; formulae for ?f as functions of 

£ andc are given in Appendix B.2. 
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D. NorInal-Coordinate TransforInation 

Our purpose here is to discuss, for the case in which the 

saddle point consists of two tangent spheroids, two unrelated aspects 

of the transforInation,to norInal coordinates: the distance between 

two touching spheroids, and the rnass-asYInInetry effective Inass. 

1. Distance Between Two Touching Spheroids 

We consider first the deterInination of the distance i. between 

two touching spheroids as a function of the reInaining coordinates. We 

need the final result only, to second order in the angles e 1x' e 2?f' e 1y' 

and e
2 

(see their definition in Section III.B); because of syInInetry 
y 

at the saddle point the distance i. is independent of terInS involving 

e 1xe 1y' e 1xe2y' e2xe 1y' and e2xe2y. We therefore consider froIn 

the beginning the case in which the syrnInetry axes of the spheroids 

are coplana,r. (Thus we use the angles e 1 ande 2 illustrated in 

Fig. 2, with ci> = ci>1 - ci>2 =0. ) , 

We define a coordinate systeIn whose origin is at the point of 

tangency of the .two spheroids, whose y axis is along the line of 

tangency, and whose x axis,is perpendicular to the y, axis. (The x 

axis is positivein"the direction of fragInent 2 . .) Let (x
1

, y 1) denote 

the coordinates of the center of fragInent 1" and (x2 , y 2) the coordinates 

of the center of fragInent 2. Then, the distance i. between fragInent 

centers is 

The coordinates (x1 'Y1) and (x2 'Y2) are deterInined in terInS 

of the variables U, c 1 , c 2 , e l' and e2 by a geoInetrical Inethod. The 

Inethod involves uniforInly IIsqueezingll each spheroid parallel to its 

sYInInetry axis ,into a sphere, leaving all diInensions perpendicular 

,to the sYInInetry axis unchanged. , Then, frOIn the geoInetry of the 

sphere and the use of several trigonoInetric relations., we find that 
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Z . 
-c1 e 1 sln.y 1 cos y 1 

y 1 = 
(1 

_ 2 2 1/2 
e 1 cos Y1) 

YZ = 

where 

Y 1 = ("IT / Z) ,. 9 1 - a,' 

Yz = (TI/Z) + e Z + a , , 

and 

-1 (YZ - Y 1) a = tan 
Xz xi 

The eccentricities . ' * e
1 

and e Z are defined for prolate spheroids by 

Z 
Z 

a
1 e - 1 - --z-1 -

c
1 

Z 
e Z = 1 -

= 1 -

1 -

DR3 
0 

-r-
c

1 

(1 - D)R
3 
o 

>:C 
Since th,e saddle point consists of two prolate spheroids, we need, 

not consider oblate spheroids here. 
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Physically, 'Y 1 and 'Y 2 are the angles between the y axis and the 

symmetry axes of fragments 1 and 2, respectively; a is the angle 

between the x axis and the line connecting spheroid centers. 

For the general case in which e 1 and e
2 

are arbitrary, no 

easy solution exists for the above set of equations. However,' it is 

possible 

,and, e
2

, 

in Which 

to obtain an explicit expression for £ to. second order in 8
1 

We give here the result to second order for the special case 

U = 1/2, c 1 = c
2 

== c (e
1 

= e
2 

== e), and the angles e1 and e
2 

are equal in magnitllde. Then, when the fragments rotate in opposite 

directions (e
2 

= - e
1 

== e), 

2 
£ = 2c ( 1 - T 8

2 
+ '!' J. 

, " 

When the fragments rotate in the same direction ( e
2 

= e i-e), 

We note that for the same angle of rotation the fragment centers ap­

proach more closely for ~otations in the same direction. 

2. Mass-Asymmetry Effective Mass 

For the case of actual saddle-point shapes that have small 
, , 

neck radii (low values of x), the mass-asymmetry effective mass can 

be estimated by neglecting the kinetic energy of motion everywhere ex­

cept in the neighborhood of the neck. Consider then, for the moment, 

that the flow of matter from one fragment to the other proceeds through 

~ small neck ,of effective radius "r and effective length d. ~:c Then the 

mass of the matter flowing through the neck is MO rrr
2
d/V, where MO 

is the total mass of the drop, and V is the volume of the drop. The 

kinetic energy associated with this flow is 

>:c 
An analogous method has been used by Marshall Blann and Wladyslaw 

J. Swiatecki for estimating the effective mass associated with charge 

fluctuations (unpublished work). 
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"where v is the velocity of flow. The velocity of flow is in turn de­

termined in terms of U ~ the time rate of change of the fractional mass 

U of the left -hand fragment = 

nr2 v = YU 

If we substitute for v in the equation for ;;;, we obtain 

The effective mass for the flow, 

(
MOYd.) .2 
--2""- U. 

TTr . 

MO Vd/(nr
2

), is seento approach 

infinity as .the effective neck radius. r approaches zero, provided the 
2 

effective neck lengthd does not approach zero as fast as r . For 

actual saddle-point shapes, dis comparable to r, and the effective 

mass for the flow is then proportional to 1/r. 

For the case of a saddle point consisting of two tangent sphe.,;· 

r,6idhJ} the situation is somewhat different from the case of a saddle point 

with a well-defined neck. The flow of matter from one spheroid to the 

other is then analogous to the flow of an incompressible fluid through 

a circular aperture" in a plane wall of infinite extent and infinitesimal 

thickness, aprobl~m that is discussed by Rayleigh. 117 From his re­

sults we find that the corresponding effective mass for flow through an 

ideal aperture of radius r is MO V /(2r), which is approximately the 

same result that would be obtaining by simply setting d = r in our 

earlier result. As before, t~e mass-asymmetry effective mass ap­

proaches infinity as r approaches zero. 

E. Accuracy of Approximate Formulae Relating 
Observable Properties of Fragments to the 

Initial Conditions at the Saddle Point 

Our purpose here isto give some indication of the accuracy 

of Eqs. (14), (16), and (17), which relate the obs ervable properties of 

fragments at infinity to the initial conditions at the saddle point. For 

a large number of combinations of initial conditions and several values 
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of x; we have numerically integrated the equations of motion and 

determined the corresponding values of the observable quantities of 

interest at infinity. These exact results may then be compared with 
~c 

the results calculated by use of (14), (16), and (17). 

We present in Table E.l a comparison of th~ exact and approx­

imate results for cases in which the fissionability parameter x is 

equal to 0.677.t Forty-four, sets of initial conditions were selected 

in such a way as to illustrate, for the, most part, the accuracy of the 

formulae as regards a particular coordinate or momentum or group 

of coordinates and momenta. Consequently, each set of initial condi­

tions includes, in general, several coordinates that are equal to their 

saddle -point values and several zero momenta. For the last four sets 

of initial conditions, however, the initial conditions were determined 

in a completely random manner -whether a particular momentum or 

the deviation of a coordinate from its saddle-point value was taken to 

be positive, zero, or negative was determined by a roll of a die. 

The magnitude of the various momenta and deviations of the 

coordinates from the saddle point were selected to correspond very 

roughly to one-tenth the maximum probability of occurrence (for a 

system such as 83Bi209 + 65-MeVo., for example). This means that 

the actual deviations from the saddle point are for the most part much 

smaller than those chosen here. Since the approximate formulae are 

designed specifically for small deviations, the agreement between the 

approximate and exact results is considerably better for typical devi­

ations than for the cases presented here. 

