
UCRL-11363

c..~

University of California

Ernest O.
Radiation

Lawrence
Laboratory

TWO~WEEK LOAN COpy

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

POCKET -A POOR MAN'S LIBRARY SYSTEM
FOR COMPUTER

Berkeley, California

~
~
l-
f --

DISCLAIl\1ER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

"1.,. • ,

.~.

Research and Development UCRL-11363
UC-32 Math. andCornputers

TID -4500 (30th Ed.)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W -7405 -eng -48

r
POCKET - A POOR MAN'S LIBRARY SYSTEM FOR COMPUTER

Alan Natapoff

April 8, 1964 I

J

Printed in USA. Price.$1.00. Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D.C ..

•

. ..

'.,

. ~

-iii - UCRL-11363

POCKET - A POOR .MAN'S LIBRARY SYSTEM FOR COMPUTER

Alan Natapoff

Lawrence Radiation Laboratory
University of California

Berkeley, California

April 8, 1964

ABSTRACT

This report describes a computer library system, POCKET, which
was designed for general use with scientific experiments. POCKET is written
entirely in Fortran IV programming language and can be applied to a wide
variety of tasks by providing an optional, user-written subroutine. The pro
gram accepts and yields a variety of input and output forms, under the direc
tion of the user. A versatile control-card reading routine permits the entry
of arbitrary additional data. POCKET is designed to be convenient, versatile,
and simple at the cost of speed. On a typical problem, it handled the input
and output of about 1600' records per minute on the 7094, using standard
Fortran library routines. A simplicity of logic is achieved by imbedding the
forms both of the library records and the editing instructions in the same
form. The system has been in use for several years .

/'tw"

'.1

-1- UCRL-11363

POCKET--A POORMAN'S LIBRARY (A MINIMUM FORTRAN PROGRAM)

I. INTRODUCTION

A. Some Pseudo-philosophical Considerations (What Every Librarian Knows)

In Old Testament days, taking a slave from among the Sons of the
Covenant was a perilous affair. The laws governing their treatment were so
severe that unless great care were exercised, the annoyance often outweighed
the benefit.

In the view of certain computer users, a similar situation. exists with
respect to the us e of computer programs to perform library functions. Yet,
the prospect of having a computer assurriethe drudgery of record keeping is
so attractive that it can cause on to forget warnings. There follows a dis
cussion of some of the unignored warning-s and of the particular compromise
between generality and convenience embodied in the Fortran program POCKET,
a program that pretends to deal with the problems in first order.

Let us think of a library system as a program that:

I. Summons all previously gathered information andpresents it as
an ordered entity, I

II. Permits periodic augmentation of the body of inforITlation always
preserving the order of the whole,

III. Permits the editing of information already digested.

These functions may be called the basic library functlons. Most
library programs, however, perform additional functions such as that of ab
stracting, (presenting selected subportions of the collection of information),
scrutiny (examination of and rumination over pieces of new information as
they enter the body of information), integration (comparison of several neigh
boring records in search of information not contained in any single record),
and error checking. .

Although the list of basic library functions might be rejected by many
as incomplete, they already place heavy burdens on any program designed
to implement them. The editing function, for example, implies a system of
notation for refe rring to records already in the library.

The program must, of course, be able to distinguish editing refer
ences from the ordinary information being fed into the library. If editing
and ordinary information are handled concurrently by the library (as con
venience dictates they should be) either there must be separate forms for
the presentation of each, or else the program must be told whether a given
piece of information is to be treated ~s data or as edit information. To
clarify this point a little, we can think of an editor in a publishing house who
is given a typed manuscript to work on. He must insert pieces of copy at
times, but he must also give instructions to his secretary as to how to type
the new version; Further his secretary must be able to distinguish words

-2 - UCRL-11363
~

that are to be entered into the manuscript from words that are. meant only to
instruct her in the revision of the manuscript. If she could not so distinguish,
poems might be printed as

"Wherefore should any set thee love apart,?

Type this triple - spaced with 1-1/2 inch margins

Seeing none but: I makes ,much of, nCi,ug,ht (He;;,said)'1

The editors, of course, have a simple solution. They write comments
to their secretaries (editing information) in red pencil, and insertions in blue
pencil. This provIdes a convenient double language adequate for editing. A
possible alternate solution to the problem is to precede each sentence of an
editing comment with the symbol ':', and each sentence of an insertion with $.

For example, of the two sentences below:

':' Use your judgment in modifying the blocking of the text.

$ Use your judgment in modifying the blocking of the test.

the first would be an editing comment, and the second an insertion into the
text.

This latter .scheme is presented because it is an exact analog of the
system we actually use in our program, POCKET. It realizes the dual lan
guage nece s sary to permit editing, and it enables us to cast all statements
to be fed into the computer in precisely the same form, with the first field,
say, distinguishing data from editing instructions.

Thus we achieve our dual language by imbedding both sublanguages In
a single language of highe r level. Doing so grants us a certain technical
simplicity.

To avoid se-rious complications analogous to those situations' in logic
related to Russell's· Paradox, we must restrict the editing function of our
program to operate only on information (not for example, on other editing
instructions). This completes our introduction to the problem.

A few simple examples given later may dispel some of the haze intro
duced by the generalities presented.

B. General Description

The POCKET library system was designed for use with scientific ex
periments and claims to be simple, general, versatile and open-ended. It
does not claim efficiency either of operation or of memory use. Using the
POCKET guide, a person could tailor his own library program in one or two
hours without needing to know anything technical about programming. The
resulting program would perform all of what we have called the "library
functions" (collection, collation, and updating) provided the basic data he
wished to keep in his library satisfy a. few simple requirements as to form.·

The bi1sic unit of the library is the record. A record can in general
be:

,~

'"

-3- UCRL-11363

i. A card (converted tomagIletic tape) punched as on a keypunch
machine.

ii. A group of such cards numbered consecutively (conyerted to mag-'
netic tape).

iiLA binary record written by the compute:r: on an earlier run.

The restrictions imposed' by POCKET are:

i. Each reel of tape proces sed by the program must consist entirely
of records of identical length and format. (The single relaxation permitted
is discussed later in the section on the SHRIVE subroutine).

\ ..
11. Each record must contain fewer than 1024 pieces of information.

111. Each record must contain three (preferably more) dummy fields
for use by the program in implementing the "double language" spoken of in
the inttoduction. These fields may each be located anywhere in the record,
but they must carry no data. For example, if the record were a single puched
card, leaving columns 73 through 80 blank on all cards would satisfy this re
quirement. (See the section on recommended procedures for further details).

C. What POCKET Does .'

The POCKET library system is a set of routines written entirely in
FORTRAN IV language. Its input and output are managed by the standard
Fortran library routines. It handles any subset of the following:

i, An input tape (or set of tapes) of new data to be entered into the
library.

ii. An old library tape (or set of tapes) to be updat'ed by the input.

111. A new library tape to be written that contains the merged old library
and new data.
Each of these consists entirely of records of a single format although they
need not agree with each other. If, for example, any input were on single
card re~ords, the entire input would have to be on single -card records , but
the output could be a tape of binary records.

Let us assume, for the moment, that all the "sources" are in use
(input, old library, and new library). Then the program merges the input
with the old library according to an ordering scheme specified by the user
in the control cards, and writes a new library tape. The functions of the
various parts of the system are best illuminated by giving the history of a
record that is on the point of being written on the new libl?ary.

First, the record is examined by subroutine CENSOR to see if any
editing is to be done on it. Perhaps the user has specified that this particular
record is to be deleted. Perhaps the record is to be llsuppressed" (see the
description of CENSOR for a discussion of what this means). In either case,
CENSOR makes the decision, and communicates it to the ITlain program.

Second, the record is presented to the SHRIVE subroutine for whatever
action is deemed appropriate. SHRIVE is a dummy subroutine that may be
written by the use r to achieve any function not provided for by the system.
~The SHRIVE routine has access to all the information available to the main
program and is therefore expected to provide a medium for a very large range
of applications.

-4- UCRL-11363

Third, the record is written on the new library, provided that CENSOR
has not previously caused its deletion. This writing is achieved by the
ESTHET routine.

Fourth and last, the record is examined by the BARD subroutine,
which sees if the user has specified in the control cards that a summary of
the record be written, and obeys.

These four functions comprise the heart of the system. CENSOR per
forms the editing; SHRIVE performs any task the user specifies; ESTHET
mediates all input-output functions; BARD writes summaries of records, if
they are requested. Each subsidiary subroutine is described in some detail
in a later.series of sections.

It is clear .that .the so-called "control cards" (cards punched by the
user to guide the function of the system) play an important role in the system.
We say a few words about them here and defer detailed description to a
special section and to the section on the SPADE sub:routine.

For a very wide range of applications, the control cards are the only
medium used to communicate with the system. Each card contains about six
to ten pieces of information, and the information is used for several major
purposes.

First, the control cards describe the records appearing on each source
(input, old. library, new library), specify which sources are in use, and give
the information needed to actually run the program (numbers of tape reels,
tape unit numbers, etc.).

Second, the control cards give information to be used by the various
subsidiary subroutines. They specify which optional functions are to be per
formed and provide the parameters needed to perform them.

Third and last, the control cards permit entry of arbitrary sets of
information into the memory for use, if needed, with the SHRIVE routine.
With this facility, a user need not provide any programming, but can enter
his parametric data conveniently when he provides the information needed by
the program itself. .

The table below lists the major and minor subroutines,' with a short
description of the function of each. For each routine, there is a separate
discussion in a later section.' For descriptions of the less important routines,
the user is referred to the FORTRAN source listings themselves. These
contain extensive comments to facilitate their use.

p

I.,,;;'

Subroutine

POCKET

BARD

CENSOR

ESTHET

ETSEQ

SPADE

TENDRE

BLEDA

CHEKA

CHOPIN

CIT

CLOCHE

CONUBI

DERERA

EREXIT

EXIT

IDIOM

JUGGLE

OPINE

REWUNL

RIVAL

SPARE

SUTTEE

-5-

Table of the major and minor subroutines
in the POCKET system

Function

Central routine

UCRL-11363

Writes descriptions of selected records, when requested to
do so by use r through the control cards

Controls all editing functions (deletion, suppression)

Cares for all input and output of records from and to the
various sources

Sees to the options that order the input records when requested

Controls handling of the control cards

Tends to the ending of output reels and the detection of the
ends of input reels

Block data program storing certain fixed information in
storage before execution starts

Decides whether a given tape number is in use by the monitor
system

Places a given alphabetic (BCD) text in an array convenient
for writing

Initializes certain regions of storCige

Oversees the use of the clock-interrupt feature

Converts integers from one base to another. (Used to con
vert from BCD to integer form)

Called by ESTHET for input-output control. This is the only
routine that actually calls input Or output routines for handling
library records.

