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PRELIMINARY VERSION

RECDNT DEVEIOPMENTS IN THE THEORY OF WEAK INTERACTIONS '
Nicola Cabibbo

March 17, 196h
(Lectures for experimental physicists)

The- series will probably consist of eight lectures. There will

be no lecture on Tuesday, April 28 (Washington meeting) 'Please, look

out for possible schedule changes.

These lectures are mainly intended for experimentalists. The
:',emphasis will be on physical concepts, and I will try to keep the

‘mathematics to an acceptable level. Some knowledgé of the elementg of
'fiéid theory (free fields, meaning of Feynman graphs, etc.) would be o
‘desirable. Any comment of'SQQgestioﬁ is welcome. The following
arguments will be covered:

'l. The A-V theory--its experlnnental basis.

2. Conserved vector current theory.

3. ﬁeutrino reactiohs.

L, Lepton processes;--muon-electron uniyersality and.the‘two

neutrinos. )

Q5. Goldberger and Treiman relationa--ﬁpasi conserved currents.

:f6.: Universality and lSU3 symmetry.

T. Noh-ieptonic decays--again7€SU3” symmetry. -



I. Introduction

let us-beéin with a rapid:view-of'ﬁhe fiéid;'to introduce some
. of the problems which will be discussed later in detail.

The theory of weak interaction was born around :19%2-33% with the
neutrino hypothesis (Pauli) and the first successful theory of beta v
decay (Fefmi). After the rapid development which followed the discovery
of parity non-conservation, the.présent_scheme for wéak.interacticns
" was formulated in ;957-58-(The V-A theory of Feynman and Geil:Mann,

Marshak and Sudarshan). ) o |

According to this theory the Hamiltonien for weak interactions

is of the-current-currént type:l
, . . + | ,
H(x) = — (J.J, ) . o (1.1)
VE; AN . |
JX is a current sum of a leptonic part1 Jk% and a part J)‘s which
operateé on strong interacting particles:
| s &.\ ] .
TI>,~ = J o+ 5. : (1.2)

We know the explicit form of J ¢ in terms of the eleatron, muon and

_ N
neutrino fields:2

J)\" = (v, (e 0wl (T i (1 + 7de) o | | .(1-5)y

From the term in (1.1l) in which J ¢ -.couples with itself we get the

h .

Hamiltonian for muon decay:

L (5 7+ 7 )T, R+ 7)) e

vz
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We_can‘evalﬁate ;he muon 1lifetime, in terms of G , and from the

_ experimental_valué obtain

G-~ 1077 MI-)'2 . : R | : (1.5)

The coupling of sz with 1itself gives also rise to other reactions,

like

These are very difficult to Observe in laboratory experiments, but could -

have some importance in cosmological'problems.

The Weak Current st

s
A

, slnce we lack a

It is not possible to give an expreséibn for J in terms

3

as we did for the lepton current J ¢

of fields, N

- field~theoretical description of strongly interacting particles.

Different approaches have been used to gain information on J s; these
are the principals:

1. Study of selection rules of J in respect to quantities

S
n

- which are conserved by strong interactions. If some quantity (e.g.

'\strangeness).is not conéef?ed by J S, we cafinqpire whether the

A

violation assumes‘soméjsimple form. All this will bebdiscﬁssed,ih”

Sectioﬁ II.

¥
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2. Dispersion relations. The main success of this approach is the

discovery of Goldberger-Treiman relétions. Othér apﬁlications are to
ihe study of "weak" form factors, in close analogy to the analysis of
electromagnetic form féctors., The knowledge of weak form factors is
of special importance‘ih the study of elastic.ﬁeutrinq processes,.like, &

e'cgo,

V +n-=+p+u
u D +u

3. Conserved currents. Strong interactions provide conserved -

quantities, like charge, strangeness, third components‘of'the isotopice
vépin, baryon numbef. These are additive'qpantitieé:‘ the charge of a
’system of particles is the'arithmetic sum of the inéividual charges. To
each of these guantities there corresponds a current |

Q- 5 (%) B - 3,0(x)
s - JKS(X) ; I3 - Jx;(X)

_ The currents are four vectors; the fourth component gives the locaiv
density of the corresponding quantity, which is then obtained by

integrating this over all space:
oA o . 3 _
1Q = Ju(x) a’x , ete.

Currents which correspond to conserved qpahtiﬁieé‘(brieflyﬁ conserved

currents) obey & continuity equation: o . A . om
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8); b, = 3(—?-;7 Ju(x) +V3x) = 0

s BN .3
QA = AW =N = o

We have other quantities which are conserved by strong

f .
interactions: the charge symmetry regquires conservation not only of
13

, but also of the raisihg operators

+
I" = 1t t 17°

: +
to which correspond two conserved currents Ju- :

d 3% =3 357 = 0.

The physical medning of these currents is not as transparent as that of
currents which correspond to diagonal quantities, but is clear that

charge symmetry requires theﬁ to exiét and to obey continuity eqhations, as
jhi(x) does. We come to the conclusion that there is an elite of -current
operators which are singled out as being important inithe description
of-strong interaction symmetries. | |

| It is interesting to ask whether J>\s , or at least some part

of it, belongs to this elite. This brings~--as we will see--to'straight-.

forward predictions which have been found in good agreement with

- experiment. The first attempt along this line has been the hypothesis

that the 45 = 0 vector part of JKS coincides with -jx+ (conserved

vector current of'Feynman and Gell-Mann, Gherstein and Zheldovich).
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‘More recent developments involve the use of vector currents whose existence

is implied by the approximate SU, invariance of strong interactions.

3
This approach can also be used =-in a more limited sense--for the

axial part of Jks ; and has brought to a deeper understanding of

Goldberger and Treiman reiations.

Vector Bosons

The V-A Hamiltonian for leptonic decays of strong interacting

particles

s L% ‘s%* L
(JK VAN YJ)\) _ . (1.6)

Ve

is very similar to that Hamiltonian which describes photon interactions:

e dy Ay - “ (1.7)

The correspondence being

Al | ‘
AL = Ty (photon = lepton pair) .

The sihilarity of ‘the emission of a lepton pair with the emission of a
photon was the basis in féct'of Fermi's theory bf'beta decay.

It has been proposed tha£'the similar%ty could be even deeper,
and that weak iﬁteractions are mediated by the exchénge of a charged

+ . .
vector meson _W' ; beta decay would then be a two-step process

n =+ p + W

e + Y
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and the true Hamiltonian would not be (1.1) but
o H = gW, J, + hoe.o (1.7)

which is completely similar to the e.m. Hamiltonian 1.7. The current-
current Hamiltonian (1.1) would still give an approximate phenomenological
description of weak (2-step)vpropesses, if we put: |

2 : ‘
¢ = Vo B . : (1.8)

"

The effects which would allow an experimental distinction between (1.1)

and (1.7) are generally #mall and (or)‘difficult to identify. A clear-cut’
- proof of the existence of W can probably.only coﬁe-ffom'thebdifect

observation of its production and_decay.} A'very promising reaction is

neutrino production:

e + Vv, KB + Vv o (1-9)‘

The lifetime of Wt would be small (~ lb-l7sec) s0 that the overall

: process'looks-like the production.of'a lepton‘pair, ufu+- or u-e+ o

- The neutrinovexperiment at CERN has given indication for the existence of
such processes,'but'the évidence for thévexistence of Wemeson 18 not yeﬁ

compelling.

“Universality

A very interesting hypothesis on weak interactions regards their
"universal" character. We see that muon and electron appear in a

. gymmetrical way in the lepton current (Eq; 1-3), each with its own
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neutrino. This pr0perty is ‘called "muon-electron universality" and is part
of the general identity of behavior of muons and electrons (apart from
the mass difference).

It is very appealing to speculate on a possible extension of
universallty to JX '? the weak current of strongly interac£ingparficles.

To do so we would like to say somethlng like:

"JAS has the same strength as JKL "

This statement is rather vague, as it stands, and ‘the problem is to

attach some meaning. to it. A naive way would be to compare matrix

-

elements of st' with those of J fdr example, the matrix element of

st in beta decay is (experimentatl;)

(p1a°1n)= (S0 (1 +1.25 7.) u(m)] (2.10)
This cdmpares satisfaétor;ly with the maﬁ?ig';lements of JXL s for
example

Cem 1ot Ty = [We) n e wvy] . (1.12)

 The hearly'perfect agreemeﬂt in the vector part gave rise to the

conserved vector curfent hypothesis. vawe.extend this. comparison

to the beta décay §f the hyperons, the result is completely unéatisfadtoryg
the observed rates are consistently 1/20 - 1/60 too small.. The search

for a better way of comparing different matrix elements of Jxé has

‘recently brought to the:wse of SU, symmetry, which allows connections

3
between AS 0 and NS =1 processes, gnd,suggests a new interpretation
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of universality, which allows A4S = 1 leptonic processes to be less

intense than &S = 0 ones.

Non-leptonic decays
In the V-A theory the problem of leptonic decays is reduced, aé

we have seen,‘to the study'of the current Jks , and much progress has

been made. The reason for this success-is twofold: on one side any

experimental result on leptonic decays illuminates some‘property of

st , and on the other side the introduction of & new hypothesis on

the current--like that of conserved currénts—-can in general be tested

" by some experiment.

In the case of non-leptonic decays things are much worse. Even if

the basic interaction is current-current, as in Eq. (1.1), it is not

possible to prove so, since strong interactions among all the particles

involved in any such process tend to cover any underlying structure.

The main lines of approach 1s the study of seiection rules which can be.

-~ very informative on the possible:chrrent-cﬁrrent schemes,
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FOCTNOTES

1. VWhat is written here is actually a "density of Hamiltonian". The

"real" Hamiltonian is obtaihed by integrating this over gll space
H o= fd3x H(x)

2. Here u, e indicate the fields of n aﬁd. e” , which are taken
to be particles. The different fields can be expressed in terms of

creation and distrugtion operators. For example

) = —ts E f i (1) 8, () ei(kx) v, (0) v () &,

(2n)

The sun is over the two states of hellcity (i— 1) ~which are
. available for each value of X , u, (k) and vi(k) are Dirac
spinofs, and

ai(k) annihilates e~
* 4
bi‘(k) creates et .

Altogether JAL: creates € + Voo p+ + vp pairs

annihilates Ve ;Y and creates e', ' , etc.

3. Field theory is however used in a restricted sense in the building
of so-called "phenomenological" expressions. A phenomenological
Hamiltonian 1s by definition an Hamiltonian which gives the correct

.value of a certain group of transiton matrix elements when used as

)

"
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Cont.
avfirst-order perturbation, and the fields which it contains.are
considered free fields (and therefore expressed in terms of creation

and annihilation operators). For example beta decay could be

" described by

H v ]%3 (p 7k(l + 1.25 75)n)(€ 7&(1 f.yﬁ)ve) + h.c.

Phenomenological expressions are a, useful tool because they describe
more than one process, taking automatically into account the
consequencies of such general requirements as crossing and CPT

theorems. The above expression, fof example, describes not only

‘beta decay, but also

e +p~n+ ;;‘-‘K capture

Ve *P N+ et - neutrino absorption (at low energy),

- etc_-



. IECTURE II: IEPTONIC DECAYS - SEIECTION RUIES
Nicola Cabibbo

March 24, 1964

1.

The matrix element
In this section we continue the discussions of the week

s
current Jx

Let us consider a leptonic decay '

and of its selection rules.

A~B+ £+ 7

- -

where £  could be e or

particles. Examples:

(2.1)

i, A and B are strongly interacting



If we are interested in the lowest order in the weak interactions

and neglect electromagnetic corrections, the S-matrix element

is given by the perturbation.theory result

A\
¢ Lk - . ,
= - o . - 2 N A | a S
5= U x (20T 1800 ) (23)
We can further reduce this (see Appendix A) to
G o5 j— 3 YTy =T\
= = (25 I \
S 7 ( ) <P_|u>& lay W™y 7, (2 + 75) wi{v,)]
ke 2 0V, B Ay ,
e " e+ - ¥ (2.1
The relevant unknown factor is therefore the matrix element of the
current:
‘ T S _
F, = (Bl {a) (2.5)
Torentz invariance requires r
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%o transform like & four vector. If A or 3B (or both) contain

particles with spin ‘¥ 0, F saould be linear in their spinors

x . |
.13 T
(1f spin 5 ,5----) r polarization vectors (if spin 1) or polariza-

tion tensors (for integer spin > 1). This follows from Lorentz
inveriance, but could be seen as a consequence of the superposition
principle.