':CThe equations of motion, recall, are numerically integrated for con­

figurations in which the symmetry axes are ~oplanar, and in which the 

spheroids are not spinning about their symmetry axes. For this pur~ 

pose we use the two angular coordinates e 1 and 8
2 

,(see Fig. 2), with 

<j> = <j> 1 - <j> 2 = o. 

t This is the value of the fis sionability parameter for s,uch compound 

nuclei as At 213 P 208 d Pb198 ' 
85 ' 84 0 • an 82 . 



-208-

Table E. I. Observable properties of fragments at infinity corresponding to 44 sets of initial 
conditions, for x = 0.677.' For a given set of initial conditions, the values of the 
total translational kinetic energy E, the individual excitation energies Xl and X

2
, 

and the individual angular momenta L1 and L that are determined exact y by . 
solving the equations of motion are comparedlwith the values that are determined 
from the approxi(o)ate formulae (14), (16), and (17). The energies E, Xi' and X

2 are in units of ESO ; the angular momenta L
J 

and L2 are in units of'L
O

' The quan-
tities oC 1 and oC 2 are in units of RO; 0111 an 0112 are in radians; Pw Pc ,and Pc are, 

in units of PO; Pll and Pll are in units of LO' (See discussion of 'unit'; in Sectftm ILA. ) 

In each case the v1alue tak~n for o£ is oC i + oc 2. 

oU oC
1 

oC
2 Olli 0112 E (exact) X

1
(exact) X

2
(exact) L1 (exact) L2 (exact) 

Pe PC
1 

PC
2 Pili Pll2 

E (approx.) X1 (approx.) X2 (approx.) L1 (approx.) L
2

(approx. : 

0,0 0,2 0,0 0,0 0,0 0,2214 0,0544 0,0321 0,0 0,0 
0,0 0,0 0,0 0,0 0,0 0,2213 0,0536 0,0318 0,0 0,0 

0,0 -0,2 0,0 0,0 0,0 0,2586 0,0148 0,0355 0,0 0,0 
0,0 0,0 0,0 0,0 0,0 0.2584 0,0133 0.0352, 0,0 0,0 

iI 0,0 0,2 0,2 0,0 0.0 0,2065 0,0528 0,0528 0,0 0,0 
0.0 0,0 0,0 0,0 0,0 0,2065 0,0520 0,0520 0,0 0,0 

0,0 0,2 -0,2 0,0 0,0 0,2388 0,0567 0,0137 0,0 0,0 
0,0 0,0 0,0; 0,0 0,0 0,2384 0,0553 0,0117 0,0 0,0 

0,0 -0,2 -0,2 0,0 0,0 0,2822 0,0164 0,0164 0,0 0,0 
0,0 0,0 0,0 0,0 0,0 0,2821 0,0150 0,0150 0,0 0,0 

0,0 0,0 0,0 0,2 0,0 0,2382 0,0328 0,0334 0,0053 0,0010 
0,0 0,0 0,0 0,0 0,0 0,2384 0,0335 0,0335 0,0058 0,0011 

0,0 0,0 0,0 0,2 0,2 0,2378 0,0326 0,0326 0,0059 0,0059 
0,0 0,0 0,0 0,0 0,0 0,2384 0,0335 0,0335 0,0069 0,0069 

0,0 0,0 0,0 0,2 -0,2 0,2381 0,0328 0,0328 0,0043 -0,0043 
0,0 0,0 0,0 0,0 0,0 0,2384 0,0335 0,0335 0,0046 -0,0046 

0,0 0,0 0,0 0,0 0,0 0,2430 0,0328 0,0328 0,0 0,0 
0,04 0,0 0,0 0,0 0,0 0,2416 0,0335 0,0335 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,2383 0,0361 0,0328 0,0 0,0 
0,0 -0,02 0,0 0,0 0,0 0,2384 0,0335 0,0335 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,2387 0,0334 0,0369 0,0 0,0 
0,0 0,02 -0,02 0,0 O,D 0.2384 0,0335 0,033'5 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,2382 0,0354 0,0354 0,0 0,0 
0,0 -0,02 -0,02 0,0 0,0 0,2384 0,0335 0,0335 0,0 0,0 

0,0 0,0 0,0 .0,0 0,0 0,2421 0,0350 0,0350 0,0 0,0 
0,04 -0,02 -0,02 . 0,0 0,0 0.2416 0,0335 0,0335 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,2433 0,0327 0,0362 0,0 0,0 
0,04 0,02 -0,02 0,0 . 0,0 0,2416 0,0335 0,0335 0,0 0,0 
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Table E.I (cont. ) 

eU oC
1 

eC
2 

oe
1 

ee
2 

E (exact) X
1 

(exact) X
2 

(exact) Ll (exact) L2 (exact) 

Pg P
C1 PC

2 
P

e1 Pe E(approx.) X
1

(approx.) X
2

(approx.) L
1

(approx.) L
2
(approx.) 

.2 

0.0 0.0 0.0 0.0 0.0 0.2409 0.0356 0.0356 0.0 0.0 
-0.04 -0.02 -0.02 0.0 0.0 0.2416 0.0335 0.0'335 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.2361 0.0319 0.0319 0.0417 -0.0417 
0.0 0.0 0.0 0.04 -0.04 0.2384 0.0335 0.0335 0.0476 -0.0476 

0.1 0.0 0.0 0.0 0.0 0.2288 0.0257 0.0420 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0251 0.0418 0.0 0.0 

0.1 0.2 0.0 0.0 0.0 0.2123 0.0446 0.0407 0.0 0.0 
, 0.0 0.0 0.0 0.0 0.0 0.2124 0.0453 0.0402 0.0 0.0 

0.1 -0.2 0.0 0.0 0.0 0.2484 0.0096 0.0437 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2481 0.0050 0.0435 0.0 0.0 

0.1 0.0 0.2 0.0 0.0 0.2125 0.0242 0.0646 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2124 0.0234 0.0620 0.0 0.0 

0.1 0.0 -0.2 0.0 0.0 0.2481 0.0278 0.0211 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2481 0.0268 0.0217 0.0 0.0 

0.1 0.2 0.2 0.0 0.0 0.1980 0.0429 0.0632 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.1982 0.0436 0.0603 0.0 0.0 

0.1 0.2 -0.2 0.0 0.0 0.2290 0:0470 0.0200 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0470 0.0200 0.0 0.0 

0.1 -0.2 0.2 0.0 0.0 0.2295 0.0085 0.0664 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0033 0.0637 0.0 0.0 

0.1 - 0.2 -0.2 0.0 0.0 0.2710 O.OHl 0.0226 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.2708 0.0067 0.0234 0.0 0.0 

0.1 0.0 0.0 0.2 0.0 0.2287 0.0251 0.0418 0.0042 0.0009 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0251 0.0418 0.0058 0.0011 

0.1 0.0 0.0 0.0 0.2 0.2285 0.0257 0.0412 0.0008 0.0058 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0251 0.0418 0.0011 0.0058 

0.1 0.0 0.0 0.2 0.2 0.2282 0.0251 0.0408 0.0047 0.0063 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0251 0.0418 0.0069 0.0069 

0.1 0.0 0.0 0.2 -0.2 0.2284 0.0252 0.0413 0.0034 -0.0050 
0.0 0.0 0.0 0.0 0.0 0.2289 0.0251 0.0418 0.0046 -0.0046 
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Table E.l (cont. ) 

oU oC
1 

oC
2 

oe 1 oe
2 

E (exact) X 1(exact) X 2(exact) L
1

(exact) L
2

(exact) 

p£ PC
1 

Pe
2 

Pe
1 

Pe
2 

E, (approx.) X
1

(approx.) X 2(approx.) L
1

(approx.) L
2

(approx.) 