Causes an error exit of the program in case of palpable
malfunction. Gives a memory dump and an error message.

Causes a dUmp when EXEM causes a Fortran error exit

Inserts single digits into numbers written to any base

Subroutine of ESTHET permitting arbitrary manipulations of
records

Handles all on-line comments to operators

Rewinds and unloads a given tape unit

Mediates comparisons between two records to determine
precedence, identity, or similarity

Calls input-output routines for SPADE. (DERERA: ESTHET::
SPARE: SPADE)

Sets up the writing of record summaries for BARD

TRAP

ZENO

-6- UCRL-11363

Senses the condition of the dock for dock-interrupt options

Searches arrays logarithmically for, table look-up pu:rposes.
Used with subroutine CENSOR to scan editing entries.

-7- UCRL-11363

II. CONTROL CARDS FOR POCKET LIBRARY SYSTEM

A. Introduction

The control cards for the POCKET library system form the tool for
shaping the system to the needs of each particular problem. They are sup
posed to be simple and convenient to use. They perform their function by
filling certain lists in COMMON storage that are referred to by the system .

. When these lists are completed, the program is ready to execute the library
program tailored by them.

' .. Since the control cards refer to several separate lists, it is convenient
to divide them into sets, each set specifying a particular list. The card mark
ing the end of each set also specifies the list to which the next set refers.
This will be made explicit after the form of the control card has been discussed.

B. Description

Each control card is divided into three parts which are, in orde r,
data, card number, mask. The data is the information to be re'ad into the
list, and is separated into a number of fields, each field filling one element
of the list being filled. The card number, if positive, indicates into which
places in the list the data from the card are to be inserted. If the card num
ber is negative, the card is called a "marker cardH

, which is not considered
to contain data but rather causes the program to stop reading cards. Specifi
cally, if the card number on a card is-N (N positive), then reading ceases.
For N = 1 orN = 2, the program modifies its own parameters and begins to
read again as discussed in the section on subroutine SPADE. For N = 3, 4,
or 5, an error return will occur. N = 6 marks the end of a set of cards, but
implies that another set is to follow .. The digits of the mask determine which ..
list the next set will fill. In pC3;rticular, 10XMASK(9) + MASK(10) gives the
number of the list (see below) which will be filled by the next set of control
cards. N = 7 marks the end of a set of cards and implies that the current
set is the last of the current block and that another block is to follow. FO.r
N = 8 or more, the implication is that we have completed reading all.the sets
for the last blockbf the current run. The division of the program into blocks
is discussed in separate section.

In general then, positive control-card numbers indicate where informa-
- tion is to be stored. Negative control-card numbers indicate "marker cards".
Subsets of data for a given pass are separated by a card numbered -6, sets of
data for successive passes are separated by a card numbered -7, and the end
of the data for the last pass of a run is marked by a card numbered -8 or.less.

The mask isa set of ten integers used on cards of positive card. num
ber for cutting and fitting data of different format into a single array. This
feature, however, is never needed for the standard options of the POCKET
library. It is provided in case the user-written SHRIVE routine requires a
mixed array. The section on the SPADE subroutine contains a complete
description of its use. Ordinarily, the mask digits on data cards are left
blank. On cards having negative card numbers (marker cards), the mask
serves an entirely different purpose. The digits in it are used to control the

-8- ,UCRL-11363

further course of the progra:m. In particular, if the card nu:mber is -6, the
last two digits of the :mask (see above) for:m the nu:mber of the list that is to
be filled by the succeeding set of :cards;: The' use of the :mask for cards nu:m
bered -1 and -2 is discussed in the section on subroutine SPADE.

C. The Lists and Their Function,

There is provision for 12 lists, of which five, (JINN, KHYBER.",
JORDAN, FORM, LOBOS), are usually required, two :more are required for
the special case of :multi-record inputs (see the section on subroutine
ESTHET), one is left blank for use as a co:m:mon working storage area, and
four provided for optional data used in connection with the users SHRIVE
:routine. The lists are given in Qrder below, each preceded by its identifying
inde,x:

1. JINN (General Input Quantities)

JINN is the :major array to be filled. The first control cards read in
for any pass are assu:medto refer to JINN. The control cards are assu:med
to be in the standard for:mat nu:mber 1" an integer for:m (1016, 4X 16, 1011).
The standard for:mats for reading (1016, 4X 16, 1011), (5E12.A, 4X 16, 1011),
(10A6, 4X 16, 1011), and (5012, 4X 16, 1011) and the ,correspond,ing standard
for:mats for writing for later offline printing are given in subroutines CIT and
BLEDA., ,One :major function of the array is provision of operating para:meters
for the various :major subroutines.

Equivalent to the area

Na:me of array froni. JINN() to JINN() Pertinent routine

MUSSET 11 20 BARD

LENOX 37 40 ETSEQ

KENO 51 60 CENSOR, TENDRE

MURAD' 61 70 ESTHET

LOREN 71 80 CENSOR

Outside of the' routines naniedtnese parts of JINN are referred to if at all,
only to write out their, contents.

JINN(1) "L UHS UN" contains the logical nurnbe r of the tapeuitit onto
whIch all writing for off-line BCD printing of re:marks, error:messages,
control card contents, etc., is done.

JINN(2,3) contains the logical nu:mber of the tape unit on which record
reports; if any, requested via BARD will be written. If the reportls for a
re'C:ord just read {ro:m the (input, old library), it will be written on tape
LUHSUN(2,3).

JINN(21,22,23) "LASER" contains the IlU:mber of words on a record
from or to the (input, old library; new library).

" JINN(24,25,26) "JUNO"cbntains the logical nu:mber of ,the tape unit on
which the (input, old library, new library) reel is to be :mounted.

-9- UCRL-11363

JINN(31, 32, 33) "JAFFA" contains the number of tape reels expected
to be fed into the (input, old library, new library).

JINN (41) "KLAXON" is the maximum number of records to be written
on any single output reel.

JINN(42) "NUECES" is the number of back records to be kept in storage
after being written on the new library. The records are escalated in ANNALS
and are available for examination by SHRIVE. This feature is useful infacili
tating"integration of records", the extraction from a set of neighboring
records of information that was not coptained in any single record. In partic
ular, different measurements of the same experiment may be compared and
conflicts in interpretation resolved. This feature, called the escalating
feature, is discussed more fully in a separate section.

JINN(43,44,45) "LANUM", "LADEN", "NIBBLE" .. In order to use,
storage efficiently, all storage of record references is kept together in
ANNALS. This region is consecrated to two different purpose s, however --
the escalation of events and the storage of editing references .. The portion
of ,ANNALS devoted to each is determined by LANUM, LADEN, and NIBBLE.
First, NIBBLE is the length of bank in storage to be set aside for each record.
Four such banks are set aside in ANNALS for ordinary processing. Of the
remainder, the fraction LANUM/LADEN is devoted to escalation, and the rest
to storing the editing commands to be applied during execution of the program.

JINN(46) "JERKIN" (end-reel suppression code). At the end of a reel
of the new library, a POCKET-type end-of-reel record is written. This is a
record, recognized by TENDRE, that indicates that the end of the reel has
been reached, but does not abort the program as would an end-of-file record
might. This POCKET-type end-of-reel record is not written on the new
library if JERKIN is an odd number.

JINN (48,49,50) "LOTHAR" give the tape -handling code for the (input,
old library, new library). The tape-handling code is a three-digit binary
number whose bits refer, in order (low-order bit first), to (ending file,
rewinding, unloading). If the appropriate binary digit is (0,1), the correspond
ing function for the appropriate source (is not, is) suppressed if it would have
been performed. For example, suppose LOTHAR (1) = 6 = (110)2' Then the
ending of file is not suppressed, but rewinding and unloading are suppressed
for the input [source 1 is referred to by LOTHAR (1)]. Now the input reels
are never written on, so that no end-file would be written in any case. Thus,
the input reel is left precisely where it was. This may be convenient for use
in the next pas s.

The general rules for tape handling are:

System tapes are never rewound or unloaded, nor are ends -of-file written on
them. The minor subroutine CHEKA tells which tapes are system tapes.

Input tapes are never written on nor are ends -of-file written on them.

Otherwise, all tapes are ended (file), rewound, and unloaded unless specified
oth-e rwis'ebyl the':approp:hate entry iiri.LOTH;AR.

-10- UCRL-11363

2,3,4,5. CERES, GUISE, ICARUS, and LUCRE

Optional arrays provided for use with user-written SHRIVE
routine, if needed.

6. KHYBER Code specifying the kind of data in each word of the record

KHYBER(J) is (1,2,3,4) according as the inform.ation stored in the Jth
word of the record is of (Integer, Floating-point, Alphabetic, Octal) m.ode.
It need not be true that input, old library, and new library have records that
correspond in the orde r of ite:ms. For exam.ple, the record written on the
new library m.ay be longer than the input record. Or, the item.s ·on the input
records :may appear in a different order on the old-library records. Such
circu:mstances occur, for exa:mple, when the POCKET system is: used to
change the for:m of a library to another, perhaps m.ore convenient, form..
Apart: fro:m use in SHRIVE, the array KHYBER is used to facilitate co:mpari
son of input and old library records so that the order of records is preserved
in the new library. The array refers to the single form. of record appearing
in :me:mory while POCKET itself is handling the record. Differences of order
and length such as those discussed above, are accom.m.odated by the ESTHET
routine. The :means of accom.:modation is explained in the section discussing
that routine. Thus, there is one form. of record in m.em.ory at a ti:me, ir
respective of the disparities in for:ms of input and output, and KHYBER refers
to this single for:m. The disparities are resolved in ESTHET.

7. JORDAN (Order specification)

Specifying the orde r of records in our library reduces to the problem.
of specifying how to decide which of two given records A and B is to precede
the other. The decision is m.ade by co:mparing the contents of A and B for a
specified set of fields, in order, until an unequal pair occurs. The set of
fields to be co:mpared is given in JORDAN. The num.ber of the first field to
be co:mpared is given (by the control cards) in JORDAN (1) and the nth in
JORDAN (n). The progra:m com.pares the fields of records A and B as pre
scribed by JORDAN until, for some n, I = JORDAN (n) and A (I) is not equal
to B (I). If A (I) is greater or less than B (I), then (B,A) is said to precede
the other. Since nu:mbers of fields :must be positive integers, we specify the
length of the list in. JORDAN by a zero or a negative ele:ment. If JORDAN (J)
is (0, negative) it i:mplies .then that the last elem.ent of JORDAN is the
(J'-'1, J)th (see the exa.:mple below). If the JORDAN list is exhausted before an
unequalpair A (I), B (I) is found, the record fro:m the old library is assu:med
(by right of seniority) to precede the record from. the input.

