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ABSTRACT 

In connection."with !lUclear fission we study the division of an 

idealized charged drop, using a simplified version of the liquid-drop 

model. The degrees of f,reedom essential to a discussion of the di-

vision of'a, charg~d drop'and the separation of the fragments to in-
\1 .£inity are taken into account :a fragment-separation coordinate, a : ~ 

mass-asymmetry coordinate, a deformation coordinate for each frag~ 

ment, .and rotational coordinates for each f:z:agment. To specify frag-

. ment deformation, the fragments are represented by spheroids; a 

nucleus prior to division is represented by two overlapping spheroids. 

The Hamiltonian .for the idealized system consists of a sum of sur­

face, Co!ulomb, and kinetic ehe~gies. A study of the saddle-point 

'. energies iand shapes calculated in this two-spheroid approximation 

indicates that the approximation is ,most useful for discussing the fis-
. '! : • 

sion of elements lighter than about radium. On the basis of this, model, 

we calculate probability distributions for certain observable char':' 

acteristics of '£issionfragments at infinity-their total translational 

kinetic energy, mass, individual excitation energies ~ and. individual 

angular momenta. This, is done by ,applying standard static, dynamica~, 

C!-nd statistical methods to the Hamiltonian for the system. The pres­

ent treatment, for the most part, is classical; quantum mechanics is 

cons~dered only in the statistical.;mechanics discussion of the behcwior 

of the .\system near the saddle po'int • 

. The predictions of the model are compared with existing experi­

·mental. data for distributions in fragment mass ·and.total tr~nBlational 
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-4-

,ii' 

kinetic energy, for nuclei lighter than'radium. The comparisons are 

made without the use of any adjustable parameters .. The theory is 

'capable of accounting for the magnitudes of the most probable value's 

and widths of the expe rim.ental di s t ri butions, as well as s om.e, ' but 

not all, finer details of the distributions. The dependence of the ex­

'l!,p1 perimental distributions upon nuclear temperature, and the dependence 

of the experimental most probable kinetic energies upon fissionability 

parameter are also approximately reproduced by the calculations. 
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,. 
I. INTRODUCTION :~. : . 

Nuclear fission wa!; discovered by Hahn andStrassmann' CD 
in 1938, and yet, in the two and a half decades since its discovery, 

an adequate theory of the fission process has still not emerged .. Nu­

merous papers have been written dealing with various aspects of the 

theory, but in no instance has a definite model with a well-defined • 

Hamiltonian been chosen and the implications of this model systemati- . 

. cally worked out in detail. Such an approach would require that one 

select a model characterized by definite degrees of freedom; apply' 

.' . s,tandard static ,dynamical, and statistical methods to the resulting 

Hamiltonian; . and compare the predictions of .the model with experi- > 

ment. In the present study we attempt to do this for a simplified 

version of the liquid-drop model. '(A more deta'i'led a:ccburit .6f..~this ·work . 

. is' given in·Ref .. ·· 2;' se~ :also'Ref ~ .3.) 

Shortly after the discovery of nuclear fission, Meitner and 

Frisch emphasized the analogy between the fission process and the 

division of a charged drop of liquid(,i). On the basis of the liquid-

drop model, .Bohr and Wheeler showed that a satisfactory account 

could be given of som.e of , the phenomena observed in fission( 5). These 

early successes of the liquid-drop model and its conceptual Simplicity 

firmly established its popularity for discussing fission. 
I 

The major effort in the development of liquid-drop theory has 

been concerned with the static problem of calculating the potential 

energy of a deformed charged .drop .. The coordinates normally used 

to describe a deformed drop are. the coefficients in the expansion of 

the drop' s radius vector in spherical harmonics. The energy of a 

nearly spherical drop can' then be calculated in terms of these co­

ordinates as an expansion about a sphere(1-·i'3). A similar technique, 

. appropriate for shapes not far removed from spheroids (ellipsoids 

of revolution). i~ the expansion about a spheroic(.§.-:Q). For highly 

distorted shapes .the deformation energy has to be calculated nu-
.' ., 

merically( 11:18) •. The potential energy of charged drops is now fairly 

well understood, particularly with regard to the variation of fission .' 

barriers. throughout the periodic table. 
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Although statics has been extensively studied little is known 

about the dynamics of nuclear division. A fragmentary study of the 

dynamical aspects of fission was performed by Hill; and by Hill and 

Wheeler in .. connection with the question of mass aSyn1inetry (19-21) • For 

a few special cases, the division of a charged drop was traced out_ .. 

numerically to a short distance before the actual division of the drop 

into two fragments (scission). However, no relationship between initial 

conditions and final results was established. Some limited aspects of t;·,' 

dynamics have .also been considered by other authors (~, gg-25). 

.-
f 
i 
I 
i 
I 
I . { 

..' r 
The s~tistical mechanics of fission has been investigated in some : t 

detail. Bohr and Wheeler formulated the calculation of fission probabilities 

by applying statistical transition-state methods at the saddle point (5). 
l._ 
II 

[See in particular the recent article by Wheeler (26).] The application 

. of, statistical mechanics in a somewhat different'manner was discussed by 

• !ong, whose starting point was the assumption of statistical equilibrium 

at the scission point (27-30). This theory suffers, however, from an 

arbitrariness in the definition of the'scission configuration, which, 

unlike a!saddle-point configuration, is not defined by the statics of 

the problem. Statistical aspects of fission have also been examined by 

several other authors (31-37). 

We see that statics, dynamiCS, and statistical mechanics have all. . " 

been considered to some extent in previous studies of fission. Never, 

however, have they been treated systematically for one and the same· 

Hamiltonian • 
... In the present paper an attempt is made to study' each of these 

'. steps for a simplified version of the liquid-drop modeL.: The ,outline of' 
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our program is as follows: 

(1) Statics: After the coordinates specifYing the system have been' 

selected, the potential energy of the system (fo~ a given nucleus) is 

mapped as a function of its coordinates, and the saddle point is located 

, and its properties studied • 

(2) Dynamics: The kinetic energy of the system is calculated as a ! 

function of the coordinates and their conjugate momenta. This makes it 

possible, by solving Hamilton's classical e~uations of motion for the system, 

to discuss the division of the nucleus and the separation of the fragments, 

from some given initial configuration to infinity. , 

(3) Statistical mechanics: In analogy to the method employed in dis-

cussing chemical reaction rates (j8), attention is focused on the system 
i: 

at the saddle point (transition state), and statistical e~uilibrium is-

assumed to hold there. In the case of chemical reactions, this provides 

information regarding the rate of reaction, and it was for the calculation, 

of rates that Bohr and Wheeler used the transition-state method (1). In 

,our case, however, we use the transition-state method to calculate the 

probability for finding the system in a given state of motion close to 

,the saddle pOint. These probability distributions are then combined 'in 

the sense of initial conditions with the dynamical calculations [step (2)] 

to trace out the separation of the fragments to infinity. This converts 

the probab~lity distributions of the states of motion around the saddle 

point into the probability distributions of observable characteristics 

of fission fragments: their kinetic energies, excitations, and angular 

momenta. 
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Since the difficulty of solving dynamical equations of motion 

increases with the number of coordinates, it is desirable from the 

calculational point of view to have present in one's model as few degrees 

of freedom as possible. Let us therefore see what degrees of freedom it 

is essential to consider. Although we will be concerned with the liquid- , " i " 

drop model, the discussion that we are about to give for the degrees of 

freedom essential to fission is quite general and does not depend upon 

the assumption of the liquid-drop model. 

A single fission fragment has three rotational degrees of freedom 

and three degrees of freedom associated with its center-of-mass motion. 

The specification of a fragment's extension in three dimensions requires 

three lengths (say three' orthogonal axes a, b, c). This suffices tOll 
, , 

describe its size and leaves two dimensionless numbers to describe the 

fragment's intrinsic shape. [These ,numbers could be, for example, the' ~ 

and y deformations,of the collective model or related parameters (39).] 

Thus to describe in this way the configuration of n fragments resulting 

from the division of a nucleus of given volume requires (3 + 3 + 3)n - 1 
i' 

degrees of freedom. (The "minus one" reflects the fact that the ,total 
.~. ' 

volume is given.) In the case of binary .f~ssion this gives (9)(2) - 1= 17 ' 

as the number of coordinates required to describe a pair of separated ", 

fra'gments (see Fig. 1; in the caption to this figure,an alternative " 

enumeration of the 17 degrees of freedom is given). 

It is necessary in a model of ~ission that one be able to , 
, . 
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'It ~ " ,,' 

describe in a continuous manner the sequence of shapes of a fissioning .' '" ::. 

" ,'. 
nucleus from the original sphere, through the saddle point and scission 

configuration, to the two fragments at infinity. 'If the number of 
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degrees of freedom is not to change in the course of the division, it 

follows that the number of degrees of freedom specifying fission shapes 

before division into separate fragments must also, in general, be 17 

or more. 

One could in principle continue introducing additional degrees r 

of freedom to describe finer details of the dividing nucleus, including, 

ultimately single-particle structure, until the number of degrees Of. 

freedom e~ualed the sum of the degrees of freedom of all the individual 

nucleons. '\ore will consider explicitly, however, only the 17 basic 

degrees of freedom enumerated above. Although: the remaining degrees of 

freedom will never be treated explicitly, they will, on the other hand, 
'< 

/' 

not be disregarded entirely. Their presence will be recognized impl1,citly" 
, ,! 

when we consider the statistical mechanics of fission, when they will:be 

assigned their statistical share of the total energy. 

The ~uestion arises of how to choose the deformation coordinates 

for each fragment. We shall not be concerned here with effects ariSing 

from deviations of the fragments from axial symmetry. We will therefore 
! 

restrict ourselves from the beginning to fragments that ar~ axially 

symmetric, thus reducing the number of , degrees of freedom to 15. Because 

spheroids can represent any desired degree of prolate and oblate 

elongation" and because their surface and Coulomb energies can be easily 
, , 

calculated, we will use spheroids to represent the fission fragments. 

We will represent a, nucleus prior to diyision by two overlapping ,,::~ 

spheroids, ,with the interior, surface of each simply "erased." With .;: { .... 

this parametrization, one is able to describe continuously in an 
~. '. 
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approximate way the sequence of shapes of a fissioning nucleus from 
.,',' ,,: 

'" . ,. 

" .... , . . . 

". the original sphere to the two fragments at infinity. 

Of the 15 degrees of freedom required for specifying a system 

composed of two axially symmetric fragments, 3 are trivially eliminated 

': .• by working in the center-of-mass system. Three more may be eliminated: 
.; . 

if, as will be done in the present work, one restricts 

to a system with zero total angular momentum. 
" 

This,' then, leaves a system possessing nine' degrees of ~. " : 

freedom. In the neighborhood of the saddle point, these nine degrees 
I 

'r 
of freedom correspond to certain characteristic mo~ions of the system!~ '( .;.: .. ' .,:;' . ,';'.: :::. i 

. i 

The most important of these is the motion 'in the fission direction- an: " 
. '.' 

" , , 
, I 

i 

... ": over-all separation of the system leading to its eventual division into, .' : ,'f .. '. ' 

.. ~, .' fission fragments. The potential energy in this direction is of the ' , . / I 
For division .of the drop to occur,' . . : form of a potential-energy barrier. .. ~ ~ 

••. ,! • 

.. ,,':' .. : I 
..•. ..'..>.;.J 

. . ...: ••.• : •.. 1. 

. :,' '1 
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. • ~ ... : .... "f, . . ," . / I 
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the relative sizes of the fragments, their e'ccentric~ ties, : ',:: ',',; .. :., 
.' ~':'. • j', 1 •• _.: ... 

. ',: .. , the system must pass over this. barrier. 
I 

Most of t:p.e remaining motions near the saddle point' (motions:: " 
;,'. 

in the non-fission direction) conSist, in general, of bounded small:':, .. ' 
..' .: .. 

OSCillations, resulting from the potential energy increasing with ... i~~ .. 
.. ,' . 

deviations from the saddle point in these directions •. These oscillations 

involve 

'. ~. 
': , ;:':: , ..... '.'; : ........ ~.::):J. . '::.:' ','.<. ,.<~ .. \·).;:.i ';\ : /.' 
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and their orientations in space. The yarious modes of oscillation 

that occur correspond roughly to (a) a change in the relative sizes. of the 

na:scen~ fragments. (b) an in-phas,e or out-of-phase stretching and 

, contraction of the, two ,halves of the saddle- .point"" 

configuration, and (c) a bending and "wriggling" of the saddle-'poi.?-t,i'· 

configuration. In the treatment of these oscillations, the approxi-' / 

mation that they are small will be made. ,although there will be some, 

discussion of higher-order effects. 

The separation of the fragments from the saddle point to 

infinity will be traced out dynamically. This converts the possible: 

states of motion near the saddle point into states of motion of two 

fragments at infinity. The motion of the fragments at infinity, consist­

"'y' ,ing of a translation of their centers of mass, and rotations and 

vibrations about their centers of mass, corresponds 

,:.\\ 
' I 

, \' 

directly to observable properties of fission fragments: (a) The ' • 

, speed of separation of the fragments I centers of mass determines' 

their translational kinetic energies. (b) The relative sizes of the" 

fragments are directly observable. (c) The, vibrations of the frag­

:ments are associated with their excitation (vibrational or deformation) 

energies.
1 

(d) The rotations of the fragments are associated with 

their angular momenta. 

We will find that for each of the above quantities we are able 

to discuss not only its most probable value, but also the distribution 

about its most probable value. In particular, our theory predicts the .. 

pro?abi~ity distribution P{E, U, Xi ,XZ' f1' ~2) of simultaneously ob­

serving the two fragments at infinity with total translational kinetic 

energy E, 'fractional mass U. individual excitation energies Xi and 

1 " ' ' 
When used in this context, the term "excitation energy" refers to 

the energy of the collective vibrations and deformations of the frag- , 

ment; it does not include the internal (excitation) energy of the' in­

di vidual nucleons. 
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.. ' 

.Xz, an<;l individual angular momenta ,k and kz' j:' 
(It proves convenient in practice to 

. obtain from this distribution, by integrating over the quantities not of 

immedia'te interest, probability distributions involving a smaller 

, number of observable quantities. Three such distributions are 

P(E, U), P(X1 , Xz), and P(~, ~2)' 
2 

Ourtheory will also predict how these distributions should' 

vary with the (internal) excitation energy of the compound nucleus 

undergoing fission, as .well as with its. charge and mass . 

. -----. The immediate test of the theory will be the comparison of 

predictions with experiment for distributions in mass and total trans­

lational kinetic energy l P(E, U)]. 3 It is hoped that these comparisons, 

.. as well as those to be ~ade when more experimental information be­

comes available, will Ylelda more accurate idea of the relevance of 
II, 
: ~ the liquid-drop model for discussing fission phenomena. Indeed, 

the entire purpose of undertaking this study was to t:race out in detail 

". the characteristics of the division of an idealized droplet whose size, 

surface tension, and charge are those of a nucleus, andto compare 

the results with what is observed experimentally inthe fission of real 

nuclei. Stated in this way. there are no adjustable parameters 

21 
The same symbol P is used throughout this paper to ~enote each' 

of several probability distributions; the argument or subscript will 

indicate which explicit ftinction is being referred to. ' 
3 

'Experimental information regarding the other distributions is at . 

present not available .for the fission of nuclei lighter than radium. 

/ 

We will see later that it is for these nuclei that our model is most nearly 

applicable. 
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" 4 
in the problem. Thus, when the comparison is made with experiment, ' 

we shall learn unambiguously to ,.;hat extent an idealized liquid-drop 

model is capable of representing,the characteristics of fission, as 

regards ,both over-all order-of-magnitudeoagreement and also more 

detailed aspects 'of the process. 

Concerning the question of the validity of the liquid-drop 

'model for discussing fission, we believe'that the above clear-cut program 

of an unambiguous comparison of nuclear fission with the division of an l 

idealized drop should be carried through irrespective of how good the: 

liquid-drop model is thoug~t to be. Nevertheless it is of interest to 

form some a priori judgment as to hOi'; ",'ell an idealized drop might be ~ q \ 
expected to represent nuclear fission. Some comments on this subject 

I 
l 

are made' in the Appendix.',. Our conclusion is that although the liquid';' 

drop theory of fission "'ould not be expected to be accurate for a 

particular nucleus, it can be expected to yield the correct average 

behavior of nuclei throughout the periodic table, in analogy to the way 
I 

the liquid-drop semiempirical mass formula reproduces the correct trends 

in the mas&es of nuclei, apart from oscillations due to shell structure. 

4 ' ' 
We, have taken the constants of the Bethe-Weizsacker semiempirical 

>, , 

mass formula from Green's analysis of ground~state ,masses (!tQ). The 

nuclear temperature at the saddle point ,is determined from the excitation 

energy and 'fission' barrier of the compound nucleus.;, All other q~ant1 ties ' ,<' 

are calculated directly from the model. 
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II. STATICS 

. We shall be concerned in this section with the static .properties 

of our model-with mapping the potential energ'y of the system as a. 

function of its coordinates, and with studying the proper~ies of the 

saddle-point configuration. Before proceeding .with this study, how­

ever, it will be advantageous for us to take care of some 'preliminaries. ~ 

A. Units, Notation, and, Coordinates 

For dis cus sing fis sion within the framework of the liquid-

drop model, it is convenient to use a system of units based on the 

original spherical drop, rather than the conventional units of length, , 

mass, and time. The three "natural" units to choose a,re the radius, ' . 

,mass, and surface energy of the original drop. Time is then no 

longer a fundamental unit, but is expressed in terms of a length, a 1\ 
I 

mass, and an energy. This is analogous to the situation in elementax:y-

particle physics, for exam.ple, where the speed of light. Planck's 

. ,constant divided by 2n, and the pion mass are chosen as units. 

In actual applications it is necessary to. convert these liquid­

drop units to conventional units. For the comparison of the theo­

retical and experimental results discussed here, this ,conversion is 

made with Green's .values for the constants in the semiempirical mass 
! ,5 

formula( 40). ,We denote by. ,A the number of nucleons in the com-

pound nucleus, undergoing fission. 

drop is then 

, " .. The radius of the original 

R A1/3. h o = r 0 ' ,Wl t r 0 = 
, -13 ' 

1.21?X10 cm, (1a) : 

and its surface energy is 

(O) 2/3. ' 
,ES = as A • wlth as = 17.80 MeV., (1b) 

5 :,,' . 
When future determinations of these constants,are made, the ,new 

values may be used since all theoretical quantities a,re given here in 

liquid~drop .units. 

.i,. 

, .. ~ . 

' . 
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The mass of the original drop, to an accuracy within one part per 

thousand, is equal to the mass unit times the number of nucleons; thus, 

(ie) 

. with 

66 -24 / 2 . ) mO = 1. OXiO g ,= 931 MeV c {:Ref.' 41 • ", 

" ,In, this ,discussion of units ,the symbol c denotes the speed of light. 

The units for' other fa~iiiar quantities may be readily, derived 

.from these three .fundamental ones. For eX<l:mple, ,the unit of time is ' 

T l M /E(0)11/2 R' - ( / )1/2 A1/ 2 
o = 0 S 0 - mO as . r 0 

= '(2.933~iO-23 sec)A 1/2 , 

the unit of linear 'momentum is 

(2) 

. " 

II 
\1 

\ ' 

,. .. 
and the unit of angular momentum is 

, 1/2 ' 
L - l M E(O)], 'R - ( )1/2 A7/ 6 - (0 793'" )A7/ 6 ' o - OS 0 - mOaS r 0 -. n, 

" I 
" (3) 

, where, 11 is Planck' sconstant divided by 2'lT. The unit of frequency' 

is 
22' 1/2 

nO= 1/T 0 = (3.409X10 / s,ec)/ A ,; (4a) 

when multiplied by 11 this, becomes 

, ,(4b) 

, ' , ' '(0) 1/2 
. Although the unit of charge is formally l RO ES .] " ," the 

. ,.. 

,charge on the drop is more conveniently spc:cified through the dimension-

less fissionability parameter x, defined by <'2) " 
,.:.: . 

" ' .. " : 

. ... :' 
" ' 
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x= 

..;:16-

2 
(charge) 

10(volume) (surface tension) . (5a) 

\ . 
(The surface tension multiplied by 4'TTr~ is equal to as') For a uni-

formly charged drop with a sharp surface, 

(5b) 

. where. E~O) is the Coulomb energy of the original drop, given by 

wit h . Z the number of protons, e the electronic charge, and the 

constant a C :: O. 710 MeV(4b~ A third conventional form for x is 

II . 
(5c)~(· 

I 

where 
2 

(Z / A) crit = 2 as/aC = 50 .. 13. 

When these liquid-drop units are used, the results of our 

calculations can be displayed as functions of a single parameter (e. g. , 

x) rather than as functions of two parameters (e. go, Z and A). 

The notation of this paper will adhere, insofar as is practicable, 

to the following convention: Quantities referring to the left-hand frag- .. 

ment will be distinguished by the subscript 1, and to the right-hand. 

fragment by the subscript .2. Furthermore, unless otherwise noted, 

any; quantity that is the sum of two quantities, each referring to an 
. . 

individual fragment, will be designated by the same ,symbol but with-

out subscripts; e. g., the total excitation ener.gy. of both fragments 

(Xi + X 2) will be' denoted by· X. 

For specifying the angles involved in our problem, we will 

adopt the following scheme (see the lower part of Fig. 2): Wedenote 

. by e and ~ the two angles sl?ecifying thedirect~on in space of the. 

line connecting the centers of the two fragments. ·We define a right';; 

handed coordinate system whose origin is at the cent~r of fragment. 1, 
.... 

i 

". 
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'. 
whose, z 1 axis is along the line connecting the spheroid .centers ' 

(positive in the direction fragment Z), and whose xi and y 1 axes 

are perpendicular to one another and to the z 1 axis. We define a 

second coordinate 'system whose origin is at the center of fragment 2, , 

and whose xz' yz, and zz axes are parallel (with the same sens~ of 

direction) to the xi' y l' and z l' axes, respectively. Then the orien­

tation in space of fragment 1 is specified by the three Euler angles 
, . 

ei , <1>1' and Y;1 [as defined, for example, by Goldstein(4~],and the 

orientation of fragment Z by eZ' <l>z, and Y;Z' These angles are de-. 

fined as the (counterclockwis e) angles of rotation about three mutually' 

inclined axes necessary to bring a fragment from a position with its. 

symmetry axis a~ong ,the z 1 (or z Z) axis to its final position. For 

" fragment 1, say; these rotations are: one through the angle <1>1' 

about the z 1 axis, one through the angle e 1 about the new Xi axis, 

and one through the angle Y; 1 a bout the new z 1 axis, made in that l \ i 
. order. The angle e 1 is the polar angle of spherical coordinates usually 

" . denoted by the same symbol: the angle between the z 1 axis and the 

. symmetry axis. of fragment 1. The angle <1>1 is, related to the usual 

azimuthal angle of polar coordinates by an additive constant. 

Because of the symmetry of the syste:m, the potential energy, 

is, independent..oi all but the following three of the above angles: () 1'. ' 

. eZ', and the difference <l> = <1>1 -:- <l>Z between the azimuthal angles of 

the fragments I symmetry, axes. 

/ -

We choose the four remaining coordinates. required for specifying 

a two-spheroid configuration (in the center-of-mass system) as fol- . 

lows: (a) the' distance 1. between the centers of the two spheroids,. 

(b) the fractional mass (fractional volume) U of the left-hand frag-
6. 

ment, and (c) the semiaxes c1, and C z of each.fragment along its 

.line of symmetry 7 {see again the lower part of Fig •. 2}. " 
,6 

'The fractional mass of the right-hand fragment is 1- U. 
7 

'For example~ if spheroid'1 is prolate, then c
1 

'is.its,semimajor, 

axis; its semiminor axis is determined by volum~ conservation. 

:. '.-

, , 
, " 

.:: ".; 
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Prior to division into separate fragments ,the nucleus is 

represented by two overlapping spheroids. When the spheroidsar.e 

.overlapping, both the potential energy and the kinetic energy are much. 

.more difficult to calculate than when they are ~eparated,' and we then 

. consider only the restricted case of symmetrical fragments, in which 

U = 1/2, c 1 = c 2 == c, . and e 1 = 8 2 = O. (The potential energy is for 

this case independent of <1>.') For this restricted case,. the two co­

ordinates J. and .ccompletely specify the system (seethe upper 

. ,'part of Fig. 2). 

( , 

,B. .Potential Energy of the System 

The potential energy of the system is simply the sum of the 

surface energyEs an4. the Coulomb energy. EC. The potential energy 

7" of a deformed drop, relative to the original drop, is .then .... [\ j 

" ! 

(0) 
= l (B S -. 1) + 2 x (B C - 1)] E S .(6a) 

The function BS. is the total surface energy of the system in units 

of the surface energy E~O) of the original drop, and BC is the total 

'. Coulomb energy of the system in units of the Coulomb energy ,E~) , 

. of the oJ;"iginal drop. The definition (5b) is used in going from step 2 

to step 3. When the system consists of two separated frag.ments, the 

potential energy is, conveniently written as 

"1.= {[ B~1) + B~2) - 1] + 2" [B~) + Bg) +BI - 11} . E~O) • . (6b) 

The functionB~), for example, is the surface energy of fragment 1 

, in units of E~O),Bg} is.the Coulomb ~elf-energy of fragment 1 in 

.' units of E~), and BI .is ,the Coulomb interaction,.energy betw~en; 

. ! 
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fragments 1 and .. Z in units of E~}. Iii terms of these appropriate 

. units, the various energies denoted by'S depend upon neither the 

value of A nor of Z of the original nucleus; they are functions ,only 

. of the shape of the system. 

Different formulae for calculating the energies are used, de-. 
pending upon whether the system consists of separated spheroids or / 

overlapping spheroids. The case in which the spheroids are separated 

.'is the simpler. The surface energies and Coulomb self-energies are 

then expressible in a .closed form, and the interaction energy may be 

calculated by performing .a triple multipole summation. Formulae • 

for calculating Y as a function of the coordinates specifying the . 

I f Ref. 2 . 
. system are given in Appendix B.1 For the restricted case of over.;. 

lapping spheroids, specified by the two coordinates 1. andc, the 

surface energy is again expressible in a closed form, but the Coulomb 

. ' .. energy must now be calculated by numerically evaluating a double \1. 
/0f Ref,. 2 \ 

'. integral. The formulae given in Appendix B.Z for the symmetric 

overlapping ,case could be readily generalized to the case where 

U f. 1/2 andc
1 

f. c z, but not to the non-axially-symmetric case. 

,Let us now examine the appearance of the potential-energy 

surfaces ,calculated with these formulae. Since the results can be 

displayed easily in at most two dimensions,. we present maps of the 

potentiali'energyas functions of the two coordinates specifying sym- . 

metrical fragments: the separation coordinate 1. and the deformation 

coordinate c. An examination of the potential energy for this restricted 

case will.tell us many things of interest, including the location 'and energy 

of the sa'ddle point. The potential.energy is mapped in Fig., 3 

for values of the fissionability parameter x between ° ,~ 

ana. 1.0, at 

intervals of 0.2. (For potential-energy maps at intervals 'of 0.05 in . x 
, .. '. " 

see Fig. 3 of Ref~ 2.) In this figure are included maps of the surface 

energy Bs and the Coulomb energy BC' as well as an illustration of 
. 
configurations of the system for various values of the coordinates., 

. ! 

'."!. 
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An expansion of the potential energy about the sphere indicates 

that for small distortions the contours are portions of ellipses whose .. , 

major axes are tilte'd at angles of about 30.5 0 from the horizontal 
,pf Ref. 2)· 

(see Appendix B.2j As the drop distorts in the direction of the saddle 

point, the potential energy increases until the saddle point is reachea 

and then begins to decrease. For large values of x the potential-

energy surface is much flatter in the overlapping region than in the .. 

separated region; the opposite is true for small values of x. The 

potential-energy surface in the separated region is a "trough" that 

drops off approximately as 1/1. along the separation coordinate. At 

the scission line I. = 2c dividing the two regions there occurs a cusp , 8 
in the energy surface. This results from the discontinuous rate of 

change of.the surface energy in passing from the region of overlapping 

spheroids, wher~ the surface energy increase's with separ~tion,. to 1\ \ 
I 

the region of separated spheroids, where the surface energy is in- I 

dependent of separation. 

The .results of electronic computer studies of equilibrium con-
.' . 

figurations of idealized charged drops have recently become available.(15'-18). '- -
It is pos~ible. then, to compare with these essentially exact results 

various properties of ,equilibrium configurations calculated in the two­

spheroid i approximation. This will provide us with some idea of the 

8 
When all coordinates are considered, the cusp occurs at those 

, 
values of the coordinates . that correspond to the configuration of . ';.' 

touching spheroids. 

. \:,;.: 

" ....... 

.. 
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limitations of our model. The followlng properties of equilibrium 

configurations are compared as functions of fis sionability· parameter: ' 

, the total potential energy 'l, in Fig. 4; the individual surface and, 

Coulomb energies BS and B
C

' in Fig. 5; the saddle-point shape 

of the drop, in Fig. 6;, and the drop! s maximum and minimum radii 
, . 
Rand R " , in Fig. 7. max mln ' 

There are several observations that may "be made. One con-

cerns the general appearance of the saddle-point shapes. A striking 

discrepancy between the true saddle-point shapes and those calculated 

in the two-spheroid approximation occurs in the central region of the 

drop (the neck). The restriction that the fragments maintain sphe- . 

roidal shapes allows the drop '-very little freedom at its neck. In 

particular, a discontinuity is introduced in the surface of the drop, -: 

and the radius of the neck (R " ) in its dependence on x is repro-
, mln . ' 'I' 

: duced very poorly. The two-spheroid model is thus not suitable, ~orl\~ 
, 

discussing phenomena that depend upon the properties of the neck.. ' 

In the two-spheroid approximaHon, when the fis sionability 

parameter x is between 0 and 0.80, the saddle point lies on the 

scission line, possessing the shape of two tangent spheroids. For 

, values of x between 0.80 and 1.0, the saddle point occurs for some 

value of 1. < lc; i. e., the saddle-point shape is the configuration of 

two overlapping spheroids. The. results of the exact calculations in­

dicate that the saddle-point,shapes change from dumbbell-1ike (approx­

imated by'two tangent spheroids) for x S. 0.67 to cylinder-like (approx­

imated by two overlapping spheroids) for x ~ 0.67 .0..5). Thus the transi-' 

tion at x'::::: 0'.80 in the two-spheroid model, although qualitatively 

correct, occurs at a value o~ x that is somewhat, too high. 

In the short interval 0.79 :5 x S. 0.85 there are in the two­

spheroid 'model three equilibrium configurations (apart from the 

original sphere): two saddle points and,one stable ~inimumpoint.:'9 

9 :'This -is clearly seen in Fig. 3in the map for x = 0.8. ':, 
j' 

. ~ .. 