---
0.0 0.0 ,0.0 0.2 0.0 0.2359 0.0304 0.0319 0.0443 -0.0408 
0.0 0.0 0.0 0.04 -0.04 0.2384 0.0335 0.0335 0.0534 -0.0465 

0.0 0.0 0.0 0.2 0.0 0.2363 0.0316 0.0317 -0.0384 0.0425 
0.0 0.0 0.0 -0.04 0.04 0.2384 0.0335 0.0335 -0.0419 0.0488 

0.0 0.0 0.0 0.2 0.2 0.2361 0.0302 0.0315 0.0448 -0.0378 
0.0 0.0 0.0 0.04 -0.04 0.2384 0.0335 0.0335 0.0545 -0.0407 

0.0 0.0 0.0 0.2 -0.2 0.2358 0.0306 0.0306 0.0435 -0.0435 
0.0 0.0 0.0 0.04 -0.04 0.2384 0.0335 0.0335 0.0523 -0.0523 

0.0 0.0 0.0 0.2 -0.02 0.2366 0.0317 0.0317 -0.0393 0.0393 
0.0 0.0 0.0 -0.04 0.04 0.2384 0.0335 0.0335 -0.0430 0.0430 

0.0 0.2 0.2 0.2 0.0 0.2060 0.0521 0.0527 0.0085 0.0018 
0.0 0.0 0.0 0.0 0.0 0.2065 0.0520 0.0520 0.0058 0.0011 

0.0 0.2 -0.2 0.2 0.0 0.2382 0.0557 0.0136 0.0101 0.0007 
0.0 0.0 0.0 0.0 0.0 0.2384 0.0553 0.0116 0.0058 0.0011 

0.0 -0.2 0.2 0.2 0.0 0.2388 0.0133 0.0567 0.0017 0.0008 
0.0 0.0 0.0 0.0 0.0 0.2384 0.0116 0.0553 0.0058 0.0011 

0.0 -0.2 -0.2 0.2 0.0 0.2822 0.0158 0.0164 0.0018 0.0004 
0.0 0.0 0.0 0.0 0.0 0.2821 0.0150 0.0150 0.0058 0.0011 

0.0 0.2 0.0 0.2 0.0 0.ZZ08 0.0535 0.0319 0.0092, 0.0013 
0.0 0.0 0.0 0.0 0.0 0.2213 0.0536 0.0318 0.0058 0.0011 

0.0 -0.2 0.0 0.2 0.0 0.2586 0.0143 0.0355 0.0017 0.0006 
0.0 0.0 0.0 0.0 0.0 0.2584 0.0133 0.0352 0.0058 0.0011 

0.0 -0.2 0.2 -0.2 0.0 0.2378 0.0164 0.0544 0.0398 0.0433 
0.0 -0.02 0.0 0.04 0.04 0.2384 0.0116 0.0553 0.0447 0.0493 

0.1 0.2 -0.2 0.0 0.2 0.2262 0.0477 0.0197 -0.0428 0.0403 
0.0 -0.02 -0.02 -0.04 0.04 0.2289 0.0470 0.0200 -0.0465 0.0432 

0.0 0.0 -0.2 0.2 0.0 0.2581 0.0372 0.0134 0.0051 0.0403 
0.0 -0;02 0.0 0.0 0.04 0.2584 0.0352 0.0133 0.0072 0.0502 

-0.1 0.2 0.2 0.0 0.2 0.1960 0.0616 0.0446 0.0454 -0.0401 
-0.04 -0.02 -0.02 0.04 -0;04 0.2015 0.0603 0.0436 0.0488 -0.0419 
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It ~s seen that, for the most part, the approximate equation 

for E reproduces the exact results more accurately than do the 

equations for Xi' XZ' Vi' and L Z' The approximate equations for 

Li and L
Z 

are seen, for example, to give overestimates of the angu­

lar momenta at infinity; this is because for the large values of the 

initial momenta considered here we are outside the r,egion of linearity. 
. . . ~ 

Also, since the equations for L1 and L
Z 

contain no te,rms represent-

ing the dependence of the angular momentum upon fragment elongation, 

their accuracy is reduced when oc 1 and/or oel are not clos e to zero. 

F. Properties of Certain Integrals 

We give here various properties of the integrals I
n

(!3) defined 

by Eq. (43). We first show the relationship between these integrals ,:c 
. 61-63 

and a generalization of the repeated integrals of the error functlOI1. 

The complement of the error function is defined by 

erfc!3 = { ,2 
exp( -x ) dx . 

13 

The nth repeated integ~al of the (complement ~f) the' error function 

is then defined, for n ~ 1, by 61, 62 

n JOO .n-1 
i erfc 13 = 1 erfc x dx, (F .1a) 

13 

with 

o f' i er c 13 = erfc 13. (F.1b) 

,:e 
The functions discus sed in reference 63 are closely related to the 

repeated integrals of the error function; they are defined in such a 

way as to be more useful for statistical applications. If reference 63 

is consulted, note that the same symbol In is used to denote the func­

tions considered there. 
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Explicit evaluation of this expres sion. gives 

2 J~ xn exp [-(x + ~)21 dx, 

o 
(F.2) 

...r:rr nn+l) 

where r denotes the gamma function [r(n + 1.) = n 1]. Although the 

definition (F.l) defines inerfc j3 only for integral values of n 

greater than or equal to zero, the result (F.2) defines the function 
63 

for all values of n greater than -i. 

From a comparison of (F.2) and (43) we obtain the desired 

relatiorship between the functions: 

I ( f.\)' lr:':'r( + l)e [(~2)2] 1· n .. (1/2)erfc 
n~ =Z"'TT n '2 xp 

or, alternatively, 

.n f 
1 er c 13 = 

2 
2 exp «.@ ) 

...rrrnn + 1) 
In + (1/2) (213)· 

(F.3a) 

(F.3b) 

For our purposes we are interested in In(j3) for integral values of n, 

which means repeated integrals of the error function of half-integral 

order. Tables of the functions inerfc j3 (or related functions) are 

available for integral values of n,61-63 but not for fractional values 

.of n. 

The following properties of the integrals I (13) can be deter­
n 

mined either directly from the definition (43), or else from the a~ 

nalogous.properties
61

0f inerfc 13 and the relationships (F. 3): 

(a) Differential equation satisfied by I (13): 
n 
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(b) Recurrence formulae: 

• In(~) = i tn - i) In_2(~) -~ In-1(~)J, 
" 

(c) Asymptotic expansion: 

(d) Integral relation: 

G. Numerical Procedures 

The nume.rical calculations of this work were performed, for 

the most part, on an IBM 7094 computer, by use of codes written in 

FORTRAN, We will summarize here the numerical methods that were 

used in performing some of the more important of these calculations. 

When calculating the interaction .energy and derivatives of the 

interaction energy, the triple multi pole summations were performed 

by explicitly summing over each of the three summa,tion indices until 

terms were reached that wereles s in magnitude than some specified 
:..6 . 

value .. The actual value that was specified ranged from 10 (when 

integrating the equations of motion) to 10-
14 

(when calculating the 

stiffness constants). In performing these summations, the associated 

Legendre polynomials and their derivatives were evaluated by use of 
. 118 

standard recurrence formulae . 