For exa:mple, if JORbAN is (8,6,3, -7), then A (8) is com.pared to B (8).
If A (8) is greater than B (8), B goes on the new library first, and vice versa.
For A (8) = B (8), A (6) is com.pared to B (6) in the sa:me way. If all four pairs
of ele:ments are equal [A(8) = B(8), A(6) = B(6), A(3) = B(3), and A(7) = B(7)], then
whichever of A, B ca:me .fro:m the old library will go first on the new library.

8. EREWON (Working Storage)

EREWON is working storage for all routines and is treated as erasable.
No control card should be provided.

-11- UCRL-11363

9. FORM (Fonnat Statements)

FORM provides formats for BCD records of input and output and for
record reports to be written by BARD. Starting with a left parenthesis (and
ending with a right parenthesis), whole FORTRAN formats are read in and
stored in FORM. An index to the meaning and usage of these formats is given
in the array LOBOS (location of beginning of statement). The only restriction
on the storage of these formats in FORM is that each new format statement
must start in a new computer word (no computer word may contain parts of
two format statement~.

10. LOBOS (location of beginning of statement in FORM)

Every BCD record that is to be read or written by POCKET must have
its format specified. In particular, this holds true for records read from or
into the (input, old library, new library) and record reports written about
records of the (input, old library; new library). Because of the three-part
division of both of these functions, there is a corresponding division of the
LOBOS array that implements them. LOBOS is assumed to be divided into
three sections of MACRO words each (where MACRO is specified by the
BLEDA-CIT routines). : These sections are reasonably large (50 locations
long in one version of POCKET) to accommodate the multi-card record forms
of data discussed in the section on the ESTHET routine. For multi-card
records, location 1 of each block contains the address of uniform format used
for all multi-card records on first reading. Location 2 contains the address
for the card numbered 0 a~d location n+2, for card numbered n. MUSSET(1)
(see section on subroutine BARD) contains the corresponding address in each
block for the formats to be used for record reports. The magnitude of
MUSSET(1) is presumed to be greater than (maximum card number) + 2 and
less than or equal to MACRO. For ordinary single card records, the first
location contains the location of "the formatll.

11. MAFIA (number of fields)

MAFIA helps specify the structure of multi-card records. It is auto
matically filled in by the program for simple records (not of multi-card form).
MAFIA(n+2) contains the number of fields on the card numbered n. MAFIA(1)
contains the number of fields on the uniform format for all such cards.

12. INGRAM (integrated MAFIA)

INGRAM(nt2) contains the location in the record into which the first
field of card numbe r n is to be read. If no entries are read in by control
cards, the program assumes the entries to be successive according to card
number. For single record format, too, no entries are needed; the program
provides them during initialization.

D. 'Schematic Description oLa Typical Set oLCoritrol Cards

In the list below, a double pair of parentheses surrounding the name
of an array, e. g. ((JINN)), refers to a set of cards of positive record number
that will fill that array. A single set of parentheses surrounding a pair of
numbers (NCARD, NEXT) refers to a single card whose record number is

-12- UCRL-11363

NCARD and whose colu:mns 79 through 80 contain the nu:mber NEXT, the
index of the array to be filled by the next set of control cards.

((JINN)), (-6,6), ((KHYBER)), (-6,7) ((JORDAN)), (-6,9), ((FORM)), (-6,10),
((LOBOS)), (-6,2), ((CERES)), (-8, ISSW)

A detailed exa:mple of a set of control cards is given with the description of
the SHRIVE routine.

The last entry (-8, ISSW) :means that, where in each earlier entry the
last group of ten colu:mns of the control card (-colu:mns 71 through 80) contains
the single migibe~ 6,,7,,9,,1 O,OT?, respectively, in this case the ten colu:mns fill
the ten locations ISSW(1) through ISSW(10). These para:meters are interpreted
by the prOgram as follows:

ISSW(1) is interpreted as a three-bit binary nu:mber equal to
11+2XI2+4XI4, where we have ((11,12,14))=(0,1) if a (n) ((input, old library,
new library)) (is not, is) to be read or written on the current pass. These
para:meters are used in POCKET.

ISSW(2) equals 11+2XI2+4XI4, where ((11,12,14))=(0,1) if the
((input, old library, new libra'ry)) (is,not, i~s) in binary for:m. This infor:ma.;.
tion is used in ESTHET.

ISSW(3) equals 11 + 2XI2 + 4X14, where ((11,12,14)) = (0,1) according as
the ((input, old library, new library)) (is not, is) in :multirecord for:mat. An
input source is .ultirecord for:mat if several nu:mb'ered cards are used
instead of a single unnu:mbered card. This infor:mation is used by the
ESTHET routine.

ISSW(6) equals i1+2XI2+4X14, where ((11,12))=(0,1) if the records
of the ((input; old library)) (are not, are) to be ordered, and 14= (0.1) if full
ordering (is not, is) to take place. The partial-ordering options re:move
any records that would precede, according to the specified ordering sche:me,
the previous record read fro:m the sa:me source. If full ordering is specified,
the records so re:moved (and written on an auxiliary tape) are :merged with
the new library when the source fro:m which they were taken is exhausted.
This infor:mation is used by the ETSEQ T9utine,.

-13 - UCRL-11363

III. SUBROUTINE SPADE

A. Introduction

SPADE is a flexible routine that handles the control cards. The three
major aspects to its function are reading, writing for off-line printing, and
writing for off -line punching. Reading is the means of ente ring information
conveniently; writing for off-line printing permits, among other things,
summary and presentation of the data read in, for the convenience of the
user; writing for off-line punching facilitates, among other things, restora
tion of memory after an interruption of the program.

B. Calling sequence

CALL SPADE
(MODE, NTREAD, NTRITE, NTPUN, LENGTH, IRATE, INDEX,

MERROR, LABEL, BUFFER, MASK, ARRAY, FORMAT, INFORM)

The program performs a:lirits,Dpl=i[iati6nsx>mamaU"taY':A'RRk.y,.who:s:e)}~hgth
is assumed to be LENGTH. The type of information stored. in the array is
indicated by INDEX. Formatsdor the input-output operations are assumed
to be stored in the arra'y FORMAT. These formats are further described by
the information in the array INFORM. The (reading, writing for off-line
printing, writing for off -line punching) is done on or from tape unit numper
(NTREAD, NTRITE,; NTPUN). When writing is done for off-line printing,
the BCD characters stored in LABEL are used to label the array. When
reading is done, reading of control records terminates when a card having
a negative:recor,anumber is encountered. The absolute value of that record
number is stored :tn IRA TE on return. Should an obvious error occur in the
execution of the routine, a return to the calling program occurs with MERROR
unequal to zero. All reading proceeds through a buffer array BUFFER that
always contains the contents of the'last control record read. Of the various
functions that can be performed by the routine, the particular subset to be
performed on a given entry is specified by MODE.

C. Dictionary of calling sequence variables

1. MODE

MODE, a coded integer specifying the subset of functions to be per
formed during the current entry, is equal to M1+3XM3+9XM9+Z7XM27+81XM81.
It is treated by the program as a five-digit ternary number whose digi.ts
(M1, M3, M9, M27, M81) specify the operation of the five major options
(reading, writing for off-line printing, writing for off-line punching, recycling,
format insertion). In each case, the digit equal to (0,1,2) means that the
corresponding option is ignored, partially invoked, or fully invoked. Partial
invocation is the same as full invocation for all options except the second,
writing for off-line printing. In that case, partial invocation causes headings
to be omitted in the printing.

-14- UCRL-11363

2,3,4. NTREAD, NTRITE, and NTPUN

NTREAD, NTRITE, and NTPUN are the variable tape numbers of the
units to be used for reading, writing for off-line printing, and writing for
off-line punching. For example, if NTREAD is 2, arid reading is to be done,
then the reading is done from the tape unit that the system calls number 2.
(In some systems, IBSYS for instance, this need not be tape unit 2. The
system may look up the number of the aCtual unit to be used in a table.)

5. LENGTH

LENGTH is the number of words in the array being processed. For
writing for off-line printing or punching, LENGTH tells the number of words
to be printed or punched. For reading, it specifies a maximum size array
into which one may read. If the program is told to read a piece of informa
tion into a location outside this specified region, an error return to the call
ing program occurs.

6. IRATE

IRA TE is the index of a record causing termination of reading. When
reading is being performed, it continues until a record is read that has a
negative record number, -N. IRA TE is set equal to N.

7. INDEX

INDEX indicates formats to be us ed in reading and writing during the
current entry. If INDEX is 1, then the format stored starting in [FORMAT
(1, I, 1), FORMAT (1, 1,2)] will be used for [reading, writing for later off-line
punching or writing for later off-line printing]. The POCKET system adopts
the convention that I = (1,2,3,4) refers to (I,E,A,O) type formats. 1=(5,6, .. ,10)
are reserved for optional formats employed by the user through the format
insertion option (see below). The actual formats used for each index are pre
scribed by the block-data subroutine BLEDA (or the CIT subroutine on ma
chines where no block-data subroutines exist). See the section on the
BLEDA-CIT routine"s for further discussion.

8. MERROR

MERROR indicates errors. If an obvious error occurs during the
execution of SPADE, MERROR is set equal to a nonzero value that indicates
the nature of the malfunction, .and an immediate return to the calling program
follows. If no error occurred, MERROR is zero on exit. The error causing
an error return can be deduced from MERROR by examining the listing of the
SP ADE routine.

9. LABEL

LABEL is one BCD word label attached to the array when written out
for later off-line printing.

-15- UCRL-11363

10. BUFFER

BUFFER is a one-dimensional array in memory through which all
read-in data passes before being inserted into ARRA Y. The, contents of the

'field on the record terminating the last reading cycle are in BUFFER upon
return to the calling program.

11. MASK

MASK is a one-dimensional array in memory into which all suppression
'masks are read~ The suppression mask on the record terminating the last
reading cycle is in MASK upon return to the calling program. The function
of the suppression mask is discussed below.

12. ARRAY

'ARRA Y gives the location in storage of the first word of the array on
which the routine is to operate.

13. FORMAT

FORMAT is the three -dimensional array containing the input and out
put formats to be used by the routine. The Ith reading (and writing for off
line punching) format is stored starting' in location FORMA T (1,1,1), while
the Ith format to be used for writing for off-line printing ,starts,:in' FORMAT
(1, I, 2). These regions are assumed to have been filled before entry. In the
POCKET system, this filling is accomplished in the BLEDA 'and CIT routines.

