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genéralizatﬁon of Hartree-Fock theory. Comparison is made with
many-body pér;urbation theory and it is shown that to ahy order
thé theory incorporates an infinite number of perturbaticn theory
terms. Solutions of the equationsifor ground state atonic systems
are discussed and related to previous work using many-body per-
turbation theory. It is shown that the swms of pertwrbation terms
necessary for convergence are autcmatically included in the
~equations for two-narticle excitations. Appiication of the

equations to open shell atoms is described.

I. INTRODUCTION

Many systems of interacting fermions are well approximated by
uncorrelated wave functions and in particular by determinants of single-
particle states determined by Hartree-Fock theory. It is natural to attempt
to expand the true wave function for such systems in multiple-particle
excitations on the zero order apnioximation. We preseat here such a
systematic expansion which corresponds tc including firstly one-particle
excitations, secondly two-particle excitetions, and in succeeding orders
excitations of more and more particles. The magnitudes of the excitations
are determined by a variational approach. The resulting coupled eguatiors
varé derived in Sec. II. Sipilar equations were previously derived by
Nesbetl; our equations differ from his in that they show the explicit
dependence upon the potential V which is used to determine the single-
particle states for the expcnsion of the wave function [y). Section II

also contains a treatment of the effect of choosing V as the Hartree-Fock



potential and th% approximate inclusion of three-particle and higher ex-
citations. ‘ i

In Sec., IIT the solutions of the coupled equations are discussed
and related to a previous calcuwlation of the ground state of the beryllium
atom using many-body perturbation theory.e In that calcwlation it was
necessary to include high orders in the perturbation expansion. It is
- showvm in Sec., III that the important infinite sums of perturbation terms
are automatically included in the coupled equations for two-particle
excitations., Application of the equations to open shell atoms is described

at the end of Sec. III.

IT. THE COUPLED EQUATICNS
1. Derivation

In order to solve the equation

both H and {w) are expanded in terms of a complete set of single~particle

‘?tates ln) which are determined from the eigenvalue eguation

[n) .

‘M ; =
(™ + V) |a) = €,

The operator T represcnis the one-body operators of the Hamiltonian. In

the atomic casc;

T = -5 V/om - zeSfr .



The potential V%is a one-body potential which approximately accounts for
s of fhe interacting fermions. The particular choice of V is
arbitrary except that it must be Hermitian; it is often chosen to be the
Hartree-Fock potential.

The Hamiltonian H in second~quantized form is

H = 2 €, na+ Ny * a%cd {ed] v [ca) qa+ nb+ g Mo - 25 {v] v |a) qb+ n, -
(2)
The sws are taken over all the single—partic}e states. In the second
summation only distinct matrix elements are included; for example,
(va] v |dc) is not distinct from (ab| v |cd).3 It is assumed for sim-
plicity that the ground state wave function IW) may be approximated by an
unperturbed solution |®O) which is a single determinant composed of the N
states ]n) vhich are lowest in energy., When it 1s necessary to express
the unperturbed state ]@O) as & linear cowbination of determinants, the
following approach is still applicable, but it is then necessary to con-
sider correction terms for each of the determinants and the equations
become more lengthy.

The ground state wave function is expanded as

. + + +
[v)y = e ) + X f(ka)n, n, (o) + 2 f(kk'508) 0, ny, 0 [©,)+ oo
0 ok ko ol T x Tkt s Ty Mo
(3)
The states labeled k are excited states and not occupied in |®O). The
states labeled with Greek letters are states which are occupied in ]@O)

and are called unexcited states. An unoccupied, unexcited state is called



a hole state. In ali the sums only distinct terms are inclé@ed. Terms
which differ oniy in peruutations of the excited states ox ?ﬁe hole states
are not distinct.

When Eqs. (2) and (3) are substituted into Eq. (1) an infinite
set of coupled equations is obtained by equating terms with the same
single-particle states, It is important in the appreciation of the theo-~
retical basis of these equations to realize that this procedure 1s equiva-
lent to a variational apprcach where the f's are determined by minimiziﬁg
(v] B |v) subject to the constraint (y | ¥) = constant. Anticipating the
rapid convergence of the approximation scheme, the following discussion
1s limited to one-particle and two-particle excitations. Higher order
excitations are discussed in Sec. II 3.