. The double integrations required for the calculation of the 

Coulomb energy for the case of two overlapping spheroids and for 
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the case of two spheroids connected.by a.conicoidal neck were per­

formed by repeated applications of a ten-point Gaussian quadrature 

t · 119 Th 1 11··· 1 .. h . d rou lneo e comp ete e lphc lntegra s appeanng ln t elntegran 

were evaluated by use of approximate representations that are accurate 

to within 1.5X10- 8• 115 -The same number of integration points was 

used in the evaluation of the first integral (for the electrostatic po­

tential on the surface of the drop) as in the evaluation of the second 

integral (for the Coulomb energyitsel£). For one of the two halves 

of a drop, the actual number of points used in the evaluation of one of 

these two integrals ranged from 10 (when integrating the equations of 

motion) to 30 (when calculating the Coulomb energies presented in 

Fig. 3a). For the case of two spheroids. connected by a conicoidal 
:;:c 

neck, the corresponding number of points used was 200 When 30 

such points were used the calculated Coulomb energies BC were 

typically accurate to within a few units in the sixth decimal; for 20 

points and 10 points they were typically accurate to within a few units 

in the fifth and fourth decimals, respectively. 

For the case in which the saddle point consists of two tangeht 

spheroids, the precise location of the saddle point was determined by 

finding the minimum of the potential energy along the scission line 

J. = 2c. This was done by an iterative scheme involving the single 

variable c = J. /2. An approximate location of the saddle point was 

used to define a starting value of co Three evaluations of the potential 

energy were then made (at this value of c and to either side of it), 

and a quadratic expression in cwas fitted to these values. The value 

of c corresponding to the minimum of the energy for this quadratic 

* Since at the point of connection of the third conicoid with the two 

spheroids there is a discontinuity in the second derivative of the co­

ordinate p with respect to z (cylindrical coordinates), it is crucial 

that the interval of a single ten-point quadrature does not extend 

acros s this point of connection. 
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expression was used as the starting point for a repetition of the cal­

culation. When the iterations led to a change in c less than a specified 
-10 

amount (taken to be 10' R
O

)' the calculation was terminated, and the 

value of c was .taken to be the value corresponding to the saddle point. 

After the saddle point was located (for the case of taggent 

spheroids) the stiffness constants were determined by making further 

evaluations of the potential energy in the immediate neighborhood of 

the saddle point and by fitting.a .quadratic expression in several. variables 

to these values. In order to maintain sufficient accuracy in the final 

result, the location of the saddle point and the calculation of the stiffness 

constants were performed by use 'of double-precision arithmetic; the 

stiffnes s constants determined in this way are accurate to within a few 
):c 

units in the fifth decimal (when expres sed in. liquid-dr,op units). 

For the case in which the saddle point consists of overlapping 

spheroids, and for the case of two spheroids connected by a conicoidal 

neck, the saddle point was determined by an iterative scheme similar 

to that described above. A quadratic expression in two or three vari­

ables, respectively, was fitted to values of the potential energy in the 

neighborhood of an approximate saddle point, and the extremum of the 

energy for this expression was .used as a better approximation to the 

saddle point. For these cases, the (single-precision) 'saddle-point­

searching code of Cohen andSwiatecki was used. 15 

The equations of motion for the system were numerically inte­

grated by use of a routine employing Adami s method. 120 This routine 

numerically integrates a system of simultaneous first-order differential, 

equations, maintaining at each step of the integration a prescribed ac­

curacy (by changing the integration step if neces sary). For this work 

>:'The saddle-point third derivatives K and K (Fig. 38) 
mms' sss 

Were calculated on a desk calculater by use of tables of the potential 

energy, and may consequently be slightly in error. 
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the maximum allowed .error. at. each integration step in each of the 

coordinates and momenta wasspecifiedto be 10 - 5; in practice, the 

actual error was much les s. With this specification of accuracy, 

about 400 to 500 integration steps were required, in general, to inte­

grate the equations of motion from the neighborhood of a tangent-sphe.., 

roidsaddle point to a separation distance of. i. = 25 RO' The values. of 

the quantities of interest at infinity are determined ,sufficiently well 

at i. = 25 RO that the integrations were stopped there. The value of 

the total translational kinetic energy at infinity was then taken to be 

equal to its value at i. = 25 RO plus the current interaction energy of 

either the two spheroids .or of two spheres with coincident centers 

(there is negligible difference at this distance). The values of the re­

maining quantities of interest at infinity were taken to be equal to their 

values at i. = 25 R
O

' 

The accuracy of the solutions of the equations of motion for the 

case of overlapping spheroids was not as great as for the case of sep­

arated spheroids. This is because of the relatively large amount of 

computing time required for the calculation of the Coulomb energy and 

its derivatives. These quantities were calCulated for the purposes of 

the integrations from a .quadratic expres sionin i. and c that was 

fitted to values of the Coulomb energy calculated in the immediate 

neighborhood of the current location of the system. The solution for 

x = 0.90 presented in Fig. 28 may consequently be slightly in error. 

The constants appearing in the approximate formulae (14), (16), 

and (17) were determined (for a given value of x) from the solutions of 

the equations of motion corresponding to a sufficient number of sets of 

initial conditions. Consider, for example, the determination of the con­

stants X~ and Xi, s of Eq. (16). The constant X~iS given by the solu­

tion of the equations of ,motion corresponding to starting the system from 

rest at the saddle point. Let Xi denote the excitation energy corre­

spondingto the solution in which all initia.l conditions are zero ex<::ept 

the stretching coordinate s, which is taken to be small in magnitude. 

Then X is determined .from 
1, s 
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Xi - X~ 
s 

In the calculation of the constants for Eqs. (14), (16), and (17), 

as well as in the calculation of the stifines s constants, care must of 

course be taken that the c,alculated values are independent of the choice 

of increments in the coordinates. 

The integrals I (13) defined by Eq. (43) were evaluated nu­
n 

, 11 b f t ' t G ' d t 'routl' ne. 119 merlca y y use 0 a en-pOln aUSSlan qua ra ure 



-218-

REFERENCES 

1. Von Otto Hahn and Fritz Strassmann, Uber den Nachweis und das 

Verhalten der bei der Bestrahlung ,des Urans mittels Neutronen 

entstehendenErdalkalimetalle, Naturwiss., 27, ,11(1939). 

For an English translation, see Hans G. Graetzer, Discovery 

of Nuclear Fission, Am. J. Phys. ~, 9 (1964). 

2. Von,Otto Hahn and Fritz Strassmann, Nachweis derEntstehung 

aktiver Bariumisotope aus' Uran und Thorium durch 

Neutronenbestrahlung; Nachweis weiterer aktiver Bruchst"ucke 

bei der Uranspaltung, Naturwiss. 32, 89 (1939). 

3. James Rayford Nix, Estimates of Fis sion- Fragment Kinetic­

Energy Distributions on the Basis of the Liquid-Drop Model, 

Paper No. F-7, in Proceedings of the Third Conference on 

Reactions Between Complex Nuclei, edited by A. Ghiorso, 

R. M. Diamond, and H. E. Conzett (University of California 

Pres s, Berkeley, 1963), p. 366. 

4. Lise Meitner and O.R. Frisch, Disintegration of Uranium by 

Neutrons = a New Type of Nuclear Reaction, Nature 143, 239 

( 1939). 