14. INFORM

INFORM is an array of information describing the formats stored in
FORMAT. 'INFORM (1,1) ,equa,l~ number of wO,rds:' of inforrnatiou"in,a record
of type 1. INFORM (2,1) is the number of words in the suppression mask of
a record of type 1. INFORM (3,1) is a two-letter BCD code indicating the
general form of data read in using a format of type 1. This code is printed
out when the writing for off-line-printing option is invoked. For example,
the letters bI (b=blank) might indicate that the format is of integer type.

D. Description

SPADE has five major functions of which, on each entry, it performs
some subset. It examines each function to see if it is to be performed on the
current entry, then performs or ignores it accordingly. The subset of func
tions to be performed is specified. as stated above, by the argument MODE.
The major functions are listed and described in order below.

1. Reading

The program starts reading records from the tape unit specified by
NTREAD, and according to the INDEXth reading format in FORMA T. Each
record is assumed to be composed, inorder, of a set of data fields, a record
number, and a: set of mask fields. These are.read into BUFFER, JCARD,
an:d MASK respectively. ,There are assumed to be NFIELD = INFORM
(1, INDEX) data fields on the record and NMASK=INFORM (2, INDEX) mask
fields.

-16- UCRL-11363

If JCARD is nonnegative, the inforITlation is transferred froITl BUFFER
to the appropriate part of ARRA Y, subject to the suppression ITlask whose
operation is described below. The appropriate part of ARRA Y i"s;siITlply the.
part that is the (JCARD +1)th group of NFIELD locations. For JCARD = 0,
for exaITlple. the fields aretransferred frOITl BUFFER toA,RRAY(1),
ARRA Y(2), .. , ARRA Y(NFIELD). For JCARD ::: 7, the transfer takes place
to locations ARRAY (7XNFIELD+1), .. ARRAY (7XNFIELD+NFIELD). In
general, BUFFER is transferred to the NFIELD locations of ARRAY starting
with ARRAY (JCARDXNFIELD+ 1). For JCARDXNFIELD ~LENGTH, an
error return to the calling prograITl occurs.

The suppression ITlask siITlply suppresses the transfer of a word from
BUFFER to its proper position in to ARRA Y if the corresponding word in
MASK is L Such a suppression leaves the position in ARRAY unchanged froITl
its previous value. If, for exaITlple, a suppression ITlask has teneleITlents
(1,0,0,1,7,7,3,5,6,0) in the saITle order, and there are five fields of data on
that record whose record nUITlber is 1, then the following occurs. The ele
ITlents ARRAY (6) through ARRAY (10) are referred to by record nUITlber 1
and are stored in BUFFER (1) through BUFFER (5). After the transfers are
cOITlplete, we find

ARRA Y (6) = unchanged froITl previous value MASK(1) = 1

(7) = BUFFER (2) MASK (2) = °
(8) = BUFFER (3) MASK (3) = °
(9) = unchanged froITl previous value MASK(4) '- 1

(1O) = BUFFER (5) MASK (5) = 7

Uses for this suppress ITlask are discussed in the reITlarks. If JCARD is
negative, then IRATE is set equal to the absolute value of JCARD, reading is
terminated iITlITlediately, and the prograITl goes on to see if writing for off
line printing is to be done.

As an exaITlple of such a record as ITlight be handled, we consider the
IthforTnat (5E12.4, 4X 16, 1011) with INFORM (1, I) = 5, INFORM (2, I) = 10,
INFORM (3,1) = 2HbE. This record has five data fields (cols. 1-'12, 13 -24,
25-36, 37,48, 49-60), a card nUITlber (cols. 65-70) and a ITlask of ten digits
(cols. 71 -80).

2. Writing for Later OU-line Printing

The program writes the first LENGTH eleITlents, of ARRAY on the tape
unit specified by (NTRITE) according to the INDEXth writingfor,rnat in '
FORMA T [starting at FORMAT (2, INDEX)], with heading 'LABEL, INFORM
(2, INDEX) words per record (line).

3. Writing for Later Off-line Punching

The program writes the first LENGTH eleITlents of ARRAY on the tape
unit specified by (NTPUN) according to the INDEXth reading forITlat in
FORMAT [starting at FORMAT (1, INDEX)] ,INFORM (1, INDEX) words per
record. These records are of the precise fOrIn that can be read in by the
program. This feature is useful therefore, in iITlpleITlenting interrupt-resuITle
options in large prograITls.

-1.7 - UCRL-11363

4. Recycling

If the re.cycle option is enabled (by MODE) and if a reading option is
terminated by a record numbered -1, th,en the program changes certain of
its arguments and begins execution from the beginning at SPADE, as though
SPADE had just been called with the changed parameters as arguments. The
parameters changed are MODE, INDEX, and LENGTH, and their new values
are taken from the mask on the record that caused the invocation of the option.
In particular, the new value for the parameters are

LENGTH = 10000X MASK(1.) + 1000XMASK(2) + 100XMASK(3) + 10 XMASK(4)

+ MASK(5)

unless the right-hand side is zero, in which case the previous value of
LENGTH is retained:

MODE = 100XMASK(6) + 10XMASK(7) +MASK(S)

INDEX = 10XMASK(9) + MASK(10).

In short, if the ten-digit mask is LLLLLMMMII, then the first five
digits form the new LENGTH (if nonzero), the next three give the new MODE,
and the las t two, the new index.

5. Format Insertion (and Recycling with Parameters Unchanged)

1£ the format insertion is enabled (by MODE) and if a reading option
is terminated by a record numbered -2, the program aSSumes that the data
fields of that record contain, in BCD form, a format statement that is to be
inserted into the array FORM.

The ten-digit mask UUUMMNNJII:is used to convey ttl€! index to be
attached to the new format (II), the number, NFIELD, of data fields on a
record written according to the new format (NN), and the number, NMASK,
of mask fields on a record (MM). The digit J equals (1, 2) according as the
format is the (reading, writing) format for the index 1. 1£ the new index is I,
then JOFFRE (1, I) equals NFIELD and JOFFRE (2,1) equals NMASK after the
operation of this option. The program recycles (with arguments unchanged)
after completing a format insertion, permitting immediate use of the new
format.

As an example, suppose we wish to be able to read records of the
format (SAS, 16,1011) and that these records are to be written out for off-
line printing according to the format, including headings, (1XA9, 1H(IS, 1H) SAS).
We assume that the first eight fields of the first format are data fields, the
next field, the card number, and the last ten fields, the mask. Thus we have
NFIELD = Sand NMASK = 10. This insertion could be achieved, MODE per
mitting, by the records:

(SAS, 16, 1011) -2000100S107

(1X A9, 1H(IS, 1.H)8A8) -2000100S207
where columns 1 through 60 contain the reading (or printing) format. Columns
64 through 70 contain the card number (-2) that invokes format insertion,
columns 74 and 75 contain NMASK = 10, and columns 76 and 77 contain
NFIELD = S. Columns 79 and SO contain INDEX = 7 (the index that from now

-18- UCRL-11363

on will refer to the .form.ats just inserted), and colum.n 78 contains 1 (or 2),
indicating that the card contains the reading (or printing) form.at. A second
exam.ple appears in the section on the SHRIVE routine.

To be able to read the record above, SPADE m.ust be operating under
a BCD form.at on entry. In the POCKET systeITl, for exam.ple, INDEX = 3
provides a form.at suitable for the purpose (10A6, 4XI6, 1011). The exam.ple
above assum.es that this forITlat was specified on entry for INDEX = 3,

E, Exam.ple

Suppose we wished to read BCD records from. tape 2 into the array
CERES having 250 locations, and write out the contents of that array after
wards on tape 3 for later off-line printing, Suppose too, that the forITlat
according to which records were to be read or written is stored in
[FORM(1,I,1), FORM(1, 1,2)] and that the inform.ation describing these for
m.ats is stored in array JOFFRE, Assum.e further that arrays VAL and ISSW
are available for use as buffer and m.ask areas, respectively. and that the
absolute value of the record num.ber on the record-terITlinating reading is to
be stored in KEY, Let MEAN be a location set aside to hold an error code
if needed, and JADE be a location holding the BCD naITle of the array for
heading theprinted output. Assum.e that no writing for off-line punching is
to be done, that recycling is to be perm.itted if a record num.bered -1 is en
countered, but that no form.at inse rtion is anticipated, A suitable calling
sequence would then be

. CALL SPADE (62,2,3,0,250,KEY,I,MEAN,JADE,VAL,ISSW ,CERES,FORM,JOFFRE).

F. Rem.arks

The SPADE routine is designed to perITlit handling arrays in a ver
satile m.anner. In particular, any array m.ay be built up from. appropriate
records on a single entry to the program. by use of suppression m.asks and
the recycle option. This is true no m.atter what t1:le types of data are con
tained in the array, what m.ixture occurs, what alternation occurs, or what
m.ode of representing the data is m.ost convenient, By cutting and m.asking,
any array can be fabricated. SPADE is useful for achieving convenient
dum.ps of m.em.ory in suitable form.ats and for preserving the contents of arrays
for later restoration (both the preservation and restoration are perform.ed
by SPADE).

-19- UCRL-11363

IV. SUBROUTINE CENSOR

A. Introduction

CENSOR mediates all editlng functions of the POCKET library. There
are two such fUnctions, deletion and suppres sion, both of which operate on
records of the old library. There is no editing feature applicable to records
of the input. If desired, one may edit the input tapes by using a SHRIVE
routine. Or~ more conveniently, the tape$ to be edited can be treated as old
library tapes,

D~letion simply causes omission of records appearing on the old
library front.the new library. "Suppressionii is a procedure of marking
records in a flexible way so that a suitably written SHRIVE routine can rec-
0gnize the new status of the reGord. The word "suppression" is meant to
indicate one possible use for the feature. Suppose a record becomes ob
solet~ for som'e reason. Itmight be more convenient to mark it and ignore
it thereafter than to delete it and fear that some day its information will be
needed. The suppression might also indicate the completion of an action or
the correction of an error. The essential point is that it is much more, con
venient to perJorrn a.suppression than it is to enter a new record and the
first fun~tion can often replace the second.

To suppress a record, then, is to insert an appropriate number into
it . .since suppression is achieved ina manner much like deletion, it is clas-'
sHied as an editing' function and handled by the CENSOR routine.

B. Calling Sequence

The calling sequence is

CALL CENSOR (KODE, INVOKE, KA TO, QUARRY).

CENSOR records or performs an editing task; according to KODE, on the
record QUARRY. Information as to the current specifications for the editing
of series of records is stored in the array INVOKE. KATO is a parameter
not presently used.