I' 

t:' 
\' 
I, 

\'i ',/ 
."'"{" ,', .I" 
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The occurrence. of three configurations of equilibrium is associated 

with a . "dip" in the potential energy as a function of distortion •. For 

· x close to the· respective transition point in' both the two-spheroid 

· approximation and in the exact calculations, the potential energy be­

·comes extremely flat .. A very slight dip occurs in the two-spheroid 

model, resulting in three equilibrium configurations,. but does not. 

o h 1 l' 10 · occur ln t e exact ca cu atlons 0 

The dependence on xof the remaining properties calculated 

.in the two-spheroid approxilnation is qualitatively correct .. · The two~' 

· spJ::leroidmodel in addition reproduces the exact results both for .x 

close to 1.0. 'where the saddle-point shape is a single spheroid.(a 

single sphere at x = 1.0), 'and at x = 0, where the saddle-point shape 

is a pair of tangent s phe;res 0 However, it is clear from the figures 

that for the range of x roughly between 0.67 and 0.85 the two-spheroi',<;l 
! 

model represents very poorly the true saddle-point properties. Thus~ 
for 0.67:$ x :$ 0.85 this .model·should not be expected to accurately 

· ci.escribe phenome~a asso'ciated with saddle-point shapes~1.Nevertheless', 
,the model may .st;mfi~eful for this range of x for discussing phenomena 

not related to the saddle point, such as the separation of the fragments 

after scission. 

: For x :$ 0.67 there is fair agreement between the exact saddie.,. 

point pro~erties and those calculated in the two-spheroid approximation. 

, The following'major discrepancies should be noted. The fission 

barrier (saddle-point potential energy) calculated in the two-s pheroid 

approximation is higher than the true liquid-drop barrier. This dif­

ference becomes as large as about 23 MeV, when'; th,e two-spheroid 

10Historically, however, it was for a time believed that three 

equilibrium c.o?f~gurations possibly did exist for a short range of X' . 

. close to 0.7 ("~,43). 

1Ir 
'Unfortunately, most experimental information on fission is .for 

nuclei that lie in this range of x. Some data exist, however,onthe, 

fission of nuclei where x:s 0.67, and more are becoming available 

a$ time progresses. 
, ' 

'.', . 
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barrier is roughly twice as high as th~' exact one. This means that 

the division of the total energy of the system at the saddle point into 

potential energy and internal excitation energy will be incorrect. The 

potential energy of deformation will be greater than it should be, and 

the internal excitation energy less by a corresponding amount • 

Recall that for the lower values of x .under consideration 

(x ~ 0.67) the saddle point lies on the scission line, where there is a 

cusp in the potential energy. In the direction of motion across .the 

saddle point, then, there is a dis continuity in the rate of change o£ 

the potential energy. The'second derivative, in particular, represent­

ing the (negative) I1fission" stiffness constant, is not defined. Thus 

both the magnitude of the p'otential energy a~d 'the associated· stiffness 

. constant in the fission.direction are not well reproduced by the two­

spheroid model. 

The failure of the model in these two respects (as well as its l!,' 
" 

other failures, including the more drastic ones for the region 0.67 S ' 
. x S 0.85) is due to the lack of freedom of the drop at its neck. To remedy 

this ~e have tried a eenera1ization of the two-spheroid model obtain~ 
ed . by; introducing a third conicoid of revolution (a hyperboloid of 

revolution of one or two sheets, or a spheroid) to connect the two end 
12 thus . 

spheroids. Biincluding one additional coordinate to explicitly de-. 

scribe th~ neck degree of freedom, we found that all the saddle-point 

properties of Figs. 4-7 :were reproduced with amazing. accuracy •. For 

example, over the entire range of x from 0 to 1.0, the fission ba:rriers 

calculated in this generalization are accurate to within one-half an 

Mey. This is illustrated by the ,comparisons .of saddle-point properties 
. . 

made in Figs. 8-11. 
) . 

One would expect the tw?-spheroid model (without the conicoidal 

neck) to adequately describe those saddle-point properties not de-. 

'pendent upon details of the neck. The theory we develop depends in 

~. .. 
Formulae for calculating the potential energy of such ,a system 

are given in Appendix B.3 of Ref. 2. 

", . 



part upon the variation of the potential ene,rgy in the neighborhood of 
(. 

the saddle point-in particular, upon the second derivatives of the 
. . . . . 

. .~.' ;",' 
'. . .' 

" . potential energy e~aluated at the saddl~ point (the stiffness constants). 
..• ,r • 

" .. 

", . 
• ' 'f 

'j :. , The increase· in potentiai energy arising from ·changes in'the fractional 
, . ' I I may be e~e cted to be 
mass and in the length of the fragments l axes II affected l.ittle by,the 

I . 

"presence or absence,of a neck. ' We would thus expect the phenomena 
: '," 

'. : .... · associated with. the second derivatives with respect to fractional mass 
" .' 

.,' . and semisymmetry axes-the distributions in mass, total translational 
.' '~""~':', 

,'.' t',';.:· :.:": 
'.' . 
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kinet~c. energy, and excitation energies-to be described moderately 

well by the two-spheroid model. On the other hand, the crudeness of 

the neck makes the reliability of the stiffne'ss ,con'stants fo~ the angula:r :: ..... , :"':,:' 

,coordinates ,less certain. We therefore do not have a clear idea of ' 

how well we should expect the distributions in fragment angular mo- . 
, 

· menta (associated with the angular-coordinate stiffness,constants) . . . . II 
II 

". - ' 

"to be described by the model. i' ,c .• ," 

To summarize, we see that the two-spheroid model is in­

adequate in, two important respe~ts: First of ali, it cannot be reliably", 

used' for x ;>: 0.67, where most of the experimental information on fis- ," 
.~ . 

;., 

',: sion lies., Secondly, even for x ,~0.67,it,does not reproduce well 

. ,', 

" '" 

. ~ , . 

. . , ~ 

those saddle-point properties associated with the neck-in partic~la,r;':;;,: 
the fission barrier and th,e fissi~n stiffne'ss constant. It is thus un­

suitable Jven in this range of ~ for discussing quantitie~ d,ependent 

upon these properties,' such as the probability of fission. On the 

other hand, the two-spheroid model. is expected to be useful for esti~ , 

~ : ( 

. , :. 

,mating the distributions in mass, total translational kinetic energy, 

excitation ene;gies, and/aJ'gE[f::P~ome~ta of the fra~ments at infiruty.', . ' 

. The accuracy of the estimated distributions in angular momenta is . 
, , . 

uncertain. As regards the remaining distributions,: we would expe'ct '. 
" 

· the ·estimates to be fair.. :-b'etter than order of magnitude-

'and yet certainly 'not exact'~ ':'. '. >: " 
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III. DYNAMICS 

We considered in the last section one part of the Hamiltonian 

for the system:, the potential energy; we now turn our attention to 

the other part: the kinetic energy. Although the potential energy of 

a liquid drop is uniquely determined as soon as the drop' s boundary 

"is given, the kinetic energy, on the ether hand, is not uniquely deter­

mined,by specifying the time rate' of change of the boundary. One , . 
must in addition ma.ke some statement regarding the ,nature of the 

hydrodynamic flow of the fluid inside the drop, i. e., the curl (rotation 

, or vorticity) in the system must be specified. A thorough treatment 

of the liquid-drop model would thus require that one study the system 

for various 'types of hydrodynamic flow, consistent with one and the 

same motion of the boun,dary. 

We work out the details of the theory for the case of an in-

, compressible fluid in .which vibrations of a fragment are treated as 

irrotational,whereas rotations are treated as if the fragment were a 

rigid body. This means that the hydrodynamic flow within each frag­

ment is taken to be a superposition of an irrotational flow and a flow 

corresponding ,to a uniform rotation; 1. e., the curl within each frag­

ment is equal to twice the angular-velocity vector {which is, constant 

throughout the fragment). [For a brief discussion of such composite 
I 

types of flow, see Lamb(1~i+).] 

The type of hydrodynamic flow that ·we have chosen to con~ider 

is, of course, only one of several types .for which the theory should 

be worked out. For example, the case in which the flow is completely 

irrotational (as regards both vibrations and rotation,s), and the case 

in which the drop is very viscous should also be considered.
13 

The 

actual situation in nuclei is presumfLbly intermediate between these 

limiting cases. 

13 
' When we discuss the solutions to the equations of motion we will, 

whenever possible, also indicate the result for the case in which the 

fragments, are infinitely viscous, and would there}ore separate to. 

infinity without oscillating. 

/' 

, 
i 
I. 
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It is of interest to have some a priori opinion as to how well 

.. the type of flow we are considering represents real nuclei. The de­

duction of vibrational inertial parameters and moments of inertia for 

nuclei in their ground states has been extensively considered. (See,' 

· for example, Ref .. 45.~) Estimates of the vibrational inertial-' . 

parameters corresponding to quadrupole vibrations of even-even 

nuclei about spherical equilibrium shapes indicate that the actual 

· values are consi.derably greater than the values corresponding to 

irrotational flow(1~5). These values, however, are strongly influenced 

by the effects of single-particle shell structure on ground-state nuclei. 

· For the vibrations of interest in fission-smal~ vibrations of the system, 

about a deformed saddle-point shape, and relatively large vibrations 

· of the fragments about their centers following scission-the effects of 

. single particles would be' expected to be less important. 

Estim~tes of moments of inertia corresponding to rotations 

of deformed even-even nuclei indicate that the actua1.values are 

II: 
. \ 

. greater than the values corresponding to irrotationa1.flow, and less 

than the values corresponding to rigid-body rotation. As the de­

formation of the nuclear equilibrium configuration increas es, . the 

ratio of the observed moment .of inertia to the rigid-body value in­

creases(~). This would imply that for the relatively large fragment 

· deformations encountered in fission the fragment moments of inertia 

should not be too far from their rigid-body values. 

In addition, the fragments in fission will, in general, poss ess 

some internal excitation, and, as we will discover, are'typically 

rota~ing .with several 1'1 units of angular momentum. One would ex-_ .'. , 
pect each of these effects to increase the moment of inertia. -<An 
argument for the approach of the moment of inertia to the rigid-body 

" ,. . . 
} 

value at high spins is discussed in Ref • 46.), ........ . 
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" , In,our dynamical study we shaUbe concerned with setting up 

and solving the classical equations of motion of the system.
14 

This 

will make it possible to trace out dynamically the motion of the system 

from some given initial configuration near the saddle point to the final 

configuration of two fragments at infinity. The state of motion at 

infinity will correspond directly to observable characteristics of fis­

sion fragments-the speed of separation of fragment centers will cor-

. respond.to their translational kinetic energies. the vibrations about 

their centers of mass will correspond.to their excitation 

energies, and the rotations about their centers of mas s will cor­

respond to their angular momenta. Out of the dynamical study will 

,come, then, the relationship between the initial configuration of the 

'system near the saddle point and the observable quantities of interest 

at infinity: This relationship becomes extremely simple when the 
, 

. I ' q , 
deviations of the initial configuration from the saddle point are smalL, \ 

.\ ' 

(In practice. this turns out to be a good approximation. ) 
. \ . 

For the case in which the saddle point consists of two tangent 

spheroids (x :5 0.80). we :,,",ill find a simple equation that expresses 

,very accurately the total translational kinetic energy E of the two 

fragments at infinity in terms of the initial coordinates and momenta. 

The use of classical equations of motion for discussing the separa­

tion of the fragments to infinity may be partially justified on the 

gro';lnds that a short distance from the saddle point the, de Broglie' 

wavelength for translational motion has become relatively small, 

that the vibrations about eachfragm~nt' s center of·massinvolve 

several quanta of ene:tgy, and that the angular momentum of each 

. fragment is typically several 1'1 units in magnitude • 

. ' 

" 

:> • 

.. :. 

, " 



The value of E will be seen to depend primarily upon the initial 

distance between the fragment centers and the product of their charges. 

Since the fractional mas s does not change after division into 

two fragments, the fractional mas s . U at infinity will equal its original 

value at the saddle point. 

The excitation energy of an individual fragment at infinity will 

be seen to depend primarily upon its initial elongation. We will content 

ourselves .with establishing an equation for the excitation energy at 

infinity that is valid to first order in the small deviatic;>ns of the con­

figuration from its saddle-point shape. 

We will fin9. that the angular momentu~ of an individual frag­

ment at infinity depends primarily upon the initial angular momentum 

it possessed near the saddle point. Fragments that are infinitely vis- ' 

cous and therefore separate without oscillating are capable of acquiring . q 

,some additional angular momentum by virtue of the. torque exerted by':~ 

one fragment on the other through the electrostatic interaction.
15 

The 

amount of such induced angular momentum depends primarily upon the 

fragment ' s initial angle e 1 and upon its initial angular momentum 

Pe. Fragments .that oscillate with irrotational flow as they separate 
. 1 
acquire very little angular momentum by this mechanism because. the 

torque decreases as the symmetry axis short·ens, and even changes 
I . 

'sign as the sphero~d changes from prolate to oblate. We will establish 

an equation for the angular momentum at infinity that is v~lid to first 

order in the initial coordinates and momenta, in analogy to 'What ~ did 

for the excitation energy. 

15 
The angular momentum acquired.by a rigid spheroid.moving,in ... 

the electrostatic .field of ·a sphere has been discussed by Hoffman ( 47)., 

. 0,: . 
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A. Kinetic Energy of the System 

We shall in this subsection concern ourselves with the kinetic 

energy of the system. However, let us first 

consider another simplification arising from the smallness of the' 

initial deviations from the saddle point. 

Because-:-as regards angular momenta-we are working only 

to first order 'in the initial coordinates and momenta, it is sufficient 

. when discussing the separation of the fragments to infinity to consider 

explicitly only configurations in which the. sym~etry axes are coplanar, 

and in which the spheroids are not spinning about their symmetry axes. 

This is true because of the symmetries of the ·saddle-point shape. Con-' 

sider, say; the x component of angular momentum of afragment at 

infinity. From symmetry, itwill have no linear dependence upon an 

initial rotation of either fragment about its y or z axis. Similarlyl,\, 

it will not depend linearly upon the initial y or z components of ' 

angular momentum of either fragment. Analogous statements hold 

for the fragment's y. and z components of angular momentum at 

infinity. Indeed, to first order, the fragment' sz component of 

angular momentum at infinity is equal to its initial z component of 

angular momentum {near the saddle point}. This means, then, that 

to first order in the initial coordinates and .momenta, the result for 
t 

the general noncoplanar configuration with rotations about the spheroids' , . 
symmetry axes is simply a superposition of the results. for two special 

cases: {a} coplanar symmetry axes with no rotations about them" and 

.(b) rotations about collinear symmetry axes, for which we know the 

result. 

For'the sake of clarity the exposition throughout this subsection 

will be as if the symmetry axes of the spheroids .were coplanar and - . 

there were no rot~tions about them. Thus the difference 4> = 4>1-4>2 

between the azimuthal angles of the symmetry ax'es (see Fig. 2) is 

taken to be zero. The results obtained by considering coplanar 

spheroids with no rotations about! thdr symmet~y,axeB . will be sub­

sequently generalized to the original case of two-spheroid .configurations 

./ . 

".1.' 
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described by nine degrees of freedom (in a center-of-mass system w~th 

. zero total angular momentum). It must be borne in mind, however, that 

if one desired to discuss the solutions to a higher order than linear 

in the initial angles and their conjugate momenta, then it would be 

necessary to set up and solve the e<luations of motion for the gener-al 
./' 

noncoplanar configuration with rotations about the spheroids' symffietry axes. 

As we found to be true with the potential energy, the kinetic 

energy of the system is simpler when the fragments are separated than 

when they are overlapping. When the fragments are separated the total 

kinetic energy of the system is equal to the kinetic energy of the centers 

, of mass of the tvTO fragm~nts, plus the kinetic energy of motion of each 
I 

fragment relative to its own center of mass. The kinetic energy of aq 

. fragment relative to its center of mass is e<lual to an integral over its, 

volume of one-half the mass density times thes~uare of the local fluid 
, 

velocity (relative to its center of mass). For the type of flow we are·' 

considering, the integration can be performed exactly (see Appendix C.l 

of Ref. 2), yielding the sum of ,two terms: the kinetic energy of 
I . 

vibration of the fragment,. and the kinetic energy,of rotation of the 

fragment. 

,,; . 

In general, the system's total kinetic energy is a function of' ,,' 

the time rate of change of the angular coordinate 9' that specifies 

the orientation in space of the system as a whole (for coplanar fragments). 

However, ~or the case of a system with zero total angular momentum, the 

time rate of change of 9 is determined in terms of the time rates of 

change of 91 , and 8
2 

The result obtained for the 'system's total 

kinetic energy is (see Section III.A of Ref. 2 for details) 

, . 
\; , 

,,-; . 

. '.' 

.' 
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,.' 

, 2 2 2 2' 2 [p/ Pc Pc p , Pe (Pe + Pe ) 
1 el d + 1 + 2 + 2 +' 1 2 

= -- + 2 M
t 

t-i M M ' Me M t
2 

cl c el ·2 2 t " 

(7) 

'He denote py .P
t 

the momentum conjugate to the coordinate t, etc. 

The q,uantity M
t 

is the reduced mass of the two fragments, given by 

}'1 -t - U(l - U)MO; (8a) 

] 

theq,uantity M c
l 

, say, is the vibrational' effective mass of fragment 1, ' 

gi ven by (1+4) 

, 1 (, 
~ 5" \ + 1'( ~ 5" 1 

U 
+-

2 

and Me is the rigid-bo~y moment of inertia of fragment 1 for . 
1 

rotations about :a tra:nsverse:.~is:l: given::by. .. · .. ::.\,~.::::.:::l)l._.: ... ':;r-. ~<;:; .;:/ . .-.::::.~,~.: ':;" 

(8c) 

> , 

The .transverse,' semiaxis·:. of .. fragment '1' ,is denoted· :< ... \:: ...... :: ' . , 

by al • He note that for the separated case there is no term in the 

kinetic energy involving the moment~~ conjugate to the fractional volume' 

U ; this is because once the drop has split. into two framents, the 

fractional volume U no longer changes with time·:~. 
, .. 

, " 

. ,', 

,', 
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. /-~-""'- The Hamiitonian for the system is then : f (o.~ '. "-, " 

. 
I s c. r- :f t , .. \ 
I \ 
(: a..;C.h) tee) \. ~ ,,> 
·r . ) }! = + V, 
,'\aVld y~e '/ 

' .. :: 

i \.._: __ ---~- '.,' ..... 

vhere ';J' is given by (7L' and Y by (6b). 

'i-Then the fragments overlap: the kinetic energy of the system 

is much more difficult to ·calculate. He then specialize, as we did for 

". the potential energy, to the restricted case of fragments that are 

symmet~ical. 'The kinetic enere;y of the system can then be calculat~d 

approximately by using t~e method of Herner and Wheeler (.!&) (see 

. '; , 

Appendix C. 2 of Ref. 2). A closed expression is obtained for the kin~;tic ..... 
\ 

energy as a function of the coordinates ~ and c, and their time 
. 

derivatives ~ and c. This method yields the exact result for two 

limiting cases: (1) when the system consists of two separated spheroids, 

and (2) for spheroidal distortions when the system consists of a single 

spheroid. The accuracy of the method for the general overlapping case is 
1 

not kno'Ym. HOi-rever, for the lower values of x, where the saddle point 

consists of two tangent spherOids, this approximate method is never 

used, since we focus attention on the system only from the saddle' point 

to infinity. 

B. Transformation to Normal Coordinates 

A fundamental aspect of the dynamical discussion of any 

physical system is the question of small oscillations about the positions' 

< I' 
';, . 

,', . 

-p' 

. ',' . 

..... 
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of equilibrium. In the nermal fissien process there are three equili­

bri.um cenfiguratiens: (1) the initial sphere, (2) the saddle pei~t, 

and (3) ,the two. spherical fragments at infinity. Beth the initial sphere 

and the two. spherical fragments at infinity are pesitiens ef stable 

equilibrium. The small escillatiens abeut each ef these spherical 

shapes can be readily discussed by expanding the drep's radius ,vecter 

in spherical harmenics: The metien ef the drep is a superpesitien ef 

simple harmenic escillatiens ef different frequencies cerrespending 

to' the varieus spherical-harmenic distertiens. The questien ef small 

escillatiens abeut the remaining equilibrium pesitien-the unstable cen­

figuratien at the saddle peint-will new be censidered. 

The first step in the discussien ef the small escillatiens abeut , 

the saddle peint is to. transferm frem the eriginal ceerdinatesystem to. 
, ',16, 

a system ef nermal ceerd~nates. In terms ef the nermal ceerdinates~\, 

and their cenjugate mementa, beth the petential energy and the kinetic :,i 

energy, are simultaneeusly diagenalized at the saddle peint; i. e. , 

there appear threugh secend erder no. cress terms ef the form c
1 

'c 2" 

fer example. The Hamiltenian fer the system thus separates into. a 

, sum ef terms, each invelving enly a single ceerdinate and its, cen­

jugate mementum. ,This mean; physically that the m~tien ef the system 

in the vicinity ef the saddle peint separates into. several independent 

medes thai may be discussed separately. 

We censider first the case in which the saddle peint censists ef 

,two. tangent sphereids. The nermal-ceerdinatetransfermatien fer this 

case is net cempletely straightferward,because ef the cusp in the energy 

surface at the saddle peint. The transfermatien to. nermal ceerdinates 

can nevertheless be perfermed by regarding the, cusp as ,the limiting 

, case ef a regular (reunded) barrier. As the barrier becemesinfinitely 

sharp, all but ene ef the nermal.ceerdinates ceme to. lie in the subspace" 

16 
See the discussien ef ner~al ceerdinates in any classical-I. 

0·' . 

mechanics textbeek, fer example, Geldstein.{ 49). 

~ . ' 
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of touching spheroids. In this subspace, the potential energy has no 

irregularities. The remaining normal mode of motion-the fission 

mode- retains a well-defined direction. The physical meaning of this 

direction is that it repres ents the initial mode of motion that would be 

acquired by the system if started with an arbitrary infinitesimal dis,­

placement from the saddle point. 

For the discussion of the normal modes we again treat the 

more general case in which we consider the three angular degrees of 

freedom of each spheroid; i. e., the spheroids are permitted to rotate, 

'. about their symmetry axes, and'the symmetry axes are not required 

to lie in the same plane. (We are still ~onsid~ring a system with zero 

'total angular momentum; this will introduce one condition on these 

six angular coordinates.) It is convenient in discus sing small-angle 

oscillations to lowest order to use a set of angular coordinates defined 
• II 

, mo:re symmetrically with respect to the coordinate axes than the Eule;r 

angles. We denote by e ix ,and e iy the angles of rotation of frag­

ment 1 away from the z1 axis,the rotations being about the xi 

and y 1 axes, respectively. The angle of rotation of spheroid 1 about 

the z 1 axis is denoted by e iz' The angles e lx' e 2y' and e 2z are 

4efined in an analogous manner with respect to coordinate system 2. 

We expand the potential energy in the subspace of touching 

spheroids about the saddle point, retaining terms through s,econd 

order in the coordinates. Let us denote by K , for example, the c 1c 2 

second partial derivative in this subspace of the potential energy with 

res~ect to c 1 ,and c 2' evaluated at the saddle point. (Since, the 

saddle point is a position of equilibrium, all first derivatives are zero. ) 

In addition to the usual equalities between the stiffness constants (the 

Kf s) obtained by interchanging the o,rder of differentiation, symmetry 

. considerations at the saddle point yield the, following ,equalities be- , 

tween the nonzero stiffness constants: 

:., ' 
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In addition, with the exc~ption of and, K , , all the remaining 
c i c Z -" 

, .II" 
, stiffness constants are seen. from symmetr.y to be zero. 

then with only six independent stiffness constants: 

We are left",; ", 

.: ' 

We denote the value of a coordinate at the saddle point by a 

superscript 0, and the difference between a coordinate and its saddle": 
i 

point value by a 0 preceding the coordinate; forexample.l 

51. 1. _ 1. 0 1. 0 = = - ZC
i 

", . 

5U U uO 
U 

1 = - = - 2' " 

.... :,.- ',.,' 

',. " ;.':' -.:' 

'-,-, , ..... :-. 

'" .'. 

'.' .: .. " 

" ",. 
o e ix = e ix 
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The coordinate P., which in this subspace is the distance b.e-. 
.. tween tJ:ie cente rs of the touching spheroids, is chos en as the deI'end­

ent variable'; it is thus e"",xpr~ssed in terms of the other coordinates 
of ReL. 2). . . 

. -""'" (see Appendix D.~I To second order, the potential energy of the 

x 

. system in the vicinity of the saddle point in this subs pace can be 

written in matrix form 9-.S 

~UU 

o 

o 

o· 

o 

o o 

o o 

o o 

o ·0 

o o 

o o o o 

o .0 o o 

o o 

o o 

'0 o 

o 

o 

oU 

08
ix

' 

08
1 . Y 

58 ' 
2y 

1 
The kinetic energy in the neighborhood of· the saddle point, 

to second order in the coordinates and 'velocities .( or momenta), is 

17 I.Then discussing the kinetic energy, we are not restricted to' the 

subspace of touching spheroids. 

I 
. II . 

. I, , 
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'.;. :' 
obtained by evaluating at the saddle point the effective masses 

(8) of our previous e)."Pression' for;Y [Eq,. (7)] and generalizing 

the result to include general rotations of the spheroids about the 

x, y, and z ,'axes (rather than in a plane). 

, Before listing the normal-coordinate transformation formulae, 

let us describe physi~ally the normal modes of oscillation about the 

saddle-point configuration. We have tried to descriptively name each 

mode; the corresponding normal coordinate is designated by the first " 

letter of the n~~e. Figure 12 has been prepared to aid in visuali~ing' ~ 

the modes J ,-rhich i-Te nOvr enumerate: 

I (a) Fission: This normal mode is distinguished from the others , ,I. '" 

. in that it is always unstable--the potential energy decreases rather 

, than increases as we move a .... ray from the saddle pOint. Because of the' 

cusp in the potential energy the stiffness constant for this mode is. 

not defined; it i-Tould be negative for a saddle point in which there is . 

. no cusp. i The motion of the system is a simultaneous separation of 

the centers of the spheroids and a decrease in their elongations, or 
.1 

vice versa. 

(b) Mass-asymmetry: I As will be discussed iater,",this normal 

mode is stable for x greater than ~G (eq,ual to 0.47 in the two­

spheroid approximation), and unstable for x' less than '~G. The' . 

, motion here is an i~crease ':(n both'the mass (volume) and elongation 
. . ~ . . 

of one spheroid and a decrease in the mass and elongation of the other 

:" "¥ 

, .' 

. , ;.> 

:,," . 
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spheroid, such that the distance betwe'en spheroid centers (as well 

as the total length of the drop) is constant., 

(c) Stretching: The elongation of each spheroid increases (or de-· 

' .. creases) by the same amount. 

(d) Distortion-asymmetry: The elongation of one spheroid increases, 

and the elongation of the other spheroid decreases; the distance be-' 

tween spheroid centers (as well as the total length of the drop)" re-
I ' 

,mains constant. 

(e) Bending: This mode is doubly degenerate (occurs twice), cor~. 

responding to rotations in the x-z plane and the y-z plane. For a 

given plane, one of the spheroids rotates clockwise about an axis 

through its center perpendicular to the plane, 'and the other counter-

, clockwise through the same angle; the spheroids remain touching. 

(f) Wriggling: This mode is also doubly degenerate, correspondlng 

to rotations in the x':'z and y-z planes. ' For a given plane, both I\, 
spheroids rotate through the sarne angle either clockwise or· counter-:' 

clockwise about axes through their centers perpendicular tq the plane;· 

. they remain touching. The entire system rotates in the opposite di­

rection, ensuring conservation of the x and y components of total 

angular momentum. 

(g) Twisting: One of the spheroids rotates about its symmetry axis 

clockwise and the other cO'll:nterclockwise through the same angle. 

The restoring force (stiffness constant) for this mode is zero, re­

sulting ina uniform, rather than oscillatory, rotation. 

, ". 

(h) Axial-rotation: This mode would corresp~nd. to a uniform rotation, 

of ~he spheroids about their symmetry axes throug~ the same angle in 

the same direction. Conservation of the' z component of total angular 

'momentum means that this mode is not excited. 

The linear transformation that takes us from the original co­
ordinates to the, normal coordinates may be written as 

.. 

. :-: .. 
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. . ', 

.' ", 

." .' f = 51._ (5c 1 + 5c Z) 

Fl. 11 of (ZMc ~/MO)] . 

"-' .. 

m= 5U • 

, /,", .... , . :.,<;. ~',. : .~ 'i .;". '. 
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. ' w = (1/ J'l) (58 1 + 08 Zy) 
Y . Y 

i' t = (1/,.[2) (58 1z - 58 2z> 

a= (1/;(Z) (o'$1z + 58Zz ) , 

. 8 
where the quan:tity B is defined by 
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(12) 

18 
We will see later (Fig. 13)' that K-_ is always positive and that --vc Z · '. 

K c 1c
1 

is always greater than K .hence,· B is a~ways positive. 
,c1c Z 
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r These formulae may be verified by explicitly demonstrating that both 

~ and C1 are diagonalized in terms of the new coordinates and their 

time derivatives (or conjugate momenta).19 The normal coordinates are 

all identically zero at the saddle point. 

In terms of the normal coordinates and their conjugate momenta 

the Hamiltonian (with respect to the saddle p'oint) in the subspace' 

of touching spheroids is given to second order by (the axial-rotation 

. kinetic-energy term has beem dropped) 

J:} 1 {Kmm2 (Ks 2 p; ) (Kd d2 + P~.) = 2 + s + M + M· 
s . d. 

2 2 1 r IS,(b~ + b
2

) 
Pb + Pb ; 

+ + x z J y Mb 
I.-

r 2 2 

] +=:}, pw + P w L K (w
2 

+ w
2

) 
x Z + + w x Y M w 

i 
The normal-coordinate stiffness constants are expressed in terms of 

the original stiffness constants by 

K = m 

K = s 

K -d -

I<uu -B~ c2 
, 

K + K , 
clcl cl c2 

., . 

.. 

., . 

\. 
\. 

" i' , 
(." '" .. 

19 
In verifying that ~ is diagonal in terms of' the time derivatives 

. 

... 

.,,'. , ' 

of the normal coordinates, note that U is zero at the saddle point. 
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and'the normal-coordinate' effective masses are related to the original 

ones by 
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The quant,i ties o 
and Me are the values of 'M and Me 

1 cl 1 

(see E~. (8)]7 respectively, evaluated at the saddle point; and 

o Me is the rigid-body moment of inertia of spheroid 1 for rotations 
lz 

about the symmetry axis, evaluat~d at the saddle point: 

, 0 
M = 8 lz ' 

J:.;(R6 ) 
10 0 MO , c 

1 

= 

(In the first, form 'of the equation for M ,the second term within' 
w 

the brackets arises physically from the requirement that the total 

angular momentum be zero~) 
',' \\. 
". ; ~ 

The fre~uency for,aparticular norIT~l mode is given by the 

square root of the appropriate stiffness constant divideq. ,by the '" 

appropriate mass. There are four well-defined nonzero frequencies 

(the bending and wriggling frequencies are, of course, doubly 

degenerate) : 
i 

ro , 
s 

and ro' 
w Since the (negative) : • ',' •••• !. ~ 

fission stiffness constant Kf ' is not defined, the (imagin~ry) 

,frequency rof is also not defined. It is shown in Appendix D.2 of, 

Ref. 2 that, because the drop's minimum radius is zero, the mass-

, , 

'" 
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20 
asymmetry effective mass M~ is infinite. The corresponding fre-

quency wm is therefore zero.' The twisting frequency w
t 

is also 

zero, because the stiffness constant K
t 

is zero. 

A straightforward numerical method was used to locate the 

,( 

saddle point and calculate the stiffness constants (see Appendix G: .of Ref. 