5. Niels Bohr and John Archibald Wheeler, The Mechanism of 

Nuclear Fission, Phys. Rev. 56, 426 (19.39). 

6. R. D. Present and J. K. Knipp, On the Dynamics of Complex 

Fission, Phys. Rev. ~, 751, 1188 (1940). 

7. R. D. Present, F. Reines, and J. K. Knipp, The Liquid ,Drop 

Model for Nuclear Fission, Phys. Rev, 2Q., 557 (1946). 

8. U. L. Businaro and S. Gallone, On the Interpretation of Fission 

Asymmetry According to the Liquid Drop Nuclear Model, 

Nuovo Cimento 1, 629 (1955). 

9. 'U. L. Businaro and S. Gallone, Saddle Shapes, Threshold Energies 

and Fission Asymmetry on the Liquid ,Drop Model, Nuovo 

Cimento 1, 1277 (1955). 



10. 

11. 

- 219-

U. L. Businaro and S. Gallone, Asymmetric Equilibrium Shapes 

in the Liquid Drop Model, Nuovo Cimento~, 315 (1957). 

V. G. Nossoff, On the Theory of Nuclear Fission Near Threshold, 

Paper No. P/653, in Proceedings of the International Con­

ference on the Peaceful Uses of Atomic Energy, Geneva, 1955, 

Vol. 2, Physics; Research Reactors (United Nations, New 

York, 1956), p. 205. 

12. W. J. Swiatecki, Deformation Energy of a Charged Drop .. II. 

Symmetric Saddle Point Shapes, Phys. Rev. 104, 993 (1956). 

13. Wladyslaw J. Swiatecki, Deformation Energy of a Charged Drop, 

III. Further Developments, Paper No. P/651, in Proceedings 

of the Second United Nations International Conference on the 

Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 15 9 

. Physics in Nuclear Energy (United Nations, Geneva, 1958). 

p.- 248. 

14. S. Frankel and N. Metropolis, Calculations in the Liquid-Drop 

Model of Fission, .Phys.Rev. 72, 914 U947). 

15. Stanley Cohen and Wladyslaw J. Swiatecki, The Deformation 

Energy of a Charged Drop, Part V: - Results of Electronic 

Computer Studies, Ann. Phys. {N. Y. ).22, 406 (1963). 

16. 
u 

V. M. Strutinskii, Equilibrium Shapes of Nuclei in the Quasistatic 

Fission Model, Soviet Phys. JETP .!E.! 1091 (1962) l English' 

translation of J. Exptl. Theoret~ Phys. (U. S. S. R. ) 42, 1571 

(1962)]. 

17. V. M. Strutinskir, N. Ya. Lyashchenko, andN. A.Popov, 

Symmetrical Equilibrium Shapes in a Sharp Surface Nucleus 

Model (The Liquid Drop Model), Soviet Phys. JETP ~, 418 

{1963} l E~glish translation of J. ExptL Theoret. Phys. 

(U. S. S. R. ) 43, 584 (1962)]; similar article publishe~ as 

Symmetrical Shapes of Equilibrium fora Liquid.Drop Model, 

NucL Phys. 46:, 639(1963). 



- 220-

\J 
18. V. M.Strutinskii, Results of Calculations of Nuclear Fission 

According to a Liquid-Drop Model, University of California 

Lawrence Radiation Laboratory Report UCRL-Trans 978, 

translated from a publication of AkademiiaNauk SSSR, 

Institut Atomnoi Energii, 1963 (Electro- Optical Systems, Inc., 

J ul y, -1963). 

19. David Lawrence Hill, Dynamical Analysis of Nuclear Fis sion 

(Ph. D. Dissertation), Princeton University, April 1951 

(unppblished). 

20. D. L. Hill, The Dynamics of Nuclear Fission, Paper No. P/660, 

in Proceedings of the -Second United Nations International Con­

ference on the Peaceful Uses of Atomic Energy, Geneva, 1958, 

Vol. 1-5, Physics in Nuclear Energy (United Nations, Geneva, 

1958), p. 244. 

21. David Lawrence Hill and John Archibald Wheeler, Nuclear Con­

stitution and the Interpretation of Fission Phenomena, Phy~,o 

Rev. 89, 1102 (1953). 

22. D. R. Inglis, Fission Asymmetry, Ann. Phys. (N. Y. ) 5, 106 

(1958). 

23. 

24. 

25. 

W. D. Foland and R. D. Present, Hydrodynamic Theory of Spon­

taneous Fission, Phys. Rev. 113, 613 (1959). 
u . 

B. T. Geilikman, Breakup of a Charged Liquid Drop and Nuclear 

Fission, Soviet Phys. JETP ~ (2.)' 168 (1959) l English trans­

lation of J .. Exptl. Theoret. Phys. (U. S. S. R. )~, 249 (1959U .. 

Osamu Miyatake, Dynamical Behavior of Pinch-Off in the Nuclear 

Fis sion, University of Osaka Prefecture, Sakai, Japan, pre­

print (no date). 

26. John A. Wheeler, Channel Analysis of. Fission, Fast Neutron 

Physics, Part II: Experiments and Theory, edited by J. B. 

Marion and J. L. Fowler (Interscience Publishers, Inc., New 

York, 1963), pp. 2051-,2184. , 



- 221-

27. Peter Fong, Asymmetric Fission, Phys. Rev. 89, 332 (1953); 

A Theory of Nuclear Fission (Ph.D. Dissertation), University 

of Chicago, 1953 (unpublished). 

28. Peter Fong, Statistical Theory of Nuclear Fission: Asymmetric 

Fission, Phys. Rev. ill, 434 (1956); Calculations Relating 

to the Asymmetric Fission of Pu
239

, Bull. Am. Phys. Soc., 

Series II, .!' 303 (1956). 

29. Peter Fong, Mechanism of Fission of Heavy Nuclei, Phys. Rev. 

122; ,1542 (1961); Statistical Theory of Nuclear Fission and 

Prompt Neutron Distribution, Phys. Rev. 122, 1543 (1961); 

Nuclear Models and Nuclear Fission, Phys .. Rev .. 122, 1545 

(1961). 

30. Peter Fong, Statistical Theory of Nuclear Fission, BulL Am. 

Phys. Soc., Series II, ~, 385 (1963); Kinetic Energy and 

Prompt Neutron Distributions in Fission, Phys. Rev. Letters 

..!.!.' 375 (1963). 

31. J. K. Perring .and J. S. Story, Thermodynamic Theory of Fission, 

Phys .. , Rev. 98, 1525(1955). 

32. T. D. ,Newton, Statistical Weights and Coulomb Factors for Fis­

sion Modes, PaperD1, in Proceedings of the Symposium on 

the Physics of Fission Held at Chalk River, Ontario, May 14-"" 

18, 1956, edited by G. C. Hanna, J. C. D. Milton, W. T. Sharp, 

N. M. Stevens, and E. A. Taylor, Atomic Energy of Canada 

Limited, Chalk River Project Report CRP-642-A, p. 307 

(unpublished). 

33. William E. Stein and Stanley L. Whetstone, Jr., Prompt Neutron 

Emission from Spontaneous-Fission Modes of Cf
252

, Phys. 

Rev. 110, 476 (1958). 

34. A.G. W. Cameron, Semiempirical Correlation of Fission Yield 

and Kinetic Energy Distributions, Rev. Mod. Phys. ~, 553 

(1958); similar article published as Paper No. pi 198, in 

Proceedings .of the Second United Nations International Con­

ference on the Peaceful Uses of Atomic Energy, Geneva, 1958, 

VoL 15, Physics in Nuclear Energy, (United Nations, Geneva, 

1958), p. 425. 



