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ABSTRACT

The ground state wave function and energy of a finite system

of interacting fermions are expanded in ter.ms of multiple particle

excitations on an unco~related iero o~der state. The resulting

set of coupled. equo.tiol1s constitutes a systematic variational
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generalization of Hartl'ee··Fock theory. Comparison is made with,
\

many-body perturbation theory and it is sbown that to any order

the theory incol"po,;:ates an infinite number of perturbation theory

tel1nS. Solutions of the equations for ground state atanic 6yst~ms

are discussed and related to previous work using many-body per-

turbation theory. It is shovffi that the Slms of pel'tul''ba"tion terms

necessary for conve:cgence are automatically incluJ.ed in the

equations f'o;.~ t'l:lO-:?article excitations. AI)})] ication of the

equations to open 811e1}. a toms is described..

I. INTRODUCTION

Many systems oi' irte:;:a.::ting fermions al~e well approximated by

uncorre1.ated wave i'unc.:tj_ons anu. in purticular by a.eterUl:i.nants of sin.gle-

particle states dete~~i~ed by Hartree-Fock theory. It is natural to attespt

to expand the true wave function for such systems in multiple-particle

excitations on the zero orde:c ap:?:..'oximati.on. He present here such a

systematic expansion which corresponds ic tnc1uding firstly one-particle

excitations,· secondly two-part::'cle excitations, and.. in succeeding orders

excitations of more and more pa:cticles. The magnitudes of the excitations

are determined by a variational approach. The resulting coupled equatiom

are derived in Sec. II. Sicilar equations were prev·iously derived by

Nesbet1 ; our equations differ from his in that they show the explicit

de~endence upon the ~otential V which is used to determine the single-

particle states for the expcns::'on of the wave function !\fr). Section II

also contains a t~eatment of the effect of choosing V as the Hartree-Fock
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potential and tbk approximate inclusion of three-particle and higher ex-

citations.

In Sec. III the solutions of the coupled equations are discussed

and related to a previous calctUation of the ground state of the beryllium
')

atom using many-body perturbation theory.~ :~ that calculation it was

necessary to include high orders in the perturbation expansion. It is

. shovm in Sec. III that the important infinite sums of perturbation terms

are automatically included in the coupled equations for two-particle

excitations. Application of the equations to open shell atoms is described

~t the end of Sec. III.

II. THE COUPLED EQUATIONS

1. Derivation

In order to solve the equ~tion

(1 )

'Poth Hand !'I!r) are expanded in terms of a complete set of s1ngl.e-particle

~tates In) which are determined from the eigenvalue equation

(~ + V) In) = €n In) •

The operator T repres0"-.·::S the' one-body operators of the Hamiltonian. In
I
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The potential V ',is a one-body potentj.al which approximately accounts for
•

the interacting felmions. Tn~ ~articular choice of V is

arbitra~r except that it must be Hermitian; it is often chosen to be the

Hartree-Fock potential.

The Hamiltonian H in second-quantized form is

(abl v led) ~ + ~b+ ~d ~ - L (bl V la) ~b+ ~ .
a c ab a

(2 )

The sums are taken over all the single-particle states. In the second

summation only distinct matrix elements are included; for example,

(bal v Ide) is not distinct from (abl v ICd).3 It is assumed for sim-

plicity that the ground state wave function liJr) may be approximated by an

unperturbed solution Iq>0) which is a single determinant composed of the N

states In) which are lowest in energy. ~fuen it is necessary to express

the unpertUl~ed state 100> as a linear combination of determinants, the

followll1g approach is still applicable, but it is then necessary to con-

sider correction terms for each of the determinants and the equations

become more lengthy.

The ground state 1-laVe function is e:t'.''Panded as

The states labeled k are excited states and not occupied in I~0>. The

states labeled with Greek letters are states which are occupied in I~o>

and are called unexcited states. An unoccupied, unexcited state is called
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I

a hole state. In all the sums only distinct terms are inclJded. Terms
r

which differ only in permutations of the excited states or the hole states,

are not distinct.

~fuen Eqs. (2) and (3) are zubstituted into Eq. (1) an infinite

set of coupled equations is obtained by equating terms with the same

single-particle states. It is important in the appreciation of the theo-

retical basis of these equations to realize that this procedure is equiva-

lent to a variational approach where the fls are determined by minimizing

(I!r/ H lijr) subject to the constraint (ijr I ijr) = constant. Anticipating the

rapid convergence of the approximation scheme, the following discussion

is limited to one-particle and two-particle excitations. IIigher order

excitations are discussed in Sec. II 3.