, The results are presented as functions of fissionability parameter 

from 0 ~o ,0.80 in a series of graphs. The value of c~ ~efining 
the saddle-point shape (when the saddle point ?onsists of two tangent 

, spheroids) can be obtained from the R curve in Fig. 7 , max 
, (R =' 2 . c 0

1
), The stiffness constants for the original coordinate , max, : 

system are given in Fig~' 13. 

T 1 d ' 'ff h 'F' 1\ he norma -COOl" lnate stl ness constants are sown 1n 19. ; \ 
, 

'14. Four of these constants are always positive;, the mass-asymmetry 

stiffness constant Km changes sign at x = x
BG 

== 0.47. ,This value 

9f x is the two-spheroid ,approximatio,n to the true value of 0.394 , 

where the Businaro-Gallone family of asymmetric equilibrium shap"es 
, " " 22 

bifurcates from the family of symmetric equilibrium shapes, (~, LU). 
20 ,', 

, 'This !result states phYSically that the kinetic energy associated with 

a finite flux of matter through an aperature of infinitesimal radius is 

infinite, This follows fr<;>m the fact that the velocity of flow through 

',the aperture is infinite, and that the kinetic energy depends upon,the 

product of the amount or'matter and the square of the ,velocity. ' " 
21· , ' 

'The reason for the vanishing of W is that in the two-spheroid' m 
, model the neck radius of the saddle-point shape is zero. For the 

exact saddle point the neck radius is not zero but is small, and w 
m 

is not zero but is small in comparison with the other frequencies. 

22: The two-spheroid ,model thus predicts this bifurcation point at a 

value of x ,that is somewhat too high, in analogy to its prediction of,' 

a transition region at x == 0.80, when the true transition region occurs 

at x =0.67. 

2). 
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For x > x
BG 

the symmetric equilibrium shapes are stable against 

changes in asymmetry, and for x < x
BG 

they are unstable. Thus, 

for. x > x
BG 

the symmetric equilibrium shapes are unstable with. 

resI.'ect to displacements along only one normal coordinate' (the fission 

coordinate), and for x < x
BG 

they are unstable with respect to two 

(the. fis sion coordinate and the mas s -asymmetry coordinate). This 

.lneans physically that for x > x
BG 

th~ eguilibrium configuration 

defines a barrier energy, whereas for x < x
BG 

the equilibrium con­

figuration is at the "top of a hill" and therefore does not define a 
.' ,.' 

ba'rrier energy (12, .~). 
The effective masses are shown in Fig .. 15. The frequencies .. , 

for the four 'no~zero modes of oscillation are given in Fig. 16 in 

liquid-drop units. In Fig .. 17. the corresponding quantum energies 

(11 times the frequencies}'are given in units of MeV for nuclei along 
. (' . 1\ 
the line of l?eta stability. ~).For the region in which we will be most ~ \ 

interested (x z 0.67), the stretching and bending quantum energies are 

each about 1 MeV, the distortion-asymmetry quantum energy is about 

1.5 MeV, and the wriggling quantum energy is about 2 MeV . 

. For values of x ~ 0.80, where the saddle point is represented 

by overlapping spheroids, we again restrict .ourselves to the case of . 

symmetrical fragments, specified by the two coordinates .1 and c. 
. i 

Since there is no cusp in the potential energy at the saddle point, the 

normal-coordinate transformation for this case is straightforward. 

There r~su1t two normal modes: a stable oscillation (stretching) and 

I. 

. an unstable motion in the fission direction. We shall not present 'here 

the numerical results obtained for the frequencies of the normal modes . 
. > 

,\ .,' 

., 

" 

.,; ... 
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c. Solution of Equations of Notion 

He consider in this subsection'the solution of Hamilton's " : , .. 

,classical equations of motion for the system. For given initial' 

conditions} solution of these equations gives the subsequent motion 

of'the system. The question natlrally arises of what initial condi~ions ' 

" to use. 'One could} for example, study the behavior of the system by , 

all-rays starting with the original sphere}' 'giving it different sets of 

initial momenta. Because most of this work will be concerned with 
, . 

tracing out the consequences of assuming statistical equilibrium at the 
•... 

saddle point (see Section IV)} "T~, examine ,the solutions for initial 
, ' 

conditions that are specified in the neighborhood of the saddle pOint. 
, 

We "rill consider first the case in which the saddle point consists of I' '. "I, 

two tangent spheroids (x ~ 0.80); then, in the region from the saddle;' 

point to infinity) the system consists of two separated spheroids. 

We saw from the Hamiltonian (13) ,that four of the normal modes 

at the saddle point--stretching) distortion-asymmetry, bendin&and 

wriggling--are simply bounded harmonic oscillations. The mass-asymmetry 

normal mohe) on the other hand) was seen to be stable for x >.: "BG ' and 

unstable for x < ~G. Since the effective mass for this mode is infinite, 

the mass-asymmetry coordinate changes with time infinitely slowly at the 

sad41e pOint. 'Because the 'restoring force for the twisting mode is zero, 

this mode consists of uniform rotations of the fragments. 

The remaining normal mode-the fission mode-!.s ,always 'I;lnstable" 

'taking us out of ,the subspace of touching spheroids. It is motion in 

the (positive) fission direction that causes the two iragments to start 

their separation to infinity. Attention is first focused on the system 

at the critical moment when it is passing ov.er the saddle 

:",. 
" , .... 

.... 
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point; . i. e., the time is chosen to be zero when the fission coordinate 

f is zero. Our solutions to the equations of motion will. then depend 

· upon the values of the remaining normal coordinates and momenta 

when f = O~ 
The equations of motion themselves are obtained for the sepa­

rated case by differentiating the Hamiltonian (9 ) with respect. to the 

coordinates and momenta. For the case of coplanar symmetry axes 

with no rotations of the spheroids about them, '~"one 'Obtains a system of ten ' 

~ '-.' 

I
'Simultaneous :. . " " 

.. fir'st-order , differential equations, which ·are listed in Appendix C.1 of Ref. 2. 

· These equations are given in terms of the original coordinates, since 

_ the normal coordinates .have meaning as such ~)nly in the viCinity of 
. , system of 

the saddle point. The/equations is solved numerically for given 

initial conditions, deterr;ning 1., c 1 ' c Z' 8 l' and 8 Z' along with their 

conjugate momenta, as functions of time. By carrying a solution out, 

· to infinity (in practice, to 1. = Z5 ROL one ,finds the values at infinity t;\ 
of the quantities of interest. A summary of the numerical procedure 

is 'given in Appendix G, of Ref. 2. 

Let us now examine the qualitative features of the solutions 

for various initial. condJtions. We have indicated in. Fig. 3, on each 

· potential ... energy map in the range 0.' 2 ~x ~ 0.8' , the solution cor­

responding to starting ,from rest at the saddle point. For each case 

the pointk along the path are equally spaced in time at inte:r:.vals. of 

0.1 TO l see Eq. (Z) for the value of TO]' The motion of the system 

is a fairly rapid oscillation of the fragments, superimposed on a sepa- . 

,ration of their centers. 

Starting the system from the saddle-point configuration cor-
> 

responds to the case in which all normal coordinates are initially 

zero. When a particular normal coordinate is initially nonzero, the 

solution is altered in a manner characteristic· of that normal co- . 

ordinate: 

(a) Mass -asymmetry: , The fragment with greater volume and larger 

semisymmetry axis oscillates with a larger ampli,tude but with a 

· smaller frequency than the other fragment. 

, : .. 
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(b) Stretching: When s is positive (corresponding to 

fragments that are initially more elongated than at the saddle 

, point), both fragments oscillate with greater amplitude and 

separate more slowly. Conversely, for negative s, the fragments 

oscillate with less amplitude and separate more rapidly. 

(c) Distortion-asymmetry: The fragment with the larger 

semisymmetry axis oscillates with greater amplitude than the 

other fragment. 

(d) Bending: In a bent configuration,each fragment 

experiences a tor~ue from the electrostatic field, resulting 

in an induced angular momentum. One fragment rotates clockwise 

and the other counterclockwise. The period of rotation is much 

gr~ater than the period of oscillation. 

( e) iolriggling: Both fragments rotate clockwise, (or 

counterclockwise) simultaneously~ (The relative orbital 

angular momentum of the two fragments is e~ual and opposite 

to the angular momenta of the individual fragments.) As with 

the bent case, the fragments oscillate many times during a 

single period of rotation. 

.. 

. .... 

.. ' { 

'\' . 

, .. ' 

'.,. 

i' 
.1\ 
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In general, the initial conditions include several 

nonzero coordinate's, and in addition several nonzero momenta. 

The corresponding solutions then consist of a superposition of 

the characteristic features arising from each normal coordinate,·" 

modified by the effects of the initial momenta. The motion of 

the system is' thus in general a separation of the two fragments 

f, : 

, .' 

from the saddle point to, infinity, with each fragment simul~neously' 

oscillating fairly rapidly and rotating rather slowly. I" 
(\ 
t· 

" 
What is desired is a relationship between the initial 

conditions and the observable properties of fission fragments 

at infinity. From this we will be able to obtain, by performing 

suitable integrations over probability distributions for the . 

initial conditions (see Section IV), probability distributiqns 

for the observable quantities ,of interest. Each quantity of 

interest depends strongly upon only a few of the initial coordinates 

and momenta, and very 'Teakly upon the remaining ones. Our approach 

will consist of 'neglecting the weak dependences of each quantity 

of interest on most of the initial conditions. 

'/ 

, : 

, ' '!~ - ••.• 
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From a consideration of the numerical solutions corresponding 

,to a large number of combinations of initial conditions, we have de­

termined simple approximate equations expressing the quantities of 

interest i'n terms of the initial coordinates and momenta. ' The equations, 

are, in general, valid for small deviations of the coordinates from the 

saddle point and for small values of the initial mo'm'enta. However" we ./ 

were able to find for the total translational kinetic energy an equation 

that works well even for moderately large deviations from the saddle 

point. IThe accuracy of each equation can be ~een from Table E.I (in Appendix E) 
, ' 

, of Ref. 2:.i vthere there 'are listed forty-four sets of initial conditions 

for a particular value of x, along with the val~es for the quantities of 

interest determined exactly by; solving the equations of motion and ,de­

termined approximately from the equations listed,below • .] For,a given 

,x the constants appearing in each equation are calculated numerically 

from the solutions to the equations of motion, as described in (I,., 

Appendix G, of Ref. 2. 

, The equation established for the translational kinetic energy E 

of both fragments at infinity is 

4U(1 - U) EO 
2 

E= 
P.f 

1 + a.s + 
2Mi 

, ° 2 

_ 4m2) EO ,(2M Pi 
p , ) (1 ' c 1 = + M + s ' , (14) 

1 + a.s '1 M
O 

M
f ~ s 

° where E and a. are constants (for a, given x). The second result 

is simply the first result expressed in terms, of the normal cqordinates 

and momenta. This equation can be interpreted physically as giving 

the final kinetic energy that would result from two effective point 

charges 6f relative strengths U and (1 - U) initially separated a 

certain distance~nd moving with. relative momentum Pi • 

The fractional mass U at infinity is equal to the initicU frac­

tional mass, since after scission this coordinate ~oes not change with 

time. Thus, the fractional mas s at infinity is related to the mass -:- ' 

, asymmetry normal coordinate m by the exact equation 
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1 
U= -Z+m. (15) 

The relationship (14) for E reproduces the exact result 

extremely well-more accurately than do the equations we e§tablished 
2,;> .' 

for the individual excitation energies and angular momenta. For 

these quantities we retain only terms linear in the more important' 

'. . . l' d' t' 'd t 24 lnlha coor lna es an mornr::n a: 

23 . 

x = 0 
i Xi + Xi, s s + X 1,d d:- X 1,m m 

X 2 = '0 
Xi, d d Xi m, Xi. + Xi, s s - ;m . 

L2x ,= - Li Pb + Li P - L1 b b + L1 w, , Pb x ' P w w x ,x , w x 

L,=-L P +L P 
2y i, Pb by 1, P w w Y 

Liz = Pe - (1/ r/I>. (pt + Pa ) , 
'\, iz 

Pe 
2z 

- Li b b + L1 w., ,y , w y 

There is c\'l~rently no experimental information on excitation 

(i6a) 

(i6b) 

(17a) 

(i7c) 

(17d) 

(i7e) . 

(17f) 

ene;rgies and angular momenta for the fission of elements lighter 

than radium. We content ourselves at.this time with treating these 

quantities to a lower order than the translational kinetic energy. 
24 

It should be recalled that the excitation energy calculated here is 

the energy assoCiated with the collective vibratio~s and deformations 

of the fragments. Any internal excitation energy that a fragment has 

at the moment of division would be added to the excitation energy we 

calculate, to obtain the final total excitation energy. 

" 

.. 

. .' 
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o 
where the quantities Xi' Xi, s' Xi, d' Xi, m' Li ' L1 ' Li b ' , Pb ' Pw' , 
and L

1
, are constants (for a given x). We are denoting by Xi ' , w ' , s 

for example, the partial derivative, of Xi with respect to s, evaluated 

at the saddle point. Symmetry arguments have been used to relate the 

constants in the equation for Xz to thos e in the equation for Xi."'. 

Similarly, ,the constants in the equations for L1 ' L Z ' L1 ' and L Z x x Y' Y 
are related by 'symmetry. The equations for Li and L Z express . z z 
.the approximate conservation of the z components of angular mo-

mentum, since to first order in'the angles the. z components' of the 

torque are zero. Each of the remaining equations also has a simple 

physical significance,. which we ,will discuss when we present graphS 

of the c~mstants appearing in them. 

,Complete symmetry in the observable quantities of interest 

could be achieved by a simple transformation from E and, U to thel \ 

individual translational kinetic energies E1 and E Z of the two frag~' 

ments at infinity. The conservation of linear momentum implies that 

UE1 = (1 - U) E Z • 

From this one finds that 

i E1 = (1- U) E, 

E Z = UE; 

. the inverse transformation is 

(18a) 

(18b) 

An expres sion for E to the same order as the equations for 

excitation energy. and angular momentum can be obtained by expanding 

(14) and. retaining ,only the linear term: 

o 0 
E = E -(aE.) s • '. (19) 
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The individual rotational energies at infinity are of second order in 

the initial coordinates and momenta, since they are proportional to the 

s quare of the individual aI?-gular momenta at infinity, which in turn de­

pend linearly upon the initial coordinates and momenta. Also, the 

(initial) energy of the system in the neighborhood of the saddle point 

is of second order in the initial coordinates and momenta. Therefore, 

to first order, the sum at infinity of the total translational kinetic 

energy and the individual excitation energies is a constant: 

(20) , 

The constant X is thus not independent but is instead given by 1,s 

A series of graphs (Figs. 18-27) has been prepared giving 

"each constant as a function of x from 0 to 0.80. The solid line in each· 

represents the result for the case we have been considering: 

incompressible, nonviscous fragments with hydrodynamic flow con­

sisting of a superposition of an irrotational flow and a flow correspond­

ing to a uniform rotation. We also indicate (by a dot-dashed curve) 

the result for the limiting case of infinitely viscous fragments, which 

would separate to infinity (as rigid bodies) without oscillating. This 

limiting case would be approached physically if the fragments were 

sufficiently viscous 
\ 

, that their period of oscillation was large in 

cOIX!-parison with the time of separation to a few nuclear diameters. 
, . 0 

Figure 18 gives the dependence on x of E " the total trans-

lational kinetic energy at infinity that would result from fragments 

initially starting from rest at the saddle point. Note that the trans­

lational kinetic energy that would, result if the fragments were ex­

tremely viscous (top curve) is larger than the kinetic energy cor­

responding to nonviscous fragments with irrotational flow (middle 

curve). The difference between these two curves 'represents the 

portion of original interaction energy which, for the nonviscous 
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,irrotational case~ is converted into exCitation energy rather than into 

translational kinetic energy. We also present the result (short-dashed 

curve) obtained using the very simple approximation that the kinetic 

energy is equal to the product of the charges of the spheroids divided 

by the initial distance between their centers. Of course, this ,is -­

equivalent to replacing the oscillating spheroids by tvv:o ,rigid spheres 

,whose centers initially co~ncided with the spheroid centers. That this 

, procedure should give a result that i's close to the nonviscous irrota­

tional limit is physically very reasonable, since the fairly rapid oscil­

lations of the fragments tend to cancel the opposing effects of the pro­

'late and oblate shapes. 

In Fig. i9 is shown the result for the constant a.; as with EO, 

, we also present the result (short-dashed curve) that would be obtained 

by replacing the spheroids with rigid spheres whose centers initiallYil 

, coincided with the spheroid centers. \' 

The constant X~, the excitation energy of fragment i that would 

result from initially starting the fragments from rest at the saddle point, 

,is given in Fig. 20. We note that the sum of EO and 2X~, 'which is the, 

energy difference between the two-spheroid saddle point and the config-

uration of two fragments at infinity, is larger than the corresponding 

sum woufd be if calculated from the 'exact liquid-drop saddle point. 

This discrepancy is equal to the 'difference between the ene,rgy of the 

two-spheroid saddle point and the exact liquid-drop saddle point, which, 

as we noted before, is due principally to the inadequate representation 

of the neck in',the two-spheroid model. One might argue that this dis­

crepancy is therefore more likely to affect the estimates of fragment 

excitation energies rather than their kinetic energies, but this con­

clusion cannot be regarded as reliable. 

The excitation-energy derivatives Xi, 's' Xi, d' and Xi, m 

are presented in Figs. 2i - 23, respectively. The physical content 

of the equations for Xi and Xz can be easily seen if we substitute 

the values of the constants and transform back to ~he original co­

ordinate system. We find then that, for typical values of the initial 
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,coordinates, the· excitation energy of a fragment at infinity depends 

primarily upon its· initial elongation, is less dependent upon the frac­

tional mas s, and is still les s dependent upon the initial elongation of 

the other fragment. Note, as we discussed in connection with the re-
O . 

sult for E ,that if the fragments were infinitely viscous they would 

have less excitation energy than nonviscous fragments oscillating with 

irrotational flow. 

The angular-momentum derivatives L1 ,L1 p , L1 b' 
,Pb ' w ' 

,-< and '.L1, ware shown in Figs. 24 - 27, respectively.' By substituting 

these values for the constants. in the equations. for the x 'and y com-· 

ponents of a;rlgular ~5omentum, and transformin~ back to th~ original 

coordinate system, we learn the physical content of these equations~ 

For typical initial conditlons, the x component of the angular mo- I . 

1\. mentum at infinity of fragment 1, say,' is found to depend primarily,. 
I 

upon its own initial value, is less dependent upon the initial angle 

e
1 

,. and is still less dependent upon the initial x component of angu-x . 
lar momentum of fragment 2 and the initial angle e 2x. If the frag-

ments did not acquire any additional angular momentum by virtue of 

the torque exerted by one fragment on the other through the e~ectro-

static interaction, then L1 and L1 would each equ~l 
. i ,Pb' Pw 

1/,f2. and· L 1 , band L 1 , w would each be zero. Note that the torque 

mechanism is ·capable of inducing in infinitely viscous fragments 

roughly four times as much angular momentum as in nonviscous frag-

mez:.ts oscillating .with irrotational flow. This is because for an oscil-

lating fragment the torque is reduced as the elongation of the spheroid 

25 
··'The relationships Pb = (1/ fl) (Pe 

x 1x 
Pe > and 

2x 

Pw = (1/...[2> (Pe + Pe ) etc. ~ obtained from the normal-coordinate 
x 1x 2x 

transformation and the definitions of the momenta, are useful for this 

purpo~e. The value at infinity of Pe ' for example, is L
1x

• 
1x 

. I 

... 
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is reduced, even changing sign when the spheroid changes from. pro-

late to oblate. 

When the saddle point occurs for 1 < 2c (x ~ O.SO), it is nec­

essary to consider the equations of motion for overlapping spheroids. 

As before, we specialize for the overlapping case to symmetrical frag­

~ents, specified by the two coordinates 1 and c. Hamilton I s equa- i 

. If Ref. 2. 
tions of motion for this case are listed in Appendix C.2 In the vicinity 

of the saddlE7 point, the motion of the system consists Qf a superposition, 

of the two normal modes: bounded oscillations i1\1 one direction and 

unbounded motion in the fis sion direction. 

The equations of motion for the overlapping case have been 

solved .for only a few isolated values of x and initial conditions. We 

will here only briefly discuss the solution for x = 0.90 corresponding 
. ~ 
to initially starting the system from rest. at the saddle point. This 

1 

,solution is presented in Fig. 2S.The semisymmetry axis c at first!, 

increases more rapidly than the distance 1 between spheroid centers' 

increases i this continues until the system has become fairly elongated. 

Then, as the distance betwe.en centers continues to increase, the semi­

symmetry axis starts.to decrease. When scission occurs, the frag­

ments are already moving .apart wit'h a translational' kinetic energy of 

the order of 25 MeV. The scission configuration is .less eccentric 

(and the fragment centers closer together) than the configuration ob­

tainedby minimizing the potential el!-ergy of symmetric tangent 

26 
" Since the saddle point is a position of (unstable) equilibrium, a 

system initially at rest at the saddle point would remain there (classi­

cally) for an infinite time; we imagine an infinitesimal push in the 

fission direction to start the system moving. An analytic solution, 

valid in the neighborhood of the saddle point, is used until the system 

is a short distance from the saddle point, where the numerical inte­

gration be. gins • 

" : ~ 



spheroids. This results in about a 20':MeV additional gain in trans­

lational kinetic energy at infinity over the kinetic energy that would 

result from initially starting the system at rest from the configuration 

of tangent spheriods whose eccentricities are obtained by minimizing 

the potential energy. For this x = 0.90 case, the total translational 

kinetic, energy E was found to be 0.315 5 E~O) , and the total excitation 

energy X was found to be 0.091
3 
E~O) 

For the higher values of x, where the saddle point is not near 

the scission configuration, the very subtle question of the dynamics 

of the motion from saddle to scission becomes important in determin­

ing what fraction of the total energy goes into translational kinetic 

energy and what fraction into excitation energy. Therefore, for the' 

higher values of x, a calculation of the precise ,division of the to~al 

energy into kinetic and excitation energies 

spherOids is likely to be in error •. 

/ 
! 

.' 
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·IV. STATISTICAL MECHANICS 

We have obtained approximate formulae l (14), (15), (16), and 

.(17)1 relating the observable properties of fission fragments at infinity 

to the initial values of the coordinates and momenta (when the saddle 

point is the configuration of two tangent spheroids). We now consider 

the determination of the probability for the system possessing.a giv;en 

set of initial coordinates and momenta. These two results will be 

combined in the next section,to yield the probability for the two frag­

ments at infinity possessing given total translational.kinetic energy, 

fractional mass, and individual excitation energies and angular mo­

menta. 

The conditions at the saddle point would in general depend upon 

the past history of the system __ upon how the system was formed and 

upon the path it took in reaching the saddle point. However, the syst~~ 

typically undergoes about 106 , . oscillations after formation 

.before it reaches the saddle point (if it ever doe~:C2.i). This provides 

ample opportunity for many lnterchanges of ener gy', making it cnlikely' 

that at the saddle point the system "remembers" the way it was formed 

or most of its previous motion. It is thus likely that at the saddle point. 

thermal equilibrium is established. This is. the central hypothesis of. 

the transition-state method us~d for dis,cussing the reaction .rates of 

. chemical or nuclear systernst:B))and we will base our further consider­

ations on this standard assumption. 

The discussion of the statistical me'chanics is essentially the·'.~'same 
. . '''', 

for both the case in. which the saddle point is represented by tangent 

spheroids and t.he case in which it is represented by overlapping , 

spheroids. In the following discussion we will explicitly consider 

probability distributions for the normal coordinates appropriate to the 

. case in which the saddle point consists of two tangent spheroids; for 

the other situation (again considering the restricted case of symmetrical 

fragments) there are simply fewer probability distributions. 

The determination of the probability of given initial conditions 

is very simple in classical statistic~l mechanics. The probability P' 

,",I 



. , 

i 

.-58-

that the system possesses a given set of coordinates and momenta, . 

with the corresponding total energy X given by (10), is simply 

(ZZ) 

. where 0 is the nuclear temperature at the saddle point (measure_d 

.in energy units), and N is a normalization.constant. (Use of the ;" 

symbol e to denote nuclear temperature should cause no confusion 

with its earlier use in connection with angles. ) When the actual 

Hamiltonian (10) is used, this expression for P is exact (classically) 

to all orders in the coordinates and .momenta. 

l! one expands the Hamiltonian about the saddle point and re­

tains only quadratic terms (harmonic approximation), then· the proba­

bility distribution for each normal coordinate and its conjugate mo­

mentum is simply a Gaussian in the normal coordinate or momentum 

l with the exception of P{Pa) Nd P(f), which are discussed separatei.)," 

. : below].' Thus, for example, '.: 

P(s} = (2" elKs) -1/2 ."p (- i Ks .2/e). 

P(ps} =(2" Ms e}-1/2."PtP;/(2Mse~. 
, 1/Z [Z J ~(Pf) = Z{Z 1T Mf 6) - exp - pi (ZMf 0j ~ 

(Z3a) 

(Z3b) 

(Z3c) 

Equations analogous to these hold for the remaining normal coordinates 

and mom:enta. For one of the momenta and two of the coordinates .the 

Gaussian distributions become infinitely broad and hence reduce to con­

stants. This occurs for P{Pm) because the mass-asymmetry effective .. 

27.·. 
All probability distributions in this paper are normalized such 

that unity is obtained when the functions are integrated over the allowed . 

. range of variables, which is usually taken to be from -co to too •. The 

range of integration for Pf is taken to be from 0 to co,' since for 

. negative values of Pf the system does not fissio~.but instead returns 

to the pre-saddle-point configuration; this results in. the additional 

factor of Z in the expre.ssion for P(Pf). 
;' .. 
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28 
mass M is infinite, and for' P(t) and P(a) because.the .twisting 

m , 
.. and axial-rotation stiffness constants are zero. 

Because of the condition that the total angular momentum of 

the system be zero" the distribution in the axial-rotation'momentum 

is a Dirac delta function: 

We recall finally that we do not need a probability distribution in f 

because the transition-state method which we are using is formulated, 'in 

terms of distributions in the subspace defined by f = o. 
As the nuclear" temperature approaches zero, the classical 

distribution for each normal co?rdinate and momentum approaches a 

, ,Dirac delta function., ,Howev"er, we know from the Heisenberg quantum.­

me~hanical uncertainty principle that simultaneous localiz~tion of thi~\ 
system in a position and conjugate-momentum coordinate can b~ 

achieved only within limits. Even at zero temperatu~e each of the 

distributions should"in general,.,have a nonzero width" associ'7ted with 

the quantum-mechanical zero-point vibrations. As we shall see, the 

quantum-mechanical effects may be important at typical nuclear tem­

peratures. 

Although the quantum-mechanical determination of the prob­

ability distributions would be difficult if one used the comp-lete 

Hamiltonian (10), the problem can be readily solved in the harmonic 

approximation. Then, the individual terms in the Hamiltonian (1:~ 

ar~ the Hamiitonians for simple harmonic oscillators. {The. effect 

on the distributions of the infinite effective mass M and the zero m 

28" 
"The Gaus sian distribution in the mass -asymmetry velocity be-

comes, on the other hand,. infinitely narrow and hence reduces to a 

,Dirac delta function. This means physically that the mas s -asymmetry 

,coordinate changes with time infinitely slowly at the saddle point. 

I' 
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stiffness constant K
t 

will be discussed later.) In our discussion 

below we will refer only to the stretching mode; results for the re­

maining modes are completely analogous. 

In the coordinate representation the quantum-mechanical solu­

tion of the stretching mode yields .the harmonic-oscillator wave func­

tions l\J (s), with corresponding energy levels E
S 

= (n+ ~) lIw • n n s , 
. When the oscillator is known 'to be in the quantum-mechanical state n,· 

the· probability that its position 'coordinate has a given value s is 

P n (s) = IlJi n (s) 12 . 

In particular, when the oscillator is in the ground state n= 0, the 

probability dlstribution for the coordinate is' (52) 

ti 
(24ai 

Analogous results for the momentum p are obtained just as readily 
. s 

by solving Schr{sdi:nger' sequation .for the stretching .mode in. the mo-

mentum representa-tion(52). For example, the gz:ound-state probability 

distribution for the momentum is 

(24b) 

We note that for 'the stretching oscillator in the ground state, both 
, , 

the distribution in s and the disttibutionin Ps are Gaussians, with 

nonzero widths proportional to (11 w /K ) 1/2 and (M 11 w ) 1/2 ' 
. ' . s s . s s 

res·pectively. 

Having thus determined probability distributions for an oscil­

lator in a given quantum-mechanical state, we are now in a position 

to determine probability distributions for an oscillator in statistical 

equilibrium wi'th its surroundings. The quantum-mechanical proba- . 

bility for finding the stretching oscillator, in statistical" equilibrium 

with its surroundings at a temperature e, at position s is given by 

) , 

\ .. 
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• ClO . 

P(S):=L' ...... · .. ,ps 
, " n 
':, . 

n=O 

, where' 

pS = N exp ( _ E S Ie) 
n n 

is the statistical probability that the oscillator is in the quantum- . 

mechanical state n.Determination of the normalization constant N 

yields (the same symbol N is used in, this paper to denote each of;, \ , 

several normalization constants). 

. . ~ ... 
N = 2 sinh l11 w/(20)] 

:".' ;" 

\. I, J 

By using properties ,of the 'harmonic-oscillator wave functions,the,i±tf1n1te 
, 

'; sunnnation over n can be perf.ormed explicitly, 

markably simple res.ult (53-55) 

yielding ,the re - "" I 

P(s) = ('T1' C )-1/2 exp (_ s2/C ), 
s s , 

where the temperature~?-ependent constant C
s 

is givencby 

, . ' . .... " 

:, (2Sa) 

The temperature dependence of C s can be seen from the graph of 

coth't11 W /(20)} vs 2e/(11w) in Fig., 29. Note that for high temperatures 

the quantum-mechanical expres sion (2Sa) for P(s) reduces. to the c1as­

sical result (23a), whereas in the low-temperature limit it reduces, to 

. , .... '., . , ",~ " 

""'n, .' . ' .. ' " .:;1' .; • 

. ~.' 

. ". ~ : 
~ ... 

I 
I ' 

,~ : 

" 

\ . 

:.1; . 

.~ I 
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the distribution (24a) for the quantum-mechanical zero-point motion 

of a harmonic oscillator. 

An analogous probability distribution for' p is obtained .from s 
the momentum-representation solutions to Schr~dinger' s 'equation for 

the stretching mode. The result is '( 53) 

pep ) = (1T e ) - exp -p /e , 1/2' (2 ) 
s p s p 

, (25b) 
s s 

where 

J 

M' flw, e < <flw • s s s 
\, 

For high andlow temperatu~es this expression reduces to (23b) and 

(24b), respectively_. 

We saw earlier (Section III.B) that the mass~asymmetry and 

twisting norma1.modes,have zero frequencies. Thus, flw
m 

and 

flwt are, always small in comparison with e, which means that for 

these modes we are always in the high-temperature (classical) limit. 
29 . 

Hence the constants C and e are always given by 
m Pt 

, ! 

e = 2 elK m m 

C = 2 Me 
Pt t 

" 

29 
Recall that for x < x

BG 
the mass-asymmetry stiffness constant 

,Km is negative. Thus for x < x
BG

; the probabhity P(m) increase~ 
a-ather than decreases with increaSing absolute value of m. 

