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THE EFFECT OF COLLISIONS ON ION CYCLOTRON WAVES | |

_, David L. Sachs:

Lawrence Radiation Laboratory
University of California
Berkeley, California
" Auguet 14, 1964
The behavior of a tranaveree electromagnetic wave propagaung ln the ‘
direction of a uniform magnatic fleld m a funy ionimd pluma is examined
Linearized kinetic equatioma with collision termo nf the Krook-Ehatnager-Groas:_ '

type extended by Liboff to include interspecies collisional effects are used in the

solution of a apétial boundary-value prob!am. The region of ion cyclotron reoomce"

is closely &nvestigated. and the transition of the &teparaion relation from the low- :

tomperature comaion-dominmed regime to the Mgh-temperature regime is oba@rved.-_
It is found that moments of the equations are adequate in the comaion-dommated
regime, but the kinetic eguation for the ions must be used at higher tomperaturea. )

At these higher temperatuma a complete aolutian ot the problem requires numerlcal
work near the source plane. Far from the source. expncit solutions for the fields e

can be written.
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1. Introduction

This paper is concerned with the behavior of plane téansvenne wa.vno i.n"'v
plasma propagating in the dircction of a uniform magnetic fleld, These waves ‘
may be decompoaed into two typas: a right-handed circularly polarized wave
whose vectors rotate in the same sense as the gyration of the electrons of the
plasma about the nnifornn magnetic field;' a left-handed wave whose vectors .:.
rotate in the sense in which the positive ione gyrate. The left-handed wave is ol" :
interest to the controlled fusion programa. At frequencies close to the ion cyclotron
frequency, this wave becomes damped and gives im energy to random mnt;on of the
plasma, l.e. . heats it, Stix has investigated this wnve in high temperature plasma
where collisions are infrequent;i' 2.3 Engelhardt. in low-temperaturo plaeznn
where the thermal effects such as viscosity are unimportant. 4 -Both authorn con- |

aider the spatial dependence of the wave to be of the form a“m

~iut

Assuming a time dependence of the form e with « real. we consider =

.the problem of a wave propa.ga.ting in a plasma that ﬁlls the cemi-inﬂnite space

2 >0, Thereis a uniform magnetic fleld {n the plasma perpendicular to the plane :

"~ boundary =z = 0. The magnetic field of the wave is given as a boundary cond.ition ) '

A

at z = 0. DBecause of the existence of damping. there is no distnrbance at sz« '0. i

The solution of this boundary«value problexn shows that the simple form. ’ =

e,ikz, adequately describes the wave only when the thermal effects are small, |

Criteria are determined for the smanngsn of thermal effects and the adoquacyl

of simpler solutions. | . t |
The result of this study will be a continuous observation of.'the properties

of the waves {rom low temperature, where collicions are important and therm_al

effects unimportant; through intermediate temperaturen. where the the.rmal

properties of the plagma become important; to high temperature, where collisions. .
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are infrequent and thermal effecta are raaponaible for the damping of tne wave,

This thermal damping (called cyclotron damping by Stlx ) 1s a.nalogoua to the B "

Landau damping that occurs for longitudinal waves,

Il ' Kinetic Equation I A

JoU

Let fJ =10 -r £ 1. where the Maxweu distribution function for‘t‘he t;i;perturbed
'pa.rticlee of type j is o ' '

A“::;l RN

s

veoi

fjé : _(ng/ “,,3/,3 ajs) 'exp(_vz/;jz) . -

with a“i (ZTo/m )1/ , the most probable speed of particle s where 'j £ i,e Dt
for iona and electronn, reapectively. and To lo the temperature of the unpertur‘bed

plasma in energy unita. Both'ions:dnd eléctrons havathé utiparturbed denoity{ No.

Ce

8. . ;“-’ A - 0 '
(at*l-vv‘rchv)'sz- v) -iE-vf 'BJ_>

The linearized kinetic equation is then

tude of the uniform magnetic field. which ie in the Q direction. | “
We use collision forms developed by L..iboff. which are extemions of thé
Krook, Bhatnageé. and Gross6 model, According to thia model. the colusion form .

is a term that would cause the diatribution function to relax to a local Maxwenian.

2[ To+ T(r, t)]

. {Zﬂ [To + T(r, t”}w oo R

':.f _Ro + 26, t) L {mlv-u(r t)] }, | e

JR¥ Y
s
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" in the absence of externa.llforc'ea.v The quantitiea n(r.t), u(r. t). _ and Tlr.t)
are the perturbations produced by the wave in the density, average velocity, . and
temperature of a species. . Liboff includes t.‘?,"'m’w corresponding to the tendency o
cf interactions between the ions and electrons to reduce differences in their uveraéev

velocities and 'temperatures.‘ His expression for the ions is

T e o™ i 11 B R RTINS
s = - f° - £ (u . v).g. < )]}
%t konn "{‘ B [ 0 z 27 Z)f e

m - .
, ie 0~
RS ’T’o,‘i_..,.?‘ !

The term ln braces in the colliaion expreasion ls simply ft ot al - f

where f LM 1s expressad in terms of fo by means oi a Taylor expansion in the .

perturbed quantitiea. ' The term m&e is the reduced mass, o :
'To obtain the couision term for the electrona. aimply interchange the subs
scr:.pts “i" and "e. # Henceforth. the electron equation will be omitted 'I'he term :

Vo the ion colliaion frequency, representa the rate at which the ion diatrlbutlon

i
function approaches a local Ma.xweuian. Ve hase the analogouu meaning for elecfi:ene:

vye the momentum-tranafer collision frequency. represents the rate at which the _
difference of the average velocitiea of the two opeciee u‘ & u v approachee zero;
vy, the energy—transfer collision frequency. repreeentn the rate at which the dif-
ference of the temperaturea of the two species. T; = T R approaches zero.: _';‘he
term v, ie amaller than v . by a.bout the mass ratio of electrone to lone, a

Numerical work by Spitzer using the Beltzmann equatien leads to the eetlmate

for the momentum transfer collision frequency'?" o . o e
- 3. 7Tneln . - o S S
o . i I V" 3 Toa; ] _ secv_ 4. Deovag O “v“.ﬁv.»-;\;;’.‘__\»{
where | ' : n
L : L 4.24 104 T°3/z | Vvt o
A= O ¥ 2 AT P CEE TR B

el N . ’ B .
- IEERIRATE AR ;o Boel
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-3 and the dimension of To s K. This

The dimension of no. ié cm
number is obtained from Spitzer! 8 value for the plasma resistivity, n,. by come, .

paring hia definition of n to our definition of vy This collision £requency ia .