- 222. 

v 
35. B. T. Geilikman, The Asymmetry of Nuclear Fission, Soviet J. 

At. Energy..Q.., 178 (1960); The Excitation Energy of Fragments 

in Nuclear Fission, Soviet J. At. Energy~, 184 (1960) l English 

translations of At. Energ. (U. S. S. R. )!2., 290, 298 (1959) 1. 
Similar articles published as Papers. No. P/2474 and P/2473,in 

Proceedings of the Second United Nations International' Con­

ference on the Peaceful Uses of Atomic Energy, Geneva, 1958, 

Vol. 15, Physics in Nuclear Energy (United Nations, Geneva, 

1958) pp. 273, 279. See also, Excitation of Fission Fragments 

and their Mass Distribution, Soviet Phys. JETP ..!.!.' 688 (1960) 

l English translation of J. Exptl. Theoret. Phys. (U. S. S. R. ) 

~, 955 (1960)]. 

36. N. A. Perfilov and V. P. Eismont, ed., Fizika Deleniya Atomnyi 

Yader (Physics of the Division of the Atomic Nucleus), 

(Gosatomizdat, Moscow, 1962). 

37. E. Erba, U. Facchini,'E. Saetta-Menichella, F. Tonolini, and 

L T 1·· S . . S . . 1 M d l' F" f U 235 
.' ono lnl evergnlnl, tahshca 0 e ln lSSlon 0 

Induced by Thermal Neutrons, Phys, Letters ~ 294 (1963). 

38. Samuel Glasstone, Keith,J. Laidler, and Henry Eyring, The 

Theory of Rate Processes. (Mc.Graw"Hill Book Comp~'ny. Inc., 

New York, 1941), Chap. III, "Potential- energy Surfaces, " 

Chap. IV, "Statisti ( al Treatment of Reaction Rates Jl. pp. 85 -LO 1. 

39. B. C. Carlson, Ellipsoidal Distributions of Charge or Mil::;::;, J. 

Math. Phys. 2, ,441 (1961). 

40. Alex E. S. Green, Coulomb Radius Constant from' Nuclear Masses, 

Phys. Rev. 95, 1006 (1954). 

41. Alex E. S. Green, Nuclear Physics (McGraw-Hill Book Company, 

Inc., New York, 1955), pp. 245, 519. 

42. Herbert Goldstein, Classical Mechanics (Addison- Wesley Publishing 

Company, Inc., Reading, Mass., 1959), Chap. 4, Sec. 4, 

liThe Eulerian angles, II pp. 107-9. 



-.. .' 

-223-

43. Stanley Cohen and Wladyslaw J, Swiatecki, The Defortnation 

Energy of a Charged Drop, IV. Evidence for a Discontinuity 

44. 

45. 

46. 

47. 

in the Conventional Fatnily of Saddle Point Shapes, Ann. Phys. 

(N. Y. ) 19,67 (1962). 

Sir Horace Latnb, Hydrodynatnics, 6thed. (Dover Publications, 

New York, 1945), Section 382, pp. 719-21. . 

K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, 

Study of Nuclear Structure by Electrotnagnetic Excitation with 

Accelerated Ions" Rev. Mod. Phys. 28, 432 (1956). 

Ben R. Mottelson and J. G. Valatin, Effect of Nuclear Rotation 

on the Pairing Correlation" Phys. Rev. Letters 2, 511 (1960). 

MarvinM. Hofftnan, Directional Correlation of Fission Frag­

tnents and Protnpt Gatntna, Rays As sociated with Thertnal 

Neutron Fission, Phys. Rev, 133, B714 (1964), 

48. FrederickG.Werner (University of Cincinnati) and John Archibald 

Wheeler (Princeton ,University), Superheavy Nuclei and the 

Kolesnikov-Larkin-Mottelson Effect in Spontaneous Fission, 

Appendix III, ApproxitnateProcedure Used to Evaluate Inertial 

Defortnation Paratneter (unpublished, no date). 

49. Herbert Goldstein, Classical Mechanics" Chap. 10, "Stnall 

Oscillations, It (Addis on- Wesley Publishing Cotnpany, Inc., 

Reading, Mas s ,),1) pp. 318-46 .. 

,50. Alex E. S. ,Green, Nuclear Physics, (McGraw-Hill Book Cotnpany, 

Inc., New York, 1955),pp, 185, 250. 

51. 10 Halpern, Nuclear Fission, Ann" Rev, Nucl. Sci. 9, 245-342 

( 1959). 

52. Lev Davidovich Landau and E. M, Lifshitz, Quantutn Mechanics, 

Non-Relativistic Theory, translated by J. B, Sykes and J. S. 

Bell (Addison- Wesleyo Publishing Cotnpany, Inc" Reading, 

Mass" 1958), Sec. 21, tiThe J,inear oscillator,li~ pp. 64-70. 

53. Lev Dav'idovich Landau and E. M. Lifshitz, Statistical Physics, 

translated by E. Peierls and R, F,Peierls (Addison- Wesley 

Publishing Cotnpany, Inc, ,'Reading, Mass., 1958), Sec, 30, 

"The probability distribution for an oscillator,lDD pp. 86-89, 

54. Albert Messiah, Quantutn Mechanics, Vol. I, translated by 

G. M. Tetntner (Interscience Publishers, Inc" New York, 1961), 

Chap. XII, Sec. 12, U'Hartnonic Oscillators in Thertnodynatnic 

Equilibriutn,",> pp. 448-451. 



-224-

55. Louis Brand, Advanced Calculus,An Introduction to Classical 

Analysis (John Wiley and Sons, New York, 1955), Sec. 87, 

"Coordinate TransJormations, Ii pp. 175-80; Sec. 162,. !iChange 

of Variables in a Double Integrals II pp. 364-6; Sec. 169, 

"Element of Volume, IOpp. 382-4. 

56. Samuel S .. Wilks ,Mathematical Statistics (John Wiley and Sons, 

New York,. 1962), Sec. 704, liThe k- Variate Normal Distri­

bution, II pp. 163-70. 

57. Ibid., Sec. 3.4, "Moments of Two-Dimensional Random Variables, Ri 

pp. 77-9. 

58. Herbert Bristol Dwight, Tables of Integrals and Other. Mathematical 

Data, 4thed. (The Macmillan Company, New York, ,1961), 

p.,249, Integral No. 866.03. 

59. Tables of the Error Function and Its Derivative, U. S. National 

Bureau of Standards ,Applied Mathematics Series 4.1- (U. S. 

Government Printing ,Office, . Washington, D. q., 1954). 

60. Samuel S. Wilks, Mathematical Statistics! (John Wiley and Sons, 

New York, 1962), p, 265, 

61. D. R. Hartree, Some Properties and Applications of the Repeated 

Integrals of the Error Function, Manchester Lit, and Phil. 

Soc .. Mem. and Proc . . 80 g 85 (1935). 

62. Joseph Kaye, ;,A Table of. the First Eleven Repeated Integrals of 

the ,Error Function, J, Math, and Phys, 34, 119 (1955), 

63. R. A, Fisher,· Properties of the Functions, in Mathematical Tables, 

British Association for the Advancement of Science, Vol. I, 

3 rd. ed. (University Press, Cambridge, 1951), pp. xxviii­

x?,xvii. 