, , 
.i, 

; 

" 
J 

. t, 

',' 

, " 

'. 



.' 
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, 
" 
" 

r- We have thus derived in the harmonic approximation expres­

sion~ that are valid quantum~mechanically at any temperature for the 

distributions in both coordinates and momenta for the normal modes 

(except the fission mode). Each distribution is a Gaussian with a 

temperature-dependent width that has simple hlgh- and low-tempe-ra-, 

ture limits. 

The probability distribution for the fission momentum Pf is 

,difficult to calculate quantum-mechanically both because this mode is 

unstable and because the stiffness constant 'K
f 

is not defined. For 

this distribution we use the classical result (23c); rewriting" this is , 

, , '( ) -1/2 (2/ '\ P(Pf> = 2 '1T C exp ,- 'Pf C )' 
Pf .' Pf. 

with 

C = 2M e , f 
Pf 

Any attempt to imprc:>ve this res'ult should include an improved descrip­

tion of the shape of the fission barrier. The inaccuracies arising from 

using the classical expression for P{Pf) are probably not serious for 

our purposes, since the equations relating the quantities of interes,t 

at infinity to the initial conditions ~re to first order independent of Pf. 
I ' 

An error in P(pi would thus affect the distributions of the_quantitie~ 

of interest only in second order. 

For a given normal mode the probability distribution for the 

coordinate, is independent of the probability distribution for the mo­

'mentum. Also, each normal mode is completely independent of all 

the others. Therefore. the probability for observing the system with 

a given set of initial coordinates and momenta.is simply the product 

of the individual probabilities for each coordinate and momentum. ' 

The probabil~ty distributions for the initial conditions are in 

terms of sti£fnesses. masses, and frequencies (an calculated and 

graphed, as functions of x in Section III.B). and the nuclear tem-
I 

peratur,ie (9 at the saddle point. The'temperature':Js a ,function of 
i , 

the internal nuclear excitation energy at the saddle ;point. The dis-
I ' 

cussion of the determination of e in terms 6f the internal excitation 

energy will be given in Section VI. 
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V. PROBABILITY DISTRIBUTIONS FOR OBSERVABLE 
_OUANTITIES OF INTEREST 

In this section we derive expressions for the proba.bility of 

simultaneously observing the two fragments at infinity with given­

values of the quantities of interest: total translational kinetic en­

ergy, fractional mass, individual excitation energies, and individ­

ual angular momenta. The derivation utilizes the results obtained _ 

in the two preceding sections: the equations relating the observable 

quantities of interest to the initial conditions,' and the probability 

distributions for the initial conditions. Since the equations relating 

the quantities of interest to the initial conditions are for the case in 

which the saddle point is represented by two tangent spheroids 

(x,$ 0.80), the probability distributions that we derive for the quan- 1\ 
I· 

tities of interest will be for this case also. \' 

A. The Distribution P(E, U, Xi' Xl' ..f1' f l } to Lowest Order 

We first consider the calculation of the probability 

P (E, 'U, Xi' Xl' f 1, -kl ) of sinlUltaneously observing the two frag­

ments at infinity with given total translational kinetic energy E, 

fractional mass U, individual excitation energies Xi and Xl' ,and 

individual! angular momentaf,1 and 1
l

. For this deri~ation we 

use the cons~stent set of lowest-order equations (15), (16), (17), and 

(19) -expressing the quantities of interest in terms of the initial con­

ditions. The resulting probability distributions will then be valid 

only.to lowest order in the quantities of interest. We will later use 

(14) and (15) to calculate the distribution P(E, (1) to a higher order 

in E and U than that used in the present calculation. 

The probability distribution for the observable quantities of 

interest is obtained by multiplying the probability distribution .for 

the initial coordiz:,ate.s and momenta by the Jacobian for the trans - . 

formation from the' initial coordinate~ and momenta to the quantities 

,-

", 
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of interest, and then integrating over the remaining coordinates 

and momenta. 

Since E, Xi' and X 2 are not independent, but are related 

to first or-der by the conservation-of-energy equation (20), the prob-­

ability distribution P (E, U, Xi' X2, k
J
, b2) contains the Dirac ---­

delta function 6(E + Xi + X2 - EO - 2 Xi). This probability distribu­

tion is then given 1:>Y 

where a particular choice has been made for the remaining variables. ; 

In order to calculate P( U, Xi' X2, :~1.' 1-2 ) we need to invert 

. I 

the set of equations (1.5), (16), and (i7) to-obtain nine of the initial 

conditions as functions of the nine quantities of interest and the re­

maining initial conditions. (Each component of angular momentum II 

of each fragment is regarded here as a separate .quantity of interest~) 

If we choose m, s, d, Pb ' P-.'v ,Pb 'Pw 'Pt~and Paas dependent 
. _. x. x y y 

variables, this lnverSlon glves 

1. 
= U - '2' (26a) m 

" 

is 
X1.+ X2 - 2X~ 

= ---:"..-:;-;:----2X 
(26b) -

d 

i, s 1. 
X 1. X - 2X (U - -2) = _____ ~2~~--1.~,_m---~ __ _ 

2X i d , 
(26c) 

L 2x - 2Li, b bx = ---~~------~----2L1 . 
_, Ph 

-. 
_ (26d) 

> --

"" .. 

. :", . 

/ 
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Li + L Z - 2Li w 
Pw = x x' ,w X 

2L1 
X ,pw 

(26e) 

L1 L Z - ZL
1b 

b , 

Pb = Y y ,y. 
2L 

Y 1, Pb 

, (Z6f) 

L1 + L Z - ZL1 w 
Pw = y Y ,w Y 

2L1 
Y ,pw 

(Z6g) , 

Liz ':'" L 2z 
Pt = 

~ 
(Z6h) 

.Liz, + L . 2z 
Pa , = 

~ 
(26i) 

With this choice of dependent variables, the equation transforming 

the initial probability distribution into the desired prob~bility distri-:- \ 

bution is 

dw 
Y 

X P(m, s,d, b ,w ,b',w ,'0. ,p ,'0. ,p' "pt,p) , x, X y Y AO W AO 'w a 
, ,x x y y 

a (m, s, d, % ,pw ' Ph' Pw ' Pt' P a) 
xl __ ~~~~~~x __ =-x_'~~y __ ~y~~ __ ~~ 

a (U,X1,:xz,Lix'~x,L1Y'~y;LiZ'~z) 

we have already integrated over the initial coordinates and momenta 

not involved in the t~ansformation, obtaining unity in each case. The 

. probability distri,bution in the integrand is given by the product of the 

pro bability distribution for e~ch normal coordinate and ,momentum 

appearing in its argument, as determined in Section IV. It is under­

stood that this pro~ability function has the set of equations(Z6) subst~-

tuted for the variables m, s, d, Pb ' Pw ' P b ' Pw ' ~t'. 
x x Y y, 

and P • a 

) 



....... 

The absolute value of the Jacobian for the transformation is given by . 

z 
8 (m,s,d,p., 'Pw ·,Pb · 'Pw ,p ,p). . . 

", ~. x t a ( . 1 ) (: 1 " . ). ..: 
I-,,-.,.-:-;"-"-"-~)C"--:;L----k-::-~-"--'-) = lX X Z L L • .. 

'1'-"2.' ix' 1z' 1,s .1,d 1,Pb 1,pw , .. _.' 

We note that the transformation equations for m, s, and d 

ar~ independent of ~ and h,z; and the equations for 

Pb ' Pw ' Pb ' Pw ' Pt' and Pa are independent of U, Xi' 'and XZ••··· 

Be~aus: of this, ~e probability P(U, Xl' X 2' 'hi' ~) s.plitsinto a 
product of two' probability functions: 

with 

and 

1 

, . 1 2 
(U~2")' 

G m 

. l\ 
. 'I' , , 

\ 

[X - X - 2X (U _!)] ~ } . . 
1 2 1, m 2 : ( 27.) 

Z ' 
4X1 d- Cd , 

( ,1 )2 f:~ t; ~:}d: 
2L L J C x J C y. y 

in ip ·-00 -00 -00 -00 
' .• b 'w '. '. 

) , 

2 2 2·' ~', 
(.w + w ) [(LA -1... -2L1 bb ) + (L1 -,1... -2LA bb} j x y.. .I.X -Zx ,x y -ZY .I., r 

Cw · 4L Z C, . . 
=i,Pb lb 

2 . Z ' 
[ (L1 + Lz - 2 LA w) + (LA + L - 21:,,1 w)] x X .I.,W X .I.y -Zy . .I., W Y 

(L - L )2}· 
1z 2z 
2C 

Pt . ' 
(

L + L ) 6 1z 2z· 

.' ~ 
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1z -Zz O(L + L ). 
(L _ L )Z} 

2C 1z Zz 
(Z8) 

Pt 

We have 'used the abbreviations 30 " 

I 
ZL Z Z 

C = C + ZLi , b C b" 
Pb i! Pb Pb 

I , Z ZL ,Z 'C = ZL C + C . 
Pw i, Pw Pw i, w w 

The distribution P(E, U, Xi' Xz, 1-1, bz) is of the form 

exp [ -O(E, U, Xi' XZ,'Lix' L 2x' L iy' L Zy ' Liz' L Zz )] times two Dirac 

delta functions, where.' O(E, U, Xi' ~Z' L ix' L Zx' L iy ' L Zy' Liz' L Zz ) 

is a positive-definite quadratic function of its ten variables. In the 

language of statistics~ P( E, U, Xi' XZ' b i , ~Z) is a iO-variate normal 

distribution(55)multiplied by two delta functions. Similarly, 
t - • • 

.,the' probability function P(U, Xi' XZ) is a trivariate nor~al distri-

bution, and P(h,i' k.Z) is a 6-variate normal distribution multiplied 

by a delta function. 

1. Distributions Obtained from P(E, U, Xi' XZ) 

I\, ., 
·1 . 

We have derived the lowest-order result for the probability of 

observing the two fragments at infinity with given values of total trans­

lational kinetic energy, fractional mass" and individual excitation. 

, energies: 
, '0' 0 

P(E, U, Xi' XZ) = P( U, Xi' XZ) o(E +X i + XZ~ E - ZX i ), 

where P( U,Xi,XZ) is given by (Z7). By integrating ov.er the quantities 

. / 

;01£ there were no angular momentum induced by the torque arising from .. 
. I,' 

the presence of the electrostatic field, then C would equal C ,since for • 
. . Pb Ph I 

this case Li · =1/,.[2, and Li b = O. ' .An analogous statement holdS for Cp .' 
,Pb' w 
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'not ~f immediate interest in thi~ pro babilitydistributlon, we obtain i," ,'" ' 
.. ,-.' ' .. ~ .. ' 

. : ... . .- ~ . " ."' 
" 

,: r,' :: 

",'.', 
I. • . ~ . 

.,",' . 

,probability distributions for the observation of a'smaller 
.. "" 

. ,', . ',., ,,\, 

number of quantitie~~ 'Each of the resulting probability functionsis,_ 
."1."< . 

also a normal distri'9ution ,(x:nultiplied possibly by a delta function)~ 

.. :':.,:" 
f· .• .,' ...... 

........ ,,- For example;, we obtain-' 

, 1 

, ..•.. : 2 . 2, 1/2 
[ 4'IT2 X' 2 C (X C + XC)] 

. 1,s s 1,m m' 1,d.d 

" ',"', 

,', ,. 
",,': .• ' ! 

. ", . ,;~, ",:' '.. ,.' 

~.', . ,',. " 
i,. .. 

. ':;",' 

. \. 
",;. 

'<; .' 

. ~' 

' . . f 

" P (X ) 
.' ' l' 

and 

. . 
p (U) 

, 
j:': 

;.' 

, i 

= 

".;' .. 
.. ',,-' 

X 2 
1,m 

1 

',-" -

.... ,. ', •... 

",' '" 

1 2l (U - 2) '-
C • 

m .J 

, ',,/- .... : 

. --

.:': 

. :.'", 
'. ,-

~;. "', . ',', . 
,: . 

• _.' l" 

"','- .. 
.. ," 

" ,.'., , ' ... 
,', . 

~ .. ~ ~ .' 

":, ":;' 

'J '. ," 

·.r, ."' . 

-'.' . :', ' .... 
.. ,' , 

' ....... ;:' ..... : .. 
,,-'.: ; . ',;, ' 

"",-

",", 

':,'. ," 

',- " 

" ~ ... >; 

,'j, ':.:, :', • 

,.-. ' 

'." { .. ,.,,- , 

' .... 

" :':,<,:' 
..... '. " 

. '.- .. 

'. ' 

',,, ... ' 

" ,'''' . 



,-

-70-

We can also obtain from (27) the probability distribution for 

mass and total excitation energy X by substituting 

and integrating over 

P( U, X) = 1 
1 2' 2 ] \(] - 2) .(X - Xc) • 

. C . . 4X lC 
m 1,s s . 

2 1/2 
(4i1"2 C XC) 

m 1,s s 

An integration over U in this equation then gives 

P(X) = 1 
[ 

2 ] (X _ XC) 
exp - 2 . 
.' 4X

1 
C. 

,.s. s 
L 

i! 

2 . 1/2 
(4i1" X C) 

. 1, s s .. 

" 

Since the total translational kinetic energy and the total ex­

citation energy are related to first order by t?e conservation-of-ene~gy 

equation (20), the tv.:o preceding equations are completely equivalent 

to 

exp [-

and 

P.(E) 
1 = 

31 

i 2 
. (U - -) . 2 

C 
m 

. ° 2] (E. - E ) 

2 ° 2 a ·C (E ) .. 
s 

"This equation is also obtainable directly from P(m~ s) and the. 

(29) 

. 1 ° equations U = Z + m and X = X + 2X
1 

s s [obtained from '(16) by , . . 

adding Xi and X
2
]. 

. I 
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we have also used the relationship (21) between X 
i, s ° and aE • 

Similarly, Eq. (27) is equivalent to 

1 

{ 

. z 
, (U _!) 

exp _ 2 
C 

m 

. 2 
(E "" EO) [X-X+-(E-E'}-X (U--)] , 1 1 2 1,m 2 

01 0. "12} 

a 2C (EO) Z 
s 

This result is useful for discussing, for example, ,the excitation 

ene.rgy of a' single fragment, for given values of the total translational 

kinetic energy and ,fractional m'ass. 

Fro~ the expres~ion '(29) for P(E, U) and the transformation 

(18) relating the total trcilislational kine'tie.energy E and the fr'actionCl;t ' 

,mass U to ~he individual translational kinetic energies E1 and Ez';~' 
we obtain .the probability distribution for individual translational 

kinetic energies: 

I, 

a (E, U) 
o(E 1,Ed 

exp 

tne)equation r.esulting from the transformation has been reduced to 

lowest order in E1 and E Z• By integrating over E Z in this equation 

we obtain the distribution in translational kinetic energy of a single 

fragment: 
", 

1 
P( E 1) = '2 ° 2 1/2 

[:rr(4C + a C )(E1 ) ] m s , 

./ 

" 
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should be recalled that for is negative, 

, resulting in the rr~ss distribution increasing rather than ,decreasing 

with mass as)1TIroetry. The distributions involving U then approach 

infinity for large values of U and are thus not normalizable. In a 

contour plot of P(E, U) vs. 'E and U, for example, the lines of 

constant probability are not ellipses for x ~ ~,but instead are " 

two f~~ilies of hyperbolas. One family represents lines of increasing 

probability for increasing mass asymmetry, whereas the other family 

represents lines of decreasing probability for deviations in the 

kine,tic ,energy from its most probable value. !' \, 

Since the above probability functions are normal distributions 

(of one or more variables), all the information they contain can be' 

represented in te~s of means, variances, and correlation coefficients 

(or alternatively, covariances) (56). For example, ~ monovariate 

normal (Gaussian) distribution is completely specified by two ~uantities: 

the mean and ,the variance (s'~uare of the standard deviation). From 

the standard form for a Gaussian dist~ibution we can determine, by 

inspection the mean and the variance of each of the Gaussian" 

distributions above. ' . , 

.J ',' 

" 

" '" 

, " 

. . . .~ 

. " 

... ~ 

" 
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To specify a bivariate normal distribution, ,five quantities are 

required in general: the mean and variance of each variable, and the 

correlation coefficient {or alternatively, the covariance} •. The cor-:-

relation coefficient p of the distribution P{x, y} is defined bY(57) xy 

p = xy 

J dx JdY (x-x) (y-y) P(x, y) 

(J (J 
x y 

The value of the correlation coefficient, which has a range of values 

from' -i to+l (5], indicates the degree of correlation of the vari­

ables. A positive value of this coefficient means that the two variables 

are more likely to be simultaneously large or else simultaneously 

small; a negative value means that if one variable is large, the other 

is more likely to be small. The distributions 'P(U, X) andP(E, U} ar~' 

seen to have correlation coefficients that are zero. On the other hand, 

the correlation coefficient for the distribution P(X1, XZ}' for example, 

is nonzero; we _find that it is given by 

X Z C - X Z C - X 1 d
Z 

Cd 
i, s s 1,m m , (30) 2 2 2· 

Xi C + XA C + Xi d Cd ,s s ..L,m m , 

Coefficients of correlation could be similarly calc'ulatedfor the other 

distributions. 

To illustrate the magnitudes of the widths of these distributions, 

we present sample graphs of some of the more important functions 

derived above. The results are for nonviscous fragments with the type 

of hydrodynamic flow we have been considering: a superposition of an 

irrotational flow and a flow corresponding to a uniform rotation. All 

graphs refer to the fission of the compound nucleus 8~tZ13, with a :' 

nuclear temperature at the saddle point of e = i.13 MeV • .' (This sit­

uation may be obtained experimentally, for example, by bombarding 

83Bi Z09 with 65-MeV alpha particles.) In two of'the graphs we 

./ 
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illustrate the effect of temperature on the widths by also presenting 

the result for e = O. In Fig .. 30 is presented a contour map of 

P (Xi' X 2 ) vs Xi and X 2' Figure 31 shows the distribution in exci­

tation energy of a single fragment: P(X
1

) vs Xi" . The distributio~ 

in total excitation energy [p (Xl vs X]; which is equivalent to the 

distribution in total translational kinetic energy .[p (E) vs .E], i$ 

shown in Fig. 32. The lowest-order result (29) for the distribution 

in mass and total translational kinetic energy is presented in Fig. 33 

..... - as a contour map of P (E, U) vs E and U. 

An interesting feature of the theory is the prediction that the 

excitation energies should be anticorrelated-if one fragment has a' 

large excitation energy, then the. other fragment is more likely to 
, '. . ~ 

have a small excitation energy, c;t.nd vice versa. , This can be seen II 
either from the contour map of P(X

1
' X 2 ) in Fig. 30, or from eval-;;: 

t' E ( 30 ) f hI' 'ff" F A 213 d . ua Ing q. or t e corre atlon coe lClent. or 85' t an 

6= 1.13 MeV, we find that PX X = - 0.46. For this same nucleus 
'1 2 

in the high-temperature (classical) limit, P Xi xt - 0.44, whereas 

in the zero'-temperature limit, P Xi X 2 = - 0.58. Thus the excitation 

energies are predicted to be somewhat more strongly anticorrelated 

at low temperatures than at high temperature's. 
! 

The physical reason for the anticorrelation in the e,xcitation 

energies is. very simple in the classical limit. The result can be 

interpreted in terms of the relative amplitudes of the stretching and 

distortion-asymmetry modes, since the excitation energy of a frag-

, ment at infinity depends primarily upon' its initial e)ongatiori.. Pure 

stretching-mode oscillations correspond to completely correlated 

fragment excitation energies, whereas pU:re distortion-asymmetric 

oscillations correspond to completely anticorrelated fragment excita-' 

tion energies. The potential energy in the neighborhood of the saddle, 

point is found to be 11 stiffer" with respect to stretching than with 

respect to distortion-asymmetry. The distortion-asymmetric oscil­

lations therefore possess larger amplitudes than the stretching oscil­

lations -hence, anticorrelation, 

.. 

,,, 
. ,,- '* 
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The mean (or most probable) value of each of the quantities, 

of interest is seen to be independent of nuclear temperature. How­

ever, since the constants C etc. are temperature-dependent, the' 
s ' 

, widths (or variances) of the distributions are functions of nuclear 

temperature. ,As the temperature approaches zero, the widths of 

the dis~ributions approach finite values determined by the quantum­

,mechanical zero-point vibrations of the appropriate oscillators . 

. (Exceptions occur for the mass distribution and the distributions in 

the z-component of angular momentum. Since the mass-asymmetry 

and twisting frequencies are zero, the widths of these distributions 

approach zer.o' as the nuclear temperature approaches zero.) For the 

fission of a typical lighter -than-radium nucleus, the zero-point full 

width at half maximum of the distribution in total translational 

kinetic energy is ~ 10 MeV ~ The width of the kinetic-energy distri-ll 
! ~ 

bution arises primarily from oscillations in the distance between, 

fragment centers (stretching mode). Because of the near cancella­

tion of the opposing effects of the surface and Coulomb energies near 

the saddle point, the potential energy in the stretching direction is 

very flat. This means that a very small quantum-mechanical un­

certainty in the stretching-mode potential energ'y (~ 0.3 MeV) is 

,"ampli£i~d" into a rather large zero-point width in the total tran~­

lational kinetic-energy distribution. As the nuclear temperature in­

creases, the uncertainty in the stretching-mode potential energy 

increases, resulting in a corresponding increase in the width of the 

kinetic-energy distribution. 3 

2.. Distributions Obtained from P(k1,k> 
From Eq. (2.8) for P(L

1
, 'L2.) we can obtain several useful, 

''Ioy \0'\.\ 

formulae involving the fragments' angular momenta. We' first con~ 

vert from cartesian coordinates to spherical coordinates through the 

tr an,s formation 
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L = L1 sine1 cos<P1' . 1x' 

L iy 
= L1 sine1 sinCP1' 

L = L1 cose 1; . 1z 

an analogous set of equations holds for fragment Z. The magnitude 

of ~1 is L
1

, the angle between the angular.-momentum vector of 

fragmeI?-t 1 ~nd the z1 axis (the line connecting the fragment . 

centers) is e
1

, and the azimuthal angle is ~1. We further define . 

'cP = 

if one looks along the line connecting the spheroid centers, then cP 

.' 

I . 
1\ 

! ~ 

is the angle between the fragments' components of angular momentum 

perpendicular to this line. , 
Equation (Z8) becomes, after an integration over cp (upon 

. which the probability function does not depend) is performed (the nor­

malization is such that the range of cp is from 0 to 71"), 
i' 

4.[2 L~ L~ sin 8 1 sin 8Z 

( 71"C . ) 1/2 71"C' C' 
Pt Pb Pw 

. r 1 f-1 1.) Z 
X ~xp l- "2 (c' + c (L 1. + 

. Pb Pw 

, 
+ , C 1. ~ 1 L Z cos 81. cos ezj 

Pt· . 
6(L1 cos e 1+LZcos eZ)' 

(31) 

. . 
.. 

.. -....... -------.---.. =~~~~~~~~~~~~~~---------------~----'--------
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The integration over <j> in this result can be performed explicitly to 

. yield :t, probability distribution that is independent of azimuthal angles. 

Since ("58) 

. J" exp (x cos <\» d4> = " IO(x) = " J O(ix), 

o 
(32) 

where' J 0 denotes the Bessel function of the first kind of order zero 

, (1
0

, is the modified Bessel function of the first kind of order zero)i 

the expression for P(L1, L 2, 8 1, ( 2 ) can be obtained from (31) by 

,inspection. Also, because of the presence of the delta function, an 

integration over anyone of the four variables L
i
, L 2, 8 1, 8 2 caJ!; pe , 

performed immediately. ; 
. ' 

In·the zero-temperature limit the twisting mode is not excited" 

and the twisting-momentum constant C
p 

approaches zero. This 

means physically that the z component tof angular momentum of each 

fragment is zer'o, and t)le angular -momentum vector of each fragment " 

is perpendicular to its direction of motion. The integrations over 

both 8 1 and 82 in (31) c~n then be easily performed, yielding the 
. )2 

zero-temperature result; . 

P(L1~L2,<j» = 
4L1L2 [_ ~ (~+ +) (L

Z + L 2) 
i i exp 

'lTC ,C 2 C C 1 ' 2 

Pb Pw Pb" Pw ' ' ; 

+ (~b - ~)L1LZ cos<\>J 

32 
This expression could also ~e obtained directly from the set of 

equations (17) and P(bx'wx ' by,wy,Pb' "P"':'x,Pb ,pw ) ~Y integrating o~er 

the bending and wriggling angles, anJ'transforfuingYthe re·sult to. cylin-' ' . ' " 

. drical coordinates. 

" 
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, ., 
it is understood that the zero-temperature limits of C and C . . p p 

. b w 
are to be used. By employing (32) the zero-temperature 'result 10r 

P(L
i

, L
2

) can also be written down by inspection. 

I£~ in the original expression (28) for P (fi' ~2)' we inte.grate 

with respect to L2 ' L2 ' and L2 '. we obtain the probability distri-. x y z . 
bution for the angular momentum of a single fragment: 

2L 2] iz 
C . 

Pt 

If we transform to spherical coordinates and integrate over. the azi':' 

muthal angle (upon whi~h the probability function doe~ not depend), 

we 'obtain .. 11;0 

. I 

1 j +) L~ cos
2 e i] '.0 

C + C 
Pb Pw 

\ 
\ ,. 

An integration over e 1 can be carried out to give the. probability of 

observing a single fragment with given magnitude of angular momen­

tum: 

P(L
i

) = 

XH 

,-
where H(x) is the error function, defined by "("59) -. 

H(x) = 2 
~ o 

"., 
.. ' . 

,. 
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In the zero-temp~raturelimit, 

pre~sion reduces to 
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Capproaches zero, and this ex­
P t 

The various probability functions obtained from P(J;y1 ,!t.Z) 

are useful as regards specific information on, the fragments' angular 

· momenta at· infinity. One has available in these formulae predictions 

regarding t~e magnitudes of the angular momenta, the angles between 

the angular momenta and the liJ;le connecting fragment centers, and 

the angle between the components of angular momentum perpendicular 

· to the line connecting. fragment c·enters •. These predictions include. 

· the correlations bet\.yeen the various quantities, as well as their deJ\; 

pendences upon nuclear temperature and fissionability parameter. 

As a single example, we present in Fig. 34 the curve P(L1 ) 
213 . 

vs L1 for the compound nucleus 8 sAt and e = 1.13 MeV. The 

result for nonviscous fragments with hydrodynamic flow of the type 

we have been considering is given by the solid line, and th'e result for 

infinitely viscous fragments by the dot··dashed.line. We also indicate 

the result (short-dashed line) th?-t woUld follow if the torque exerted 

by one fragment on the other through the electrostatic interaction 

were zero-this represents the distribution of angular mo-

mentum at the scission configuration.' At scission, the most prob.a.ble 

rI:lagnitude of the angular momentum of a fragment is seen to be about 

8. 5 'Ii • The corresponding most probable value at infinity is about 10 'Ii 

for the nonviscous case, and about 1s'li for the viscous case. The 

relatively ,large difference in the predicted angular-momentum distri-

, . bution between the case of viscous fragments and the case of nonvisc<?us' 

fragments will perhaps make it possible to estimate experimentally the 

degree of nuclear viscosity. For this to be practicable, of course, the 

, " 
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present theory of fragment angular -momentum distributions would 

have to be refined to the stage where predictions can be trusted to 

'within considerably better than 50 %. 

B. The Distribution P(E, U) to Higher Order 

We. have seEm [E'q. (29) and Fig. 33] that to lowest order in 

the variables E and U, the probability function P(E, U) is ,a bivariate 

normal distribution; in a contou;r map of P(E".U) the lines of constant 

probability are ellipses whose axes are along E and G. This lowest­

order result for, P{E,' U) is com,pletely specified by EO (the mean value 

of E; the mean value of U is one -half from symmetry) and the two 

variances cr~ and crt, ,which ~easure the widths of the distributions 

in E and U, respective'ly. By 'use of this result we are able to dis-, 
" 

cuss the distribution in mass and total translational kinetic energy in:i 

the ,immediate vicinity of the most probable values. 

To discuss the deviations of the distribution in 

mass ,and total translational kinetic energy from a bivariate normal 

distribution, it is necessary to include in the expression ',:-, '7 

for P(E, U) higher-order terms in the variables 'E and U. 'Whereas 

in the bivariate normal distribution the exponent contains only the two 

quadraticl terms {E_EO)2 and (U - i )2, ~he exponent' of th~ distribu­

tion to the next higher order contains in addition the two cubic terms ° 1 2 ° 3 . . 1 4 33 (E-E )( U -"2) and (E - E ) , and the quartlc term (U -"2) .' In 

, addition to the mean EO and the two variances, three addition~l quan-
. ' 

tities, the coefficients of the two cubic termS' and the quartic term, . . ,. 

are needed to specify P(E, U)to this ord,er. These coefficients have 

33 
The other two cubic terms, (E - EO)2( U - ~) and (U _~)3, ar~ absent 

becaus;e P(E, U) is an even function of( U - ~). The absence' of the 

(U - i)3 term means that the (U - i)4 term is responsibl~ for the first:.. 

order deviation of the dis~ribution in mass 'from a 'Gaussian, and must 

then be considered to this order. The distribution, P(E, ,U) would also, 

in general, have a pre-exponential dependence upon E and U. 

. " 

. .' 
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simple physical significances;. The coefficient of the (E_EO)3 term 

strongly affects the skewnesS::60) of the distribution inE, and deter- .' 

mines the lowest-order deviation of the distribution in E. from a 

pure Gaussian-:-whether the distribution has a hIgh-energy or a low':' . 

energy tail, and by how.much. Similarly, the coefficient of the 

'. {(J- ;)4 term. strongly 'affects the kurtosi~6o) (peakedness or flatness) 
~ _. . 

of the distribution in (J, and determines the lowest-order deviation 

of the distribution in (J from a pure .Gaussian-whether the di.stribu­

tion is more peaked than a Gaussian or has a' flatter top. We will " 

. find that the coefficient of the (E - EO) ('U - ~)2 term determines both 

how rapidly the most probable (or mean) value of E as a function of 

: . (' 

U falls off with {U- ~)2, and also the derivative.with respectto E. 

(evaluated at E = EO) of;~he variance of the mass distribution as a . 

function of E. To the next higher order beyond including these threr 
term.s~ the exponent of the P(E, U) distribution ~ould contain the qu~r-

. tic term(E'; EO)4, the sixth-order term (U._.~)6, along with cross 

terms in E and U; and so on. 