C. Dictionary of Calling Sequepce Variables

1. KODE

KODEchecks the COMMON variable MOSQUE to find out the phase of
POCKET then being executed. If MOSQUE is 3 (event-by-event or execution
phase), KODE is examined. If KODE is (1,2), the program (enters the editing
instruction specified by the record QUARRY into the editing file,exarnines
the record in QOARRY to see if it should be deleted or suppressed).

2 .. INVOKE

INVOKE is a dimensioned (2,5) array of integers, usually made to
correspond, throug.h the calling sequence, to the COMMON array ISTACO.
INVOKE(J,l), INVOKE(J,2) refer, respectively, to the delete and suppress
option. For J = 1, the elelTIent is 1 or 2 according as the current record is
not or is. to be edited, respectively. For J = 2, the element is 1 or 2

-20- UCRL-11363

according as a series of editing references has not or has been invoked,
respectively. For example, INVOKE (1,2) = 2 means that the current single
record is to be suppressed. INVOKE(2,1) =1 means that we are not currently
in the midst of a series of records to be deleted.

INVOKE (1,5) is used with the series editing feature (see below).
INVOKE (1,5) is the number of the editing entry now in core that invoked the
last change in series status for the Ith type of edit function. I = 1,2 corre;
sponds to delete, suppress. The sign of INVOKE (1,5) is + or -according as
the change enabled or disabled the status, respectively. For example,
INVOKE (1,5) = -18 means that the last change in the series delete status took
place with reference to edit reference number 18 in core and that the' reference
caused a disabling of successive deletions.

3. KATO

KATO is unused.

4. QUARRY

QUARRY is the record currently being processed through SHRIVE.

D. Description

CENSOR performs two major functions. First, it sees to the accumula
tion in storage of editing references as they occur on the input tape. Second,
given a record, it searches storage for editing references to it. If it finds
one, it proceeds accordingly

1. Accumulation of Editing References (KODE = 1)

Whenever POCKET finds a record whose MANDARth element
[MANDAR = KENO(2) = JINN(52)] is not zero, it calls on CENSOR to perform
the task specified by the actual value, KANTOR, of that element. CENSOR
proceeds by taking a subset of the fields of that command record and storing
this subset in memory for later reference. The subset may contain as many
as eight elements. The numbers of the elements to be chosen for the subset
should be placed, in order, in LOREN(1), LOREN(2) ... [that is JINN(71),
JINN(72), ...]. The number of such elements is stored in
LEER = LOREN(10) = JINN(80).

Of the subset that may be chosen, the first two are required and fixed.
They are, . in order, the ordinal and the command. Thus, supposing that the
ordinal field on the old library were the 15th and the command field, the 13th,
LOREN(1)= 15 anti' LOREN(2) = 13. LOREN(2) usually equals KENO(2), and
LOREN(1) equals KALI = JINN(30). The difference is this. POCKET calls,
CENSOR when the KENO(2)th field of a record is nonzero, but CENSOR uses
the LOREN(2)th'Helda-sthe-command. Similarly,- the ESTHET-prograrn -,"
numbers the new library in the KALIth word, but CENSOR refers to records
according to the numq,er in the LOREN(1)th word.

For deletion, only tw.o parameters are needed- -one to distinguish
deletion from other functions (the command), and one to tell which record to
delete. The greater versatility of the suppression function requires a larger

-'

-21- UCRL-11363

number of parameters. There are two ways to specify a suppression, direct
and indirect. Both follow the same plan. Both involve the contents of a
suppress field (the NFth field of the record), a divisor (ND), a base (NB),
and an insertion (NI). The process can be described as follows: The con
tents of the NFth field are divided by ND giving a quotient MQ and a remainder
MR. The firstdigit of MR, expressed to the base NB is changed from its old
value to NI. Thetesulting new number MQA is multiplied by ND and the
original remainder MR, restored. That is:

C(NF) = NDXMQ + MR

MQA = MQ - MQ modulo NB + NI modulo NB.
Then

C(NF) ~ NDX MQA + ,MR.

For eX,ample, suppose we wished to, indicate on the 27th word of
certain records that each had been found to be similar to some earlier record,
within limits ranging in stringency from 0 to 16 on some appropriate scale.
Suppose too, that we had earlier marked certain events as obsolete by setting
the last bit of the suppression word equal to 1. To avoid overlap, we leave
the first bit of the 27th word unchanged by dividing by.two before making any,
insertion. In this case, we have NF = 27, ND = 2, NB = 16, and NI = some
number from 0 to 15. supposing that a particular event has the :number 477
in its suppression word (number 27) before, and that we wish to indicate a
stringency of 6. The new value of the 27th word is computed as follows:

C(27) before suppression of event = 477 = 2 X 238 + 1

MQA = 238 238 modulo 16 + 6 modulo 16

= 238 14 + 6 = 230

C(27) after suppression of event = 2.230 + 1 = 461.

Thus, we have indicated a change in one kind of status of the event, left the
other kinds unchanged and used our memory space efficiently by permitting
the storage of several pieces of information in a single word.

Four parameters are central to this process. They are called NF,
ND, NB, and NI above. There are two ways of specifying them: First, 'rigidly
for all events to be suppressed in the run; secondly, flexibly, by giving one
or more of the parameters on the command card. In the rigid scheme, we
have KENO (3,8,9,10)= JINN (53,58,59,60) = (NF, NB, ND, NI), respectively.
In the flexible scheme, the parameters are not specified by the control cards
(as they are in the rigid scheme), but are specified in the command cards
themselves, in fields specified by the control cards. In particular,
KENO (4,5,6,7) = JINN (54,55,56,57) contains the number of the word in the
command phrase that contains (NF, NB, ND, NI). The command phrase is the
set of words abstracted from the comITIand record and stored in memory.
This command phrase is the set, in order, of the LOREN(1)st, LOREN(2)nd, ..
LOREN (LEER)th words of the record stored in the 1st, 2nd-:-: .. , LEERth
words of the comInand phrase. Thus, the command phrase is built up from
the words specified in LOREN and the suppress parameters (NF, NB, ND, Nl).
Further, when no indirect parameter is specified, the direct parameter, if
any, is assumed.

-22- UCRL-11363

For exam.ple, suppose we want to' implement the kind of suppression
discussed above, that is, NF = 27, ND = 2, NB = 16, and NI, a variable
whose value ranges from 0 to 15, is specified in field number 45 of the com
mand record and is stored in word number 3 of the command phrase. Suppose,
therefore, that we need only three words in our command phrase (LEER = 3).
It is assumed that the LEER + 1 st word of the command entry of NILE words
is the number of times the command has been referred to. Lastly, assume
that the second field of the record contains the number of the record, and
that the forth field contains the command. We can achieve this by the follow-
ing assignments:

LOREN(1)

LOREN(2)

LOREN(3)

LOREN(9)

LOREN(10)

KENO(1)

KENO(2)

KENO(3)

KENO(4)

KENO(5)

KENO(6)

KENO(7)

KENO(8)

KENO(9) .

KENO(10)

= 2

= 4

= 45

= 4

= 3

= 16

= 4

= 27

= 0

(Record number field is the second field on the record and
is stored first in the command phrase.)

(Command field is the fourth field on the record and is
stored second in the command phrase.)

(The 45th field on the record is stored third in the corn.,.
mand phrase.)

(NILE: we choose to leave four words in storage for each
command. Any number LEER+ 1 or greater will do.)

(LEER: there are three words in the command phrase.)

(Assume the end-of-reel indication used by TENDRE is
located in the 16th word of the record.)

(The fourth field of the r.ecord contains the command.)

(The 27th field of each record is the one to contain the
suppress code NF = 27.)

[The number of the word in the command phrase that con
tains the number of the field into which the suppres s code
is inse rted is O. That is, the re is no indirect specification
of NF by a field on the record. NF is fixed at the value
given by KENO(3).]

= 0 [There is no indirectly specified base. NB is fixed at a
value given by KENO(8).]

= 0 [There is no indirectly specified divisor. ND is fixed at
value given by KENO(9).]

= 3 (The third field of the command phrase contains ·NI, the
numerical insertion for suppression.)

= 16 (NB = 16)

= 2 (ND = 2)

= 5 (The insertion NI is specifie9, indirectly, so this entry is
always ignored, irrespective of its value.)

.......

'w·

-23- UCRL-11363

2. Search and Use (KODE = 2)

The file of edit references is searched using subroutine ZENO, and
appropriate action is taken.

E. The Command Code

We have seen what deletion and suppression mean, we have noted
that they are specified by command cards (that is, cards whose command
fields are not equal to zero), but we have not found out how to construct a
command that will do our bidding. First, note that each command card may
delete or suppress, but not both. Further, for either deletion or suppres
sion' all commands refer to records by their ordinal numbers. These or
dinal numbers.are provided by the ESTHET routine. No editing can be done
on records lacking numbers, so that it may be necessary to run through
POCKET once to insert them. Second, each delete or suppress reference is
made to a: 'single record:inone of three pos sible ways, characterized by the
following de s c ri pti ve ph ra s e s:

0. Delete (or suppress) record number N .

. 1. Delete (or suppress) the series of records starting with record
number N.

2. Delete (or suppress) the series of records ending with record number N.

The first type of editing reference is self-explanatory. The second and third
occur in pairs. The following restrictions must be observed in the use of
editing references:

1. The editing records, appearing on the input tape, must appear in
order of ascending N, where N is the number of record in the the old
library referred to by the edit reference.

2. Each edit reference of type 1 must be paired with a reference of type
2 that follows it with no intervening references other than of type 0.

3. No two edit references may contain the same value N.

Now we 'specify the construction of the command code, a two-digit ternary
number 3 XN3 + N1, where N1 =(0,1,2) means that the record has (no, a
delete, a suppress) reference. N3 = (0,1,2) means that the type (see above)
of edit is (0,1,2); that is, the reference is to a (single, peginning of a series
of, end of a series of) record(s). For example, a command of 7 (= 2 X3+ 1)
on a record, R, means that the deletion, specified by an earlier command,
of a series of records is to end with the record whose number is given on
record R. Similarly, the command ° specifies that no editing whatever is to
be done, and the command 2, that a single record is to be suppressed.

-24- UCRL-11363

V. SUBROUTINE SHRIVE - SHRILL VERSION

A. Introduction

This is the user-written subroutine that performs any desired function
not already available from the main program. All information in COMMON
storage is available to the SHRIVE routine. In particular, all data read in
from control cards is at the disposal of the routine, which is entered once for
every record that is to be written on the new library. This entry occurs just
before the writing is to take place.