The first equation in the system is obtained by taking the I~o)

component of the result of inserting Eqs. (2) and (3) into Eq. (1):

l'J

2: E
n=l n

N

+ 2:
1<J)

N

( 15 I v Iyo) - 2:
1=1

(yl V 11)

+ 2: {~(exYI v licy) - (ex I V Ik)} f(l:; 0;)
a,k :y

(4 )

+ 2:
exPklc l

E ,

uhere (ab I v Icd)

yields:

(abl v led) - (bal v jed). The ~k+ ~ex I~o) component
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N N

( Ek + ~ En - Ea) f(k; a) + Z (kYl v lay) - (kl ~ la)
n=~ y=l

- r~ {; (75/ v lao) - (rl V /a)} f(k; r)

+ Z f Z (y5 I v Iyo) - (y I V Iy)} f (k; a)
ria lola

+ L (~rl v Ik'a) f(k~l; ~y)

~fa,rfa

+ r. fr. (:Y5lvlk'o}-(ylvlkl.)~f(kkl;ar)
k' ,r lola )

\

+ L. (k'Yl V Il;.'k") f(k'k"; ay) = E f(k; a) .
k' ,k" ,r

The third equation in the series is obtained by multiplying Eq. (1) from

the left by (t;Dol TJa+ TJ~+ TJk' T}l;.. The result is:

N

(E k + Ekr + n~l En - Ea - E(3) f(k1(r; a(3)

+ (kk'i v laf) + L. (kkrl v Ik"k'") f(l(Ilk'Il; af))
k", kill
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I
V Ikflp} f(l:k tl

; a)') + 2:', <k'Yyl v let1-:"} f(kk"; y~)

r-/-a I
I

+ I. {l: (rk' I v I)'k") - (k' I V Ik ll
)} f (kll:"; al3)

k" r1a,~

+ I. <.;51 v lal3) f(kk'; yo) + I. I_I. (151 v 1130) + (yl V I~)} f(kk';ay)
)'kt-,13 . yt~ lota

. ola,~ .

+ I. {- I. (Yo I v lcro) + (y 1 V la)} f( kk I; y:3).
)'ta c/p .

+ I. (kk'i v Ik"13) f(k"; ex) + I. (kk'l v lak") f(k"; 13)
k" k"

+ {I. <)'k' I v !)'13) - (k' I v If3 )lJ" f (k; a)
da

- ~ I. ()'k I v 1'Y~) .- (k I v 113)'I f ( lc I; a)
~~ J

+ {I. (kY I v Ia)') - (kI v 1a )~ f (k '; 13)
rtp J

-{I. (k'Y)'! vIa)') - (k'i V !a)~ f(k; 13) = E f(kk ' ; ap) • (6)
rfl3 )
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2. The Hartree-Fock Potential

A great simplification in Egs. (4), (5), and (6) results from

choosinG V to be the Hartree-Fock potential V
1IF

, defined by· matrix elements

where

N

(al VHF Ib) = L (ani v IbIl) •
n=l

Equation (4) becomes

E - 11rF = L. (ap I v Ikk') f(kk'; ap) J

apkk'

(7 )

(8 )

N N N N N

EHF = L. L (r51 v Iro) L. (rl vir) = L 1 L. (rl V Ir)E + E: - "2 ;
n=l n

r<i:> 1=1 n=l n
1=1

(9 )

while Eg. (5 ) for f(k; a) reduces to

+ L. (~I v lk'a) f(kk ' ; 13r)
r,f3,l~1

(c)

+ L. (k'rl V /k1k") f(k ' l<;:"; ar) = (E - E
llF

) f(k; a) .
k' ,k"

(d)

(10 )
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The sums over urlexcited states are no longer restricted beca,use now there
I

. \ i
are add.itional terllis arising f:"OiJi incomplete cancellations .1ith the

!

Hartree-Fock potential VHF' They correspond to diagrams in perturbation

theory in which the exclusion principle is violated in the intermediate

2states. The terms of Eq. (10) are represented by diagrams in Fig. 1.

The diagrams provide a connection with the corresponding terms of perturba-

tion theory. In order to correspond more closely to the diagrams of

Goldstone pertul~ation theory,3 the term (a) of Eg. (10) should be brought

to the rhs and then the' equation divided by (€a: - €k + E - EHF')' In

Goldstone r s theory, the energy denominator would be (€a: - €k)' The term

(E - ~) incorporates the summation of many higher-order terms in perturba­

tion theory and corresponds to inclusion of the third class of EPV diagrams

of reference 2. It is assumed in this paper that (E - F~F) is not large

relative to (€a - €k) and this ass~Mption constitutes a restriction to

finite systems.