64, Donald S, Burnett,. Raymond C. Gatti,., Franz Plasil, p, Buford 

Price, Wladyslaw J, Swiatecki, and Stanley G. Thompson, 

Fis sion Barrier of Thallium- 20 1, University of California 

Lawrence Radiation Laboratory Report UCRL-11079, Nov. 27, 

1963, and General Electric Research Laboratory Report No, 

64-RL-3584M, Feb, 1964; to be published in Phys, Rev. 



-225 -

65 ... A. W .... Fairhall, Fission of Bismuth with. 15- and 22-MeV 

Deuterons, Phys. Rev. 102, 1335 (1956); Cyclotron Research, 

University of Washington, 1956 Annual Progress Report, 

!lMas s Distributions in the Fission of Bismuth and .Radium" 

(University of Washington, Seattle, Washington, 1956), p. 20 

(unpublished). 

66. A. W. Fairhall, R. C. Jensen, and E. F. Neuzil, Fission Studies of 

Elements Lighter than Thorium, Paper No. pi6 77, in Proceedings 

of the Second United Nations. International Conference on the 

Peaceful Uses oiAtomic Energy, Geneva, 1958, Vol. 15, 

Physics in Nuclear Energy JUnited Nations ,Gen~va, 1958), 

p. 452. 

67. Cyclotron Research, University of Washington, 1959 Annual 

Progres s Report, "AlphaParticle Induced Fis sion in Elements 

Between Tungsten and Bismuth" (University of Washington, 

Seattle, Washington, 1959), p. 18 (unpublished). 

68. T. T. Sugihara, J. Roesmer, and J. W. Meadows, Jr., Asym­

metric Fis sion of Bismuth, Phys .. Rev. 121, 1179 (1961). 

69. Cyclotron Research, University of Washington, 1962 Annual 

Progress Report, "Fission Studies in Bismuth and Lead Targets " 

(University of Washington, Seattle, Washington, 1962), pp. 26-

7 (unpublished). 

70. Cyclotron Research, University of Washington., 1963 Annual Progress 

Report, ,"Fission Study ofPb206~"(University of Washington, 

Seattle, Washington, 1963), p. 15 (unpublished). 

71. R. Vandenbos.ch and J. R. Huizenga, Kinetic Energy Distributions 

of Fragments from the Fission of Au, TI, Pb, and Bi, Phys. 

Rev .. 127, 212 (1962). 

72. Victor E. Viola, Jr. and Torbj$zfrn Sikkeland, Fragment Kinetic 

Energy Release in Heavy-lon-Induced Fission Reactions, Phys. 

Rev. 130, 2044 (1963). 

73 .. H. C. Britt, H. E. Wegner, andJ. Gursky, Energetics of the 

Ch d P . I I d d F" f R 226 ,209 d 197 arge arhc e- n uce lSSlon 0 a ,Bl ,an Au , 

Phys. Rev. Letters 8, 98 (1962). 



_226_ 

74. J. Unik, G. L. Bate, and J.:R. Huizenga, Studies of Coincident 

Fragments in the Helium-Ian-Induced Fis sion of Bi 209 and 

. U
238 

,Bull. Am. Phys . Soc., Series'!I,7, 303 (1962). 

75. H. C.Britt, H. E., Wegner, arid Judith C. Gursky, iEnergetics of 

CharglE!d Particle-Induced Fission Reactions, ,Phys. ,Rev. 129, 

2239 (1963). 

76. DonaldS. ,Burnett, Kinetic Energy,and ,Mass Distributions for 

Nuclear Fis sionat Moderate Excitation Energy (Ph., D. Thesis), 

University of California Lawrence Radiation Laboratory, Report 

UCRL-11006, Oct. 7, 1963 (unpublished). 

77~" Franz Plasil, Energy-Mass Distributions and Angular Momentum 

Effects in Heavy-lon-Induced Fission (Ph. D., Thesis), 

University of California ,Lawrence Radiation Laboratory 

Report UCRL-11193, Dec .. 31, .1963 (unpublished). 

78. J. P. Unik andJ .. R. Huizenga, Binary Fis.sion Studies of Helium-

I I 'd d F"' f B" 209 R 226 d U 238 A on- n uce lSSlon 0 1 ',aan " rgonne 

National Laboratory, Argonne, Illinois ,preprint (no date). 

79. K. J. LeCouteur and D. W. Lang, ,Neutron Evaporation and Level 

Densities in Excited Nuclei, Nucl., Phys. ~, 32 (1959). 

80. Wladyslaw J. Swiatecki, Semi-Empirical Interpretation of Nuclear 

Masses and Deformations, in Proceedings of the Second Inter­

national Conference on Nuclidic Masses, Vienna, Austria, 

July 15-19, 1963 (Springe~-Verlag,Berlin). 

81. William D. Myers and Wladyslaw J. Swiatecki ,(University of 

California Lawrence Ra,diationLaboratory, Berkeley), un­

published work ,on single-particle shell corrections to nuclear 
I 

masses. 

82. S. Cohen, F. Plasil, and W. J. ,Swiatecki, Equilibrium Shapes of 

a .Rotating' Charged Drop and Consequences for Heavy Ion In­

duced Nuclear Reactions , Paper No. ,F-1, ,in Proceedings of 

the Third Conference on Reactions Between Gom.plex Nuclei, 

edited by A. Ghiors.o, R. M. ,Diamond,and H. E. Conzett 

(University of California Press ,Berkeley, 1963), p. 325. 



r. 

- 227-

83. S. Cohen, F. Plasil,and W. J. Swiatecki, work on equilibrium 

shapes of a rotating charged drop, to be submitted for publi­

cation to Ann.Phys. (N.Y.). 

84. James Terrell, Neutron Yields from Individual Fission Fragments, 

<; Phys. Rev. 127, 880 (1962) and 128, 2925 (1962) (errata). 

85. Eldon Lee Haines, Mass -Energy Relations in the Fission of 

Highly Excited Heavy Nuclei (Ph.D. Thesis ),Uni versity of 

California Lawrence Radiation Laboratory Report UCRL-10342, 

June 29, 1962 (unpublished). 

86. Donald S. Burnett (University of California Lawrence Radiation 

Laboratory, Berkeley; currently at Kellogg Radiation 

Laboratory, California Institute of Technology), unpublished 

contour map; the data presented in reference 76 for the com-

d 1 'A 213 b d f d poun nuc eus 85 tare 0 taine ,rom this two- imensional 

distribution. 

87. James Terrell, Distributions of Fission Neutron Numbers, Phys. 

,Rev. 108, 7.83 (1957). 

88. ,R. B. Leachman" Emission of Prompt Neutrons frOIn Fission, 

Phys. Rev. 101, 1005 (1956). 

89. R. B. LeachmanandC. S. ,Kazek, Jr., Neutron Emission from 

Fission Modes, Phys. Rev. 105, 1511 (1957). 

90. James Terrell, Fis sion Neutron Spectra and Nuclear' Tempera­

tures, Phys. Rev. 113, 527 (1959). 

910 V., Weisskopf, Statistics and NuclearReactions,Phys. Rev. 52, 

295 (1937). 

92. K. J. LeCouteur, Statistical Fluctuations in Nuclear Evaporation, 

Proc. Phys. Soc. (London) A65, 718 (1952). 

93. J. M. B. Lang andK. J . LeCouteur, Statistics of Nuclear Levels, 

Proc. Phys. Soc. (London) A67, 586 (1954). 