In the case of spin rticles (p, n, A, etec.) 1t is

[

customary to use fouwr component (Dirac) spinoré, instead  of two
component (Pauli) spinors, vecause this greatly simplifiesithe dis-
cussion of Lorentz inveriance.

Therefore, certain factors appear in Fk for each incoming
and outgoirng spin % particle, according to the following table:

incoming uCE)
fermion

. -—

utgoing - U(p)

incoming | Y(3)

antifermion

. —

outgoing v(p)

TARLE 2, I



i
These rules are the same as in perturbation theory, and

this could be useful as a mnemmonic aid.

2. Terity.

: s . 2 -
The weak cuxrrent Jy is, like Jy7, a mixture of a vector

and.-of an axial vector part:

r v and T A will be vector and axial-

Theix contrlbution to RPN N

vector expressions or vice versa, according to the intrinsic parities’
- of the particles which constitute states A and B; the rule is the

'foilowing; Define P (A) and P(B) as the products of intrinsic

parities of particles in A and B, then .

P(a) = P(B) (BIJ)VIA) is a vector expression
oy A . . ’
(stx |A) is an axial expression
P(a) = -P(B) .<3]J>\V'iA) is an axial expression

] A ]
({BlJ.7]|4) is a vector expression

TABLE 2, II
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The proof of this is given in Appendix B, where P,C,CP,

CET are briefly discussed. As an example, consider the pion decay;

the relevant matfix element is

There is a parity change (the vacuum has even parity) so that we

A . S . A ‘ . .
expect Fk 0 be an axial expression, Fk to be a vector expression.

iowever, we have only one vector at cur disposal, namely the pion

- four -momentun Py, and we are not adble to bulld axial expressions,.

so that:

IRCIEAEY

n
(@

<OIJ)f‘lx> = fp,

Other examples are proposed as problems (problems 1 to 3).

In solving these one should remember that it is possible to build
an axial vector out of three independentvvectors by means of the

completely éntisymmetric Ricci symbol:

&7



%

vpo . .
s p“ P g £ is an axial vector.
v & .

Q 1
€ = 1 ) €l“13)* = = 1 , exc.

This is not zero only if Ip,lq;li are independent (try to put
kx = ap, + b g, and use the antisymmetry of eprc) '

3. Charge, Strengeness and Isotopic Spin

First of all it is clear(charge conservation):

s o= Q(B) -Q(a) = 1

: s ' . .
We can classify different parts of Jx,- according to the strangness

-‘charge they cause: a priori we can have



e

 We have abundant examples of AS = 0 (beta decay, =% .= WV, etc. )
2 g . _ — -
and AS =70 = L~ pv K> u35, A~pe v, etc...) but the
existence ¢f AS = - AQ transitions has not been firmly established,

while there is no evidence for (and some evidence against)
Slz 2
The change in the third component of isotopic spin is related

to the previous two: we have

‘Since the barionic number B 1is conserved,

b1, = I(3) - L) - _AQ-%AS = 1-%5s,
Theref;re‘ |

A.I3 = 1 Tfor &S =MO

DI3 = g— Tor A3 = M =.1

A1, = % for AS = -G = -1

[



~

G-

We want now to define a total isobopic spin che¥ge, AT ..

-1
ct
£
1]

consider again the pion decay;

3
o
1
%

trix elexent is:

(0|7, 3]=)

It is clear the® only that vart of J.° can contribute, which
.- )\ . 2
transforms as & I = 1, Iy = 1 object: it is the only part

waose I~-spin can add to the I-spin of th

T the pion to give the I-spin

zero of the vacuum. The same is True Tor beta decay: again only the

(4]

I = 1, I3 = 1 part of J° can couple to I =

-
o
H
il
]
PO

(the neutron) to give I =. % , IB' = %(proton) , in
8
(el3,%]n) .

- el : - e S of o~ S
One can advance the hypothesis that this portion of J which

}‘;
behavés as ean I = 1, I_ - = 1 object in respect to isotopic spin

(3]

is the only part with L8 = 0 .

‘This essymption is ustally referred to as the AL = 1
selection rule for AS = O iransitions. The rule is not empty,
as would appear from the cases of pion and beta decay: consider

for example the following neutrino reactions



v o+
5
v o+
5
1
+ e s )
LnowWalca a jx o,
&2

part of Js

-

'
\0
1

sy

1
4

PO

i resonant state is produced. Only the AS = O
i .

contributes; if it behaves as I = 1, I, = 1,

)
i) and i1i) are related by Clebsch-Gordan coefficients:

TR R £ R AU A W EVN

A R R - R -t L
»

FEr s 5005 0 1 10 c

<_I‘ | UF/\ IP>= é": ;'3'/--; 1; 57 g é'/'u = M

o)

M is a "reduced matrix .element"; the crogs sections are therefore

expected to be in the ratio'l:3.- We can repeat the argument for

}_J

VAN

Transitions: the existence of X. = U + V¥ requires

1 3
+An om nart of r S beh . T = - I = = oonject
val some part o J. ehaves ‘as an 1 =35 ,+ < ) Jecy,

and we can make

“A

i 3 o
this way (no I = £ or lerger) . This is the

N : :
LI = g rule Jor AS = L leptonic decays. From this one gets

a straightforward prediction on the X —~ 23 decays: .



the decay rateslof K- s ;'+‘;% eni KO~z + uoo+ ;;
should be in the ration 1:2, while éll correleations (including,
e.g. muon and pion spectrum, muon polarization, ete..) should be
the same for the two decays. The same should be trug for the

corresponding electron modes. Similar relations, one between ="

and :g:o leptonic decays,“the other between cross sections for
neutrino'production of T = 1 hyperons; are given in problems
L and 5.

s
To conclude this section, the only two parts of JK

whose existence is firmly established are

1) &S = O, AT = 1

11)AS = &% = L, AL = F
The theory of'leptonic processes based on SU5 invariance, which
we will discuss latgf, requires J s to contain only these two

N

parts, and it is therefore very interesting to check these selection
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Zroslems:

1) The most general expression for
S lopm

(7:025'7\ P

can be expressed in terms of the functions of the only scalar in the
R < 2 . ' s .

sroolem, namely (PA —‘ph_)- » - Does the axial part of Jh .contribute
here? ' | '

2) Write the most general expression for the matrix element of

X -~ z+ + % +e v
(=" + ﬁ'lJXSiKﬂ>

and identify the axial and vector contributions. : . .

3) In these matrix elements:
/0, O]t Sy
(x »+ Et4 luk )ﬂ 7
. < .
CHEE NP

We have two identical bosons in the final state; this leads to a

simplification in respect to the previous case--discuss this.
L) The AT = rule for AS = 1 leptonic decays implies a rela-

tion among



™

S . o . - — * i G <+ - —
=. +8 +V . TUDE 4+e +V_.

5) The Al = % rule‘Q53 = 1) implies a relation
& _
between the following reactions for the reufrino,production of

T nyperons: (and also among the corresponding reactions for the pro-

duction of Y., resonances):

'VlrL"*'aA»E"'}-L
§7p+p-*Z° y

(These involve emission of a positive lepton--see footnote 1).

(1) The Hamiltonian for leptonic decays is:

J +3,° 37 . (1.6)

The first pért enters in reactions with emission of a negative lepton

(Eq. 2.1) or others related by crossing to such a reaction like

(cont.)



vV, + A>3+ 2

2

~+ -
y/ +A-':5+vz ete.

The second in reactions with emission of a positive lepton:

The matrix element for the first of these would then be (see zq. 2.4)

G - -\xi--s-S.*’,\, { T . +\| h- Y/ :- Ei ,Q,!

We are therefore interested in the matrix element:



LECTURES ON WEAK INTERACTIONS — III
N. Cabibbo

APPENDIX I

This appendix and other to follow will contain "basic material" which I will

‘not cover in the lectures, but can nevertheless be useful to understand them,

Many steps in the proofs are not explicitly given, but they are simple and short,

and o can be worked out- by the reader.

In this section I review the properties of y— matrices, the Dirac equation,

~ the four fermion . interactibns, and discuss the experimental basis of the A-V

theory.

The discussion of the Dirac equation is rather short and the readers are
referred to standard textbooks for more details. In doing so, howevef, remember
that different books use different metric (and therefore different sets of con—
ventions on the y matrices). The notations used here are in concord,-e.g., with

those in Pauli's article on quantum mechanics in the "Handbuch der Physik",

band V, but not with those in Messiah's book.

.Covariant Notation

I will use the metric with an imaginary'fourth component. A vector has

components:,

(V. v, = iv))
| =N
The scalar product is defined

—

(v;_'r) = V

hd + = ° -
| T VﬁTh v-T VOTo
There are two invariant tensors (i.e., which have the same components in all

Lorentz frames), the Kronecker symbol 57¢Land the Ricei tensor‘SHVU%.

Dirac Equation

JThe Dirac eguation can be written

e FAm) P =0 W

7 where QK=(>/§XA % = GKVA, and | is a four cbmponent spinor. Since

describes particles of mass m, 1t has to satisfy the Klein Gordon equaﬁionb

(D2 = - Bl g = o (2)



This requires the different 7% to anticommute:ylyz == 757 etc.;
S t notation:
7y F 22 = . f" =1 T in compact notation:
v = 5 + = 2
‘{Vp¥x§ TINT W, T 5px (3)

It is not necessary to give explicit expressions for the 7%, since
eq. (3) is all that we need to know. In fact many choices are possible. We

“restrict this by asking 7% to be hermitian matrices: (there still are many

choices)

N T T ’ S

Along withiépinor, it is convenient to introduce it's adjdint,

’

- *
Vo= vy ' (5)
If y is considered as a column matrix, ?7 will be a row matrixv(operated by

the right). It satisfies the equation
P-g+m) = 0 e

" Under a Lorentz transformation apv

A7 apjvxv
| (7)
Ty &
The four component spinors transform in the following way
'

v (x') = s(a)y (X) - (8)
vhere S(a) is a 4 by 4 matrix. S(a) must be chosen in such a way that the
Dirac equation maintains its form in the new reference frame:

o ' Vo i )

(7, ~wo—  Fmhu(') =0 (9

AR _
8
but . 0 = g o
ox BV TR (10



so that from (9) we get:
(7 a -—~§—— +m) Sy (x) = 0
(VIR ’dxv

Multiply on the left by g

-1 d |
+ =
(s 7, S a, ?;(;" m) ¥ (x) Y
This is equivalent to the Dirac equation if .
sty 8 = a, 7 ‘ (11)
7y A _ .

(remember the orthogonality condition 8 @ = é%gx). The adjoint equation is
also invariant if
—1

(X)) o= V(R s (12)
If we want the relation between ¥ and its adjoint.(Eq. 5) to be valid in all
frames of referencé, we must therefore héve

-1 + . ‘

ST = 7, S, ' - (13)

Blllnear Covariants — y Matrices

From two spinors ¥ and ¢, we can build quantltles which behave in deflnlte
ways under Lorentz transformation, namely a scalar (S), a vector (V) an fanti-
symmetric tensor (T), an axial vector (A) and a pseudoscalar (P). It is easy to

see that'(ﬁ ®) is a scalar:

T (x) 0 (x)) = (G ST soex) = (T o)
‘also ’ ‘ - ‘ '
(E'yu ®) is a vector:

Tt 1y = o1 = I ',‘
(V' 7y, @ ) = (Vs 7,8 ) aw.(uf 7, o) 3

Voy . Coe
(v i Ty VHHL ¥)

is a tensor of rank n.



In fact, we can only build sixteen matrices by multiplying y's: these are

. . A . - . o .
called 7, and are divided into Tive types:

Type 7A N . Notes
S(scalar) 1 The unit matrix
V(vector) ?K,
T(tensor) : Guv ;, (7%7u = 7u7%)- Six different matricés:[7172«4.
A(axial) 1737
P(pseudoscalar) 75 = 775737y
A . .
The % have the following properties:
A2 ' '
()™ = 1 | (k)
A+ A :
’ = 7 . . ‘ (25).
A .. A » .
Trace (y) = 0 5 iy A1 (16)

Problem: Prove these properties by verifying (14) and (15);.(16) requires the

) A B -
following trfck: for any 7y Tind a 7y which anticommutes with it. Then

A A BB B A B
7 = Y77 = — 777
A B ' B. | A
But tr [}7 Y )7%] = tr [;B(7A7 )i , sotr () =0. You can also verify

_ AB |
that 7' 7 = < iy% with »° £ 1 i A £ B, so that

B .
tr 7A7 = A&AB (A7)

A
The sixteen y are linearly independent: suppose that

A
ﬁ CA7 = 0
B
then, for any y
tr 2 CA7A7B = Lk 3z CA 5 - ) B o
A A B T 7 -



s

Since there cannot be more than 16 independent 4 by L maﬁrices, the 7A
give a complete set. Incidentally, this construction (from Eq.3) of 16
-independent matrices proves that the dimensiorality of the 7's must at least
be 4 x L. ’

Coming back to our "bilinear covarisnts', we can build five of them.