When V is chosen as VHF' Eq. (6) reduces to

+ ~ (1(K I I v Ik"k" ~ f(k"klll
; a~)

k"k" l

(i)

+ ~ ('/k'l v Ik"l3) f(kk"; a"l) + Z (k')'"li v lalr") f (kk"; "113)
k""1 k""1

(11 ) (iii)

+ I: (,'11 V Ik"p) f(k"k l
; ay) + I: (y'kl v lk"a) f(k"k '; "113 )

k"l' k"l'
(iv) (v)
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I
/6/ v laF,) f(kl~'; ,0) - L. (ykll V lap) f(k; b'),

I ...; \
\V-'-) (vii)

- L. (k).-! v lat3) f(k'; ,) + L. (kk11 V Ik"(3) f(k"; a)
, k ll

(viii)

+ L. (lCk I I V lak") f( k"; p) =
k"

(x)

(iY. )

(E - F'HF) f(kk'; ap) . (11 )

Again, as in Eq. (10), the srlllls over hole states are unrestricted 'because

of contributions from the potential VHF' The diagrams for Eq. (11) are

given in Fig. 2.

3. Higher Excitations

The discussion so far has only included one- and two-particle

excitations, and there are, of course, excitations up to N particles. When

higher excitations are inc1udecL, Eg. (4) still involves only one- and tvTo-

particle excitations directly. Equations (5) and (10) for f(k; a) must be

modified to include coupling with f(kl:1k ll
; a13)') and Eqs. (6) and (11) for

ap,o). The importance of higher excitations depends both on the size of

the system and the "goodness" of the single-particle wave functions used

in the eA~ansion. In pert~'bation theory, both one- and t,fo-particle

excitations enter in first order. Three- and four-particle excitations

enter in second order. vfuen good single-particle wave functions are used

the matr~: elements involving unexcited to excited states may be expected

to be small, as found in reference 2. In Eq. (5) for f(k; 0:) and Eq. (6)
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I
for f(kk '; a(3),; the t..l1l'ee- and fOUl'-particle terms corrcspOIiJ,d to two

i !

higher orders of perturbation theory than do tile lowest order terms. W11en

N is not so large that the possible number of hi&~er excitations can over-

come t..'l-J.e reductions due to terms reduced by two o:cde..·s of perturbation

theory, higher excitat:l.ons are not expected to be ver"J important.

rllien three-particle excitations are included, the term

L. (13,,1 V /k1kll
) f(kk'k lf ; af3r)

f3rk 'k ll

(12 )

is added to the lhs of Eqs. (5) and (10) for f(k; a). The foD.owing terms

are added to the lhs of Eq. (6) due to triple excitations:

L. (Y51 V 1131';:11) f(kk1kll
; alo)

oj'Ytt3;k"

+ L. (l;:'Yi I v Ik"klU
) f(kk"l~I'; af3r)

I' kif , kll!
(13 )

L.
1,0)a; k"

(Yo I v lak") f(klc'k ll
; ,po)

+ Z (kyl V lk"k'l!) f(klfk'k" l
: apy)

y, k", kill

Coupling with four-particle excitations adds the term

L. (1'51 V 111: t1 k 'll) f(kk1k"};:11l; ap/o)
y,o , k" , kill

(14 )
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!

to the lhs of E9' (6) for f(kl~'; al3). Eqmtion (11) for f(klc ' ; ap), using
,

VHF' is modified on the lhs llj' the last four terms of Eg. (13) (vTi thout

restrictions on the SlMS over hole states) and by Eg. (14).

from eqt~tions which are similar to Bqs. (5) and (6). vfuen N is not large,

it shol'.1d be quite valid to truncate terms beyond four e::t:citations in the

excitations. A simpler a~prcximation is to approximate three- and four-

particle excitations by products of one- and two-particle excitations and

to omit three-body and higher clusters, as has been discussed by Sinanoglu. 4

III. APPLICATIONS OF THE EQUATIONS TO ATOMIC STRUCTUP.E CALCULATIONS

1. Solutions and Perturbation Theory

The set of couVled equations (4), (5), and (6); or (8), (10),

and (11) if V~ is used; may be solved for the ground state energy E. That
IlL' .

is, the matrix determined by the complete set of equations must be diago-

nalized. The lowest eigenvalue is the gl-c:.1Ud state energy and higher

eigenvalues correspond to excited states with the saffie symmetry. The set

has already been trR~cated because higher excitations have been omitted.

The continuum may be divided into finite blocks such that the variation of

f within any given block is small and the calculation is then reduced to

that of a finite number of coupled equations provided a finite number of

bound excited states is used.

lihen VHF is used, the one-particle excitations f(k; a) are

relatively unimportant compared to the two-particle excitations f(kk l
; a~),

and only the f(~~'; a~) are needed to determine E - EnF'



'l'he S~lution of Eg. (11) is,
:;

i
in the first apJ?!'oximation,

13

f(kk ' ; al3) = (~a + ~13 - €k - ~k' - (a'i3l v Irtf) + E - ~IFrl (kk'l v 1C43) •

(15 )

