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. vision of a charged drop'and the separation of the fragments to in-

finity are taken into-account: a fragment-separation coordinate, a
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ABSTRACT

In connection with nuclear fission we study the division of an -

idealized charged dfob,' using a simplified ver'sion of the liquid-drop

. model. The degrees of freedom essential to a discussion of the di-

_“

.mass-asymmetry coordinate, a deformation coordinate for each frag-

ment, and rotational coordinates for each fragment. To specify frag-

~ment deformation, the fragments are represented by spheroids; a
nucleus prior to division is represented by two overlapping spheroids.

‘The Hamiltonian for the idealized system consists of a sum of sur-

face, Coplomb, and kinetic energies. A study of the saddle-point

. energies land shapes calculated in this two-spheroid approximation

indicates that the approximation is most useful for d'iscussimn'g the fis=

sion of elements lighter than about radium. On the basis of this model,
we calculate probability distributions for certain observable char- |
acteristics of fission fragments at infinity —their total translational
kinetic energy; mass, individual excitation energiesl 'and.individual
angular momenta. This.is done by applying standard static, dynamical,

and statistical methods to the Hamiltonian for the system. The pres-

" ent treatment, for the most part, is classical; quantum mechanics is

cons;déred only in the statistical-mechanics discussion of the behavior
of the system near the saddle point.

. The predictions of the model are compareci with existing experi-

-mental data for distributions in fragment mass and total translational
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kinetic energy, for nuclei lighter than radium. The cbmpérisons are
made without the use of any adjustable parameters. - The theory is
‘capable of accounting for the magnitudes of the most probable values

and widths of the éxpérimental distributions, as well as some,  but

not all, finer details of the distributions. The dependence of the ex-

perimental distributions upon nuclear temperature, and the dependence .

of the experimental most probable kinetic energies upon ﬁss’ionabilit.y

parameter are also approximately reproduced by the calculations,
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1. INT RODUCTION

. Nuclear fission was chscovered by Hahn and Strassmann (1)

‘ in 1938, and yét, in the two and a half decades since its discovery, -
. an adequate theory of the fission process has still not emerged. Nu- | ;
-merous papers have been written dealing with various aspects of the
~ theory, but in no instance has a definite model with a well-defined |
Hamiltonian been chosen and the implications of this model systemati-:; '
R -cally worked out in detailv. Such an approach would require that one
. select a model characterized by definite degrees of freedom; apply -
L standard static,dynamical, and statistical methcds to the resulting . |
Hamiltonian; and compare the predictions of the model with experi-:_‘. |
' ~ ment. Inthe present study we attempt to do this for a simplified ‘
 version of the liquid-drop model. (A moré detailed account _4f. this 'w'ork
| 18- given in-Ref. 2;- see ;aisdeef'. Bu) e T : 1‘

Shortly after the discovery of nuclear fission, Meitner a.nd oy

. Frisch emphasized the analogy between the fission process and the .

division of a charged drop of liquid(). On the basis of the liquid-.

_ drop model, Bohr and Wheeler showed that a satisfactory account

could be given of some of the phenomena observed in fission(5). These

~early successes of the liquid;drop model and its conceptual simplicity

firmly esitablished its popularity for discussing fission.

The major effort in.the development of liquid-drop theory has
been concerned with the static problem of calculating the potential 4
energy of a deformed charged drop. . The coordinates normally used

to describe a deformed drop are the coefficients in the expansion of

- the drop's radius vector in spherical harmonics. The energy of a

nearly spherical drop can then be calculated in terms of these co-

ordinates as an expansion about a sphere() 13) A similar technique,

_appropriate for shapes not far removed from spheroids (ellipsoids

of revolution), is the expansion about a spheroid8-13). For highly
distorted shapes the deformation energy has to be calculated nu-

merzcally(l !--18) The potential energy of charged drops is now fairly

~well understood, particularly with regard to the variation of fission ..°

barri_ersi_‘thro'ughout the periodic table.
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- Although statics has been extensively studied little islknown :

- about the dynamics of nuclear division; A fragmentary study of the -

o dynamical aspects of fission was performed by Hill and by Hill and

s " Wheeler in connection with the question of mass asymmetry (19 21). Fore;

a few special cases, the division of a charged drop was traced outm_ﬁ
numerically to a short distance before the actual division of the drcp
. into two fragments (scission). However, no relationship between initiel ,
;conditions and final resﬁlts was eeteblished.‘ Some limited aspects of dy”.

-~ dynamics have also been considered by other authors (8, 22-25).

The statistical mechanics of fission has been investigated in some o

" -detail. Bohr and Wheeler formulated the calculation of fission probabilities_:‘ :

by applying statistical tran51tion-state methods at the saddle point (5)
.NV.[See in particular the recent article by Wheeler (26) ] The application ‘
"H:of-statistical mechanics in a somewhat different manner was discuseed by'
:vgrong, whose starting point was the assumption of statistical equilibrium"
atlthe scission point (gZiég)' This theory suffers, however, from an |
arbitrariness in the definition of the'scission configuration, which,
unlike a. saddle-point configuration, is not defined by the statics of
the problem. - Statistical aspects of fission have also been examined by

' several other authors (31-37).

We see that statics, dynamies, and statistical mechanics have all;: g

been considered to some extent in previous studies of fission. Never,"'
however, have they been treated systematically for one and the same . -
" Hamiltonian.

In the ﬁreSentApeper an attempt is made to study‘each of theee

',5 steps for a simplified'version of the liquid-drop model.;fTheAqutline of

N i .
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. our program is as follows:

(1) Statics: After the coordinates specifying the system have been ,i.

“;,selected, the potential energy of the system (for a given nucleus) is’

, ‘ﬁ_and its properties studied.

':ft-mapped as a function ofbits coordinates, and the saddle point 1s locéted: ;,;

(2) Dynamics- The kinetic energy of the system is calculated‘;s a -
7? funetion of the coordinates and their conjugate momenta. This makes it

-# ?.possible; by solving Hamilton's classical equations of motion for the'system;fQ
= t& diécuss the division of ﬁhe nucleus and the separation of thé frégments, >
v’from some giyen initial configuration to infinity. . | o |

(3) Statistical mechanics: In analogy to the method emplbyednin dis-
vfcussing chemical reaction rates (38), attention 1s focused on the system

‘: at the saddle point (transition state), and statistical equilibrium is~

assumed to hold there. In the case of chemical reactions,_this provides
,,inférmation regarding the rate of reaction, and it was for the calculation

- of rates that Bohr and Wheeler used the transition-state ﬁethéd (5). 1In

_our case, however, we use the transition-state method to calculate the
probability for finding the system in a given state of hotion close'to

,the saddle point. These probabllity diétributions are theﬁ combined'in

,_the sense of initial cénditions with the dynamical calculations [step (2)] 'v: ;

to'traqe out the separation of the fragments to infinity. This éonyerts‘: |

the probabllity distributions of the states of motioh around the saadle'ﬂ

point into the probability distributions of observable characteristics

- of fission fragments: their kinetié énergies, excitétions, and aﬁgular.

momenta.
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Since the difficulty of solving dynamical equations of motion

| increases with the number of coordinates, it is desirable from the
r'ué calculational point'of view to have present in one's model as few degrees
-of freedom as possible. Let us therefore see what degrees of freedom it
vis essential to consider. Although we will be concerned wish thefliquid-jzi‘“J;

s

l drob model, the discussion that we are ebout to give for the degrees of

freedom essential to fission is qplte general and does not depend upon

~ the assumption of the llquld-drop model.

A single fission fragment has three rotational degrees of freedoﬁ o

:

. and three degrees of freedom associated with its center-of-mass motion.

The specification of a fragment's extension in three dimensions requires -

three lengths (say three'orthogonal axes a, b, c).' This suffices toj

“.; describe its size and leeves two dimensionless numbers to describe the

fragment's intrinsic shape. [These numbers could be, for example, the ' B .

'r and 7y deformations of the collective model or related parameters (39).] 8
. Thus to describe in this way the configuration of n fragments resultingfy

from the division of a nucleus of given volume reqpires (3 + 3 + 3)n -1

degrees of freedom. (The "minus one" reflects the fact that the,total,

volume is given.) In the case of bihary.f;ssion this gives(9)(2).-_l-= 17 V;;,dr

as the number of coordinates required to describe a pair of separated
fragments (see Flg. 1; in the caption to this flgure an alternative o
enumeration of the 17 degrees of freedom is given).

It is necessary ina model of fission thaf one be eble to

describe in a continuous manner the seqpence of shapes of a fissioning ff‘"

nucleus from the original sphere, through the saddle point and scission

.. configurat ion, to the two fragments at infinity. If the number of fﬂ :sf"
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' degrees of freedom is not to change in the course of the division, it

“- - of freedom to describe finer details of the dividing nucleus, including-_"

, spheroids, with'ﬁhe interior surface of each simply "erased.” With

«Q-

'Z'follows that the number of degrees of freedom specifying fission shapes f
. before division into separate fragments must also, in general, be 17

' i or more.

One could in principle continue introducing additionalddegrees i’

" yltimately single-particle structure, until the number of degrees of{‘fh-
" freedom equaled the sum of the degrees of freedom of all the individual -
. nucleons. ‘We will consider explicitly, however, only the 17 basic

‘”‘;_degrees of freedom enumerated above. Although the remaining degrees of

freedom will never be treated explicitly, they will, on the other hand,

" not be disregarded entirely. Their presence will be recognized implicitly
‘:._; vhen we consider the statlstical mechanics of fission, when they will: be

" assigned their statistical share of the total energy. . R

The question arises of how to choose the deformation coofdinates
for each fragment. We shall not be concerned here with effects arising
from deviations of the fragments from axial symmenry. We will therefore |
restrict‘ourselves from the beginning to fragments thatvare‘axially;
symmetric, thus reducing the number of'degfees of freedom to 15. Because :.
spheroids can represent any desired degree of prolate and oblate |
elongation, and because their surface and Coulomd energies can beleasily

calculated, we will use spheroids to represent the fisslon fragments.

We will represent a nucleus prior to division by two overlapping

this parametrization, one. is able to describe continuously in an ;{JV' e



‘j approximate way the seqpence of shapes of a fissioning nucleus from .

. " the orlginal sphere to the two fragments at infinity.,

=10~

Of the 15 degrees of freedom required for specifying a system

e composed of two axially symmetric fragments, 3 are trivially eliminated ;‘""
. by working in the center-of-mass system. Three more may be eliminated i-ff; S

| if, as will be done in the present work, one restricts the discussion

to a system with zero total angular momentum.

This, then, leaves a system possessing nine degrees of = -

.l”}ngreedom. In the neighbo?hood of the saddle point, these nine degrees
,'fg'of freedom correspond fo ce;tain eharacteristic'motions of the SYStemH}zﬁv”QNVHZQ
The most important of these is the motion in the fission direction-aﬂ;;ml;fJ.ffw
:lover-all‘separation of the system leading to 1ts eventual division 1ﬁtd'y.:}
.Jﬁﬂfission fragments. The potential energy in this difection 1s of the‘. |
. v;'form of a potential-energy barrier. For divisioﬁ.of the drop to occur’i}”f" R ¢

i-ui;the system must pass over this barrier.

| Most of ‘the remaining motions near the saddle point‘(motions QV[J”:'MK” i

in the non-fission direction) consist, in general, of bounded small

oscillations, resulting from the potential energy 1ncreasing with ;li{‘T

.

v deviations from the saddle point in these directionss: These oscillationsu}?_

involve the relative sizes of the fragments, their eccentricities,ﬁif:f;f‘

o, o ey

e et = g o S




‘contraction of the . * two
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and their orien’ca’cioﬁs in space. _Thé ({érious modes of °5¢illat10n | |
- that occur correépond roughly to (a) a change in the relative sizes of the '
. nascent fragments, (b) an in-phase or out- of-phase stretchmg and | N ,

“halves of the saddle- Poin‘{; e

" configuration, and (c) a bending and "wriggling" of the saddle- pon.n‘c

 configuration. In the treatment of these oscillations, the approxi-

i 4dng of a translation of their centers of mass, and rotations and

./ vibrations about their centers of mass, corresponds

mation that they are small will be made, - although there will be some .

. discussion of higher-order effects.

‘The separation of the fragmenfs from the saddle point to

infinity will be traced out dynamically.  This converts the possible :

states of motion near the saddle point into states of motion of two

 fragments at infinity. The motion of the fragments at infinity, consist- o

; &

[N . st X

'.directly to observable properties of fission fragments: (a) The . '

- .speed of separation of the fragments' centers of mass determines’

their translational kinetic energies. (b) The relative sizes of the'

fragments are directly observable. (c) The vibrations of the frag- °
‘ments are associated with their excitation (vibrational or deformation)

: energie‘s.l (d) The rotations of the fragments-are associated with

their angular momenta.

We will find that for each of the above quantities we are able

to discuss not only its most probable value, but also the distribution

~ about its most probable value. In particular, our theory predicts the

proba.b111ty distribution P(E, U, X1 27 1, ) of mmultaneously ob-
servmg the two fragments at infinity with total translational kinetic

energy E, fractional mass U, individual excitation energies Xi and

_ 'When used in this context, the term “excitation ehergy" refers to.
the energy of the collective vibrations and deformations of the frag-.
ment; it does not include the mternal (excitation) energy of the in-

dividual nucleons .
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" obtain from this d_istribution, by integrating over the quantities not of
immediate interest, probability distributions involving a smaller

'number of observable quantities. Three such distributions are - |

-]

.on.

: .~X2, and individual angular momenta , 3;'/1 and »IT‘/ZD R

€It proves convenient in practice to

~

P(E, U), P(X,,X,), and P(L,, WZ)

Our theory will also predict how these dxstrlbutlons should
vary with the (internal) excitation energy of the compound nucl_eus
undergoing fission, as.well as with its. charge and mass. '

The immediate test of the theory will be the comparison of |

. 'predxctlons with experiment for dzstrxbutlons in mass and total trans-

lational kinetic energy | P(E, U)] It is hoped that these compansons,l '

~.as well as those to be made when more experlmental information be-

comes available, will y1e1d a more accurate 1dea of the relevance of

the hqmd drop model for discussing fission phe_nomena. “Indeed, ’ '

the entire purpose of undertaking this study was to trace out in detail

the characteristics of the division of an idealized droplet whose size, .. - -

surface tension, and charge are those of a2 nucleus, and to compare

the results with what is observed experimentally in the fission of real

~nuclei. Stated in this way, there are no adjuetable ‘parameters

2 A . : :
The same symbol P is used throughout this paper to denote each -

 of several probability distributions; the argument or subscript will

indicate which explicit function is being referred to. T
5 . P ” o

‘Experimental information regarding the other d13tr1but1ons is at’ ..o
present not available for the fission of nuclei lighter than radium. 4 L .

We will see later that it is for these nuclei that our ‘model is most nearly

—

applicable. ' o . ,
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- in the problem.11L Thus, when the cbmparison is made with experiment,:fgiﬂ:fg
. " we shall learn unambiguously to what extent an idealized liquid-drop7f¥fv
" model ié capable of representing-the characteristics of fission, asi:m
5;-regardsAboth over-all order-of-magnitude agreement and also more

detailed aspects of the process.

Concerning the question of .the validity of the liqpid-drqp i

—1*model for discussing fission, we believe that the above clear-cut program  frv:

of ah'unambiguous comparison of nuclear fission with thé division of ah?
.;i.idéalized drop should be carried through ir?éspective of how good the??
l. liquid-drop model is thougpt to be. Never;heless it is of ihterest to - .o

. form somé a priori judgment as to how well an idealized drop might bé iw\'v
expeéted to represent nuclear fission. Some comments on this subject‘ ﬁ
are made in the Appendix.-. Our conclusion is that although the liqgid4al_f‘i
‘drop theory of fission would not be expected to be accurate for a . |
A ﬁartidular nucleus, it caﬁ'be expected to yield the cofrect avergge' g
behavior of nuclel throughout the periodic table, in analogy to the way

the llquid-drop semiempirical mass formula reproduces the correct trends

in the masses of nuclei, apart from oscillations due to shell structure.

We. have takeﬁ the constants of the Bethe-Weizsdcker Semiempirical'gg o
mass formula from Green's analysis of ground-state masses (4Q0). The

nuclear temperature at the saddle point is determined from the excitation |

energy and fission barrier of the compound nucleus.. All other.qpantities'uw"

are calculated directly from the model.
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II. STATICS

We shall be concerned in this section with.the static.properties

of our modél—with mapping the potential energy of the system as a_
function of its coordinates, and with studying the properties of the

saddle-point configuration. Before proceeding with this study, how-

ever, it will be advantageous for us to take care of some preliminaries., .

A. TUnits, Notation, and Coordinates

For dis cus sing fis smn within the framework of the liquid-
drop model, it is convement to use a system of units based on the

original spherxcal drop, rather than the conventional units of length, .

mass, and time. The three “natural' units .to choose are the radxus, .

: .mass, and surface energy. of the original drop. Time is then no
longer a fundamental umt, but is expressed in terms of a length a il
: ‘mass, and an energy. This is analogous to the situation in elementary-
" particle physics, for example, where the speed of light, Planck's
constant divided by 2w, and the pion mass are chosen as units.
In actual applications it is necessary to convert these liquid-
drop units to conventional units. For the comparison of the theo-

retical and experimental results discussed here, this . conversion is

made with Green's values for the constants in the semiempirical mass -

formula()_,v_‘g). -We denote by . A the number of nucleons in the com-

pound nucleus undergoing fission. .. ..The radius of the original
drop is then T - .
RO = ro Ai/?’, with Ty = 1.21{))(10-.13 cm, ‘ (1a) .
and its surface energy is
EQ = a 2?3, with ag = 17.80 MeV. (1)

When future determmatmns of these constants.are made, the new
values may be used since all theoret1ca1 quantities are gwen here in

11qu1d drop units.

o )
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the ux_iit of linear momentum is : , o : : ll

- is

15 -

. The mass of the original drop, to an a.cc(xra.cy within one part per

thousand, is équal to the mass unit times the number of nucleons; thus,
M. =m_ A, . (1c)

m, = 1.660x10™ 2% g= 931.MeV/c2 tReT. L41).

In this discussion of units .the symbol ¢ denotes the speed of light. . -~
o The units for other familiar quantities may be readily derived

from these three fundamental ones. For example, the unit of time is

. (0),1/2 12 _ 1)z
Ty = [MO/ES 1 R, = (mo/as)./ T oA /

(2.933%x107 %7 sec)al/2 | - (2)

Py = [ M, E(O)} vz (myag) /2456 = (128.8 Mev/c)a®/6, -

" .and the unit of a.ngula.r'momentum is

: 2 e 16 2/
_ 1/2_ ,1/6 _ w aT/6
| Lo = [Mo = (mgyag) ™ "roA = ‘0.793 h)A T,
! ‘ | . )
~where h is Planck's constant divided by 2w, The unit of fréquency- '
Q,=1/T, = (3.409%20%%/sec)/al/ 2 (4a)

when multiplied by h this becomes

" = 22,44 MeV/Ai/Z 1.264 E(O)/A7/6 . (4b)

(0) 1/2
Although the unit of charge is formally [R 1 ., the

~ .charge on the drop is more conveniently spec1f1ed through the d1mens1on- o

less f1ss1onab111ty pa.ra.meter %, defined. by(s)
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% - (charge) ' ‘ -A . (sa) o

10(volume) (surface tension)

(The surface tension multiplied by 4vr§ is equal to a.s ) For a uni-

formly charged drop with a sharp surface,

. o o N - o
- x=Eg/ES) S - (50)
‘where Eéo) is the Coulomb energy of the original drop, given by

gg’) = 32%%/(5R ) = aCZZ/A1/3 ,

with ‘Z the number of px;otons, e the electronic charge, and the
constant a. = 0.740 MeV(40) A third conventional form for x is

G

2 2 | T
| x = (2°/M)/(2°/A) ., N . (5elly
where '

2 ..
(2°/A)_,;, = 2 ag/as = 50.13.

-When these liquid-drop units are used, the results of our

_calculations can be displayed as functions of a single parameter (e. g.,

x) rather than as functions of two parameters {e.g., Z and A).
The notation of this paper will adhere, insofar as 1s practzcable. ;
to the following convention: Quantities referrmg to the left hand frag- - |
ment will be distinguished by the subscripﬁ 1, and to the right-hand . |
iragment by the subscript 2. Furthermore, unless otherwise noted,
any: qué.ntity that i's the sum of two quantities, each .referringto an
individual fragment, will be designated By the sé.me -)symbol but with-

out subscripts; e.g., the total excxtatxon energy. of both fragments

3 (X + X ) will be denoted by  X.

For specifying the angles involved in our pﬁroblem,' we will

adopt the following scheme (see the lower part of Fig. 2): We denote R
. by © and & the two angles specifying the direction in space of the.
. 1ihe connecting the centers of the two fragments. - We define a right-

 handed coordinate system whose origin is at the center of fragment 1,



- - whose. z

" ment, and (c) the semiaxes c

7
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1 axis is along the line ‘c':onne/étingthe spheroid centers -
(poSitivé in the direction fragment 2), and whose X, and Y, axes

are perpendicular to one another and to the zZ, axis, We define a
second coordinate system whose origin is at the center of fragment 2,
and whose X,, ¥, and z, axes are parallel (with the same sense of

direction) to the Xyo ¥y and z, axes, respectively. Then the orien- ~ - -

' tation in space of fragment 1 is specified by the three Euler angles -

6,» ¢,» and Yy [as defined, for example, by Goldstein(49],and the

' orientation of fragment 2 by 62, $,, and kPZ. These angles are de-.

fined as the {counterclockwise) angles of rotation about three mutually

" inclined axes necessary to bring a fragment from a position with its
' ‘symmetry axis along the z, (or zz) axis to its final position., For -

fragment 1, say, these rotations are: one thfough the angle 4)14

about the z,
and one through the angle Y, about the new z

axis, one through the angle 91 about the new Xy axis,

1 axis, made in that “,.

| '.‘order. The angle 91 is the polar angle of spherical coordinates usua.‘lly .
. denoted by the same symbol: the angle between the z, axis and the
 symmetry axis of fragment 1. The angle ¢, is related to the usual

 azimuthal angle of polar coordinates by an additive constant,

Because of the symmetry of the system, the potential energy:

is.independent of all but the following three of the above angles: 61,

' 62, and the difference ¢ = ¢y - ¢, between the azimuthal angles of

the fragments' symmetxy. axes. _

We choose the four remaining coordinates . required for specifying
a two-spheroid configura.tidn (in the center-of-mass system) as fol- .
lows: (a) the distance £ between the centers of the two spheroids, ..
(b) 'the fractional mass (fractional volume) U of the left-hand frag-

1 and c, of each .fragment along its

line of symmetry? (see again the lower part of Fig.. 2).

The fractional mass of the right-hand fragment is 1-U.

- For example, if spheroid 1 is prolate, then <, 'is.its semimajor

axis; its semiminor axis is determined by volume conservation. ' :



. consider only the restricted case of symmetrical fragments, in which -

U= 1/2, cy=cy=c¢c,.and 0, =6, = 0. (The potential energy is for

- 18-

Prior to division into separate fragments, the nucleus is

represented by two 'overlapping spheroids. When the spheroids are

' ‘.overlapping, both the potential energy and the kinetic energy are much ‘;'

- more difficult to calculate than when they are separated, and we then

2
this case independent of ¢.) For this restricted case,.the two co- -

- ordinates £ and c .completely specify the system (see the upper .

part of Fig. 2).

¢

B Potent1a1 Energy of the System

The potential energy of the system is simply the sum of the 7
surface energy 'ES and the Coulomb energy ‘EC‘ The potential energy -
Y . of a deformed drop, relative to the original drop, is.then - {\ -

'
s

Cm o m(0) (0)
Y=Eg=Eg"  +En - Eg

Bg - 9 ED + (B - nED

[(Bg-1)+2x (B, - 1] EQ . (62)

i
The function By is the total surface energy of the system in units

(0)

of the surface energy Es'' of the original drop, and By is the total

£(0)

~ .Coulomb energy of the system in units of the Coulomb energy . C

.of the original drop. The definition (5b) is used.in going from step 2

to .step 3. When the system consists of two separated frag—rrients, ‘the

 potential energy is conveniently written as

V= {[Bg‘[) +B o) s 2x (B4 P 4 B - 11} 0. ,(6b) |

The function B( ), for example, is the surface energy of fragment 1 ‘

" in units of Ego) B(i) is the Coulomb self-energy of fragment 1 in

C

. units of E(o) and BI .is the Coulomb interaction. energy between :;
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-(0)

fragments 1 and 2 in units of EC . In terms of these app‘ropriate
.umts, the varxous energies denoted by "B depend upon neither the

value of A nor of Z of the original nucleus; they are functions only

' of the shape of the system.

'Different formulae for calculating the energ1es are used, de-
pendmg upon whether the system consists of separated sphermds or ,
overlapping spheroids. The case in which the spheroids are separated‘\

" is the simpler. The surface energies and Coulomb self-energies are ... -
_then expressible in a closed form, and the interaction energy may be |

'calculated by performing a triple multipole summation. Formulae :

 for- ca.lculatmg Y as a function of the coordinates specifying the

f Ref. .

o . system are given in Appendix B. 1f) For the restricted case of over=~

. lapping spheroids, specified by the two coordinates £ and c, the
‘surface energy is again expressible in a closed form, but the Coulomb -

. energy must now be calculated by numerically evaluatmg a double - 1\"

" integral. The formulae given in Appendix B. Z/?‘.or the szymmetnc S

overla.ppxng case could be readily generalized to the case.where

U #1/2 and <y # czh, but not to the non-axially-symmetric case.

.Let us now examine the appearance of the potential-energy

. surfaces calculated with these formulae, Smce the results can be

displayed easily in at most two dlmensmns, we present maps of the
potentialienergy.as functions of the two coordinates specifying sym-.
metrical fragments: the separation -co,ordinate 2 and the deformation ‘
coordinate c. An examination of the potential energy for this restricted - |
- case will tell us many things of interest, including the location "and energy.
of the saddle point. The potential. energy is mapped in F1g 3. o

| for values of the flssmnablhtv pa.rameter b4 between 0 and. J_ 0, at
1nterval.> of 0.2. (For po*bential—energy maps at intervals of 0. 05 in  x .

_.see Fig. 5 of Ref. 2 ) In this figure are mcluded meps of the surface

energy BS and jthe Coulomb energy BC,‘ as well as an illustration of

- configurations of the system for various values of the coordinates. :
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An expansion of the potential enei'gy about the sphere indicates
that for small distortions the contours are portions of ellipses whose

major axes are tilted at angles of about 30.5° from the horizontal

af. 2)- ) .
(see Appendix B.Z'/Of I.X’sf the' drop distorts in the direction of the saddle . "

point, the potential energy increases until the saddle point is reached
and then begins to deci‘ease. For large values of x the potential-
energy surface is much flatter in the overlapping region than in the
separated region; the opposite is true for small values of x. The
potential-exiergy surface in the separated region is a "trough' that |
drops off approximately as 1/% along the separation coordinate. At
the scission line £ = 2¢ dividing the two regio.ns there occurs a cusp

. _in the energy surface. vThis results from the discontinuous rate of
change of.the surface e;fergy in passing from the region of overlapping
spheroidé, where the surface energy increases with separétion,.to “

(R

~ the region of separated spheroids, where the surface energy is in-

 dependent of separation.

. The results of electronic computer studies of equilibrium con-

It is possible, then;, to compare with these essentially exact results
. various properties of.equilibrium configurations calculated in.the two-

spheroid'approximation. This will provide us with some idea of the

8 ‘ S
- When all coordmates are conmdered the cusp occurs at those
values of the coordmates that correspond to. the conﬁguratmn of

touching spherolds.

18).

figurations of idealized charged drops have recently become a.vailable.‘('15'.
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~ limitations of our model. The follow{ng properties of eqﬁilibrium

configurations are compared as functions of fissionability- parameter:

. the total potential energy. Y, in Fig. 4; the individual surface and =
- Coulomb energies BS and Bc in Fig. 5; the saddle-point shape

of the drop, in Fig. 6; and the drop's mammum and minimum radii

R and R_. , in Fig. 7. o e

max min
There are several observatxons that may be made One con-~

cerns the general appearance of the saddle-point shapes. A striking

discrepancy between the true saddle-point shapes and those calculated

in the two-spheroid approximation occurs in the central region of the =~

R _ drop (the neck). The restriction that the fragments maintain sphe= -

roidal shapes-allows the drop 'very little freedom at its neck. In ,
particular, a discontinuity is introduced in the surface of the di'op,_-," )
and the radius of the neck (R ) in its dependence on x is repro-
duced very poorly. The two- spher01d model is thus not suitable fo'rl‘?,‘
discussing phenomena that depend upon the properties of the neck. ‘v .'
In the two-spheroid approximation, when the fissionability
parameter x is between 0 and 0.80, the saddle point lies on the
scission line, possessing the shape of two tangent spheroids. For

.. values of x between 0.80 and 1.0, the saddle point occurs for some

" value of £ <2c; i.e., the saddle-point shape is the configuration Qf

- two overlapping spheroids. The results of the exact calculations in-

dicate that the s'a.ddle—point\shapes chaﬁge from dumbbell-like (approx-
imated by two tangent spheroids) for x < 0.67 to cylinder-like (approx- .
imated by two overlapping spheroids) for x > 0.67 Q_._?).Thus the transi-
tion at x = 0.80 in the two-spheroid model, although qualitatively
| correct, occurs at a value of x tha.t is somewhat.too hlgh

~In the short interval 0.79 < x < 0.85 there are in the two~
spheroid model three equilibrium configurations (apart from the

" original sphere): two saddle points and.one stable r'ninimum‘point..-g

9 Th1s is clearly seen in Fig.. 3 in the map for x = O 8 . *
Y o . v e

& - . .
. P
. - St
o3 R Y
e T

l
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The occurrence of three configurations. of equilibrium is aesociated o
with a '"dip" in the potential energy as a funetion of distortion. .For"-
..x close to the respective transition point in both the two-spheroid .«

-approximation and in the exact calculations, the potentiai energy be-
' comes extremely flat. - A very slight dip occurs in the two-spheroid

. model, resulting in three equilibrium configurations, but does not,

" occur in the exact calculations.