Scalar ¢ - S Voo
Pseudoscalar P Y 75 o ‘
Antisymmetric _ a : L
! .
Tensor T _‘_UGJuv o o , Clg)
Vector \ ils 7u o
Axial Vector A ¥ i7H75 )
Problem: Prove that ¥ 75<1> is a pseudoscalar. Hint:
e = B,
5 Ly v 'as

and EHW 1s a pseudotensor. Note that 75 -commutes with l,O"w, 75
J1 anticommutes with iy
bt e 7 75

Plane Wave Solutions of Dirac Equation

. ’ s
Put | S | -
. N ] k“
v = u) P ON (19)
where u(k) is a condan"’ spinor; k/\ = (l?: iE). Then the equation becomes

(i pem) u) = 0 R O

V(%) is the wave function of a particle of momentum k and energybE.’ We have

another kind of solution, apparehtly corresponding to negative énergy —E. and

momentum —Kk: ‘ . { \
v = ve) ot B

v{k) satisfies the equation

. (__j_}/-i— m) vik) = “O o | (21) o
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Az you know

I
-
~

A

i._J

positron: he 2vels should be Tilled.

s Ao 2

an unfilled level with negative energy —E behaves as a particle of energy E,

momentum k. If u(k) represents the sbscrpiion of a normel particle, v(k)

represents the absorption energy, which is equivalent

to the emission of an antiparticle. Thus, if we proceed to a quantization of

N

the (free) field w(x), we gat: -
. AN AT >

A
—_ 3 Y z{ . e ~ie $ g "l * - e
v (X)) = (em)T 22y | ak (ulk) e, (k) &+ v (k) ® (x) e % (22
. — 1 i 5

v

I3
The index i refers o the two different polarization states; the a,(k) are

destruction operators for particles, blL(k

i
The ui(k) and vi(k) are normalized sccording to

o~
224
g
<
TN
e
o
i
N
3]
Q0

Problem: Prove that we can put

v. (k) = v_. u (k). and satisfy Eq. (21)

H
=)
[)
o
Qs
[
o]
}5-
ct
o]
L]
o
©
]
Q.
<
O
T
D
g
ot
oy
)
4

v, (k) (i +nm) =0 {2k

v, (k) (=i g +m) =0 (25
o
A . 3 -,v Y N . : 5 Y T * 5 - -
If we multiply (24) by 7&ui<K) from the right, (20) by u, (k) on the left and

add, we get

- = , -9-\ /.;L ) , . "3‘
o = {u, (k) {if+my u (Ky+3 u, (%) (1 K+ m)ouy (k:)/’ =
':A\ -t . B

J 1 LoJ
[ >N
- 2 o \K> g—/u B+ m) U \hdf
N
frem which ‘ N
: — 2y by Y mi * . . !
[ s i > s g 3 .
fu tky u, (k)| = — () w,(X) ] = — & {24
N :) , /,» - ot - // He o :‘L

7/

following equations {derive from Eqs. 20 and 21)

R

H
i

et



Problem: - Verify the steps in “he above orool,
— - % : m
v, {k) v, (k) = = -—=-58,
d * L

We have not yet specified how to0 chose ithe two polarization

we should discuss

by the index 1. To do so

a little the definition

prove that
(27,
states indicated

of spin end

polarization.
Polarizaticn

To discuss the problem of polarization, we must take inko account the
transfermation properties of +the spin. This is & delicate matter, but we can
sidestep the difficulty by taking the convention that by polarization of o
particle, we mean the polerization in its rest system. In the rest system the
Dirac equation becomes

(—7u + i) u(x) = 0 (28)
To describe the spin of the particle in this system, we can use the

following three matrices:

a. = g,., = 1 -
1 23 7273
a, = 0. =  iy.7.
2 31 757

o = g = 1v.,7.
, 12 372

3
which obey (verify this) the

0N
~

/ o | o3
ag ;= 4l@.
Lo %2 3 ,
o 4
So, if ui(O) 1ls to represent a particle with spin component = 22 along a

AN

direction 5, we must have

The definiticn of polarization zs

o
)]

invariart, so that we nust 2ble

¥y

/ A

0N

otviously covariant. To do

~
L
2

TN

Ly
(&

e

in the rest system” is obviousl

Torm which is more

Ly



03 = 1777, 'i75737u
- And in general '
R CE | (31)
or | » B G‘? . /;> = -1 75('7?,5\) 7y

where s“ is a four wvector, which in the rest system is:

: -
s, & (5,00

So we can rawrite (30) as:

175 (7 - 8) 7, ws (0) =+ ug(0)

And, using the Dirac equation (28):

(15n 8z -

This is obviously covariant, if we transform su'as a four vector. So the

_ 4
spinor of a particle of momentum kK, which in 1ts rest system has spinor * -
along ? will obey the following set of equations:

- >
Li}{ + mj W (k) = o0
- | (32)
-
E * 175;4]1.1 “+ _(k) = 0
s% is obtained through a Lorentz transformation:
A A (&l ‘
A A Im . n D .
= 4k . — . .
N {sk(s,k) — , 1 = (sk)} (33)
Note the properties
(sp) =0
z . 7 ah )
s = 1 (34’/

Helicigy is defined as the component of the spin along the_momentum, It can

s - A - .
be treated by the above formalism, taking s = 12, from which

T’T]
s = [ E L LE
e 1y > - (35)



_._9_.
We can bowever use avsimplér form: Dby use of the Dirac equation
(756 w2 B =7 4k et () == (G50 ux (B
The set of equation:for the heliciiy states is then |
L+ m] vy @ = o0 | | | (36)
i+ @R]uy® = o R E)

"Zero Mass Particles

In the case of zero mass particles there is no rest system so that our definition
of polarization fails. We can try to define it by taking the limit from the case

with m % 0. t 1s easy to see that the description in terms of s, becomes meaning—

A
less in this limit (the components of s go to infinity). We can however still

define helicity states through egs. (36) and (37) which have a well defined limit:

#ouy () =0 | (38)
L/li. G .’1})] ay D =o | (39)

> = >
(ik.7-E7,) uwg (k) = 0 E = |x|
but, from eq. (31):
N

sO that

Qv
HE
i
~
N
<
-—"

n the form

=

And we_cen rewrite (39)

E_:,ﬂ .u.i N | ey (20)

- This is the well known result that 75 is a helicity operator for zero &pin

particles. This can happen because in the limit m = O the helicity becomes a

Lorentz invariant: you cannot change the helicity of a m = O particle by applying

o)

1]

. . o FRER
e S e A v &2 R N o 3 e e
LTSN TrAnSIorMmaTiong.
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Problem: Describe a chain of Lorentz transformations by which you can invert
the helicity of a particle with m # O. Discuss why it does not work for m = O.
What asbout the v — solutions, which are connected with antiparticles? The v, (0)
which corresponds to an antiparticle of zero momentum with spih + 1/2 along the
é\direction can be thought as describing a particle of négative energy (-m) and
spin = — 1/2 along'the’é\direction (note the inversion) and should therefore obey

the set of equations (see 28 and 30).
(7& + 1) Vs (O) = 0
>
(1 £qg.8) v, () =0
: _ _ >
We can repeat the above argumeénts and obtain for the case of momentum k

(1= 175 A) vy (X) = 0 (genersl case , m £ 0) (41)

(;i?.ﬁyu 3}

0 (nelicity state%)anj m) . (42)

(1 = 75) Vi {K) 0 (helicity states for m = 0)  (43)

Provlem: Derive thEse equationy and discuss why in (1) the signs are the same

as in (32), while those in (42) and (43) are opposite to those in (37) and (40).




' IECTURES ON WEAK INTERACTIONS - IV
Third Lecture
N. Cabibbo

April 7, 1964

Experimental Basis of V-A Theory

In this section we briefly consider beta deeay, the 7 = pv deeay,
and muon decay. |

1, Beta Decay

The Fermi Hamiltonien for beta decay had the form

B o= g@, 7 v)(E 5 v) + e BCES

Following Fermi's work, this has been generalized in different ways: first
of all, to the most general form which, like 1, is local and does not

contain field derivatives.
H = g (¥ oy ) oty) + n.c. (3.2)
i*'p n °

The sum is here over the five baeic forms S, V, T, A, P (see Appendix).
This containe‘(l) as a particular case. OtherApossible generalizations -
include derivative couplings.' If the derivatives of the lepton fields
appear in the Hamiltonian, this gives extra‘powers of the lepton momenta
and energies in the transition matrix elements (remember ¥ e u eikx).
The ensuing modifications of the spectra are excluded from experlmental data.
A more 1mportant generalization became necessary after the diecovery of

parity non-conservation. The Hamiltonian should then be a mixture of a

scalar and a-pseudoecalar part:
- i — ' i _ |
- ) @, ot (e ve ) Oty . (3.3)

Parity non-violating effects (1ike spectra, angular correlations) will be
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described by bilineér forms like 8 gj and gi' gj'. Parity violating
effects arise from the interference of the two parts, and are proportional

to mixed terms like g gj'. Note that if g, =0, gi',¥ 0 :
§ p— i hond i
R ) g, o8 ¥)E of o)

parity would .be conserved (only we would say that the neutrino has a
negative parity in respect to the electron). The analysis of beta decay
is simplified byithe circumstance that the velocity of nucleons which |
take part in it--both as free nuéleons, as in the decay of a neutron,

or within a nucleus--is a small quantity. We can therefore develop the

matrix element in powers of the velocity. .

Problem: What is the maximum velocity of the proton recoil in neufron

decay? And in A=+ p +e +V 2

As a first approximation, we can take Wp and " Wn to obey the

Dirac equation for a zero energy spinor:

7)4’\V S v

n

— —

\Vp 7)4_ ‘l’p .

n

!

The big (allowed) contributions to the matrix element will come from those

parts of each o} which commute with N

s e i
\VPO v, \VPO WV, = “‘Vp74° v,
i
# 0 if [o,yu]=o
P n



B

Furthermore terms which differ by a 74 factor give equal contributions.

The allowed contributions are identified in Table 1; according to these

rules.
. i Commutes Allowed
Kind Form of 0 with 7, 7 contribution Comments
s 1 0 Yes | 1
V ) 7). @ 7i) No » . -
7y Yes ' ‘l

T o“h==é>‘i 7y 7y Tes o, | (cl =17, 7 ete.)

tyrn T -
A 17 % = 17 75y Yes. oy (05217, 7,757%,75

17, 7% No -- =i7375m, = 17575)
P No - -
75 ‘

Table 1. The allowed contributions to beta decay. Latin indices, i and j,
range from 1 to 3.
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Fermi and Gamow-Teller Selection Rules.

The allowed contributions arise from two kinds of “nuclear”
operators: @% v, and @5 P ¥, - The first is a scalar, the second

an axial vector, and they give rise to the following selection rules.

Term Name . Selection rules
VoV F. (Fermi) AJ =0, no parity change
VoV G.T. (Gamow-Teller) AJ =0, £1, no parity .
- (no 0 =+ 0) change
The Hemiltonian (4.3) is reduced to:
n

B o= (v, ¥)(e {(gs o, ey) t (et & )}v) +

(§p; Y )(e ((ep + 7, 8) + 75(gT' + gA')} 7 V). G.b)

1

Beta decays which are forbidden by these rules can still take
plgce thanks to. termsproportional to the nucleon velocity, and are
called first forbidden, second forbidden, etec. How can we obtain the

values of g &, from the experimental data on allowed transitions?