The first equation in the system is obtained by taking the IQO)

component of the result of inserting Egs. (2) and (3) into Eq. (1):

N N N

2 e + Lo vy - T (y] V)

n=1 7<d 7=1

© 2 Berl v 1% - el v 0} 20s ()
G,k vy

+ L {op| v |Kk') £(kk'; 0p) =B,
abkk!

vhere (ab| v |cd) = (ab] v |cd) - (ba| v |cd). The nk+ Ty [@O) component

yields:



N N -
<€k + nE.‘l €, - €a> o(k; a) + }El (‘5" v lay) - (k| Vt o)

Z k k' fk;; 54D (] v Ky) - (k] v Kb ek
g P e e L AR v ) - v} e o)

-5 {§<78' ves) - (o] v ledb 20k )
77Q }

+ 2 {6}2 (B v ) - Lyl vy £k a) (5)
rra b } '

+ Lo {Byl v |k'a) £(kk'; By)
5%06,7

+ EAZ @By e - ol e O 205 a)
k',y

+ % {xy] v |u'x") £(x'%"; ay) = B £(%; a)

k', k" y

The third equation in the series is obtained by multiplying £g¢. (1) from

+ _ + .
the left by (@Oi Ty Mg My My - The result is:

N

_ _ A 1. 3
(ek + €y * n%ll €, " €y e6> T(ke'; ap)

oy {Q%a RGN OERCE mhm o

+ (K] viep) + 20 (k'] v TR 2R aB)
k”’kl"



x
|
+ L (PR v [e) £ ay) ¢ & (K] v jox") £(xe"; 98)
ku:?’iéﬁ ' 77@

J

|

+ 2 Yoo {ykt] v ye"y - (k] VRS £(kK"; aB)
x" Yia,B }

+ L Akl v xe) fxix ayy+ T (yk] v |x'e) £(x"k'; 98)
X :7745 k":')'

=) {7%5,5 Gl v 1) = (6 v s a)

+ L (98] v lop) £(xk'; 98) + L <L (98] v s) + (y] V la)} £(kk;ay )
g#a,fi - 7B Bk

f 2T Gel v le) ¢ (] V)b skt 48)
v Usfs v} "

Ll

- LGk vep) £ y) - L (ol v jap) £(x'; y)
7}‘40‘:5 7#1;.8

+ 25 (k'] v JK"B) £(x"; @) + & (kk'| v Jax") £(x"; B)
k" . X"
+4 L {ykt] v ey - (x| vV lB)l £(k; a)
y{ J

; {é@ AT |fs>} (s a)

AT B v e - v za,»}f(k'; 8)

(6)
—

- {‘iﬁ (Ty] v Jay) - (kY !cxﬂf £(k; ) = E £(1x'; aB) . (
Y7 J



2. The Hartree-Fock Potential

A great simplification in ¥gs. (&), (5), and (6) results from

choosing V to be the Hartree-Fock potential Vi , Gefined by matrix elements

N
(e] Vyp [p) = Z {an| v |on) . (7)
n=1
Equaiion (&) becones
E-EB.= L (o8] v |kk') 20x'; 0B8) , (8)
“HF apkk’
where
N N N N )
Eo= L o+ Z (Bl v]w)-Z Glvin==L c -3 L Olvin;
i n=1 © 7<d ' y=1 n=1 2 2 y=1
(9)
while Eq. (5) for f(k; a) reduces to
(ek - %1) Tk a) + & {yk] v [xa) £(x*; 7)
7,%’
(a) . (v)
+ L ABy| v |x'a) £(xx'; By) (10)
7:5:1‘:’
(c)

+ L (%xy] v |e'x") £(x'K"; ay) = (B - Ep) T(k ) .
k', k" .
(d)



The sums over uﬁexcited states are no longer restricted bec%use now there
are additicnal temms arising firom incomplete cancellations ﬁﬁth the
Hartree-Fock potential Vi . They correspond to diagrams in’perturbation
theory in which the exclusion principle is violafed in the intermediate
states.2 The terms of Eq. (1C) are represented by disgrems in Fig. 1.

The diagrams provide a connection with the corresponding terms of perturba-
tion theory. In order to cor;espond more closely to the diagrams of
Goldstone perturbation theory,3 the term (a) of Eq. (10) should be brought
to the rhs and then the equation divided by (e = € +E - ). In
Goldstone's theory, the energy denominator would be (ﬁz - ek). The term

(B - EHF) incorporates the summation of many higher-order terms in perturba-
tion theory and corresponds to inclusion of the third class of EPV diagrams
of reference 2. It is acssumed in this paper that (E - EHF) is not large
relative to (31 - ek) and this assumption constitutes a restriction to
finite systems.

When V is chosen as V Eq. (6) reduces to

I_L‘E\,
(ek + €1 - €y - GB) P(xk'; ap) + (xXk'| v |aB)

D (R v R £(xUKY ap)
kukxl!
(1)

+ (yE'] v |X"B) T(xk"; ay) + L (X'y| v |ak") £(xk"; 98)
k”y k”?’
(ii) (i11)
+ Lo {yk] v [x'B) £(k"k'; ay) + L (vk] v [¥'@) £(k"k'; 9B)
k” 11"

7 Ky
(iv) (v)
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b . _ |

+ 2 (B8] v lap) £(xk'; p8) - L vk v o) £(k; v)

7? . 7 i |
{vi) (vii)

- L (ky] v ad) £(x'; y) + & (xk'] v |E"B) £(x"; @)
7 kll

(viii) " (ix)
+ 2 (' v o™y £(x"; ) = (B - Fyrp) f(kk'; op) . (11)
k”
(x)

Again, as in Eg. (10), the sums over hole states are unrestricted becanse
of contributions from the potential VHF' The diagrams Tor Eq. (11) are

gilven in Fig. 2.