The dependence on x of the remaining properties calculated
in the two-spheroid approximation is qualitatively correct. = The two-"

k spheroid model in addition rep.roduces the exact results both for x

~close to 1.0, where the saddle-point shape is a single spheroid (a _
single sphere at x = 1. O), ‘and at x = 0, where the saddle-point shape
is a pair of tangent spheres However, it is clear from the figures
that for the range of x roughly between 0.67 and 0.85 the two- spher01d
model represents very poorly the true saddle-point properties. Thus,
for 0.67 <x <£0.85 this model -should not be expected to accurately
_Gescribe phenomena associated with saddle-point shapes.lNevertheleSS',
" .the model may st] geful for this range of x for discussing phenomena
not related to the saddle point, such as the separation of the fragments
. after scission. '
For x $0.67 there is fair agreement between the exact saddie~ -

point propertles and those calculated in the two-spheroid a.pprox:.matlon.
. The following’ maJor discrepancies should be noted. The fission
.ba.rrier (saddle-point potential energy) calcula.f;ed in the two-spheroid.
approximation is. ‘higher than the true liquid-drop barrier. This dif- |

ference becomes as large as about 23 MeV, when:-.th,e two-sphe’roidv

lO;Hlstorlcally, however, it was for a time believed that three
equilibrium conflguratlons possibly did exist for a short range of X
close to 0.7 (15, 1#3) |

1L Unfortunately, most experimental information on fission is for

_nuclei that lie in this range of x. Some data exist, however, on-the.
fission of nuclei where x < 0.67, and more are becoming available

as time progresses.
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‘barrier is roughly twice as high as the exact one. This means that -
. the divi'sion of t_hé total energy of the éystem at the saddle point into
potential energy and internal excitation energy will be incorrect. The
potential enevrgy of deformation will be greater than it should be, and
| the internal excitation energy less by a corresponding amount. . :
| Recall that for the lower values of x under conmderatmn
(x < 0.67) the saddle point lies on the scission line, where there is a .
- cusp in the potential energy. In the direction of motion across the | .
saddle point, then, there is a discontinuity in the rate of change of ‘
the potential energy. The {:_'second derivative, in particular, represlent- v
'ing the (negative)Vfission" stiffness constant, is not defined. Thus '
- _both the magnitude of the p-otential energy. and the associated stiffness .
| _constant in the fission.direction are not well reproduced by the two-
" spheroid model. | | : |
The failure of the model in these two respects (a8 well as itsl
other failures, including the more drastic ones for the region 0.67 <
'x <0.85) is due to the lack of freedom of the drop at its neck To remedy
thls we have tried a generalization of the ‘two—sphero:.d model obtain-
ed . 'by,introducing a third conicoid of revolution {a hyperboloid of
| revolution fzf onetggstwo sheets, or a spheroid) to connect the two end
.spheroids. By’mcluding one additional coordinate to explicitly de-
scribe the neck degree of freedom, we found that all the saddle-point

- properties of Figs. 4-7 werereproduced with -amazing acéufacy. . For

example, over the entire range of x from 0 to 1.0, the fission barriers .=

calculated in this generalization are accurate to within one-half an -
A MeV. This is illustrated by the comparisons of saddle-point properties
made in Figs. 8-11. | N o
One would expect the two-spheroid model (without the conicoidal
neck) to adequately describe those saddle-point properties not de-
pendent upon details of the neck. The theory_, we develop‘depen'ds in

12,
Formulae for calculating the potent1a1 energy of such 2 System

are given in Appendix B.3 of Ref. 2.



the saddle pomt—m part1cu1ar, upon the second der1vat1ves of the

o potent1a1 energy evaluated at the saddle point (the stiffness constants)

s presence or absence of a neck. “We would thus expect the phenomena

'-.. to be described by the model.

‘the estimates to be fair

‘and yet certainly not exact.

2k .

h .".'__pa.rt upon the variation of the potent1a1 energy in the neighborhood of

B The increase in potent:.al energy arising from. changes in'the fractional o

may be expected to be .. ..
mass and in the length of the fragments' axes /. ¥fected ittle by-the . .~

_associated with the second derivatives with respect to fractional mass .. -

© . and semiSymrhetry axes—the distributions in mass, total translational . -: .

kinetic energy, and excitation energies—to be described moderately

well by the two- spheroid model. On the other hand, the crudeness of

i .- the neck makes the reliability of the stiffness consta.nts for the a.ngula.r Lo

coordinates.less certain. We therefore do not have a clear idea of

how well we should expect the distributions in fragment angular mo- . o

'menta (associated with the angular-coordinate stiffness.constants) |

To summarize, we see that the two-spheroid model is in-

" adequate in two important respects: First of all, it cannot be relia.bly'i.l'
.- used for x 2 0.67, where most of the experimental information on fis~ . ™
" sion lies. Secondly, even for x .£0.67,it. does not reproduce well

those saddle- -point properties associated with the neck-—m part1cu1a.r,

the fission barrier and the fission stiffness consta.nt. It is thus un-

. suitable even in this range of x for discussing quantities dependent

- upon these properties, such as the probability of fission, On the

other hand, the two-spheroid model is expected to be useful for esti- o

‘mating the d:.stnbutxons in mass, total translational kinetic energy,

excitation energies, a.nd/é.rPguI‘%.? thomenta of the fragments at infinity. =

.The accuracy of the estimated dxstnbutzons in angular momenta is

uncertain. As regards the remammg distributions,’ we would expect

J'.

‘=Dbetter than order of magmtude— o




- 25.

1. DYNAMICS

We considered in the last section one part of the‘Hamiltonian.
for the ‘syster'n: . the potential energy; we now turn our attention to '_ _‘
the other part: the kinetic energy. Although the potential energy of
a _liouid drop is uniquely determined as soon as the 'drop' s boundary
" is given, the kinetic energy, on the cther hand, is not uniquely deter- .

-mined by spec1£y1ng the time rate of change of the boundary. One
must in addition make some statement regarding the nature of the

“hydrodynamic flow of the fluid inside the drop, i.e., the curl (rotation

or vorticity) in the system must be specified. A thorough treatment
of the liquid-drop model would thus require that one study the system
for various types of hydrodynamic flow, consistent with one and the
same motion of the boim,dary.

5 We work out the o.etails of the theory for the case of an in- I
. compressible fluid in which vibrations of a fragment are treated as S
irrotational, whereas rotations are treated as if the fragment were a

_rigid body. This means that the hydrodynamic flow within each frag-

‘ment is taken to be a superposition of an irrotational flow and a .ﬂow
corresponding to a uniform rotation; i.e., the curl within each frag-
ment is equal to twice the angular-veloeity vector (which is constant
throughout the fragment). [For a brief discussion of such composite
types of (ﬂow, see Lamb( k). ] .

The type of hydrodynamic flow that we have chosen to condider
is, of course, only one of several types for which the theory should
be worked out. - For example, the case in which the flow is completely
irrotational (a.s regards both vibrations and rotations), and tI%e case

The

actual situation in nuclei is presumably intermediate between these

~in which the drop is very viscous should also be considered.

- limiting cases,

13 .

When we discuss the solutions to the eq\xations of motion we will,
whenever possible, also indicate the result for the case in which the
fragments. are infinitely viscous, and would therefore separate to.

infinity without oscillating. ) : . O
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Lr.

- It is of mterest to have some a priori opinion as to how well
,.the type of flow we are considering represents real nuclei. The de-
duction of vibrational inertial parameters and moments of inertia for

nuclei in their ground states has been extensively considered. (See,’

| .for example, Ref. 45.) Estimates of the vibrational inertial--
parameters corresponding to quadrupole vibrations of even-even
nuclei about spherical equilibrium shapes indicate thaf the actual

- .values are considerably greatet than the values corresponding to

irrotational flow(145). These values, however, are strongly influenced

by the effects of single-particle shell structure on ground-~state nuclei, u

. For the vibrations of interest in fission—small vibrations of the system

about a deformed saddle-point shape, and relatively large vibratiphs
. ~of the fragments about their centers following scission—the effects of
' single particles would be: expected to be less important. , _ 1
Estimates of moments of inertia corresponding to rotations - i
of deformed even-even nuclei indicate that the actuallvalues are
- greater than the values corresponding to irrotational. flow, and less _
than the values corresponding to rigid-body rotation. As the de- '
formation of the nuclear equilibrium configuration i‘ncreases,‘the
ratio of the observed moment .of inertia to the rigid-body value in- -
creases({@) . This would imply that for the relatively large fragment B
-deformations encountered in fission the fragment moments of inertia
should not be too far from their rigid-body values.
In addition, the fragments in fission will, in general, possess
some internal exeitation, and, as we will discover, are typically h
rotating with several h units of angulaf momentumn. One would ex-_

pect each of these effects to increase the moment of 1nert1a. (An , /

argument for the approach of the momen‘c of inertia to the rigid-body
' value at high spins is, d:x.scussed in Ref. 46. ). ' ' '

~
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. In.our d;;namical study we shall be co-'ncernedAwith setting up

and sélving the _classica.l equations of motion of the 5y5',tem.:L "This v
. will ﬁlake it possible to trace out dynami‘.callir thé' motion of the system ‘v o
from some given initial configuration near the saddle point to the final
- configuration of two fragments at infinity. The state of motion at _ B

infinity will correspond directly to observable characteristics of fis- - . =

sion fragments —the speed of separation of fragment centers will cor=~

.respond to their translatmna.l kinetic energies, the vibrations about S

their centers of mass W111 correspond to their excitation

energies, and the rotatlons about their centers of mass will cor-

' respdnd to their angular momenta. Out of the dynamicé.l’ study will

”":,,come, then, the relationship between the initiél configuration of the .
B system near the saddle point and the observable quantities of interest g
.at infinity.' This relatioﬁship becomes extremely simple when the = <

' dev1at10ns of the initial configuration from the saddle point are small.t :

RAE

.\' -

‘ (In practlce, this turns out to be a good approximation. )

For the case in which the saddle point consists of two tangent

spheroids (x 50.80), we will find a simple equation that expresses

.very accurately the total translational kinetic energy E of the two

fragments at infinity in terms of the initial coordinates and momenta.

Uy .
The use of classical equations of motion for discussing the separa- -

tion of the fragments to infinity may be partially justified on the
grounds that a short distance from the saddle point the de Broglie~'
wavelength for translational motion has become relatively small,
that the vibrations about each_fra.gmganti s center of -mass involve 5

several quanta of energy, and that the angular momentum of each

"fragment is typically several H units in magnitude,
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The value of E will be seen to depend primarily upon the initial

- distance between the fragment centers and the product of their charges.. - |

Since the fractional mass does not change after division into

two fragments, the fractional mass .U at infinity will equal its original . |

value at the saddle point. : o
The excitation energy of an individual fregment at infinity will

be seen to depend primarily upon its initial elongation.‘ We will content .
ourselves with establishing an equation for the excitation energy at .
infinity that is valid to first order in the small deviations of the con-
figuration from its saddle-point shape. |

| We will find that the angular momentum of an individual frag- '
ment at infinity depends primarily upon the initial angular mornentum

it possessed near the saddle point. Fragments that are infinitely vis- "

- cous and therefore separate without oscillating are capable of acquirifxg

some additional angular momentum by virtue of the.torque exerted byi‘“
1

one fragment on the other through the electrostatic interaction. = The

amount of such induced angular momentum depends primarily upon the .

fragment's initial angle 9 and upon its initial angular momentum

Pg - Fragments that oscilla.te with irrotational flow as they separate

acquire very little angular momentum by this mechanism because the

torque deereases as the symmetry axis shortens, and even changes

'sign as the spheroid changes from prolate to oblate. We will establish

an equation for the angular momentum at infinity that is valid to first
order in the initial coordinates and momenta, in analogy to what we did ‘

for the excitation energy.

15

The angular momentum acquired. by a r1g1d spheroid moving in

~ the electrostatic .field of a sphere has been discussed by Hoffman! (1‘7)
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A K1net1c Energy of the System

o We shall in this subsectlon concern ourselves W1th the k1net1c
energy of the system. . However, let us first Lo
consider another 51mphf1cat10n arising from the smallness of the

initial deviations from the saddle point.

Because—as regards angular momenta-—we are working only

. ' to first order in the initial coordinates and momenta, it is sufficient

.when discussing the separation of the fragments to infinity to consider
" explicitly only configurations in which the symmetry axes are coplé.nar,v h
and in which the spheroids are not spinning about their symmetry axes. A
" This is true because of the symmetries of the saddle-point shape.. Con-
"'sider‘, say,; the x component of angular ‘mofnentum of a,fragment at »
, infinity. From'symmetr'y, it will have no linear dependence upon an
g ~initial rotation of either fragndent about its .y or =z axis. Similarlyi,y
it will not depend linearly upon the initial - y or 2z components of A
‘angular momentum of either fragment. Analogous etatement.slheld : |
for the fragment's y. and z components of angular momentum at
~infinity. Indeed, 'to first order, the fragment's z component of
angulér momentum at infinity is equal to its initial z component of
angular momentum (near the saddle point). This means, then, that
to first order in the initial coordinates and momenta, the result for
" the general noncoplanar configuration with rotations about the spher01ds' '
symmetry axes is simply a superposition of the results for two special
cases: (a) coplanar symmetry axes with no rotations about them,.and
(b) rotations about collinear symmetry axes, for whieh we know the
result. - . | . ' ‘

For the sake of clarity the exposition throughout this subsection
- will be as if the symmetry axes of the spheroids were coplanar and
. there were no retetions about them. Thus the difference ¢ = ¢1-¢2 '
between the azimuthal angles of the symmetry axes (see Fig. 2) is
taken to be zero. The results obtained by considering coplanar
spheroids with no rotations about their symmet:ylaxes..will be sub-

sequently generalized to the original case of two-spheroid configurations
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‘described by nine degrees of freedom (in a center-of-mass system with

~ - 7 zero total angular momentum). It must be borne in mind, however, that

if one desired to discuss the solutions to a higher order than linear

"in the initiél angles and_their conjugate momenta, then it would be

necessary to set up and solve the equations of motion for the general SRR

e

J nonc0planar.configuration with rotations about the spheroids' symmetry axes.
As we found to be true with the potential energy, the kinetio
' energy of-the,system is simpler when the fragments are separated than

when they are overlapping. When the fragments are separated the total " .

~ kinetic enefg& of the system is équal to the kinetic energy of the centers ..

.of mass of the two fragments, plus the kinetic energy of motion of each o

- fragment relative to its own center of mass. The kinetic energy of aﬂ '

. fragment relative to its center of mass is equal to an integral over itsf'

:'volume of one-half the mass density times.the.square of the 1ocal fluid,qu |

'veloc1ty (relatlve to its center of mass). For the type of flow we are’
'sconsiderlng, the integration can be performed exactly (see Appendlx c. l
of Ref. 2), yieldlnc the sum of two terms: the kinetic energy of .
vibration of the fragment,,and the kinetic energy of rotation of fhe;

. fragment. S

In general, the system's total kinetlc energy is ; function o; ;
.the time rate of change of the angular coordinate e that specifies

the orientation in space of the system as a wholev(for coplanar fragmeﬁts):
However, for the case of a system with zero total angular momentum, fﬁe
time rate of change of @ ,is determined 1in terms of the time rates of :.
change of 6, and ©_ . The result obtalned for the system s total :

1. 2
;'klnetic energy is (see Sectlon III.A of Ref. 2 for details)

=y

A
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. We denote by Pé the momentum conjugate'to'the'cdordinate L, etc.

R The quantity M, is the redﬁced»mass of the two fragments, given by

A

M, = U(1 - UM, ' o . : R : B (8a) , ;

ﬁ.:the"qpantity Mc ., say, is the vibrational effective mass of fragment 1, .
N , ) | . e _

 given by (k)

a . R '
| 1 1 3 R S - T NN
M = 35 <l+ 2 2>UMO = 5\t*z 3 /Mo (B0 .
: 1 cq ¢l S

- and M, is the rigid-body moment of inertia of fragment 1 for S
. l "4

rotations about:a~transverseagxisg4givenxbxf;gmnfiam‘;r Lo T Snlnyll

~

. : o . Lo

.- o _ 1,2 2 1 2 0. . ‘ o

o Mo, = Fleyra) Uy - 5<°1 e >UMO o (8e)
The .transverse semiaxis:of fragment -1 is ‘denoted - i ety

;"'-_ . by a;- We note that for the separated case there is no term in the

kinetic energy involving the momentum conjugate to the fractional volume’

U ; this is because once the drop has split‘into two fréments, the -

fractional volume U no longer changes with tiﬁé:ﬁ; o
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‘.

The Hanlltonlan for the system is then

" where gjf is given by (7), and ]/> by (6b).

When the fragments overlap. the kinetic energy of the system*-A;'., ,

is much more difficult to éalculate. Ve then specialize, as we did for

#7-:thé potential energy, to the restricted case of fragments that are 4

l symmetrical. ‘The kinetlc energy of the system can then be calculated""

approximately by using the method of Werner and Wheeler (148) (see

Appendix C.2 of Ref. 2). A clooed expression is obtained for the kinetic

energy as a function of the coordinates £ and ¢, and their time

. Gerivatives £ and ¢ . This method yields the exact result for two

' limiting cases: (l)‘when the system consists of two separated spheroids, .

and (2) for spheroidal distortions when the system consists of a single
spheroid. The accuraéy of the‘method for the general overlapping case is '
notknownj However, for the'lower'values of ‘X, where the saddlequinf |
consists of two tangent sphéroids, this approximafe_mefhdd is never

dsed, since we focus attention on the system only'from'the saddle point

to infinity.

B. Transformation to Normal Coordinates

A fundamental aspect of the dynamical dlscussion of any

phy31cal system is the question of small oscillations about the positlons :, '
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of equilibrium. In the normal fission pfoﬁes’s there'a.re three equili-’ ‘, l
brium c'ohfigurations: (1) the i.nitial sphere, (2) the saddle point, .
and (3) the two spherical fragments at infinity. Both the initial sphere
' and the two spherical fragments at infinity are positi'ons of stable

. equilibrium. The small oscillations about each of these spherical
shapes can be readily discussed by expanding the drop's radius vector
' in spherical harmonics: The motion of the drop is a.superposition of
simple harmonic oscillations of different frequencies corresponding
to the various spherical-harmonic distortions. The question of small
- oscillations about the remaining equilibrium position-the unstable con-
- figuration at the saddle point—will now; be considered. (‘
The first step in the discussion of the small oscillations about .
" the saddle point is to transform from the original coordinate system to
a system ‘of normal coordmates - In terms of the normal coordinates‘l
. and their conjugate momenta both the potential energy and the k1net1c .
.energy, are sunulta.neously diagonalized at the saddle point; i.e.,
. there appear throughA second order no cross terms of the form CyCoe

for example. The Hamiltonian fot the system thus separates into a

- sum of terms, each involving only a single coordinate and its.con-

jugate momentum. This mearsphysically that the motion of the system
~ in the vicinity of the saddle point separates into several independent
modes thati. may bé discussed separately. -

We consider first the case in which the saddle point consists of
- two tangent spheroids. The normal-coordinate transformation for this
case is not completely straightforward because of the cusp in the énergy _
surface at the saddle point. The transformation to normal coordinates
can neverthelesé be performed by regarding the cusp as .tf;e limiting
_case of a regular (rounded) barrier. As the barrier becomes .inﬁnitelyi

sharp, all but one of the normal coordinates come to lie in the subspace ..

16.

See the discussion of normal coordinates in a.ny classmal-f.

mechanics textbook, for exa.mple, Goldstem (h9)
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of tbuching sphe_roids‘. In this subspace, the potential energy has no ~ -~
irregularities. The remaining normal mode of motion—the fission o
mode—retains a well-defined direction. The physical meaning of this
direction is that it represents the initial mode of motion that would be
- acquired by the system if started with an arbitrary infinitesimal dis-
. placement from the saddle'point. '

For the discussion of the normal modes we again treat the
vv'more'general case in which we consider the three angular degrees of

freedom of each spheroid; i.é., the spheroids are permitted to rotate

“about their symmetry axes, and the symmetry axes are not required = ’

to lie in the same plane. (We are still considering a system with zero- -
“total angular-'momentum; this will introduce one condition on these
. six angular coordinates.) It is convenient in discussing small-angle
oscillations to lowest oraer to use a set of angular coprdinates defin?fl K
"~ more symmetrically with respect to the coordinate axes than the Eule",_r‘ -
angles. Wg denote by eix .and eiy the angles of.rotation of frag-.

ment 1 away from the z, axis, the rotations being.about the x,

1 ,
and vy, axes, respectively. The angle of rotation of spheroid 1 about

_ the z, axis is denoted by 912. The angles sz, OZy' and GZz are

1

defined in an analogous manner with respect to coordinate system 2.
We expand the potential energy in the subspace of touching

‘spherdidé about the saddle point, retaining terms through second

order in the coordinates. Let us denote by Kc c. ? for example, the -
' B o '

~second partial derivative in this subspace of the pét'ential enérgy.with
respect to c, and c,, evaluated at the saddle point. (Since the .
saddle point is a position of equilibrium, all first derivatives are zero.)
In addition to the usual equalities between the stiffness constants (the
K's) obtained by interchanging the order of differentiation, symmetry
-considerations at the saddle point yield the following ‘eqﬁali'ties be- |

tween the nonzero stiffness constants:
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In _Y-a.'ddi'{i'on,z Wi_th the exception of KUU a.nd K ' c

K

| 52]:.1 .

S 8U=U-U

, a.11 the remammg
€412

B ‘,l‘;

. stiffness Cons_taxits are seen from symmetry to be zero. We are left.;-\ L S

L _then with only six independent stiffness constants':

UK, K, o, K. , K _andKy 5 . -
UU" Teyey’ 0,0, TUSy" Teyep T T8

| We denote the value of a coordinate at the saddle point by a ! s
superscrlpt 0, and the dlfference between a coordinate and its saddle- ;.".j

point value oy a 6 precedlng the coordlnate, for example

O: 1.-. Zc(i) , S

O=U-b..‘
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The coordinate £, which in this subspace is the distance b_ﬂe- )
. tween the centers of the touching sPheroids; is ch;>sen as the depend- E
ent variable; it is té'lfu%eef%pxéissed in terms of the other c':OOrdinates‘; -
(see Appendix D.l/ To second order, the potential energy of the

" system in the vicinity of the saddle point in this subsi:ace can be

~ written in matrix form as

Y- P = 5 (8Ubc, bc, 60, 60, 86, 86.) "

Kyu ;KUéZ , .KUcé 6 o o 0 | ‘8,U
-KUCZ Y Kc1c2 0 0 0 0 6C'J.
Kye, " Kee, Hepe, 0 0 0 ‘ 0 sc,

0 0 0 K90, Ko,0, ° 0 5eix."
0 0 o Kegez Kaie1 o . o

0 0 0 o 0 K6161 Ke-162

0 0 0 0 0 39162 1«:919.1

“ . . s - . . ’ l
The kinetic energy in the neighborhood of. the saddle point,”

to second order in the coordinates and velocities (or momenta), is

.17 When discussing the kinetic energy, we are :hot restricted to the

su‘:;space of touching spheroids:
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.obtained by evaluating at the saddle point the effective masses .

0 (8) of ourvprevibus expression” for & [Eq. (7)] andlgeneralizing ;ﬁ.,_:ﬂv '

" . the modes, which we now enumerate:

" the result to include general rotations of the spheroids about the;jaé:ff
X, y, and z. axes (rather than in a plane). |
| Before listing the normal-coordinate trﬁnsformation,formulae;'
'llet us describe physically the normal modes of oscillation about the‘?v:'v
_Hsaddle-poiht configuration. We have fried'to descripfiveij name éach ;3 ‘.:
'.mode; the corresponding normal co@rdinété is designated.by the'firéﬁiff;'3;'
letter of the name. Figure 12 has'been preparéd to aid in viéualiziﬁg:;:i 
_ B o oo ’q'._"-'
(a) ‘Fission: This normal mode is distinguished from the others '
: jinﬁtha% it is always unstable--the potential eﬁergy decreases rather ;;:f.
.than increases as we move'away from the saddle point. pecéuse of‘thé'v"
cusp in the potential eﬁergy the stiffness constant for this mode is,
not defiﬁed; it would be negative for a saddle point in which there is‘ |
. no cusp. | The motion of the system is a simultanéous sepéra?ion of
'the centers of the spheroids and.a decrease in their elongétions,,ogl
vice versa. a |
(b) Mass-asymmetry: ' Aévwill be discussed later,:this n§rmal _'.i(
mode is stable for X greater than Xpg (éqpél o O;h? in the two;'i;:
spberoid approximation), and unstable_for X iless tpan_,xBG; The} ;1g'
"mqtion here is an ihcfease'in both'the mass‘(yoluméj and elongatioﬁ

- of one spheroidzand a decrease in the mass and elongation of the other
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spheroid, such that the distance between spheroid cent.ers' (as'well -
as the total lengfh of the drop) is constant. . _

(c) Stretching: The elongation of each spheroid increases (or de-: -
.creases) by the same amount. ‘ ,

(d) Dlstortlon—asymmetry The elongation of one spheroid 1ncreases,
and the elonga’clon of the other spheroid decreases; the distance be-’
tween spheroid ce.nters (as well as the total length of the drop) re- v
-mains constant. A |

(e} Bending: This mode is doubly degenerate (occurs twice), cor-
responding to rotations in the x-z piane and the y-z plane. For a
given plane, one of the spheroids rotates clockwise about an axis
through its center perpendicular to the plane, and the other counter-

_ clockv.vise throug'h the same angle; the spheroids remain touching.
(£) Wriggiing: This mode is also doubly degenerate, correspondingv
to rotations in the x-z ahd y-z planes. . For a given plane, both H
spheroids rotate through the same angle either clockwise or counter-'
clockwise about axes through thelr centers perpendicular to the plane;-
| they remain touching. The entire system rotates in the opposite di-
‘rec_tion, ensuring conservatien of the x and y components of total
ahgular momentum.

(g) Twisting: One of the spheroids rotates about its symmetry axis
clockwise and the other counterclockwise through the same angle.

The restoring force (st1ffness constant) for this mode is zero, re- '
sulting in a uniform, rather than oscillatory, rotation. '

(h) Axial-rotation: This mode would correspond to a uniform rotation
- of the spheroids about their symmetry axes through the same angle in
the same direction. Conservation of the z component of total angular
‘momentum means that this mode is not excited.

The linear transformation that takes us from the or1g1na.1 co-’

ordinates to the normal coordmates may be wr1tten as .
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- where the quantity B is defined by

B =2K. [(K - K

~ We will see later (Fig. 13) that KUc is always positive and that - -

1

, is always greater than K " c '; hence, B is always positive. =

€12

~—
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These formﬁlae,may be verified by explicitly demonétrating that both & .. -

V" snd & are diagonaliied in terms of the new coordinates and their_'jv:j”

time derivatives (or conjugate momenta).}9 The'ndrﬁal coofdinﬁtesrare
-ail ideﬁtically zero at the.saddle point.ﬂ o

In terms of the normalvcoordinateé and their conjﬁgate momenta:'ﬁ'
tgé Hamiltonian (with respect to the saddle pbint) in the'subspage o

of touching spheroids is given to second order by (the axial-rotation -

_kinetic-energy term has beén dropped)

| P, * P, | 3
+ (b2 + b2) + —EE-——EX 1
Kbx Yy M J
i -
: p2+p2 21 .
+ K (w2 + w2) + —:Ei———:ﬁz' + ‘EE | ‘ ‘.(i ) o
. L WX y M Mt o ',~"‘3' o

The normal-coordinate stiffness constants are expressed in terms of -7 -

. the originél stiffness constants by

Km. Ky - BKUc2 2

’

'Ks =" Kc c + K c 7
1°1 €1%

19 . S .
‘_In verifying that é:/ is diagonal in terms of the time derivatives

of the normal coordinates, note that U is zero at the saddle point.
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' . o . SR ' o
The quantities M and M 0 are the values of M - and M

v [see Eq. (8)], respectively, evaluated at the saddle point; and

'MG © is the rigid-body moment of inertia of spheroid 1 for rotabions
- Tz S

about the symmetry axis, evaluated at the saddle_boint:

3
| . 2 R
0 T 1,0.2 1.{ %o
M = = = = —= .
Mg~ o= s (ay) My = LT )N
1z , : 1

(In the first. form-of the eguation for MW‘, the second term ﬁithid‘T

\; the'brackeﬁs arises physically from the requirement that the total'}S,

angular momentum be zero.) . S _”.f-ﬁ

. The fredpency for.,a particular normal mode is given by the‘;:*

équareiroot of the abprOpriaté stiffness constant divided‘by the .
"appropriate mass. There are four well-defined nonzefo fr?qdehciés
(the gending and wriggling frequencies are, of course, doubly
'degenerate): ws, wd,. wb, and. ww'. Siﬁce the (néga@iyg) y';,?ﬁ{
fission ;tiffhess éonstant K, -1s not defined, the (imaginary) .fﬁ.?

frequency e is also not defined. It is showm in_Appendiﬁ'D.a_df»

Ref. 2 that, because the drop's minimum radius is zero, the mass- = . -

Vo



. zero, because the stiffness constant K, is zero.