The derivation of the bivariate normal distribution (29) utilize4 

a. combination of two lowest-order results: (a):; ~ equation (19) relating 

E linearly to the initial conditions, and ~he exact equation (15) for U, 

and (b) ! the initial-c.onditions probability distributions ob,tained in Sec­

tion IV . by expanding the potential energy about the saddle-point and 

retaining only quadratic terms (harmonic approximation). We have 

avail9-ble [~q., (14)] a much more accurate equation relating E tothe 

initial conditions than the first-order equation (19). In addition to . 

taking into account the dependence of E on the mas's -asymmetry coor ~ 

dinate m and the fission and stretching momenta Pf and 'Ps' Eq. (1:> 

al~o includes a more precise dependence of E on t?e stretching 

coordinate s. . However, the harmonic-oscillator pr'obability distribu­

tions that we have used for the initial conditions represent the most ac-
" 

curate quantum-mechanical result.that can be easily obtained. In order· 

to derive the best expression for P(E, U) that still incorporates initial 
t 

conditions determined quantum;"mechanically, we will use the s~e 

pro bability distributions for the. initial conditions as .'before, but will 

, . 
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use the more accur~te equation .(14) fox"E and t~e' eXact equa~ion 
(i5) for U. Although the resulting expression for P(E. U) will be 
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. :' . strictly accurate only to lowest order in E and U, it will in addition " ;'.:': . '.~: 
.'" -' • f • • '; • : " { .' ~ ~,' 

. '. contain higher ... order terms in E and Uo The higher-order terms . :~ . 

represent the effect o.f the nonlinear transformation (14) expressing .. :. , 

" ..... , .:~.'=;';':'::::: .. ; ..... E in terms of the initial conditionse Since there' are two separate ~ 
. '. : __ .'., ,' . .-','. steps involved. in the calculation of P(E, U), the treatment of one step 
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,. . ::~.~.:,' :./.::'.-;'., essentially exactly and the other step to lowest order in E and U is· .:' ." ... 
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10 peE. U) for Initial- Conditions Determined i.n the Harmonic 11_.\ .. ,.-., .... < . .-.-.~_ .. :. 
Approximation , . 

, I 

In order to calculate peE, U) we need to invert the two equations 

(1.4) and (15) to obtain two of the initial conditions as fUnctions of E 

and U and the remaining initial conditions o 

as dependent variables, this inversion gives 

s = 

- " 

. '.,. 

1 
0.' 

., 

. O· 

If we choos.e m and s' 

(33a) 

(33b) 

;' '-

...... .. ,', " 

I. : · - ' .. 
••••••. :. t .... 

. -, 
.' ", 

, ' . 
.... 

.. ' 

"... ~ . 

~:;<,:.~':~.~.'= t~:~ .' .' .... 
;'f . : ',: -." 

. With. this choice of dep.endent variables, the tranafor~ation ~r.om the .' ~ .. ·,;":r 
initial probability distribution to the desired ·probability distribution is 

given by 

. '. 
',.-

peEs U} = . a (m. s) 
P(m. fl' ~fJ.Ps) a (E. U) , . '. ~'.. 

. -,' ~. ;.0 :..: 

.' , 

j'. 

" ", 

-.. " ' 

.' ..... '-, ...... 
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./ , . 

., . . . . ~. . ,'" ,,: .. ; . 
. ' ~.i 
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...... ," 0-' ' #'.'" .~:", 
. " 

-. 
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we have' already integrated over the initial coordinates and momenta. 

not involved in the transformation. It is understood that the set of . 

equations (33) is substituted for m and s in P(m, s,Pf'··Ps)' which . 

is given by the product of the. probability distribution for each normal 

. coordinate and momentum appearing in its argument, as determined 

in Section IV. 

The double integral over Ps and Pf cannot be expressed in a 

closed form. (By an appropriate change of variables, the double 

integral can be reduced to a single integral in which the n~w integrand 

includes an error function; in practice,. this transformation is not very',' 

useful.) However, if we expand the expression (33b) for s in powers 

of the, small quantity 

\1 
. !', 

, \ 

," : 

E 

everywhere it appears in the integrand, we can integrate the resulting 

expansion ter.m by term, obtaining an asymptotic 'series expansion for 

P(E, U). The ,result is found to be 

I 
4U(1-U)EOF(E, U) 

exp {-

(U _ 1.)2 
[E-4U( 1-' U)EO]2 }. 2 P(E, U) = 

('I1' 2C a. 2C )172. E Z C a. Zc E2 m m s l s 

(34) 

where 

.' 
F(E, U) 

... (35) 

l 

" , 

\ 
The function F(E, U) is dose to unity, except whe:re. the term in braces ' 

·i, 
becomes very large. This occurs only when E, and/or U are far 

, , 

. I 
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i: :: " (:,: .:. ; " from their most· probable values. (Since' this is an asymptot'ic series :,:.::' '~':' .. ;. • 

;'.:;:":.'.~~.'-',:.'"",,"'.' .. ,:~, .. ~,:~,.~.;,':',".":~:., ~,_" .. '.".,~. rather than a. power series, the expansion conv.erges for a definite ~.:'.<"':!:i;;:.;~: 
. . range of the v.ariables E and U rather than for an infinite number o£ ':~/;; ,,:,:,f;' 

'~.r ' .. t. "'I. "4 .. \'~~"'" • • •• :! ', .... ,~ .. ':.:':, 
;::~ .•.••. ,~ ? :':';)'( : • ;:. ': .terms retained in the expansion.) Thus, the approximation F(E, U) = i :~' . ;,: : ~;:: 

,'lI i I "", 'f' •• It .,1, 

' .. :', ·;.;;'·~:';·L;:i:;.::· ;'" : .< .. is a very good one" [Setting F(E, U) = i is equivalent to neglecting in· :_.~ ";'.' .<";;.:,' r ; : .. I, . ; oj " .. ,:, • f., r:' .... \: . 0' , • • I ~. .' ~ "--(. 

:-";~ ,,:.,.~,,':.: .. ~.\.<; ;';', , (i4) the dependence of E on the initial momenta 'Pf and ps·] '~:.: :" t.£ 
i"~~>".:~};'.:.~:)'?;!:::. <. : An alt~rnative way .of writing peE, U) is more useful for some ::'~.~),/~(~~: .< " .. '., ";:~1'·:,; ':: ::,;1": purposes than (34). If we collect t~rms in (34) according'to powers -: .. ':: : .. ~·.i: 
::":'. ~" .. r\ r~ ~j"<' .-il·, .~~,~.~ i . < "'t .... ·: ... :.~, ~,L 

, • .'; ,: \:,:, . ~ : .. of (U - '2), we obtam ~. . .:',:':' 

'.J.-::{~i).:.~.;:"',:t .. ,:.',: ,._.'P.(E. U) = ( .,;;. ~EmO J~s' iWzEZ exp I - !~ ~ sEJ],,-" :,,", ~:, :,\ 

, '.">::;:;,:;f 
:,' '~::~:'~~'::': ,>t:::; x[ 1-4( U - ill exp t ~ G( U - i ~ -HZ( ~- i )4 J . ',: '.. (3~:! •. :;: ;;,;' 

~. ,>'~, ~~. j .... : .... ~ • ,.. '. .' 'fi, ' . ~. '. 
. : ,. ", .:: :" .', ,,;' wher'e the quantities 

•... ,,:~, . ," .', ~ .. . '. ,~. 
'~ _~", .. :"; i • ~ • ' 

, ! 

G and H (functions of E) are'defined by , 
l' .-

" . , .' 

" 
-.. 

G= + 
S'EO ( E'_EO) 

c- 2C' E2 ' . : 
.. !~ .. , 

, r. .' . . . " . 
J '. 

.. 
m a. s '. ' .. .. " , . ~ . I: ... f ' 

.t: ... \ 'I" ' •• ( , :: I • f 
" '. , •• 7 

" ' ... 
. :. ! ~ .' • ~ H= 

' ..... 
(37b): .... ; ... /. j., 
.; , :": :- ::. ::; ~ 

, ... 
" 

:., ",: " . It 'is instruc'tive to compare tl~e current higher-order result~, .': ';;( 

..... '.:: for ... · peE, U) w,ith the lowest-order expression (29) derived earlier. ' .>:~ ":~.~-;!:::~(;' 
':,.:-. ~.:'.:~:~:~':>,;'" Whereas (29) is a bivariat~ normal distribution, the ,current result is <.' .,·:::\;:'/t ,. '. ~\>f.~"~ .-:'.;.' not-in a plot of peE, U) va E and Ue th~ lines of constant prob- .. :~, ~.«.~ 

," 

. ,. . ability are not ellipses. In Fig. 35 is presented a contour map of 'the : .. ,':' .~':, 
.~ :'~ .. : .. ' ·':'1' . . . . ~. , .. ; ... '~~. ~ 

, r current result for P(E, U); this may be compared directly with· the . ,'lj 
', •• I " .. 

.- l . ' 
. .... .. , 

, , .. ~ . ~ .. map of the lowe~t-order result shown in Fig. 33. Near the position of ..... ( . . , 
'h... ., m~mum probabili~y:the contour lines are .close.to ellipses, but inth~ 

region ,?f smaller probability they tend toward a triangular shape. ') ... : :"\ ~:;': 

'" 
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. \ 

,'. f, •• • •. ' .... ' 
.... ).: . 

" " :" .. , . \, . 

, " ...... , 

. '. . " 
, 
. , 

'".,; I.. ' . . 
.. ' ~ ' ••••• ' .. ,f !.~'.' " I ':,._~,~ : 

; J, • , '.. .: '.~' ': ~ ,~ : ! 
.~ • i ~ ~ .:, '. • " • _ • ' •• ' 

.:. : ,', ........ ", 'fl', • '- :':,;. l: 

,,'- ... .. -4~ 

, :- " ~.' ~:. ~' ( .. /'" 
,°01.'" 

"\ J., 

,,' .. ~ 

,,;;]~', ;:i:~(;'l:it 



", 

.. , 

, From the' distribution peE, u) 'one may obtain, by performine ' 

suitable integrations or by differentiating, other quantities ,of physical 

interest. VIe noVT list approximate analytical expressions for' such " 

quanti ties; ,the very eood approximation F(E, U) = 1 is used in the 

derivation of these e:>"''1'ressions (se,e Section V.B.l of Ref" 2 for 

details). 

By integrating over the total translational kinetic energy E~ , 
" 

we obtain the distribution P(U) 
, , 34 

of fractional mass: 
'" 

p(U) = 1 1/2 exp [-, (u ~:i J' 
(1{C' ), 

m 

The mean total translational kinetic energy, as ,a function of 

fractional mass, can be expressed in terms of an asymptotic series 

expansion in powers of 

, I , 
Similarly, the variance of the distribution in total translationa'l 

kinetic energy, as a function of fractional mass .. is given by 

o 2 2 2 
~ [4U(1 - U)E] a C (1 + ~ C + ••• ) • 

" s s 
(40) 

Higher statistical moments of the distribution in total translational kinetic 

energy, (as functions 'af fractibnal mass) could be calculated in a similar' manner. 

34 This result follows directly from the equation U = ~ + m and the 

distribution for P(m), without'the use of ,the approximation F(E,U) = 1 • 

I~ may also be obtained by substituting (34)~pr P(E,U), with 

FCE, U) = 1::, and integrating. 
, 
, 

" 

! 
'\ 

" .. ,' 

;".' .. 'k· , .• ,. .: ,,:','; 
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The most probable total translational kinetic energy, as a, 

func·tion of fractional mass,. is found to be 

'. 

= 

= 

= 
2 a C .+ ••• ) • 

s 
(41) 

It is interesting to note that the most probable total translational 
:1 

kinetic energy (for a given U) is slightly less than 4 U( 1 _ U)EO , II, l " 
( . 

vThereas ·the mean value [ECl. (:39)) is slightly greater. This is because 

the .distribution P(E,U) is not a. normal distribution but instead has 

a small high-energy tail. Tne difference between ~CU), E(U), and 

2 is small, however, since a C s 
is typically ~. 0.005. 

We nmf consider the calculation of integrals with respect to U 

over the distribution P(E)U)~ The distribution of total translational 

kinetic energy can be written as 

EO 
pC E) - .----------;--

(..,,2 2 .)1/2 2 "cae E m s . 

exp 
.+00. '. 

.~ .dm(l - 4m2 )exp(_H2m
4 

_ Gm2 ) 

-00 

( 42) 

where G and. H are defined by (37). The integral in (42) is not. 

expressible in terms of elementary functions. We find it convenient for 

the pres·ent purposes to express it in terms of the functions I n(l3) that 

are defined, for all values of n greater than -i, 'by the equation 

",'.", . 
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= ~y)dy (43) 

Properties of these functions, including the differential equation 

satisfied by I (~), recurrence' relations, .and asymptotic .expansion, n . 

as well as their relationship wi ththe repeated integrals of the error···· 

; function (61-92), are di~cussed in Appendix Fof Ref. 2.·We present, 
.-, . 

. : ~ , 

'. 
.i' 

.1 · . 

. in Fig. 36 .graphs of the functions I (~) . vs ~ .. /.' n for n = 0,. lJand.2: • 
. . \ 

, *' 

- , '.. '~ 

, 
.' . 

The total translational kinetic-energy distribution can then be 

written.interms of these functions as ,. ; 

... 

. , 
.'. 

peE) exp 

1 . 
X.l'2 , • (44) .. ' 

. H-'-/C, 

'. 

where the energy-dependent quantities G . andH are defined by (37). 

The second term in the brackets, is much smaller than I
O

< G/H}' and'can 

usually be neglected •. 
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The variance of the ,distribution. in,_ fractional',inassl,,·as::a·'.filnction .. ' ".: i 

of. :total: translational' kinetic', energy~;,.is:· similarly 'found to be '.' . 
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Il( GjH) 
( '"") , 

O'U.c; = H 
IO(GjH) 
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4 I 2( GjH)jH ], 

1+ 11 (GjH)jH 
(45a) 

If we neglect the second term in the numerator and the second term in the' 

denominator, we obtain the simple result 

Il(G/H) 

Io(G!H) 
(45b) 

A graph of the function Il(~)/IO(~) vs:~) is. given in Fig. 37. From 

the asymptotic expansion 'of I (~) 
n 

find that for large values of G/H 

listed in Appendix F of Ref. 2, we 
1\ , 

(45c) 

Higher statistical moments of the distribution in fractional 

mass (as ·.functions' of total translational kinetic energy) are obtainable 

just as teadily as For example, the fourth central moment is 

given by 

1 I 2(G/H) 

H2 Io(G!H) 
, 

.... ,: 

.' ',' . , 

where we have neglected all but the leading terms., 'l'hen, ·the kurtosis 

of th~ distribution (60) is given by 

~(4)(E) .' 
CL

(4 )(E) = 3 
u . 4( ) O'u E . 

I 2(G/H) IO(G/H) 
,., 

. '" I12( G/H) 
·3 , . 

",,' 

. '~", ,,' 

""," .. 

' .. . 
;. 

,". .. 

. ,'.(46) 

~. ... 
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A positive value of this coefficient means the distribution in mass is 

more peaked than a Gaussian, while a negative value means the distribution 

has a flatter top and is more rectangular than a.Gaussian. 

vIe consider finally quantities obtained by integrating over both 

E and U in P(E,U) • The mean total translational kinetic energy 

(integrat~d over fractional mass)· is found to be given by 

E = EO(l - 2 C ) (1 + 1.. ex2 
C + ... ) m 2 s 

.' 

EO(l +tex 
2 

C 2 C +' ••• ) = - , s m 
.' \ 

and the variance of the total tr~nslational kinetic-energy distribution 

by 

1 2 (0 2 2 = ~ ex C E) (1.+ 4·ex C s s - 4 C . + . m 

16 c
02 

m + ••• 

.. 

0) • 

Since the distribution P(E,U)is ~ymmetric in U 0 about U = ~ , 

the meari!fractional mass (eith~r as a function of E or integrated over 

E) is ,:,:.~ ... '., ··:.:.t t. The variance of the distribution in· fractional mass 

is obtainable directly from the Gaussian (38) for 0 p(U):: 

= 1..C 
2 m 

We shall postpone presentin~ any graphs of the quantities derived 

from peE, u) until we get to Section VI, where we compare the predict;ions 0 

.wi th experimental data. 

"'\ 
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2. The Effect of Anharmonicity on P(E,U) 

We are able to easily calculate quantum-mechanical probability 

. distributions for the initial conditions only in.the harmonic approximation •. 

However, if the nuclear temperature is sufficiently high that classical 

statistical mechanics is valid for determining the initial conditions, 

then the probability distributions may be obtained to any desired order 

in the initial coordinates and momenta, or even exactly, from Eq. (22). 

By exPanding the potential energy about the saddle point and 

retaining anharmonic terms in the coordinates we are able to discuss 

classically the effect of the anharmonicity of the potential energy oni 

the distribution. P(E,U). In order to discuss the distribution P(E,U) 

to the next higher order beyond a bivariate normal distribution, we need. 

keep only those ter~s in the expansion of the potential' energy that will 

affect the coefficients of the (E _ EO)(U _ ~)2, (E _ EO)3) and 

( i 4' . 
U - 2) terms'in the exponent of the 

I 
P(E,U) distribution. Because 

the equations .( 14) and (15) for E and U . depend only upon the mass-

asymmetry coordinate m and the stretching coordinate s (disregarding, 

for the moment., the initial momenta Pf and p )~ it suffices ·to s 

consider (in addition to the .harmonic terms) only the three ariharmonic 

s3~ and m
4 in an expansion of the 'potential energy.35 terms 2 

m. s, 

35 The two cubic terms 

even function of m 

2 ms and m3 are absent· because 

Nonzero cubic terms of the form 

11 is an 
2 sd , for 

example, introduce only pre-exponential dependences on E and U 

after the integration over d is performed. , .. 
. , , 

... ' ': .. 

. , ,. 
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He therefore expand the potential energy about the saddle. point with '.' 

respect to the variables m and s, retaining terms as follows: 

~to 2 2 2 3 l' 4 
(J + ~ K . m + ~ K s + -} K m s + ~ K s + -;:::T." K "-" m .••.. , '. m s roms· 0 sss 2,+ mmrmn 

.' 

The classical probability distribution for the. coord.inates m and s is 

therefore given to this order by 

: '. 

P(m,s) 
. 2 2 + ~ K s3 + -;:::T."21 K m 4)/eJ + 1. K s + -2

1 K m s 0 SSS <:!'+ mmmm ..' .. 
2 S roms 

(47) . 

where N is a normalization constant. 

K (evaluated at the ~addle point), asfutlctions' of fissionability sss 

il .; 

"',' I .... 

parameter. In the range of x below 0.78. the third derivative K " . mms 

which couples the mass-asymmetry coordinate and the'stretching coordinate, 

is positive.' This means that the most probable value of s decreases 

with increasing. m2 ; i.e., the most probable distance between spheroid 

centers decreases as the mass asymmetry increases. This results in a 

greater' translational kinetic energy at infinity than if the distance' 

remained unchanged. Over the entire range of x. (between 0 and 0.80) 

the stretching third derivative K 
sss 

is negative. The effect of this 

is a contribution toward a low-energy tail on the distribution in E. 

A rough estimate of the mass-asymmetry fourth derivative K (evaluated . mmmm '. 
at the saddle point) indicates that it is negative, and fairly i~dependent 

f F 6 7 h ' ld K ~ .. -15' E (0). Th o x ~ or x = O. 7 . t e estimate yie s r~ : •. e mmmm .... S ... 
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effect of this term is a contribution toward a peaked mass distribution, 

but the effect is srr~ll, since this term accounts for only about 20% of 

the final value of the (U - ~) 4 term in the exponent of . peE, u) ~ . (In 

all numerical results involving anharmonic terms that we present,·the .. ' 

quantity K is taken to be zero. On.the scale of the graphs presented 
mrnmm 

here, these results are indistinguishable from those calculated using the 

above estimate for K .) mrnnun 

By using the set of equations (,,) for m . and . s , and by taking 

into account also the classical probability distributions in·the momenta 

Pf and Ps ' we find for the desired distribution [we. have collected 

terms according to powers of (U - -!-)] 

. ° 2 K (E - E ) 0 3 
K (E - E ) 

[- ] 1TEOF(E zU) 
P(E,U) s sss = 

a E2 
exp 

G a 2 E2 
+ 

6 ea' E' 

wheTe ·G 

G = 

H 

2 

. . 

X [1. - 4(U 7 ~.)2J exp [- G(U _ -11)
2 

- H2(U _ -11)
4 

·36 
,2 K . (EO) (u - !) ] 

+ sss 
. , 9 a' E' ~ 

and H (functions of E) are now defined b~ 

;Km 4KsEO(E _ EO) K (E ~ EO) 
. 2 

2K EO(E _ EO) 
mms sss -+ .> 29 G a 2 E2 2 GaE 9 a' E' 

GaE 

,'.:" . 
• j . 

.... 
,'" : 

1\ 
t, 

\ 

.. , 

··(48) . 

, . , ; 
, 
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The function F( Ii: , U) is given by (35), where it is understood that ',' 

the classical limits are to be used for the constants 

appearing in it. 

C s and C ' 
Ps 

, , 

We present ,in Fig. 39 a contour map of P(E,U) vs E and U 

for the compound nucleus 8~t2l3 and 0 = 1.13 MeV, calculated using 

the completely classical result (48). (The nuclear temperature is 

.. /": 

" 
sufficiently high that classical statistical mechanics is valid for :' 

determining the ,initial conditions.) By comparing this with Fig. 35.-

. we ('.:\ see the effect of the anharmonicity of the potential energy ~I': ... ,' 

the final distribution (~ee also Fig. 33). The lines of constant 
. . , 

probability still tend toward rounded triangles, but not as markedly 'I: 

,a$ in Fig. 35. 

If we neglect the (U - ~)6 term in the exponential of (48), 

I , 

the resulting expression is of the same form as (36). Thus:, we are able 

to use the results previously derived for those quantities obtained by 

integrat~ng over fractional mass:, Eq. (44) for P(E), Eq. (45).for 

crU
2(E), and Eq. (46)' for au(4)(E). Closed expressions fo~'the quantities 

that result from integrating overE are not so readily obtainable because 

of the presence of the cubic term in E in the ~xponential of' P(E,U). 

The expression (48) for P(E,U), although strictly correct only 

to the next higher order beyond quadratic in E and U , contains further 

higher-order terms representing the effects of the nonlinear equation (14) 

for E. If we 'retain in (48) only terms that are one order higher than 

quadratic in E and U i we obtain (we regar.d any' pre-e~onential , , 

factors as of higher order) 

" . ~,' .. 

. ",' 
.. ' c, ",. , . .' ~ 

. ,:', 

, '. 
" 

, '" 

, , 

, , 
, 
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. 1 2 
Km(U - 2-) 

2 a 

+ K !lD1'llJL"1J) (U 
24 

e 

. 0 2 
K (E - E ) s 

. I .• 

] . ( 49) 

This result represents a consistent order of approximation in both the 
initial conditions and the equations for E and 'U. 

The most probable, total translational kinetic energy, as a 

function of fractional mass, is found from (49) to be 

1 
~(U) = ... J 

It is instructive to compare this classical result·with the result (4~) 

obtainedlby use of the harmonic approximation for the initial conditions. 

For x in the neighborhood of 0.67, a K /(SK) ~ 1/5;~ thus, the 
roms s 

" 

most probable total translational kinetic energy decreases with increasing 

(U - ~)2 only about four-fifths as rapidly in (50) as in (41). The 

physical reason for this difference is that in (41) the decreas,e in total 

translational kinetic energy with increasing mass asymmetry results solely 

from the decrease in the product of the charges of the two fragments, 

whereas in (5G account is also taken of the decrease in distance between 

.,,' j'" 

:. :,.' 

. .. 
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spheroid centers (which tends to increase the kinetic en~rgy) 'as the 

mass asymmetry increases. 

In addition to determining the rate of decrease of E
MP

( U) with 

(U - ~)2., the coefficient of the (E - EO.) (U-·i)2. term also gives the deriv-·· . 
0. 

ative of the variance of the fractional mass at E = E • From (49) we 

find that 

elK . m 

and that 
.. ', ,'/( 

e(8K - aK) 
s mms· 

= 

Since 8K > a K. , the derivative is negative.' 
5 mms 

For values of x ·of interest in fission,' the magnitude of the 
" 

negative quantity Ksss/(6~) is roughly one-half Ks; thus, the coeffici~!nt 
of the (E - Eo.)3 term in (49) is positive, indicating that the deviation 01 

· P(E, 1/2) (the distribution in E for a symmetric mass division) from a 

pure Gaussian is toward a high-energy tail (positive skewness). The 

origin of the K term, which contributes toward the high-energy tail, 
. s 

is the nonlinear relationsh~p (14) between E and s. The opposing con-

tribution from the K / (6a) term toward a low-energy tail arises phys-sss . 
ically. be,cause the potential energy increases more rapidly as the frag;-

· ments approach one another than as they separate. 

An examination of the coefficient (including the over-all minus 

sign) of the (U - i)4 term in (49) indicates that it is negative. Thus, the 

prediction is that P(Eo., U) (the distribution in mass for E = EO)iS less 

'peaked and more rectangular than a Gaussian distribution (negative 

kurtosis). 

In this section our concern has been the mathematical derivation 

· and compilation of the formulae relevant to a discussion of the distribu­

tions in fragment total translational kinetic energy, mass, individual ex­

citation energi"es, and individual angular momenta. By 'using these for­

mulae and the graphs presented earlier for the constants appearing in 

therA'l, curves expressing the theoretical predictions may be prepared for . . 
direct comparison with experiment. This will be done in the next sec-

tion for distributions in total translational kinetic energy and " ,.~ 

mass. 

/ 

" 
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VI. COMPARISON OF THEORY WITH EXPERIMENT 

In the previous section we derived probability distributions 

, for certain 0 bservable characteristics of fission fragments at infinity: 

their total translational kinetic energy, fractional ,mass, individual 

excitation energies, and individual angular momenta.' From our ear­

lier discllssion regarding the applicability of the two-spheroid model 

(Section ILB), we know that these distributior:s are expected to de­

scribe only the fission of nuclei that have values of the fissionability 

parameter x;$ 0.67. 

Experimentally, there is observed a marked transition in the 

properties of fission at about radium (x = 0.684)-mass divisions are , 
predomin'antly symmetric for elements lighter than radium and pre­

dominantly asymmetric,for elements heavier than radium. ,It is not:i, 
i' 

clear whether this experimentally observed transition is associated', 

'with the transition in saddle-point properties at x ~ 0.67; no expla­

nation of asymmetric fission for the heavier elements is foreseen 

within the framework of the two-spheroid model. We will neverthe .. ' 

less use the experimentally observed transition 1::>etween symmetric 

and asymmetric mass divisions as the dividin3!Oint for determining 

what data. the theory should be compared with. We will therefore -­

compare the theoretical predictions of the model with existing exper­

imental data for' the fis-sion of nuclei lighter than radium. 

3~ recent experimental det,ermination of the fission barrier, of 81.T120 1. 
, 2 . 

indicates that, <,Z / A)crit has a value( §9of 48.4:± 0.5 ,[rather than 

Green's value(iJO) of 50.13, that is used here]. When this value of 

, (Z2/ A)crit is us~d, the value of the fissionability parameter x for 

each compound nucleus is increas,ed somewh~t. For the comparisons 

between theory and experiment that are made here, the largest. value 

,of fissionability parameter that occurs is 0.677 when Green's value 
2 

of (Z / A) 't is used, and 0.701. when the newly reported value is ' crl 
used. 

: < } 

. ' 

'i 
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Fission-fragment mass distributions, obtained by use of 

radiochemical techniques, : are available for the fission' of several; 

of .. ,the lighter ',elements' ,: ",:, (65-70). Single-fragment translation,al 

kinetic-energy distributions have been determined for the fission of 

a number of light nuclei (7l,'l,g). In addition, two-dimensional distri-

but ions in mass and total translational kinetic energy, obtained by'use of 

semiconductor detectors 'and two:dimensional analyze~s,37 have r~centlY 

been reported for variou~ nuclei lighter than'radium (n, 73-78)." On - - , 

the other hand, for the fission of.the'lighter elements, there exists 

at the present ,time no 'experimental information regarding the distributions 

in individual excitation',energies and individual angular momenta. The 
therefore ,1 

immediate test of the theory will ';I' be the comparison of prediction~ 

with experiment for distributions in total translational kinetic energy 

and mass [P(E;U) arid quantities derived from it). 

The more detailed compari~s wLll be made with the data of 
"lith 

Burnett (76) and/the data of Plasil (77). BUrnett bombarded' Bi209 
- - 83 

and 79AP.197 with alpha particles of energies 65.0 MeV and 70.0 MeV" 

respectively, to form the compound nuclei 8~t2l3 and 81T120l. The 

corresponding values of the fissionability parameter x are 0.677 and 
" 

0.651, respectively. Plasil studied the heavy-ion~induced fission of 

37 These experiments consist of measuring in COincidence the translational 

ki'netic energies El and E2 of the two fission fragments at infinity 

and recording the corresponding number of events. From this experi­

mentally constructed distribution peEl' E2 ), the experimental 

distribution 'P(E,U) is obtained by use of the transformation (18) • 
. 

, \ 

, 
" 

, 
" 
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the compound nuclei O 
186 

76 s (x = 0.619) 198 
and 82Pb (x = 0.671) at 

several bombarding energies ranging from 102 MeV to 165 MeV.' The 

f?rmer was produced in hro ways from the reactions E 170 016 
68 r, +8 and 

174 
C12 and the latter from the reaction W182 016 

70
Yb + 6 , 74 + 8 

He will also refer frequently to the data of Britt, Wegner, and 

Gursky (75), and the date of Unik and Huizenga (78). The former have 

studied the 25.5-MeV 2He3-induced fission of 'A 191 
79 u , Tlnat 

81 ' 

Pb206 d B· 209 f th B· 209 
82 ) an 8 3 ~ ; or e 8 3 ~ , case a bombarding energy of 

22.1 MeV was also used. The latter authors have studied the 42-MeV . 

helium-ion-induced fission of B· 209 
83 ~ Comparisons will also be made 

with other data. 

[A comparison of some of these experimental data with the 

predictions, of the two-spheroid model is also made by Burnett, Plasil,: 

and Thompson (19), whose experiments were carried out at the Lawrence 

Radiation Laboratory, Berkeley, simultaneously with the development of 

the theory.] 
i, 
The theoretical distributions depend upon the nuclear tem-

perature e at the saddle point, which is a function of the internal 

SP excitation energy E at the saddle pOint. The determination of ex 

e 'in terms of ESP is subject to an appreciable error. For the ex 

comparisons between theory and experiment made in this work, we u~e 

the semie mpirical nuclear equation of state (80) - .' 

= (A/8) e2 - e , 

, . 

> .,' 
".; . 
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where both e and ESP are in MeV, and A 
ex is the number of. nucleons 

in the compound nucleus. The excitation 'energy at the saddle point 

is in turn given by the total bombarding energy in the center-of-mass 

system, plus the binding energy of the projectile to the target,mi~us 

the fission':'barrier energy. The fission-barrier energy is equal to " 
" ' )8 

the liquid-drop fission-barrier energy (15,17), minus the shell 

correction to the ground-state mass (81, 82), plus the shell correction, 

to the saddle-point mass. The saddle-point shell correction is not", 

knovrn, but probably does not exceed a couple of MeV-it was neglected 

here. These considerations are for a compound nucleus that is not 
- \1 
, I rotating. 'The determination of the fission-barrier energy and the 

nuclear temperature for a rotating nucleus is discussed by Plasil (77); - . 
his procedure is briefly touched upon below. 

Two complications present in the heavy-ion-induced fission 

reactions should be mentioned.' First of all, because of the high 

. excitation energies involved, it is possible that the compound nucleus' 

will fission following partial de-excitation by the emission of one or 

more neutrons. If this occurs, there will be a spread in the saddle-

point excitation energy (and hence the nuclear temperature 9) at the 

time of fission. Secondly, heavy ions are capable of creating compound 

)8 A plot of the liquid-drop fisSion-barrier energy vs. x is given 

in Figs. 4 and 8. Fox: the determination of a, the true l1quid-

drop fission-barrier energy is used rather ~han the two-spheroid 

approximation to the barrier. 