A. Parity ConservingnEffects

In discussing these, we can neglect the parity violating coefficient

1

g - It can be shown that in parity conserving effects gi and gi'

always appear in the combination gi gj + gi' gjI » This is a

consequence of the zero mass of the neutrino. The electron spectrum in

any allowed decay is the same for each of the pure couplings:
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| o, .
Wy(EJa8, = F(B) p, B E S &, | - (3.5)

where F(Ee) ;is the coulomb correction, which dépends‘on ﬁhe charge of
the final nucleus, and is edpal tovl_ when coulomb effeqts can be
neglected (e.g., iﬁ neutron beta decéy). Wo(ﬁe).is called the allowed
| spéctrum. | v |
For a“general coupling including all four‘types, the specturm
becoﬁes: | | | ‘

Ee

WE) = W (ENL+b =) . | (3.6)
The new term (Fierz term) arises from &y & and &p &, interference.
.;‘Expériméntally this term is not there, so that we can draw our first
conclusion:

.Thé Fermi couﬁling is either only S or only V.

The G-T coupling is either QE}ZI A oronly T.

Another parity non-violating effect is the eléctron neutrino
correlation. Tpis can be measured through the spectrum of recéils of .
the final nucleus. If electron aﬁd neutrino tend to go together, the

nucleus will tend to have a large recoil, and inverse. The angular

correlation for:pure couplings is (Be; the electron velocity)

1 0+ se‘cose ' v
1 - B.e cos'e. S
. (3.7)
1 + 3 Be cos © T
1 - ise cos @ A .

3
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The anguler correlation has been extensively studied in the decay of

35

He6, a G.T. transition, and of A-”7, a pure Fermi (J=0-+J= O)
transition. These experiments bring uniquely to the choice of V and A
as the leading couplings, among the four choices allowed by the absénce

of Fierz terms. For the interesting story of these experiments see

J. Allen, Revs. Modern Phys. 31, 791 (1959).

Parity Non—Conserviﬁg Effects

The two classical examples of parity violating effects are:
1. the longitudinal polarization of the emitted electron
and neutrino,
2. "up-down" asymmetries.
: P beta decay

The maximm longitudinal polarization for/electrons of a given velocity

v_is * v_/c , and is attained for maximum parity violation, i.e.,
e e
gi' =g ~ gives électrons with helicity +v/c

" positrons with helicity -v/c

g.' = -g gives electrons with helicity -v/c

" positrons with helicity +v/c .

Experimental data indicate that the second possibility is realized.
Together with the results previously discussed, this suggests an
Hamiltonian:
ey, B (e (- o)y )+ gy (V) 1y v ¥ )(e(1 - 7)1 % 75 W)+ hee.
which can be rewritten (verify this passage)

O, ey - g g W)L - ) W) 4 meen (.8)

or



-]

. (ﬁp nley - 75 SA)w;><? (1 75)§> + hie. | (3.9)

We éan easily understand why (1 - 75) giveé:rise to‘fu;lvpolarization
“vhen v/e - 1. In this_limit we canpneglect the electron mass, and we
know that 7s i; fhe.helic;t& operator for & zero mass particle. A
lfactor (1 - 75) plays the role of a projection operator: It picksvéut‘
.of ﬁ; that part fof which 75 % =1, which describes creation of |

electrons with negative helicity and destruction of positrons of

positive helicity (all this in the limit m, - 0).

“The Two-Component Neutrino -

Lepton conservation

The situation with the neutrino is rather similar. The neutrino

field appears(see e.g. 3.9) in the combination

This causes emission of antineutrinos with posifive helicity and the

absorption of neutrinos with negati#e helicity. |
The'nomenélatpre of 'the neutrino states is rather arbltrary. It

is only_impbrtant‘to;nealize that there exist two kind of neutrinés which

are connected with electrons: ;

Kind . Emitted together with Helicity -

+ (antineutrino) © negative electron ositive
/

v (neutrino) positive electron negative
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The last two columns of this table embody a basic law of nature,
which is usually called "lepton number conservation." We can attribute

a lepton number to electrons and neutrinos

¢ = +1 for e  and v (negative helicity)

L = -1 for e’ end ¥ (positive helicity).

This is an additive quantum number, conserved like the charge and the

baryonic number.

Connection between Electron Polarization and Neutrino Helicity

As we have seen e and ¥ have opposite longitudinal
polarization. This is peculiar of the A-V theory, and follows

(compare 3.8 and 3.9) from the fact that

The opposite happens with S, T, P terms; for example, we have

(- 7)oy, = G (1-7) -
S;T,P give e and neutrino with the same helici'tyT An independent
measurement of‘the neutrino polarization can distinguish between S, T, P
end A,V. Such a measurement was performed by a very -clever indirect
method on a G-T transition (Goldhaber, Grodzins and Sunyar, Phys. Rev.

109, 1015 (1958)).

N



Up-Down Asymmetry

jhe Best measurement .of the ratio- gA/gv '(see, €. g. 3.9) in »
bete decay comes from a measurement of the up down asymmetry in angular
distribution of electrons and neutrinos emitted. from polarized neutrons.

These distributions are:

-

. P .
1 + ¢ EE " P, for the electron (3.10)
e .

N for the neutrino . (3.11)

1 a B
+ vpv .

Where ﬁﬁ is the neutron polarization, and

o
1

(-EfsAlg - 2R g g, /e, P+ 3lg,l®) (3.12)

a

]

(2 lg, 1% - 2re g, g ) /gl + 3lg, 1% . (3.13)

From a measurement of these parameters it has been obtained (assuming
. . ’ ' .

g, 8and gy ﬁo ?e both real)

g = -(1.25 % o.ou)gv . | | (3.14)

Pafitz) Charge Conjugation, CP.
It is interesting to see how these operate on neutrino states.

Their operations on a particle are

— — ~ - .
P Particle - particle o-g P -+ =D ‘hel - -hel
. v -5 - L d ~
¢ Particle - antiparticle o~*0 P—+D hel - hel
. » -> - -5 -
cp Particle -+ antipaxrticle g-0 P -+ - hel - ~hel
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P and C +transform 2 neutrino into another which does not exist (dr,
if you wish, is never emitted or absorbed). On the other hand, CP
symmetry is consistent with the two compoﬁent neutrino. CP symmetry is
very appealing, because it preserves--to a certain extent--theé
undistinguishibility of left and right.

For any experienent which gives a certain result in é left-handed
coordinate system, there is another one (performed wifh énti-matter)

which gives the same result when described in a right-handed coordinate

system.
Problem. Suppose we contact by radio a physicist in another

galaxy. Cean we instruct him on how to build a left-handed

coordinate system?

CP conservation in beta decay requires &y and 8 to be

relatively real (to have the same phase):
6 5" - | (5.15)

This condition excludes the presence of a third kind .of angular correlation,

namely:
EX | |
1 + eP - E; | X p‘v _ (3.16)
. *
2. Im(g, g, ) , ,
e = — Qg" Sl L | (3.17)
oy 12 + 5l

In the experiments on neutron decay, this has been found'tq be sméll and
consistent with zero (e = ~0.0ﬁ + 0.07). |

We can of course reach the same conclusion aléo from time reversal
.invariance, since.the CPT theorem insures that CP conservation implies T
conservation, and inverse; Time reversal invariance can be defined in this

way:
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The matrix element for the two processes

A - B

- ‘ (3,18)
5T ., .A'.L

are equal. (Up to an unimportant phase factor.) Here BY indicates the

gtate obtained Trom B by reversing spin and moments

-

P> op - (3.19)
-E; - “’;-

We obtain therefore a relation

) = gy DB  (3.20)

P A

( Bout in

] 2

out" and "in

1"

Theisubscripts are ei;remely importent 1f the particles
which'make up states A or B arevstronglybinteracting: The physical
definition of states is generally given in terms of free particles; we
saj "pion plus nucleon” or "electron plus neutrinoﬁ, and so on. In fact
this description\is good only in an asympitotic sense; we can define a !
state
l. by requiring that before a certain process it is made of
certain initial particles with given moments; spins, etec.
(in state)
2. by requiring that after the prdcesé is over, it contains
given particles of given momenta, etc. .- (933 state).
For‘g state which containg a single particle there is no
distinction between in and out. In the case of bé{a decavae need not
distinguish between in and out states, since the final state (e + p + v)

]

is made of essentially non~-interacting perticles. (We neglect here



~10-

coulomb corrections, or higher order weak interactions.)
Whenever this is possible, time reversal invariance reduces to

a simple relsgtion:

ixad
i

(B | A.) = (AT Ip)

i
P
o
>
,_
S~

(3.21)

This is & sort of reality condition, and can ve worked out for beta decay

F
+3
o
o
G

- 5 ' . .
to give (3.15). 'The conseguences of be seen even more directly

in this case in which we negiect the initial and final state interactions.

Equation (3%.21) implies that the processes

/
(3.22)
have the same probability. These twc are obiained The one from the other
by reversing all spins and mouwenia. - & correlation like (3%.16)--which
involves a triple product~-is therefore forbidden.
Note that the use of (3%.22), whick is 2 sort of "naive" time reversal,

is erroneous when the initial or Tingl stale inleraction camnot be neglected.

t0 a correlieticon

The coulomb correction to beta decay &

of kind 3.16, but with a small coefficient (e = 1/137).
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Pion Decay

e

The matrix element for pion decay is glven by
o\ = e =
P ) (X2 - )y, v(eT) (3.23)
2 + -+ + + '
here we consider w —» & +v , and § = et or p. . As we have seen

v!,.s + _ Tf .LL\'
(Ogdkiﬂ)—-fp)\e (3.24)

ﬁ :

But, thanks to ener momentum conservation
2

so that the matrix element becomes
- : LA Y] + - +
£ ulv)(1 - 75)\15 +¥7) v(27) = ~imy £ u()(1 - 7g) v(2T) .

The matrix element results proportional to the lepton mass. The ratio
between the two decay results | | |
. | { .
e (me/mu)e (- m %/ 5) /(1 - mue/mﬁ?) }
‘ 4

1.28 x 1077 .

®

This prediction; whiéh has been checked to a few percent, is characteristic
of the V-A theory. The depression of the electron in respect to the muon
can be easily undérstood. anservation.of angular momentum insures that
the electron and neutrino will have the same helicity_invthe.pion rest

system, &s shown ir the figure:

P . P

+ o+ >
e T v

v

but the A~V Lagrangian favors the emission of &+V ~pair of opposite
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helicity; the emission of pairs of like helicity, forced by angular
momentum conservation, is depressed. If the interaction were of the form
S, P, T, vhich favors emission of pairs with like helicity, the ratio

would ~1, and iﬁ fact the electron mode would be favored by phase space.

Probiems
i
Maxny of the unproved assertions in this chapter can be checked
without a complete calculation.
1. VIn Eq. {(3.7) ve see that the e-y correlation is opposite for V

and S, and for T and A, You can prove this directly from Eq. (3.4).

The square of the matrix element for pure S and pure V results

*

- ’ 42
e ogg V(V) V(W)gg cee m ee g7 4, e
and

) *
R

. g - . o 3 o 4 -
The two diffexr only by 8y ™ &y » 2, ~pV which gives opposite P, ° P,
terms.
Complete the argument - for T and A . Are you able to

actually derive 3.77?

2. Using the same kind of partial computation as in problem 1, show that

B
the parity conserving effects are proportional to 8 gj + 8; gju .
(For example, & &; *+ gs' gvi). To do ihis, use Eq. (3.4), and separate
in the sqﬁare of the matrix element those terms which do not contain = 75.
(Thbse which contaein two can be reduce&!) Remember that the complex

conjugate of

e 0 + 75 02\ By

is * - + 'B
Y {Ol + . ,02 : 75J /)+ e
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. - *
which y~u want to rewrite as (Vv = v 75)

since

v(v) W) = ¥, -

3. One of fhe methods for measuring the helicity of pésitrons is by
"in-flight” annihilgtion on polorized electrons. This is based on thé
diffefeﬁce in annihilation cross section of pairs with the same or
opposite helicities. Electromagnetic interactions are of the form 7u 5
s0 that they favor at.relativistic enefgy‘ (me/Ee' ~ 'O) a definite
relatidn among the helicities.  Which one?

For very low energy the annihilation should mainly proceed from
S waves, and for the annihilation intq 27 one obtains again a simple

result (apply the selection rules for the § ‘states of positronium).