¥

applicable to the case of high magnetic field, w Woe > > Vs for relative velocities .

perpendicular to the magnetic ﬁeld. whi;:h is our case of interest. For'i'elatl\;e

e
velocities parallel to the fisld or if W, < < vy about half thc above value 13
correct. - T o
If one then chooses Spitzer' s self-collision £requency7 for v, one has .
v, = 1.03 vy for electrons’.' For ions, one has v, = (m /x.-ni)"/z Voo . e
We substitute the collision term into our linearized kinetic equation. i‘ N
Since V. io_- :zzifo. we have . SR ', -
v " ot S : ’ : . ot R ::1;”‘:;_:4:;";;;'_.,«'? .' Y
X m, & : "
i . _
C e ¢ S T, 2 : R (RITIY P3P
: i 2 L [ v 3 o - Lo
RN it +V1 [-E: +a 2 (ui : V) f’. T,q (a z “ Z)] Sy o .. »e_"\‘»-l}‘i.a‘w‘-“ ;‘H‘iij AN
Vi mi PO A ) d FERRS B . 2 k) R \‘ '.‘.‘ 24 '.: ,\.‘4 .‘
_-_T——_- v r c- u ) - 'T—' (T =T ,<-T 2- Wi PRI §

for the ions,and a aimnar equation for the electrons, "' Y ) b "’_e""
Chooaing cyundrical c;oordin‘a't'es for the velocity iegto'x‘.‘5 "we*'ﬁhd'the','rhvaghet!é :

field term simplifies,  For -~ - = ' o T e et TR

@

i; ‘- - , IR ) L. " . ." ’ - . N S e
o v = _‘_’J._,°°? ¢5Q‘_+V‘L_a'i-n 9 +vze 5

we have _ : _ . D ade
VX2V _ L=« o L
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The macroacopic vectors. | E and u. appearing on the right-hand side of
Eq. (i) are put in the form - e L ‘. ‘
E=E (&H?HE (ﬁ.amafm ﬁ

Aaauming no spatial varie.tion in the X~y plane. we hava _' v

8 8 1 10, oo eld,
(‘9‘:*".'93 ic'é‘é"‘")‘i =D e"+D e V4D, - 0 (2)
where F— o B - . ,' ‘ o . RN . s - "_',:".' L (;\S‘, o
Zv f ) ' m ' m .o .
& : ie , fe . {5
D,= 2 [mi Ay - m, v Bia t Yy o ueﬁ:] e
and N | .. . | | » B oy ) Co . | e | oL e f! "‘..'.‘._ ' ”.i.&.

' 2y _| ek ' ' m, o o
: 0 - z ie le R
.Dz = fi { -z [m' + (V - --—-mi Vi) “iz + l"i mi uem] 3 :' )

i

BT W TS N TN V2 3 | R
LV, —— 4 -3 . (Vi Tiovzl’r -T ]) .\ R y

lno

A similar equa.t!.on results for the electrons. : AN _
The form of the right-hand side of Eq. (2) auggeste a separation of tii
into the form S S Lo e
fii‘ = f (z.t.V‘L.V )e ¢ * f (z‘ t. VL.V )e-i¢ 8(3 t. L’ v ) ] ._

Equating coeiﬁcienta of likc exponentiale in Eq. (2) producea : ' |

oy e I S - ' - Cd wl e v
8 8 . = .
| -('5{”.% =t .?“ic)‘;t"_n.*, TR

and , o . ‘ o . ‘ .
. . L ' t o - * ' ‘- . i ., ) (I Gl T . R ‘
e N N v . . A3

| (‘6‘:‘* Vg '5'3(“&)‘1, =Dpe e
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To complete the equations, expressions for E. o n, and T are naeded-

4 n::ffid; z_Zw]f V.Ldv.l.dv?nfo"‘
P -nT : L
0 ° :

n : ' - : e
0 o _ . . -

gince T =

] -
¢ 2

,J( - 3/2)1 av'= Tﬂjj vldv av f(—:-'é}/?)x

R i - [
nouz-]vzi dvzzjvldvlvadvzfog
' L +id 1 - 2
'nouﬂjT etity dvzﬁvl d.v.‘.dva‘fﬂ=

Maxwell' 8 equations furnish E interms of u:

N

f’.f.-i az E'n‘m aJézéweno a(u cu ). .
9z2. o2 pi2 | B & Bt o2 'E't'. i . °*

‘ For‘ E 2! the equations

8E

and 25 = 4meln -n,) o
S 8u T SR
] on -

Begz * Bt 0

are sufficient. S , EA S e

The equations uncouple into three leta of equations for thc three independent

*

sets of quantities:

pra.uanT;

° 8 % o L
£, Esui o ' '

£ L8 E » O 4 ' . K ' ¢ E
- - - . . E . . - )

The first set corresponds to the longitudinal wave. This pfoblem was first
considered by La.ndau._a neglecting -.colliaiona and fon: motion and has sljnce been the

LT Lo A

. subject of many papers,
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- of the importance of the electron motion and because
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The second set corresponds to the electron cyclotron wave, ‘I‘hiq wave, has_ -

been studied by Shafranov, neglecting collisiens and the effect of {on motion. ?