U(R_._=2¢

b3

asymmetry effective mass M,, is infinite. The corresponding fre-

. quency ® is therefore zero. ' The twisting frequency w is also - =

A straightforward numerical method was used to locate the -
4' saddle point and calculate the stiffness constants (see Appendix G of Ref. 2)
- The results are presented as functions of fissionability parameter :
from 0 to .0.80 in a series of graphs. The value of c? défining
the saddle-point shape (when the saddle point consists of two tangent o
B Spher01ds) can be obtained from the R max curve in Fig. 7
nax . 1) The st1ffness constants for the original coordmate
system are given.in. Flg 13.
The normal-coordinate stiffness conétants are shown in Fig. ! l
"14. Four of these constants are always positive; the mass- aSymmetry
‘stiffness constant Km changes signat x = Xpg = 0.47. .This value
of x is the two-spheroid approximation to the true value of 0.394. ‘

" where the Businaro-Gallone family of S.Symmetric equilibrium shapes

bifurcates from the family of symmetric equilibrium shapes. (}5; l_ﬁj).

80 . . .
B ‘This result states physically that the kinetic energy associated with .~

- a finite flux of matter through an aperature of infinitesimal radius is
infinite, This follows from the fact that the velocity of flow through

_the aperture is. iﬁﬁnite. and that the kinetic energy depends. upon the
product of the amount of matter and the square of the velocity. |
2k The reason for the vanishing of w_ is that in the two-spheroid

" model the neck radius of the saddle-point shape is zero. For the
exact saddle point the ne'ck.radius is not zero but is8 small, and Awm

- is not zero but is small in comparison with the other frequencies,

22 . The two- sphermd model thus predicts-this bxfurcatlon point at a

value of x .that is somewhat too hlgh, in analogy to its predmtxon of -

a transition region at x = 0. 80, when the true transxtxon region occurs.

~at x =0. 67
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For x > XpG .the symmetric équilibriumvshapes are stable against
changes in asymmetry, and for x < X5 G they are unstable. Thus,
for x > XpG the symmetric equilibrium shapes are unstable with.
.respect to displacements along only one normal coordinate (the fission -
' coofdiﬁate), and for x < XpG they are unstable with respect to two
(the fission coordinate and the mass-~-asymmetry coordinate). This
.means phy‘sically that for x > XBpG the equilibrium configuration
defines a barrier energy, whereas for x < xB'G the equilibrium con~ -
figuration is at the "top of a hill" and therefore does not define a
barrier energy.(']__j,f_lﬁ),

The effective masses are shown in Fig. 15. | The frequencies * i
for the four nonzero modes of oscillation are given in Fig. 16 in ‘
- liquid-drop units; In Fig. 17 t.he corresponding quantum energies
(h times the freciuencies)\“‘are given in units of MeV for nuclei along

" the line of beta stability..(_ﬁQ).For the region in which we will be most “
interested (x = 0.67), the stretching and bendiri_g quantum energies are |
éach about 1 MeV, the distortion-asymmetry quantum energy is about
1.5 MeV, and the wriggling quantum energy 1s about 2 MeV, |

For values of x 2> 0.80, where the saddle point is represented
by overlapping spheroids, we again restrict purseives to the case of -
symmetrical fragments, specified by the two coordinates £ and c.
Since therie is no cusp in the potential energy at the saddle point, the
normal-coordinate transformation for this case is straightfc;rward.
There result two normal modes: a stable oscillation (stretching) and
-an unstable motion in the fission direction. We shall not present here

the numerical results obtained for the frequencies of the normal modes,

> .
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C. Solution of Eqguations of Motion

We consider in this subseétionhtpe solution of Hamilton's
_classical equations of motion for the system. For given'initia;

. conditions, solution of these equations gives the subsequent motion -

s

”sto use. One could, for example, study the behavior ofnthe system by . .
'*,alwsys starting with the original sphers,Vgiving it different sets 6f.x,f ;
initial_ﬁomenta. Because most of this &ork will be concerned with_l
l.tracing out tﬁe,consequsnces of assuming statistical equilibrium.at %ﬁe sf ;if;,

saddle point (see Section IV); ve examine the solut;ons for initial T
fconditions that are specified in the neigﬁbofhood of the saddie poiﬁf{-”;”
We wiil cbnsider first tﬁs case in which the saddlevpoint consists of{L

two tangent spheroids (x,g O.80);_then, in the regionvﬁrom the saddle¥  >
-point to infisity, the system consists of two ssparated spheroids.

We saw from the Hamiltonian (15).tha£-four of the normal modes

at the saddle point-—stretching, distortion-asymmetr&, bending, and . o
| wriggling—are simply bounded harmonic oscillations. The mass-asymmstry
normal moﬁe, on the other hand, was seen to be stable for % > Xpa zand |
unstable for x <'XBG' Since the effective mass for this mode is infinite,
the mass-asymmetry coordinate changes_with time infinitely slowly at the |
‘ saddle point. " Because the'restoring force fof the twisting mode is zero,
this mode consists of uﬁiform rotations ofbthe fragme;ts._ |

The remaining normal mode—the fission mode~Ls -always gnstablei

" taking us out of the subspace.of toﬁchihg sphersids..'It is motion is
" the (positive) fission direction that causesvths two fragmenﬁs fo start

their separation to infinity. Attention is first focused on the system

at the critical moment when it is passing over the saddle .
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| point; "i.e., the time is chosen to be z'é'ro_when the fission coordinate = |
f is zero. Our solutions to the equations of motion will.then depend _';
. upon the valués of the remaining normal coordinates 'and momenta
~when f = O ‘ '
The e_quatioins of motion themselves are obtained for the sepa- -
‘rated case by di-fferentiating the Hamiltonian (9 ) with respect to the
coordinates and momenta. For the case of coplanar symmetry axes _
with no rotations of the spheroids about them,l"one obtains a system of ten -
/E%;qg%ggggggs differential equations, which are listed in Appendix C.1 of Ref. 2..
. These ‘equatioﬁs are given in terms of the original coordinates, since .
~ _the normal c_:bordinates ‘have meaning as such only in the vicinity of |
the saddle point. ThJesaiaetIfogg is. solved numerically for given .
~initial conditions, deterrping- L, Cy» Coo 61, and 62, along with the.ir
conjugate momenta, as functions of time. By carrying.a solution out

i
. to infinity (in practice, to £ = 25 RO), one finds the values at infinity l

of the quantities of interest. A summary of the numerical procedure g

is given in Appendix G. of Ref. 2. |

_ Let us now examine the qualitative features of the solutions

for various initial conditions. We have indicated in. Fig. 3, on. each
.potential~energy map in the range 0.2 <x <0.8 , the solution cor-
- responding to starting from rest at the saddle point. . For each case

the point'is along the path are equally spaced in time at intervals. of ‘

0.4 T, [ see Eq. (2) for the value of TOI. The motion of the system
- is a fairly rapid oscillation of the fragments, superimposed on a'sepa~ . .-
-ration of their centers. o ‘v ) , ' '

St'a.rtin'g the system from the saddle-point cor’xﬁguration cor-

'v;esponds to the case in which all normal coordinates are initially = o . -

_zero. When a particular normal coordinate is initially nonzero, the

solution is altered in a manner characteristic - of that normal co-. - '
- ordinate: A ‘ | ' |
(a) Mass-asymmetry: The fragment with greater volume and larger .

semisymmetry axis oscillates with a ,lé.rgef amplitude but with a

.smaller frequency than the other fragment.
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(b) Stretching: When s is positive (correspondihg to
fragments that are initially more elongated than at the saddle’

: point), both fragments oscillate with greater amplitude'and

separate more slowly. Conversély, for negative s , the fragments

oscillate with léés amplitude and separate more fapidly. _
| (¢) Distortion-asymmetry: The fragment Qitp the larger"_ i
‘?semiéymmetqraﬁisoscillafes with greater amplitude than the..
© . other fragment. B |
(d) Bending: In a bent configuration, each fragment

experiences a torque from the electrostatic field, result;ng
in an induced.angular momentum. One fragment rotates clockwise
and the other counterclockwise. The period of rotation is much
gﬁgater than the pgriod of oscillation. |

_(e) Wriggling: Both fragments rotate clockwiée, (or
counterclockwise) simultaneously. .(The relative orbital -
angular momentum of the two,ffagments is equal and’opposiﬁe-

to the angular momenta of the individual fragmeﬂts,) As with
rthé bent éasé, the fragment; oscillate mény times during a

single period of rotation.



. The éorresbonding sblutions then consist of a superposition of

oscillating fairly rapldly and rotating rather slowly.

.-.h‘8— h

In general, the initial conditions include several .

nonzero coordinates, and in addition several nonzero momenta.

the characteristic features arising from each normal coordinate,

»modified by the effects df the initial momenta. The motion of

the system is thus in general a separation of the two fragments

from the saddle point to 1nfinity, with each fragment simultaneously

What is desired is a relationship between the initial
conditions and the observable properties of fission fragments
at infinity. From this we will be ablé to obtain, by perfofming :
suitable integrations over probability.distributioAs for the |
initial conditions (see Section IV), probability distributions

|
for the observable quantities of interest. ZEach quantity of
interest deéends strongly upon only a few_of the ipitial éoordinatesl
and momenta, gnd,very weakly upon the remaining oﬁes.v Oﬁr approach ‘

will consist of neglecting the weak dependences of each qpantity

of interest on most of the initial conditions.

— ]
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- from the solutions to the equations of motion, as described in
-Appendix G of Ref. 2.

" certain distance and moving with relative momentum Py -

tional mass, since after scission this coordinate does not change W1th

49

- From a con51derat10n of the numer1ca1 solutions correspondmg

.to a large number of comblnatzons of initial conditions, we have de-

termined simple approximate equations expressing the quantities of -

- interest in terms of the initial coordinates and momenta. The equations

are, ih general, valid for small deviations of the coordinates from the

saddle point and for small values of the initial momenta. However,. we

" were able to find for the total translational kinetic energy an equation

that works well even for moderately large deviations from the saddle "

" point. [The accuracy of each equation can be seen from Table E.I (in Appendix E)

- _of Ref. 2:»,4 vhére there -are listed forty-four sets of initial conditions

for a particular value of x, along with the values for the quantities of

interest determined exactly by solving the equations of motion and de-

) termined approximately from the equations l_isted,below. ] For.a given

.x the constants appearing in each equation a;’-é calculated numerically

{‘.

. The equation established for the translatlonal k1net1c energy E :

_of both fragments at.infinity is

g= AUWL-U)E | Py
B 1+ as ZM.E ,
-2
t ' 0 .
' . [2M_ " p
NYCEE e B-GBVAY (e SR S IO
1+ as ¥ M. M, Ms '

0.f

where EO and a are constants (for a given x). The second result

is simply the first result expressed in terms. of the normal coordinates

" and momenta. ThlS equation can be interpreted phys:.cally as giving

the final kinetic energy that would result from two effective point

charges of relative strengths U and (1 - U) initially separated a

'The fractional mass U at infinity is equal to the initial frac- .

time. Thus, the fra.ctmnal mass at infinity is related to the mass-: . .

.asymmetry normal coordinate m by the exact equation
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U= é;m.' o . 4 (5 -

The relationship (14) for E reproduces the exact result

extremely well—more accurately than do the equations we Sgtablished
2

for the individual excitation energies and angular momenta. . Foi;'

 these quantities we retain only terms linear in the more important”

‘.initial' coordinates and morn:c-nta:eu
. 0 | . . | :
Xi"X1+X1,s_s+Xi,ddfxi,mm_” o . .(16a)_‘ :
er",xi.J’Xi,s?‘Xi,dd'xi,;’nm{ R - (16p)
L1x = Li.pb Py * Li,p P, * Li,b bx-+ Li,.w W s (17a)
X-'. w x . .
LZx‘=- Li.Pb Py +L1,p Py, -Li,bbx+L1,wwx" (17b) |
. : X w X . _ \
L, =1L p, +L, p_ +L, b +L, _w , (17¢)
1 1, b 1, w 1,b 1, w . : _
Y Py Py Py "Wy Y. oo
L, =-L p. +L, p_ -L,.b *L, _w ., (17d)
2y 1,pb by 1,pW WY L,bh 'y Ti,w y ! .
L,,=Pg ={1/A2)(p, *+p,), | (17e).
i v =z . . . .
Loz =Po, - 4/ A2) (=p, + p,) > N 6

‘There is currently no experimental information on excitation
energies and angular momenta for the fission of elements lighter
than radium. We content ourselves at.this time with treating these

quantities to a lower order than the translational kinetic energy.

It should be recalled that the excitation energy calculated here is.

 the energy associated with the collective vibrations and deformations

of the fragments. Any internal excitation energy that a fragment has
at the moment of division would be added to the excitation energy we

calculate, to obtain the final total excitation energy.
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-where the quantities Xi’ Xi,s’ Xi,d"xi m’ L1 pb, Li'p , L
"and L, _ are cohsfants (for a given x). We are denotlng by X

1, w
.for example, the partial derlvatlve of X

ib’

1s

1 W1th respect to s, evaluated

at the saddle point. Symmetry arguments have been used to relate the

' constants in the equation for X, to those in the equation for X,..

- Similarly, .the constants in the equations for Li , LZ ,» L., , and LZY

are>related' by symmetry. The equations for L1z and LZ1Y express
the approximate conservation of the z components of angular mo-
mentum, since to first order in'the angles the z components of the - . ‘
torque are zero. Each of the rerhaining equations also has a simple .
physical significance,. which we will discuss when we present graphs v
~of the constants appearing in them.

Complete symmetry in the observable quantities of interest

could be achieved By a simple transformation from E and .U to 'che,ll

individual translational kinetic energies E1 and E, of the two frag-' . o

ments at infinity. The conservation of linear momentum implies that

-UJ?.I1 = (1 - U)E2 .
‘ Frbm this one finds that

(1 ,". U) Eo

3}
0

.Ez = UE;

" .the inverse transformation is

E=E+E,, . usa)

U

E:Z/(E:l + E

2) - _(1§b)

An expression for E to the same order as the equations for
excitation energy and angular momentum can be obta1ned by expandlng
(14) and retaining only the linear term:

E=£"- @e%)s. R '}.‘(19)'
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The individual rotational energies at infinity are of second order in

the initial coordinates and momenta, since they are proportional to the
square of the individual angular momenta at infinity, which in turn de-
pend linearly'upon the initial coordinates and momenta. Also, the

(initial) energy of the system in the neighborhood of the saddle point

_is of second order in the initial coordinates and momenta. Therefore,

to first order, the sum at infinity of the total translational kinetic

energy and the individual excitation energies is a constant:

E+X, +X,=8+2x)=£6%+x°. 20y, .
The constant -Xi s is thus not independent but is instead given"by_'
X ;;"-QEO/Z ' ' .(21)
1,s ) , i

)

A series of graphs (Figs. 18-27) has been prepared giving

~“each constant as a function of x from 0 to 0.80. The solid line in each -

: figur’e represents the result for the case we have been considering:
incompressible, nonviscous fragments with hydrodynamic flow con-
sisting of a superposition of an irrotational flow and a flow correspond-
ing to a uniform rotation. We also indicate (by a dot-dashed curve)

the result for the limiting case of infinitely viscous fragments, which

would separate to infinity (as rigid bodies) without oscillating. This

limiting case would be approached physically if the fragments were

sufficiently viscous - that their period of oscillation was large in

_comparison with the time of separation to a few nuclear diameters.

Figure 18 gives the dependence on x of EO," the total trans-
lational kinetic energy at infinity that would result from fragments

initially starting from rest at the saddle point. Note that the trans- -

" lational kinetic energy that would result if the fragments were ex-

tremely viscous (top curve) is larger than the kinetic energy cor-
responding to nonviscous fragments with irrotational flow (middle
curve). The difference between these two curves represents the

portion of original interaction energy which, for the nonviscous
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r.

virrotat'ional case; is converted into excitation energy rather than into.
"translational kinetic energy. We also present the result (short-dashed
" curve) obtained using the very simple approximation that the kinetic
_energy is equal to the product of the charges of the spheroids divided

- by the initial distance between their centers. Of course, this is 77

equivalent to replacing the oscillating spheroids by two .rigid spheres

- .whose centers initially coincided with the spheroid centers, That this -

 ‘~ late and oblate shapes.

by replacing the spheroicis with rigid spheres whose centers initially;

_coincided with the spheroid centers.

i procedure should give a result that is close to the nonviscous irrota- . o
“tional limit is physically very reasonable, since the fairly rapid oscil- R

" - lations of the fragments tend to cancel the opposing effects of the pro-

In Fig. 19 is shown the result for the constant a; as with Eo

‘we also present the result (short-dashed curve) that would be obtained

H

1
[
'
y

The constant Xg, the excitation energy of fragment 1 that would -

result from initially starting the fragments from rest at the saddle point,
0

‘is given in Fig. 20. We note that the sum of EO -and in, ‘which is the

- energy difference between the two-spheroid saddle point and the config-

uration of two fragments at infinity, is larger than the corresponding
sum wou}d be if calculated from the exact liquid-drop saddle point.

This discrepancy is equal to the difference between the energy of the
two-spheroid saddle point and the exact liquid-drop saddle point, which,

as we noted before, is due principally to the inadequate representation

of the neck in the two-spheroid model. One might argue that this dis-

crepancy is therefore more likely to affect the estimates of fragment
excitation energies rather than their kinetic energies, but this con-
clusion cannot be regarded as reliable.

, 1,80 Xq,00 204 Xy
are presented in Figs. 21 - 23, respectively. The physical content

The excitation-energy derivatives X

of the equations for X1 and X, can be easily seen if we substitute

the values of the constants and transform back to the original co-
ordinate system. We find then that, for typical values of the initial °

i
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'! o ~coordihates, the excitation ener'gy of a fr'agmentbat infinity depends
primarily upon its initial elongation, is less dependent upon the frac-

" tional mass, and is still less dependent upon the initial elongation of
the other fragment. Notg, as we discussed in connection with the re-
‘sult for E®, that if the fragments were infinitely viscous they would
have less excitation energy than nonviscous fragme}xts oscillating with
irrotational flow. |

,’L

» L '
1, Py,

The angular-momentum derivatives L 1. b’
»

1, Py

s and ‘,'Li, are shown in Figs. 24 - 27, respectively.' By substituting.-_ '
_ v - these values for the constants in the equations for the x and y com-
P ' . R _i B 'ponents of apgular rgsomenturn, and transforming back to the o.riginalv
. coordinate system, we learn the physical content of these equations. . -
- . For typicalv initial conditions, the x component of the angtlaf mo- -
menturﬁ_at infinity of fragment 1, say, is found to depend primarily ‘lr;'\
upbn itsi own initial value, is less dependent upon the initial angle
» .eix" and is still less dependent upon the initial x component of angu-
lar momentum of fragment 2 and the initial angle sz. If the frag-
' - ments did not acquire any additional angular momentum by virtue of
' the torque exerted by one fragment on the other through the electro-

. static interaction, then L.1 p and L1 b would each equal

‘ i b w
I 1/4/2, and" Li,b and L w would each be zero. Note that the torque’
-~ " mechanism is capable of inducing in infinitely viscous fragments
roughly four times as much angular momentum as in nonviscous frag- |
: ‘ments oscillat‘ing with irrotational flow. This .is because for an ‘o.scil--
’ S lating fragment the torque is reduced as the elongation of the spheroid

22

1
i
i ' .
1

The relationships p;b = (1/42) (g - Pp_ ) and
’ x ix 2x

P, = (1/4/2) (pé +pg_ ) etc. obtained from the normal-coordinate
b'q 1x 2x - ' C

transformation and the definitions of the momenta, are useful for this

- purpose. The value at infinity of Py ,‘for example, is L

1x ’1.x
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is reduced, even changing sign when the spheroid changes from pro-

© ' late to oblate.

When the saddle point occurs for £ <2c¢ (x > 0.80), it is nec-

- essary to consider the équatiohs of motion for overlapping Spheroids.

As before, we specialize for the overlapping case to symxnetncal frag-
ments, speC1f1ed by the two coordmates £ and c. Hamilton's equa-

tions of motion for this case are listed in Appendlx C.2 fIrli{etlffe %'mxmty

of the saddle point, the motion of the system consists aof a superposition,

" of the two normal modes: bounded oscillations in one direction and

‘unbounded motion in the fission direction.

| The equations of motion for the overlapping case have been
solved for only a few isolated values of x and initial conditions. We

' -will‘here only briefly discuss the solution for x = 0.90 corresponding
-.to initially starting the system from rest at the saddle point.  This
Lsolution is presented in Fig. 28. 'The semisymmetry axis ¢ at ﬁrslt';_‘

increases more rapidly than the distance £ between spheroid centers’

increases; this continues until the system has become fairly elongated.

" Then, as the distance between centers continues to increase, the semi-

symmetry axis starts.to decrease. When scission occurs, the frag-

ments are already moving apart with a translational kinetic energy of

~ the order of 25 MeV. The scission configuration is.less eccentric

(and the fragment centers closer together) than the configuration ob-

tained by minimizing the potential energy of symrhetric tangent

.26

‘Since the saddle point is a position of (unstable) e'ciuilibrium, a
system initially at rest at the saddle point would remain there (classi-
cally) for an infinite time; we imagine an infinitesimal push in the
fission direction to start the system moving. An analytic solution,
valid in the neighborhood of the saddle point, is used until the Asystem
_is a short distance from the saddle point, where the numerical inte-

gration begins,
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spheroidé. "This results in about a 20-MeV additional gairi in trans_-;‘
lational kinetic eher'gy at infinity over the kinetic energy that would

result from initially starting the system at rest from the conﬁguration‘
of tangent sphefiods whose eccentricities are obtained by minimizing |

the potential energy. For this x = Ov.90 case, the total translational
. (0) .
E

 kinetic energy E was found to be 0.3155 g = » and the total excitation

energy X was found to be 0.091, Eéo) .

For the higher values of x, where the saddle point is not near
the scission configuration, the very subtle question of the dynamics
of the motion from saddle to scission becomes important in determin-
ing what fraétion of the total energy goes into translational kinetic v
energy and what fraction into excitation energy. Therefore, for the- N

higher values of x, a calculation of the precise division of the total .

~energy into kinetic and excitation energies based on opf'imum tangent

spheroids is likely to be in error. . . ' ' ll;
- ‘ Sl
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IV. STATISTICAL MECHANICS

We have obtained approximate formulae | (14), (15), (16), and » '-_ :
- {17)] relating the observable properties of fission fragments at infinity .
to the initial values of the coordinates and momenta (when the 'saddle ‘ L

point is the configuration of two tangent Spheroids) We now consider -

- the determination of the probability for the system possessing a gzven

set of initial coordinates and momenta. These two results will be e
- ‘combined in the next section.to yield the probability for the two frag-v' o
: ments at infinity possessing given total tr_ansla.tvional.kinetic energy, |

o fractional mass, and individual excitation energies and angular mo-

‘menta.

The conditions at the saddle point would in general depend upon

. the past history of the system—upon how the system was formed and

N upon the path it took in reachmg the saddle point. However, the System ..
' typmally undergoes about 10 . oscillations after formation ;
before it reaches the saddle p01nt (if it ever does)(ﬁ_) This provides ]
ample opportumty for many interchanges of energy, making it cnlikely o
that at the saddle point the system "remembers" the way it was formed
or most of its previous motion. It is thus likely that at the saddle point -
ther}nai equilibrium is established. This is the central hypothesis of .
the transition-state method used for discussing the reaction rates of
- chemical or nuclear systems{B)and we will base our furthef consider-
"ations on this standard assumption. | | . .
The discussion of the statistical me,;l‘chanics is essentiglly thei?'s&me ‘
" for both the case in.which the saddle point 1s represented by tangent |
sphéroids and the case in which ii: is represented by overlapping
' spheroids. In the following discussion we will éxplicitly consider
probability distributions for the normal coordinates appropridte.to the
‘case in which the saddle point consists of two tangent spheroids; for _
the other situation (again considering the restricted case of Sy'rnmetricalA
fragments) there are simply fewer probability distributions.

The determination of the probability of given initial conditions

is very simple in classical statistical mechanics. The pro'bability P
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'vthat the system possgsse's a given set of coordinates and momenta,

.' '._bwith the corresponding total energy J given by (10), is simply

P=Nexp(-3/0), | (22)

~where O is the nuclear temperature at the saddle point (measured
in energy units), and N is a normalization constant. (Use of the
‘symbol © to denote nuclear temperature should cause no confusion

 with its earlier use in connection with angles.) When the actual

Ham11toman (10) is used, this expressxon for P is exact (class1ca11y)
to all orders in the coordinates and momenta. )
If one expands the Hamiltonian about the saddle point and re-

tains only quadratic terms (harmonic approxirhation_), then-the prbba-

bility distribution for each normal coordinate and its conjugate mo- -

. mentum is simply a Gaussian in the normal coordinate or momentum

[ with the exception of P(p ) a%xd P(f), which are discussed sepa.rately

t

below].’ Thus, for example,

P(s) = (2w @/Ks)"i/2 e;(p (- %— Ks 8'2/6>,_ . (23a)
Plp,) = (27 M 6)-1/Zexp|: P /(ZM @] -7 (23b) |
i - . (pf) =2(2m M 9)” -1/2 exp[ pf/(ZM @}] ' (23¢)

-Equations analogous to these hold for the remaining normal coordinates

and momenta. For one of the momenta and two of the coordinates .the
Gaussian distributions become infinitely broad and hence reduce.to con-

stants, This occurs for P(pm) because the mass-asymmetry effective - v

27 -

All probability distributions in this paper are normalized such

. that unity is obtained when the functions are integrated over the allowed - "'~

.“

rangé of integration for Ps is taken to be from 0 to o, since for

.negative values of P the system does not fission.but instead returns

to the pre-saddle-point configuration; this results in the additional

factor of 2 in the expression for P(pf).
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" mechanical uncertainty principle that simultaneous localization of the
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A

. ‘ ' 2
mass Mm is infinite, and for P(t) and P(a) because the tw1st1ng

.and axial- rotatzon stlffness constants are zero.

Because of the condition that the total angular momentum of

the system be zero,. the distribution in the axial-rotation momentum

" is a Dirac delta function:

Plp,) = 6(p,) .

. We recall finally that we do not need a probability distribution in- f -

because the trans:.tlon-state method which we are’ us:.ng is formulated in
terms of distributions in the subspace defined by f = 0.

As the nuclear’ temperature approaches zero, the classical

~distribution for each normal coordinate and momentum approaches a

" .Dirac delta function. -However, we know from the Heisenberg quantlum'.-'.

5

system in a position and conjugate-momentum coordinate can be

achieved only within-limits. Even at zero temperature each of the

distributions should,.in general,..ha.i/e a nonzero width, associated with

~the quantum-mechanical zero-point vibrations. As we shall Seev, the

" quantum-mechanical effects may be important at typical nuclear tem- .

peratures, ,
Although the quantum-mechanical determination of the ﬁrob-_
ability distributions would be difficult if one used the complete
Hamiltonian (10), the problem can be readily solved in the harmonic
approximation. Then, the individual terms in the Hamiltonian (13
are the Hamiltonians for simple harmonic oscillators. (The effect

on the distributions of the infinite effective mass -M‘m' and .the zver'o

28 .. o . R
'The Gaussian distribution in the mass-asymmetry velocity be-

comes, on the other hand, infinitely narrow and hence reduces to a

Dirac delta function. This means physically that the mass-asymmetry

coordinate changes with time infinitely slowly at the saddle point.
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stiffness constant Kt will be diséusséd later.) In our discussion
below we will refer only to the stretching mode; results for the re-
| maining modes are completely analogous,

In the coordinate representation the quantum-mechanical solu-
tion of the stretching mode yields the harmonic- oscillator wave func-

tions \P (s), with correspondmg energy levels E = (n + )ﬁw .

. When the oscillator is known to be in the qua.ntum mechamcal state n,

the probability that its position'coordinate has a given value s is
P_(s) = |¥_(s)]

In particular, when the oscillator is in the ground state n = 0, the -

probability distribution for the coordinate is (52)

Py(s) = |¢O'(é)|2 = (wﬁws/Ks) exp[ K s /(‘hw ):I
(24a)
Analogogs results for the momentum p, are obtained just as readily
by solving Schrddinger's equation for the stretching mode in the mo-
. mentum representa.tion( 5__2) For example, the ground-state probability.

distribution for the momentum is

Py(p,) = (m M_ ws)'i/z exp [- psz/(Ms f ws)].. (24b)

We note that for the stretching oscillator in the ground state, both
the distribution in s and the distribution. in Pg are Gaussians, with
nonzero widths proport*onal to (h w /K )1/‘2 and (M f w )1/‘2
respectively. . '

Having thus determined probability distributions for an oscil-
lator in a given quantum-mechanical state, we are now in a position ‘
_to determine probability distributions for an oscillator in statistical
equilibrium with its surroundings. The quantum-mechanical proba-
bility for finding the stretching oscillator, in sv;catisti-cal' equilibrium

with its surroundings at a temperature ©, at position s is given by
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i where -

o ;is'vth'e statisticadl 'prob'é.bility that the oscillator is in the qué.ntum- R
= mechamcal state n. Determination of the normalization constant N
ylelds (the same symbol N is used in. this paper to denote each of :

. several normalization constants)

'V.N =2 sinh[ﬁw/(ze)] .