. From this qualitative argument, sketch the behavior of the quantity

Opr 7 04
-+
Ot 9

as a function of the energy.
dompare with the theoretical results in I. A. Page, Ann. Rev. Nuclear

Sci. 12, 43, 1962.
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Muon decay was around 1957 in a state very similar to that of
beta decays the Hamiltonian was also supposed to be of the four Fermion

non=derivative kKind, like:

) e) + h. c. S (4.1)

’

- — s ]
M= % (Torv)(voHf +f, v
. . i b 5

i
b g _
iven more complicated forms were possible if one released the condition of

lepton conservation, so that, together with

ta

pt et a v eV (4,2)

one would have

he3)

=
¥
6]
¢
e
+.
<
—~

If we assume somé form of universality in the weak interactions of lepténsy
we can make the folléwing guesses.
i, Leptonic number is consérved, $0 that muon decay is described by
(L.2),

The neutrinos are the same two component neutrinos which enter in

P
.
°

beta decay ond pion decay,



iii. The e will have positive helicity, (the electron is ultfa
relativistic, so that g = 1),
h e ,
TLis determines the form of H up to a constant. From ii. and iii. we
can rewrite
= i : - | i
=32 f (Wo” (1 +v.) v)(v(1L-v.)0 (1+v.)e)
i 5 5" P
Only A and V can enter, since the operators for SPT commute>with Y

S *

and we have, e.g.
(1 - Ys) v (1 + YS) =0, (1 -vvs)(l + YS) = 0

furthermore o = Yu end 0 = iYu Y. reduce to the same form, so that we
7/

can write

G - -— .
H=" (u Yi (1 + YS) v){v Y“(l + Ys) e) + h. c. (h.L)

Jz A
Note tha£ (: v) and (C e) appear in the same combinations that enter in
beta decay.,

By définition we will call G the Fermi coupling constants, G has
the dimension of &2 or M™2 (in units ¥ =c¢c ='1,, In fact H is an
energy density, M£-3 or 1 (see footnote 1 to 1lst _ecture), while
(¥ v),(V e) have the dimensions of a density, 2 ° or #3 . G can be
obtained from the muon lifetime: without taking into accoint radiative
cofrections (and putting my = 0). This’is given by

.

- G2 mus v
t 1= .1 ' _ ' . (h.5)

ol(on)3

From the experimental (tr ~2,2 x 106 s) we get
: "



-2

G~ _10'5 mp (h.6)

-2 . . . . ,
The use of -mp units is useful because of this rather neat result (good

to about 247 .
Other nmeasurable quantities in nmuon decay are:
1. Toe electron spectrum; -
2. The up~down asymmetry of the electron in respectAto the muon
polarization, as a functibn of the electron energy.
3. The electron polarization.
A general expreésion for 1. and 2. (valid for the Hamiltonian (L.l), and
also in the case of non conservation of the lepton number) has been given

by Bouchiat and Michel Phys. Rev. 106,.170 (1957):

. oo, e 4 |

@i = x° (3(1 = x) + 2 (3% -1)+ g(P - p)(1x)+28(3 x-1)]pax a8 (L.7).
Here x = 2Ee/mu is the electron energy in units of its maximun value;

p, &, § are parameters which depend on the different coupling constantis.

The V - A Hamiltonian (L.4) predicts (2x u )

p = 3/b
gl S | o C(1.8)
§ = 3/L
+

. - + \ . o .
Furthermore the e (e ) should have negative (positive) helicity.

All these predictions have been experimentally checked within some percent.

&



e

Problems

1. The spectrum for p = 3/L is peaked at x = l; Find a simple
argument (bésgd on the cdnservétion of angular momentu) tq{connecf the
value of £ %o the hélicities of electron and neutripo.

2. If the: two neutrino§:which are'emittgd.afe identical, the sﬁéCtrum:
cannot be peaked at. x - 1 , sothat p # 3/4 . Hint: what kinématicgl
configurationvcorrésponds to. x =1 2 By a qﬁaiitative argument show that

in this case you expect p= 0 .

The Conserved Vector Current lypothesis

Ve have seen that an analyéis of beta deéay bfought to the V - A

Theory, embodied in a lagrangian of the form discussed in’the‘first lecture

G . * 2* ) g L ) ‘ ) o o
‘&:(SXJ)\*—JLS)\JX-PJ)\‘J}\) o (5

~

- This form has also been found to be.very successful in explaining the details

* of muon decay and the ratio T + ev/T » uv . From the study of beta decay

~ we know that a phenomenological form for the J? is given by

T Ior vley e, Yl v (5.2)

e

The numerical value of ‘gv is obtained from the lifetime of pure Fermi

beta decaysj (J=0~J = O,Vno parity'changé) vhere only thé vector part

can contribute, like

> N+ el + v ‘ - | - £5.3)

Provlen

The axial current cannot contribute to a "pure Fermi" transition,
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independently of ihe epproxinmation of allowed transition. OShow this by

#o1

ct
o
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Although equation (2) refers-to free nucleons, it can be used to
evaluate nuclear beta decay if
a) ‘nuclei a?e considered as made up of essentially free
nucleons (i.e. whose physical properties like mass,
charge, magnetic moment, eté. are the same as those of
free nucleonsj).
b) We'have sone knOwledge'of thé wave functions.

! 1k
In the case of Olu beta decay, the fact that O“24 cand N belong to

.

the same I =~ spin triplet gives sufficient information to evaluate the
lifetime from (1)and(2)and oviain gy from a comparison with experiment.

The result is that, within a Tew per cent,

We can now compare beta decay with muon decay; the Hemiltonians are

respectively (within some percent)

f~‘ < wp YA (1°+.1.25 YS) ¥ )<,e Yy l + YS) '> , . (5.3)

<U Yk(l . Ys)u)(g vy (1 + YS) \)) | (5.5)

The vector part in beta decay is the same as in u-decay, 10 a good accuracy,

too good in fact to be a mere coincidence. The solution which was

independently proposed by Gershtein and Zeld.ovich, and Feynman and Gell-lan

-

is based on two assumptions:

and P



1. The weak interactions are universal. In the absence of
stronz interactions ﬁhe coupling constants of beta decay
and muon decay would be equal.,

2. The vector couplihg constant is not chdnged by‘the presence
of strong interactions. (In the theoretist's language, it
is not renormalized) 3oth assumptions are necessary for a
satisfactory explanation.'

Non renormalization is a well xnown effect; for example the charge
of a proton is equal to that of an electron, in spite of the strong
interactions of the proton, This can be explained~in two steps similar to
1 and 2, First we assume that all strongly interacting particles have
charge vhich is a multiple of e , the electron charge, and then we show

that this situation is stable against any effects of the strong interactions

if strong interactions conserve charge. The charge of a proton, e. gz., will

»

not be changed by the fact that it can go virtually into a neutron plus
o j o " &

positive pion.

Nl

In a similar way it is possible to show that non renormalization of

.

3

the vector coupling in veta decay can be assured if the AS = C vector

part of J° is a conserved current,

(The subscript O indicates the strangeness change.) From Eq. (7) it
follows that

3w0d3x
0

\./“’ﬁ

is conserved by sirong interwciions.,
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This could noy nave been passed unobserved, so let us see vhether we

can idenvifly U with a known guantity. The only possible candidate

+ . N > * . B
is the I component of the isotopic spin. We will therefore set

. v,0 " 1 )
PR PR PRI S Y , | (5.8)
Equation (8) is rich of physical consequences. The gurrent j£+) is
a close relative of the electromagnetic current. From the relation
Q = I3 + %' b4
we have
= - 3 _ ;
Iy J ) JA . v : (5.9)
. > ' +
33 is the third component of the J-spin triplet of currents to which j( )
belongs. This»mehns that we can Tind relations amohg matrix ‘elements of
j3 and of j(+) .
Let us obtain these from the commutation relations
I;Il j?k] = . J>\3 and cyelic o - {5.20)

2
Y

(These are a direct consequence of jx being a triplst, i, e., an I=-spin
vector. Remember the similar commutation relations among a vector and the

total angular momentum.,) From. these we can get -
+) : o .
J)\(- V=33, 1] | o (5.11)

v

o Y ) .
Turthermore the hypercharge current commutes with the isotopic spin

(it is an iso-scaler), so that

I %]  and adding this to a.(1l),



To see how this relation works, take it among a proton and a neutron state:

(plijd n) = <P|?A f+1#>_ <p!I+JA-VQV

©but, since proton and neutron form a doublet

I'laY = |p>

n.

I'_lp.>'_ |n> o (PII+ =‘-.<n} » | | (5.13)

-and'

- ) gy = 1N SN o -
Gy = Glyly - Gl > G
In the‘limit of small_Veiocity"and momentun traﬁsfer,'we‘have

Q|3.1n>'n;__ 0.
1o] #ha‘t o . |

O R ce?

D 'uon

© It is easy to‘'see that equality of vector parts in. u-decay and beta decay

(Eq.” L) follows, if we assume that Eg. (8) holds, with an equal sign.

~In general Eq. (8), (compare rgs. (2) and (15)) can be rewritten as

. v is
Now we assume that the vector currenchonserved and we ask: is Eq. (k)

strictly valid? The best test is to compare muon decay and the O

decey (or another Fermi transition). If we assume the validity of Zq. (1C)

we zre in & much betiler situation thaon belore in predicting the 07 lifevin
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e can evalluate this decay like that of any other decay of elementary
-particles, as discusseld in the second lecture. The matrix element is-

ziven by (see fooinote 1 to second lecture.)

G s, .1k - | ) . : O te a
= <oll'*l J S|u > Falv) v, (1 + ve) vie) i, 1(5.27)
) ﬁ A - A >
Where F is the Coulomb correction to the electron wave-function, not
negligible here.  Now, from Eq. (16) we get (the A part does not

contribute)

J/% <OlhiJ’?\s_lNlh> _ : <Oll‘,\'j?\;(+)lnll§> : | /J | [(S‘.lB)

1k 1N, ok, e db o1k 1l
<o 'lj)\(*—)lfl > - <Ol&lj>\ If[Nl > _ <O.L [I+ 3 lN | >
1k 1k o _ 1 _
Since I and O belong to an I-spin triplet: |U > = 1, 0 >,

.Ou‘=ll,l> ,wéhmm

I+lNlh > = lolh> ‘/‘é’
RN S e

and’ - '

j 14 Ly, ALk B R
<ol“['j/\(+)\N > = J/2(<O i o™ty - CIMFNE >>
The right member of this équation is well known: the matrix element of

e.m. current among spin zero particles::




A

~10~

Where F(q ) is the electric form factor, function of the momentum

2 v 2 ' .
transfer o = (p + %) . p, and p, are the initial and final four

momenta of the nucleus, I and E' +the initial and fipal total energies.
3 A i

In our conditions only the fourth componeni of the current is important

-

(M 5,10t > 4 8em3

.

but we can use the exact expression directly. The final result is:

(3, + D, )  (5.19)

S Loty st o
4_~2__< I)\ 7D =g,

Note that this result depends only on. I-spin considerations, not on any

i . ) i . 1L :
- Dypothesis on the nucleus structure. Even if N is not made of Tp» + Tn,

. + i
but, say, ikn + Tx the result would be the same, once Eq. 116 is

accepted,

J

Pushing this analysis vo the end, one finds a small discrepancy:

‘ . o _ ' ‘
Agv2 is about 2” smaller than G2/2. The situation seems not to bhe betiered

X s : e . o L . L
.oy radiative correctionsto both muon decay and Ol . Thesé are somewhat

cbntroversial,\bui the most widely accepted computations, due to Bermen,
increase the discrepancy to about M.S% (t1.5%)., A clear discussion of
this problem has beenfgiveg vy R. P, Feynﬁan in the Rochester Conference i960
(Rgports, page 501). The discrepancy, which is there of L,0% has slightly
increased due to more recent measuremcnts of the muon lifetime.

What is the meaning of the discrepancy? As we will discuss later,
the best solution is provably in a revision of the concept-of
universality. In fact the cve hypothesis has now received independent

confirmation from other experiments, as we will now discuss.
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Cther Conseouences of CVC

‘Another process which is assimilable to a pure Fermi transiticn

3 Y 1" Y - 3
is the '"beta decay" of the pion

AR ; e
veta decay ( a transition among +<wo members of

O

This i1s very similaxr to
a O~-spin triplet) so that we can Cderive the matrix element in close
parallel with the previous use, and we will get the same result for the

mnatrix element:

; - : =Y : : (5.20)
G o+ iTP e t 50 /
< (B> s LB (s v )

2 20T T (2n)?

The rate for this mode is therefore uniquely determined and gives a branching

ratio
+ 0
T > T e v = 1 -8
= 10 - {,)
- + (9.2.;.‘
1 > oyt o+ v
Problem
Prove ©q. (20) oy the same procedure used in the 0 case. An

experiment at CERN has checked this prcdi;tion within the.experimeﬁtal
errors which were Of some tens %. It seeﬁs difficult to do much bvetter,
but this iskalready a very good result,\sinée the rate of this procéss
could a priori,(without.cvc) vary in a wide range of values; perhaps

10 times less to - 10 tires more than predicted by CVC.