Platzman and Buchsbaum extended his work to include collisions, 10 but co:_uiideired _ '

the unperturbed distribution function to be of the form

2,2 ' | - o

£ = N/(w.'ﬁr"Z a’)” ,

rather than Maxwellian, for simplicity in the numerical work, The 'qmtities."N '
and o are normalization factors chosen to give rise to a specified density and

temperature.' The coliision form used by Platzman and Buchsbaum is simply
of_ > .
e . 2 -V f ‘ .
% Jeon  ©

 The neglect of ion motion reduces the Liboff collision term to

-

8f 2f m : A O
e | . 1, Mo . % e A
Bt >con Vel 2 7-(ug V) (ve vy me)" : ' 3 - o

since ne = ‘I‘ = 0 for the transverse electron cyclotron wave. Since Ve = 1(m1 e/m )
the aecond term on the right-hand side is negligible and we see tha.t the couiaion form
used by Platzman and Buchsbaum is adequate for their case oi 1nterest. However,

their form is completely inadequate for a treatment of the ion cyclotron wave because

v’A ﬁ v (mie/mi) .
The Liboff expreassion is necessary for an adequate :reatment ot a twooapecies plasma.

when both species are perturbed L ‘
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‘We are interested in the third set, which corresponds to the ion cy‘;htran :

wave, Dxbpping thé minus-sign subscripts, we have the fonowing set of equationa.»

N .

: . Zf ‘ m m
a - 1l ie e ' A
(‘5"’ ¥ V 'f' Vi + i wic> fi = -—;—z—-[mi E 4‘6’1 - mi Vi)uv— mi viue]_t

i

: - | 0 | SR
f 2f T v m, m A .
R 9 e J|=-eE . e ie. N
(6@ s 8z e ec) ® aez I;me < e - my av‘ n'xq, 1 Ai]. |

| 2 '.:. B voomloae
nc ui. 3 ﬂ/]v"‘ dvldva fi. H ; - i'l_'. :

- [ g2 4 g 41reno 8 ' SR

We have defined “’e . to be posxtive. . A R ‘; o,

For any perturbed quantity, P(z.t) = P(z) ei«g s we have the mathematical

condition . : " . | . )
= P(z) # 0 for 5 ) o . : | - g
P(Z)ﬂ 0 forz< o0, - | :‘

since we are interested in the determination of the duturba.nce 1n the region a > 0.

ixlfl i

in termn of its value at z = 0. The appropriate transform is the one«sided Fourier ;

G e
Wbl

TR FRSERERT PRI R RHE S

transform. which is identical in tneory to the Lap).ace tra,nstorm. 1 De'ﬁna

oy ot

‘ .

P ’“21'1? | plz) o~ik= 4&.._:_

o

The inverse transform is .

A e ——————



2%

-9- o  UCRL-11407 Rev.t,'.-,

where Yy 15 chosen so that the contour in the k pla,ne is below all singularitieﬁ of |
the integrand. This insures that P(k) existe an& P(z) = 0 for z<0, The’ requira;-
ment that no disturbance exist in the limit of infinite distance from the bou_z'xda;x"y’
means that P(k) is regular in the lower half k plane including the real k axis |
because of comaional. damping. We therefore may ta.ke Y to be zero, : M ;o

Taking the tra.nsform of the equations, we have

Y

[ a2 iwdmen; - AKE, £y o
<-k Pz B g et gy 0 )
. c ) A

. . zfio | mlevi ‘ - .-,‘_v .I
(—iw-tikvz-f-iwi + vy f = """'Z"" Ei’ E+ Vi- --—-V Wb s “e]' ,

i
- z,fib - IR
' 2w ! ; '
jwrikv ‘ 1; +.v ¥ = Zf"%"’ I »': v m“; Vo oode’t
CRONRY, = e eje 2 m N\ Yemm V1%t — W
’ ‘ a,” e - i Ve e N
. o o Vafen
P " + -—-z——

and again

I l, N . B no “iteﬂ L jfvl &Vl de fi. . . e ’~'§f?l""‘3";",-’v' . ?'x.':.
Now all perturbed qua.ntities are the E‘ourier tranaforma and are functions of k.

E‘\

The quantities with subscript b are. the boundary valueox ,

' y . oo *.. . ib f(z = O). :
' E = E{z = 0).
and ' .
' OE(Z) _ wy e = Ay |
E b= lim = E'(z = 0).
b z—~0 V% ' .

Solving for u,, we have
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Sl b

o lB e [ P V] W Pie, o ] et |
—Zz | A\t T m Ve Ve M VaYe|” Tz

where L .

_ dv dv‘L _vab. . ‘ : @
T Tm o, Tiv,-kv * . S - )
o kS z . R

ic

Similar resulta obtain for u,- -'5olving‘ for u - u,, we find

. )
[ N

[

(g,-1'(q eE/ml)](iﬂv c,)- [T H(G, eE/m )] (441.v Gi)-’

CYT¥e ¢ 'u iviG WLV, G )-1v,m mL(G /m )(i+1v G )+(G /m )(I+1u'd )]

Now - : : : PR , !
o expl et P e Byt e T
| dVL @ w +*1vi ° kvz L . . , A

Performing the v, integration and letting t = v /ai. we have

- B e g S o |
e G .'a " 1 . dt exi!(‘t ! . ’ PR '. L - ! . ;. '. “‘;, o
- i#‘ Eg;— ,a . t _‘?‘i . D AL,

niad T P . . L v ¢

L

© - W v ' e T L
ic +i i
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In tlze definition of the tﬁénsfdrms. wé hnv'e ’»k fénl Therefore , for .