The term (a 13 I v lal3) in Eg. (15) comes from the diagonal part

of telID (vi) of Eg. (11). It is the same term used in reference 1 to shift

all energy denominators of the terms in perturbation theory. It might be

expected on physical grounds because € + € - (a~1 v la~) is just thea 13
effective two-particle ~nergy for particles in states la) and I~). The

;Ladder diagram term (i) of Eq. (11) accounts for the il1tel'action of two
i

~articles in states Ik) and Ile ' ). Since the states Ik) are determined by

a potential in'which all the unexcited states are filled (in the HF case),

there is also a correction to acco~~t for the fact that !k) and Ik ' ) are

propagating with la) and 1(3) unoccupied. This correction comes from the

terms r ; 13 in (ii) and (iv) of E;. (11) and from terms r ; a in (iii) and

I( v) of Eg. (11). These terms were called hole-particle EPV (exclus ion

rrinCiPle violating) terms in reference 2 because they involv:e hole-particle

tnteractions (and exchange) in which the exclusion principle is violated in,
!

~oing from one hole state to the same hole state.
I

In the numerical calculations on Be it was found necessary to

tnclude certain terms beyond second order in perturbation theory, namely

the ladder diagrams and the hole-particle EPV diagrams. 5 If only these
;
terms are retained, then Eg. (11) becomes

(16 )
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where

2:
k"k'"

(17 )

- L. (akl v Il~lIcx) f(k"k'; CXP)/f(kk'; Ctf3) •
k"

The last four terms on the rhs of Eq. (17) are related to the expression

(4a + 2b) which was used in reference 2 to sum the hole-particle EPV

diagrams. The ladder term of Eq. (17) is related to th~ factor t of

reference 2 which summed the ladder diagrams. E~uations (16) and (17)

are equivalent to the calculation of reference 2. The neceSS81Y higher

order terms of perturbation theory are thus seen to be included in the

multiple-particle excitation theory in a straightforward manner.

The last five terms on ·~he rhs of Eg. (17) may have a dependence

on 1<;: nnd k' vlhich simplifies the calculations. This ,'1as found to be true

in the numerical calculations for Be where each of the five terms could

be w.citten to a good approxirration as Ci (ECX + Ef3 - Ek - Ek I - (a1?> I v la~»),

2where C. is an appropriate constant for the ith term.
J.



15

Applicatlon to Open Shell ~'\toms

Since

, 2.
\

the Hamiltonian H commutes with ~Wle

i
I

to~al orbital and spin

angular momentum opel~tors Land S, the eigenstates for this Hamiltonian.... ....

must be eigenstetes of L2 and S2. The unperturbed eigenstate I~o} should

have the correct symmetry (in Land S) of thli: true ground state I\jI) which

may be i-rritten

Equation (2) may be i-Tritten as

H = HO + v - V ,

N N

where v = L (r~J.)-l, V = L V(r.), and HO I~o) = EO l~o) .
i<j ~ i=l ~

~llien Eqs. (18) and (19) are substituted into (1), there results;

(18 )

(19 )

(20 )

where 6 E = E - EO' Since k end ~ co~mute with H and v, the calculated

gromld state I~) will be an eigenstate of L2 and S2 if Land S commute with..... .....

V and I~o) is an eigenstate of L2 and 82. For closed-shell atoms, VHF

defined by Eq. (7) commutes w~th I and.§ and 14.>0> is a single determinant.

For open-shell atoms h and ~ in general do not commute with VHF

and so it is desirable to choose a V(r) which approximates VHF as closely

as possible but which commutes with Land S. As described in Sec. II 1,
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it is convenient, but not necessa~J that I~o) be described by a single

determinant. In calculating the ground state of many open-shell atoms it

is possible to choose I~o) as a single determinant because the ground

state usually has the ma:dmum. spin consistent vlith the exclusion principle.

The energy is independent of ~ and Mg and the c.hoice ~ = Land MS = S

often makes I~0) a single determinant.

Calculations for open-shell atoms, using Eqs. (4), (5), and (6),

are :planned. The numerical work described in reference 2 indicates the

feasibility of these calculations.
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FIGUR8 CAPrIONS

Diagrams correspondi.'1g to t..'le terms (10 ). (a) Diagrams

Fig. 2.

for f(kj 0:) and f(kk'; a:p). Diagrams (b), (c), and (d) correspond

to the terms labeled (b), (c), and (d) in Eq. (10).

Diagrams corresponding to terms of Eq. (11). (a) Ladder diagram

for term (1). (b) Ring diagram and hole-partj.qle diagram of

term (ii). The diagrams for (iii), (iv), and (v) are similar.

(c) Hole-hole interaction diagram of term (vi). (d) Diagram for

coupling of one-particle and two-particle excitations of term

(vii). The diagram for (viii) is similar. (e) Diagram for (ix)

and (x). The exchange diagrams for (c), (d), and (e) have been

omitted.
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