, .' 
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nuclei possessing large amounts of angular momentum. Because the ions 

strike the target with varying impact parameters, the angular momentum 

ranges from zero to some maximum value. Since the fission threshold 

is a sensitive function of angular momentum (77, 83), it will have a 

, range of' values, resulting in a spread in the saddle-point excitation 

energy (and hence e). The effect of both these complications on nuclear 

temperature was taken into accou~t by Plasil (77). He obtained an 

" average value of e by calculating the competition between fission and 

neutron emission throughout the de-excitation chain, 39 and by integrating 

over the dis-tribution of angular momentum. 
: 

Although the effect of angular momentum on the nuclear tempera~ure 

,can be taken into account as described above, it should be recalled that 

the entire theory developed here is restricted to the case of a nonrotating 

compound nucleus. This must be borne in mind when comparing the theoretical, 

predictions with the data for the heavy-ion-induced reactions. All' 

conclusions drawn on the basis of such comparisons are 'thus subject to 

the provision that angular momentum has little effect on the' fission 

process, except in affecting somewhat the average nuclear temperature at 

the saddle pOint. 

Tne·theoretical distributions are calculated for fragments 

observed (at infinity) before they have emitted any neutrons, whereas 

39 For the cases studied it was found that the average number of . 

neutrons emitted before ,fission seldom exceeds one; this means that 

the uncertainty in the nuclear temperature arising from this effect· 

'is small. 

'" 

; . 

'. 
'. 

_ r 

I, 
/' 

I 

, f 

. , 



. r-. 

.' 

... 

-101-

the experimental kinetic-energy measur~ments are made after the emission 

of neutrons from the fragments. Fragment neutron emission decreases 

the average translational kinetic energy and intr9duces a dispersion in 

the distributions, thereby increasing the variances. When comparing 

theory and experiment, it is desirable'to correct the experimental"'results 

for ,such neutron-emission effects. The problem of neutron~emission 

corrections has been discussed by Terrell (84), by Haines(~), and by 

Burnett (790. By rr~king certain standard assumptions regarding the 

, neutron emission, it is possible to derive formulae for correcting the 

mean total translational kinetic energy E(U), the variance C1
E 

2(U) :, of 

the total, translational kinetic-energy distribution, and the variance 

C1
U

2(E), of the mass distribution. 
\ 

Using Burnett's ne~tron-correction formulae, Burnett and Plasil 

have corrected all statistical moments obtained from their data. (The 

formula~ of Burnett differ slightly from those of Haines because certain 

higher-order terms are ,retained by Burnett.) With the exception of the 

mean total translational'kinetic energies, the data of Britt, Wegner, and 

Gursky (75) have not been corrected for the effects of fragment neutron' 

emission. ,The data of Unik and Huizenga (78) have been corrected for 

neutron-emission effects as regards the mean total translational kinetic 

energy and the full width at half-maximum of the over~all tot~l 

translational kinetic-energy distribution, but not otherwise. 

Although neutron-emission corrections can be made for the 

statistical moments of the distributions, it is not possible to easily 

,correct the distributions themselves. Thus; when comparing theoretical 

and experimental distributions, it must be borne in mind that the former 

refers to pre-neutron-emission and the latter ,to post-neutron-emission • 
. " '-' 

" '. 
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"'\ 

To distinguish'these' two cases we denote by a superscript asterisk a 

quantity measured after'neutron emission has occurred; e.g., * E is 

the total translational kinetic energy measured rollowin~ neutron 

emission. 
, . 

vThile making comparisons of the theoretical and experimental 

distributions it should be kept ,in mind that no arbitrary parameters 

have been a~justed~that the theoretical and experimental distributions 

have not been normalized to one another in'any way. Also) it should 

'be remembered that the theory is strictly valid only in: the neighborhood 
, " 

, of the most·probable events; we wiil, however, extrapolate the 

theoretical curves to cover the entire region for which there are 

experimental data. ,[With the exception of Figs. 40 and 46, the 

figures that we will ~xamine have been reproduced (with additions, 

,and changes in notation and format) from Refs. 76 and 77.] 
, , ' * 

Figure 40 shows the experimental contour map of P(E" U) 
,)Eo 

vs 

E 
, 2~" 

and U for the compound n~cleus srft ,for which the nuclear 

temperature at the saddle point is e = 1.13 MeV (86)., Apart from 

II 
\ 

the effects of neutron emission, as discussed above, this exp~rimental 

contour map may be compared 'directly with the ,theoretical maps calcu-
, . 

lated for this experimental situation in each of the three successively 

" ' 

• i' 

i 
I, 
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improved orders of appro~imation discussed in Section V--see Figs. 33, 

35, and 39. (The same relative scales for E and U are used for 

all four graphs. However, the experimental contour lines are labelled 
. ~ . 

differently from the theoretical ones.) Since the nuclear temperature, 

is 'sufficiently high' that classical statistical mechanics is valid, 

for determining the initial, conditions, the completely'classical 

map 'calculated by including the effects of anharmonic terms on the 

initial conditions (Fig •. 39) represents the 'best' theoretical estimate 

available, and we will confine our discussion to a comparison with 

it. 

The experimental and theoretical most probable values 

" of total translational kinetic energy are seen to agree 
, 

remarkably well. I~ addition the theory predicts that the most 

probable value of U' should be one-half, and this is verified 
I 

. . ,', 

~. . ' . 

experimentally---the fission events are-predominantly symmetric ,in 

mass rather than asymmetric. Furthermore, the widths of the, , 

distributions in E and U are seen to agree well,. ' Finally, 

we 'compare the shapes of the distributions with the theoretical 

predictions of approximately bivariat~ normal distributions 

," ." ., 
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modified by certain, characteristic higher-order terms. The over-all 

agreement between the shapes of the experimental and theoretical con-

tour lines is good. In the region of maximum probability 

the experimental contour lines are approximately ellipses, whereas 

in.the region of smaller probability they tend to become rounded tri­

angles, as predicted by the thecry: The experimental mass distribu- . 

tion, as predicted, is broader for low values of the total translational 

kinetic energy than for high values. Ot1?-er details of the agreement 

between the theoretic'al and experimental :maps will be compared later 

. in the form of statistical moments. 

IriBef'. 77: comparison is made by PlasH between theoret­

ical and experimental contour maps of P(E, U) for flssi'on, 'follOwing two 

heavy-ion-induced reactions. The agreement presented there is not 
,2.13' . 

as good as for the 8SAt 'case we have discussed. ,However, the it. 
theoretical maps there are calculated using the intermediate approx-~' 

imation for P(E, U) in which the initial conditions are determined in 

the harmonic approximation. The agreement is significantly im­

proved when the effects of anharmonicity on the initial conditions are 

taken into account. Also, the compound nuclei undergoing fis sion 

possessed considerable angular momentum, and the m.oreM.ehly excited 
fr~ents would have emitted more neutrons, which could possibly affect 
theexperi~ental distributions. 

Figure 41 shows the theoretical and experimental di"stributions 

in mas s, P( U), and the theoretical 'and experimental distr~butions in 

total translational kinetic' energy, P(E), for the compound nucleus 

82.Pb198,each at two different nuclear temperatures. The theoretical 

cur'ves are calculated in the intermediat~'approxima~ion for 'P(E, U) 

in which the initial conditions are determined in the harmonic approx-
~ , , 

imation. As before, we first compare th,e most probable values of 

'40 Although the approximate formulae derived in Section V for P( U), 

P(E), and the various statistical moments are sufficiently accurate 

for calculating the theoretical curves of this section, the curves have 

actually been calculated bynumerical integrations over the full ex­

pression (36) [or the full expression (48)] for P{E, U), with F{E, U)· 

retained. 
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the total translational kinetic energy, which are seen to agree fa­

vorably. Next, the widths of the e':Cperimental distributions in both 

kinetic energy and mass are seen to be reproduced well bY,the theory. 

In addition, ,as the nuclear temperature increases, the theory is seen 

to correctly predict an increase in width of each distribution. Finally" 

we note that the over-all shap~~s of the experimental and theoretical 

distributions in both ,E and; U are in, approximate agreement (each 

distribution is approximately Gaussian). Because of experimental 

uncertainties, including the uncertainty of the effects on'the distribu,­

tiona of neutron emission from the fragments{ we will not compare 

numerical, results for skewness in P (E) and kurtosis in P (U). 

We turn ,now to a comparison of the mean va~ues of the total 

, translational kinetic energy as functions of fragment mass. Shown 
'.. . 

in Fig. 42 i~ E( U) vs, fragment mas s AU for the compound nuclei! I 
213 ' 20 l' 198, :I 

8SAt , 81 Tl , and 82Pb , the latter for two temperatures. I' 

In this figure, as well as in the two, succeeding ones, we indicate by a 

solid line the result obtained by use of the intermediate approximation 

(36) for P(E, U), in which the initial conditions are determined in the 

harmonic approximation. The dashed line represents the result cal-
" , 

culatedfrom the expression (48) for P(E, U), in which anharmonic 

terms are considered in determining the initial conditions. Since the 
I ' ' 

nuclear temperature is sufficiently h~gh that classical statistical me-

, chanica is valid for determining the initial. conditions, the dashed line 

, in each case represents the better theoretical estimate, and we will 

confine our discussion to a comparison of the experimental r'esults 

with'it. 

We note first of all in Fig. 42 that for three of the four cases 

the agreement between theory and experiment as regards the mean 

total translational kinetic energy at symmetry is excellent. For the 

'remaining case (82 Pb198 at E> = 2.07 MeV) the experimental value is 

slightly higher than the theoretical one. For the 8sAt213 and. 81 T~201 
cases the experimental decrease in E( U} with increasing mass asym­

m.etry is essentially ,as predicted by the theory, although the exper­

imental points lie somewhat above the theoretical curves. However, 

. ',", 

,} . 

./. 
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'for the two 8ZPb1..98 (f d b h . b b elm ) cases orn:-e y eaVY-lon om ar ents} 

the experimental points do not drop off with increasing asymmetry 

nearly as fast as the theoretical curves. Indeed, for the case in 
. ;~. 

·.which 0= Z.07 MeV, the experimental values are essentiallyinde-' 

pendent of asymmetry. 

The data of Britt, Wegner, and Gurs~y indicate that E(U) 

decreases with increasing mass asymmetry, although they find in 

some cases (in particular, 83BiZ09 + ZS.S-MeV zHe 3 ) atendency 

for E (U) to actually increase at large asymmetrY(75). (Note that these 

authors plot their data as ·functib"ns of fragment mass ratio rather than 

fragment, mass or fractional mass.) The experimental E(U) cur.ve 

of Unik and Huizenga also decreases with increasing mas s asy~metry:( 78). 

As Haines has pointed out, the discrepancy. between the calcu­

lated and experimental E( U) curves would be reduced somewhat if ac-
, \1 

count were taken: 'of the change in the mean charge density of fission :; 
. . . , 

fragme~ts with a change in mass asymmetry(.85) 0 On the'average, the 

lighter fragment acquires a slightly larger number of protons than its 

proportionate share, and the ~eavier fragment acquires a slightly 

smaller number. The product of the charges of the two fragments, 

and hence their translational kinetic energy at infinity, is thus in­

creased somewhat over the corresponding value calculatedhere (in 
, 

which both fragments .have the same charge density). This effect is 

of the same order of magnitude a~ the effect of the anharmonicity of 

. the potential energy, and in the, case of 8sAtZ13 and 81 Tl
Z01 

taking 

'. this effect into account woul~ come close to, removing the di!ference 

between the calculated and experimental E( U) curves. On the other 

hand, the large discrepancy between the calculated and experimental 

curves for the. 8Z'Pb198 ,c'ases would still exi~t even 'if the effect arising 

from the difference in fragment charge densities were taken in account. 

The suggestion has been 'made by PlasH that the angular mo-, 

mentum present in the 8ZPb198 cases is' possibly responsible for the 

marked deviation of the experimental E(U) curves from the theoret­

icalones(7n. This suggestion is consisten~ ~ith the,fact th~t for the 
- ' 213 

two cases in which very little angular momentum is present (8SAt 
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and 81 Tl
20 

\ formed by alpha-particle bombardments) the theory 

and experiment are in substantial agreement, and for the 82Pb198 

· case in which there is· less angular momentum present (0= 1.37 MeV), 

.. the agreement is better than for the case of greater angular momentum 

present (0 = 2.07 MeV). To see if this actually is the expIanation, the 

theory should be worked out taking into account, angular momentum; 
, 

this presents an interesting problem for the future. 

In Fig. 43 we compar·e the the·oretical and experim~ntal var­

iances of the total translational ,kinetic energy distributions as func-
. 2 

. tions of fragment mass [<TE (U) vs· AU] for the same experimental 

situations as in Fig. 42. The agreement near symmetry is excellent 
213 201 198. 

for the 8SAt and 81 Tl cases. Jfor 82Pb (heavY-lon re-

actions) the agreement near· symmetry is good for the 0= 1.37-MeV 

· case, but for the 0 = 2.07-MeV case the experimental points are so~e- . 
i 

what higher tha~the theoretical values. In all cases 'the theoretical: 

curves decrease with increaSing mass asymmetry •. This prediction is 
. 213 201 . 

not borne out experimentally in t,he '8SAt and 81 Tl cases-these 

experimental variances increase with increasing mass asymmetry. 

The trends of the two 82Pb198 variances with mass asymmetry are 

rather uncertain. 

~ritt, Wegner, and Gursky have found in three of the four cases 

reported that the varianCe<Ti: (U) is essentially independent of fragment 

mass(?5~ In the fourth case (83 Bi209 + 2S.5-MeV 2He3) O'~U) was' ob­

served to remain .essentially constant near sym~etric mass divisions 

and to increase for more asymmetric divisions. The data of Unik and 

Hui'ze~ga also indicate th~t . O'~ U) is essentially independ~nt of fragment 

mass .(78) •. 

The co·mparisons made for ,ui< U) indiCate a" fairly significant 

disagreement between theory and experiment. The theoretical curves 

would be scarcely changed·.if one were to take into account further an­

harmonic terms in the potential energy-any pure liquid-drop result 

that predicts that the mean total translational kinetic energy should de-
. . . 

crease with increasing mass asymmetry (see Fig. 42) .will also predict 

· that the variance of the total translational kinetic energy should decrease 
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with increasing mass asymmetry. It thus appears that the exper- , 

imental constancy or increase in O'~( U) ~ith increasing mas s asy~-"" 
metry is caused by some effect other than those present in a pure' 

liquid-drop model. 

Burnett has suggested that the discrepancy between theory-and 

experiment as regards O',i (U) may possibly arise from the effects of 

single-particle shell structurE(76). If the doubly-closed shell at frag­

ment mass 132 tended to make the 'heavier fragment nearly spherical 
, ' ' 

a portion of the time, then the separation of the fragment centers 

would decrease a portion of the time, resulting in an increase in trans .. 
, 

lational kinetic. energy. ' Since only some fraction of the total fission 

'events would be affected by the doubly-closed shell, there would also 

, still be norma~ £i'ssions with lower translational kinetic energy., This 

mixt,ure of fission events-some predominantly low in kinetic energy\! , 
and some predominantly high-would cause the variance to be greater 

than it otherwise would be. The suggestion that shell effects are re­

sponsible is consistent with two pieces of experimental evidence: First 

of all, as w~s pointed 'out by Burnett, the increase i~ 'O',i< U) 'begins for 
213 ' 201 

both 85At and 81 Tl' at f~agment masses 120-125 rather than 

at a constant mass ratio. ,Secondly, the increase in ,O'~( U) with mass, 

asymmetry becomes less pronounced as the ,nuclear temperature in­

creases'; indeed, for 8.2 Pb 198 at e = 2.07, MeVi O'i< U) is essentially 

independent of mass asymmetry. This disappearance of the marked 

disagreement between theory and experime,nt as the temperature in­

cre,ases would correlate with41fe disappearanc,e of single-particle shell 

structure at high excitations. Work on the 'cause of the discrepancy 

represents 'another interesting problem. 

Variances of the mass distributions as functions of total trans­

lational kinetic ~nergy [,O'~ (E) vs E] are, shown in Fig. 44. The' 

magnitudes of the theoretical and exp~rimental variances of the mass 

~1 
The large amount of angular momentum present'in the two Pb198 

82 ' 
cases could, of course, be responSible for the near-constancy of 

2 
O'E < U) as a f\lnction of U(rather than a disappearance' of shell struc-

ture}. 
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distributions at the most probable total translational kinetic energy 
. 213 ' 201 

are m excellent agreement for the 8 sAt and 81 Tl cases, and 

in good agreement for the two '82Pb198 cases. F~rthermore, for the 

two former cases the theoretical curves correctly predict the over-all 

shape of the curves, including a "flattening at high E and a very rapid 

rise at low E. ,At both high and low E, however, the experimental 

points deviate somewhat from the theoretical curves. The experimental 

curves for the two 82 Pb 198 cases do not pos s.es s the characteristic 

"hyperbolic" shape predicted by the theory, and, observed in the former 

cases. Indeed, for the. 0 = 2.07 -MeV case the experimental' curve is 

essentially, linear. It is again possible that the discrepancies between 

, theory and experiment for the two 82 Pb 198 ,cases arise from the ef-

fects of angular momentum or fragment neutrotr emission; th~se possibilities 
should be investigated. 

: We have thus far been mainly concerned with comparing details . . 
of the distributions in mas s and total translational kinetic ener gy for a 

given nucleus and excitation energy {or rather four such combinations}: 

The theory we have developed also predicts the dependence of the distri­

butions on nuclear temperature, and their dependence on fissionability 

para~eter .' 

We turn now to a cQmparison of. theory a.nd experiment as regards 

the temperature dependenc'e of the distributions. The mean total trans­

lational kinetic energy is prediced by the theory to be {for all practical 

purposes} independent" of nuclear temperature. 'Plasil finds that for five 

different nuclear temperatures, ~anging from 0= 1.37 MeV to 0= 2.07 

Mey, the mean total translational kinetic energy E for the 82Pb198 ' 

case varied by 3 MeV (with exp'erimental errors on, the ,values of E, 
, 186 

set ,at :I: 5 MeV)( 77~ For 76 Os (formed in two ways) he found that for 

six different nuclear temperatures c<?vering the range 1.,49 MeV ~ 0 ~ 

2.06 MeV the values, of E varied by 5 MeV (errors on 'E of :I: 6 MeV) • 

These data are thus in substantial agreement with the theory. 

The variances of the 'distributions in E and in tr are pre­

dicted to 'increase with increasing nuclear teqlperature.' The compar':' 

ison of theory and experiment as regards this point is made for the 
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82. Pb 198 and 76 Os 186 cases in Fig:' 45. ,42 We again note the significant, 

agreeme'nt between the magnitudes of the theoretic~l and experimental 

variances in both mass and total translational kinetic energy. Further­

more,' theory and ,experiment are in substanital agreemen\ as regards 

the dependence of the variances upon nuclear temperature. ' :5 This is 
198 186,' 

es:pecially true for the 82.Pb case; for 760s the experlmental . 

slopes for both, ~,:O' G' and O',~ are somewhat, smaller than the 

theoretical slopes. 

The theoretical dependence of the most probable total transla-. ' 

tional kinetic energy on fissionability parameter is compared in Fig'. 

46 with the data of Viola and Sikkeland.
72 

(This figure is reproduced 

from ' fRef'.~::5- 4) " As in Fig. 18 the solid curve represents the result 

for nonviscous fragments with hydrodynamic flow of the type, we have 

been considering (a superposition of an irrotational flow and a flow , 
corresponding to a uniform rotation). The dot-dashed curve ,,:epr~sents 

the result for infinitely viscous fragments (which would separate to 

infinity without oscillating), and the short-dashed line represents, a 

simple approximation (see Section III. C) to the former curve. In ad­

dition to the data for nuclei with fissionability par.ameter x S 0.67, 

we have also included tjle data for heavier elements, with fis sioriability 

parameter,s up to x = 0.807. The experimental most probable kinetic 

energies for nuclei with x S 0.67 are seen to be reproduced well both 

1j.2 
For the benefit of those making a comparison between this figure and 

Fig. 6 of :,Ref. 3" ~ the preliminary data presented there were over­

,corrected for the effects of neutron emission from the fragments; the 

agreement is better than indicated there. 
1 ' , ' 

~it should be recalled that the varian~e 0' G retains its linear depend-

ence upon e at low temperatur~s in the two-spheroid model because 

the mass-asymmetry .frequency is zero (as a consequence of the zero, 

neck radius of the saddle-point shape). , In the actual situation, of 

course, the neck radius of the saddle-point shape and the mass-asym-' 
, 2 

metry frequency are not zero, but are small. The variance O'u of 

the mass distribution should therefore approach in the real case a 

small finite value, rather than zero, as the temperature goes to zero. 
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In magnitude and in their dependence on x by the solid line (nonvis­

cous fragrpents). For x ~ 0.67 the experimental points are higher 

than tp.e theoretical estirrlate represented by the solid line. Recall 
. . 

. that for x'~ 0.67 the two-spheroid model is inadequate, among other 

respects, in that its saddle-po.int configuration is more 'elongated than 

the true liquid-drop saddle-point shape. Thus, the translational kinetic. 

energies predicted by the model for x~. 0.67 are expected to be too 

low. 
. '. 

The comparisoJ?, between theory and experiment as regards the 

variation of widths with fissionability parameter has not yet been made •. 

There are insufficient data on either the widths of the mass distributions 

. 0'1' the widths of the total trc:nslational kinetic-energy distributions to 

establish their depel1d~nce on x. However, the single .. fragment trans­

lational kinetic-energy distributions of Viola' and Sikkeland(72) cover a , 
. - :t 

wide range of x.' 'In the region 0.569:::; x :::; 0.650 they have report~d 
. , 

the full widths at half maximum of single-fragment kinetic-energy dis-

tributions for nine nuclei. Since the l' eactions studied were formed by , . 

heavy-ion bombardments, considerable analysis [similar to that per­

formed by Plasil(T7)] is required to determine the average nuclear tem­

perature at the saddle point. If the nuclear temperature for each of . 

these reactions were determined, the experimental widths could then 
I 

be compared directly with those predicted by the theory. 

The remaining comparisons between theory and experiment wi11 

be made in a series of three tables. We compare in Table I for sev-
, , 

eral compound nuclei and nuclear temperatures the over-a11 mean 

total translatio'nal kinetic energy E, the over-a11 va:iance b"i; of the 

total translational kinetic-energy distribution, 'and the over -all variance 

0" G of the mass' distribution. Table II is a similar comparison, , but 

in terms of full widths at half maximum of the distributions rather than 

variances. (For a Gaussian distribution, the full width at half maximum 

is equal to the square root of the variance multiplied by 2. 3548.) In 

Table III we compare with theory the full widths at half maximum of 

mas~ distributions obtained by ~se of radiochemical techniques. From 
.' '. 

, . 

the comparisons made in these three tables we see that there a~e no unexPe,ctedly ., . 

. ,large, ( disagreement between theory and experiment~, 
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.;; 

To, summarize this section, we have compared the predictions ' .. ' 
. . . 

of ourm;delwith existing e~perim~ntal data for the fission of nuclei' 

lighter than radium-distributions in mass and total translational ki-'· 

. ':n~tic energy_ From the"se compari,sons we h"ave lea'rned that the two"- ". 

spheroid model is capable of accounting for 'a large number of theob j ' 

served properties of the distributions, but that some discrepancies 

remain. The significance of the comparisons will be discussed in "., 

Section VII. 
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VII.,: SUMMARY' AND CONCLUSION 

We have studied in connection with nuclear fission the division 

o,f an idealized charged drop, using a simplified version of the liquid­

drop model. The coordinates for our model were selected so as to 

take into account the appropriate degrees of freedom essential,to a dis­

cussion of the division of a charged drop and the separation ··of the frag­

ments to infinity. To the Hamiltonian of our idealized system we have· 

. applied standard statie, dynamical, and statistical methods in order 

to tr~ce out the essential features of the process. 

This has included, first of all, the calculation of the potential 

energy of the system (a sum of surface and Coulomb epergies), and 

. the location and study' of the proJ?erties of the saddle point. From such 

a study we learned that our model is expected ~o be useful for discus II 
'. I 

sing certain aspects of the ·fission of nuclei with fissionability param-;' 

.eter x:5 0.67 (nuclei lighter than about radium), but not, in general, 

·for discussing the fission of heavier elements. 

The dynamical study was concerned with calculating the kinetic 

energy of the system" with setting up the equations of motion, and with '.' 

solving them in terms of given initial conditions. This made it possib1~ 

to trace out the division of the nucleus and the separation· of the frag-
I . 

ments from some given initial configuration to infinity. F~r the major' 

. portion ot'the study we worked out the theory for completely nonviscous 

fragments with hydrodynamic flow consisting of a superposition of an : 

irrotational flow and a·flow corresponding to a uniform rotation. For' 

certain aspects of the theory we also considered the case of infinitely' 

viscous fragments. 

In the application .of statistical mechanics we focused attention 

on the system at the saddle' po'int, making the standard transition-state­

method assumption of statistical' equilibrium at the saddle point~ This 

made it possible to calculate the probability of obs~rving the system 

in a given state of motion close to the saddle point. 

c· 
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The results of the dynamical and statistical studies were then 

appropriately combined to give the probability of observing the two 

fragments in a given state of motion at infinity. This probability 

corresponds directly to the probability of certain observable charac-

teristics of fission fragments: their total translational kinetic energy, 

fractional mass, individual excitation energies, and individual angular 

,momenta. 

As stated 'in the introduction, our purpose has been to study in 

,detail the properties of the division of an idealized liquid drop whose' 

size, surface 'tension, and charge are those of a nucleus; and to compare 

the results with what is observed ,experimentally in the fission of real 

nuclei. From this point of view there are no adjustable parameters in! 
1 ~ 

the problem. 

Comparisons of calculations with experiment have been made for 

several nuclei lighter than radium as regards distributio~s in mass and 

total translational kinetic energy. Theseprellminary comparisons suggept 

the follovTing conclusions. First and most important, 'the magnitudes of 
i 

the experimental most probable kinetic energies and masses are reproduced 

, . 

by the' calculations- the ~xperimental and theoretical most probable (or .. 

mean) kinetic ene~gies agree to within a few percent,and predominantly 

symmetric rather than asymmetric mass divisions are qbserved, as predicted. 

Secondly, the magnitudes of the experimental widths of the distributions 

in both kinetic energy and mass are e~sentially as calculated; usually to " , 

," . '" 

within several percent. 

" -
As far as the.finer details of the distributions are ~oncerned, the 

. calculations are capable of reproducing the 'correct trend in ,two out of 

the three details that we have compared. ' With some exceptions,there is 

essential agreement as regards the decreas'e in average tota,l translational 
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kinetic energy vlithincreasing mass asymmetry, and as regards the 

rapid broadening of the mass distribution at low values of the total 

, translational kinetic energy. The experimental constancy or increase 

of the widths of the kinetic-energy distributions with increasing mass' 

asymmetry is not reproduced by the theory, which predicts a slight 

, decrease. 

The dependence of the experimental distributions on the nuclear '/', 

temperature of the system is in basic agreement with the theory. The 

theory predicts, and experiment seems to confirm, that the most.prob­

able kinetic energies should be essentially independent 6f temperature. 

The variances (squares of widths) of the distributions in both mass and . 
total translational kinetic energy are predicted to increase in a char-

acteristic way with increasing nuclear temperature. Experimentally, 

the variances of both the kinetic-e.nergy distributions and the mass 

distributions were observed to increase with temperature, some with
l 

' 
slopes in approximate agreement with theory. There were no exper- \i , 
imental points in the interesting region of very low temperature, where 

the variances of the kinetic-energy distributions are predicted to be-. 
come independent of temperature. 

The experimental trend of the most probable kinetic energies 

with fissionability parameter x 'was approximately reproduced by . 

· the the,ory for nuclei with x $ 0.67. No comparisons of theory 

and experiiment have been made as regards the variat.ion of the widths 

of the distributions with fissi.onability' parameter. 

On the whole, the preliminary comparison of theory with ex­

periment suggests that the limitations of the liqmd-drop model-in its 

simplified two-spheroid approximation-are not yet in evidence 'to a 

serious degree for the fission of the lighter nuclei. The model 'has' 

stood the test of comparison with a number of properties 

of the distributions in mass and total translational kinetic energy, 

without the introduction of adjustable parameters. ,The model seems 

· capable of accounting not only for.the over-~l1 orders of,magnitudes of' 

the most probable values and the widths of the distributions in kinetic · .. . . . 
energy and mass, but also more detailed properties of the distributions •. 

It appears from preliminary. comparisons that for the fission of ele­

ments lighter than about radium, single -particle effects are of little 

;',.' 
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importance in affecting the over-all ch~racteristics of the distributions 

in kinetic energy and mass. 

The conclusions drawn must not be regarded as final, however,· 

since only a fraction of the full predictive power of the two-spheroid 

. model has been subjected to experimental verification. Even as 

regards distributions in kinetic energy and mass" there are several 

remaining areas of exploration. The experiments that have been per­

formed have provided us with information regarding the mean values 

and variance s of the distributions, including the dependence of the 

mean value and variance of one distribution on the other variable, and 

vice versa. Future experiments of this type should aim at determining 

not only these quantities but, in addition, the further deviations of the 

distributions from normal distributions """the skewness of the kinetic­

energy distribution, and ~he kurtosis of the mass distribution, for 
'. 

example., In addition, experimental points at higher and at lower n~-

clear temperatures are necessary to establish definitely the dependence 

of the variances of the -distri butions on nuciear temperature, in partic-

'ular, whether or not the variance of the kinetic-.energy distribution 

II flattens" to a constant value at low temperatures. 

The extension of the measurements of mass and kinetic-energy 

distributions over a range of fissionability parameter is necessary to 

establish. the trend of the widths with x, and to better confirm the 
\ 

trend of the most probable kinetic energies withx. It would be par-

ticul~rly desirable to perform experiments in the neighborhood of the 

Businaro-Gallone bifurcation point at x = x
BG 

~ 0.39
4

, which would 

include elements in the neighborhood of silvet(.!2,43). At x = x
BG

. there 

should be a transition in the qualitative features of the two-dimension-
,. . . " 

al distributions in total translational kinetic energy and mass. For 

x >X
BG

' the lines of constant probability should be ellipses (to lowest 

. order), whereas for x < x
BG 

they should consist of two families of 

hyperbolas. The distribution in mass should become extremely broad. 

for x ::::: x
BG

' and for X < x
BG 

the division process should become 

one of fragmentation, as distinguished from fissionQ!2), wlth theprob­

ability for obtaining a given mass increasing with increasing mass 

asymmet;;:y. 

' . 
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A major area of experimental exploration that is untouched 

for nuclei lighter than radium is the study of the distributions in ,in­

dividual fragment excitation energies. The most direct way of exper­

imentally determining these distributions is to measure the distri-
44 

butions of the number of neutrons emitted from each fragment, (87-89). 

A less direct method of obtaining such information is the measure-

ment of the distributions of kinetic energies of the neutrons emitted 

from each fragment (88-29) jthis methodwould involve the use of the 

relationship between fragment excitation energy and the resulting 

kinetic-energy distribution of the evaporated neutrons, (80, 21-~). 