'By using prOpertles of the ‘harmonic-oscillator wave functions, . ’che 1nfini'be

‘summation over n can be performed explicitly, y1e1dmg the re- ' Lo
SR markably s1mple result (53-55) -
rns)-(w c.) 1/2 exp (-s°/C), - 2sa)
'iwhere the temperature-_dependent constant ‘-Cs' is given by
. { ﬁws ) 'ﬁb)s ) ZG/KS Y @ > 'hws‘ \
CS = Ks coth WicH - _
‘ ' o /K , © <<ho .
The temperature dependence of C, can be seen from the graph of R
| “coth’ [hw /(20)] vs 2@/ hw) in Fig.. 29 ‘Note that for high temperatures L
-/ the quantum- mechamcal expression (25a) for P(s) reduces to the clas-.. R
sical re__sul‘g (23a), whereas in the low-temperature limit it reduces‘.to
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the distribution (24a) for the quantum-mechanical zero-point motion
of a harmonic oscillator.

An analogous probability distribution for Py is obtained from

. the momentum-—representation solutions to Schrédinger's equation for = ‘

the stretching mode. The result is(53) . - . L
s me )-1/2 2 S
Plpy) = (vC_ ) exp <—ps/Cps>, S e
where g '

2M_ 0, O >>thw
S v S

M‘s'hws., @ < <‘ﬁws. .
_ For high and low temperatures this expressmn reduces to (23b) and . H
V (24b), respectively. _ |
We saw earlier (Section 1I1.B) that the messeesymmetry and
twisting xrermal_mode's ‘have zero frequencies.. - Thus, ﬁwm and -
he, are always small in comparison with ©, which means that for

t o
these modes we are always in the high-temperature (classical) limit, -

- ‘Hence the constants Cm and Cp are always given by 29
) t '
N '

Q-
"

2M 0.
Py t

a
1]

>

- ™ , .
Recall that for x <xXpg the mass-asymmetry stiffness constant

. K is negative., Thus for x <xBG’ the probability P(m) mcreases ':

" rather than decreases with mcreasmg absolute value of m.

B =R
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. ture limits.
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- We have thus derived in the harmonic approximation expres-
sions that are valid quantum-mechanically at any temperature for the
distributions in both coordinates and momenta for the normal modes

(except the fission mode). Each distribution is a Gaussian with a

' temperature-dependent width that has simple high- and low-tempera--- '

¢

The probability distribution for the fission momentum pf.is

-difficult to calculate Quantum-mechanically both because this mode is
‘unstable and because the stiffness cons’ca.nt-'}:(f is not defined. For

this distribution we use the classical result (23c); rewriting,. this is .

iy -1/2 2,0 ),

with

.C_=2Z2M_.0O.

Any attempt to improve this result should include an improved descrip-
tion of the shape of the fission barrier., The inaccuracies arising from
using the classical expression for P(Pf) are probably not serious for

our purposes, since the equations relating the quantities of interest

- at 1nf1n1ty to the initial conditions are to first order 1ndependent of Pe

CAn. error in P(pf) would thus affect the distributions of the quantltles

of interest only in second order.
For a given normal mode the probability distribution for the

coordinate. is independent of the probability distribution for the mo-

‘mentum. Also, each normal mode is completely independent of all

the others. Therefore, the probability for obServing the system with

a given set of initial coordinates and momenta is simply the product |

- of the individual probabilities for each coordinate and momentum.

The probability distributions for the initial conditions are in
terms of stiffnesses, masses, and frequencies (all calculated and
graphed as functions of x in Sectlon III.B), and the nuclear tem- =

perature © at the saddle point. The temperature;_;.s a function of

. the 1nterna1 nuclear excitation energy at the saddlezpoint The dis-
| cussion of the determmatwn of © in terms of the internal excitation

energy will be given in Section VI,
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V. PROBABILITY DISTRIBUTIONS FOR OBSERVABLE
QUANTITIES OF INTEREST

In this section we derive expressions for the prob‘ability' of =

simultaneously observing the two fragments at infinity with given v

values of the quantities of interest: total translational kinetic en-
ergy, fractional mass, individual excitation -energies, and individ-
ual angular momenta. The derivation utilizes the results obtained .
in the two preceding sections: the equations relating the observable.
quantities of interest to the initial conditions,” and the probability

distributions for the initial conditions. Since the equations relating

the quantities of interest to the initial conditions are for the case in = *

which the saddle point is represented by two tangent spheroids

(x< 0.80), the probablhty distributions that we derive for the quan- h

- tities of interest will be for this case also. : - ‘

A. The Distribution P(E, U, X, X L,) to Lowest Order -

2’ 1’

We first consider the calculation of the probability v
P(E, U, X1, XZ' ;{J;i, ;va) of sirhultaneéusly observing the two frag-
ments at infinity with given total translational kinetic energy E,
fractional mass U, individual excitation energies X and XZ’ -and
md1v1dual angular momenta L1 and vI?f’Z' - For this der1vat1on we
use the consistent set of lowest-order equations (15), (16), (17), and
(19) expr‘essing the quantities of interest in terms of the initial con-
ditions. The resulting probability distributions will then be valid
only to lowest order in the quantities of interest. = We will later use

(14) and (15) to calculate the distribution P(E, U) to a higher order

- in E and U than that used in the present calculation.

The probability distribution for the observable quantities of - 'A

interest is obtained by multiplying the probability distribution for
the initial coordinates and momenta by the Jacobian for the trans-

formation from the initial coordinates and momenta to the quantities

A



of intefest, and then integrating over the remaining coordinates

and momenta,

Since E, X‘l’

_ to first order by the conservation—of«ener‘gy equation (ZO),. the prob-

ability distribution P(E, U, X X
delta function 6(E + X, + X, - EO - zx1

tion is then given by

P(E, U, X,, X5, Ly L)

and

= P(U, X XZ’

-65 -

X'2 are not independent, but are related -

1’

°1>

Ly k) S(E+X, +X, -E

0

;,2) contains the Dirac ™~

. This probability dlstnbu- S

o, -
-2X,),.

where a particular choice has been made for the remaining variables.

In order to cal<:ulate P(U, X X

conditions as functions of the nine quantities of interest and the re- =

i}

the set of equatlons (1,5), (16),

maining initial conditions.

of each fragment is regarded here as a separate quantity of interest,) .

1f we choose m, s, d, pb , P

variables,

(Each component of angular momentum

this inversion glves

’ pb ;pw

L L ) we need to invert

AR L~
and (17) to- obtaxn nine of the initial

! pt,and Pa
Y .

1
u- -,
X + X, - 2x%°
1T 2 1

in,s 1
Ky - Xp-2Xy L (U-3
' X4, '
Lix- Iy “ZLi,bbx

as dependent

- (26a)

| . (26¢c) -

(26b) '

(26d)

'\

1
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L, +L, -2L, w .
.1 2 1L, w 'x
pW [t ZLi ’ ’ (263)
X ’pW
- . L, -L, -2L b . ST
- iy 2y 1, b 7y A . .
Pp 7 ZL . o (261)
L, +L, -2L w S ‘ .
Py F ZL . Yo R (Zég) ,
Sy . , 1, p, o . .
L, -L - _ _
p, - = _..1.2_\/_____& | " (26h)
L, + L ST :
iz, 2z L (26d)

'_ With this choice of deperﬁient variables, the equation transforming \l

bution is

, +o0 + oo +o0 Feo
P( U, Xi’ XZ’V%'I.’V%/‘Z)V = f ;dbx‘[ dwxj’ dby_[ dwY
. - 00 ‘00 - 00 - 00

XP(msdbwbwpbp pbpppt,p)
Y

a(depb ’pb;p :Pt’P)
Yy

B(U }% LZx 1yLZy 1z17)

X-l

we have already integrated over the initial coordina_tes and momenta

not involved in the transformation, obtaining unity in each case. The

- probability distribution in the integrand is given by the produét of the : . .

probability distribution for each normal coordinate and momentum
appearing in its argument, as determined in Section IV, It is under-

stood that this probabzhty function has the set of equat1ons(26) subst:.-'

'tutedforthe variables m, s,d, p. » Py, » Py + P, » Pps and p_.
b W b w ‘-t‘ a
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The absolute value of the Jacobian for the transformation is given by e
3 d, | - ' 2
(ms Pb P Y:Pb s;. :P p) " 1 1 . v
910, -1’Xz' 1 LZyLiz'I?z) <2'X1,s ?(1,d> (“‘1 pri,pw> ]

We note that the transformation equations for m, s, and d

are 1ndependent of in'vi and ,]:’,/ and the equations for

Py » Py » Py » Py, s Py and p, are independent of U,Xi, and XZ'

1!

Becausé of this, the probability P(U, X X,, Lys k) splits into a
product of two © _ probability functlons. '

B(U, X, Xy, Ly ) - U, X, X,) Pl L)

. with

|
s ' , L : g . .1)2 i‘
P(U,X,,X,) = 1 . exp - 22
12 ) > 2 7z - PT T
(47°C X1 Scsx1 ] d) : ,
0 2 2
(X, + xz- 2X;) [X Xz' 2X, (U- )] ‘
- - (27)
> > v
(' 4X'1, s C;s 4_‘X'1,d‘cd
and ‘

P(L,, L)) = , f fdw j):'lbfdw
wAT w2l 2222 )Y <2L ) Yo ¥

9
C C.C°C ~C
_( b pr Ry Pt - R 1p
, (24 b%)  (w +w2) b)+(L L -2, 5)2
X ex X 'y x "y x~Tox™ ibx ~12y ‘l,by)‘
Xp (- C - G .
o N w 4L
| S - 1Pb Pb .
4L1 " c -
| | Py, Py,
| 2 : o
(Liz B LZz) 6<Liz+.LZz>-
- 2 —=—=
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c "2l o Py 2C. |
( t) Pb Pw ‘ Py

[(Lix+ 12)22+(L1y+ 12))2] - (Lizf I“Zz)z

2C 2C

Syt Lp,)e . (28)
Py Uy

_ We have uéed the abbreviations %0

C =2L C_ + 2L C.,

Py 1, Py, Py 1,b b

' L2 2 | |
C = 2L C_ +2L,:2C_. Sl

The distribution P(E U, X X, L1, L ,) is of the form ' .

“exp [ -Q(E, U, X XZ’ L sz, Liy’ LZy’ L'lz’ Zz)] times two Dirac
delta functions, w_here. Q(E, U, Xi' ?{2, Lix’ sz, Liy' »I"Zy’ Liz’ LZz)
is a positive-definite quadratic function of its ten variables. In the

language of statistics, P(E, U, X X L J?'Z) is a 10-variate normal

distributi(on(% multlphed by two1delta functions. Similarly,

- the- probability function P(U, X , X ) is a trivariate normal distri-
bution, and P(;Iy'_,;\1, %2) is a 6-var1ate normal d1st;‘1but10n multiplied
by a delta function.

S Distributions Obtained from PE, U, Xi’ Xz)

We have derived the lowest-order _reéuit for the probability of
observing the two fragments at infinity with given values of total trans-
* lational kinetic energy, fractional mass, and inciividgial excitation '
"energies: |

P(E, U, xi,x ) = P(U, X, X,) S(E+X 4 X, _EO. 2X, ),
. where P(U,Xi,XZ) is given by (2’7). By integrating ov.er the quantities

20

1f there were no angular. momentum induced by the torque ar1smg from
the presence of the electrostatic fleld then C would equal C , smce for '

this case L -i/\/_., and L, 1 b' 0. An analogou% statementhold% for Cp .
: ' w
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‘ "rv,_'-_}not of 1mmed1ate mterest in thlS probab111ty dlstrlbutmn, we obta.ln
‘ probablhty d1str1but10ns for the observatlon of a smaller
fnumber of quantltles. » Each of the resultmg probablhty functlons 18

.“v;f(also a normal dlstnbutlon (mu1t1p11ed p0551b1y by a delta functxon) |

For example we obtaln

ff:-P(_x X, )

noe

P(Uxi) — »
ST nfo (x - C, +X d)]

O

1,42
X -%, m<U'z”__

p(x N

anci_
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We can also obtain from (27) the prébability distribution for

mass and total excitation energy X by substituting

Xi - X‘[. XZ ’ . . N 'A ‘. o
- and integrating over XZ: | R S
_ , 1.2 - 2 -
’ 'O ‘ (-3 (X-x9)
P(U,X) = exp| - - .
- 2 2 . /2 c “4x, °c
(47~ C_X C ) m’ 1,8 s
m 1,s ~s .

An integration over U in this equation then gives .

. R O Z
- P(X) = 1 exp X=X .
S o2 M oax 4 ¢
(4w X,1 C ) ' 1,s. ~ s’ .
S , S S . . |

L

Since the total translational kinetic energy and the total ex-
. citation energy are related to first order by the conservation-of-energy

equation (20), the two preceding equations are completely equivalent

2

adding X, and XZ]'

to
2 ‘ 2
. 1 0 .
B(E, U) ! o482 EED
P(E, U) = 7z °*P | ) 2
2 2 0.2 C 2 0
i . :
[m Cma CS(E ) . m | a CS(E)
and
o 1 ’ (E-EO)Z e
P(E) = — ZI/2 SXP| v 2 |}
[= a®c_(E") ) o’c ()
This equation is also obtainable directly from P(m, s) and the -
equations U = 1 +m and X = Xo + 2X,

1 s. s [obtained from '(16) by
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.~ we have also used the relationship (21) between X s and aEQ.
. ’

Slmllarly, Eq. (2.7) is equlvalent to

PIE U Xy = . 2. 0z. z. 72 TP Ch
[m Cma C(ET) Xi dcd] : -
& - £ X, x°+ —(E- EO) X, (U-—-)]
"2 0.2 ° 2 .-
o’c (E%) | Xy 4 'cd

This result is useful for discussing, for example, the excitation
energy of a'single fragment, for given values of the total translational
kinetic energy and fractional mass.

From the expressmn "(29) for P(E, U) and the transformatlon '

(48) relating the total translationalkinetic energy E and the fractmnal _

- . mass U to the individual translational kinetic energies E1 and EZ

we obtain the probability distribution for individual translational .

kinetic energies:

P(E,, E,) = P(E, U) _g%ﬁ@;
3 . (E,+E,- EO) | (B4-Ey)
T T o e TRT C(E) XA
[v*c,o*c (2f] sc_(E°)

the:equation resulting from the transformation has been reduced to -

lowest order in E1 and E2 By mtegratmg over E.2 in this equation

we obtain the distribution in translational kinetic energy of a smgle

fragment: | '

. N ’ o

_ (E1 - Ei‘) -

Tz . SXP |- T =5 | .
] o ‘.(4Cmf°' _Cs)(Ei)'

'pm9= A

[7(4G_+a’C NE,))



-T2~

It should be recailed thatrfor x <'XBG’ Cm is negativé,
4r¢sulting in the mass distribution incréasing rather than-decreasingvf
with mass asymmetry.‘ The distributions invoiving U then approachi‘:"
infinity for large values of U and arelthus'hot.normalizable. In av
contour plot of P(E, U)'vs. 'E and U, for‘exaﬁple,_the lines of ::
.constant probability gre'not eilip§es for x § xBG’.bUt instead aregi
'1_ two familiés of hyperbolas. One famiiy repfesents lines of increasing
probability for increasing mass asymmetry, whereas thé éthef famil& ;
represents lines of deérgasing probability for de&iations'in the
kineﬁicienergy from ﬁts ﬁost'probable value. ; . ’ iL
'Since +the above probability functions'are normal distributioqé‘
(of one or mbre'variables); all the information they contain can-be 
represented in terms of means, variances; and, corrélation coefficiehfé
(or alternatively, covariances) (56). For'example,‘é monovariate .
normal (éaussian) distribution is completely speqified by two qpantitiés:v
the mean=and the variance (square of thg standard deviétion). From |
the standard form for a Gaussian distribution we can determine(bj |
inspeétion the mean and the variance of each of thé Gaussianﬁ_-

L

distributions above.

vy
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' To specify a bivariate normal distribution, five quantities are
required in general: the mean and variance of each variable, and the
correlation coefficient (or alternatively, the covariance), The cor-

relation coefficient P xy of the distribution P(x,y) is defined by (57)

T f@fdy(xX(Y Y)P(x,y)

Y

The value of the correlation coefficient, which has a range of values
from -1 to+l (_5_;7), indicates the degree of correlation of the vari-
a.bies.' A positive value of this coefficient means that the two variables
are more likely to be simultaneously large or else simultaneously
small; a negative value means that if one variable is large, the other .
is more likely to be small. The distributions P(U, X) and ‘P(E, U) ai‘g' '
séen to have correlation coefficients that are zero. On the other han'ci, |
: the correlation coefficient for the distribution P(Xi, XZ)' for examplle, :

is nonzero; we find that it is given by

2 2 2 4
_ Xi s C - Xi,mcm-xi,d Cd (30)
172 XisC+X1 C +X1dcd .

| .
Coefficients of correlation could be similarly calculated for the other

distributions.

To illustrate the magnitudes of the widths of these distributions,
we present sample graphs of some of the more important functions o
derived above, The results are for nonviscous fragfn.ents with the type -
of hydrodynamic flow we have been considering: a superposition of an

irrotational flow and a flow corresponding to a uniform rotation, All .
213 '

" graphs refer to the fission of the compound nucleus 85At with a S

nuclear temperature at the saddle point of ©= 4,43 MeV. (This sit-

uation may be obtained experimentally, for example, by bombarchng

83B 209 with 65-MeV alpha part:.cles ) In two of the graphs we
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illustrate the effect of temperaturé on the widths by also presenting‘ :
the result for ©= 0. In Fig. 30 is presented a contour map of |
P(X,,X,)vs X, and X,. Figure 31 shows the distribution in exci-
tation energy of a single fragment: P(Xi) vs vX1.- * The distributioz_l
in total excitation energy [P(X) vs X], which is equivalent to the
distribution in total translational kinetic energy [P (E) vs E ], is
shown in Fig. 32. The lowest-order result (29) for the distribution
" in mass and total translafional ‘kinetic energy is presented in Fig. 33 .
as a contour map of P(E,U) vs E and U. ‘ |
- An interesting feature of the theory is the prediction that the

| excitation enérgies should be anticorrelated-if one fragment has a"
large excitation en‘ergy,A then the ché: fragmefxt is more likely to
- have a_small excitation énergy, and vice versa. . This can be see’n- !
either from the contour map of P(Xi-’ XZ) in Fig. 30, or from eval-';;:.

AAtZ13 and
85

©= 4.13 MeV, we find that Py %= - 0.46. For this same nucleus

uating Eq. (30) for the correlation coefficient. For

“in the high-temperature (classical) limit, X, XS T 0.44, whereas

. in the zero-temperature limit, = - 0.58. Thus the excitation

PX4X, .
energies are predicted to be somewhat more strongly anticorrelated
at low temperatures than at high temperatures.

' 'f‘he physical reason for the anticorrelation in the excitation
energies is very ‘sir'nple in the classical limit. The result can be
interpreted in terms of the relative amplitudes of the stretching and
distortion-asymmetry modes, since the excitation energy of a frag-
“ment at infinity depends primarily upon its initial elongation. Pure
stretching-mode oscillations correspond to completely correlated
fragment excité.tion energies, whereas pdre distortion-asymmetric
oscillations correspond to completely a'mticorrelatved‘ fragment excita-’
tion energies. The potential energy in the neighborhood of the saddle.-
point is found to be ''stiffer'" with respect to stretéhin’g than with
respect to distortion-asymmetry. The distortion-a'symrn"etric oscil-
lations therefore possess larger amplitudes than the stretching oscil-

- lations —-hence, anticorrelation.



_ The mean (or most probable) value of each of the quantities
of interest is seen to be 1ndependent of nuclear temperature, How- .-

ever, since the constants C etc, are temperature dependent, the

' widths {(or variances) of the dlstrlbutlons are functions of nuclear

temperature. As the temperature approaches-zero, the widths of

the distributions approach finite values determined by the quantum- S

.mechanical zero-point vibrations of the appropriate oscillators.

.{ Exceptions occur for the mass distribution and the distribution_s in

‘the z-component of angular momentum. Since the mass-asymmetry '

and twisting frequencies are zero, the widths of these distributions

.~ approach zero'as the nuclear temperature approaches zero.) For the
fission of a typical lighter -than-radium nucleus, the zero-point full
width at half maximum of the distribution in total translational
kineticenergy is = 10 MeV., The width of the kinetic-energy dlstrl-u
bution arises primarily from oscillations in the distance between
fragment centers (stretching mode). Because of the near cancella-
tion of the opposing effects of the surfece and Coulomb energies near
the saddle point, the potential energy in-the stretching direction is
very flat. Thie means that a very small quantum-mechanical un-
certainty in the stretching-mode potential energy (= 0.3 MeV) is
"amplified" into a rather large zero~-point width in the total trans-
lational kinetic-energy distribution. As the nuclear temperature in-
creases, the uncertainty in the stretching-mode potential energy
increases, resulting in a corresponding increase in the width of the
kinetic -energy distributiOn '
2. Distributions Obtamed from P(Li’ ma)

we can obtain several useful

From Egq. (28 ) for P(L 2‘)
formulae involving the fragments angular momenta., We first coné-;._
' vert from cartesian coordinates to spherical coordinates through the

transformation -
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L sm@i cosgpi,

L1X'= 1
L1Y = Li 51119,1 $1n¢1,.. 3
= L coseil; '

Liz 1

an anélogo.us set of equations holds for fragment 2. The magnitudev
of MI:'\'L is Li"
fragment 41 and the 2z axis (the line connecting the fragment

centers) is 01, and the azimuthal angle is 451. We further define

the angle between the angular-momentum vector of

__‘¢ = B, " 9y,

b = (9, + 8,)/2;

)

if one looks along the line connecting the spheroid centers, then ¢ l
is the angle between the fragments' components of angular momentum
perpendicular to this line, 4 ' “
Equatidn (28) becomes, after an integration over ¢' {upon
-which the probability function does not depend) is performed (the nor-
‘malization is such that the range of ¢ is from 0 to w),
i . i

2 2 . L
4\[2 Li I_,2 51n:91 sanZ

PL,,L,,0,,0,,¢) = 7
172 Y 2 (C V%
Py Pp Pw

. | 1 /1 1 2 2.
xexpt‘“i(“*—;—““"r")(l'i*' L,)
1 4 4 \,.2_ _2,.,.2_ 2

- : 'C' >(L1 ‘c.:osv61+ L2 cos 92)
Py Py Pw

+<_.&_.. - —-1,‘..> L, L, sineil siriez" cos ¢

C C
Pp Py
1 v o
+. L, L, cos Gi.cos GZJ 5(L1 cos 91+ L, cés 6,).

p
t (31)
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_ The integratio‘n over ¢ in this result can be performed explicitly to
"yield a. probabxlxty distribution that is 1ndependent of azimuthal angles.
Since(58) '

‘ f exp (x cos¢p)dd = 7 Io(x) =wJylix), . T (32) '.;
0 ' : ‘ | A B

Where J denotes the Bessel function of the first kind of order zero

0
'(IO. is the modified Bessel function of the first kind of order zero),
the expression for P(Li’ LZ’ 10 6 ) can be obtained from (31) by

. inspection. Also, because of the presence of the delta function, an

-integration over any one of the four variables L,, L 9 B caril::be_ .

A 2

performed immediately.

In-the zero-temperature limit the twisting mode is not exczted :
and the twisting-momentum constant Cp - approaches zero, 'I'hrs
means physically that the z component bt angular momentum of each
fragment is zero, and the angular-momentum vector of each fragment :
is perpendicular to its direction of motion. The integrations over '
both 6 and 9 in (31) can then be easﬂy performed y1e1d1ng the

zero-temperature result

N>

wC .C

. 4L,L IR
P(L,, Ly ) = —.‘—21- exp |- <—4.—+ —3—) (Ll + L2
Ly Ly ‘ 2 :
' Py Py - Py, . Py '

@ C

+ (.4_ i _2,>L1 L, cosd| 5
Py P,/ |

3 S
This expression could also be obtained directly from the set of

equations (17) and P(by, W, by, Wy Py ,pwx, Py Py ) by integrating over S

the bending and wriggling angles, andxtransformmgythe result to. cylm- -
"drical coordma.tes. ’



T8

_ . o , . y
it is understood that the zero-temperature limits of C_ and C
are to be used. By employing (32) the ze‘ro-temperatur%-result Yor
P(L,, L,) can also be written down by inspection. ‘

1f, in the original expression (28) for P(ki, %2),' we integrate

 with respect to L LZy’ and L. , we obtain the probability distri-

2x' 2z’
bution for the angular momentum of a single fragment:

2. 29

P(I_: ) = ZNZ exp | - Z(Lix +L1Y) - ZLi'z
1/ 172 T T P - T : _ .
(vC_)/"m(C_+C_ ) - cC + C C
, P Py, Py

t Py Py Py

If we transform to spherical cobrAdinates and integrate over the az‘i'-

muthal angle (upon which the probability function does not dépend), ‘

we obtain I | | o E_tt.l
2 o S

4NTZ L% sin 6 212 e
0 Y = 1 1 - nas| g o o .
P(Li’ 01) - Vz T T exp = me—————— . ) . ) .
: (wC_YHC_ +C_ ) . c +C :
p,’ " Pp Py Py Py

- 2 ci - — ! - Li cosbz 9,1 |

p, C +C '
o Py - Py

An integration over 91 can be carried out to give the probab_ility of -

'observing a single fragment with gi'{ren‘ magni‘éude of angular momen-

- tum:

. aL,” o
P(L‘l) = 5 Y — 1 ) €Xp | = —— '.5
[(C. +C. )C. +C -c_)7% +C

Pp Py pb_pw Pt T 'pb_Pw

Y r - ' '1/2
2(C_ +C -C_)
Py Py pt
i i
C (C +C )
' pt pb Py

X H

‘where H(x) is the error fuﬁctio‘n, defined by:"(‘?_g) .' L
H(x) = 2 f exp (‘-az)da, - o

N
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‘In the zero-temperature limit, Cp approaches zero, and this ex- ..

 pression reduces to t
4L ZL2
1
P(Ly) = —— exp |~ —T——|.. _
- C +C C +C g
Py Py S Pp Py ’ e

The various probability functions obtained from P(L Lz)
~ are useful as regards specific information on the fragments' angular
_momenta at- 1nf1n1ty. One has available in these formulae predictions
' regarding the magnitudes of the angular momenta, the angles between
the angular momenta and the line connecting fragment centers, and
the angle between the components of angular momentum perpend1cu1ar
_to the line connecting fragment centers. - These predictions include.
. the correlations between the various quantities, as well as their de-l‘!,;
pendences upon nuclear temperature and fissionability parameter. '
As a single example we present in Fig. 34 the curve P(L )
gsAt??? and ©= 1.13 MeV. The

result for nonviscous fragments with hydrodynamic flow of the type

vs L1 for the compound nucleus

‘we have been considering is given by the solid line, and the result for |
| infiniteiy viscous fragments by the dot-dashed line. We also indicate .
the result (short- dashed line) that would follow if the torque exerted

by one fragment on the other through the electrostatm interaction
were zero-this represents . the distribution of angular mo-
mentum at the scission conﬁgﬁration.' At scissien, ‘the most probable

~ magmtude of the angular momentum of a fragment is seen to be about
- 8.50. The correspondlng most probable value at infinity is about 40+ |
for the nonviscous case, and about 15+ for the viscous caée.' The .
relatively large difference in the predicted angular-momentum distri-
-~ bution between the ease of viscous fragrrxents and the case of nonviscous .
fragments will perhaps make it possible to estimate experimentallsr the -

degree of nuclear viscosity, ~ For this to be vpractieable, of course, the
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present theory of fragment angular ~momentum distributions would .
have to be refined to the stage where predictions can be trusted to . '

“within considerably- better than 50%.

B. The Distribution P(E, U) to Higher Order

~ We have seen [Eq. (29) and Fig. 33] that to lowest order in

the variables E and U, the probability function P(E, U) is .a' bivariate

normal distribution; in a contour map of P(E, U) the lines of constant

: probability are eilip‘ses whose axes are along E and U. This lowest-

order result forr P(E, U) is completely specified by EO (the‘mean value

of E; the mean value of U is one-half from symmetry) and the two

variances ‘0'2 and 0'2 which measure the widths of the distributions

: E g’
" in E and U, respectively. By use of this result we are able to dis- :

cuss the distribution in mass and total translational kinetic energy 1n"l-\

the immediate vicinity of the most probable values. _
To discuss ’che dev1atlons of the distribution in

mass and total translatlonal kinetic energy from a blvarxate normal

distribution, it is necessary to include in the expression - =

for P(E, U) higher-order terms in the variables 'E and u. Whereas .-

in the bivariate normal distribution the exponent contains only.the two
‘quadratic‘ terms (E-‘-Eo)2 and (U - 1)2, the exponent'of the distribu-
tion to the next higher order contams in addition the two cub1c térms
(E- EO)(U - —-—) and (E- E ) , and the quartic term (U - %—)4. ’vBBIn

'. addition to the mean EO and the two variances, three additional quan-
tities, the coefﬁc1ents of the two cubic terms and the quartic term,

are needed to spec:.fy P(E U) to this order. These coeff1c1ents have

33 .
. The other two cubic terms, (E-E ) (U - —;—) and (U--Zi—)?’, are absent

. because P(E, U) is an even function of (U - —) The absence of the

(U -—) term means that the (U -—)4 term is responsible for the first-
_' order deviation of the dlsf,rlbutlon in mass from a-Gaussian, and rnnst
then be considered to this order. The distribution P(E U) would also,

in general, have a pre-exponential dependence upon E and U.