The Veck Magnetisnm

Eq. should be valid in general, not only in the limit of slow

nucleons and small momentum.transfer. In the general case we get

: (+}, = (V2 U -
&, <pl.j)\ in> = g, u{z) iFl (a®)y, + 27 Fy (q%)oy, quz\ u(n) (5.22)
. - Vo s ' :
Wnere Ty = Fl 2' Flo are the isovector form factor of the nucleon,
9 . 3 Y .

as measured in electron scatiering experiments. Beyond the usual term vy
we find a new term, whose magnitude ‘is exactly predicted. This ig called

the weak magnetism

an » Since lne corresponding terms in the e.m. current are

associated with the anomolous magnetic moments of proton and neutron.

the linit of q2 = 0 we have

1 S -~

Weak magnetism gives al most a first forbidden contribution to beta decay,

since the term is of order compared to the 'y  term, This first
. ' ' u
forbidden coniribution is
N . =u
€ Lo o N - e ‘ (5.00)
— T = =P [ - ) ot
v 24 T2 TAp Sy Sy oM @ %o ,
A similar contribution comes from the Yy term, and, as can be expecled,

is obtained by substituting the anomolous magnetic moment of the proton

with the total nmagnetic moment:




-
¢ , the allowed part of the axial contrivution, so

as & correcition to Gumow~Tcller transitions. (liote to this end that
b d > -> ‘
¢ = Pe + P . does not depend on the nucleon coordinates.)

AV ‘

The main effect of the weak magnetism term on an allowed beta

Cecay would be to modify the spectrun from the allowed Torm to

WO(Ee = W ()

+
+

wioo
o
ta

e
- where
1 + 3 - or
up An &y
a -
w J2 .
. UA
Problen

Derive the non relativistic form of the weak magnetism term

e a

according to the methods given in the third lecture.

gni

The existence of this .eviation has been found,with a na

.consistetwith the predictions,following a suggestion of Gell-iann, by

-+
comparing the spectra of two mirror processes, namely the 8 decay ©

e

i

e
o

w12
LR

"

< <
{

N TN TN T R R, g

2

ude

Yy
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o 12 12 2
and the 8 decay of B" , both going to the ground state of C . 3

o

P b2 . . . . . '
and ¥ ere members of an  I-spin triplet with J = 1 , positive parity,
. . . 12 ‘ L -
vogelher with an excited state of C which decays to the ground state
: - \ . . . . -~ i °
(I = 0) by emission of a v (via nagnetic dipole). The interest of
comparing the two spectra comes from.the fact that the correction term,
arising from an A - V interference, has the opposite sign in the two.
Note that

a. the effect is eéxpected also without CVC ., from the normal

contribution. It is the magnitude which is important, l+u3-u b7,

P93

to be compared with &1 .

b. In principle it is possible to obtain the correction directly
£ : : I . 12% 12 .
from the knowledge of the transition rate for C™° =2 C » but in

practice the experiments are compared with a prediction based on nuclear
physics, This prediction is expected to be rather accurate, since weak
nagnetism and axial vector contributions are respectively proportional
— =
! !

to the matrix elemenis of ¥ o V] and ¥ Yy, G ¥ which,
E jo! n P L n

according to our discussion in the last lecture, are expected to be

essentially ecual.
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Any Other Conserved Current?

The AS = 0 vector part of JAs has been found to be conserved.
What sbout other parts? Neglecting for the moment the possibility of AS ='=AQ

transiﬁions, we can write

+ JA + Jk | ' | (6.1)
‘ A,0 .

Let us see whether JA can be conserved. To do so, consider pion decay

(see Eq. 3.2h)

G <n+leA’o|0 >=f p)\l'T . ' (6.2)
5 ,

In order to calculate the matrix element of the divergence of the current

0

(expected to be zero if JAA' is conserveéx we must know that

G300 = exp Lip"x] (715 20000 0) (6.3)

This follows from translational invariance: the matrix element of J(x) among
certain states is equal to the matrix element of J(0) among the same states

"translated" by -x . States which have a definite total momentum simply pick

up a factor under translation



x)|[p) = HP¥)|p)

<PlT*(x) = (ple'i,(px)

. S

Incidentally, note that ve write <:BIJASIA‘> forgetting that JA

depends

on x , The reason is that {(use momentum conservation)

(B+ 17 +3 IJXs(x) J}\l(x)!A> = exp [1(p° + p* + p - px]

c(B T 15505 0 A ) = (B + 27+ T {55005, M0} 4D

the argument is conventionally taken as x = 0 and dropped, Now‘frqm 3
Agd 2 we get: |
f-z; (" AJ}\A’olo)w%_ ip," <w+leA’O|o Yy =-if mﬂ2 (6.1)
This means that JAA’O cannot be conserved, since the pion decays (f # 0), and
its mass is different from zero. |
Another way of proving that J*A’O(x) cannot obey a continuity equation
is to explore the proéertiés of the pseudoscala; quantity which would be as a

consequence consefved: (this argument is due to Okubo)

v = fJOf"O(x) a3x | | (6.5)

. ' -
Ir U is conserved, it commutes with the total Hamiltonian: [V ,H] = 0. This

means that, if 'IA'7 is a state of energy E

H|AD = E|AY

then

H U"lA) = U'H|A> SEU A



so that (unless UQIA ) = 0 ) the state U'IAf7 would have the same energy as
a7 . Uv|A>» should have the same strangeness and baryon number asv>]A'> ,
but opposite parity. We know that this is not so: there is no state with the
same baryon number, ‘strangeness, and energy as a neutron at rést, and having

the opposite parity. A possible state would be a p + 70

, in an S ..state,
but the energy is at least one pion mass too large.
The second argument can be applied to the other two parts of the

1
current, JAV’

and JAA’l . In this case we run into the difficulty of not
having states of the same'baryon number as the neutron, bdbut strangeness ]l .
(One would consider the action of both JfJOV°l d3x and it is Hermitian

conjugate). If we start from neutron, we reach either I~ or n + K which

have higher energy. If we assume that, according to the SU scheme, the

3
eight previous N, I, A, £ have the same parity we can see that
a. JAV’l cannot be conserved because of the mass differences among
baryons of different strangeness.
A’O A’l . . . . .
b. JA and JA cannot be conserved because starting from the eight

baryons we cannot find other states having the same baryonic number but opposite
parity. This could be blamedroq the fact that mK and m_ are # 0.
Problens

l. These lasﬁ arguments. would be only slightly modified if parity
assignments within the baryon octet were different,

2. Prove that J Ayl is not conserved directly from the existence

A
of K =+ uv decay.



"of the axial currents, especially the As =0 part JA

-l

2. The Structure of Axial Currents

In this abd the following subsections, we discuss the possible structure

4,0 . We have seen that

A,0

the allowed contribution of Iy 1o beta decay is

G

J2

A,0 — :
AN By Ys Y, Y | . (6.6)

If we extend this to include all possible contributions, even if they do not

give allowed contributions, we get three possible terms

A,0

é’_—.}k - v, {gA Y\t 8y ay + B, O )\j v (6.7)
qQy vbeing the momentum transfer to the leptons. Any other possible term is
reduced to one of these by use of the Dirac quation'(remember that fields in

a phenoménoiogical expreésion are to be considered as free fields). The third
term ig assumed to be zero. The reasons for this are connected with the
G-parity behavior of the different terms: 'G parity means n'~+5. so that the
current 6,7 (which gives pfocésses like n+ p>yu" + V) isiﬁransformed into
itself. Weinberg (P.R. 112, 1375, 1958) proved that fhe hA term has positive
G ‘parity, while the other two have negative one. Since G-parity is a good

symmetry for strong interactions, we can classify currents according to 1it, as

an extension of the process discussed in the second lecture:

A0 A;o,-l .3 A,0,+1 - | o (6.8)

* =
J I\ A

A

Since the guiding principle is to assume that a new pieée'of the current is not
accepted until it is proved to exist, it is now generally assumed that hA=O.
The same situation appears in the case of the vector current, The most

general form of it's matrix element among nucleon states contains a third term,



beyond the two discussed in the last lectur {see Eq..5.22); we can write
é '
G- V,O- - y oV o .
— = o+ — X .
f ‘/5 J)\- Q'p {gv Y oM 0)\“ qu + hv q)\g wn

- - . o

L

The "new" term, hV s comes.ffoﬁ a part of the current which has a negative
G-parity, while the{other two have a pdsitive G-parity. Note that according
. to the conserved vector current hypothesis JAV,O oc Jx(f), which has positivef
G parity, so Fhat hv cannot arise from.it. Note that t?e hV ternm, gyen.if
present would not substantially alter any of the extént proofs of the CVC
hypothesis:

i. A vector currént with G = =1 cannot contribute to n' -+ 0 e+v

ii. By use of the Dirac equation for electron and neutrino we can operate

the folloving reduction:
n (T v )(T (B, 47 DY) = 4y (T v (2 + 1Y) (6.9)

-The hV contribution is therefore equivalent to & scalar contributioﬁ with
g, = W, hV . Given the smallness of m this would be a small contribution
to pure Fermi decays. (o*4)
iii. The seléctionlrules of the hy term wouid not allow contributions to.
the 312, N12 - C12 transitions.
We will for the moment assume‘thgt hv = hA = 0, The bestvwgy to
search for these terms is presumably through muon capture., The assumed absence

of JAA'O’*I and JAA'O"l

can also be tested in some hyperon decay, like,
_ t t '
€.8. L =+ AN + e + v

Problem

Check points'i. to iii. in particular Eq. (9).
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iet us come back to the axial part. Some insight is gained into it’s'stfucfure
through the use of dispersion relations. Thelidea is to.inveetiéate what systems
can be exchanged between the.nucleon‘and the lepton pairs (in:analogy with the
analysis of electromagnetic form factors). Only one contriButiOn - that of a

pion exchange;- can be completely evaluated in terms of knowp quantities:
¢, A
)

C I  Bppp ¥

7’;C/// < _
One recognizes here the ﬁ decay current (f qu ), the pion propagator .52%;-2—’

T

the‘pzon-nucleon coupling Y5 gnnp

The pion pole contributes to the gA' term: we assume in fact that

]

_ gA is dominated by this contribution, at least for the low momentum transfers

which are relevant in beta decay or muon capture. We are not able to- evaluate

other contributions explicitly, so that 8y remains totally uneccounted for.

We will write:

G A,0 - . mp f
J% <PlJ)\ *“ln> w up Y5|8a Vi + 1 ——Lq2 L2 q, v, (6.11)
. ' . n ) .

Note that we have onlyelearned the magnitude of gA' , not its sign, since from
the pion lifetime, we can only determine. |f|2 . The sign is however determined
by the Goldberger-Treiman relations. |
Problen

Show that a'pole term which coetributesto gA should come form the exchange

P -+
of a boson with- 5 =1 , I=1,G=-1.



The Goldberger and Trieman Relation

This waé obtained in aﬁ attempt to evaluate the piqn_lifetime by
dispersion teéhniques, and accounted for it‘with a remarkabie_accuracy.

I will only give a sketch of'£he original derivation'and will rather
emphasize later derivations of'ﬁhe G-T rglation, due to Nambu; Gell-Mapn ;nd ~
Levy. | |

The original derivation started from the hypothesis that f is dominated
by the viftual decomposition of the pion into an N.ﬁ pair:

_ M
T a )i K\ < (6.12)
o ' - T \E/@<>v -

14

The square box indicates here the process~connected with beta decay,
n+p->+u + vV . This is assumed to have the form discussed in the preceding
subsection, so that the second memeber of the graphical equation above can be

split in two terms:

e M

T, =
f

4
iﬁqp hgk ' : %WMP ivw %

where we have noted the coupling constant at each vertex. The loops on the two
sides correspond to integration over all possible momenta of E'rlpairs. The
two loops result in essentially the same integral, J . Since f appears on o

the two sides, we can solve for f. The result is:



~8-

2 |
g gy J/hm o
£ = 2my —s , (6.14)
, 2 . .
1+ ginp J/hn

Goldberger and Treiman found that J 1is probably large enough, so that we can

neglect the 1 'in the denominator, and have:

v 4 (6.15)

g

f =

'n’np

This equation is neariy satisfied if we insert experimental numbers.
Problem -

Show that up to factors 27 , Eq. 14 follows from Eq. 13. The factor
oy .will be explained later. |

G=-T Relations - other interpretations

The success of the G-T approach remains somewhat mysterious, in view
of the many drastic approximations involved: negiect any contribution apart

from Eh, use of Eq., 1l also far from the region of low momentum transfer, etc.