94. J. D, Jackson, A Schematic Model for (p, x n) Cross Sections in 

Heavy Elements, Can. J.Phys .. 34, 767 (1956).' 

95. A. B. Smith, P. R. " Fields, andA. M. Friedman, Prompt 

G R A . h S' F"' f Cf252 
amma, ays, ccompanylng t e pontaneous lSSlon 0 , , 

Phys. Rev. 104, 699 (1956). 



-228-

96. J. S. Fraser;:Prompt Gamma Rays and Neutrons Emitted in 

Fission, Paper No .. C2.JinProc.eedings of the Symposium on 

the Physics of Fission Held at ChalkRiver,Ontario, . May 14-18, 

1956, edited by G. C. Hanna, J. C. D. Milton, W. T" Sharp, 

N. M .. Stevens, and E. A. Taylor, .. Atomic Energy of Canada 

. Limited,Chalk .River Project Report CRP-642~A, p .. 239c 

(unpublished). 

97. H. R. Bowman and S. G, Thompson, ThePrornpt. Radiations in the 

Spontaneous Fission of Californium- 252, Paper No .. P/652J in 

Proceedings of the Second United Nations International Con­

ference on the Peaceful Uses of Atomic Energy , Geneva,. 1958, 

Vol. 15, Physics .in Nuclear Energy (United Nations, Geneva, 

1958), p. 212. 

98~ .' F. C.Maienschein, R. W .. f>eelle, W. Zobel, and T. A, Love, 

ibid., Gamma Rays· As sodated withFis sion, Paper No. 

P/670, p. 366. 

99 .. R. B. Leachman, ibid., The Fission Process-Mechanisms and 

Data, . Paper No. ,P/246 7, po 229; Neutrons and Radiations 

from. Fission, Paper No. P/665, p. 331. 

100. G. A. Pik- Pichak, ,Nuc1eonEmission.by a Rotating Nucleus , 

Soviet Phys. JETP.!!,: 557(1960) l English translation of J. 

,Exptl. Theoret.· Phys. (U.S.S.R.) 38, 768 (1960)]. 

101. James Robb .Grover, Effect of Competition between Gamma-Ray 

. and Particle Emis sion on Excitation Functions, . Phys. Rev. 
, 

123, 267 (1961). 

102. John 0 .. Rasmussen, Conference Summary; in Proceedings of 

the Third Conference on Reactions Between Complex Nuclei, 

edited,by A. Ghiorso, .. R. M.· Diamond, and H. E. Conzett 

(University of California Press, Berkeley, 1963), p. 441. 

103. J. R. HUizenga and R. Vandenbosch, Nuclear Fission, in Nuclear 

Reactions, Vol.. II, ,edited by P. M. Endt and ,P. B. Smith 

(In,tersdence Publishers, .Inc., New York, 1962). Chap .. 2, 

Sec. 5, ''Isomeric Ratios for Shielded Fission Products, ii 

pp. 104- 5, 



• 

-229-

104. H. Warhanek and. Robert Vandenbosch, private communication 

to Marvin M. Hoffman (see footnote 16 of reference 47). 

105. ACilge Bohr, On the Theory of Nuclear Fission, Paper No. 

P/911,inProceedings of the Int~rnational Conference on the 

Peaceful Uses of Atomic Energy, Geneva, 1955, Vol. 2, 

Physics; Research Reactors (United Nations, New York, 

1956), .p. 151. 
u 

106. V. M. Strutinskii, Angular Distribution of Fission Fragments, 

Soviet Phys. JETP~, .638 (1956)[.Englishtranslation of J. 

Exptl. Theoret. Phys. (U. S. S. R. ) jQ, 606 (1956)]. 

" 107. 1. Halpern and V. M. Strutinskii, Angular Distributions in 

Particle-Induced Fission at Medium Energies, Paper No. 

P/1513J in Proceedings of the Second United Nations Inter­

national Conference on the Peaceful Uses of Atomic Energy, 

Geneva,. 1958, Vol. 15, Physics in Nuclear Energy (United 

Nations, Geneva, 1958), po 408. 

108. James J ... Griffin:,. Energy Dependence of Fission Anisotropy, 

Bull. Am. Phys.Soc., Series II,~, 337(1958). 

109. EdwinP. Adams, Smithsonian Mathematical Formulae and 

Tables of. Elliptic Functions, second reprint (Smithsonian 

Institution, Washington, D. C., 1947), entry Nos .. 3.30 (7) 

and 3.30 (9), p. 71.· 

110. Joseph 0. Hirschfelder, Charles F. Curtiss, andR. Byron 

Bird, Molecular Theory of Gases and Liquids (John ,Wiley 

and Sons, -Inc., New York, 1954), Chap. 12, "Electromagnetic 

Basis of Intermolecular Forces, " in particular, pp. 846, 906, 

907, 910. 

111. Henry Margenau and George Moseley Murphy, The Mathematics 

of Physic.s and Chemistry ,2nd ed. (D. Vari Nostrand~. Company, 

Inc., Princeton, N. J., 1956), Chap. 15, Sec. 15, "The Three­

Dimensional Rotation Groups, "pp. 565-70.) 

112. E. W .. Hobson, The Theory of Spherical and Ellipsoidal Harmonics 

(Cambridge University Press, London, 1931), p. 48, Example 1. 

\ 
,/ 



-230-

113. Arthur Gordon Webster, The Dynamics of Particles and of 

Rigid, Elastic, and Fluid Bodies, 3rd ed. (Hafner Publishing 

Company, New York, 1949), Sec, 160, IiEllipsoids of Revo­

lution, II Sec, 161, "Development of Potential of Ellipsoid of 

. Revolution, Ii pp, 421- 5, 

114. A.R. Edmonds, Angular Momentum in Quantum Mechanics 

(Princeton University Press, Princeton, N, J., 1957), Chap,3, 

Sec. 7, HThe Wigner 3-jSymbol" Ii pp. 45~50; Chap. 4, Sec. 6, 

"DDlntegrals Involving the ,V (~) {a j3 y)," p. 62- 3. 
m m 

115. ,Cecil Hastings, Jr., Approximations for Digital Computers 

(Princeton University Press, Princeton, N, J., 1955), Sheet 

4B, IIK(k), II. Sheet 51, "E(k), Ii pp. 172, 175. 

116~ Sir Horace Lamb, Hydrodynamics, 6th ed. ,(Dover Publications, 

New York, 1945),Sec. 45, pp. 47-B, 

117. John. William Strutt, Baron Rayleigh, The Theory of Sound, 

VoL II (Dover Publications, :New York. 1945), Sec. 304, 

,.Eq. (1);p. 172; Sec, .306, Eq. (6), p. 17B. 

,11B. Julius Adams Stratton, Electromagnetic Theory (McGraw-Hill 

Book Company, Inc., New York, 1941). pp. 401-2, 

119.E. W. Carperos, Integration by Gauss Quadrature (10 Point) 

Method, D1 GL GAU2,SHAREDistribution No, 1210 (IBM). 

120. R. D. Glauz, ADMINT - Adami s Integration of Differential 

Equations, ,Di? AS 124, SHARE Distribution No. 1131 (IBM); 

. Adam I s Method of Integration of Differential Equations, 

Aerojet- General Corp. Computing Services Report No. 13, 

May 12, 1960 (Azusa,. Calif.; Sacramento, Calif.). 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com· 
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the us~ of any infor~ 
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or con~ractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contrictor. 