_simple ph'ysical :signiﬁcances,. The coefﬁment of the (E E ) term

mines the lowest order dev1at1on of the d1str1but10n in E from a

| _ pure Gaussian-whether the dlstrlbutlon has a high-energy or a 1ow-

’.([.J',---g-)4 term strongly ‘affects the kurtosis60) (peakedness or flatness) -
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‘strongly affects the skewnesdQO) of the distribution in E, and deter- S

energy tail, and by how much. Similarly, the coefficient of the

'of the distribution in U, and determines the lowest-order deviation
of the distribution in U from a pure Gaussian-whether the ‘di.stribu-"t "
" tion is more peaked than a Gaussian or has a flatter top. We will -
find that the coefficient of the (E - EO)‘(U - %)Z term determines both

 how rapidly the most probable (or mean) value of E as a function of

U falls off with (U -%)2, and also the d_erivative'.with respect to E. .

(evaluated at E= Eo) ofithe va.riance of the mass distribution as a

- . function of E. To the next hlgher order beyond 1nc1ud1ng these three v
‘ terms, the exponent of the P(E, U) distribution would contain the: quar-
. tic term ({E - E ) , the sixth-order term (U-—)6, along with cross

terms in E and U; and so on.

The derivation of the bivariate normal distribution (29) utilized -

. a combination of two lowest-order results: (a)* . equatmn (19) rela.tmg

E linearly to the initial conditions, and the exact equation (15) for U,

and (b)the initial-conditions probability distributions obta.med in Sec-

tion IV . by expanding the potential energy about the saddle point and

.retammg only quadratic terms (harmonic approximation). We have

: available [Eq. (14)] a much mlore, accurate equation relating E to the
. initial conditions than the first-order equation (19). In addition to"
~ taking into account the dependence of E on the mass-asymmetrycoor-

'v‘dmate m and the fission and stretchmg momenta P¢ and ' Pg» Eq. (14) '

alsb includes a more precise dependence of E on the stretchmg

coordma.te s. However, the harmonic-oscillator probablhty d1str1bu- '
twns_that we have used for the initial conditions represent the most ac- -
curate quantum-mechanical result that can be easily o.Bté.ined. In order -
to derive the best expression for P(E, U) that still incorpbrates initial o

‘conditions detérmined quantum-mechanically, we will use t}x'e_'s_ame

' probability distributions for theiinitia.l conditions as fbefd,re,‘ but will
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’(‘,‘; ' use the more accurate equation (14) for ‘'E and tl}e' exact equation S
B A -+ (415) for U. Although the resulting expression for P(E, U) wil_i be e
Do st 47 strictly accurate only to lowest order in E and U, it will in addition ./ {

.. contain higher-order terms in E and U, The higher-order terms |

o represent the effect of the nonlinear transformation (14) expressing
' : E in terms of the initial conditions, Since there are two separate

stePs involved.in the calculation of P(E U), the treatment of one step

essentially exactly and the other step to lowest order in E and U is-

| P
‘

.-'_";;'not completely inconsistent.

We will later calculate an expressmn for P(E, U), vahd in the
i classical limit, in which we use ‘probability distributions for the 1mt1a.1

... conditions obtained by retaining certain anharmonic terms in the ex- '

pansion of the potential energy about the saddle point. - -

-4, P(E, U) forInitial Conditions Determined in the Harmonic ll
Approximation .

In order to calculate P(E, U) we need te invert the two equa.t:.ona L
; {44) and (15) to obtain two of the initial conditions as functions of E A_ ,
"and U and the remaining initial conditions, If we choose m and s

.as dependent variables, this inversion gives

E m=U "%a ) _ S ’ (33a) :
“ ‘ . . : . . v
. 1 . O. ‘ . -, . ;. .>> r.‘
8 = o= 4U(1 - U) E- -1, (33D} e
: ) ) ) a- M0 2 i
‘.. . CL e I A . ) . 8

4

(':: .+, With this choice of dependent variables the transformation from the - .. .
ST initial probablhty distribution to the desired proba.blhty dmtnbutlon is

f ».".; ¥ .)'3_ g1ven by a
C B - o + o0 . ' I Lo .

8 . - Ty 'A . B ,‘: . }-'
‘ "P(E, U) = f dpf j dp P(m,. ,pf,p ) ——E—% 3 O DR




' we have already integrated over the initial coordinates and momenta =

not involved in the transformation. It is understood that the set of . .

equations (33) is substituted for m and s in P(m,s, »Pp Py ), which ..

is given by the product of the probablhty distribution for each normal.
- coordinate and momentum appearmg in its argument as determmed -
in Section IV, _ ' v
The double integral over p_ and P¢ cannot.be expressed in a .
closed form (By an appropriate change of variables, the double

~integral can be reduced to a single integral in which the new integrand |

includes an error function; in practice, this transformation is not very -

useful.) However, 1f we expand the expression (33b) for s -in powers _'

My L | S A

of the. small quantity

0 f s
E

everywhere it appears in the integrand, we can integraté the re.sulting g

expansion term by term, obtaining an asymptotisteries expansion for
- P(E, U). The result is found to be '

2

! su-nECRE, U) (U-7)"  [E-a0(1-0E®] ‘
P(E, U) = — 2. A2z S*P{TTC N Z 2 ’
: (v"C_a"C })J7TET. m . .a C. E
. m 8 L - 5 ) .
(34)
where F(E, U) is the asymptotic series
HE, U) = 14 014 AUU- u) g° [E-4UZ(1- U) E ]
B a C E
0 2 '
4(Mc1/ MO) 'Cpf T CP‘S Mz .o ST
X > + ol - AL (35)
M, M , S ) L

. becomes very large. This occurs only when E aﬁfxd/or U are far

The function F(E, U) is close to unity, except where the term in braces !
‘ i
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from their most probable valueé; (Sinée'this is an asymptotic series
rather than a power series, the expansion conve:rges for a definite

: range of the variables E and U rather than for an mﬁmte number of
terms retained in the expansion,) Thus, the approxuna.tmn F(E, U)= i
.’:: "is a very good one. [Setting F(E, U)= 1 is equivalent to neglectmg_ m-'.,;_/\\"
"(14) the dependence of E on the initial momenta 'p; and p_.] |
An alternative way. of wntmg P(E, U) is more useful for some S
: purposes than (34). If we collect terms in (34) accordxng to powers

2 of (U - -), we obtain

B : - L . o ° . . 2. . . ’ ‘ :. SRR
R £’ F(E, U) - |0 L TR
o P(E, U) = > QZC )'»VZEZ | exp | - —-(-2————2— y S R
* ‘; . » . : 8 ( B

LA @GBS e
fa arpr 12 1,4 L by
X[1-4(U~5)"] exp G(U-—) H? (U-3) 1., . .. (36)
M . A . . : . .f 1. "'J_ . ;..1..
where the quantities G and H (functions of E) are defined by “

e P . . .

_;.," “‘.V. ..'4 . s .\ . -.", 1 . BEO( E-Eo) ."’ '--_'~. - ’ ;- ‘.

LR DR A A ' - G= + .
R . C ZC'EZ P .".".,"
v : . ~ '.n 8 Sl .
: . . v . [ ca, . LS .1 .
P Lt " L S o :
LR, PRLI . ' . o
B tooe TN ; : . 4E

*»

T | CH= 22 L (37b) ...

: . - (" C)'" E R :
S , i 8 . .

e  Itis instructive to compare thé current higher-order result’

., L " for.. P(E, U) with the lowest-order expression (29) derived earlier, .

:+~ 7" Whereas (29) is a bivariate normal distribution, the,current result is .'
et ;. not—in a plot of P(E, U) vs E and U, the lines of constant prob- L
R ' . .-'+ ability are not ellipses. In Fig. 35 is presented a contour map of the ‘,
' AR _ current result for P(E, U); this may be compared directly with the o "
“ ) - map of the lowest-order result shown in Fig. 33, Near the position of *
Ch ' _ maximum probability:the contour lines are close to ellipses, but inthq . ' S :
L S : L 'région of smaller pfobability they tend toward a triangular shape. L
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From the'distribution P(E,U) ibne may obtain, by ﬁerfofmingiv1
suitable integrations or by differentiating, other quantifies.of phySicaljv
inferest. We now list approximate analytical éxpressions.for'such'ﬁt‘
quantities; -the very.good approximation F(E,U) = 1 is used in the :
derivation of these expfessions (éee Secfioh V.B.l'of Ref. 2 for
. details). |

By integratingvover the total translational kinetic energy__E;‘
. 34 o, .

we obtain the distribution P(U) of fractional mass:

1 U -+ ) . S Lo
P(U) = exp [ 1——0—2?—} R ¢ )
S
The mean total translational kinetic energy, as a function of |
lrfractional mass, can be expressed in terms of an asymptotic series

expansion in powers of « Cs :

" B(U) = AU(l—U)E(_)(l'+—21~a2_cs-+.:-'--) - ) | f'(.5'9)
Siéilariég the variance of theAdistrigutionvin tétai‘translgﬁiénai'>:: |
kinefic energy, as a fﬁnction éf fractipnal mass, is giveh B& ‘

GEQ(U) = % [hU?l - I_J)EO]2 a2 Cs(l + hag C, + -;-) {."‘ .(EO)
Higher statistical moments gf the_distribution_ip tqéal tfénslétionél kiﬁetié

energy.(es funcions of fractional mass) could be calculated in a similar manner.

54 This result follows directly from the‘eqpation_ U = % + m and the
distribution for P(m), without the use of the approximation F(E,U) = 1.

It may also be obtained by substituting.(jh)<fpr P(E,U), with

[ |
R IR

F(E,U) = 1;, and integrating. - '_f% ﬁ
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Thé most probable total translational kinetic energy, as'a5~?f;ri

" function of frectional mass, is found to be

woloflondopha] T

I

E._(U)
MPT Y c,

Lu(a -IUEO(l -8 C, + cee)

EO

1

(1- XU - %)2](;bf o? Cot oee) o  v: (ﬁi)ﬁ~~ -

“It is interenting to noté that the most probéble total translational?f‘
‘kinetic energy (for a given U) is slightly less than h(U(l - U)EO ;IF’
; wheréas the mean value [Eq. (39)]is slightly greater. This is because';
‘the dlstrlbutlon P(E, U) is not a normal.distribution but instead has
a small hlgh-energy tail. The difference between EMP(U)’ E(U) and
L u(1 - U)E is small, however, since o C, is typically =.0.005.

We now consider the calculatlon of 1ntegrals with respect to U
over the dlstrlbutlon P(E U). The distribution of total trgnslatlonal

‘kinetic energy can be written as

i
.

P(E) = E_ l/é exp [‘ KEL:;ELl——] J[ dm(l - hm )exp(-H m - Gm?)j
. 2 | T

(ﬁe C. o2 C ) o® ¢ B°

-

(i)

where G and H are defined by (37). The integral in (42) is not .
expressible in terms of elementary functions. We find 1t cbnvenient for
the present purposes to express it in tefms of the functions I (5) that i

are defined for all values of n greater than —%, by the equation



-87;

- In(B) | 2n ié’:_cﬁ(;xu!,- Bx?)dx_ﬂ-}

it
R

=y -zexp(-y - By)dy . -

.ﬁ'fl Prbperties of these functions, including. the differential equation

'?Z;'satisfled by I (ﬁ), recurrence relatlons, -and asymptotlc expansion,_z'k

?f_as well as thelr relationship with the repeated integrals of the error'f%fléfvih”'

' ﬁj{qunction (61 63 ), are dlscussed in Appendix Feof Ref.‘2.,eWe'present: j?,;}ﬁ}?'

"¥°t'1n Fig. 36 graphs of the functions I (5) vs- B for n'= O, 1, andeéu‘ﬁ‘“‘"

o .‘-‘
. Vo

' e The- total translational kinetlc-energy distribution can then e o

 'ﬁriﬁ£en,in terms of these functions as

. . o 0 S N SRR R
P(E)? E exp |- (E=E) . R

2 . .2
(thOLC)

1/22 | dfc E

. - IJ-I (G/I-I) U S APRRINE:
Xgam L’”G/H) TR ) e

4where the energy-dependent quantltles G ‘and H aré defined by (57)

The second term: in the brackets is much snaller than I (G/ﬁ) andfcap_ie_; 

Jee T usualLy be neglected

The variance of the distrlbutlon in fractional mass, as a. functlon

of “total translatlonal klnetic energy, is similarly found to be i




-88-

L [ 1(e/m) - b e/ |

o 2z) = 3 S s

Io(c/) - & 1 (6/M) A

If we neglect the second term in the numerator and the second term in the’

denominator, we obtain the simple result

1 Il(G/H)

2 ~ o _' P .
oy (E) ~ ¥ W{T - S o N (45b)

A graph of the function Il(B)/IO(B) vs {p; 1s given in Fig. 37. From
the asymptotic expansionlof In(B) listed in Appendix F of Ref. 2, we -

: i
find that for large values of G/H » I . i

E cUe(E) - 1/(e6) . e _ (45¢)

Higﬁer statistical moments of the distribution in fractional
mass (as functions' of total translational kinetic energy) are obtainable

just as readily as GUQ(E) . For example, the fourth central'moment is

-~

given by

- R R (7
where we have neglected all but the leading terms. Then;  the kurtosis
_of the distribution (60) is given by . . .- SO )
_ ) _

I - 3

0'U (E) - S

1,(6/H) I,(c/H) - . R e

IlQ(G/H) B T AR

(IU

() gy

R
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r.

" A positive valuelof this coefficient meané the distribution in mass”is
‘more peaked than a Gaussian, while a negative value means the distribﬁtion
}has a flattér toé and is more rectangular than a,Gaussian.. |

We cqnsider finally quantities obtained'by integratiﬁg ové;iﬁoth »}
" E and U in P(E,U) . The mean total translational kineticbenergfvlb

. (integrated over fractional mass)- is found to be given by -

5 2

]

o. | --1 | o a e
E(1-2c)(1+%a"c  + )
0 Lo2c 20 4 eee
E (1 + 3 " -2 0+ ),

G}

it

and the variance of the total translational kinetic-energy distribution

. by .. ‘.
16 C 2
2

a C
s

: 2
. o‘E

12 0,2 2
=30 C(E) (L+bao AR Cpy +

Since the distribution P(E,U) is symmetric in U about U= %,
the mean 'fractional mass (eithér as a function of E or integrated over
E) is “+i..."3r % . The variance of the distribution in.fractional mass

is obtainable directly from the Gaussian (38) for P(U)::

= % Cm ‘ R o :

%
~ We shall postpone presenting any graphs of the quantities derived Ny
. from P(E,U)' until we get to Section VI, where we compare the predictions

with experimental data. .
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2. The Effect of Anharmonicity on P(E,U

Ve are able to easily calculate.quantum—mechanical'probability

.distributions for the initiai conditions énly in the harmonic approximation.

Howevgr, if the nuclear temperature is sufficiently high that classical_ 

statistical mechanics is valid for determining the initial conditions,

: then the pfobability distributions may be Qbﬁained to any desired order> 
“in the initial coordinates and momenta, or even exactly, from Eq. (22);..

'_Ey expanding therpotential enexrgy about the saddle poinﬁ and: |

‘retaining anharmonic terms in the coordinates we are able to discuss

. classicaily the ‘effect of‘the anhermonicity of the potential.enérgy oni 

A the distribution. P(E,U). In order to discuss the distribution P(E,U5

to the next higher order beyond a bivariate ﬁormal distribution, we need .

keep only tﬁose terms in the expansion of the potential energy that will .

affect the éoefficients'of the (E - EO)(U - %)2, (E - EO)B, and |

(U - %)ui @efms-in the exponent of the P(E,U) distribution. Because"“

the equations,(}h) and (15) for E :aﬁd U -depend only upon’the.mass;v

asymmetry cqordinate m and the ;tret;hing coordinate é (disrégarding{-ﬁ;

for the moment, the initia; momenta Pe and és); if suffices to | ”

consider (in addition to the_harmonib terms) only the three aﬁharmonic"’f"'

> 35

4 - ' '
, and m in an expansion of the potential energy.

2
terms m's, s

.22 ‘The two cubic terms m52 and m3 arenabsenﬁ‘because QV’ is an. .

even function of m . Nonzero cubic terms of the form sd2 , for
exémple, introduce only pre-exponential dependences on B and U

after the integration over d 'is,performed,s; fk
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e

parameter. In the range of x below 0.78. the third derivative K
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We the*elore evpand the potentlal energy about the saddle point with

. respéct to the variables m and s , retalnlng terms as follows

’

v. _ A 2 _l_l 2 1 -2 1 3 l - v. 4
Cb/ - ?/O:+_2_Kh_m teK s v e K ms t g K 8T on Kﬁmmmvm,'”'dﬂ

The classical probability distribution for the coordinates m and s is ‘:‘°

;therefore given to this order by

y N - ) R l"
Plm,s) = N-eXP{:'(% Khme * 3z Kss2 + 3K nfs ¥ % Kess® * B Kmmmmm‘)/?J ?.

o e
vhere N is a normalizetion constant. ' o . . o ‘ I:'f&
Figure:58 .shows the third derlvatives K gtnandn e T
Ksss (evaluated at the saddle point), as functions' of fissionability
s
which couples the mass-asymmetry coordinate and the-stretching coordinate,
is positive. This meaes that the most probable value of s decreases
with increasing. e ; i.e., the most prObable distance between spheroid
centers decreases as the mass asymmetfy increases. This resultsvin a
greater translational kinetic energy at infinity.than if the distance'

remained unchanged.~ Over the entire range of X (between 0 and O. 80)

the stretching third derlvative K ss is negative. The effect of this

. 1s a contribution toward a low-energy tail on the distribution in E.

A rough estimate of the mass-asymmetry fourth derivative K (evaluated T

at the saddle point) indicates that it is negative and fairly independent

of x . For x = 0.677. the estimate yields K 15 E (O) . . The

.
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'beffeét:of this term is a contriﬁuﬁion toward a.peaked ﬁasé distributibn, o
but the effect is small, since this term accounts for.only about 20% ,of

the final value of the (U - & b term in the expoment of - P(E,U). (In = ‘,fi
- all numerical reéults involving anharmonic terms thaﬁ we present, the /. e
quantity Kﬁmmm is teken to be zero. thﬁthe scale of the gfaphs pfesenééd;

here, these results are indistinguishable from thése calculated using the

above estimate for K .)
mmm

By using the set of equations (33) for m and s , and by taking
 into account also the classical probability distributions,in"thé ﬁomenta

pr and p_ , we find for the desired distribution fwé'have collected - .

terms according to powers of (U - )] - L - v-ih

3 B(E,U) = NEOF(EZU) o _ Ks(E - E7) . Ksss(E - E7)
A _ 2 =XP 2 .2 3 o3
o ET 200" E - 600 E

| .
X1 - WU - 32 exp| - a(u - ) - 5%V - 3) "

52 K (E) (U - })

L

+
30 E°
where G end X (functions of E) are now defined by
Kk wEE-°) k(8. (x E°)2> -
G = M, _s _ _mms'” " _ Tlsss " .
e o o° B2 26aE 6o E°. B
sx (°)° 2x_ E° & () (- -k N o
‘H = |5 _ o mms_ " ’sss 4 o TR o

00" B> @QE . ea5-E5._ . 2koe
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The function F(E,U) is given by (35), where it is understood that =
the classical limits are +to be used for the constants CS >and‘ Cp
appearing in it.

We present in Fig. 39 a contour map of P(E,U) vs E anam U ":14

. for the compound nucleus 85At215 and 0 = 1.13 MeV, calculated using - - -

-the completely classical result (48). (Thetnﬁclear.temperature is
:':sufficiently high that classical.stétistical mechanics is valid for }-
determining the initial conditions.) By cbmparing thisﬁwith Fig. %5.

we ~ln eee the effect of the anharmonicity of the potential energy 63‘;U
- the final distribution (eee also Fig. 33). The lines of constant
'e probability stlll tend toward rounded triangles, but not as markedly %
.as in Fig. 35. V ‘ | -
If we neglect the (U -'%)6 term in the,expenential of (48),
the resulting expression is of the same form as (36). Thus., we are able .
 to use the results previously derived for those Quahtities obtained by
.integrating over fractional mass: Eqg. (44) for P(E), Eq. (45) for .
Z:GUQ(E), and Eq. (46) for aU(h)(E). Closed expressions for:the qpantifies
that result from integrating over - E are not so readily obtainable becaqse
‘of the presence of the cubic term in E in the exponential of P(E,U).
. The expression (48) for P(E,U), although étrictly_correct only
to the next higher order beyond quadretic in E and- U B contains-further
. hlgher-order terms representlng the effects of the nonlinear eqpation (lh)
for E . If we retaln in (L18) only terms that are one order hlgher than :'3
qpadratlc in E and U 5 e obtaln (we regard any pre-exponentlal

- factors as of higher order) .




Q- -

A N [ K(U-%-e K»(E—Eo)
I m S .
P(E,U) = —— exp |- - R :
cE”. {_ 28 28 a(E) .
. 0 142 sss> 0 5,;‘, L
_.(8“5 B aKms)(E - E)(U B ) +<Ks T Ba (E-E) el
. 26 EC_’ . o o° (EQ)3» '
- ' 8K 2K K b
a2 - . + olr (U »- *2<) ) . . o i
) . o (49)

This result represents a consistent order of appfoximation in both the
initial conditions and the equations for E and U.
The most probable. total translational kinetic energy, as a
function of fractional mass, is found from (49) to be . B
o § A a mes 112 : } o :
vEMP(U)=E§l.-l+ 1-—— (U-—2-)+-»-j . - (50)
L . 8 .
It is instructive to compare this classical result -with the result (L1)
obtained by use of the harmonic approximation for the initial conditions.
For x in the neighborhood of 0.67, a K /(8K) =& 1/5 ; thus, the
most probeble total translational kinetic energy decreases with increasing
(U - —};)2 only about four-fifths as rapidly in (50) as in (L41). The
physical reason for this difference is that in (41) the decrease in total
translational kinetic enefgy with increasing mass asymmetry results solely
. from the decrease in the product of the charges.pf the two fragments,

| whereas in (5Q account is aiso taken of the decrease in distance between‘
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- spheroid centers (which tends to increase the kinetic energy) as the -
mass asymmetry increases. '
In addition to determining the rate of decrease of EMP(U) with

12 the coefficient of the (E - E )(U--—) term also gives the derw-u

(-7,
ative of the variance of the fractional mass at E —Eo. From (49) we.

find that

) o &%) = o/x_
and that |
d0%(E”) eBK, - ek )
dE ’ KmZ 0.2 EO '.
o Slnce 8K ><1K .S the derivative is negati\}e.

For values of x of interest in fission, the magmtude of the
negative quantity Ksss/(éa is roughly one-half Kg; thus, the coefficient
of the (E - EO)3 term in (49) is positive, indicating that the deviation of

. P(E, 1/2) (the distribution in E for a symmetric mass division) from a
pure Gaussian is toward a high-energy tail (positive skewness). The
origin of the Ks term, which contributes toward the high-energy tail,
is the nonlinear relationship (14) between E and s. The opposingcon-
tribution from the Ksss/(éa) term toward a 1ow-energy tail arises phys-
ically Dbecause the potential energy increases more rapidly as the frag-
.ments approach one another than as they eeparate. _ .

An examination of the coefficient (includiﬁg the over-all minus

~ sign) of the (U - %)4 term in (49) indicates that it is negative. Thus, the
prediction is that P(EO, U) (the distribution in mass for E = EQ)’is less -

peaked and more rectangular than a Gaussian distribution (negative :

kurtosis).
In this sectmn our concern has been the mathematical derwatmn

"_and comp1latlon of the formulae relevant to a discussion of the distribu-

tions in fragment total translational kinetic energy, mass, individual ex-
~ citation energies, and individual angular momenta. By using these for-
mulae and the graphs presented earlier for the constants appearing in
them, curves expressing the theoretical predictions may be prepared for
direct compe.rison with experiment, Thi-s will be done in the next sec-
tion for distributions in total translational kinetic energy and . v Lk

mass,
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Vi, COMPARISON OF THEORY WITH EXPERIMENT

In the previous section we derived probability distributions

- for certain observable characteristics of fission fragments at inﬁpity: _

their total translational kinetic energy, fractional mass, individual - y
excitation energies, and individual angular momenta, From our ear-
 lier discussion regarding the appliéability of the two-spheroid model

(Section 1I.B), we know that these distributions are ‘expected to de-

scribe only the fission of nuclei that haAve' values of the fissionability .

parameter x < 0.67.

Experimenﬁally, there is observed a marked transition in the o
properties of fission at about radium (x = 0.684)¥m'a.ss divisions are
‘predominantly syinmeitri’c for elements lighter than radium and pre-

" dominantly asymmetric.for elements heavier than radium, . It is noti‘i;\
clear whether this experimentally observed transition is associated. :
‘with the transition in saddle-point properties‘at 'x = 0,67; no expla-
nation of asymmetric fission for the heavier elements is foreseen
within the framework of the two-spheroid modél.. We will neverthe~

less use the experimentally observed transition between symmetric

" and asymmetric mass divisions as the dividingépoint for determining -

what data the theory should be compared_v}ith. We will therefore
compare the theoretical predictions of the model with existing exper-

imental data for the fission of nuclei lighter than radium.

b B
‘A recent experimental determination of the fission barrier of 81T1201

indicates that (ZZ/A)crit has a value{ @of 48.4+0,5 .[rather than
'Green's value(“'_‘*o_) of 50.43 that is used here]. When this value of

_ (ZZ/A) is used, the value of the fissionability parameter x for

crit

- each compound nucleus is increased somewhat. For the comparisons - -

. between theory and experiment that are made here, the vlargest value
.of fissionability parameter that occurs is 0,677 ‘when Green's value
of (ZZ/A)crit is used, and 0,701 when the newly reported value is

used.




..97..

Fission-frégment mass distributions, obtained by use of
radiochemical techniques, ° are available for the fissién'bfiseveré15 
'»ofdtﬁe'lighterrelements*,fﬂ (65-70). Single-fragment translational
“ 1kinetic—energy distributione have been determined for the fiesion of'

a number of light nucleil (z},zg). In addition, two-dimensional dietri-’fy

,‘butions in mass and total translational kinetic energy; obtained by?use of

- semiconductor detectors and two-dimensional analyzers,37 have recently i

'~_been reported for various nucle1 lighter than radlum (Zl: 75 78)

:.the other hand, for the fission of .the lighter elements, there exists

at the present time no ‘experimental information regarding the distributions

- in individual excitation energies and individual angular momenta. The

therefore
immediate test of the theory will (/ © be the comparison of predictions

i

with experiment for distributions in total translational kinetic energy

- and mass [P(E‘U) and quantities derived from it].

The more detailed comparisms lel be made with the data of

T 1ith ,
. Burnett (76) and/the data of Plasil (77). Burnett bombarded 8531209 _

 and 79Ap VT 4itn alpha particles of energies 65.0 MeV and 70.0 MeV, .-
~respectively, to form the compound nuclei 85At2-l3 and 81 T12 l The .

- corresponding values of the fissionability parameter x are 0.677 and

0.651, respectively. Plasil studied the heavy-ionfindueed fission of ‘
37 |

kihetic enefgies El and E2 of the two fission fragments at infinity
and recording the corresponding number of events._.From this experi-
~mentally constructed distribution P(Eq, Ey), the experimental -
distribution - P(E,U) is obtained by use of the transformation (18).

These experiments consist of measuring in coincidence the translational



the compound nuclei 7605186 (x = 0.619) and 8 198 (x 0.677) at
several bombarding energies ranging from 102 MeV to 165 MeV.% The
former was produced in two ways from the reactions 68Er170 + 80 6 and

ATk 12 . - . 182, 16
7OY° + 6C , and the latter from the reaction 7hw + 8

We will also refer freguently to the data of Britt, Wegner, and
" Gursky (75), and the date of Unik and Hulzenga (78). The former bave

studied the 25.5-MeV -heB—lnduced fission of Aul97

6 2 . 79 2
20 . 209 209
82Pb ) and 8531 _

22.1 MeV was also used. The latter authors have studied the 42-MeV  :

209
83Bl

with other data. - | - |

nat
81Tl

; for the 83Bi case a bombarding energy of

helium-ion-induced fission of . Comparisons will also be made
.[A comparison of sqme-of'these experimental data with the :
~ predictions of ﬁhe two-séheroid model is also made by Burnett, Piaéil,;f"
and. Thompson (79), whose experiments were carried out at the Lawfenqe
Radiation Laboratory, Berkeley, simultanecously withvthe development of
the theory.] - .
&he ﬁheoretiéal distributions Aepend upon the nuclear tem;
peréture @ at the saddle point, which is a function of the internal
excitation energy Eii at the saddle point. The determination of

@ -in terms of Eii is subject to an gppreciable_er:or. .For'the
comparisons between theory and experiment made in this work, we use
the semiempirical nuclear equation of sta;';é (8_9)__

Sp 2 o
By = (A/8) ® -0,



'.knowh, but probably does not exceed a couple of MeV—it was neglected
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SP

ox 8re in MeV, and A is the number of.nucleons S

where both & and I

in the compound nucléus. The excitation energy at the saddle point -

is in turn given by the total bombarding energy in the center-of~mass' ~f 

system, plus the binding energy of the projectilé to the target, minus .