| k>0, we have Im (51 >0, and for k <O. we have lm oi < 0 Upon evaluation

of the inverse transt‘ormations later, G(k) will be analytlcally continued off the

real k axia. For the poaitwe real ® axis, this analytic continuation lc effected

| by moving the path of mtegration of the' a.bove integral in the t plane so as to be ,

always below the pole at t = i‘ . Inthe analytlc continua.tion of G(k) from the g

>

negative real axis the path of integration must remain above the pole at. t = &1

o
S ST
oAl

The t - plane contours are illustrated ln Fig. 1.
Although G(k) has diffcrent deiinitlonﬁ depending on the uign of k, it la

continuous at k= 0 and Kew:

limG(k)wlimG(k)rzG(O)w -i/(w wi +£vi). } L e
k..o‘ k-0t | e
lim G(k)climG(k):G(n)vO .

kot k-'m ..

The function defined lén, and its 'annlytlc"contlnunfion Irom; l:he ‘pocltive real k'
axis ia talled G+; It is relatod to Z(@). the Plasma Diaperaion E‘nnction. which is \
12 : : : ‘

tabula.ted in Fried and Conte. ‘Now ' -
« - . ) . . y .‘ ‘Ml . l :."' ».L . ‘.' }‘:‘l‘h, :‘\‘” .‘, )
AT de exp(-tz)!'! 2( @) - S e

-“
when the contour is below the polé. ' We then have '
| o Gy’ = (1/kay) Z(2)),
and similarly, - ' , | _
+ -
G, = (t/ka,) Z(2,), _.
where \ “ ‘
@és(wqrw 4 v )/ka .
The function defincd on, and its analytlc continuatlon from, the negative a

real k axin ie caned G-, From Fig. 1 and the definition of G we see that we
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have . . C ‘; .
2 o (k) . G"(k) Z’”F exp(-® ) -’, .
| G(k)=G(-k) S
Since we are interested in obtaining J(E). we use the’ relation g Gl
| Jzen(u-u)._ ' |

oy

and from Eq. (5) obtain - S

L ene? rg S
J G"———'B-—-—- E r-n—;(i* ive Ge’)."‘ }"n"; afivi Gi) P
s[4

bl T M1V, G T, @+l ciﬂ,._-
where L : . B

D= (14 1y, G)('1+1v G)-iv mie[( /mi)(i‘f—iv G)+(G/m mmi J
We thus have '

30 = o (k) E(k) + Tl £y, £,

’

Subatituting the expression for J(k) into Eq. (3). we obtain an: expreaaion

for E(k) in terms of the boundary conditione. |

(-ikEb.E ')/Zv/+(4niw/c )ﬂk) I S
E(k) = " | 2 " 4. L '{‘\‘ "z —

where L o s o :
a2(k) = 1+-—--4” 1 S T
_nn.%f-c(mvc)q-—ﬂn-cuuv G) .

Finally, E(z) is given by the inverae transform _

. keikz[(-ik"l‘?_b- EQ/ v+ (4w 1w/c2)7(k)] e
JEE) =4 - Z 2, 5 2 . L
- (0/c7) n"(k) S ‘.

- D
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It appears that in adchtion to Eb and E,', T(k) must be gtven to apecify
the solution.- The expression £or T(k) to be used is not known. since it dependa on
the unknown quantities. fib and f However, by using certain aymmetry

propertias, we may erpraas the integral imrolving T in tarms of known quantities.v

We use the aaaumption oi apecular xeﬂection o£ particles at the boundary.

b(v )"‘ £b("’ ) .

which shows that the integrand of '(4) ia\even' in Vgl :

u = ]d" d"ll"“‘"“’i”"s*k"z)&b
i Zn 2 y ‘ ST
o v T

e
(o - z

e ”"i)

S . ik/dv 2V¥s V1V &y o DR o
' ‘ 2’no (w-wl +iv )Z_kaZ ST e b
Thus = _ , ;o ' .
o, (1+iv G) : (14iv G)
T iek dv v, _dv lv‘;’z [ 'Z °b Z Z
L (m-w +i i) -k Vo (um» +iv )

! 4'; (-‘) :
'L

The specular reﬂection ansumption removes the part oi '.T that is even ‘in k. '
The remainder will be choaen 50 as to satisfy the aecond boundary condition at |
z = ™, - | | _ | ) _

We aaéuxﬁe thatl the value of AEb is known Th.is is one boundary condition.‘ .
The second boundary condition is E(z & w) = Q, This aecond condition {s aquivalant.
to the requirement that E(k) be regula.r in the lower half plane, With the k intcgratio:
contour on the real axis. the requiremnnt ia equivalent to the statement that
E{z) =0 for = < d. That is, for 2z < 0, the contour must be closed in the loyvar

half k plame. Since E(k) is regular in the lower half plane. the result of the inte-

gration, E(z), is zero.
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Returmng to the dafinition of G, we see that G(k) = G( k) Tharefor_e.ﬂ by G
insﬁpection of their definitions, we have . ‘ | | , ,’ o -
I o A

Twy e Tk . oo

Using these 'prbpereies of n;z(k) and Tnc)'and eva;mating Eq.’ {6) for 5 < 0, WQ‘haSr_e

| d 1klzt [(-ikE ')/Zv - (41: iw/c )T(-k)]

-

(w/c)n(k)

. Replacing the dummy variable k by ~k, we have ‘.

1k|z

| d I[(ikE -E ')/ Zfr - (411 1w/c )'f(k)]

S B X DTSN, SR
P ‘-td P . o : . L . 1'%:" [ ;,»;--i.'{ti"“-__:_ili Lo

Therefore : S IR . . e

s {zl“"‘ Eb/ 21) - (4 1u/c ):mo]
| ‘ .- (0) /c, )n (k) - T "'\

(E, 1 /27) dke'® |=]

2 . (WPl

Now for 2 >0, l”lét_'and- X : | :.. IR ..
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1k]
. Efm) = .
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[( mEb/Zn) (41tiw/c }T(k) -E ' /217 ]
L .k -(w/c)n(k)

.'r"vw

dke 1klz|

[-E '/21:- £o/em]
- (wl/c )n (k) "

The result is o

-

o “E ke .