To understand this let us note that in obtaining the G-T relation,
Eq. 15, thé first member of the symbolic equation 13 has completely
dropped out. We can interpret Xg. 15 as a condition which insures
that the second member of the symbolic equation is not too large,
and large_it tends to be, since it involves an integration over all
possible 5 n  states of any energy. In this sense the G-T condi=-
tion can be seen as a sort of self-consistency condition, which
should remain wvalid even if we include other contributions (e.g.
that of E:_ A* and other hyperon-antihyperon pairs.)

A very simple derivation of -Eg. 15 was given by Nambu.
He noted that--as we have discussed at the beginning of this lecture-~
v all impediments to the conservation of JA.AJO are connected with

the fact that the pion has a non-zero mass. He advanced the hypothesis

ALO ‘
that JA is nearly conserved, and that it is actually a conserved
current in the limit in which we put m, = 0. Consider the matrix
A,LO . '
element of BA Jk among nucleon states. We get (see Eq. 11)

ALO G
($] 3,3, In) = Sl (ploy  In)

4
rﬁlm

1]

=1
N
o
=
U

m
o=

i._l
P
S
]

=
N>
1

A
]@

2
s> 4 ) u(n)

where we have used the Dirac equations for U(P®) and u(n)l(iyf +‘mN)ﬂ(n)

= A(p)(ip + m ) = O. It is easy to see that in the limit m = O
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(®]3, 3,  [n)==>0 ~ (6.16)
: m,~0 : :

if Eq. 15 is satisfied.

The procedure of passing to the limit m - 0 is not.
rigorously ju‘stifibed. We could a‘lso obtain the G-F relation
by requiring that the axial current 1s conserved in the limit of

large momentum transfers:

. A0 : '
o 9, Jy In) =0 ' - (6.17)

2
q ~o

Here one could question the validity of Eq. 11 at large momentum

transfers.

'Sti1l another approach to the G-T relation has been proposced
byr Gell-Mann and Levy, who derive them from the hypothesis that

the divergence of the axlal current is proportional to the pion field:
- A0
3 & () o g (x) o | (6.18)

(If we introduce»a phenomenological form for the current, ad hoc

to explain nt ~+» p + V



\751‘ 3 7)) = 3 ¢ (x) (6.19)

Eq. 18 is satisfied.-)

In conclusion, the Goldberger-Treiman reiation (Eq. 15)
ig probably true to some accurscy, and can be derived from suggestive
prihciples (Egs. 16,‘17, 18). The G-T relation is not, however, on an
equallj firm ground as those cerived from C V C for the vector
part. The understanding of the G-T relation and of its limits
will improve with the improving of our knowledge of strong interactions.

Generalization of G-T Relations

We can repeat the above arguments for other beta decays
of baryons.

A particularly interesting case is the AS = O transition
- 0O - = ‘
E: - A +e +V . : (6.20)

In analogy with Eg. 11 we expect: -

: AsO At a
< ety - aa oo Bt e

7

if we apply to this the Nambu argument (Eq. 16, 17), We obtain an



equation similar to 15:

& _4v= : ,
_ TtZ7A v
f = (mA + mz) i - : (6.21)
- -

If we compare 21 with 15 and (within the expected accuracy of both)

put m, + me ¥ Em’ﬁ we get: |
g g -
. mR (6.22)
38 nZh .

We can a_pbly the same arguments to AS = 1 transitions, only the

pole term is here provided by an intermediate X, instead of a pion.
In this case the dominance of the pole term, as well as the process

of sending e -+ 0 is hawever less Justified.
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Neutrino Processes - elastic interactions

Neutrino experiments give an interesting possibility to study weak

interactions. Some examples of neutrino processes are
\;+n—>p+9,_

V+poru+at (7.1)

- o= + + + +
v+tprp+ T + 2L » etco %2 being wu or ¢

The first two are conventionally called "elastic" processes. One obvious
reason of interest in these processes is the study of the matrix elements of
the weak current st in regions of momentum transfers which are not available
in decay processes, In this sense .the neutrino reactions study the "weak -
structure” of the nucleon in a way very similar to that in which electron
scattering studies their eleétromagnetic sﬁruéture.

Let us consider, for example, the first process in our list. The matrix

element for such a process is given, in the V - A theory, by

-
N
N

G i s - -
& {Pl I\ [n) [uls ) ¥, (v ) u(v)] (
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This is very similar to that for beta decay, the only noticeable difference
being that the v spinor for an outgoing»éntineutrino has been substituted
by an |, spinor for an ingoing neutrino.:

s o : :
We can write the matrix element of JA in terms of four "form factors':

5 |
- 2, Fo(a%) o
pl3,%n> = ulp) F(a%) vy, + 21‘2,— vy +FA(q2)Y>\Y5+FA(q2)q>‘Y5} u(n)

(7.3)

Where qx.= pA - nx is the momentum transfer to the nucleon. For simplicity

we have assumed that terms with "wrong" G parity are absent (see discussibn

2

in previous lecture). For q“~ 0 this expression should reproduce the

expression used earlier in beta decay, so that

Fl(O) ~l

(7.4)
F (0) % 1.25
A

The CVC hypothesis gives a straigthforward prediction on the vector part:
the two vector form factors F; and F, should be equal to the "isovector"‘

combination of the nucledn electromagnetic form factors:
-7, d® (7.5)

(and in particular F_(0) = u = u -, as we have already seen). The axial

form factors cannot be related to other quantities; They are however, expected

to fall down with increasing q2 as the electr o magnetic (and vector) ones.

FAv can be connected again to & pion exchange, but its contribution is always
rather small,

The predictions on elastic processes can be summarized in the following

ways At low energy the cross section increases with the squaref the neﬁtrino



-3~

energy. This is due to the increase in available phase space. When the
energy goes to high values, the phase space increases, but parts of it
correspond to larger momentum transfers q2 s SO that the high energy behaviour
of the cross section is essentially determined by the value of the form factors
fof high momentum tranéfer°

If the form factors tend to zero fast enough, the cross section tends

to a constant value at high energy: -
o AN gam =+l

Fig. 7.1

. > &

This situation is shown in the figure. The difference between the two curves
is due to a change of sign in the interference term among V and A o The
order of magnitude of the cross sections at high energy (“’l_GeV) is typically
¢J10'38 cm, at low energy (few MeV) typically rle-uh cm,

A detailed experiment in which angular distributions (and perhaps
polorizations of the final nucleons) are measured for the two elastic processes
gould allow a determination of the relevant form factors.,

Such a program cannot be pushed very far with present.techniques9 whefe
the actual target ié not an isolated nucleon, but a composite nueleus., An
analysis of the data of the CERN experiment indicates that the picture
described here, with vector form factors equgl to the electromagnetic ones
(as determined in e - p écattering experiments) and axial<véctor form

factors having a similiar behaviour, is essentially correct,

More detailed information on the form factors (in particular the
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axial ones) will have to wait for the use of hydrogen:(bubblé chamber ) fa.rget's°

Hature of the Leptons - Lepton Conservation'.

The first results of extreme interest from neuterino experiments are
related to the nature of the leptons and their interactions,.This ksparticularly
interesting as the leptbns are among the féw particles (together and with the
photon and the vector ‘" .
mesons whlch medlate weak 1nteractlons, if they exist) which_have.some clsim
to the title of "elementary."

The first neﬁtrino-experiment was performed by Cowan and Reines with

pile neutrinos. These are ;', being produced in the beta decay of neutron

rich fission fragments, according to the scheme
(Z,A) + (z+ 1, 8) +e + o - (7.6)

They are expected to produce positrons, and’ in fact were found to give rise to

inverse reactions like

v+(z+l,A)—>(Z,A)+e+ , , ' (707)

The main results of the”low'energy neutrind experiments are
1. Vefification of ﬁhe éxistenCe of‘neufrinose
2 Thévméasured°cross sections were in good agreement with the
‘computed ones., (for the elementary nrocessi V+Dp-n+ e+”;.
'see Nature, 178 hl&6 l956)> |
3. ‘Lepton conservatlono
Léﬂgsvdiscuss briefly this last point: It has been checked that pile antineutrinbs
:don“t'giQe rise fo reactiéns liké' |

PNl R (7.8)



(see R, Davis: Bull., Am., Phys. Soc. 1, 219, 1956 and C. O. Muelhouse and

S. Oleskas Phys. Rev. 105, 1333, 1957).
At present times we would not be surprised at all of this result,
since we know that v and v (defined as the neutrinos emitted with et

and e~ ) have always opposite'helicity; this is enough to predict the

result of £he chlorine experiments. (see the discussion in the third lecture).

The Two Neutrinos - Muon Conservation - Neutral Currents

The main‘result of the recent Brookhaven and Cern experiments concerns
the exiétencerf two different neutrinos, one of them associated with electrons,
the other with muons, 've and vu o |

The existence of two neutrinos was already suspected by using
theoretists, as the only means fo forbidding transitions of muons into electrons,

namely processes,like

be w  +p->e” +p (7.9)

for each of these processes we have now very good higher limits, if compared

with the normal known decay or muon capture. The first idea in looking for

‘these processes was to see whether one could detect the cqupling of neutral

lepton currents. All the known leptoniC'processes.involve the interaction of

a charged current, (ev) and (Wv). Thefe is apparently no a priori reason

why neutral lepton currents like, (vv), (;é), (We)and (wu) are not coupled

among themselves and with corresponding currents of strbngly interacting particles,

like (pp), (A n), etc.
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The coupling of neutral lepton currents with themselves would give
rise (if the (ue) current is among them) to the processes 7.9, and also given

‘e
A

contributions to processes which already happen via the charged current J o
Muon decay, e.g., would have two contributions:

G = —_ e , | (7.10)
(wv) (ve)+ (ue)(vv) : : ‘ :

Other lepton processes induced by neutral currents, like v -.v scattering .
arelclearly undetectable.
The coupling of lepton neutral. currents to their strong interacting

‘particle counterparts could give rise to

+ + - +
K' >y +e +n1

K* > et + e” + n
K+ . u+ U+ 1T+ (7.11)
v+p->vuv+Dp etc, '

All these . are known to(be less frequent by at least ~AU10° 10

than correspogding "Qharged current” modeso
As we will sée later when we discuss noh'leptonic decays, neutral - .

currents of strong interacting parﬁicles are probably coupled among themselveé,
so that the non coupling of lepton~currents.is rather puzzling, and has always
been a serious obstacle to a really universal theory of weak interactions.b

' It was soon realized fhat the "unwanted processes"'h7;9 wéﬁld also
happen without the intervention of neutral cﬁrrents. If we assumé that the
interaction between £he chérgéd currents (E'v) and (V e) . responsibie for

muon decay, is mediated by a charged vector meson Wf, u - e+ vy could



proceed through the following mechanism:

¢
(Fig" 702)

Once u > e + y 1is allowed, the other two could also be produced through the

exchange of virtual photons:

7{\> g (Fig. T.3)

Even if W' does not exist, it is'possible to find other mechanisms to
produce u > e + v . -

A-selection rule forbidding 7.9 can be established if there are two
different neutrinos, one connected with the muon, the other wiﬁh the electron.
The lepton current is then written as

JAZ =(§- v, (1 + Ys)vu)+(€ v, (1 * ) \)e) ' (7.12)

In this case the unwanted processes 7.9 are forbidden; for example the

mechanism in Fig. 2 would not work because. at the lower vertex a v is

emitted which cannot be subsequently reabsorbed at the upper vertex. In fact,

if the leptons couple through the current 7.1l2 we have two conserved quantum
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numbers relating to leptons, instead of only one (the lepton number)., There
are many different but equivalent ways in which these numbers are defined.

The table below shows a possible choice.

Nl Nu B

+ —
e, Vg -1 0
e, Ve +1 0
+ - _ :
H 9V -1 -1

u
W ovy : +1 ' +1

Ny is here the old lepton number, N is the vmuon?'number, In w+e+y
and other procegses T.9 the muon number -Nu changesvby one unit, so that
they are forbidden.