3. Higher Excitations

The discussion so far has only included one- and two-particle
excitations, and there are, of course, excitations up to N particles. When
higher excitations are included, Eq. (&) still involves only one- and two-
particle excitations directly. Equations {5) ard (10) for r(k; @) must be
modified to include coupling with f(kk'k"; afy) and Eés. (6) and (11) for
f(kk'; of) must include terms coupling with f£(kk'k"; opy) and £(xkk'k"k";
a3yd ). The importance of higher excitations depends both on the size of
the system and the "goodness” of the single-particle wave functions used
in the expansion. In perturbation theory, both one- and two-particle
excitations enter in first order. Three- and four-particle excitations
enter in second order. Vhen good single-particle wave functions are used
the matri: elements involving unexcited to excited states ma& be expected

to be small, as found in reference 2. In Eq. (5) for f(k; «) and Eq. (6)
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for £(kk'; GB),%the three- and four-partiéle terms corrcspoﬁd to two
higher orders g% pcrtu_baﬁion theory than do the lowect ord%r terms. When
N is not so largé that the possible number of higher excita%ions can over-
come the reductions due to terms reduced by two orders of perturbation

theory, higher excitations are not expected to be very important.

When three-particle excitations are included, the term

L (By] v |k'k") £(kk'k"; apy) (12)
Byk:kn

is added to the lhs of Egs. (5) and (10) for £(k; c). The following terms

are added to the lhs of Eg. (6) due to triple excitations:

PN <) Y (y8] v |x") - (y] V ]k")> P(xk'k"; opy)
ﬁi‘l‘a)B;V

7,1{“

- o (9] v |BX") £(k'k"; ayd)
S, vLiR k"
PR i

+ L XYy ] v [x"k™) £(kk"K' oBy) (13)
7,k",k’" .

- Z (B8] v lax") £(kx'k"; 985)
7,6%@;1\2”

+ L (ky| v [x"k") £(x"k'®"; oBy)
7K

Coupling with four-particle excitations adds the term

z (v6] v [x"¥™ £(kk'K"K™ opyd ) (1)
7 5 k" kllt
IV 2
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to the lhs of Eg. (6) for £{kk'; ¢p). Equation (11) for £(kk'; ap), using

\Y is modified on the 1hs by the last four terms of Eq. (13) (without

o
restrictions on lhe sums over hole states) and by Eq. (ik).

The terms f(kk'k"; apy) and f(kk’k“k”ﬁ CByd ) are Getermined
from equations which are similar to Egs. (5) and (6). Vhen ¥ is not large,
it should be guite valid to truncate terms beyond four excitations in the
equations for f£(kk'k"; apy) and £(kk'k"K'; aBfyd ) and to exclude all higher
excitations. A simpler apprcximation is to approximate three- and four-

particle excitations by products of one- and two-particle excitations and

to omit three-body and higher clusters, as has been discussed by Sinanoglu.h

ITI. APPLICATIONS OF THE EQUATIONS TO ATOMIC STRUCTURE CALCULATIONS
1. Solutions and Perturbation Theory

The set of coupled equations (&), (5), and (6); or (8), (10),
and (11) if VﬁF is used; may be solved for the ground state energy E. That
is, the matrix determined by the ccmplete set of equations must be diago-
nalized. The lowest eigenvalue 1s the gicimd state energy and higher
eigenvalues correspond to excited states with the same symmetry. The set
has already been truncated because higher excitations have been omitted.
The continuuwn may be divided into finite blocks such that the variation of
f within any given block is small and the calculation is then reduced to
that of a finite number of coupled equations provided a finite number of
tound excited states 1s used.

When VHF is used, the one-particle excitations f(k; a) are

relatively unimportant compared to the two-particle excitations f(kk'; ap),

and only the £(kX'; aB) are needed to determine E - EHF'
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|
The sglution of Eq. (11) is, in the first approximation,

- e = €r - (9B v loB) + B - m ) (B v fos)
(15)