E(z) = "b dke . —— for % 20,

| k% - (o “lcimée)
E(z) = 0

.}7;
for s <0

- We have esoentially chosen. the boundary va.luea. Eb and 'I( b’ £,) 0 as
to eliminate the solutions that grow rather than damp with z.

We are interested in the wave magnetic fleld, which is simply related to the
‘spatial derivative of the electric field by one of the Maxwell aquationa.

G Tapdigeran

B . B(9 f1Retet |
we have

- a4

n’we write
 IXER- Preit :g- -58-{ B+t et | L R
'Hence.' . o A

e 8E ol
B= —o5- ov  °

Using Eqs, (7) and (8), we obtain the equations

B‘ - -

B(z) = ,,ib- | ’Edkg 2o
_ | KW /e%)n" (k) |

for 20, - 4
B(z) = 0

for 8 <0,
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To obtain B(z) by contour intggratiop,‘ '\'_v’q'muat b.nalytically cqneinue 4 r.xz(k)
off the. rea.i k axis. Since the inltegz-'and‘o! Fq {9) éo;xtains'both ('.'rl and - G ’—.
thers are two branch cuts in the upper half k plane: one eepa.rating tha functiona
Gi- and C!i ; the other separating the functions G and G ‘These cuts .
separate the upper k pla.ne irto three regionc. Both cuts extend £rom k = 0 to .
ke =, G' (k) ia the ana.lytic continuation of G(k) from the pos!tivc real k a.xia |

into the complex k planeh:G (k) is the analyt1c contlnuatlon';«-;_»t;';.;;;_

of G(k) from the negative rea.l k axis into the coimmplex k pla.ne._ To mainta.in

G(k) pingle-valued in the -k plane, we m\mt cut the k plano along some path between

k=0 and k=e, We therefore see that each cut in the k pla.ne aepa.ratea the ;'.

regmn of the k plane whex'e we use G (k) from the region of the k plane where

. we use G (k).

Sincc Gk = o) = 0, n (k = -o) = i. and we ﬁ.nd that the integrand in Eq. (9)

' vaniahes ona aemicircle at infinite k We may therefore add this semicirclo to

" our original contour of integranon. the rea.l k axis, without changing the reault. |

We then ghrink the resultant closed contour to as cman an area as poeoible. bemg

carei‘u‘ not to cross any poles of the integrand o¥ the branch cuts, A typical situation

ie shown in Fig, 2, The determination of the pooitions of poles and- cuts is cxplalned
later, ‘ 4 A
Denoting the three regions by the numbers 1, Z.and 3, we have three COTTCa
aponding different functions n, (k). nz (k). and na (k) in the integrand. Corte-
sponding to Fig. 2, we have . o | .
LA | S

nzz‘n‘z(Gf" _Ge'.)-t o Co e t

2 -2, 4 TR . R B IR
ng = n (Gi . GQ . R . \



We then have

ot 8 42{K) = 372 2

Py s gt
.
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Asgume that there are N, poles of t'helbf\i_nction‘- | et e baid
LT gkm
H = . ' e (10)
(w /c )u1 (k) : : - T

in region 1, NZ polea of Hz(k) in rcgion 2, and NB‘ polea of H3(k) in region 3 where

_ ‘Ha and H3 are defired ag in Eq, (10) 1n terme of nz (k) a.nd n3 (k) Let v f
' R 1 . . T o P ' SIS

. B - ZBb E [I?e.s Hﬂk); K“] ' -

’ asi '

where - . T

' k exp(ik z) : :
[Res H, (k); k ] K1 e
,_ [EE (k -(w*/c In, (k)]
7 a .

when k isa simple zero of the denominator of H (k) Bz a.nd 33 have eimﬂar
definitions for ,regions 2 and 3 " The general solution is then e '.-‘3.,»': 7 -
B(z)aﬁiq»Bzi»Bsz“-kBM o e

The contribution B 42 arines from the integral along the branch cut aeparating

regions 1 and 2, Itis expreaaible in terma of tha difference of H (k) and Hz(k). -

, Ciz . .
where the pa.rt of the integrand that {s a relatively weak !\mction of k is _

'_ZBb ot w(Miv G, )

<%, DIG, .c’)[k R iy (k)]D(Gi G, )[k wz/.c‘ )nz (k)]
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and where the contour C 124 ie a.long'tlhe_ cut be}:ween regions {1 and 2 .fr'omi : 3
k=20 to kew - . o B | _7
Since the expon.entia! part of the-iﬁtegrand dropa Sharély to zero .at. both end -
points of the contour, the integral can be approximated by the method of steepest
descents. 3 'fhe result is | ' - B
512'” 1:1/2- %-15— exp’[f(k‘. i)-} .

where

5. [epa]”

2
w'wic "' H Vi ' ST
f(k) = ikz - |. Y | + £n g(k) ,

i

and k.., the saddle point, is determined by -

L - 2 “"wici'ivi'._ 2 g. (k ) en ST e wﬁ_':,;"j:;ii‘i..,
ks (k i) © 13+E-— (-—E;:T + "]E;‘ij“ S