" the fission-barrier energy. The fission-barrier energy is equal to"‘(

: . : 38
the liquid-drop fission-barrier energy (}2,%1), minus the shell

correction to the ground-state mass (81, 82), plus the shell borrection-i}  5

to the saddle-point mass. The saddle-point shell correction is not”Q '

here. These considerations are for a compound nucleus that is not -
S o i
rotating. ‘The determination of the fission-barrier energy and the = |+

. nuclear temperature for a rotating nucleus is discussed by Plasil (77);

his procedure is briefly touched upon below.
Two complications present in the heavy-ion-induced fission °

reactions should be mentioned. First of all, because of the high

- excitation energies inyolved, it is possible that the compound'nucleus

will fission following partial de-excitation by the emissioﬁ of one or

more neutrons. If this occurs, there will be a spread In the saddle-

point excitation energy (and hence the nuclear temperature 8) at the.v"'"

time of fission. Secondly, heavy ions are capable of creating compound

38

A plot of the liquid-drop fission-barrier energy vs. x. is given
in Figs. 4 and 8. For the determination of 6, the true liquid-
drop fission-barrier energy is used rathef than the fwo-spheroid

approximation to tﬁé barrier.
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¢

nuclei posseséing 1arge.amounts.éf aﬁguiérbmomenﬁum.. Bécause the ioﬁs;‘iQf
" strike the target with varying impact paraneters, the angﬁlar momentum
ranges from Zero tovsome'maximum value. Since the fission thresholdi 
.'is a sensitive function of angular momentum (117, 83), itlwill have &

‘range of values, resulting in a spread in the saddle-point excitation" f

- energy (and hence 6). The effect of both these complications on nuclear f‘

. temperature was teken into account by Plasil (77). He obtained an
- .average value of 0 Dby calculating the compgtition between fissidn'and‘
‘neutron emission throughout the de-excitation chain,39 and by-integréting_
over the distribption of angular momentum;
'Alfhough the effeét of angular momentum on the nuclear temperéﬁuré‘
.-Acan bé_taken into account as described above, it should be recalled thét.,

the_entire theory developed here is restricted to the case of a nonrotating

compound nucieus. This must be borne in mind when comparing the theoretical.

predictions with the data for the heavy-ion-induced reactions. All't~
conclusiops dfawn on the basis of such comparisons are thus subject to

i .
the provision that angular momentum has little effect on the fission
process, ekcept in affecting somewhat the average nﬁclear‘temperature ét
' the saddle poipt. | |

The theoretical distributions are.calcﬁlated for fragments

observed (at infinity) before they have emitted any neutrons, whereas

39

For the cases studied it was found that the average number of .
neutrons emitted before fission seldom exceeds one; thisjmeans that
the uncertainty in the nuclear temperature arisihg'from this effect -

~1is small. .'
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the experimental kinetic-energy measurements are made after the emissioh_;]
" of neutrons from the fragments. Fragment neutron emission decreases
the average translational kinetic energy and introduces a dispersion in : -

the distributions, thereby inéreasing the variances. When compa:ingv

'theory and experiment, it is desirable to correct the ekperimental”resulfs S

for such neutron-emission effects. .The problem of neutron-emission ‘
corrections has been discussed by Terrell (84), by Heines (85), and by coe
" Burnett (76). By maklng certain standard assumntions regerding the { |
‘neutroﬁ emission, it 1s possible to derive formu;ae for correcting_the

“mean total translational kinetic energy E(U), the variance ¢ 2(U) ~of

the total translational klnetlc ~energy dlotrlbutlon, and the varlance

oy (E) of the mass dlSurlbutlon. L
| Using Burnett's neutron-correction fofmulae, Burnett and Plasfl
hafe corfected all statistical moments obtained from their data.‘ (The'
formulae of Burnett differ slightly from thosé of Haines because certain
highér-order terms are re£ained by Burnett.) With:the exéeption of the |
mean total translational kinetic energies, the.data of Britt, Wegner, and

i : .
Gursky (12) have not been corrected for the effects of fragment neutron’
emission. The data of Unik and Huizenga (78) have been corrected for
neutron-emission éffects as régards the mean totai translational kinetic
energy and thé full width at half maximum of the over-all total
translational kinetic-energy distribution, but not otherwise.

Although neutroﬁ-emission corrections can be made for the
statistical moments of the distributions, it is not possible to easily
.correct the dlstributlons themselves. Thus, when comparing theoretical

and experlmental dlstributlons, it must be borne in mind that the former :

‘refers to pre-neutron-em1331on and the latter.to post-neutron-emlssion.
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To distinguish these  two cases we denote by a superscript asterisk a_,'

quantity measured after neutron emission has occurred; e.g., E = 1s -

..the total translational kinetic energy measured fbllowing neutron

emission.

While making comparisons of the theoretical aﬁd experimentei o

- distributions it should be kept in mind that no arbitrary parameters

have been adjusted—that the theoretical and experimehtal distributiOne

" have not been normalized to one another in;any‘way. Also, it should

'be rerembered that the theory is strictly valid only in the nelghborhood -57 V.

- u,\l
- of the most - probable events; we w1ll, however, extrapolate the ”_l*‘

v, theoretical curves to cover the entire region for which there ere
| experimental data. -[With the exception of Figs. 40 and 46, the
‘ figures that we will examine have been renroduced (with additlons,

.and changes in notatlon and format) from Refs. 76 and 77.)

, * o
Figure 40 shows the experimental contvour map-of P(E', U) vs

% . " . .
~E and .U for the compound nucleus 85At215 , for which the nuclear
temperature at the saddle'point is © = 1.13 MeV (§§).‘ Apart from
the'effects of neutron emission, as dlscussed above, thls experimental

contour map may be compared ‘directly with thentheorefical maps calcu-

~lated for this experimental situation in each of the three successively .-
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. we ‘compare the shapes of the distributions with the pheoreticél

103~

improved orders of approximation discussed in Section V—see Figs. 33,

%5, and 39. (The same relative scales for E and U are qsed for .

all four gréphs. However, the experimental contour lines are labelled
differently from the theoretical ones.) Since the nuclear temperature =

is sufficiently high that classical statistical mechanics is valid -

for determining the initial conditions, the completely classical
map ‘calculated by including the effects of anharmonic terms on the .

initial conditions (Fig.. 39) represents the best theoretical estimate

5\

.available, and we will confine our discussion to a comparison with';l{"

0
i
'

it.
The experimental and theoretical most probable values
of total translational kinetic energy are seen to agree

remarkably well. In addition the theo}y predicts that the most

. probable value of U:* should be one-half, and this is verified "f7} '

experimentally—the fission events are.predominantly symmetric.inJ( f

mess rather than asymmetric. Furthermore, the widths of the.

distributions in E and. U are seen to agree well. ' Finally,

predictions of approximatély bivariate normél distributions

v/.e
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. modified by certain.characteristic higher-order terms, The over-all

agreement between the shapes of the experimental and theoretical con- .

tour lines is "7 good, In the region of maximum probability
the experimental contour lines are approximately ellipses, whereas

in the region of smaller probability they tend to become rounded tri- -

angles, as predicted by the theory: The experimental mass distribu- - SR

tion, as predicted, is broader for low values of the total translat10na1
kinetic energy than for high values. Other details of the agreement
between the theoretical and expenmental ma.ps will be compared later
. in the form of statistical moments.

In Ref. 77  comparison is made by Plasil between theoret-

ical and experimental contour maps of P(E, U) for fission following two-

heavy-ion-induced reactions. The agreement presented there is not
as good as for the 85A‘t213

theoretical maps there are calculated using the 1ntermed1ate approx=-:

‘case we have dlscussed However, the 1.

imation for P(E, U) in which the initial conditions are determined in
the harmonic approximation. The agreement is significant.ly im-
proved when the effects of anharmonicity on the initial conditions are
‘taken into account. Also, the compound nuclei undergoing fission

possessed considerable angula.r momentum, and the more highly excited -
fragments would have emitted more neutrons, which could possn.bly ai'fect
the experimental distributions.

Figure 41 shows the theoretical and exper1menta1 distributions

in mass, P(U), and the theoretical and experimental distributions in

total translational kinetic energy, P(E), for the compound nucleus

82Pb 98, each at two different nuclear temperatures The theoret:.cal C

curves are calculated in the 1ntermed1ate approx1mat10n for P(E, U)
in which the initial conditions are determmed in the harmonic approx-

imation, As before, we first compare the most probable values of

'hoAlthough the approximate formulae det'ived in Section V for P(U),

" P(E), and the various statistical moments are sufficiently accurate
for calculatmg the theoretical curves of this sectlon, the curves have
actually been calculated by numerical integrations over the full ex-
pression (36)[01' the full expressmn (48)] for P(E U), with F(E, U)

“

retained,

v serrer




o

- 85 ' 81

. slightly higher than the theoretxcal one, For the At
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the total translational kinetic energy, which are seen to agree fa-
vorably Next, the widths of the experimental distributions in both
kinetic energy and mass are seen to be reproduced well by the theory.

In addition, as the nuclear temperature increases, the theory is seen

" -to correctly predict an increase in width of each distribution. Finally, 4
‘we note that the over-all shapes of the experimental and theoretical . o

“distributions in both ‘E and : U are in approximate agreement (each

distribution is approximately Gaussian). Because of experimental

uncertainties, including the uncertainty of the effects on the distribu-

. tions of neutron emission from the fragments; we will not compare

_numerical results for skewness in P(E) and kurtosis in P(U).

We turn now to a comparison of the mean values of the total

. translational k1net1c energy as functions of fragment mass, Shown

in Fig., 42 is E(U) vs fragment mass AU for the compound nuclei I
Atz13 T1201, and 82 Pb198, the latter for two temperatures, ;‘

In this figure, as well as in the two succeeding ones, we indicate by a

solid line the result obtained by use of the intermediate appi‘oximation

" (36) for P(E, U), in which the initial conditions are determined in the

harmonic app’roximationl. The dashed line represenﬁs the result cal-
culated from the expression (48) for P(E, U), in which anharmonic
terms aﬁfe( considered in determining the initial conditions, Since the

nuclear temperature is sufficiently high that classical statistical me-

.chanics is valid for determining the initial. conditions, the dashed line
" in each case represents the better theoretical estimate', and we- will

confine our discussion to a comparison of the experimental results

with'it,

>

- We note first of all in Fig. 42 that for three of the.vfou: cases

the agreement between theory and experiment as regards the mean

total translational kinetic energy at symmetry is excellent, For the

198 at ©= 2,07 MeV) the expenmental value is

213 201
85 and 81T1

cases the experimental decrease in E(U) with increasing mass asym-~ - .

remaining case (82 Pb

metry is essentially as predicted by the theory, although the exper-

imental points lie somewhat above the theoretical curves, However,
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for the two 82Pbigs cases (formed by heavy-ion bornhardrnents),"{a"
the experimental points do not drop off with increasing asymmetry
nearly as fast as the theoretical curves, Indeed, for the case in

- which @= 2.07 MeV, the experimental values are essentially 1nde-f»
pendent of asymmetry. ' B
- The data of Britt, Wegner, and Gursky indicate that E(U)
decreases with increasing mass asymmetry,': although they find in
299 4 25.5-MeV
for E(U) to actually increase at large asymmetry(75) (Note that these

some cases (in partlcular, 83B He ) a tendency

authors plot their data as-functidons of fragment mass ratio ratherthan - |

fragment mass or fractional mass.) The experimental E(U) curve

of Unik and Huizenga also decreases with increasing mass as_ymrnetry."(z_S_).

As Haines has pointed out, the discrepancy between the calcu-
lated and experimental E(U) curves would be reduced somewhat if ac‘;:l-
count were taken of the change in the mean charge density of fission ‘
fragments with a change in mass asymmetry(B__?j; On the average, the
- lighter fragment ar.:quires' a vslightly larger number of protons than'its
proportionate share, and the heavier fragment aoquires a slightif
smaller number The product of the charges of the two fragments,
and hence thelr translatmnal kinetic energy at 1nfm1ty, is thus in-" -
creased. somewhat over the corresponding value calculated here (1n
which both fragments have the same charge densuty) This effect is
of the same order of magnitude as the effect of the anharmomc:.ty of

the potential energy, and in the case of ~85At213 and 81T1»201 taking

this effect into account would corne close to.removing the difference

'between the calculated and experimental E(U) curves, On the other
hand, the 1arge dlscrepancy between the calculated and experimental

curves for the. 82Pb 198 cases would still exist even if the effect arising

from the difference in fragment charge densities were taken in account.
The suggestion has been made by Plasil that the angular mo-

- mentum present in the 82Pb198 cases is possibly responsible for the |

marked dev1at10n of the experimental E(U) curves from the theoret-

ical ones('?’?) This suggestion is consistent with the. fact that for the

two cases in which very little angular momentum is present (85At213
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and T1201, formed by alpha- part1cle bombardments) the theory -

81
and experiment are in substantial agreement, and for the 82Pb198

_case in which there is less angular momentum present (@@= 1.37 MeV). - =

' the agreement is better than for the case of greater angular momentum

- present (©= 2.07 MeV), To see if this actually is the expla'.na.tiorim the

theory should be worked out taking into account. angular momentum, '
this presents an 1nterestmg problem for the future. ,

In Fig. 43 we compare the theoretical and experimental var-
-iances of the total translational kinetic energ;r' distributions as func-
" tions of fragment mass [02 U) vs AU] for the same experimental -

situations as in Fig. 42. The agreement near symmetry is excellent
213 201

.~ for the At and T1 cases., For Pb 198 (heavy-ion re-

85 . 81 82
actions) the agreement near symmetry is good for the O= 1.37-MeV

.case, but for the ©= 2,07-MeV case the experimental points are sonj;e- ; .
what higher thar.x‘the theoretical values. In all cases the theoretical &
curves decrease with increasing mass asymmetry, - This prediction is ':v
not borne out experimentally in the ‘85At213 and 8‘1T1201
experimental variances increase with increasing mass asymmetry.

 The trends of the two o, Pb 0

cases~these

variances with rhass asymmetry are
‘rather uncertain. , _ ‘ |
Britt, Wegner, and‘Gursky have found in three of the four cases
reported that the variance O'E (U)Zl(;sgessentlally 1ndependent of fragment
: mass(,'z_‘j_). In the fourth case (83B1 + 25.5-MeV He ) O'E(U) was ob- -
served to remain essentially constant near symmetrxc mass divisions
and to increase for more a.symrnetnc divisions. The data of Unik and
Hulzenga. also indicate that cﬁ U) is essentially mdependent of fragment
mase. (78) ‘ ) '
The comparisons made for ,0'123(0) indicate a fairly significant
- disagreement between theory and experiment. The theoretical curves
- would be scarcely changed if one were to take into accou_.x;t‘ further an-

harmonic terms in the potential energy—any pure liquid;di'op result

that predicts that the mean total translational kinetic energy should de- :

crease with increasing mass. asythetry (see Fig, 42) will also predicf

‘that the variance of the total translational kinetic energy shoulddecrease
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,

- with increasing mass asymmetiy. It thus appears that the exper-,“_
imental constancy or increase in O'E:(U) with increasing mass asym-:“"
‘metry is caused by some effect other than those present in apure: -

" liquid-drop model.

Burnett has suggested that the disére?ancy between theory and )

experiment as regards oé (U) may possibly arise from the effects of -
single-particle shell structure(76). If the doubly-closed shell at frag-
ment mass 132 tended to make the heavier fragment nearly spherical

a portion of the time, then the separation of the fragment centers .

would decrease a portion of the time, resulting in an increase in transs

lational kinetic energy. ' Since only some fraction of the total fission

“events would be affected by the doubly-closed shell, there would also

" still be normal fissions \}Vith lower translational kinetic energy. This .

mixture of fission events—some predominantlylow in kinetic energyigv
" and some prédéminantly high—would cause the variance to be greater
than it otherwise would be. The suggestion that shell effects are re-

sponsible is consistent with two pieces of experimental ev1dence First

of all, as was pointed out by Burnett, the increase in 0' (U) -begins for

213 and | Tl?'o'1 at fragment masses 120- 125 rather than

both At 81

85

at a constant mass ratio. Secondly, the increase in 0 (U) with mass - ”:, '

asymmetry becomes less pronounced as the nuclear temperature m-
creases; indeed, for 82‘Pb'198 at ©= 2.07 MeV, o (U) is essentlally
independent of mass asymmetry, This dlsappeara.nce. of the matked °

disagreement between theory and experiment as the temperature in-

creases would correlate w1thuthe dlsappearance of single-particle shell -

structure at high excitations, Work on the cause of the discrepancy
represents another interesting problem., ‘ . ,
Variances of the mass dzstnbutlona a8 functions of total trans-=

- lational kinetic energy [0' (E) vs E] are shown in Fig. 44. The’

magnitudes of the theoretlcal and experlmental va.rlances of the mass

Ly

The large amount of augular momentum present'in the two 82Pb198
cases could, of course, be responsible for the near-constancy of

2

E(U) as a function of U (rather than a d1sappearance of shell struc-

ture),
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distributions at the most probable total translational kinetic energy -

are in excellent agreement for the 85At213 and 81T1201 cases, and

in good agreement for the two .82‘Pb'198 cases, Furthermore, for the

two former cases the theoretical curves correctly predict the over-all

shapé of the curves, including a flattening at high E and a very r'épid'

rise at low E. At both high and low E, however, the experimental

points deviate somewhat from the theoretical curves. The experimental -

198

curves for the two Pb cases do not possess the characteristic

82
"hyperbolic" shape predicted by the theory, and observed in the former:
cases. Indeed, for the ©= 2.07-MeV case the experimental curve is

essentially -linear, It is again possible that the discrepancies between
198

theory and experirnent for the two 82 Pb cases arise from the ef-

fects of angular momentum or fragment neutror emission; these possibilities

should be investigated.
- We have thus far been mainly concerned with comparmg detalls

of the distr;butlons in mass and total translational kinetic energy for a
given nucleus and excitation energy (or rather four such combinations);
The theory we have developed also predicts the dependence of the distri~
butions on nuclear temperature, and their dependence on fissionability
parameter | B

We turn now to a comparison of theory and experiment as regards
the temperature dependence of the distributions. The mean total trans-
lational kinetic enér'gy is prediced by the theory to be (for all practical
purpbses) independent of nuclear temperature. Plasil finds that for five
different nuclear temperatures, rangmg from ©= 1.37 MeV to ©O= 2,07
MeV the mean total translational kinetic energy E for the 82Pb198
case varied by 3 MeV (With experimental errors on the values of E

set at =5 MeV) ("(7). For 76 s18 86 (formed in two ways) he found that for

. six different nuclear temperatures covering the range 1. 49 MeV €0 <
' 2,06 MeV the values.of E varied by 5 MeV (errors on E of % 6 MeV)

These data are thus in substantial agreement with the theory.
' The variances of the distributions in E and in U are pre-
d1cted to ‘increase with increasing nuclear temperature. The compar="

ison of theor}r and experiment as regards th1s pomt is made for the
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198 - 186 o, ke

‘82Pb and 605 cases in Fig. 45.” We again note the si-gnificant

agreement between the magnitudes of the theoretmal and experimental

variances in both mass and total translational kmetm energy., Further-

more, theory and experiment are in substanital agreement as regards .-

the dependence of the variances upon nuclear température, " This is

198 186 ;

- especially true for the Pb case; for 76- the experimental -

82

slopes for both. w0 LZI and op are somewhat  smaller than the

theoretical slopes. _ : .
The theoretical dependence of the most probable total transla-

tional kinetic energy on fissionability parameter is compared in Fig,

: 46 with the data of Viola and Sikkeland. 2 (This figure is reproduced

: from - Ref..:3.) . As in Fig. 18 the solid curve represents the result A

for nonviscous fragmen{:s with hydrodynarﬁic_ flow of the type we have

been considering (a superposition of an irrotational flow and a flow

_ corresponding to a uniform rotation), The dot-dashed curve represent's

the result for infinitely viscous fragments (which would separate to

 infinity without oscillating), and the short-dashed line represents. a

simple approximation (see Section III, C) to the former curve, In ad- .
dition to the data for nuclei with fissionability parameter x $ 0.67,

we have also included the data for heavier elements, with fissionability

parameters up to x = 0,807. The experimental most probable kinetic . '

energies for nuclei with x < 0.67 are seen to be reproduced well both

l;2
For the benefit of those making a comparison between this figure and .

Fig., 6 of :Ref. 3, . the preliminary data présented there were over-
corrected for the effects of neutron emission from the fragments; the.

agreement is better than indicated there.

?t should be recalled that the variance 0'2 retains its linear depend-

ence upon © at low temperatures in the t»tvjo-spheroid model because
the mess-as?mmetry frequency is zero (as a consequence of the zZero
neck radius of the saddle~-point shape). In the actual 'situation, of |
course, the neck radius of the saddle-point shape and the mass-asym--
metry frequency are not zero, but are small. The variance 0'(?3 of
the mass distribution should therefore approach in the real case a

small finite value, rather than zero, as the temperature goes to zero.

PRINE SIS

T A
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in magnitude and in their dependence on x by the solid line (nonvis-.
cous fragments). For x2 0.67 the exper1menta1 pomts are higher
than the theoretical estimate represented by the solid line. Recall
“that for x > 0.67 the two-spheroid model is inadeq{xate,' amcng other
r‘especte, in that its saddle-point configuration is more 'elongated than
the true liquid-drop saddle-point shape. Thus, the translational kinetic g
energies predicted by the model for x > 0.67 are exp.ected to be too
low. ' '
The comparison between theory and experimeﬁf as regé.rds the
variation of widths with fissionability parameter has not yet been made. " |
There are insufficient data on either the widths of the mass distributions
or the widths of the total translational kinetic-energy distributions to
. establish their dependence on x. However, the single-~fragment trans-

. lational 'kinetic~er_1ergy. diétributions of Viola and Sikkeland(@)cover a.
wide range of x. 'In the region 0.569 < x < 0.650 they have reporfed |
the full widths at half maximum of single-fragment kinetic-energy dis-
tributions for nine nuclei, Since the r eactions studied were formed by ..
" heavy-ion bombardments, considerable analysis [similer to that per-
formed by Plasil(T?)]is required to determine the average nuclear tem- -
'perature at the saddle point. If the nuclear temperature for each of
these reactlons were determined, the experimental widths could then -

be compared directly with those predicted by the theory.

» The remaining comparisofxs between theory and experiment will -
be made in a series of three tables., We compare in Table I for sev- 4
eral compound'nuclei and nuclear temperatur‘es the over-all mean

total translatioinal kinetic energy E, the over-all variance 'O'I::Z of the
total translational kinetic-energy distribution, and the over-all variance
'0'3 of the mass- di_stribution.' Table II is a similar cox;nparison, “but
in terms of full widths at half maximum of the distributions rather than
variances, (For a Gaussian distribution, the full width at half maximum
is equal to the square root of the variance multiplied by 2. 35‘4’8. ) In
Table III we compare with theory the full widths at half maximum of -
~mass distributions obtained by use of radiochemical techmques. From _
the comparisons made in these three tables we see 'tha‘b ‘bhere are no unexpec‘bedly

.. large ¢ disagreement between theory and expenment
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P L To. summar1ze this sectlon, we have compared the predlctlons

s '_‘ji"(;' of our model with existing expenmental data for the fission of nuc1e1

fhghter than radmm distributions in mass and total translat10nal ki-"

~“netic energy From these comparlsons we have learned that the two-t

K

7 spher01d model is capable of accountlng for a large number of the ob- :

. served propertles of the dxstrlbutmns but that some d1screpanc1es

-

N remain. The 51gn1f1cance of the compar1sons w1ll be d1scussed in
v Section VII. L - ” ' ' '

sa -
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VIL.. SUMMARY AND CONCLUSION

We have studied in connection with nuclear fission the division '

of an idealized charged drop, usmg a sunphﬁed version of the liquid-~-
drop model. The coordinates for our model were selected so as to

take into account the appropriate degrees of freedom essential to a dis-

cussion of the division of a charged drop and the separation -of the frag- - :

ments to infinity. To the Hamiltonian of our idealized system we have o

. applied standard statie, dynamical, and statistical methods in order

. totrace out the essential features of the process.
This has included, first of all, the calculation of the potential

energy of the system (a sum of surface and Coulomb energies), and
" the location and study of the properties of the saddle point. From such
a study we learned that our model is expected to be useful for discus .i
sing certain aspects of the fission of nuclei with fissionability pa.ram-‘
.eter x < 0,67 (nuclei 11ghter than about radmm), but not, in general,
for discussing the fissiorn of heavier elements. .

The dynamical study was concerned with calculating the kinetic

energy of the system, with setting up the equations of motion, and with "

solving them in terms of given initial conditions, This made it possible.

to trace out the division of the nucleus and the separation of the frag-

ments from some given initial configuration to infinity, For the major"

‘portion of the study we worked out the theory for completely nonviscous

fragments with hydrodynamic flow consisting of a superposition of an !
irrotational flow and a.flow corresponding to a uniform rotation, For
certain aspects of the theory we also considered the case of ihﬁnttely 3
viscous fragments. .

. In the application of statistical mechanics we focused attention

~.on the system at the saddle point, making the standard transition-state- ' . :

method assumption of statistical equilibrium at the saddle point. This
made it possible to calculate the probability of observmg the system

in a given state of motion close to the saddle pomt

~
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The results-of the dynamical and statlistical studies were.tnen“;;,
apprOprlately comblned to glve the probability of observing the two
'fragments in a given state of motlon at: inflnlty._ This probability

'.,corresponds directly to the probabllity of cexrtain observable_characj

teristics of fission fragments: their total translational kinetic energy, ;Qv"'

fractional mass, individual excitation energies, and individual angular
-momenta. |

As stated in tne introduction, our purpose has been to study in
‘ detail the properties of the division of an idealized liqpid drop wnose"‘
size, surface:tension, and charge ere those of a nucleus; and to coﬁpare»

the results with what is observed -experimentally in the fission of real B

nuclei. From this point of view there are no ad justable parameters ing
the problem.
Comparisons of calculations with experiment‘hsve veen made for

several nuclei lighter than radium as regards distributions in mass and

total translational kinetic energy. These preliminary compariéons suggest',;"'

" the following conclusions. First and most 1mportant “the magnitudes of -,

the experlmental most probable kinetic energies and masses are reproduced

by the calculations— the experimental and theoretical most probable (or 5 el

mean) kinetic energies agree to within a few percent .and predominantky

symmetrlc rather than asymmetrlc mass lelsions are observed as predicted.“.:

Secondly, the magnitudes of the experimental widths of the dlstributions vii"

. in both klnetic energy and mass are essentialky as calculated usualky to

-

. withln several percent.

As far as the finer details of the distributions are concerned the N

"calculations are capable of reproducing +the- correct trend in two out of

the three details that we have compared. With some exceptions there 1is .::

essential agreement as regards the decrease in average total tranolatlonal'
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kinetic energy with increasing mess asmetry, and as regards the '
rapid broadening of the mass distribution at low values of the total - v
. translational kinetic energy. The experimental constancy or incréavse‘ )
of the widths of the kinetic-energy distributions with increasing mass -
asymmefry is not reproduced by the theory, which predicts a sli'ght-

. decrease, o

”

The dependence of the experimental distributions on the nuclear - .

temperature of the system is in basic agreement with the theory. The
- theory predicts,v and experiment seems to confirm, that the most.prob- =

able kinetic energies should be essentially independent of temperature.

. The variances (squares of widths) of the distributions in both mass and

‘total translational kinetic energy are predicted to increase in a char-

. acteristic way ‘with increasing nuclear temperature, Experlmentally,

- the vanances of both the kinetic-energy d1str1but10ns and the mass

d1str1but1ons were observed to increase with temperature, some w1t:hl
slopes in approximate agreement with theory. There were no exper-| \\
imental points in the interesting region of very Jow temperature, where |
the vanances of the kinetic-energy distributions are predlcted to be—
come independent of temperature, ) '

_ The experimental trend of the most prvobable kinetic enérgies _
- with fissionability parameter x - was approximately reproduced by -
“the theory for nuclei with x < 0.67. No comparisons of fheory' -
and exper!iment have been made as regards the variat'ion' of the widths
" of the distributions with fissionability parameter. o |

On the whole, the preliminary comparison of theory with ex- :

periment suggests that the limitations of the liquid-drop model-in its
simplified,two-;spheroid approximation—are not yet in evidence 'to a
serious degree for the fission of the lighter nuclei. "The model has' o
stood the test of comparison with g; number of properties .
: _of the distributions in mass and total translational kinetic energy,‘
without the introduction of adjustable parameter-s. - The model seems '
capable of accounting not only for.the over-all orders of magnitudes of e |
.the most probable values and the Widtﬁs of the distfibutions in kinetic i
energy and mass, but also more detalled properties of the d1str1but1ons. B
It appears from preliminary. comparlsons that for the fission of ele- -

ments lighter than about radium, single-particle effects are of little
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importance in affectlng the over-all cnaracter:.stn.cs of the distributions

in kinetic energy and mass. 3 o . _
The conclusions drawn must not be regarded as final, however,

. since only a fraction of the full predicfive power of the two-spheroid

. model h‘as been subjected to experimental verification, Even as |

- regards distributions in kinetic energy and mass,. there are several

remaining areas of exploration. The experiments that have been per- .

formed have provided us with information regarding the mean values

and variances of the distributions, including the dependence of the

“mean value and variance of one distribution on the other variable, and

vice versa. Future experiments of this type should aim at determining

not only' these quantities but, in ad‘dition, the further deviations of the
distributions frorh normal distributions—the skewness of the kinetic~
energy dlstrlbutu.on and the Kurtosis of the mass distribution, for |
example . In addition, experlmenta.l points at higher and at lower nu-
clear temperatures are necessary to establish definitely the dependence
of the variances of the distributions on nuclear temperature, in partic-
‘ular, whether or not the variance of the kinetic-energy distribution
""flattens' to a constant value at low temperatures. -
The extension of the measurements of mass and kinetic-energy
distributions over a range of fissionability parameter is necessary to
esfablishi the trend of the widths with X, and to better confirm the |
trend of the most probable kinetic energies with x, It would be par~ -
ticulé.rly desirable to perform experiments in the 'neighborhoed of the
BG © 0. 39 which would
include elements in the neighborhood of sxlvex(J_.j,hB) At x = xBG' there

- Businaro-Gallone bifurcation point'at X =X

should be a transition in the qualitative features of the two-dimension- o

al distributiens in total translational kinetic energy and mass. For

X >x . the lines of constant probability. should be ellipses (to lowest . '

BG

_order), whereas for x < x they should consist of two families of

: BG
hyperbolas. The dlstrlbutlon in mass should become extremely broa.d

for x = x and for x <x

‘BG? BG
one of fragmentation, as distinguished from fission(43), with thé prob-

the division process should become

ability for obtaining a given mass increasing with increasing mass

asymmetry.
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A major area of experimental exploration.thatvis untouched
' for nuclei lighter than radium is the study of the disfributions in in-
. dividual fragment excitation energies. The most direct way of exper-
imentally determining these distributions is to measure the distri-
butions of tﬁe number of neutrons emitted from each fragment. (5_3_7-8_9) .
A less direct method of obtaining such information is the measure-
ment of the distributions of kinetic energies of the neutrons emitted -
from each fragment(@f_B-g(_));thie method would involve the use of the
relationship between fragment'excitatioﬁ energy and the resulting
kinetic~energy distribution of the evaporated. neutrons. (80, 91-9L).
Experimental information on distributions of individual frag-
ment excitation energies would serve a twofold purpose. First of all,
the information is needed for comparison with the theoretical pre-

dictions of the model., An important experiment would be the deter- i,

mination of the correlation coefficient of fragment excitation energies,”

which could be compared directly with the prediction that fragment ex-
citation energies should be rather strongly anticorrelated. Secondly,
such information could be-used to accurately correct experimental
distributions in mass and total translational kinetic energy for frag-

ment neutron-emission effects. This would make the conclusions

drawn from comparisons of these experimental distributions withtheory'
| : .

more reliable,
) The determination of the distributions of individual fragment
angular momenta for the lighter elements represents another new area.