B. Calling Sequence

The calling sequence is CALL SHRIVE (NODE, LEX, LAW, KHEDIV).

C. Dictionary of Calling Sequence Variables

1. NODE (not used).

2. ~EX
LEX is a four-digit ternary number, coded by SHRIVE to indicate to

POCKET certain instructions about the processing of the event SHRIVE has
just examined (that is, the event in QUIRK). Its composition is

LEX = L1 + 3XL3 + 9XL9 + 27XL27,
where

. Lf is (0,1,2) if the event just examined (is, is not; is not) to be
written out on the new library.

L3 is (0,1,2) according as (nothing, the pass, the run) is to be
te rmina ted.

L9 is (0, t, 2) according as the record just examined (is not, is, is) to
be treated as though it were an end-of-reel record.

L27 is (0, 1 J 2) according as a POCKET-type end-or-reel record
(is, is not, is not) to be written at the end of the pass. (This value of L27
should be specified by SHRIVE during its terminal ehtry.) The value of LEX
is never changed by any program but SHRIVE.

3. ·LAW
LA W controls the operation of BARD. See the section on the BARD

routine.·

·4. KHEDIV (Not used)

D .. Description of a Typical SHRIVE Routine··

SHRIVE is a user-written durpmy subroutine which provides a flexible
tool for the shaping 'of the POCKET library system to the use r' s needs. It
is entered under five different circumstances distinguished by the value of
the COMMON variable MOSQUE.

MOSQUE = (1,2,3,4,5) corresponds to the function (initialize, resume,
execute, interrupt, terminate). The user should test the variable MOSQUE
on the entry and, according to its value, proceed to different parts of his
program.

-25- UCRL-11363

The interrupt and resume sections of a SHRIVE routine see to the
preservation (interrupt) and restoration (resume) of any information (outside
of arrays JINN and ANNALS) required to resume execution. The JINN and·
ANNALS arrays are automatically cared for by the main program and the
SHRIVE routine need not provide for their handling.

This provision for the handling Of JINN makes it desirable that the
programmer use the unused portion ·of JINN (through suitable EQUIVALENCE
statements) as the repository for information whose restoration would be de
sired. Since most interrupt-resume functions are handled by the main pro
gram, these sections of SHRIVE may be in many cases, dummy sections that
cause immediate return to the main program.

E. Example of a SHRIVE Routine: SHRILL.

A particular SHRIVE routine is the SHRILL version which supervises
the keeping of a library of FORTRAN source cards. The routine sees to
functions that permit the library tape to be used as an input tape for a
FORTRAN compilation. Further, it permits removal of decks simp~y qy
giving their names when deck is preceded in the old library by a card of a
format recognized by SHRILL.

Let us describe SHRILL, then, in an orderly fashion. First, SHRILL
assumes that it will be given, as an old library, a tape of records converted
from a library of FORTRAN source cards made up of single FORTRAN (or
MAP) source decks. Each source deck is preceded by a name card, called a
JANUS card, which gives the name of the deck following and marks the end
of the previous deck. The format of the JANUS card is specified by the control
cards, and if one or more programs are desired from- the old library, they
can be requested by name. .

During execution, SHRILL examines each record to see if it is a
JANUS record. If it is, SHRILL examines its file of requests, stored in:
CERES, to see if the corresponding deck is to be written on the new library.
All the options of the SHRILL routine are regulated by LUCRE (1):

LUCRE(1) = L1 + 2XL2 + 4XL4 + 8XL8 + 16XL16,

where L1 is (0,1) if each deck of the old library is to be written on the new
library (unles s, only if) the deck is named explicitly in CERES.

(L2, L4, L8, L16) = (0,1) if (a, no) (1. D, JOB, END PASS, END RUN)

card is to be written on the new library. In the event these cards are to be
written, their contents will be taken from locations (21 through 32, 41 through
52, 61 through 72, 81 through 92) of the GUISE array. Locations 1 through 12
of the GUISE array contain the contents of the JANUS card. Some of the words
on the JANUS card will not agree with GUISE(1) through GUISE(12}, since they
must contain the name of the particular deck being introduced. In particular,
words 6 through 10 (columns 31 through 60 on the card itself) contain the 30
identifying characters that will be considered the name of the deck. All other
characters (columns 1 through 30, 61 through 72) must agree precisely with
those in words 1 through 5, 11 through 12 on the standard JANUS card stored
in GUISE (1 through 12).

A complete set of control cards, including those needed for SHRILL,
is reproduced on the following pages.

)

-26- UCRL-11363

••• e .••••••••••••••••••••••••••••••••••••••

THE RECORDS BELOW FORM THE SET OF CONTROL CARDS.
COLUMN 10 20 30 40 50 60 70 ·80
12345678901234567890123456789012345678901234567890123456789012345678901234567890
•••.•••••..••........••.•....•..••.••••...•••.•..•.••.....••..••••...••..••.....

...... DATA 'END-OF-FILE' CARD ** ..

3 3 3
11 7 21
15 15 15 2 21 11
15 15 15 2 21 3

1 1
20000 0 1 ~ 20 32

14 13 14
15 13

$.. ARCHIVES
..... *

SID 410702,POCKET,10,A(AN NATAPUFF EXP 4

SIBJOB NOGO

.. END TAPE

10A6, 4X 16. 1011 I
IX A9, IH(18, IHI 10A6

HOUND POCKET23APR4 SWAMP

3 3 3
3 :3 1

15 14
6 7 8

12A6, 211, 16
3 X 12 A6; 2 11 , . 16

3 3 3 3
1 1

9 10 -15

15
15

4 2 3
3 2

POCKET23APR4

3 3 j

(76H THE JANUS CARD W.AS .FOUND FOR A PROGRAM WITH THE F
aLLOWING 30 CHARACTER NA~E 5A6, 16)

31

1
51

1
51
11

...... 'END-OF~FIL~' .CARD ~

00 .
01
02
02
03
04
05

'07
-6
-1
00
01
02
03
04
05
06
07
08
09
-6
-1
-2
-2
-1
00
-6
00
01
-6
00,
02
-6
00
01
05
06
-6
00
-6
00
01
05
06
10
-87

3
703

2
22403

1010105
1010205

705

6

7

9

5

10

-27- UCRL-11363

.•.......•........•..................•.....•..............•.....................
THE RECORDS BELOW FORM THE INPUT.
COLUMN 10 20 30 40 50 60 70 80
12345678901234567890123456789012345678901234567890123456789012345678901234567890
•• eo _ ••••••••••••••••••••••••••••••••••••••

$. ARCHIVES ••••• HOUND POCKET23APR4 *** 02
4 05
7 07
1 12

C HOW HAST THOU MERITED, 11
C OF ALL MANS CLOTTED CLAY, THE DINGIEST CLOT.

2 13
C THATS WHERE MY SWAMP GIRL DWELLS. 20

2 27
1

-28- UCRL-11363

..•...
THE RECORDS BELOW FORM THE OLD LIBRARY.
COLUMN 10 20 30 40 50 60 70 80
12345678901234567890123456789012345678901234567890123456789012345678901234567890
••• 0 ••

SID 410702,POCKET,10,ALAN NATAPOFF
SIBJOB NOGO
$IBFTC HOUND LIST,REF

SUBROUTINE HOUND (HEAVEN)
C I WANDERED LONELY AS A CLOUD
C THAT FLOATS ON HIGH OER DALE AND HILL,
C WHEN ALL AT ONCE I SAW A CROWD,
C VAIN, PITEOUS, WRETCHED THING
C WHEREFORE SHOULD ANY SET THEE LOVE APART,
C SINCE NONE BUT I MAKE MUCH OF NOUGHT, HE SAID
C AND HUMAN LOVE NEEDS HUMAN MERITING
C WHERE, OH WHERE, HAS MY LITTLE DOG GONE,

RETURN
END

$* ARCHIVES ***** SWAMP PDCKET23APR4
SIBFTC SWAMP LIST,REF

SUBROUTINE SWAMP (GIRL)
C WHERE THE CRANE FLIES THROUGH THE MARSHES,
C WHERE THE TURTLES SUN THEIR SHELLS,
C WHERE THE WATERS BLACK AS THE DEVILS TRACK,
C WHERE, OH WHERE, CAN HE BE.

RETURN
END

$* ARCHIVES ***** PROSE POCKET23APR4
SUBROUTINE PROSE (ALL, MY, LIFE
JORDAN = BOOR * JE * WAH + JOHN * T * UM
RETURN
END

*** ***

*** ***

1

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

',,,,,

-2.9 - UCRL-11363

•• 00 ••••••••••••••••••••••••••

THE RECORDS BELOW FORM THE NEW LIBRARY.
COLUMN 10 20 30 40 50 60 70 80
1234567890123456789012345678901234567890123456789012345678901234567~901234567B90
••••••••••••••••••••• ., •••••••••••••••••••••••••••••••••••••• · •••••••• 0 ••••••• 0.0110

$ID 410702,POCKET,10,ALAN NATAPOFF
$IBJOB NOGO
$IBFTC HOUND LIST,REF
$* ARCHIVES ***** HOUND POCKET23APR4

SUBROUTINE HOUND (HEAVEN I
C VAIN, PITEOUS, WRETCHED THING
C WHEREFORE SHOULD ANY SET THEE LOVE APART,
C SINCE NONE BUT I MAKE MUCH OF NOUGHT. HE SAID
C AND HUMAN LOVE NEEDS HUMAN MERITING
C HOW HAST THOU MERITED,
C OF ALL MANS CLOTTED CLAY, THE DINGIEST CLOT.

RETURN .
END

$* ARCHIVES ***** SWAMP POCKET23APR4
$IBFTC SWAMP LIST,REF

SUBROUTINE ~WAMP (GIRLI
C WHERE THE CRANE FLIES THROUGH THE MARSHES,
C WHERE THE TURTLES SUN THEIR SHELLS,
C WHERE THE WATERS BLACK AS THE OEVILS TRACK,
C THATS WHERE MY SWAMP GIRL DWELLS.

RETURN
END

*** ***

. .*.
6

6

1

01
02
03
04
05
06
07
08
09
10
11
12
1,3

14
15
16
17
18
19
20
21
22
23

-30- UCRL-11363

The control cards start with the card after the card saying II -DA TA"
and end with the card with -87 in columns 69 through 71. In the IBSYS Monitor
for the 7094, it is customary to place a card with a 7 -8 punch before any such
control cards if they are to be read from the saITle tape unit as the one from
which the converted binary deck is to be read. Similarly, the card with the
7 -8 punch In column 1 follows the last card to be read from the tape for the
job.