The steepes:t deacent approximat&on reqniree that the contour, ”C {2 beﬂalong
a specified path from k= O th*ough the saddle point. -k ot t© k= o. Thus thc position
of the branch cut in the k pla.ne is chosen so tha.t the resulting integral for 12= -
(f'q. 11) can be evaluated by ehe' metho.d of _eteepes_t descent. Sinco g(k) is relatively

slowly varying, an approximation to k

o 18 obtained by ignoring the term i
g’ (kui) . "
Bl -
to obtaim - Lo : L /3 e @ KR
2w, 4 iv) '. Lo
kaig[ i: : o a R = ,(13) !
ai 2 - J o . e

Again ignoring the dependence of g(k). we find that tha critorion o! validity o! the

steepeat-descent approximation.
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£ egyd R o
| <<i, . e el
[T A SR SR S

leade to the requirement

4 .
672

ksi al
W=, + 1 wi '

Cakdn 4y
o Tie o N . [

R B

Uring Eq. (12), we find that the method of steepest descent is adequate at large diaténceu

from the boundary. The criterion is -

‘87'3,
z>> < R . : S
PTTEERSRTI T

The resuilt is then

BBpps Koy P |\ ) |
.3£/Z cz( w-wic-;-i vi) L . ;?“af T , ;s ;_:{."7'»: *;-.‘.;E»;if)

BiZ=

S (v, G, ) S
X abs - -.,.-,"..;3._" .

D(G, +..'G’Q..)_lk Z/c )n‘ ]D{(}i ,G ){k -(m /c )nZ

A similar result is obtained £6r .331 ST T T R

ZBbwe Wks expn ~ ~3 -T-T-— : o . e . ’/. i

33 ge e
1/2 2

i=
(mw 't-iv)

v I ‘(1«?1’&;6{')2
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where - ' : 1/3

o . 2 ‘
Lo Zx(w—wecﬂ vQ) ] |
se a _Zz |

e a
These results are correct when ':‘equim;menr(ﬁ)ﬂ and its Analog for the electrons are
satinfied., The exponential parts of the expression for 33;- and B 42 are then very
,sma.n The term 531 for the electron branch cut is much omaller tha.mthc term ¢

8 1 Z for the 1on branch cut for frequencies satisfying the criterion

w‘ </V wic. wec . ! . . . : )
This criterion is satisfied by tha'i'ré‘quendié's in our ‘fazige 'of iz;xt'eréé‘t', 53 t. my
. therefore be neglected The electron thermal eﬁecta which occur in B 12, and

z

are alzo nogligible for the £requenciae and wavelengthe ot‘ mterest. Thiu can be
explicitly shown by consideration of the function G , which contalns theae eifects,
Since the wave numbers of intorest are such th}at’ Im §a < 0,:‘-60 .ha.s the

«

asyﬁmp’:otic expansion for large argum'e'nt. |

e - e" 0

-4 g3 ms
G ~ i"' . + =il 4‘ LIL LS (14)
e Mwec-)-{ Y 20 2 4 3 6 :I oo
Since the wavelangths of interest are such that o '

= |@ [z >> 1,

43

the {firot torm of the expa.nsion is kept and the rest discarded It can be shown that-'

the expansion {(1{4) correaponds to the. uu of the truncated set of equations £or the
moments of the distribution function. Each term of the expmglon corresponds to ‘th;
retention of another mom’cntﬁ of a hierarchy of moments, Thé terﬁ‘a  ¢1° is the ‘m'ca;.mn
~ of the electron thermal effects, When these;. effectav are éma.ll. the o'x‘pansibn. or fhe '

 electron moment equations may be ns#d. Replacing G . by the ﬁrat term in the ex«

pansion and neglecting the electron bram.h cut ie equivalent to \wing the moment
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equa.tian for the elecaron flow velocity and neglecﬁing olectron viacoeity and tb.e |
higher moments. ance , o ,‘, . |

‘ : _ 3‘331 0; exp(;f!@cz)..;*
where R '
‘Re @ 2 > 0 |

the cantribution of the clectron branch cut is not expandabla in terms oi 1/ Q

and is therefore unobtainable from the tr\mcated morent equa.tiona. BTN Q, :' .
.. With the . electron thermal eifects ignored we have L > . . |
2 (e iz/w) (m»w )G (w /w) (1+iv, G) BTN l»
n%(k)=1 + ‘ “5)

(1+ivG)(«>+w "“’1 ie“ /mi)(ww )(Mv )/mfl

i

There i3 now no electron branch cut and therefore no regiou 3. 83 1”331:0' Region 1. ‘

now includes what was region 3. _ .
I, Solution by Expansion -
. The asymptotic exp&meion of Gi iun
NV TP ST S R T T (za.mz..s)---a. .
Gx”EF*"‘P"@i )- ,m—)[+ 2 403 *_ 5 ,
{ 1M L 20”40
- . ‘ =T t SR (2@ ) L
| " | ua)
where _ . ‘ N
ezl o e for Im @ <0, i i '

=1, Y' w4 0 . for Im %sad‘i‘i"«f

e ‘,~:-~.._.;7‘f-" Y*’ I3 0. Y 2 - z . . e '_" - . . ', for Im Q > o
- Dol the momene equationa rather t an the ki“uc OQuation leada to the abovo ;.

expansion with the exception of the firat term, ’I‘hen th@ expanoion is the uame for
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Gi'" and Gi' . Keeping higher moments in the moment approach is eqﬁivaflcnt.to

 keeping higher terms in this expansion, However, the use of the truncated moment

¥

equations px‘ecludos any knowledge of the ‘existence of the branch cut. since theae ¢

equations lead to the same expmscion for G (k) for all k Since G (k) appeare to

be single-valued no cut appears and Biz is nonexistent. , ' ;
The moment equations, then. may be incorrect for two reasons: -First.. -

B 2° the branch cut contribution which is xinobtaix_xa.ble from thev momaent equations,

i 4
may be significant, Second, the expansion (16) diverges for any finite x’bi. According

to the theory of asymprotic expansions, 14 the best numerical approximation to ‘Gi

‘is obtained by the use of a finite number of terms of the expaneion. .The error is

of the order of mégnitude of the last term used. Therefore, the number of moments
that should be retained for a quantitatively accurate result depends on thé,magpit_ude B

of .
_ Wetd, 4 {v
o = ic i .
i Ea, - ,

) .