‘of experimental exploration., Experimental information regarding

these distributions is potentially obtainable from at least three differ~ . B

' ent types of experiments. One is a measurement of the distributions

Note that a measurement of the d1str1but10n of the total number of

neutrons emitted (from both fragments) would determme only the chs- ,

tribution in total excitation energy, which would_be equivalent (to. -

- lowest order) to the distribution in total translational kinetic energy. |



~ “study of shielded isomer ratios in the fission ‘products(103,104).

" of the total prompt gamma-ray enérgy emitted By each fragment.
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The distribution of individual fragment angular momenta could then.

be _e.stimated from a knowledge of the effect of angﬁlar momentum on

the competition between neutron emission and gamma-ray emission

- in the fragment de-excitation process(100-102). ~ The second method

involves the measurement of the angular dlsinbutlons of prompt

gamma rays emitted from the fragments(lb"() The third method, Wthh

- would yield information only for specific fragment masses, is the

N

») _ ' :
For the heavier elements the average total gamma-ray energy per

fission (for both fragments) has been found experimentally to be about :

. 8 MeVI( 95—@ Fragment de-excitation calculations made for nonrotating.,

fragments indicate that roughly one-half this amount of gamma-ray f '
energy is expected(88-90,99). It has been suggested that this d1screpancy '
is due to the presence of a total fragment rotational energy of several
MeV.

46 » ~- . A ~
"Recall (Section V.A. 2) that for the compound nucleus 85At213 and a

- nuclear temperature at the saddle point of 4.43 MeV, the most probable

value of the angular momentum of each fragment at infinity is estimated

© as about 10h if the fragments are nonviscous and about 15% if the frag-- - |

ments are infinitely viscous. If one uses for the rijoment of inertia of

the fragments at infinity the rigid-body moment of interia of a sphere, |
for example,v this corres‘ponds to total rotational energies for both |
fragments of about 3 MeV for the nonviscous case and about 7 MeV for

T

the viscous case.
b7

. For the thermal-neutron-induced fission of heavier elements, this
method/lrglcates that the average angular momentum per fragment is
“about 7+, '

. The angular momentum per fragment in the low- (ams_lL medlum -energy

fission of heavy elements deduced by this method/1s about 6to 10h.
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~ The experimental determination of the d1str1but1ons of individual

fragment angular momenta could poss1b1y be of value in helpmg deC1de :

the important question of the degree of nuclear v1scos1ty.

‘The large number of predicted quantities for which there is

little or no experimental information available calls perhaps. for a re~ . o

examination of the directions in which basic experimental fission re- -
search should proceed. For the past quarter of a century experimen- )
_talists have concentrated on the more easily accessible region of the |
heavy elements, and have accumulated a prodlglous amount of data.
Until a more adequate theory of the fission of the heavy elements is .
worked out that is capable of explaining more of these data, it appears
that a larger fraction of the future experiments might profitably be
. diverted to the region of the lighter elements. v
Further progress in our understandmg of fission involves, of |
course, not only further work on the experlmental side but also on the '
theoretical. . Ultimately, any theory of fission will have to take into
account single-particle effects, but, even-apart from that, there are.
several important refinements that should be studied within the li-quid-
drop model,
| The present work has been concerned with tracing out the im-

plications of the two-spheroid model on an essentially classical basis.
The entire treatment of that stage of the ﬁssioh process. from the sed-
dle point.to infinity has involved the solution of classical equations of
motion. Only in the neighborhood of the saddle point have we attempted
to discuss the effects that quantum mechanics would be expected to have
on the process, and it is not clear'that quantum meehenics has been in-’
troduced in a consistent way. Ouxf' quantum-mechanical discussion in=
- volved the detérmination of the probability for initially finding the sys-

tem in ‘a given state of motion near the saddle point, These quantum-

mechanical probability distributions were then combined in the sense of

initial conditions with solutions to classical equations of motion. -
The classical solution of the equations of motion. corresponding

- to the two-spheroid Hamiltonian represents an essential step in our

et e s e T o A Mo o
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underetanding._' "An important next step would involve the eomplete_ly

.’ consistent quantum-mechanical solution of Schrddinger's equation.
corresponding to the Hamiltonian-both in the vicinity of the saddle

‘point and in the separated region. This would involve, among cher'

things, a study of the restrictions imposed by symmetry upon. the

wave functions for the system, for which there are no classical an- -.

alogues. From such a complete quantum-mechanical solution, the’ S

classical solutions discussed here could be obtained as a limiting

- case., (For most of the data compared here, however, the nuclear

temperature is sufficiently high that classical statistical mechanics ©

is valid for determining the initial conditions, and the ambiguities

associated with this mixture of clas sical and quantum mechanics are

not present. For: these cases the entire treatment gwen here may be - .

regarded as completely classical. ) ' 4 _ o |
There is a second important investigation that remains to be
carried ‘out for the two—sphefoid model. The discussion in this paper

was restricted to a system with zero total angular momentum, The

"theory should also be worked out in which account is taken of the three

.rotational degrees of freedom of the system as a whole. This would

make it possible to draw stronger conclusions when comparing predic-

* tions of the theory with data from heavy-ion-induced reactions, in

~ which there is considerable angular momentum present., Explicit con-

sideration of the system's three rotational degrees of freedom would
also make it possible to incorporate the existing discussions of angular
distributions of fission fragmeﬁts (51, 105-108). |

A third extension of the work of this paper is poseibie. By re-
laxing the restriction that the charge der;siffy be constant throughout the

nucleus, and by taking into account a charg'e?ﬂuctuation degree of free-~.

. dom, the d1scussmn of ﬁss:.on -fragment charge distributions could be

included. ( 55)

P
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To us the most exciting prospect for the future is the exten-
sion of the two- spheroxd model by the introduction of a conicoid of
revolution between the two spheroids (see Sect1on I. B, and Appendxx B 5 of."'

Ref 2). By use of this extension of the model, one should be able to
discuss certain aspects of the fission of nuc1e1 over the entire range
of fissionability parameter from 0 to 1. Since the saddle -point
energies and shapes calculated in this extended model agree so remark- . .
ably well with the true liquid-drop saddle-point energies and shapes |
(see Figs., 8 - 11), the model should make ;;racticable the calculation::
of the predictions of the liquid-drdp model not only as regards the
distributionsdiscussed in this paper, but also as regards such ques-
tions as the probability for fission—cross sections for induced fission,
and half lives for spontaneous fission, ' '

The gene'ra.l version .of the extended model has the capability
of representing the transformation of the hyperboloidal neck into a"‘
spheroidai third body between the two side fragments. This provides

v"thke possibility for the division of the nucleus into Qm_r_e_f fragments,

Thus it might be possible to discuss with this three-sphe:oid approx-
imation the interesting questions of ternary fission and long-range
alpha-particle emission,  in particular the angular distfibutions and

the kinetic-energy distributions of the long-range alpha particles.

In conclusion, we would like to suggest that the‘procedure to be

. adopted in discussing any extensions of the theory should be identical '
as far as possible with that underlying the present work-the writing
down of the Hamiltonian describing the idealized situation, followed
by' the systematic application of standard static, dynamical, and sta-
tistical methods., In this way a degree of umty and continuity could be ‘

achieved in the development of fission theory. R
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APPENDIX

" Comments on the Validity of the Liquid-Drop -
L9

Model for Discussing Fission

A nucleus can be regarded for practical purposes as consisting -

.. of protons and neutrons held together by éhort-fange nuclear forces;e"

o . Solution of the resulting'many-body problem would presumably yield

an accurateldescripfion of all fission'phenomena. »Houever, this
is‘at.present not a practicable approach both because of fhe nathef"‘b'
-matical difficulties associated with the pfesence of a large number.f;

- of particles and because the potential between nucleons 1s not
: eiaccurately known. ) A . B | o }eH
The‘shorf-range cheracter of the nuclear force provides a .

means for approximate solution. The dimensionless ratio characterizing

: :A; the nuclear problem~the rsnge of the nuclear force divided by the nuclear .>_.? o

",: radius—is for all but the lightest nuclei a small quantity. The energy 35;"y"

of the system (apart from the Coulomb energy) may then be calculated asff,lf”

. i , .
-an expansion in increasing powers of this dimensionless ratio. The

coefficlents of the various terms, which will.in generaludepend upon"
nuclear COmpOSltlon (the relative number of neutrons and protons), may
‘be determined .in principle, by fitting the resulting expansion to
"‘experimental masses. The four leading terms in such an expansion of

| the enengy_afe of order (Ro/rn')3 , (Ro/rn>2 , (Ro/rn)l , and'(RO/fn)o, )
vhere R, 1is the radius of the‘undistorted nucleus, and T, 15 the’ .

0
49

Some aspects of the foundations of the liquld-drop model have

recently been discussed by Strutlnskll and Tyapin (109)
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range of the nuclear force. With respeét to the number of nucieons‘j; ;

a2/3 . \1/3

A , the expansion has leading terms of order Al',, y v, »f

and AO . A
A physical interpretation may be attached to the leading.tgrﬁs_

in the expansion of the energy. The term of order vAl represents the
approximation in which the size of the nucleus is,infihite compared‘with 
the rﬁnge of nuclear force§,vi.e., the nuclea; matter approximation.“ |
= ‘The contribution to the energy associéted with the A1 term is a
‘negative qpéntity proportional to the volume of the nucleus; for.a

_ heavy nucieus its magnitude is a few thousand MeV. This volume energy;
H. which is independént of %he shape of the nucleus, represents the'energy
~ decrease arising from the binding of each nucleon with its close neigﬂbors.L -
Since it is a constant. for a particular nucleus it need not be considered
when discussing fisgion, where only shape-dependent energies are'relevant._ 

The term of order Ae/5 represents the approximation‘in which

the range of nmuclear forces is no longer neglected in relation to the
size of the:nucleus. This term represents the loss of binding of
nucleons near the surface bf the pucléus, but since one is considering
this effect oniy to lowest order, the approximaﬁion'is equivalent to-
assuming a semi-infinite distribution of nuclear matter bounded by a S
plane surface. In this approximation the effeét of éhe 52/3 term
may be represented as the loss of binding per unit érea of ‘the bouhding .._'
surface,;i.e.; as a surface energy Proportional to the surface.areé -
~ of the nucléus. The size of this term depepds pﬁ}the shape of the )

o .

nucleus—a typical value for a heavy nucleus is several hundred MeV.
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The actual value of the specific surface tension depends in .

'a very complicated way on ‘the details of nuclear forces and nuclear -

pn2/3

"structure.ﬁ On the other hénd; the proportionality of the term :;1 
to the”nuclear surface area 1s a consequence only of the smallness of

' ro ;n comparison to RO , 1.e., of the assumptién that the causes for :if
the decrease of.binQing at the surface can be locaiized to the immediatev
~neighborhood of a given nucleon. The situation is analogous to the |

case of ordinary liquids—despite the immensely complicated nature off.
intermolecular forces the proportionality of the surface energy tc'thei

areaof the drop is extremely accurate except for droplets whose radii

become comparable to molecular distances. .

The'term of order Al/B repfesents a‘nﬁmber of corrections
t§ the volume and surface energies associated with theifinite ratherwizﬁ'
thaﬁ infinite size of nuclei. In.particular,.the éompressibi;ity' |
.correction to the volume energy, and the curvature corréction to the o
surface energy appear at this stage (18). The available information
regarding tﬂese terms. is very inadequate; in order of magnitude, they
are some tens of MeV. Since these terms are smooth functions of the
neutron and proton numbers, ouf ignorance regarding them is, in practice;rf‘
coﬁpensated to a certain e#tent by a readjustmeﬁt of the empirical )
coefficients of the volume-, surface-, and electrosta#ic-énergy terms.

The correction terms‘qf_order_ AQ. are presumably even more f

"_subtle and less well understood. Insofar as these terms are smooth

- functions of the neutron and proton numbers they are also‘partlj absorbed ';"_ﬁ ’

. in the leading terms. We note, however, that sinéle-particle effects
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may be formally regarded to be of order AO ——binding-energy anomalies-;f'

associated with a single nucleon (a few MeV in practice) are of order A 1;

times smaller than the total binding of all nucleons. 'Because of the
characterlstlc oscmllatlng dependence of the single-partlcle blndlng
anomalles on neutron and proton numbers, this correction 1s presumablyzf

. the most important of the AO terms. Some information on this_

-'correction is directly available'fromvﬁhe study of ground-state massesAffi"

of nuclei in the periodic table and from theories of the observed
oscillations (see, for example, Refs. 81 and 82).

- We have thus far considered only the energy associated with

. the nuclear forces. The electrostatlc repulsion of the positively H_.

A
NI

. charged protons gives rise to a Coulomb energy, which is also a funetion - -

of the shepe of the nucleus. Thls energy is of order czA5/3

2

» Where’

‘@~ 107° is the ratio of the electromagnétic coupling constant to the “;d

" nuclear coupling constant. For & heavy nucleus the Coulomb energy is

of the order of a thousand NeV.

In connectlon with the Coulomb energy it should be pointed out
that the discussion of the Coulomb energy of a deformed drop with a =~

thin diffuse surface is as easy as that of a drop with a harg surface"

(81); the lowest-order diffuseness correctlon to the. Coulomb energy

,is a shape-independent constant and could be included by a re-definition o

of the fissionability parameter X .

We see that the leading terms of interest in fission-—the shape-_'

. dependent:ones—are of order aA5/3 A2/5 Al/3 ; and AO .i'The'

,liqpid-drop model,con51sts of treating only the_first.fwo, the Coulomb

- and surface energies. Barring accidental cancellations of the changes
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in boulomb andlsﬁrface energies, the remaiﬁing termé should iﬂ'geherai '
be less imﬁdrtant. In the region of the heavy élements the changes o
in'the Coulomb and surface eneréies do indeeditend to ganéei,'and;
 especially in the case of fission at low excitation energy,.the B
"l'single-particlé effects may then be essential for discussing certain.f:
_;aspécts 5fAthe process. AOn the other hand, in the region of the lighte;v 
- elements, where the cancellation of the chéngeg in the Coulomb and s
:surface energies ié not so'close, single-particle effects should.notzi
| have the same'relatiye impﬁrtance, partiéularly'ét highef excitétiong
‘energies.- A_logicai apprdach would seem to be to ﬁork out ihe details
- of the theory first. considering only the surface and.Couiomb energiég;ff
and later 'to incorporate single-particle effects. 4 | 4_
The point of view that we are tying to.bring out is that-the? |
 liqpid-drop model is not to be regarded as a "right" or a "wrong"
model of fission, but as a first stage in the development of .an’ .
approximate -theory of nﬁclear fissioh'fhat takes into account thé;
principal components of the.energy and that‘may}be improved'in a

systematic way by the inclusion of corrections of "higher order. in A_;/:{
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Table 1. Moments of distributions in total translational kinetic energy and mass. The calculated mean total translational
of the distribution in total translational kinetic energy, and the variance 0
) 3 _ induced

kinetic energy E, the variance o
the distribution in fragment mass are compared.with the data of Britt, Wegner, and Gursky\3) for ,He
and 06 are not corrected for the effects of neutron emission

of

fission reactions. The experimental values of ¢
from the fragments. .
2
. 5} E : o5 ‘,{’;
"Target Compound x Bombarding (MeV) Theory Eicp, Theory gﬁxp, "~ Theory Exp.
“nucleus - . energy (MeV) (MeV) (amu)Z
' {MeV) .
79Au‘97 g4T12%° 0.654 25.5 0.65 143. 140.3 39 55 73 96.7
gq L 558120 0,661 25.5 0,53 148 1447 35 50 61 89.0
8295206  gqPo?” 0.673 25,5 0,57 149 1454 38 50 - 62 79.4
g38i2% gsAtZ 1 0.680 25.5 0,54 151 147,331 57 58 85.0
438 gsA2M2 0,680 22,4 0.40 151 146,5 30 48 43 127

-01-['[' -
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Table II. Properties of distributions in total translational kinetic energy and mass, The calculated mean total translational
- kinetic energy E, the full width at half maximum {(FWHM), of the distribution in total translational kinetic energy, and
' the full width at half maximum (FWHM)U of the distribution in fragment mass are compared with experimental data.

Target Projectile Compound x Bombarding (3] E ‘. (FWHM)g {(FWHM)y Ref.
nucleus . energy - {MeV) Theory Exp. Theory Exp. Theory Exp.
. : (MeV) (MeV) (Me V) (amu)
3817 o gsAt’t 0.677 42 ©.0.65% 151 150 15 16° 20 2459 18
g3Bi07. a gsAZ 0677 a3 0.68 151 148 15 209 20 26%°¢ 7
_nat ’ - . . (Zii) I ' : ’ : . ‘ :
g2 PP a - gaPo Pt 0667 8 149 16— — - —
- nat (209) - A S _ ' ' '
g4 Tl a . g3Bi 0.658 a3 _ 147 143 — —_ 1.
197 .201 ' ' .
79U a g4 T1 0.651 43 o 143 138 — — - —
- d gaPo 't 0.667 c25 035 149 143 12 g9¢ - —  n

2, In Ref.. 78 the expenmental (rather than calculated) fission barrier is used to obtain 8 ‘0.8 Me‘V; using this value,
(FWHM) = 16 MeV, and (FWHM) =22 amu, . -

bValue is corrected (in : Ref."- 78) for fragment neutron emission and experimental dispersion.
SValue is read off experimental curve,

d . . . . .
Value is not corrected for fragment neutron emission and experimental dispersion,

¥

- THT"



Table III, Widths of fragment-mass distributions. The calculated full width at.half maximum (FWHM)U of the

distribution in fragment mass is compared with data obtained by radiochemical techniques. -

Target Projectile Compound x Bombarding o - _ (FWHM)y
o ' nucleus energy (MeV) Theory Exp. Ref.
: , : - (MeV) _(amu)
206 . ‘ 210 ' » a
82Pb a - 84P9 . 0.670 42 | 0.62 20 . 21 70 _‘
.209 ' 210 S B - C a ;
L g3Bi . ) gaFo Q.670 A 36 _ 0.76A 22 718 ' 68
209 o210 : - . .
) 83B1 P - 84P° 0.670 58 . 1.20 ‘ 27 24 68
197 R 201 - | : ‘
79Au ) vo. | _ 81Tl 0.651 42 | 0‘.A7v2 24 34 6? »
204 : 208 ... | .
-82Pb : a ' 84P° - 0.677 , 42 - 0.71 20 | 27 67 o
T TS S 0.670 a2 0.62 T2 22 7
Bi*%? d poit 0.667 22 0.38 15 17 65,66

83 : 84"

- a . c .
~Value is read off experimental curve,

-2hi-"
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FOOTNOTES -

"Vhen used in this context, the term “excitation énergy" refers to
the energy of .the collective vibrations and deformations of the fra.g-‘l
ment; it does not mclude the internal (excxtatlon) energy. of the in-

dividual nucleons., -

. The same symbol P is used.throughout this paper to denote each

of several probability distributions; the argument or subscript w:.ll

indicate which explicit functlon is being referred to. ‘ _ ‘,‘
> , -
~ "Experimental information regarding the other dis’tributions is at

present not available for the fission of nuclei lighter than radium. _
We will.see later that it is for these nuclei that our model is mostnearly =

1]

applicable.

PO i - s et e mstart cmmaman o s e o s S e e e

‘-
Ve have 'taken the cons tants of t“e Ee ‘,Le-We:Lzsac‘cer semien plr:.cc.l

mass formula from Green's analysis of rouﬁd—state masses (’-LO) he

nuelear temperature ‘at the oaddlc point is de’cemn.ned I‘rom the excitation

_ energy and fiSSI.O“J. barr:.er of he compound nucleus.. vA;Ll .other'quantities ,-.

are cc.lcula'ted dlrec‘bly from ‘l:he model.
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When future determmatlons of »hese constants are made, the new
values may be us ed since all tneoretzcal qua.ntltxes a.re gwen here m B

hqmd drop umts

The fractzonal mass of the ncrht hand fragment is i U

is. 1ts s emzma_]or

- Forx example, if spheroid 1 is prola.te, then ¢

4
axis; its semiminor axis is determined by volume conservatlon., L
. i

Whez} all coordmates are con51dered the cusp occurs at those

N values of the coordmates that correspond to. the conﬁguratmn of ,

touchlng spher01ds

S P S R S ey < . . -

9 Thzs is clearly seen in . F:Lg 3 in the map for x
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C Historically, howevexr, it was for 2 time believed that three

equilibrium configurations possibly did exist for a short range of x

, close to O7(;_L_§,i+_3). |

/.1 : ll‘ ' ‘ ) . . . . . . . . '. .
. v Unfortunately, most experimental information on fission is for

.-~ +._ " nuclei that lie in this range of x. Some data exist, however, on the : ‘

 fission ofl_r‘mclei where x g 0.67, and more are becoming available e

. . . . as time progresses. .

" Formulae for calculating the potential energy of such a system

- are given in .Appendix_B.E} .of Ref. 2.

e

’ "When we discuss the solutions to the equations of motion we will,
whenever possible, also indicate the result for the case in whic_:h the
. fragments are infinitely viscous, and would therefore separate to. . '

infinity without oscillating.

- e e e U U U UOu oot PRI P e mmmann e e e et e e

1 The use of classical equations of motion for discussing the separa-
. tion of the fragments to infinity may be partially justified on the- |
grounds that a short distance from the saddle point the de Broglie
wavelength for translational motion has become relative'ly s'rhall,
that the vibrations about each fragment's center of mass involve
several quanta of energy, and that the angular moméntuzn of ea.ch. e

fragment is typically several h units in magnitude.
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'I‘I*e angular momentum acculred by a r;gid spher01d rhovmg in

the electrostanc .ueld of a sphere has oeen dzscussed by Hoffma.n(’ﬂ'f)

e __A “«‘_._—,U,"._M-m - 16 B e TR St _--'--"—'“" ! "'l‘“' ""’—:"-' AN . i - K o . :
: See the dxscus sion of normal coorc’u na.tes m any classzcal-"..f
'“.mechamcs tex,tbook for example, Goldstem (L9)
e e e b et S L O S S .-,-. er et e P R i ...._...‘-_‘.g -
3‘7 When dn..;cuss:.nﬁ tnc m.nc tic energy, 'wev are no‘c res*brlc‘ced 'to uhe “‘
subspace of uOUChln" spheron.ds. = »
T TRTL B SR S .,.....ig‘,..‘.. - v.u-i...-..,._..._._,._-- WS SV [ deer et e s mcrn ot e sl G+ s e i e e
We will see la.ter (Flg 13) that K‘Uc 1s alwa.ys poszt:.ve and that
c,c, is alwa.ysgreater than K -3 hence, ‘B is always positive. ' -
R s | , e e, t NENES B8 BIWEYS oS e
e s e o o e e 8 4 € 19 O S SO S L S S S O PO SO R : '.',..“.,‘...._-....‘..’_.'-_.__...*..._
In verlfylng 'tha'b 57 is d:.agonal in uer'ns of 'bhe t:me dern.vatlves
- of the no:malfceordn_.nates, ‘note 't;ha"" U 1s zero at uhe sadd.le pom‘t.
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This result states phys;.caJ.ly that the kinetic energy assocw.ted wzth
2 finite flux of matter through an aperature of infinitesimal radius is
infinite, This follows from the fact that the velocity of flow through . -
the aperture is infinite, and that the kinetic energy depends upon the
product of the amount of matter and the square of the velocity.
2L The reason for the vanishing of w_ is that in the two-spheroid
model the neck radius of the saddle-point shape is zero. For the .
exact saddle point the neck radius is not zero but is small, and w
is not zero but is small in comparison with the other frequencies.

22 The two. spheroid maddel thus predicts this bifurcation point at a

value of x that is somewhat too hlgh, in analogy to its prechctzon of

. a transition reglon at x =0. 80 when the true transxtxon region occurs L

. at x =0.67.

C

e
There is currently no experimental information on excitation

energies and angular momenta for the fission of elements lighter
than radium. We content ourselves at this time w1th treating these

| quantities to a lower order than the translational kinetic energy.

It should be recalled that the excitation energy calculated here is
the energy associated with the collective vibrations and deformations. -
of the fragments. Any internal excitation energy that a fragment has
at the moment of division would be added to the excitation energy’ we

calculate, to obtain the final total excitation energy.

-

‘The relationships p, = (1//2) (p - p, )and
b 2] R’
: : x 1x 2x .
pr = (1/4/2) .(pe . * pezx) etc., .obtained from the{normal-ﬁ-_c‘oor'c.iivx-u‘a.te

transformation and the dé:ﬁnitions of the momenta, are useful £or_‘1':his ’

purpose. The value at infinity of pe , for example, is. Lix' o
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26 - ' - R e v . :
Since the saddle point is a position of (unstable) equilibrium, a . - . . .

system initially at rest at the saddle point would remain there (classi-f

cally) for an infinite time; we imagine an infinitesimal push in the o .
fission direction to start the system moving. An analytic solution, '_ ‘
~ valid in the neighborhood of the saddle point, is used until the system . - :
is a short distance from the saddle point, where the Ahum‘erical inte-

gration begins.

27 et o e e e am e mes eae e e e w8 emeal ks e ———
A1l probablhty distributions in this paper are normalized such

that unity is obtained when the functions are integrated over the a.llowed

range of variables, which is usua.lly taken to be from -« to +#o. The

range of integration for Ps is taken to be from 0 to «, since for

. negative values of Py the system does not fission.but instead returns .

to the pre-saddle- p01nt configuration; this results in. the add1t10na.1

factor of 2 in the’ express:.on for P(pf)

* "The Gaussian distribution in the mass-asymmetry velocity be-. = = - =

comes, on the other hand,. i,nﬁnit'ely narrow and hence reduces to a
.Dirac delta function. This means physically that thé mass-asymmetry o

coordinate changes with time infinitely slowly at the saddle point.
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15 I : St — B i
Recall that for x <Xps the mass-asymmetry stiffnessﬂ constant: ‘

. Krn’ is negative. Thus for x <xBG’ the probability P(m) 1ncrea.ses .v

rather than decreases with increasing absolute value of m.

ly

I AﬁIf there were ne angular momentum mduced by the torque ar1smg from -
the presence of the electrostatic field, then C would equal C , smce for ©

this case L -1/\/_2- and L1 b= 0. An analogoubs statement holdbs for Cp e
. . w

o Cememm aaahe L eamer e s e

— 51 § © e e e el e

"This equation is also obtainable directly from P(m, s) and the

. equations U = %— +m and X = Xo + in s S [obtained from (416) by“ '
; v » S : . .

addingl X, and Xz].'

e 50 e , et .
o : * This expression could also be obtamed dlrectly from the set of

| equations (17) and P(b Wy by, Wy' Py ’Pw ,pb ,pwy) by mtegratmg over
~ the bending and wrlgglmg angles, a.ndxtransformmg the result to cylin-

drical coordmates.
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P « et e g e e . )
The other two cubic terms, (E ) (U - ——) and (U -——) , “are absent

because P(E, U) is an even zunctlon of (U~ -1—) The absence of the

(U --—l~)3 term means that the (U -——-) term is respon51ble for the fxrst-

order devm.tmn ‘of the distribution in mass from a Gaussian, and must_

‘then be considered to this order. The dlstnbutmn P(E U) would also, '

in general have a pre-exponential dependence upon E and U.