The neﬁtrinos.used in high energy ﬁéufriné experiments- at Brdokhaven
and CERN come mainly froﬁr m > uv  decay. Under the two-neutrino hypothesis

they should give rise to muons, according to

vy#n..pp+u"

(7.13)

- +
vu +p~*n+u ete,

and not to electrons. If there is only one kind of neutring, electrons and
muons should be produced in essentially equal numbers. In both experiments
the observed events were mainly muons, the few electrons being compatible

with a small admisture ©of Vv from K> e + 1 + ve or muon decay.
e - ‘



"Neutrino Flip"

o

Another theoretical possibility which has been discarded after the
recent neutrino experiments is that of a "neutrino flip". The idea was based , -

on a possible similarity between muon number and strangeness: it was proposed
hal

that in AS = 1 processes the neutrino - charged lepton pairing could be

-

opposite to the normal one: for example

Normal "Neutrino Flip"
+
o> ut o+ v eyt ey
H u
+ + + + : .
K >y + v , KT s T+ (7.14)
u =
+ + +
K->1ro+e 4-\)e K->1r0+e -+-\)u

etc.

The high energy neutrino beams, apart from = > uv neutrinos, contain also
a sizeable number of K - pv neutrinos which according to the neutrino flip
hypothesis should then interact and give rise to electrons instead of muons

(in AS = 0 interactions like those in Eq. T.l). This possibility‘has been

2

experimentally excluded,; and bne must conclude that the same current JA

(Eq. T.1l2) acts in both AS = Q0 and AS = 1 leptonic processes.
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Schemes for Weak Interactions

In the preceding lectures we have mainly discussed leptonic decays
* and leptonic interactions in general. Our knowledge of these can be reviewed
in the following: |
a. Leptonic weak interactions are of the A - V +type, naﬁely :
-described by
A RN AR N . (8:1)
bo- The structure of sz' is well known. .This strgctnre has been
»tested,inlmany-experiments,'among which we can recail those on
beta decay,'the‘meaéurement of differenﬁ parameters in muon decay:
-(the p=value, the iongitudinal polarization of eﬁ' in ug decay,
etc.), the rétio of ™+ ev/m + v , the heiicity of muons iﬁ
M+ uv 9~and'finaily the neutrinc:expe:iments (for the existence
of two neutfinos with no neutrino flip).
¢, The structure of .Jksjg thg weak current of stropgly interacting
 particles” is not known in comparable  detail. The accent~here.is
pore on general propertiéé“éf- st fhan.on a sing;e piece of

information about one of its matrix elements.
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The most remarkable facts about JAS are its selection rules (see second

lecture}, the validity of the CVC hxppfhesis, which connects the AS = 0

vector part of JAs with the current of isospin, and the success of

Goldberger-Treiman relations; which connect the AS = 0 axial part of JkS
e ,

with pion physics All these aspects can be extended and unified if the

larger (SU3) symmetry of strong interactions is taken. into account.

Non leptonic decays

Before going into a discussion of this let us discuss briefly the
non=]eptonic decays. The problem here is that the strong  interactions among
all particles involved make it difficult to.retrieve the structure of the
weak interactions which cause-such decays.

The only experimental feature of non leptonic .decay, vhich has any
relevancg to their general structure is the. wvalidity a‘with,gobd‘approximationw

of two selection rules:
fas] <2 (8.2)

AT = 1/2 for AS = tl
A direct evidence against the existence of AS = 2 transitions is the absence

¢f the decay

o Tme
>

+ n + ‘"‘u (803)

which is at least ~ 100 times less frequent than the normal mode = + A + # .

An indirect but more stringent evidence comes from: the Kol - KO

difference. If a Ko * ﬁb transition were directly permitted in the lowest

order of weak interactions, this would bring to ¢ mass difference of the

2 mass ' -

order of ‘1 = 10 eV. The observed mass difference is however much smaller,



of the order of 10°° eV .and is understood in terms of second order

Ky * Ky transitions, e. go:

-pr-f'
TN
&
Ko -
4 n- Ko

—tr g

The A4I =.1/2 .selection rule haBYOnly-”direct" checks; based on predictions

of the kind

Kl-bﬂo-i'no

an

1 N ,

- etc, , (8014)
K l. at o+ x 2 S :
A discussion of the experimental checks of AI'= 1/2 has been given by

R. H, Lelitz (Reports: of the: Int. Conf, on'Fundamentél Aspects of Weak
‘Interactions, Brookhaven, Sept. 1963)., The .evidence for the ruieﬁ which was
already found convincing at that timg;hasfimproved recently. The'fifst hint
 for the validity of AI = 1/2 came from the very slow rate 6f K* » w+ + 70
which is - ~T700 time less;than'the rate for Kol + 21 ., The two pions in
x* dec&y'are'emitted'in~a I'=2 state, so that the process would be
forbidden by Al = 1/2.
Problem Prove‘thg above, and also that the tw0'pions'in' Kol + 74+ 7 can be
in I = 6 , 'which leads to Eq. 8.k,

It is .amusing to note:that thisvratiO' 1:700 is now one of the main

difficulties to thé*unrestricted validity of AI = 1/2 , Violation of these
rules are expeétedvto arise from eléctromagnetic corrections (virtual emission

and reabsorption of a photon) and to be therefore of orderﬁ Y al 1ofh9

instead of & L0’3 . A possible explanation of this descrepancy arises

from SU; ,and will be discussed later.
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" Thecretical Interpretations

It would seem that the simplest possibility to explain non leptonic
decays on & par with leptonic ones is to add to ‘Eq. 8.1 a term with couples

J.® with itself:

A

£ 5,80 | (8.5)
2
this approach has the nice featuré"that Eg. 8.5 and 8.1 can be rewritten

together as the coupling of a single current with

(e +ah (3,50, | (8.6

V2

itself. This schemg is unfortunately not very satisfactory because it does
not give rise to £he ATl = 1/2 rule.

..In'fact we know ‘that the AS = O part of J,° has Al =1 , the
AS_=‘1 part has _AI_= 1/2‘0 (Bothlselection rulés are assumed to be validg_v
as digcussed in fhe second lecture, and are supported at the moment by some
experimentg; evidence. The following argument would not be weakened if
JAS had alsoc, e; 8., some AS:=.O,VAI = 2, but it would be some what different).
The two parts have therefore the same I spin behavior of r* and ‘K+c It
follows thgt the A4S = l'vpart of Eq. 8.5 has the .same I spin-behgvior as

K* 77, which is & mixture of I = 1/2 and I =3/2 .

i

In order to get pure O4I = 1/2 we should add to Eq. 8.5 and 8.6 a

term which contains the éoupling_of ngutra; currents, This can be seen
imm&éiately througﬁ the analogy with piqgs and Kaons : a neutral system
with . I = 1/2 and zero charge is

vj’%j K* ™+ }33 KO no

: ¥y 3



Ly

“5e

Similarly with our currents: to get an I = 1/2 objecﬁ from a triplet

1, I = 172) we nmust .

{AS = 0, I = 1) of currents coupled to a doublet (AS
also eouple the neutral components. As we have seen it is difficult to
include this into a really elegant scheme iﬁ view of-the fact that neutral
lepton éurrenté do not seem to be coupled at all, .Even if they have a very
small.coupling kwhich is still possible)Athe situation wouid not be
symmetric,

If the term 8.5 enters (even if not alone) in the description of

noh leptonic décays, there is a connection of the |AS| < 2 selection rule

for non leptonic decays with the A4S = AQ selection rule for leptonic decays.

If both AS = AQ =1 and AS = - 0Q = - 1 terms enter in JAS:

I don't want to discuss here fhe many thecretical séhemes based on
current-current interactions to inélude lepponic and non leptonic inferactionéb
Mény of {hese were strongly influenced‘by the uncertain experimental situation
of the &I % 1/2 rule for non leptonic decays and the AS = AQ .rule.( and -

AL = 1/2) for leptonic decays.,
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Universality of Wweak Interactions; A Simple Model
I, Uni?ersality

In the followingvdiscussion of universality we will limit ourselves to
the case of Leptonic processes, where the influence of strong interactions can
be to a certain extent taken into account.

The necessity of understanding weak interactions as a "universal" force
stems from a comparison with our conceptions about thé strength of the other
three basic forces in nature, Electromagnetic and gravitational forces are
described in terms of two universal parameters: the gravitational constant,
and the elementary unit of charge. Strong interactions are not cﬁaracterized
by a well defined number, but we think now that their strength is dynamically
determined by conditions of analytiqity and unitarity of the S matrix.

Weak interactions being akin to electromagnetic and gravitational ones
in their "ess than "maximdl"streﬁgth,-it!is desirable to describe them in terms
of o éingle parameter, . for exampie the Fermiicoupliﬁg constant G ,'as'méasured
in mﬁon decé.y°

To see whether this is possible, and in what sense, we should compare
the strength of different weak processes. \In this we are to & certain extenf
helped by the conserved vector current hypothesiso Assuming this to be valid, -

and taking into account radiative corrections to both wn-decay and beta decay
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one obtains (see the lecture on CVC).

2
(1 - (ko5 ¢ 1.5)%] (9.1)

g
It
oiQ

A more serious discrepancy arises in the case of NS = 1 decays of hyperons.

In the case of

A>p+e + Ve ' (9.2)

we find experimentally & branching ratio which about 15 times smaller than
ohe would expect assuming that the vector and axial coupling constants are of

the same order of magnitude as in beta decay. The same happens'in all

AS = 1 leptonic decays which are consistently less intenee than corresponding

AS

Q decays, Since the AS = 1 current cannot be conser&ed, this latter
dis¢repancy éould be attributed to large renormalization efféct, but this is
not a very satisfactory'sbiutiong

| A better one seems to accept these discrepancies as basic "facts of
life". 1In the next lecture I will describe a theory of leptonic interactions
which is based on a modification of the concept of universality and on the
approximate unitarity'symmétry of strong interaétions (su

3

like to discuss a simple but unrealistic model, in order to illustrate this

)o Here I would

new conception of universality without the machinery of SU3.

II. A Simple Model

Let us consider the ﬁse in which P, n, and ‘A are the only existing
baryons.. We will have two kindé of lJeptonic decays: the beta»decay of the
neutron and the beta decay of the A (9.2)., Assuming the two ‘interactions
to be of the YA(1'+’Y5) kind‘we can write the e%fective Hamiltonian in the

form _



F%[a(; ¥ (Lrg)n) + (p vy (I+yg )] (8 vy (1 + vo)v) (9.3)
Where a and b are the strengths of the two interactions. Note that both the
AS = 0 and AS = 1 parts of the currént of strong interacting particles

multiply the same lepton current. It is convenient to regroup the factors in

Eqs 9,3 and rewrite ‘it as:

1/2 (an + bh)

(o545 J%' [ ® KEEREI T J(g nrrs) ve) o)

Equation 9.4 has very interesting consequences in the mse in which- A and n-

are supposed to have egual masses (but still higher than the proton to allow

their leptonic decays). In this case one would observe particle

mixture effects not unlike those which are actually observed for K° and K°
The decays of N and  \ will be better described in terms of two

mixtures:

. _ i

2 2,7 2

(an +m) (a +.1b°)

1

nﬂ

(9.5)

(bn - a/\)(a2 + b2)

op

]

A

.of these only the first could beta decay, the second being stable.
the values
So we see that, independently/of a and b we cannot. in the limit

of mass degeneracy have all decays of equal strength.  We end up with one
particle, n' ;, which has a beta decay with strength G(a“ + b ) , and

another, A' , vhich is stable, We can still have uniﬁersality if we require

o a cos 6
a + b° =1 or (9.6)
b sin @ :

[
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This condition insures that the amplitude for the g decay of n' is equal

.to that of muon decay., This situation is similar to that in electromagnetic

interactions: not all the particles have an electric charge, but those which

have one, have a multiple of the electron charge, In this

model, universality does not say anything on the ratio a:b , but only cohcerns
the overall coupling strength,

If we reinstate the p = A mass difference we find their two beta
decays to be (apart from phasespace factors) in the ratio a2:b2, and if we
choose

. 2o A 2 L . :
51n“8 % 0,06 cos“8 x 0.9k , . | (9.7)

we can roughly understand both the low rate of A Tbeta decay and the

small discrepancy in normal beta decay (Eq. 9.1). This unrealistic model,'

" where we neglect the existence of L .and E hyperons, contains the

interesting idea of the sharing of a universal weak interaction among AS = O

‘and AS = 1 processes. » b

The sharing depends on the particular way in which the degeneracy of
and n is removed byvstrong interactions,. .This is done in such a way
that A and n have well defined mass, while from the point of view of
weak interactions n' and A' would be more significant° In fact if strong
interacfions did nct provide a mass split between n and ‘A , weak interactions
would provide a small mass split between n' and A°® , as is the case in

K°® K° ‘system, where k' and X° have definite masses,
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