The first group of cards (until the card numbered N = -6 in columns
69 through 70) refers to the array JINN in comITlon storage. The first card
(N = 0) fills in locations JINN (1 through 3) with 3 and JINN (4 through 10)
with O. The 3' s indicate that offline comments, record reports on records
from the input, and record reports on records from the old library are
written on logical tape number 3.

The card numbered 1 fills JINN(11) through JINN(20), the part of
JINN known as "MUSSET" which is used to guide the BARD routin~. The
first word on this card indicates that the 11th location of each section of
LOBOS refers to the format to be used by the BARD routine. In particular,
LOBOS(11) contains the· addres s of the first word of the format to be used in
writing record reports on input records. Similarly, we have
LOBOS(11 + MACRO) = LOBOS(61), since MACRO = 50 (see BLEDA-CIT
subroutines) refers to the first word of the forITlat to be used in writing
record reports on records from the old library. In our particular case we
have LOBOS(11) = LOBOS(61) = 51 (as we shall see late r), which implies that
the format used for reports on records from both sources is that stored
starting at FORM(51). SHRILL suppres se s reports for all records except
JANUS by setting LAW = 3. When a JANUS record is encountered, SHRILL
sets LAW equal to zero, perITlitting a record report to be written by BARD.

The second word on card nUITlber 1 indicates that the list of words to
be written out with the format specified above is stored in block 7 (JORDAN).
We store it there because JORDAN has 1024 words assigned to it (see
BLEDA -CIT) and uses only 2 of these for the current application. The third
word indicates that this list begins in the 21st location of JORDAN. Looking
at card 2 of the JORDAN block, we find thatthe list of fields to be written out
with the format specified is (6,7,8,9,10, -15), which means that fields
6,7,8,9,10, and 15 will be written out. The minus sign on the 15 indicates
that it is the last number of the list.

The first three fields of card 2 (" LASER") give the number of fields
(15) appearing on a record of the input, old library, and new library, re
spectively.

There are two successive cards with N = 2, implying that the first will
be written over by the second. This is sometiITles a convenience. When a
given set of data is used often and one parameter is sometimes changed,
appropriate cards with both parameters may be kept together and permitted
on any given run to cause the desired parameter to be used. In our case, we
write the new library on logical tape 11 for ordinary runs and on logical tape
3 (which is the standard monitor system off-line printing tape unit) for test
runs.

-31- UCRL-11363

.In this example, then, the input is read from logical tape 2, the old
library read from 21, and the new library written on 3. The last element
(columns 54 through 60) specifies that the records on the new library are to
be numbered in field 15.

Card 3 specifies that one input tape reel and one old library tape reel
are expected.

Card 4 [JINN (41- 50)] states that at most 20,000 records are to be
written on each reel of the new library; no records are to be escalated; 1/20
of available storage is to be preserved for escalated records (since we are
not escalating, we really need no storage for this purpose); 32 locations are
to be set aside for' each record in storage (really only 15 are needed).

Card number 5 [JINN (51-60)] specifies that the end-of-re~l mark will
appear in the 14th field of the record; the command, in the 13th field; and the
suppress marks-;-in the 14th field. (Note thatthe suppress and ,end-of -reel
marks can share the same field. The end-of-reel mark for the standard
version of TENDRE is simply an odd number in the appropriate field. The
remaining binary digits in the word may be used to indicate suppression).
The actual location of the 14th field on the input card is determined by the
format specified by the control cards for the input. In our present case,
that format is (12A6, 211, 16), which implies that the 14th field is composed
entirely of column 74 of the input card. If that column contains an odd digit,
TENDRE regards the card containing it as marking the end of the reel. The
card itself is ignored otherwise. See the listing of subroutine TENDRE for
furthe r details.

The last three fields on the card specify that the suppression base is
4, the suppression divisor is 2, and the suppression insertion is 3. Thus, if
a record is suppressed, as record 27 is in the set of cards below, one obtains
the value of the 14th field (0), divided by the suppress divisor (2). The first
remaining digit to the base4is set to 3, and the result is :multiplied back by 2.
Thus the result of the suppression is that the 14th field of the suppressed
record is changed from 0 to 6.

Card 7 fills JINN (71) through JINN (80), a region called "LOREN" in
the program. It specifies which pieces of information on an edit record are
to be kept in storage. The information is used by the CENSOR rOlutine. This
particular card tells the program that words number 15 and 13 are to be
saved in the first and second words in storage assigned to this edit reference.
Word nu:mber 15 of every record contains the record number, and word
number 13, the command. Thus in the memory we have the name of the
record referred to and the edit command that is to be applied to it. The 2
appearing in the last field of this control card indicates that only two pieces
of information are to be extracted from each edit record. The 3 in the next
to-last field indicates that three spaces are to be left in storage for each edit
record. The extra location is used to indicate whether the editing specified
by the record has been carried out.

This completes the specification of the JINN array. The card numbered
N :: -6 indicates the end of the group. The 3 in column 80 of that card indicates
that the next array to be filled is GUISE, which is assumed to be filled by
records of E-type format. Card N :: -1 indicates that the format type is to be

-32- UCRL-11363

changed to 3 (AlphaITleric) as specified by columns 79 through 80, the new
ITlode is to be 7 (coluITlns 76 through 78), and the length of the array GUISE
is to reITlain unchanged, since the replaceITlent-valuecoluITlns71 through 75,
is zero.

This change of forITlat facilitates the reading in of the basic forITlats
for (JANUS, 1. D., JOB, END PASS, END RUN) cards, respectively, in
GUISE (1 through 12, 21 through 32, 41 through 52, 61 through 72, and
81 through 92), as discussed above.

The following five pairs of cards contain the forITls for the five kinds
of cards ITlentioned. For example, cards nUITlbered 2 and 3, which are read
into GUISE (21 through 30) and (31 through 40), contain the form of the ID card
to be written on the .front of the new library (unless suppressed). This
permits the new library to be used as a direct input to the FORTRAN cOITlpiler
through the IBSYS Monitor systeITl. Note that a blank record is written at the
end of the run.

The array GUISE is ended by the card nUITlbered -6, which indicates
(coluITlns 79 and 80 = 02) that the next array to be read is array number 2,
CERES. The prograITl assumes that CERES is to be filled by cards in type-2
(E) forITlat. The following card, nUITlbered -1, specifies that the mode is to
be changed to 224 and that records of type 3 are to follow (instead of type 2).

The two cards nUITlbe red -2 that follow illustrate the use of the format
insertion option of the SPADE subroutine. There is no need in this ca:s,efor
the operations they perforITl, since the formats they insert to correspond to
index = 5 are already present as index = 3. For illustrative purposes, we
duplicate. Thefirst of the cards inserts. the forITlat (10A6, 4X 16, 1011) in
the region appropriate for reading index-5-type control cards. The second
ins erts the corresponding writing forITlat. The numbers 101 D1 05 and 1010205
in the last coluITlns of these cards break up as 10/10/1/05 and 10/10/2/05,
which are interpreted as (NMASK/NFIELD/K/INDEX), where NMASK is the
nUITlber of fields in the ITlask, and NFIELD is the number of data fields on a
control card of type INDEX. We have K = (1,2) according as the format
specified in the data fields of the current control card specify the (reading,
writing) forITlat for the INDEXth type of control card. In the present case,
we have NMASK = NFIELD = 10 and INDEX = 5. There is SOITle redundancy
in that NMASK and NFIELD are specified twice, once on each of the two
cards. The last specification survives. The format so inserted reITlains
until another forITlat is inserted in its place.

The next card, nUITlbered -1, changes the mode to 7 and the index to 5.
That is, the prograITl now expects control cards prepared according to the
forITlats just read in for index 5. This is necessary and convenient for read-:
ing in the BCD inforITlation to follow.

,
For the SHRILL version of SHRIVE, CERES contains the naITles of

prograITls (five cOITlpute r words pe r naITle) in the old. library that are to be
processed by the POCKET library. In the given case, there are two such
prograITl decks in the libr"!-ry identified by the two 30 characters naITles:

bbbbbbHOUNDbbbbbbbPOCKET23APR4

bbbbbbSWAMPbbbbbbbPOCKET 23APR4

-33- UCRL-11363

Each such name is arbitrary, but must match precisely the 30 variable
characters on the JANUS card of the deck being referred to. The names we
construct have five BCD words of which the first is currently blank, the second
gives the name used to refer to the deck ln calling sequences, the third gives
a version name if there are several versions of the deck, the fourth gives the
name of the large system of programs, if any, with which the deck is associ
ated, and the last word is the date of the first compilation or assembly of the
deck.

The references to CERES end with the card numbered -6, which also
specifies that the next array to be referred to is the sixth, KHYBER, which
refers to the form of each element of the record and is assumed to be filled
by records in integer form (format number 1).

The cards in our example specify that the first 12 fields (six characters
each) of our record have BCD (3) form and the next three, integer form (1).
That is, the first 72 columns contain the data to be compicled and the last eight
columns contain integers used by the program (end-of-reel mark, suppress
mark, command, record number). The next 11 -6" card specifies that the
seventh array (JORDAN) will be filled next. JORDAN specifies that records
are to be ordered according to their 15th fields; if these are the same, then
by their 14th fields. The information on card 2 refers to BARD and is dis
cussed above in the paragraphs on the JINN section.

Card -6 specifies that the array FORM is next to be filled. Two are
format statements stored in FORM, one starting in FORM(1), the other in
FORM(11). These formats are similar, but both are used. The first format
is that of the tape converted from FORTRAN source cards. . Our reading uses
this format. The second format is used for writing where the output tape is
to be printed using the standard-carriage tape. Were the same format used
for both, the print program would interpret the first character of each record
as a carriage -control character. The first character would then be lost, and
the printing would be chaotic whenever the first character of the record was
not a blank. The third format is used with BARD and is discussed above with
the paragraphs on JINN.

The next card numbered -6 indicates that the 5th array, LUCRE, is
to be filled next. LUCRE(1) = 31 implies that the onlyprograms to be written
on the new library are the two named in CERES (HOUND, SWAMP). Further,
there is no ID, JOB, END PASS, and END RUN record written on the new
library during the current run.

The last array, LOBOS (the tenth array), contains
LOBOS(1) = 1 = LOBOS(51), and LOBOS(101) = 11. These numbers give
(since each input record corresponds to a single record in memory for the
current run) the locations in array FORM of the format to be used for each
source. In particular, LOBOS [(1-1) X MACRO + 1] contains the location in
FORM of the starting point of the format to be used with the records of the
Ith source. Specifically, since MACRO is 50 (set by BLEDA-CIT) for the
version of POCKET we are describing, the starting point for the (input,
old library, new library) format is contained in [LOBOS(1), LOBOS(51),
LOBOS(101)).. The (input, old library, new library) format, therefore, is
stored starting at [FORM(1), FORM(1), FORM(11)] and is

-34- . UCRL-11363

[(12A6,2.11,I6), (12A6, 211,16), (3X12Ab, 211, 16)]. The two 51's refer to
BARD. See the paragraphs above on the JINN section.'