~

This result follows dl*ectxy frOﬂ the equatlon U % +m. and the‘
;~dlstr1buolon for P m), without the use of the approx1matlon T( U) =
U1t may also be obtained by substituting (34) for P(E,U),.w1uh)
~ F(E,U) = 1, and integrating. |
. 0,
 za S T . C A'““”“_.,.~¢.ﬂ L e
35 The *two cubic terms ms2 and m3 are absent because g/’ is an.
even function of n . Nonzero-cubic terms of the fofm sdel, for
' examnle,'introduce only pre-exponential dependences on E and U
after the 1ntegratlon over d is performed.
1‘ ’\‘
i - - IO o e

A recent experimental determination of the fission barrier of 81T1201

)y jt has a value(_l.)of 48.4+0.5 [rather than
Green' s value(l“) of 50.43 that is used here]. When this value of

" indicates that (ZZ/A

(Z /A) is used, the value of the flss:.onablhty parameter x for '
each compound nucleus is increased somewhat.,. For the compansons
_ between theory and experimenﬁ that are made here, the lafgest value -
of fissionability parameter that occurs is 0.677 when Green's vaiue '

2 c,
of (Z /‘.A)crit is used, and Q.?Oi -when the newly repqrted value is '.
used. . ‘ ' s

:,_‘.;31;___,., ' el e . S P _-
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o1 Taese experiments consist of measuring in

qulthough the approximate_for}nulae derived in Section V for P(U), -

‘retained,

Kinetic energies El and E2 of the two

" and recorar’lg the corresnondlnf number of events.

mentally cons uructed dlstrlouulon P(nl, 32) , the experlme'ltal

distribution P(m,U) is obtained by use of the transfer*ra-tn.on (18), :

8 ‘A plot of the liquid-drop fission-barrier energy ve. x 1is given
n Figs. 4 and 8. For .the determination of © , the true liquiG-

'

drop fission-barrier energy is used rauher +han the ’cwo—s*oher01d ‘

approxima‘bion to the ’oarrier.

T

J9~w L

For the cases studled :.t was fou*xd that the average number of
'_ neutrone emi'tted before fission_seldom exceeds one ;3 this means that
the uncertainty.-.,in the nuclear f;emperature arising.from this effect

P(E), and the various statistical moments are sufficiently, accurate
for calcula.ting the theoretical curves of this section, -the -curves have
actually been calculated by numencal 1ntegrat1ons over the full ex~
pression (36)[or the full expressxon (48) ] for P(E U), with F(E, U)

)

fission fragments_a'{: inf;.nity »

SR

co:mcldence 'c,he \,n.nsla 1onal '

From this experi- . ..
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The large amount of angular momentum presen‘.: in the two 82Pb ?
- cases could of course, be responsible for the near- constancy of-

0',2. (U) as a function of U (rather than a dlsappearance of shell struc-vt )

ture).

o R ' For the benefit of those making a comparison between this flgure and

" Fig. 6 of :Ref. 3, . the preliminary data presented there were over--

- corrected for the effects of neutron emission from the fragments; the

agreement is better than indicated there. ;
i

L . ' .

'?t should be recalled that the variance O‘é retains its linear depend-~

en(:.e upon © at low temperatures in the two-spheroid model because
" the mass-asymmetry frequency is zero (as a consequence of the zero

neck radius of the saddle-point shape), In the actual situation, of

' course, . the neck radius of the saddle~point shape and the mass-asym- -

metry frequency are not zero, but are small. The variance Ty of
the mass distribution should therefore approach in the real case a

E small finite value, rather than zero, as the temperature goes to zero,

N

[]

ENo‘ce that a measurement of the distribution of the total number of
neutrons emitted (from both fragments) would determine only the dis-
tribution in total excitation energy, which would be equivalent (to ..

" lowest order) to the distributiqn in total translational kinetic energy.

e B e : i REN RSN R . AV
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L"oAlthough the approximate formulae derived in Section V for P(U), - :

5T gacse experiments consist of measuring in coincidence the vrunsla»:.onal

kinetic energies E, and Iy of the two fissio.n fragments at :Lnf.t.ni‘t‘_‘y -

" and r-ecording the corresponding number of events. -From this experi- ; -

mentally cons uructed dlstrlbuuon P(El, EQ), the experlmen‘cal

distribution P(E U) is obtalned by use of the 'bransfor*na"blon (18)

8 A plot of the liquid-drop m.ssmon-oarrier energy Vs, " x is given

'in Figs. b and 8. For the determination of © , the true liquid-

s

.Q
l
Lt

drop fission-~-barrier energy is used raoher +than the two-spheroidj -

approximation to the -barrier.

&

J9 - . NI e

For the cases studled 1t was fou*xd that the average number of
' neutrons emi’cted before fission seldom exceeds one ;3 this ‘means that
the uncertainty in the nuclear: "}cemperature‘ arising‘from this effect -

P(E), and the various statistical moments are sufficiently. accurate B
for ca.lculating the theoretical curves of this section, the -curves have

actaally been calculated by numencal mtegrat:.ons over the full ex-

pression (36)[ or the full expressmn (48] for P(E, U), with F(E, U)
‘retained, o . : R
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1T v — et e ,‘:.,..._,s._s-.-...:_..-.,-...,_N..-. e e e iliamne s
' o : . 1
The large amount of angular momentum presen‘.: in the two SZPb 98

- cases could of course, be responsible for the near- constancy of-
Ti‘.(U) as a function of U (rather than a dlsappea.rance of shell struc-— "

ture).

‘ ’ ' ' For the benefit of those making a comparison between this figure and

Fzg. 6 of :Ref. 3, . the preliminary data presented there were over-
corrected for the effects of neutron emission from the fragments; the
agreement is better than indicated there, | ' o
' : t
h'?t should be recalled that the variance 0[21 retains its linear>depe'nd-
ence upon @ at low temperatures in the two-spheroid model because
' the mass-asymmetry frequency is zero (as a consequence of the zero
neck radius of the saddle-point shape). In theactual situation, of
- course,  the neck radius of the saddle-point shape and the mass-asym-
metry frequency are nlot zero, but are‘ small. The variance 0'5 of
the mass distribution should therefore approach in the real case a

small finite value, rather than zero, as the temperature goes to zero.

N

]

Note that a measuUrement of the distribution of the total number of
neutrons emitted (from both fragments) would determine only the dis-
tribution in total excitation energy, which would be equivalent (to -

* lowest order) to the distri’butien in total translational kinetic energy.
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)For the. heavier elements the average total gamma- ra.y energy per
PRI  fission (for both fragments) has been found experimentally to be about

| | 8 MeV(Q_}g@ Fragment de-excitation calculations made for nonrotating:;z‘- -
fragments indicate that roughly one-half this amount of gamma-ray

| energy is expected(€3-90,99). It has been suggested that this discrep‘ancy

- is due to the presence of a total fragment rotational energy of several

- MeV., ‘ , ‘
T 46 213
‘Recall (Section V.A.2) that for the compound nucleus 85 and a

_nuclear temperature at the saddle point of 41.413 MeV, the most probable -
- value of the angular momentum of each fragment at mﬁmty is estimated
as about 10h if the f:agnﬁents are nonviscous and about 15%h if the frnag-
ments are infinitely viscous. If one uses for the moment of inertia of
the fragments. at infinity the rigid-body moment of interia of a sphere,

for example, this corresponds to total rotational energies for both
fragments of about 3 MeV for the nonviscous case and about 7 MeV for

the viscous case.

L7

" For the germal-neutron-induced fission of heavier elements, this
. 7 .
-method/ilnc;icates that the average angular momentum per fragment is

about 7.

' The angular momentum per fragment in the low- (ani medlum energy

flssmn of heavy elements deduced by this method/1s about 6 to. 10h. R

o e ) e

Sone ‘aspects of the founda"c:.ona of ohe l:.qu:z.d ~-drop model have

recently been discussed by S'trutmsxi:. and Tyapin (109). -
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FIGURE CAPTIOQNS

Fig. 1. A two-fragment conflgaratlon descrived by 17 degreés of fréedom.
Three (Euler) angles describe the orientation in spece of one‘fragmént,
three of the other, and two angles describe the érientation of the

.line joining their centers. One number ;pecifies'the relative siies
_ of ‘the fragments, two specify.the intrinsicjghape;ofvonelfragment,
'two of the other, and one their separation. Three degrees of freedom -
describe the location in space of fhe common center of mass. Total:
3+3+2+1+2+2+1+3=1T.

' : Y
Fig. 2. Coordinates used for describing a two-spheroid configuration.i‘The

(c:‘rr' case >{

e

'three Euler angles 015 ¢1» ul describe the orientation in space of
“the left-hand spheroid (see description in text), and 62, ¢2, \ 2

r}ziPJAef« CAP ;\3 ' the rlght—hand spheroid; the two angles @_ and 3 describe the
- orientation in space of the line connecting their centefs;"The
fractional mass (fractional volume) of the left<hand spheréid ié
denoted by U.; fmhe semlsymmetry axis of the left-hand spher01a is
denoted by - 1 “and that of tne right-hand one by Co o The,dlstance-;fif
~ | L '.between"their centers is £ . Illustrated in the upper. _part of the |
| figﬁre for overlapﬁing sﬁheroids are the two_céordinates £ and .
c = ¢y = Cy, useéd for discussing the restricted cése of completely
symmetrical fragments. |

Fig. 3a. Symmetric two-spheroid configurations for selected values of the

coordinates(marked by f,), Coulomb energy =pC~’ surface:energy Bs,
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P R ‘ : ' : o : , Co
CCAP seript]: S
kQ;J;::E;EE:), S “and gotentlal energy Zﬁ for x = 0. 2. The functlon B .is the - .

Coulomb energy in unlts of B (0 ), and B is the surface energy
in wnsts o 5,000, PRGN O e do b on 20l
equations of motion corresponding to starting from rest at the
saddle point is indicated by the ﬁoints, wﬁich are equally'spaCed;~»
in time at intervals of 0.1 Ty [see Eq. (2) for value of TO];
B _; The dot-dashed line in each case corresponds {0 the sc1ssz&n

| 'configuratlon of tangent spheroids (%:.= 2c); the long-dashed llne

corresponés to the conf1 guration of two separated spheres -

(c/Rg = 1/2M3).

: ) ‘ . i .

v?ié. 3b. Mops of potential energy ﬁb& for x = 0.4, 0.6, 0.8, and 1505-2‘
The location of the overlapping saddle point for: x = 0.8 is shown
’by the cross mark; for this value of x there are two saddles and

a stable mininum point (apart from the original sphere). The functioh
P is in units of ES(O). For the x =.O.h, 0.6, and 0.8 c#ses the
soiutions of the equations'of motion correéponding tonstarting from
rest at the saddle points are indicated by the poihts,.which are
equally spaéed'ip time at intervals of - 0.1 Tb [sge Eq. (2) for valﬁe.hf

| of TO]. | ’ |

Figt L, The potential energy ol equilibrium configurations, as a function
| of fissionability parameter x..' The result‘éalculatea in"the two~

. P . v spheroid approximation is given by the solid line, the result of.

Cohen and Swiatecki (15) by.the short-das hed llne, and the result

of Strutinskii et al. (17) by the dot-dashed llne. .vhf";-
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'pig,'ﬁ.‘ Thé surfacg.énergy BS ’and'céu;oﬁb‘egérgy: BC of gquiiisfium_'
configurations, as functions of fissiohébility'parametér Xe ‘Thé_?

S’Iis thé Surfaée éneggj inlgnits'of ES(O),'apd';BC is

the Coulomb energy in‘unité of EC(Q). The fesults calculated iﬁ

" function 3B
* the two-spheroid approximation are given by the SOIid'lines, and
" the results of Cohen and Swiatécki (15) vy tﬂe dashed liﬂes,
:Fié; 6.v Saddle-point shabes for various vdlues’of the fissionability parameteri;..i
X vShapes calculated in the two-spheroid approximatidn are given-by T
- .. the solid lines, and those calculated by Cohen and Swiatecki (ié)_by
the dashed lineg; For x = 0.8 the two saddle-point shapes ocurring.‘

. . N
in the two-spheroid approximation are shown. : 4

Fié. 7. Maximum and minimum radii of equilibrium configurations, as-fuhctions '
of fissionability pérameter x. The results_éalculated in the twd-
spheroid approximatiop are given by thne solid lines, the results of

| Cohen and Swiatecki (15) b& the dashed linés; and the results of
Stfutinskiz et al. (il) by the solid points. Note ;haﬁ §§e ninimun
radius calculated by Strutinskil et al. for X =,C.65~is‘appreciab;y

lower than that of Cohen and Swiatecki. The known limiting form of

R . /R

min/8p for x > 0 is indicated by the straight line.

Fig.'8. The potential energy of saddle-point shapes;'és a:funétion of 1 '§
fissidnability pargmgter x « The fesult calculéted by uéing two
spheroids conneéted_by.a conicold of revolution isvgiven by theﬁ

_ solid line, the result-of Cohen and Swiatecki (15) vy thé‘sﬁort;daﬁhed "']f%

" line, and the result 6f Strutinskii'et al.'(il) by the dot-dashed:line.'

e
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Fig. 9. The'surfécevenergy BS and Coulomb ehergy‘ Bév of,saddlé-point :

" ‘'shapes, as functions of fissionability parameter X « The function .

tx}

B, 1is the surface energy in units of

3 S(O); 'and'“BC is the Cou}omE '
(0)
c

energy in units of E «  The resﬁlfs calculated by using iﬁo
) éphefoids connected 5& a conicoid of revoiution aré given by thé'.
solid lines, and the results of Cohen and Swiatecki (15) by the
dashed lines. The known vﬁlues of B, and B, for x‘= 0 are
'inﬁicateq by open circles. |
Fig.vlo.ﬁ Saddie;point shaﬁes for various values of the fissioﬁability
| p#rameter X . _Shapes calculated‘by«using~two spheréidslcqnnected
by a conicoid of revolﬁtion are given by the solid lines, and tgqse
" calculated by Cohen and Swiatecki (15) by the dashed lineS. |
.Fig.‘ll. 'Maiimuﬁ and minimum radii of saddle-point shapes, as fgnctioh; of
fissionability parameter x . The results calculated by using two
spheroids connected‘b& a conicoid of revoiution afé_given by the |
solid lineg,the results of Cohen and Swiatecki (15) by the dashed .
.1yllines; and the results of Strutinskil et al. (17) by the solid points. |
liote thgt the minimum :adiﬁs calculated by Strutinskifbet al., for -
x = 0.65 is appreciably lower than the other two results. The known

limiting form of /RO for x - 0 is indicated by the straight

Rmin

line, and the value ofﬁ R

e or % = 0 .
max/‘ov for x = 0 by an open c1rcle.v

.. Fig. 12. TIllustration of normal modes of oscillation about the saddle-point'.
shape (when the saddle point is represented by two:tangent spheroids).

The fission mode is always unstable; the mass-asymmetry mode is
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v,

. unstable for x <x,. , and stable for x > Xpq

‘wriggling nodes are each doubiyzaegenerate,‘corresponding‘to rotations ;f

Jin two perpendicular planes,. Tﬁé twisting and axial-rotation modes

consist of uniform (rather than oscillatory) rotation; for améystem_f T

with zero total angilar momentum thé gxial-rptation riode is notl  ',,
excited.

' Fig.viB. Saddle-point stiffness constants’(secbnd derivativcé of the
-‘potential energy, evaluated at the saddle point)'for the origina}  ;

‘coordinate system, as functions of fissionability parameter x .

vThe‘constant K .is in units of Eh(o) ;s K end X are
uu - o C c c.C T
| . 11 gy 32
in units of E (O)/R 2 s K is in units of E /R.; andﬂz
‘ . S 0 Uep (O)v _ s 0 .
Ke 5 -and K‘0 8 are in units of ES ' /I’a.d2 o |

11 12 . :
Fig. 1. Saddle-point stiffness constahts (second derivatives of.the
potential energy, evaluated at the saddle point)for the normal-

coordinate system, as functions of fissionability parameter x.

The constant K, 1is in units of ES(O); K  and Kd are in units
s - .

2 (0) /3 2. 1oa e i (0) /..q2
of ES /R0 ; and Kb and Kw are in units of ES . /:ad . ?he

two-spheroid approximation to the Bﬁsinaro-Gallone value of x .

.is indicated by the arrow.

¥

Fig. 15. Saddle-point effective masses, as functions of fissionability

parameter x. The masses Ms, Md, and Mf ‘are in units of MO;
N o . rr . . 2
and Ab’ Moo “t’ and M, are in units of MO RO .
~ Tig. 16. Saddle-point frequencies of normal-mode oscillations, as functions

of fissionability parameter x. The frequencies are in units of

Qy [see Eq. () for value of Qgl.

.. The bending and' = %



Fig. 17. Saddle-point quaﬁtum-energies_of nofﬁal-mode.osciilations for
‘nuclei along the line of beta stability (50), as functions of

fissionability parameter x .

Fig. 18. The total translational kinetic energy 0 corresponding to i €f'v

the case in which the fragments initiaily start from rest at the '

saddle point, as a function of fissionability parameter - x. The - =

result calculated for nonviscous fragmehts-is-given by the solid

"line, the result for infinitely viscous fragments by the dot—dashed_' -

line, and & simple approximation to the former (see text) by the

short-dashed line, '

1

. , 1
- Fig. 19. The constant « [see Eq. (14)], as a function of fissionability

parameter x. The result calculated for nonviscous fragments is .
given by the solid line, the result for infinitely viscous
fragments by the dot-dashed line, and a simple approximation to

~ the former (see text) by the short-dashed line.

~ Fig. 20. 'The excitation energy Xl of a single fission fragment corres- -

ponding to the case in which the fragments initially start from
~rest at the saddle point, as a function of fissionability parameter

b ‘Thevfesult calculated for nonviscous fragments_is given by the

v

solid line, and the result for infinitely viscous fragments by the

dot-dashed line.,

Tig. 21. The excitation-energy derivative X, s[{see Eq. (16)], as & function -
/ ,s 1 5€ A

- of fissionability parameter x. The result calculated for nonviscous

-fragnents is given by the solid line; and the result fof'infinitely

' viscous fragments by the dot-dashed'line; U
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Fig. 22, The excitation-energy derivative X. .[sce Eq. (16)], as a -

1,d
function of fissionability.uarameter X The result calculated -
for nonviscous fragments is given by the solid llne,‘and the result
fof infinitely viscops fragments by the dot-dashed llne.

Fig. 23. The excitation-encrgy derivative xl,m [see Eq. (16)], as a '
function of fissionability parameter x. The result_ca}culated

'bfordnonviscous fragments is given by the solid line, and the fesult e,t,j
A"fer infihitely viscous fragrients by the dot-dashed line.

Fig. 2k. The angularfmomentum derivative Ll’pb'[see Eq. (17)], asva'
“function of f19s1onabllltv parameter XxX. The result calculated for;
nonviscous fragments ls given by the solid llne, and the result”'

;u for infinitely viscous fragments by the dot-dashed line. The short-
dashed line represents the result that would follow ifﬁthevto:que.
exerted by one fragment on the othef‘through the-elect:ostatie |
interaction were zero. |

Fig. 25. qihe angular-momentum derivative L (see Eq. (17)],2s & function

1,p

P . :
of fissionability parameter x. The result calculated for nonviscous

fragments is:given'by_the solianline, and tﬁe result for infinitely
tiécouslfragments by’the dot-dashed'line.v:Thevshort-davhed line
represents the result that would follow if the torque exerted by '

one fragment on the other uhrough the electrostatlc interactlon were
2€YO0,

[see Lq. (17)], as a function

l b

Fig. 26. The angular=momentun derivative
of fissionability parameter x. The result ealculated for nonviscous

fragments is ~1ven by the solla line, and the result for 1nf1n1tely

viscous fragments bj the dot-dashed line.- For the value L see Eq. (3).
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- Fig. 27. The angdlar-momentum derivative ‘Ll *'[see Eq.(17)], as a function:
o . SV .

fragmenté is given by-the solid line, and the result forﬂinfinitely

" viscous fragmenté ty the dot-dashed line, For the value of LO

see Eq. (3).
Fig. 28, Solution of equatlono of motion for x== 0,90 corresponding to
v 1n1t1ally starting tne system from rest at the saddle point. The points

are equally spaced in time at intervals of = 0.107 T [see Eq. (2) for

confipuration is less eccentrlc than the

~value of T Note that the scission/configuration.of tangent

ol

spheroids of minimum potential energy, whose location on the scission

{
a
line is’ indicated by the open circle. S 0

S

ixeu) - ' Fig. 29, Coth [Bw/(28)], as a function of ée/(m). The temperature |

| | dependence of the constants appearing in the probability distributions
for the initial conditiens is given by.this functioﬁ. Shown also ie.
“the- asymptote of the function (dashed llne)

Fig. 30. 'Contour map of the Drob301llty dlstrlbutlon of 1ndividual
fragment excitation energies, P(X " X.) vs ZX and X Theilines

2 1 ner

of conSVant prOb&bllluJ (ellipses with axes rotated 45° with

respect to the Xl and X2 axes) are labeled by relative probablllty.[;-

L o The value of Xlo is 21.3 MeV. The_calculations are for the case of

. g ’ the compound nucleus 85At213 (x = 0‘677) at & nuclear temperature of
1.13 MeV ( 81209 + 65 - MeV o, for exanvle)
Fig. 31. The nrobablllty dlstrlbutlon of exc1tat10n energj of 8 51ngle

fragnent, P(Xl) vs Xl. The value of Xl 'is' 21.3 MeV. ‘The

3

of fissionability parameter x. The result calculated for nonviscous -
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'qaiculgﬂipns are for the casevof noﬁviscous fr#gments and the fission-::[¥
:_of the compound nugleus 85At213 (= = 0,677), gt:two'differept falues "":‘,
of the nuclear temperature € ., | '
Fig.v32. The probaﬁility distribution of totalvfragment eicitation”energy,'
P(X) vs X. The value of X  is 42.6 MeV. The calculations Are-fof'
~ the case of nonviécous'fragments and the fission of the compound nucleﬁs _"

| 85A£213(x = 0.677), at two different values of the nuc;earvtemperaturé 8,
" Fig. 33. Contour map of the probability distribution of totel translational .,;  ;i
| kinetic'energy and fracti§ndl mass, P(E,U) vs E and U, calculated to
lovest order [Eq. (29)]. The lines of constant probability (ellipses -
with éxés pargllel‘to the E and U axes) are labeled by relaﬁive
. . probability. The value of £9 iz 151.h4 Me?. The calculétions ;re
.for the case of nonviscous fragments and the fissién of thg compoﬁnd

" nucleus a2 (x = 0.677) at a nuclear temperature of 1.13 MeV

85

‘%3Bi209 + 65 - MeV a, for example).

Fig. 3b. The probability distridbution of the magnitude of angular momentumli,"il
i : : ‘ .

of 2 single fragment, P(Ll) vs Ly . The result that is calculated .

for nonviscous fragments (with hydrodynamiés_flow ponsiétiné:of a
superposition of an irrétational flow and a flow correspbnding to a
uniform rptation) is éiven by the solid line, and the résult‘for. |
infiniteiy viscous fragments by the dot-dashed line. The short-

dashed liné representsithe résult theat would'foll§w‘if the torqﬁe
exe:ted'bonne fragment on the other through‘tﬁe electrostatic ihterf

- - action were zero. The calculations are for'the coﬁﬁound nu;leus
8 At2L3 (# ; 0.677? gt & nuclear tempgraturevofi;.l3 MeV(83Bi209+65-Mev a,

o
for example). -
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Figi 35. Contour map of the probability distribution of total translational

xj
]

kinetic cnergy and fractional mass, P(E,U) vs E and U, calculated

for initial conditions determined in the harmonic approximation.

[Eq. (36)]. The lines of constant probability are labeled by relative - ==

probability. The value of EO is 151.4 MeV. The calculations are

for”thé.case of nonviscous fragments and the fission of the_coﬁpoﬁﬁd

nucleus 85 At213 (x = 0.677) at & nucledf temperaturg of l.l3 MeV

( Bi209 + 65 - MeV a, for example). | ”

1o 36. The functions In< g) [defined by Eq. (h3)] vs B, ;or n= 0, 1, and
2.: ‘ . |

37. The function I,(B)/I,(8) vs B . The functions In(e)' are"!a‘qé.figea»':"
by Eq. (43).

38. Third derivatives of the potential energy, evaluated at the saddie
ooint, as functions of fissionability parameter X. The quantity
Koms is 1n unlts of Eq (O)/R , and Kses is in unlus_ofv ES(O)/R

39. iContour map of the probability dlst;ibution of total translational
kinetic energy addlfractipnal‘mass, . P(E ‘U) fs E and U, including
effects of anharmonicity [Eq. (h8)]. The lines of constant probabillty :
are labeled by relative probabilitj.‘ The value of EO is 151 L MeV.
The'calcuiaﬁions are for the case of nonviécous.fragmenvs and the

fission of the compound nucleus ' 213(

temperature of 1.13 MeV (83Bi209

85At x = 0.677) at. s nuclear

+ 65 = MeV a, for example).

Fig. Yo. Experimental contour map of the probadbility dispfibution“of total’

translational. kinetic ‘energy and fracﬁionalfmgss,”-P(E*;U)ﬂvéfE*’and'U.

The sipersceript astérisk derotes that E''is'measured:after neutron’
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emissioh from the fragmept# has océufred. Thevdata are those 6f
Burnett(géfor the compound nuc;eus. éSAtQIB (x;= O;6TT),forme¢ from
the reaction 83Bi209 + 65 - lfeV o , for vhich '8 = 1,13 MeV. Thg‘hi‘:
labels on the lines of constant probability have the following ;l~u1
‘significance: the contour labeled by 10, f&r'exémple, pﬁéses
through’ those regioﬂs of thev'E* -U plane where én areaiof .6 eV |
by 3 amu contains 1% of the tofai nunber of eveﬁts. o
‘i'Fig. 41, Probabili£y distributions for fragment mass (top) andAfor total
| translafional kinetic energy (bottom). The theoretical curves

(solid lines) are calculated for initial éonditions determined in
‘; the harmonic approximation [from Eq. (36)].. The déta are thoseﬁqf

3

Plasilﬂf@for the compound nucleus 82Pb198 (x = 0.677), formed from .

182 , - 16
Thw + 80

bombarding energy of 102 MeV (€ = 1.37 MeV) are given by the solid

. the heavy-ion~induced reaction « The results fdr'a
points, and for a bombarding energy of 165 MeV (8 = 2.07?M¢V) by the
‘open circles. The superscript asterisk denotes that E is neasured.
after neutron emission from the fragments has occurred.

“figt L2, .Mean total translational kinetic energies, as functions of fragmént
nass AUf The theoretiéal resﬁltsvthat are calculated for initial
conditions determined in the harmonic approximation [frém Eq. (36)]
are giVeh by the éolid lines, and the ;esultsfthat are calculated by ’
ihcluding effects of anharmonicity [from Eq.'(h8)] aré given by‘the
dashed liﬁés, The date (solid points) are asAfollowsz :Burheﬁfkié): '

209

+ 65-MeV o = 85At213(x = 0.677, e‘;'1.13 Mev);'gn¢r'if ,

!

33Bt
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' l . .. 4 ) . o . " L. o .

;g T4 7041V« = 4,11%%%(x = 0.651, & = 1.28 MeV); Plasil:(77):

Thulaz + 102-11ev 010 = 82Pb198(x = 0.677, 8 = 1.37 HeV), and Thwl82+165—MeV
198 - ' ’ ‘ o

8O16 = gpoPb 9 (x = 0.677, 8 = 2.07 MeV). lote that the left~hand scale and

the right-hand scalg are différent.
‘Fig. 43, Variances in the distributions of total translational kinetic energy, as
fﬁnctions of:fragment mass AU. The theoretical results.that are calculated. v
for.initial conditions determinedAin the hermonic approximation [froﬁ ﬁq.-(36)] - :i

‘are given by the solid lines, and the results that are calculated by including -

effects of anharmonicity [from Eq. (48)] are given by the dashed lines. The

data (solid points) are as follovs: Burgett(]éj%33i209 + 65-ﬁeV4a =\85At?l3
(x = 0.677, 8 = 1.13 MeV), and 79Aul97 + T0-MeV & = 81T12Ol(x = o.6si,
8 = 1.28 MeV); Plasigﬁiﬁ):Thwlag + 102-MeV 8016 = 82Pb198(x = 0.677,\
o . = 1.37 MeV), and 7&“182 +'165-M¢v '8016’= 82Pb198(x = 0.67T, @ = 2,0%'Mev).

Fig. bb. Variances in the distributions of fragment mass, as functions of total
translational kinetic energy E. The theoretical results that ére calculated
for initial condiﬁions determined in the harﬁonic épproximétion‘[from Eq.,(36)].]
are given by the solid lines, and the results that are calculated by. |

including effects of anharmonicity [from Eq. (48)] are given by the dashed

i209

lines. The date (solid points) are as follows: Burnett{ié)%BB +65—Mevlf'
| : 213 = . ‘ : - ‘ b | A ‘197 | M 'y - 201 I
85At (x = 0.677, & = 1.13 MeV), end pohu™’ +'T0-MeV a= g, Tl

(x = 0.651, 8 = 1.28 MeV); Plasil7T): o, 02 + loz-tev o016 = 5 pp?98
-(x = 0.677, & = 1.37 MeV), and Thwl82 + 165-MeV 8o16 ='829b?98(x = 0.677, .
8 = ' S e - : :

2.07 HeV).
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T

Trigs #5. Variances in the distribﬁtionS'of.fragment nass (t0p);‘éndv
.vdfianceé in the_distribﬁtiohs of tot@l'translational kiheticfp'
. energy (bottom), as fuﬁctions-of nuclear temperature,e.. The .-
- theoretical curies (solid lines) are calculated for initial conditipns‘
determined in the harmonic approximation [from Eq. (36)]. The data'v

are those of Plasil(Zi)»The compound nucleus 82Pb198(x = 0.677)

~was formed from the reaction Thw182 + 8016, and the compound
" nucleus 7605186(; = 0,619) from each of two reactions: 68Er170 +
\ . . . . : '
8Ol6 (solid points) and ToY‘o174 + 6Clz(open circles).

Fig. 46. Most prdbable total translational kinetic energy, as a function

of fissionability ﬁérameter X. The result calculated for non=,

viscous fragments 1s given by the sclid line, the result for i
" infinitely viscous fragments by the dot~dashed line, and a simple

-approximation to the former by the short-dashed line. The data are

those of Viola and Sikkeland, (72).
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A.

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission,

nor any person acting on behalf of the Commission:

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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