.which ia not }:ndwn until the problem is solved, that is, k(w) is found, ' The ’_x:etention

of too many moments leads to inaccurate results,
We shall first solve the problem by keeping just one or two tqims of the ex«

pansion of G,. The smallnéaa parameter of the expansion is

i .
. - ka‘ -
i (w-wic +1v) '
We define - ' ’
Y=4+ (w-wic +'ivi) Gi . N | - B | ) | "";A:
The expression for n? is now - o , y .. IR

} wZ_,:_I_ . (‘“w )w Ziv] S | .
nzzi . P %) pi pe i ‘ '
(m-mi )(u»w )-hv w+iY[ (v -lm [mi)vi) (mw )+iv vi(mie/m )T o

un
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" Retention of just the first term of the expansion reduces Y to zero,  We

then have = .~ - - 5 N 1_,' ‘ | |
nz;k 2,272 4 te /[(w-w ) (whes, )+iv ) T uey
and the solution ! _ _ | o '
B(z) = By e“‘o“. Lafk)> 0 S o ‘(19_)

This is the result obtained by using morment equationa and neglecting ion vlscoeity
and higher moments. The retention of the first two termn yields

o : _kZ a 2 _
1 i :
Y ™ e y; = y, .
2’91 : Z(w-wic i ui)

“Substitution into Eq. (17) yields

. ) . @ - Y = 417 R ' .
az::i ) p (m i m )w(w “’i Vi) ‘ ‘} . (20)
: ok 'I’[m (wtw )-tim L BT
{w- o) (o, )4iv1 }[- R .- de 71 - } .
N L mimel w-w.icﬂvi] [(w-‘w*i-’éu)(mwev":,)fi viw] '

£ 1 v L
SIS U

é:éhibiting the lowest-order thermal correction, which causes the index of féfiié’ti"t‘)n.'

- to be dependent on k in addition to w; |

The solution is now

PR

| ‘ ik ik .
B(z) = Byl Age 1% 4 A4,¢'°2%]
where o o _
; 2 2 ‘2 2 L
Ap= (67 =k )/ (k" - k7)o ,
. - 22, 2
A= - A= 6% -0/, % 1%
and S .
2. m m [ (w0 ) (wie )41 vew] Lumw 4 1v,]

‘To"mo(wmec, timg, vi] . S =
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This is the rea‘ult obtained by usi;;g moment equations énd keéping thb__l'on
viscosity but neglecting ion heat flow and higher moments, (The solutions d’ftﬁe dis«
persion relation, k i and k,, have no relation to the regloné 1and 2 previouely
mentioned, ) _ | |

The iméortamée of collisions to the applicability of the moment eq&;tioﬁfe at
resonance io apparent from the form_o{ <. The wavelength must be largei than the
mean free path for ion collisions, that is, “1/k > ai/vi' When this criterion is
catisfied, the heat flow may be neglected, However, the viscosity may atill not be
regligible. The criteriog for neglecting fon viscosity is more stringent in the .

resonance region. For v, <w ., the criterion is seen from the denominator of

(20) to be ' <<y, where
. L_
‘ kz'f‘ - . /m kz a z m / :
€' B ————t % i i = % ._.3 ¢, {(w=w ) .
1 YiMie"1 Mg - v‘Z - g My i '“ '

K
&

Therefore for cases where | ¢ (w=e ')| < < 1 and heat flow is negugible 'w"e may find

¢,' >4, indicating that ion viscoaity ia not negligible and may aign&ﬁcantly alter the -

i
results of the cold-pla.oma theory.

In order to display the behavior of the solutions, we choose values of density -

15

and magnetic field representative of a wave experiment’" conducted at the Lawrence

Radiation Laboratory, Berkeley. These are

n, = 3.5x10%% cm™?

and

B, =1 09)(104 gauss,

We then have the iouowing values for a deuterlum plaama... o BV
wpu 1.06 x 1012 gec™1; . S '

, 11 -1
: wecn 1.93 X 10 geac '

7 -1
W Z 5.24 X 19 sec " .
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7 -1

'?'and ‘vi='5;9x10 sec ,

For T = 2x10% *K, we have v L " 3,45%107 sec

Figure 3 io a plot of the trajectories of ki and ka in the complex

k 'plane for this case; ko‘ in the figure io the result obtained when viscosity is |

neglected. Let Q= w/wi o + The quantities ko and k, are plotted for 2 values. '

between £ 0.5 and Q= 2,0, while k, is plotted for 0.95 €0 <4,05, Beyond’ |

this region, kz' becomes too large to neglect heat flow and higher moments, "_'Thut is,

P

(‘»)'-wic"('i Vi) - v ) ‘ o S .4"-.--'""

becomes comparable to unity, nulliff!ng the validity of ;iw’ exp&hsién‘&m}. th‘eii'.ef;»re‘ o

the moment approach.'. Where this is 8o, the coefficient of the kz wave, Az. ;beco'mea

negligibly small, (]A,| is plotted as a function of R in the lower left section of

Fig. 3.) Therefore, the behavior Osz is not known where it is not needed.. At

2= 1.015, however, ‘AZI = 0,35, At To = 2)(104._ therefore, ghe v_iécosity‘ is a,t,_,v. _

the threshold of importance, ‘ | | ¢ _
So for 0,95 s R <1, 05, the expression (24) is neceadary. Béyoﬁd this o

region, expreosion (19) suffices, _ ‘ . L
For order-of-magnitude estimates of damping. the viacoeity may be 1gnored _

and expression (19) used, ’ | ' ‘ :

At lower temperaturea. it is found that the k, wave may bo entirely 1gnored

The coefficient, Ai’ ramaina essentially unity, k1wk and ky recedeu to inﬁnity

'éqrreeponding to zero damping length.