Card -8 iITlplies that we have reached the end of the control cards for
the pas s and that there are no further pas ses (-7 would iITlply only the end of
the control cards for the pasEl)'

The 7000000000 in the last ten coluITlns indicates ISSW(1) = 7 and'
ISSW(J) = 0 for all other values of J frOITl 2 to 10. ISSW(1) = 7 iITlplies that we
have input as well as an old library to r~ad, and that we will write a new
library. See the section on control cards for a description of the options
iITlplied by the zeros in ISSW(2) through ISSW(10).

In the accoITlpanying figures we .hi3-ve given a saITlple old library, a
saITlple set of insertions and editing cOITlITlands (input), and the new library
that POCKET produces froITl these. with the given control cards. Let us re
view a point before we continue. The control cards are cards that prescribe'
the library functions POCKET is to perforITl. They are of a forITl prescribed
by BLEDA-CIT and (for special cases of data of a peculiar forITl needed for
the SHRIVE routine) by the user through the forITlat insertion option of
SPADE. The library and input records are not of fixed forITls. Their forITls
are always specified in the control cards by the user. The exaITlple given
above illustrate this point. The old and new libraries and the input end with'
records having odd nUITlbers in coluITln 74, a sign recognized by the standard
TENDRE routine. The records on the old library (produced by an earlier
run 'of POCKET) are mirribered in coluITlns 75 through 80. The input prescribes
that we enter its first record into the library after the record of the old
library nUITlbered 2. The second and third recor<;ls of the input prescribe that
we delete the records 5 through 7 on the old library. The fourth record pre
scribes the deletion of record nUITlber 12 of the old library. The next record
is to be inserted after record nUITlber 11 of the old library. The record
following, reading 11(; OF ALL MANS CLOTTED CLAY THE DINGIEST CLOT"
will follow the previous record. We should explain this. This record is
blank in the nUITlbering field, which ITleans that its nUITlber is interpreted as O.
The prograITl, after having written record nUITlber 11 of the old library and
the previous record "c HOW HAST THOU MERITED," ITlust decid,e whether
to write record nUITlber 12 of the old library or the record in question,
nUITlbered 0, next on the new.library. Since zero is less than 12, the input
record is written next. This illustrates a convenient ITleans of inserting a
series of records into the library.

The two records having 2 in coluITln.73 cause suppression of records
13 and 27 of the old library. This suppression is discussed above. The last
record contains an odd nUITlbe r in colUITln 74, indicating the end of the reel.

The new library shows the changes prescribed by the input..

",

-35- UCRL-11363

E. Relaxations Permitted in Restrictions on Form of
Libraries and Input

Any relaxation is permitted that can be confined to the beginning or
end of a library or input set in such a way as to permit handling by the
SHRIVE routine in its initialization or terminal mode. For example,if the
first record of the library is a tape label of format different from those of the
records of the library, the SHRIVE routine itself can read the label during
its initialization entry and thus leave the remainder of the library as a set
of records conforming to the restrictions on uniformity of record.

-36- UCRL-11363

: VI. SUBROUTINES BLEDA AND CIT

At the ve ry start of execution, it is desirable to clear certain storage
locations and to initialize others with data that do not vary from application
to application. These functions are handled by subroutines in order that the
main program may be free of the details and that the system may be easily
changed from machine to machine.

Some FORTRAN systems have available a BLOCK DATA subroutine
facility with which one can load parameters directly into COMMON. Where
such a facility exists, such as on the 7094, the system uses such a BLOCK
DA TA subroutine and calls it BLEDA. Those initializations not conveniently
performed in BLEDA are performed by CIT, a subroutine that is called once
at the very start of execution. In those systems lacking a BLOCK DATA
subroutine facility, the whole burden of initialization is borne by CIT.

The initialization embraces formats and parameters used by SPADE,
allocation parameters for the STRATE array (a large array broken up into
smaller ones by these parameters), and parameters describing the machine
and system. It also clears the large regions in storage STRA TE and
ANNALS. For further information, refer to the appropriate listing and the
table given below of the partitioning of the STRATE array:

Name of I~ array IF LOC LONG

I ADAM (I) INDIES (I) LESTER (I) MALICE (I)

1 JINN 1 0 1000

2 CERES 2 1000 400

3 GUISE 2 1400 100

4 ICARUS 1 1500 30

5 LUCRE 1 1530 20

6 KHYBER 1 1550 1024

7 JORDAN 1 2574 1024

8 EREWON 2 3600 100

9 FORM 3 3700 150

10 LOBOS 1 3850 150

11 MAFIA 1 4000 150

12 INGRAM 1 4150 150

The array name is merely a label assigned to a portion of memory in
the STRATE block. It is a set of six characters printed out when the array is
listed by SPADE.

-37- UCRL-11363

IF is ail indicator telling what fonnat of control card is assum.ed to be
appropriate for filling the array. The user may change this assumption with
an appropriate control" card numbered -1, as described in the section on the
SPADE routine. IF = (1,2,3,4) corresponds to (I, E, A, 0) type control cards.

LOC is the location of the last word in STRATE before the beginning
of the block. For example, for array' LUCRE, we have LOC = 1530 in the
standard version of BLEDA-CIT. This means that the first word of LUCRE
is STRATE (1531).

I

LONG is the number of words of storage set aside in STRATE for the
array.

-38- UCRL-11363

VII. ESCALATION

For comparison of neighboring records or integration of several
records, it is often convenient to save records after they have bee'n written
on the new library. If NUECES (a parameter in JINN) is set equal to N, then,
in addition to the records being processed, the N most recently processed
records will be stored in the ANNALS. After each new record is processed,
it is inserted in the top of the file of "saved" records, and each record cur- ..
rently there is dropped one record lower. The former Nth record is lost.
The proces sing of the record should be indicated on the record afte r the last
location used (LESBOS) but before the last location that is escalated
(NIBBLE). This is to distinguish records that have been deleted. If there
are, for example, 155 words used in a record, perhaps 160 would be specified
as NIBBLE, and 160 locations would thereafter be moved as a unit with each
record. One could then insert additional pieces of information in locations
156 through 160 and have them available for later comparisons. In particular,
the COMMON parameter MIRAGE summarizes the previous handling of a
record. The SHRIVE routine could insert MIRAGE in the 156th location of
the previous record (since, at the time of entry into SHRIVE, MIRAGE refers
to the previous record. MIRAGE is calculated after exit from SHRIVE), and
thereby have the necessary processing information available. In particular,
in the mentioned case, we could insert MIRAGE in the 316th location of the
record being processed in SHRIVE (i. e. 160 locations for the current record
+156 locations into the next record which, when escalation is performed, is
next in storage).,

Comparisons of records stored in memory are facilitated by the
RIVAL routine, whose operation is described in its Fortran listing.

""'-,

"

-39- UCRL-11363

VIII. RECOMMENDED PROCEDURES FOR SETTING UP

A Library Using the POCKETSysteITl

The ,POCKET library systeITl ,is designed for use with relatively sITlall
or Infrequently referenced libraries. Large libraries referred to often will
usually repay the effort needed to produce a fast, specialized systeITl.
POCKET could be used in the interiITl, however. A large library is one that
costs a lot to run through once. Each user ITlust decide for hiITlself whether
his library is large. Ordinarily, libraries of 20, 000 or fewer records would
be considered srriall.

Having said sOITlething about the nUITlber of records ina library, we
should say sOITlething about the length of a record. It is usual to enter new
inforITlation into a library by punching it onto one or ITlore cards" then.con
verting the cards to a tape and reading the tape. Therefore, we define a short
record as one that can be entered on a single card, and a long record as one
that requires ITlore than one card but contains fewer than 1024 fields of infor
ITlation. Records that contain 1024 words or ITlore are considered very long.
As presently written, POCKET is definitely unsuitable for handling very long
records. The procedure recoITlITlended for short and long records differ in
SOITle respects. In one respect they are siITlilar. Since the input and output
of BCD records requires execution of a conversion, it is more econoITlical to
have one's library written in binary form, whatever the form of the input.

If the records are long, it is well to leave blank ITluch of the first
card of each input record (and hence the first few fields of each record are
uncoITlITlitted) to accoITlITlodate various fields to be used by the library systeITl.
Unless one writes a special TENDRE subroutine that will recognize the end
of his input and old library reels, one field must be set aside for the end-of
reel ITlark if the appropriate field contains an odd nUITlber. In addition, a
field ITlust be set aside for the cOITlITland. Also one field ITlust be set aside
for nUITlbering the records, and up to four fields for the optional indirect
suppression features described in the section on the CENSOR routine. Lastly
at least one field ITlust be provided for suppres sion ITlarks if any are to be used.
The end-of-reel field may beITlade to do double duty, however. Thus, a
ITliniITlum of three and a provisional ITlaxiITluITl of eight or nine integer fields
ITlust be left fallow to perITlit the use of POCKET's optional features.

On,a long record, the first card (card 0) ITlay be left to these tasks
with data beginning on card 1. On a short record, such as the one in our
illustration in the Section on SHRIVE, there is usually not enough rOOITl for
such prodigality. In our exaITlple, we left 1 field (coluITln 73) for the cOITlITland,
1 field (column 74) for the end-of-reel ITlark and suppression, and 1 field
(coluITlns 75 through 80) for nUITlberirig"the. records.

UCRL-11363

:\

ACKNOWLEDGMENTS

The author w.ould like to apologize to other lovers dfthe work of
Franics ThoITlpson for paraphrasing his faITlous poeITl for use asanexaITlple .
in the text. Extensive direct quotation was avoided to siITlplify copyright
cons ide rations.

It is a pleasure to acknowledge. the contributions of M<;l.rk W. Horovitz
and Jerry Borges of the Lawrence Radiation Laboratory MatheITlaticsand
COITlputing Group. Their critical suggestions helped in the development of
the program itself and of its docuITlentation. Their contributions and those
of Albert Briggs, now of the Peace Corps, helped extend the scope and
enhance. the utility of the result.

, This work was performed under the auspices of the U. ,S. Atomic
Energy COITlITlis sion.

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com~
m1SS10n, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any li~bilities with respect to the use of,
or for damages resulting from the .use of any infor
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" intludes any employee 6r contractor of the Com
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