Experimental information on distributions of individual frag­

ment excitation energies would serve a twofold purpose. First of all, 

the information is needed for comparison with the theoretical pre­

dictions of the model. AD. important experiment would .be the deter- \ \ 

mination pf the correlation coefficient of fragment excitation energies, . 

which could be compared directly with the prediction that fragment ex­

citation energies should be rather strongly anticorrelated. Secondly, 

such information could be·used to accurately correct experimental 

distributions in mass and total. translational kinetic energy for frag­

ment neutron-emission effects. This would make the conclusions 

drawn from comparisons of these experimental distributions with theory 
\ 

more reliable. 

The determination of the distributions of individual fragment 

angular momenta for the lighter elements represents another new area· 

of experimental exploration. Experimental information regarding 

these distributions is potentially obtainable from at least three differ- . 

ent types of experiments. One is a measurement of the distributions 

44 . ' 
Note that a measurement of the distribution of the total number of, 

neutrons emitted (from both fragments) would determine only the dis-
. . 

tribution in total excitation energy, which would be equivalent (to'" 

.lowest order) to the distribution in total translatio,nal kinetic energy •. 

.' 
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of the total prompt gamma-ray energy emitted by each fragment. 

The distribution of individual fragment angular momenta could then 

be estimated from.a knowledge of the effect of angular momentum on 

the competition between neutron emission and gamma-ray emission 
'. . .·46 

in the fragment de-excitation proces&\.W"'102).. The second method 

involves the measurement of the angular distributions of prompt 
. 47 . 

gamma rays emitted from the fragments( 47). The third method, which 

would yield information only for specific fragment masses, is the 

study of shielded isomer ratios in the fission 'products( ~,104r. 48 

4.5 . 
For the heavier elements the average total gamma-ray energy per 

fission (for both fragments) has been found experimentally to be about 

8 MeV(95-~. Fragment de-excitation calculations made for nonrotating 

fragments indicate that roughly one-half this amount of gamma-ray Ii 
energy is expected(~)22). It has been suggested that this discrepancy' 

is due to the presence of a total. fragment rotational energy of several 

MeV. 

46 213 
. Recall (,Section V.A. 2) that for the compound nucleus 85At and a 

nuclear temperature at the saddle point of 1.13 MeV, the most probable 

value of the angular momentum of each fragment at infinity is estimated 

as about i1011 if the fragments are nonviscous and about 1511 if the frag,... 

ments are infinitely viscous. 1£ one uses for the moment of inertia of 

the fragments at infinity the ri~id- body moment of interia of a sphere, 

for example, this corresponds to total rotational energies for both 

fra~ments of about 3 MeV for the nonviscous case and' about 7 MeV for 

the viscous case. 
47 
" For the thermal-neutron-induced fission of heavier elements, this 

method/i~~Jcates that the average angular momentum per. fragment is 

about 711. ' .. 

48 ' 
. The angular momentum per fragment in the low- cafoi)medium-energ~ 

fission of heavy elements deduced by this methoq/,is about 6to 101'l.~. 

.' .' 

". 

.... ' 

. . 



.' 

., 

- 119-

The experimental· determination of the distributions of individual 

fragment angular momenta could possibly be of value in helping decide 

the important question of tl?-e degree of nuclear viscosity. 

The large number of predicted quantities for which there is 

little or no experimental information available calls perhaps. fer are­

examination of the directions in which basic experimental fission re- . 

search should proceed. For the past quarter of a century experimen-

. talists have concentrated on the more easily accessible region of the. 

heavy elements, and have accumulated a prodigious amount of data. 

Until a more adequate theory of the fission of the heavy elements is 

worked out that is capable of explaining more of these data, it appears 

that a larger fraction of the future experiments might profitably be 

. diverted to the region of the lighter elements. 

Further progress in our understanding of fission involves, of ' 
1\ 

course, not only further work on the experimental side but also on the:; 

theoretical. ,Ultimately, any theory of fission will have to take into 

account single-particle effects, but, even'apart from that, there are· 

several important refinements that should be studied within the liquid­

drop model. 

I 

The present work has been concerned with tracing out the im­

plications of the two-spheroid model on an essentially classical basis •. 
i '. 

The entire treatment of that stage of the fission process. from the sad-

dle point.to infinity has involved the solution of classical equations .of' 

motion. Only in the neighborhood of the saddle point have we attempted 

to discuss the ~ffects that quantUm ~echanics would be expected.to have 

on the process, and it is not clear that quantum mech~nics has been in-' 

troduced in a consistent way. Our quantum-mechanical discussien in-

. volved the determination of the probability for' initially finding the sys­

~em in a given state of motion near the saddle point. These quantum­

mechanical probability distributions were then combined in the sense of' 

initial conditions with solutions to clas sical equations of motion. 

The classical solution of the equations of motion. corresponding 

to the two-spheroid Hamiltonian represents an essential step, in our 

, , 
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understanding.' 'An important next step would involve the completely 

consistent quantum-mechanical solution of Schr~dinger' s equation, 

corresponding to the Hamiltonian-both in the vicinity of the 'saddle 

'point and in the separated region. This would involve, among other 

things, a study of the restrictions imposed by symmetry upon the' 

wave functions for the system, for which there are no clas sical an­

alogues. From such a complete quantum-mechanical solution, the· 

classical solutions discussed here could be obtained as a limiting 

case. (For most of the data compared here, 'however, the nuclear 

temperature is sufficiently high that classical statistical me~hanics' 

is valid for determining tpe initial conditions, and the ambiguities 

, associated with this mixture of classical and quantum mechanics are 

not present. For these cases the entire treatment given here may be 

regarded as completely clas sical. ) II 

There, is a second important investigation that remains to be ;. 

carried :out for the two-spheroid model. The discussion in this paper 

was restricted to a system with zer,O to'tal angular momentum. The 

, theory' should also be ~orked out in which account is taken of the three 

"rotational degrees of freedom of the system as a whole. This would 

make it possible to draw stronger conclusions when comparing predic­

tions of the theory with data from heavy,-ion-induced reactions, in 
I 

which there is considerable angular momentum present. Explicit con-

s,ideration of the system's three rotational degrees of freedom would 

also make it pos si ble to incorporate the existing discus sions of angular 

distributions of fissi<:>n fragments'(:g, :I,;Q5':'108). 

A third extension of the work of this paper is possible. By re- , 

laxing the restriction that the charge density be constant throughout the 

n~cleus, and by taking into, account a charge-fluctuation degree of free-, 

dom, the discussion of fission':"fr~gment charge distributions could be 

included, (55). 
'-
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To us the most exciting prospect for the future is the exten-

sion of the two-spheroid model by the introduction of a conicoid of 

revolution between the two spheroids (see Section ll. BJ .and Appendix B.; of 

Ref.i). By use of this extension of the model, one should be able ,to 

discuss certain aspects of the fission of nuclei ove; the entire range 

of fissionability parameter from 0 to 1. Since the saddle-point ' 

energies and shapes calculated in this extended model agree so remark­

ably well with the true liquid-drop saddle-point energies a:r:d shapes 

(see Figs. 8 - 11), the model should make practicable the calculation. 

of the predictions of the liquid-drop model not only as regards the. 

distributions discussed in this paper, but also as regards such ques­

tions as the probability for fission-cross sections for induced fission, 

and half lives for spontaneous fission. 

The general version of the extended model has the cap~bilit~ 

of representing the transformation of the hyperboloidal neck into a ~ 

spheroidal third body between the two side fragments. This provides 

the possibility for the division of the nucleus into three fragments. 

Thus it might be possible to discuss with this three-spheroid approx­

imation the interesting questions of ternary fission and long-range 

alpha-particle emission, in particular the angular distributions and 

the kin~tic-energy distributions of the long-range alpha particles. 

',',. -

, In conclusion" we would like to suggest that the procedure to be 

adopted in discussing any extensions of the theory should be identical 

as far as possible with that underlying the present work-the writing 

down of the Hamiltonian describing the idealized situation, , followed 

by the systematic application of standard static, dynamical, and sta­

tistical methods. In this way a degree of unity and continuity could be 

achieved in the developmen~ of fis sion theory. 
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APPENDIX 

Comments on the Validity of the Liquid-Drop" 

Model for Discussing Fission49 . 

A nucleus can be regarded for practical purposes as consisting. 

of protons and neutrons held together by short-range nuclear forces. 

Solution of the res~lting'many-body problem would presumably yield 

an accurate description of all fission phenomena. However, this 

is ,at present not a practicab~e approach both because of the mathe- ' 

matical difficulties associated with the presence of a large number 

of particles and because the potential between nucleons is not . . ~.' 

accurately known. 

The short-range character of the nuclear force provides a 

, , 

means for approximate solution. The dimensionless ratio characterizing 

the nuclear problem-the r~e of the nuclear force divided by the nuclear 

radius-is for all but the lightest nuclei asmal~ quantity. The energy 

of the system (apart from the Coulomb energy) may then be calculated as " 

. an expansion in increasing powers of this dimensionless ratio. The 

coefficients of the various terms, which will in general depend upon 

nuclear composition (the relative number of neutrons and'protons), may 

be determined,. in principle, by fitting the resulting expansion to 

experimental masses. The four leading terms in such an expansion of 
3 2 

the energy are of order (Ro/r.;) , (Ro/rn) , 
1 0 

(Ro/rn) , and. (Ro/rn) , 

where .RO is the radius of theundistorted nucleus, and r is the': 
n 

Some aspects of the foundations of the liquid-drop model have. 
oJ 

recently been discussed. by Strutinskii and T,yapin (109). 
' .. 
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range of the nuclear force. With respect to the number of nucleons 

A , the expansion has leading terms of order Al, 

and AO 

A2/ 3 . , 1/3 A , 

A physical interpretation may be attached to the leading t~rms. 

in the expansion of the energy. 1 The term of order A represents the 

approximation in which the size of the nucleus is infinite compared ~th 

the range of nuclear forces, i.e., the nuclear matter approximation. 

The contribution to the energy associ~ted with the Al term is a 

negative quantity proportional to the volume of the nucleus; for a 

heavy nucleus its magnitude is a few thousand ?4eV~ This volume energy, 

which is independent of the shape of the nucleus, represents the energy 

decrease arising from the binding of each nucleon ~th its close neighbors •.. 

Since it is a constant. for a particular nucleus it need not be considered 

when discussing fission, where· only shape-dependent energies are relevant •. 

The term of order A2/3 represents the approximation in which 

the range of nuclear forces is no longer neglected in relation to the 

size of the" nucleus. This term represents the loss of binaing of 

nucleons near the surface of the ?ucleus, but since one is considering 

this effect only to lowest order, the approximation is equivalent to 

assuming a semi-infinite distribution of nuclear matter bounded by a 

Elane surface. In this approximation the effect of the A2/3 term 

may be repr.esented as the loss of binding per unit area of the bounding 

surface, "i.e., as a surface energy proportional to the surface area 

of the nucleus. The size of this term depends on, the shape of the " 

nucleus--a typical value for a heavy nucleus is several hundred MeV. 
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, ,. 

The actual value of the specific surface tension depends in 

a very complicated way on 'the details of nuclear forces and nuclear 

structure.. On the other hand,' the proportionality of the, A2/ 3, term 

to the nuclear surface area is a consequence only of the smallness of 

rn in comparison to RO ' i.e., of the assumption that the causes for 

the decrease of binding at the surface can be localized to the immediate 

, neighborhood of a given nucleon. The situation is analogous to the 

case of ordinary liquids- despi te the immensely complicated nature of . 

intermolecular forces the proportionality of the surface energy to' the 

areaof the drop is extremely accurate except for droplets whose radii 

I become comparable to molecular distances. 
~ L. 

The'term of order represents a'number of corrections 

to the volume and surface energies associated with the" finite rather: 

than infinite size of nuclei. In particular, the compressibility 

correction to the volume energy, and the curvature correction to the 

surface energy appear at this stage (18). The available information 

regarding these terms, is very inadequate; in order of magnitude, they 

are some tens of MeV. Since these terms are smooth func'tions of the 

, 

neutron and proton numbers, our ignorance regarding them is, in practice, 

compensated to a certain extent by a readjustment of the empirical. 

coefficients of the volume-, 6urface-" and electrostatic-energy terms. 

The correction terms of order AO are presumably even more 

subtle and less well understood. Insofar as these terms are smooth 

functions of the neutron and proton numbers they are also partly absorbed 

in the leading terms. We note, however, that single-particle effects 

, , 
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may be formally regarded to be of order AO --binding-energy ~nomalies 

associated with a single nucleon (a few MeV in practice) are of order A 

times smaller than the total binding of all nucleons. Because of the 

characteristic oscilla~ing dependence of the single-particle binding 

anomalies on neutron and proton numbers, this correction is presumably. 

. , ° the most important of the A terms. Some information on this 

correction is directly available from the study of ground-state masses 

of nuclei in the periodic table and from theories of the observed 

oscillations '( see, for example , Refs. 81 and 82). 

We have thus far: considered only the energy associated with 

the nuclear forces. The electrostatic repulsion of the positively 

charged protons gives rise toa Coulomb energy, which is also a function' 

of the shape of the nucleus. This energy is of order, aA5/ 3 , whe:re' 

'a ~ 10-2 is the ratio of the electromagnetic coupiing'con~tant to the 

nuclear coupling constant. For a heavy nucleus the Coulomb energy is 

of the order of a thousand MeV. 
\ 

In connection with the Coulomb energy it should be pointed out 

that the discussion of the Coulomb energy of a deformed drop with a 

thin diffuse surface is as easy as that of a drop with a sharp surface 

(8i); the lowest-order diffuseness correction to the,Coulomb energy 

',: ) 

is a shape-independent constant and could be included by are-definition 

of the fissionability parameter, x • 

We see that the leading terms of interest in fission~the shape-. 

, ,dependent 'oneS-are of order aA5/ 3 , A 2/3 , A 1/3 ,and A 0 • The 

liquid-drop model ,'consists of treating only the first two, the Coulomb 

and surface energies. Barring accidental cancellations of the changes 
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in Coulomb and' sur,face energies J the remaining terms should in' general 

be less important. In the region of the heavy elements the changes 

in the Coulomb and surface energies do indeed tend to cancel, and, 

. especially in the case of fission at low excitation energy, the 

single-particle effects may then be essential for discussing certain 

. aspects of the process. On the other hand, in the region of the lighter . 

elements, where the cancellation of the changes in the Coulomb and 

surface energies is not so close, single-particle effects should not 

have the same relative importance, particularly at higher excitation 

energies.' A logical approach would seem to be to work out the details 
, \1 

, of the theory first: considering only the surface and Coulomb energies,,~ 
, 

and later'to incorporate single-particle effects. 

The point of view that we are tying to bring out is that·the. 

liquid-drop model is not to be regarded as a "right" or a "'Wrong" 

model of fission, but as a first s~age in the development of·an' 

approximate ,theory of nuclear fission 'that takes into account the;, 
. '. 
'," . 

principal components of the energy and that'may be improved in a 

systematic way by. the inclusion of corrections of 'higher order,in A-~/3. 
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Table I. Moments of distributions in total translational kinetic energy and mass. The calculated mean total translational 
kinetic energy E, the variance a~ of the distribution in total translational kinetic energy, and the variance a~ of 
the distribution in fragment mass are compared.with the data of Britt, Wegner, and Gursky(~) for ZHe 3 - induced 
fission reactions. The experimental vallJ..es of a~ and a~ are not corrected for the effects of neutron emission 
from the fragments. 

. Target 

79Au197 

81 Tl nat 

82PbZ06 

83Bi209 

83Bi209 

Compound 
nucleus 

T1 200 
81 

83 Bi(208) 

84P0209 

85
AtZ12 

At2il 
85 

x 

0.654 

0.661 

0.673 

0.680 

0.680 

Bombarding 
energy 
(MeV) 

25.5 

25.5 . 
25.5 

25.5 

22.1 

e 
(MeV) 

0.65 

0.53 

0.57 

0.54 

0.40 

E 

Theory Exp • 
(MeV) 

143 140.3 

148 141.7 

149 145.4 

151 147.3 

151 146.5 

2 
OE 

Theory Exp. 
(MeV) 

39 55 

35 50 

38 50 

37 57 

30 48 

2 
UU 

Theory Exp. 
2 (amu) 

73 96.7 

61 89.0 

. 62 79.1 

58 85.0 

43 72.7 

I 
}-:J 
+=" o 
I 
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Table II. Properties of distributions in total translational kinetic energy and mass. The calculated mean total translational 
kinetic energy E, the full width at half maximum (FWHM)E of the distribution in total translational kinetic energy, and 
the full width at half maximum (FWHM)U ot the distribution in fragment mass are compared with experimental data. 

Target Projectile Compound x Bombarding e E (FWHM)E (FWHM)U 
nucleus energy (MeV) Theory Exp. Theory Exp. Theory Exp. 

(MeV) (MeV) (MeV) (amu) 

B· 209 
83 1 

Q 
85 At

213 0.6n 42 .0.65
a 151 150 15

a '16b 20
a 24c ,d 

B· 209 
83 1 . Q 

85 
At213 0.677 43 0.68 151 148 15 20d 20 26c ,d 

82 
Pbnat 

Q 
p (211) 

84 0 . 0.667 43 149 146 

81 
Tlnat 

Q 
B' (209) 

83 1 
0.658 . 43 147 143 

197 Tl
201 

0.651 43 143 138 79
Au Q 

81 

B· 209 
83 1 d p2it 

84 0 0.667 . 21.5 0.35 149 143 il 19
d 

. . 
a •. In Hef .... ,78. the eXperimental (rather than calculated) fission barrier is used to obtain e = 0.8 MeV; using this value, 
(FWHM)E ~ 16 MeV, and (FWHM)U = 22 amu. . 

~.y.altre-is"corrected (in: Ref. ·78) '. for fragment ne~tron emission and experimental dispersion. 

cValue is read off experimental curve. 

dValue is not corrected for fragment neutron erriissionand experimental dispersion. 

: ~ . i~. '.'~' 

Ref. 

78 

71 

71 

71 

71 

71 

I 
l-' 
.f-.-
l-' 



Table III. Widths of fragment-mass distributions. The calculated full width at half maximum (FWHM)U of the 
distribution in fragment mass is compared with data obtained by radiochemical techniques. 

Target Projectile Compound x Bombarding e (FWHM)U 
nuCleus ene-rgy (MeV) Theory Exp. Ref. 

(MeV) " (amu) 

82 Pb
206 

a P 210 
84 0 0.670 42 0.62 20 21

a 
70 

B· 209 
83 1 P 

P 210 
84 0 0.670 36 0.76 22 18a 68 

B· 209 P 210 -0.670 58 1.20 27 24a 68 83 1 P 84 0 "I 

',.-' '+ 
f\) 

A 197 
19 u , a , Tl 201 

81 0.651 
I 

42 O~ 72 21 34 ,67 

. Pb204 .. 
82 a P 208 

84 0 0.671 42 0.71 20 27a 67 

. Pb206 ' 
82 a. 

. P 210 
,84 0 0.670 42 0.62 20 22 67 

B· 209 
83 1 d P 211 

84 0 0.667 2l 0.38 15 17 65,66 

aYalue is read off'experimental curve • 

. . 
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'. 
FOOTNOTES '. 

·1. 

, .. ~ .. ----------- ----~ '.- ~-- .-----~----------.--.---- .-.- ',. -~ .... -.-_._ .. _ ... _.- .------ --~ .. -.. _ .. _. '._.- -_.--_.- -.. _---_ ..... _---_._. 
1 .. 

When used in this context, th:e term "excitation energy" refers to . 

the energy of.the collective vibrations and deformations of the frag­

ment; it does not include the internal (excitation) energy of the in-

di vidual nucleons. 

2 
The sa.me symbol? is used.throug.hout this paper to denote each 

of several probability distributions; the argument or subscript wi+t 

indicate which explicit function is being referred to. 
;5 

. Experimental information regarding the other distributions is at 
present not available for the fission of nuclei lighter than radium. 

We will.. see later that it is for thes e nuclei that our mo.del is most ne:arly 

applicable . 

. ! 

.. L~ ..... --. : .. --.... ~----.. ~-----.---- .... -- ..... -- .-_._-_ .•.. _ ... _ ..... __ .... _ ... _ ............ , .... , .--.--.. . 

. H~ have taken the consta."'1.ts of the Bethe-Weizsacker s~miempirical 

mass formula from Green's analysis of ground-stat~ rnasses(l~O). The 

nuclear temperature at the saddle pOint is determined from the excitation 

energy and fission barrier of the compound nucleus·.. Allothcr quantities • 
. ' " ... ' 

are calculated directly from the model. 
,: ' ' 

. . ,;1,' .' ~ 
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0,-:,' 

.. -... --.----.-.~ ..... ~ .. ---... -.-.--. -5 ;: ..... - .. --.. -. .-.. --.----,------.0.-'.-.-.-.----:-.-.---......... __ ... "'-'-""--"-,-.----" --..... _._--. 

When future determinations. of these constants· are made, the . new 

values may be used since all theoretical quantities are given here. in 
'. ~. , •... 

. ~ , ~. . 
". 

. liquid-drop units. 
, ..•. ", .' '. " 

..' .. "" . 
,.', . 

. ~ . ' 

','. 

.' 

".; .. , .. 
,,' \ .. 

'-"6'--- ...... -.: .. ':...... ..."" .............. _ ............. -. __ ... -:.. -- ...... " '" - .. " ...... __ .... _.-.. '-' '.'. -. \ .. -------_.-;-
'''., "The fractional mass of the right-hand fragment is 1- U • . 7 . 

For example~ if $pheroid 1 is prolate, then c
i
. is its.semimajor 

axis;· its semiminor axis is determined by volume conservation .. 

'. 
! 

." ", , 

.' . 

.: ... 

. . " . . 
.. _ .•. __ ._--,-_ .. 0":'--"'---:-"""8 ..... _. __ . __ ....... 1...: .. --- .. , ••... _ ... ___ .:.'_. ___ .~.-:~ ____ . __ : ... _ ........ _.' 

,-
.. " 

...... ; ... _L .......... _ ..... ___ ........ .. 

When all coordinates are c,onsidereCi, the cusp occurs at those·' 
I 

values of the coordinates. that correspond .tothe .. configurat~on of, 

touching. spheroids. 

. .'" .. 

',I; 

. .':.- .' 

.. . 
" 

-.,:", . 

, : . .' : ~' . 

. ', , " 

. ';' '" 

" ,.' 
,j',:.:" 

.. 
' .. I: .. 

. ~ ~', 

,.' .. '.~, .. 

......... - .. -- .~- .. ' ... --.,: ...... --.: -~.- '-'-~" . ..:. .. : .-- ... -; . .;....;...-'-'--.~~...:....--~ ...... -.-:-.-.-i..,'--' 

9 :;This is.clearly seen in Fig. 3 in the map for . x= 0.8 •......... , 

.:,:'. 
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" ~ c··· . - ..... ----... --------.. --.- ... --. - ....... _' .. -.. ---._---.. --... ---------.. ---
... Historically, however, it was for a time believed that three 

equilibrium c,o~f~gurationspossibly did exist for a short range of x 

close to 0.1("15) . 43). 
. --

11;' 
. Unfortunately, most experimental information on fission is for 

nuclei that lie in this range of x. Some data exist, however, on the 

fission of nuclei where x:5 0.67, and .more are becoming available 

as time progresses . 

---_._-------_ .. -~.--------. --"'i2"'" .. , 
, Formulae for calculating the potential energy of such a system 

are given in Appendix B.3. of Ref. 2. 

It I, 
i' .' \ . 

,: " 

. -,.-- ~. ~-.... --...... ~ .. ,'. ~ ... ~ ..• ,.--., ."-_. -----. .- ...... "'-

13 . 
. When we discuss (he solutions to the equations' of motion we will, 

whenever possible, also indicate the result for the case in which the 
, 

, fragmeI1ts are infinitely yisc,ous, and would therefore separ~te to. , 

infinity without os dllating. . , 

~he use of claSSical equations of motion for discussing the separa-

, tion of the fragments to infinity may be partially justified on the 

grounds that a short distance from the saddle point the de Broglie 

wavelength for translational motion has become relatively small, 

that the vibrations about each fragment' s center of mass involve 

several quanta of energy, : and that the .angular momentum of each 

.fragment is typically several 11 units in magnitude • 

.... . . '.' 

" " ~ 

'. ' 
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. ',' 

The angular momentum acquired by a rigid sphei-oid-~;;;'~:~ .. ;T~g -in-,,---
the electrostatic .field of a, sphere has ·oeen discussed by Ho!£man( ~·7) .. 

';.: 
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. " "",,' 

. . . 
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. ' .' See the discussion of normal'coordinates in anY~las~ical·- .. · 

". mechanic s te~tbook. for ex~mple, Gold~tein. ('49) • '. . . , . 
. ' 

#",' 
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When discussing the kinetic energy, "Teare not restricted to the,:~ \ '.'. . 
. ~ ; 

", 'd' 

subspace of touching spheroids .. 

. '. ".,' 

",,' ~ .. 
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K 

We will see later (Fig. 13) that· I-<Uc is always posit~ve and that 
. 2. '" ". .' \ .' ' .. '.' 

c 1 c 1 is always greater than 

" .. 

. . 

hence,': B is always positive. 

...... ' . 
).,> " . 

. " '. 

',', . 

,',(1 ' 

. . " 

, .,' 

',.' 

., .. 
- .. '.' .. ' 

··l9· .... · .......... · ~.: .. -.- .. --::..-: ... ..'::..--... .:.. .............. --........ -- ... -........ - .-........ -." ..... -: .. :... --.,--_ .. --' -'.......;.:;_. _._ ..... -'-c: .. ; .. :·_ ...... _..:~_._· '-. -

. ' .. Inv~rifying that. d is diagonal iIite:rmsof the time derivatives 

of the normal'coordinates, 'note'that'U is zero at the 'saddle pOint . 
. " 

~ 1 • 

"," .. - ... ~, 
. ,' ~.:. :'. ;' " .. : 

. ;: ," .,', 
':.'. ; " " . 

. :' 
',,,' ' '. .. -,:' 
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~~.-

. This result states physically that the kinetic energy associated with 

a finite flux' of matter through an aperature of infinitesimal radius is 

infinite. This follows from the' fa.ct that the velocity of flow through 

the aperture is infinite, and that the kinetic energy depends upon the 

product of the amount of matter and the 5 quare of the velocity. 

21. The .reason for the vanishing of w is that in the two-spheroid 
. m 

model the neck radius of the saddle-point shape is zero. For the, 

exa.ct saddle point the neck radius is not zero but is small. andw . . m 
is not zero but is small in comparison with the other frequencies. 

22: The two'-spheroid .mo'del thus predicts. this bifurcation point at a 

value of x that is somewh.at too high, in analogy to its prediction of 

a transition region at x:::; 0.80, when the true transition region occurs 

at x:::; 0.67 .. 

" 

ll, ... · 
I,'" 

\," . 
-........ ~-' 

: " 

·---·-"--·· .... ---------23 
There is currently no experimental information on excitation 

.' 

energies and angular momenta for the fission of elem~nts lighter 

than radium. We content ours elves at this time with treating thes e 

quantities to a lower order than .the translational kinetic energy. 
24 

It should be recalled that the excitation energy calculated ~ere is 

the energy associated with the collective vibrations and deformations 

of the fragments. Any internal ex~itation energy that a fragment 'has 

at the m~ment of division would be added to the excitation energy' we 

calculate, to obtain the final total excitation energy. 

" "', 

25. 
"The relationships Pb = (1/ fl) (Pe . - Pe ) and 

x 1x lx· 

Pw = (1/"..fi) (Pe + Pe ) 
x 1x' lx 

etc., obtained from the normal-coordinate 

transformation and the de;finitions of the momenta, ar~ useful for this 

purpose. The value at infinity of Pe iX' for example~ is . L 1x' 

..... 

' .. ' ' 
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Since the saddle point is a position of (unstable) equilibrium, a 

system initially at rest at the saddle point would remain there (classi-' 

cally) for an infinite time; we imagine an infinitesimal push. in the 

fission direction to start the system moving. An analytic solution, 

valid in the neighborhood of the saddle poinf, is used until the system 

is a short distance from the saddle point, where the numerical inte­

gration begins. 

. , 

\. 

27 '. .... .... ... .. ...... ,,' .... _.... .." -...... " .-...... .. ... ".-" .... - "". 
'All probability distributions in this paper are normalized such 

. that unity is obtained when the functions are integrated over the allowed 

.range of variables. which is usually taken to be from _co to -t<O. The 

range of integration for Pf is taken.to be from 0 to co, since for 

. negatiVE1 values of Pf the system does ~ot fission but instead returns 

to the pre-:sa~dle-point·configuration; this r,esultsin·the additionat 

factor of 2 in the 'expres sion for P(Pf}.' 

· .... ··28.. .. ...... -----.... .... .. ......... 
·~The Gaussian distribution in the mass-asymmetry velocity be-

comes, on the other hand,. ip.£initely narrow and hence reduces to a 

.Dirac delta function. This means physically that the mas s -asymmetry 

coordinate changes with time infinitely slowly at. the saddle point. 

'. 
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29-----------------~---'·-·-·---------.. ·-' -----,,-..... ---, ..... -,,- ,_.:. ___ " ___ ...:...._~ __ . 
J • Recall that for x < x BG the mass-asymmetry stiffness constant 

Km: is negative. Thus for x < x BG' the probability P(m) increases, 

rather than decreases with increasing absolute value of m. 

\1 

.; ", 

--'-.......... _--'--'-'--' .. ;0 ....... '''' .- , ... ,.-- .. ". " ........ , .,., .,'." '" / ....... , .............................. ". -'---. --.-
. If there were no angular momentum induced by the torqU:e arising from' , 

. I 

the presence of the electrostatic field, then C would equal C • since for 
, ~ ~ , I 

this case Li =1/.[2, and Li , b= O. An analogous s.tatementholdS for C • 
,Pb' Pw 

.-.-.-------- --'------" .. 3J. 
This equation is also obtainable directly from P(m, s) 'and the, 

, equations. U, = ~ + m and X = XO + Z:Xi, 5 5 [obtained from (16) by' 

adding Xi and X
Z
]. 

" 

'. . . 32 -.'~""-""" ....... ,. --" .. -...... -... 

This expression could also be obtained'directly from the set 6£ 

equations (:1.7) and P(bx ' wx ' by, w y ' Pb ' Pw ' Pb" Pw ) by integrating over 

the bending and wriggling angles, ancftran~.£orfuingytheresult to cylin-

drical coordinates. 

,"., ", ~' . 
, . 
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,I / - ,. -"." , 'O"Z"" ""'-1- -'"--''''''''' "''' .. 1 .. ~ .. ''~'-''-''-·-' , "-'" .----,,---' 
The other two cubic terms, (E-E ) (U- z) and (U-z) , are absent 

because P(E, U) is an even function of (U - i). The absence of the 

{U _ i)3 term means that the. (U - ~)4 term is responsible for the fi'rst­

order deviation of-the distribution in mass from a' Gaussian, and must. 

'then be considered to this order. The distribution, P(E, U) would also, 

in general. have a pre-exponential d8pendence upon E and U.' 

i, 

-~""34"-'Thi;-~~ s~it-i~-lloi;~'-~i;; ctJ.;' f;~m' th~"~~~'~t'i~~'" tj" '= 't'~"'m--"'~~d"~~~-"- ....... -,_ .. ---'-, 

. distribution for P(m), vithout Jcne use of the' approxm.ation F(.E.,U) = 1." 