£(kk'; o) = (ﬁx * &g
The term {@B| v |eB) in Eg. (15) comes from the diagonal part

of teim (vi) of Eg. (11). It is the same term used in reference 1 to shift

all energy dencminators of the terms in perturbation theory. It might be

expected on physical grounds because €&t eB - (dé[ v ]a@) 1s just the

effective two-particle energy for particles in states ]a) and Iﬁ). The

;adder diagrem term (i) of Eg. (11) accounts for the interaction of two

particles in states |k) and [k'). Since the states |k) are determined by

a potential in which all the unexcited states are filled (in the HF case),
there is also a correction to account for the fact that |k) and |k') are
propagating with |a) and |B) unoccupied. This correction comes from the
terms y = 8 in (ii) and (iv) of Eg. (11) and from terms y = ¢ in (iii) and
(v) of Eq. (11). These terms were called hole-particle EPV (exclusion
?rinciple violating) terms in reference 2 because they involvp hole-particle
'interactions (and exchange) in which the exclusion principle is violated in
;oing from one hole state to the same hole state.

l In the numerical calculations on Be it was found necessary to
gnclude certain terms beyond second order in perturbation theory, namely
%he ladder diagrams and the hole-pariicle EFV diagrams.5 If only these
;erms are retained, then Eq. (11) becomes

¢ .

P(ix’; ap) = DT (RK'] v foB) (16)
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where { i
‘!( H

D=ea+e5-ek-ek,—(o:'é]v[a6)+E-EHF

- DR v [REY) PR aa)/f(kk'; B )

n
K"

-2 (Bk'| v [x"B) 2(kK"; as)/fock'; op) (17)
k" y |

- L (K% v Jax") £(xk"; aﬁ)///f(kk’; o)
k'l

- % (Bk] v Jx"8) £(x"k'; af'})/f(kk'; as)

kll

- E (@] v x"a) 2(x"k'; aa)/f(kk’; @) .
The last four terms on the rhs of Eq. (17) are related to the expression
(ba + 2b) which was used in reference 2 to sum the hole-pariicle EPV
diagrams. The ladder term of Eg. (17) is related to the factor t of
reference 2 vhich summed the ladder diagrems. Eguations (16) and {(17)

are equivalent to the calcwlation of reference 2. The necessary higher
order terms of perturbation theory are thus seen to e included in the
nultiple-particle excitation theory in a straightforward mannef.

The last five terms on the rhs of Eq. (17 ) may have a dependence
on k and k' which simplifies the calculations. This was found to be true
in the numerical calculations for Be vwhere each of the five terms could
be written to a good approximation as Ci(e:cX T ey T € T Sy - (@B] v lag)),

-~

where Ci is an appropriate constant for the ith term.d
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|
2. Application to Open Shell Atoms ’

1
v j
Since the Hamiltonian H commutes with the total orbital and spin
angular momentum operators L and S, the eigenstates for this Hamiltonian
. 2 <2 . .
must be eigenstates of L~ and §°. The unperturbed eigenstate [@0) should

have the correct symmetry (in L and S§) of the true ground state |[y) which

may be writien

[v) = 1350 + |2 ) . (28)
Equation (2) may be written as
H=Hy+v-V, (19)
N N
-1 .
where v = _Z. (rij) , V= -Z V(ri), and Hy ]@o) = E, ]@O) .
i< i=1

When Eqs. (18) and (19) are substituted into (1), there results:

-1
lo¥) = (8- B) [AE - (v-V)] o), (20)
where A F = E - EO' Since L and § commute with H and v, the calculated
ground state [w) will be an eigenstate of L2 and 82 if L and 3 comnute with
V and l@o) is an eigenstate of 12 and 8°. For closed-shell atoms, V.o

defined by Eq. (7) commutes with I and § and.{@o) is a single determinant.

Tor open-shell atoms Land 8 in general do not commute with VHF

and so it is desirable to choose a V(r) which approximates VﬁF as closely
L

as possible but which commutes with L and 8. As described in Sec. IT 1,
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it is convenlent but not necessary that ]® ) be described by a single
determinant. In calculatlng the g;ound state of many oren-shell atoms it
is possible to choose l®o) as a single determinant hecause the ground
state usvally has the maximum. spin consistent with the exclusion principle.
The energy is independent of ML and.MS and the choice ML = L and MS =
often makes ]@O) a single determinant.

Calculations for open-shell atoms, using Egs. (%), (5), and (6),
are planned. The numerical work described in reference 2 indicates the

feasibility of these calculations.
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FIGURE CAPTIONS |

for f(k; ) and £(kk'; o5). Diagrams (b), {c), and (&) correspond

to the terms labeled (b), (c¢), end (4) in Eg. (10).

Diagrams corresponding to terms of Eq. (11). (a) Ladder diegram
for term (i). (b) Ring diagram and hole-particle diagram of
term (ii). The diagrams for (iii), (iv), and (v) are similar.
(c) Hole-hole interaction diagram of term (vi). (&) Diagram for
coupling of one-particle and two-particle excitetions of term
(vii). The diagram for (viii) is similar. (e) Diagram for (ix)
and (x). The exchenge diagrams for (¢), (d), and (e) have been

onitted.
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