It may also be obtained by substituting (34) for P(E,U), with' 

PCE,U) = 1" and integrating. 

') 

, "'''''''''''''2 
The two cubic terms ms and is an 

even function of m • Nonzero 'cubic terms of the form 
2 sd . ,) for 

eXS-."!lple J introduce only pre-exponential dependences on E 
I, 

after the integration over d is performed. 

,'t'.',' \ ' , 

," 

and, U 

56 
A recent experimental determination of the fission barrier of TlZ01 

2.' ,', , 81 . 
indicates that ,(Z /A)crit has a value(@of48.4±0.5 ,[rather than 

Green's value(40) of 50.13 thc;;,t is used here]. When this value of 
2. • ' 

, (Z"/ A)crit is used, the value o,f the fissionability, parameter x for 

each compound nucleus is increased somewhat. For the comparisons 

between theory and experiment that are made here, the largest value 

.of fissionability parameter that occurs is 0.677 when Green's value 
2/ ' of (Z A)crit is used, and 0.701 when the newly reported value is 

used. 

. ' 

.. -; .... 



-153-
.... - -.. - ......... -- .. ~.-. ~ ... :.,~ ,~ ... -~-- ..... --.. 

. -------.. -.-.. -. .. . 37 T:cJ.cse experiment.s conSis~-~'f-~~;~-~;i-~~-i~~-'~'~i-;::~'i'd~nce the t.ranslat.ional 

kinetic energies El ar...:l E2 of t.he tl-lO fission fragments at infinity 

and recording the corresponding number of events. From this experi-:­

ment.ally constructed distribut.ion peEl' E2), the experimental 

distribution P(E,U) is obtained by use of t.he transfor~~tion (18). 

',~ - " ;. 

A plot of the liquid-drop fission-barrier energy v[:, x is given 

'in Figs. 4 and 8. For.the determination of e, the true liquid-
. 

drop fission-barrier energy is used rather t.han the two-spheroidl\;' .. 
approximation to the barrier. 

' . 
. ,' 

. '.: 

..... I.' ...... . 
~9-
./ . For the cases studied . it ,{as found that the average number of 

neutrons emitted before fission seldom exceeds one; this means that 

the uncertainty in the nuclear temperature arising from this effect 

i's smalL··· . ,', :',': .. ' . ~ .-. '.~ 
.~ 

. I:;' :, ••.... , :: ;', . '. c":' ~', 

": . 

'.' 

40 Although the approximate formulae derived in Section V for P( U), 

P(E), and the various statistical moments are sufficiently. accurate 

for calculating the theoretical curves of this section, the ·curves have 
, . 

actually been calculated by numerical integr~~ions over the full ex-

pression (36) (or the full expression (48)) for P(E, U), with F(E, U) 
.. 
retained. 

", l 

; . 

''-,,' 
.,': 
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The large amount of angularmom'entum present in the two 82,Pb
198 

cases could, of course, be responsible for the near-constancy of-
l er ~ (U) as a function of U (rather than a disappearance of shell struc­
..t.. 

ture) • 

. --""--' ·-· .. -------42 .............................. -.----

For the benefit of those making a comparison between this figure and 

Fig. 6 of ::Ref. :3',... the preliminary data presented there were over­

corrected for the effects of neutron emis sion' from the fragments; the 

agreement is better than indicated there. 
I 
(I 43 . . 2, 

. It should be recalled that the variance er U retains its linear depe'nd-

ence upon e at low temperatures in the two-spheroid model because 

the mass-asymmetry frequency is zero (as a consequence of the zero 

neck radius of the saddle-point shape). In the actual situation, of 

course, . the neck radius of the saddle-point shape and the mass -asym­

metry frequency are not zero, but are small. The variance erG of 

the mass distribution should therefore approach in the real case a 
I . 

small finite value, rather than zero, as the temperature goes to zero. 

. '44N~te that a measu"rement of the' distr~but'ion of the total number of 

neutrons emitted (from both fragments) would determine only the dis­

tribution in total excitation energy, which would be equivalent (to .. 

lowest order) to the distribution .in total translational kinetic energy. 

-------_._---.. -.-_ .... - ... ------:-~--....,....~. _ .......... ----_ .. 
... 

,,' ... ,',' 

" 

.; 

,',:'" . 

.: ~ !. " . 
. "r': " .. ,\ \!,' '. 

",I. ',', I 

. . 



-153-
__ ... ~ _.~ •••• __ • ~ 4_ ,, ___ T,_ ._ -,'- '_~.' .-~--- .. ---• 

.. ---.----.~- - - -- ')7 Tnese experiment.s conSis~-~f-;'.~;~-~;i~~-i~-~·~i-~~·idence the t.ranslat.ional 

kinetic energies of the t,{Q fission fragments at. infinity 

and recording the corresponding number of events. From this experi-:­

ment.ally constructed dist~ibution P(El , E2), the experimental 

distribution P(E,U) is obtained by use of the transfor~~tion (18). 

'. ;. 

A plot of the liquid-drop fission-barrier energy vs, x is given 

in Figs. 4 and 8. Fort.he determination of e) the true liquid-
\ 

drop fis·sion-barrier energy is used rather than the two-spheroidl 

approximation to the barrier • 

. ' . . \ 

. ',: 

Z9- I.'. . ....... . 
.I . For the cases studied' it ,vas found that the average number of 

neutrons emitted before fission seldom exceeds one; this means that 

the uncertainty in the nuelear temperature arising from this effect 

i's small.· '. , , • ~ '.. .• '. ';. I " 

". . > 

::, ," 

'.:, 

40 Although the approximate formulae derived in Section V for P( U), 

P(E), and the various statistical moments are sufficiently. accurate 

for calculating the theoretical curves of this section, the 'curves have 
, , 

actually been calculated by numerical integrations over the full ex-

pression (36) [or the full expression (48),1 f.or P(E, U), with F(E, U) 

·retained. 

',' i 

.. .. 
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. h Pb1.98 The large amount of angular mom'entum present in.t e two 82 

'. 
cases could, of course, be responsible for the near-constancy of· 

0": ((J) as a function of (J (rather than a disappearance of shell struc-
..t... 

ture). 

., 
.-........ ·-.. ·-------42 ......... .......... .... . ......... -.---- ..... " .... _ ....... __ ........ :[ 

For the benefit of those making a comparison between this figure and 

Fig. 6 of ::Ref. 3,. the preliminary data presented there were over­

corrected for the effects of neutron emis sion from the fragments; the 

agreement is better than indicated there. 
I 
tl 

~. 2 
·It should be recalled that the variance O"(J retains its linear depe'nd-

enc.e UpOI:l 0 at low temperatures in the two~spheroid model because 

the mass-asymmetry frequency is zero (as a consequence of the zero 

neck radius of the saddle-point shape). In the actual situation, of 

course,. the neck radius of the saddle-point shape and the mass-asym­

metry frequency are not zero, but are small. The variance 0" G of 

the mass distribution should therefore approach in the re~l case a 
! 

. small finite value, rather than zero, as the temperature goes t~ zero • 

. '44N~te that a measu"rement of the' distr~but'ion of the total number of 

neutrons emitted (from both fragments) would determine only the dis­

tribution in total excitation energy, which would be equivalent (to. 

lowest order) to the distribution .in total translational kinetic energy. 

" 

,',:" .. 
_ ____ ~ __ . . --. ~~~--~-~~~----~~'--~c.~i~.~,c,~ ----M·-·-~···-.---·'--···-----7-- . _ ... __ .... _.0<. __ .. __ ... !' ' ; • '~l'~" ' , '\. I ;':,' 

• • '10. I .... \. j' ... 
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" , For the. heavier elements theayerage total gamma-ray energy per' 

fis'sion (for both fr'agments) has been found experimentally to be,about 

8 MeV(95-~. Fragment de-excitation calculations made for nonrotating·· - . 
fragments indicate that roughly one-half this amount of gamma-ray 

energy i$ expected(@-2Q,22). It has been suggested that this discrepancy 

is due to the presence of a total fragment rot~tional energy of several 

MeV. 
46 . 213 
. Recall (,Section V.A. 2) that for the compound nucleus 85At and a 

nuclear temperature .at the saddle point of 1.13 MeV, the most probable' 

value of ~he angular momentum of each fragment at infinity is estimated 

as about 101"1 if the fr.agments are nonviscous and about 151"1 if the frag-
11 

ments are infinitely viscous. If one uses for the moment of inertia of 
the fragments at infinity the rigid-body moment of interia of a sphere, 

for example, this corresponds to total rotational energies for both 

fragments of about 3 MeV for the nonviscouscase and about 7 MeV for 

the viscous case. 
47 

For the thermal-neutron-induced fission of heavier elements, this 
, (Ja) 

methodAlnaicates that the average angular momentum per, fragment is 

about 71"1. 

48 
, The angular momentum per fragment in the low- (al~~ ,medium-,energy . 

. .:.1 -) 
fission of heavy elements deduced by this methoc¥ is about 6 to. 101"1.. .. 

, . 

.. ----... ----... '·_·'··"-"49"- .... ---.-:- , _ .... -.. - , ................ _-...... -_ ... - - '-- ._-........ -.- ------.... -'---
Some 'aspects of the foundations of the liquid-.drop model have 

v . 
recently been discussed by Strutinskii and Tyapin (l09)~ 

'.' . 

. .. ';, 
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FIGURE CAPTIONS 

Fig. 1. A two-fru~~ent configuration described by 17 degrees ,of freedom. 

Three (Euler) angles describe the orientation in space of one fragment, 

three of the other, and. t~.;o aneles describe the orienta.tion of the 

line joining their centers. One nmnber specifies the relative sizes 

of the fragments, : two specify the intrinsic shape ,of one ,fragment, ',', 

two of the other, and one their separation. Three degrees of freedom 

describe the location in space of the common center of mass. Total: 

3 + 3 + 2 + 1 + 2 + 2 + 1 + 3 = 17. 
\1 

Fig. 2. Coordinates used for describing a tyro-spheroid configuration. :\The 

three Euler angles el , <P l , 1)il describe the orientation in space of 

, the left-hand spheroid (see description in text), and 62 ,4>2 , 1P 2 

the right-hand spheroid; the t,ro angles 18 and ~ describe the 

orientution in space of the line connecting their centers. The 

fractional mass (fractional volume) of the left~hand spheroid is 

denoted by U.!: The' semisym..lletry axis of the left-hand spheroid is 

denoted by 'cl ' and that of the right-hand one by c2 • The distance 

between 'their centers is 9.. Illustrated in the upper,part of the 

figure for overlapping spheroids are the two coordinates 9. and 

c:: cl = c2 , used for discussing the restricted case of completely 

symmetrical fragments. 

Fig. ,3a. Symmetric two-spheroid configurations for selected values of the 

coordinates(marked by +), Coulomb energy~c ' surface' energy BS ', 

":,'.'.' . "', 

'.,' ... ' " 

. .... 

" 
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and potential energy ~ for x = 0.2. The function Be is the . , 
Coulomb energy in units of EC(O) t and Bco is the surface energy 

(0) l he function V-- is in units of ~O). 
in units of BS • For thc x = 0.2 case the soluti6~'of the 

equations of motion corresponding to starting from rest at the 

saddle point is indicated by the points, which are equally spaced 

in time at intervals of 0.1 TO [see ECl.. (2) for value of TO]' 

The dot-dashed line in each case corresponds to the scission 

configuration of tangent spheroids (~:,= 2c); the long-dashed line', ' 

corresponds to the confiGuration of two sepnrated sphcres 

(c/RO = 1/2
1

/ 3). 
\ 

Fig. 3b. i'laps of potential energy 11 for x = 0.4, 0.6, 0.8, and 1.0~ 

The location of the overlapping saddle point fCir~ x = 0.8 is shown 

by the cross mark; for this value of x there are two saddles and 

a stable minimum point (apart from the original sphere). The function 

1Jv is in units of ES (0)., For the x = 0.4, 0.6, and 0.8 cases the 

solutions of the equations of motion corresponding to starting from 

rest at the saddle points are indicated by the points, which are 

equally spaced in time at intervals of 0 • .).' TO [see Eq. (2) for value 

of To]. 

Fig. 4. The potential energy of equilibriun configurations, as a function 

of fissionability parameter x. The result 'calculated in the two-

spheroid approximation is given by the solid line, the result of 

Cohen and Swiatecki (15) :by"the short-:-dashed line, and the result 

of Strutinskii et 0.1. (17) by the dot-dashed'line. 

.: . 

, , 
:", " 
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and Coulomb energy BCof equilibrium 

configurations, as functions of fissionability' parameter x. The 

function BS is the surface energy in units of E (0) and'3 is 
S '. C 

the Coulomb energy in units of EC(O). The results calculated in 

the two-spheroid approximation are Given by the solid lines, and 

the results of Cohen and Svriatecki (~). by the dashed lines. 

-' 

Fig. 6. Saddle-point shapes for various values' of the fissionability parameter 

x. Shapes calculated in the two-spheroid approximation are given by 

. the solid lines,. and those calculated by Cohen and Swiatecki (15) by 
,", _ ... 
. ... ~ 

the dashed line~. For x = o. £3 the ~ saddle-point shapes ocurring. 

in the two-spheroid approximation are shown. 

Fig. 7. Y.,laximum and minimu.-n radii of equilibrium configurations, as functions' . 

of fissionability parameter x. The results calculated in the two-

spheroid approximation are given by the solid lines, the results of 

Cohen and Swiatecki (15) by the dashed lines; and the results of 
v 

Strutinskii ct 0.1. (li) by the solid points. Note that the minimum 
I -

v 
rn.dius calculated by Strutinskii et al. for x = 0.65 'is appreciab;Ly 

lower than that of Cohen and Swiatecki. The kno .. m limiting form of 

R • IRo for x ~ 0 is indicated by the strnightline. 
m~n . 

Fig. 8. The potential energy of saddle-point shapes, as a: function of 

fissionability parameter x. The result calculated by using two 

spheroids connected by 0. conicoid of revolution is given by the 

solid line, the result·"of Cohen and SWiatecki (15) by the short-dashed 

" line, and the result of Strutinskii ct al. (17) by the dot-dashed·line. 

i :_ 

. ~' 

.,', 
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Fig • .9. The'surface energy B 
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and Coulomb energy Bc of,saddle-point 

shapes, as functions of fissionability paralneter x. The function 

is the surface energy in units of 
",' (0) 
""'s ' and 'B e is the Coulomb, 

,. 
energy in units of 

.,., (0) 

.t:.C The results calculated b:'( using two 

spheroias connected by a conicoid of revolution are given by the 

solid lines, and the results of Cohen and Swiatecki (15) by the 

dashed lines. The known values of BS and Be for x = b are 

indicated by open circles. 

Fig. 10.' Saddle-point shapes for various values of the fissionability 

paralneter x. Shapes calculated. by. using two spheroids connected 

" by a conicoid of revolution are given by the solid lines, and th9se 

ca~culatcd by Cohen and Swiatecki (~) by the dashed line~. 

,Fig. 11. 'Maximum and minimum radii of saddle-point shapes, as fUnctions of 

fissiona.bi1ity para'l1eter x.' The results calculated by using two 

spheroids connected by a conicoid of revolution are given by the 

solid lines the results of Cohen and Swiatecki (15) by the dashed 
I , 

lines, and the results of Strutinskii et ale (fL) by the solid points. 
.J 

l~ote that the minimum radius calculated by Gtrutinskii et a1. for 

x = 0.65 is appreciably lower than the other two results. The kno..;n 

1i~itin6 form of R i IRa m n 
for 

line, and the value of R /RO max 

x ~ 0 is indicated by the straight 

for x = a by an open circle. 

. Fig. 12. Illustration of normal modes of oscillation about the saddle-point 

shape (When the saddle point is represented by two tangent spheroids). 

The fis,sion mode is a1,.;ays unstable; the nass-asymmetry mode is 

, , , 
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unstable for x < xBG t and stable for x > xBG .' The bending and.' 
. 

"yrric;gline !:lodes are each doublY¢iegenerate, corresponding to rotations 

. in two perpendicular planes. T~e t,.:izting and axio.l-rotation modes 

consist of uniforL1. (rather than oscillatory) rotation; for a····syste:n. 

,·ti th zero total angular momentum the axial-rotation mode· is not ' 

excited. 

Fig. 13. Saddle-point stiffness constants (sec~nd derivatives of the 

potential energy, evaluated at the saddle point) for the original 

coordinate system, as functions of fissiono.bility parameter x. 

The constant K ,i3 
UU' 

in units of 

in units of E (O)/R 2 
S . 0 

are in units of 

is in units of 

... (0)/ d2 
~s ra •. 

Fig. 14. Saddle-point stiffness constants (second derivatives of the 

potential energy, evaluated at the saddle point)for the normal-

coordinate system, as functions of fissionability parameter x. 

The constant K is in units of 
m 

of E (O)/R 2. and K and K are 
"'s 0 ' b w 

E(O)·K 
S ' s 

in units of 

and Kdare in units 

ES (0) /rad2 • The 

two-spheroid approximation to the Businaro-Gallone value of x 

. is indicated by the arro, •• 

Fig. 15. Saddle-point' effective masses, as functions of fissionability 

parameter x. The masses Hs ' Hd , a.nd Hf are in units of 1-1
0

; 

and are in units of 

' .. 

Fig. 16. Saddle-point fre~uencies of norm~l~mode oscillations, as functions 

of fissionability parameter x. The frequencies are in units of 

no (see Eq,. (It) for value of nO] • 

, " " 
I" • 

, 
. .. ~ 
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Fig. 17. Saddle-point quantum energies of normal-mode oscillations for 

nuclei along the line of beta stability (50), as functions of 

fissionability par&~eter x. 

Fig. 18. The tota.l tra.nslational kinetic energy EO corresponding to 

the case in which the fragments initially start from rest at the 

saddle point ~ as a function of fissionab~lity parameter' x. ,The' 

result calculated for nonviscous fragments is'given by the solid, 

line, the result for infinitely viscous fragments by the dot-dashed 

line, and a sir:rple approximation to the former (see text) by the 

short-dashed line ... 

Fig. 19. The constant C( [see E<1,. (14)], as a function of fissionability 

par&~eter x. The result calculated for nonviscous fragments is 

given by the solid line, the result for infinitely viscous 

frag::J.ents by the dot-dashed line, and a simple approximation to ' 

the former (see text) by the short-dashed line. 

Fig. 20. iThe excitation energy of a single fission fragment corres-

ponding to the case in which the fragments initially start from 

rest at the saddle point, as a function of fissionability parameter 

x. The result calculated for nonviscous fragments is given by the 

sol~d iine, and the result for infinitely viscous fragments by the 

dot-dashed line. 

Fig. 21. The excitation-energy derivative Xl s[ ,'see Eq. (,16)], as a function , ' 

of fissionability parameter x. The result calculated fOr nonviscous 

.'fracments is given by the solid line, and the result for infinitely 

, viscous fragments by the dot-dashed line. 
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Fig. 22. The excitation-energy derivative Xl d[sce Eq. (16)], as a , 
function of fissionability parameter x. The result calculated 

for nonviscous fragments is given by the solid line, and the result 

for infinitely viscous fracments by the dot-dashed line. 

Fig- 23. The excitation-energy derivative X [see Eq. (16)], as a 
l,m 

function of: fissionability parameter x. The result calculated 

for nonviscous fragments is given by the solid line, and the result 

for infinitely viscous fragnents by the dot-dashed line. 

Fig. 24. The angular-momentum derivative L . [see Eq. (17)], as a 
l'Pb 

function of fissionability parameter x. The result calculated for. 
I 

!! . 
nonviscous fragments is eivenby the solid line, and the result :' 

, 

for infinitely viscous fragments by the dot-dashed line. The short-

dashed line represents the result that would follo ...... if. the torque 

exerted by one fra~,ent on the other through the electrostatic 

interaction were zero. 

Fig. 25. IThe anGular-momentum derivative L .[seeEq.(17) J ,as a function 
·1 p 

, w· '_ 
o,f fissionability parameter x. The result calculated for nonviscous 

fragments is given' by the solid"line, arid the result for infinitely 

viscousfragtlents by .the dot-dashed line. The short-dashed line 

represents the result that ...... ould follo ...... if the 'torque exerted by 

one fra~ent on the other through the electrostatic interaction ...... ere 

z€ro. 

Fig. 26. The angular-momenturn. derivative Ll b [see Eq. (17)], as a function , "' . 

of fissionability parameter x. The result ~alculated for nonviscous 

fragments is given by the solia line, and the result for infinitelj" 

viscous fragments by the dot-dashed line." For the value Lo see Eq. (3). 

.j 
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. Fig. 27. The anGular-momentum derivative L [see Eq.(17)), as a function· 
l,w 

of fissionability par~eter x. The result calculated for nonviscous 

fracmcnts is given by the solid line, and the result for infinitely 

viscous fragments by the dot-dashed line. For the value of 

Fig. 28. Solution of equations of motion for· x ,.= 0.90 corresponding to 

initially starting the system from rest at: the' saddle point. The points 

are equally spaced in time at intervals of . 0.107 T [see Eq. (2) for ' 
confiGuration is less ecce~t~ic than the 

value of TO]" Note that the scission/configuration .. of tane;ent 

sphcroids of minimum potential energy, whose location on the s'cission 
I 

line is' indicated by the open circle. 
l\ 

Fig. 29. Coth [11w/(28)) , as a function of 28/('i'iw). The temperature 

dependence of the constants appearing in the probability distributions 

for the initial conditions is Given by this function. Shown also is . 

. the· asymptote of the function (dashed line). 
, 

Fig. 30. iContour map of the probability distribution of individual 

fragment excitation energies, P(Xl , X
2

) vs and ~2' The; lines 
: .. ,' 

of constant probability (ellipses with axes.rotated 450 with 

respect to the Xl and X2 axes) are labeled.; by relative probability •.• ' 

The value of x 0 
1 is 21.3 NeV. The calculations are for the case of 

the conpound nucleus 'At2l3 (x = 0.677) at a nuclear temperature of 
85 ' ,~ 

1.13 HeV (8 Bi209 + 65 - !,1eV a, for example). 
3 

Fig. 31. The probability distribution of excitation energy of a single 

The value of x 0 'is 
1. 

, " 
,.' . 

21.3 t-IeV.The 

':. .';' 

. : i 
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calculations are for the c~se of nonviscous fragments and the fission' 

of the compound nucleus 21" 
85At J (x = 0.677), at two different values 

of the nuclear temperature e. 

Fig. 32. The probability distribution of total fragment eXCitation-energy., 

p(x) vs X. The value of XO is 42.6 MeV. The calculations are for 

the case of nonviscous fra&~ents and the fission of the compoUnd nucleu~' 

85At2l3(x ~ 0.677), at t.ro different. values of the nuclear temperature e~ 

Fig. 33. Contour map of the probability distribution of. total translational 

kinetic energy and fractional ~ass, P(E,U) vs E and U, calculated to 

lOi-rest order [Eq. (29)]. The lines of constant probability (ellipses 

. ,,,ith axes parallel to the E and U axes) are labeled by relative 

probability. The value of EO is l51.1~ HeV. The calculations are 

.for the case of nonviscous fragments and the fission of the compound 

nucleus 85At2l3 (x :: 0.677) at a nuclear temperature of 1.13 MeV 

S3Bi 209 7. 65 ~ I1eV a, for example). 

Fig. 3LI. The probability distribution of the nagnitude of angular momentum 

The result that is ca19ulated 
.' 

for nonviscous fravnents (with hydrOdynamic,; flow consisting 'of a 

superposition of. an irrotational flow and ~ flow corresponding to a 

. un:i.forin rptation) is given by the solid line, and the result' for 

infinitely viscous fragnlents by the dot-dashed line. The short-

dashed line represents the result that would follow if the torque 

exerted by one fraement on the other through the electr~static inter-

action ",ere zero. The calculations are for the compound nucleus 

85At2l3 (x ~ 0.677) -at a nuclear tenperature of, 1.13 HeV(83:3i209+65-Hev a, 

for eXa.r:l.ple).· 

,; . 
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i . , 
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, Fig: 35. Contour map of the probability distribution of total translational 

kinetic energy and fractional mass, P(E,U) vs E and U, calculated 

,for initial condi dons detcm.incd in the ho.rmonic approximation 

[Eq. (36)]. The lines of constant probability are labeled by relative 

probn.bility. The vo.lue of EO is 151.4 r'leV. The calculations arc 
, 

for the casc of nonviscous fragr.lents and the fission of the compound 

nucleus At213 (x = 0.677) at a nucleo.'r ~emperature of 1.13 HeV 
85 

(83131 209 + 65 - He Va, for exo.r.tple). 

36. The functions I (S) [defined by Eq. (43)] vs S, for n = 0,,1, and 
n 

2. 

Fig. 31. The function S • The functions I «(3) 
n 

I ' ' 

are\ !defined . 
by Eq. (43)" 

Fig. 38. Third derivatives of the potential energy, evaluated at ,the saddle 

point, as functions of fissionability para.'!leter x. T,he quantity 

K"'m is in units of 
lUi. s K sss is in units of 

Fig. 39. iContour map of the probability distribution of total translational 

kinetic energy and fractiorial :nass, peE, u) vs E andU, including 

effects of anharmonicity [Eq. (1.8)]. The lines of constant probability 

nre labeled by relative probability. The value of £0 is ~5l.4 MeV., 

The calculations are for the case of nonviscous frac;ments and the 
, ~3 ' 

fission'of the compound nucleus 85At (x = 0.677) at, a nuclear 

tempcrature of 1.13 MeV (83Bi209 + 65 - rileV a, for exa.."llple). 

Fig. '40. Experimental contour map 'of the' 'probability distribution "of, total' 

translational, kinetic 'energy and f'ractional'm,a.ss, "P(E*~U)''Vs'E~!and ·u. 

The superscript 'asterisK denotes that 'E" :is:measured.:a.tter neutron 

, . ;.,', 
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emission from the fragments has occurred. The data are those of 

Burnett(86for the conpound nucleus. At2l3 (x= 0.677l,formed from 
85 

the reaction 8li 209 + 65 - 1,1eV Ct , for which '8 = '1.13 HeV. The' 

labels on the lines of constant probabili tyhave the followil'i"g 

significance: the contour labeled by 10, for example, passes 

.* 
throuGh: those re~iom; of the E - U plane where an area of 6 HeV 

by 3 amu contains 1% of the total number of events. 

Fie. 41. Probability distributions for frasment mass (top) and for total 

tr~nslational kinetic energy (bottom)~ The theoretical curves 

(solid lines) are calculated for initial conditions determined in 

the ha.rI:lonic approxination [from Eq. (36) ]. The data are those! 'iof 
, 

Plasilc'-h)for the compound nucleus 82Pb198 (x = 0.677), formed from, 

, the heavy-ion-induced reaction 71,\01182 + 8016. The results for a 

bombardine; energy. of 102 HeV (e = 1.37 MeV) are given by the solid 

points, and for a bOI:lbarding energy of 165 MeV (6 = 2.07:·MEiV) by the 

op?n circles. The superscript asterisk denotes that E is measured 

after neutron emission from the fragments has occurred. 

Fig; 42. Hean total translational kinetic energies, as functions of fragment 

mass AV. The theoretical results that are calculated for initial 

conditions determined in the harmonic approximation [frbm Eq. (36)] 

are given by the solid lines, and the results,that are calculated by 

including effects of anharmonicity [from Eq. (48)] are given by the 

dashed lines. The data (so'1id points) are as follows: 

83Bi 209, + 65-!-1eV, a = 0.677, a ~ 1.13 MeV), and 
.:". ", 

" " 

. ' 

. ' 

.' 
...... 

' .. 



-161-

+ 10-McV a::: 81T120l(x = 0.651, e -,1.28 MeV); Plasil:(71): 

16 ' q2 ' ' 182 ' 
+ 102-l1eV eO = 82Pb .... ' J(x =,0.611, e = 1.31 !--IeV), and 14H ,+165-fl!eV 

,198 ' , 
82Pb (x = 0.677,8 = 2.07 MeV). Note that the left-hand scale ,and 

the right-hand scale arc different. 

·F,ig. 43. Variances in the distributions of toto.l translational kinetic energy, as 
(\. 

functions of fragment mass.AU. The theoretical results that are calculated 

for initial conditions determined in the harmon'ic approximation [fro:n Eq •. (36)] 

'arc given by the solid lines, and the results that are calculated by including 

effects of anharmonicity [from Eq. (1.8)] are given by the dashed lines. The 

data (solid pOints) are as follOi,TS: Burn,ett:(l§.):83Bi209 + 65-HeV 0. = At2l3 
85 " 

191 '201 !I 
(x = 0.617, 8 :: 1.13 111eV), and 79AU + 70-HeV a = 81Tl (x = 0.65~,,: 
8 = 1.28 MeV); Plasil(,77): 741 • .;182 + 102-lv1cV 8016 = 82Pb198(x = 0.677, ' 

e . - 1.31 I.leV), and 74'i.?-82 + 165-HeV ' 8016 = 82Pb198(x = 0.677 J 9= 2 .• 07 !.1eV). 

Fig. 44. Variances in the distributions of fragment mass, as functions of total 

translational kinetic enerGY E. The theoretical results that a.re calculated 

for initi~l conditions determined in the harmonic approximation [from Eq. (36)] 

are given by the solid lines, and the results that are calculated by· 

including effects of anharmonicity [from Eq. (48)] are 61ven by the dashed 

lines. The data (solid pOints) are as follows: Burnett :(76):8 Bi 209 +65-r.1e~ :­
- 3 

a = 85At213 (x = 0.611'- e = 1.13 HeV) J and','19AU191 + '10-MeV a = 81 T1
20l 

(x = 0.651, e = 1.28 r'ieV); Plasil(ll): 11~i,,182 + 102-MeV 8016 = 82Pb198 

, (x = 0.611, e -= 1.37 HeV) J a.nd 14101182 + l65-HeV 8016 = 82Pb198(x = 0.611" 

e - 2.07 i1eV). 

, , 

,-, ;'., 
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," 
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. ,. 

fie;~ 45. Variances in t'he distributions' of fraQ11ent mass (top), and 

variances in the distributions of total 'translational kinetic 

energy (bottom), as functions of nuclear temperature e. The' .. ' 

, theoretical curves (solid lines) are calculated for initia.l conditions 

determined in the ha.rmonic approximation [from Eq. (36)]. The data 

are those, of Plasil(77).The compound nucleus 82Pb198(x = 0.677) 

was formed from the reaction 741-,182 + 8016 , and the compound 

. 186 170 
nucleus 760s (,x = 0.619 )froI!l each of two reactions: 6aEr, + 

8016 (solid pOints) and 70Yb174 + 6c12(open circles). 

Fie. 46. Most probable total translational kinetic energy, as a function 

of fissionability paralneter x. 'l'he result calculated for non- t: 

viscous fra.gments is Given by the solid line, the result for 

infinHely v~scous fragments by the dot-dashed line, and a simple' 

approximation to the former by the short-dashed line. The data are 

those 'of V"iola and Sikkel and. (72). 
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This report was prepared as an account of Government 
sponsored worko Neither the United States, nor the Com­
m1SS10n, nor any person acting on behalf of the Commission: 

Ao Makes any warranty or representation, expressed or 
implie~, with respect to th~ accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

Bo Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this· report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares,disseminates, or pro~ides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