We now derive the criterion for neglecting the thermal effects in terms of.

the density. temperature, and magnetic field of the plasma. Wa have
2

k To/ v,

ev1l <<,
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We choose for kz the vaiue which is obtained irom the nonviscoua dlepersion -

relation, (48) when wmw, ', We havo

ic

: koz(w R z/cz+(iw wz)/v e? .

The fxret term on the right, which corresponds to the diaplacement currcnt. may bev

ignored in our region of interest, where
_ wp /micv1 >>1.

Substitution produces the criterion

N~ v

o : 2 o 3 t4/2 .. . 0 L
: W, @ T 3X40°B T
00 ic 0 0 o ,
_ vyc 114 e no {in A) : R

| Ineérting th'*el value for param.etere pertaihﬁag to Fig. ‘3"." 'w& ;.obftaln'thé_vahe.
0.28 <4, Figure 3lthen represents a case in which the criterion is &iely'éﬁtiéﬁed. o
Noticlng that the criterion is heavily temparature-dependent.‘we axamine the case -
when T = 3x10 ’K. We then obtain the value 2,4 > {4, Now the vieconity muat ba
kept., Figure 4'is a plot of the trajectories of k‘ and k, for thia case, The s
trajectory of lso s included for comparison and lAz l is plotf_;ed as beforg. The .
coefficient [A1| ia approximately 1-]a, l‘, 'a.nd..ic ther;:forg not plotted in Ilf‘;'g_'a" 3
and 4, ' L | o | ' | v ‘
Now it is found that, for 0.9 gﬂ s 1.4, expresnioh' (21) is ﬁééedbai?;;. It 'ie.' t"‘:‘ J
also found that the wave k, no longer identifies with k ; k wk a.t 2= 0.9, bnt v
ky = k at Q= 1.1, A, varies from negligibly emall values near Q= 0.9 to nearly“ :
unity at Qa 1,05; Ay and A, are about equal at Q= 1,01, - Now. no order-of— ‘ ‘
magnitude estimates can be made for the damping at resonance by conaiderlngvone '

wave alone, The disturbance 1s expressed in terms of two wave forms,



' temperature T= 3)<i0

“criterion is obtained by again using k ( ) in the expreauion fo

s Pe
RN .

w27 ucm.,-’im'r_f‘név.'i_ |

We illustratc tho wave form o! B (z) a,t resonance on Fig. 5 for tho :

¢ *K. The upper plot s Real| A exp(ik z)], the contribution

of k 1 to the total solution. The middle plot is Reai| Az exp(ikzz)] The lowor plot
is .'Rea,i[ A; expl(ik 13)3 + A, exp(ik'zz)] + the complete solution as given by Eq.A ‘(Zi).';“

For comparison, we include '-Reai[oxp(ik oz)] , the solution without Viocoaity;_ “Since

o'
R

B=B_(a) (§:4-u)e‘i“’°. L -:-GJ

N s,

we are piotting the compomnt of B inthe direction {y cos wt + # sin wt) - at timo t as

a functzon of z. Referring to the lowout plot, we find that both waves aro oeveroly

.damped, but the wave that includes the viscosity effects does not decrease as -,

' "ab;uptly 2o the other wave. The viscosity acto to reduce the ',ahonn on_\inod'-'byv the ' .

opatiallvariation of the wave field, S

The question arieeo as to tho oi‘lect of the next torm of the/oxpanoion‘ (hoa‘..t" H
flow) on theao aolutionu. Will a third wave form ariao ? Including hoat ﬂow .
nocesait&tea solving a cubic equation for k (w) Since heat fiow is unimportant |
unless we have ¢ > S i. in which case the moment expanaion is inva.lid. nothing io)
gainod by its inclnaion. Instead, the moment expansion {s abandoned In tho noxt
section, the problem is dom; without the expansion. . 'I'hia method is necessary for ‘ ]
€y g‘ 1. Solution of Eq. {20) shows o = 4 in the resonance region !or T = iO 'K.
Therefore, for tomperaturea of thio order and highor and for the previonaly menﬂonod
values of density and magnetic ﬁeld the oxpansion method cannot bo uoed.

No simple criterion exists for the determination of ¢ « in goneral. A coarse

wohave o - ' o
.:., . . . ' 2 Z ioZB T 11/2 o _1"-; \;‘ BT S T

n°. (tn A).




¢ = 28, The coarse criterion ia toa peuimistic. ,

Here T' = 105 corresponds to €
Figure 4 ahows [k (o 3] < ]k () 1. L.acldng a simple expresslon for the pcrtinent
values of ki or k,, ¢ iO <1 will ba coneidered a sufﬁcient condition for uaing the <

momeat equa.tionb arid. neglecting heat now. If “ > 1 but not by much. it would be

warthwhﬂe to neglect heat flow and check the value of ¢, i pertaining to the aolutiona )
k’i and kz where they are xmnortant. R S “
B T R 'wrv’ soxution With@ut ExP&ngion R S T J' L" EN
We ahall now: anlve the problem without expanding Gi' . With the electron L
thermal eﬁecto ignorad and using the functiom e e L b :
EET A R 11( 'f| ,
. & o &' L 4 . '.'7; B Ry l«‘l;f..\:s'ﬁ . ., :
| | Y =44 (wfwi.c * lvi)G T _ T .
we have S - B T ‘
h 25 ® zw(w-w‘ + i:v ) (w+w )'zk ex { 3 [@»—w cHv )/ ]Z}
B b pi ic T T LTV Ve’ P 1 !
- & , &4 8
T X N L o DR e DX (X e L K, 2o (/e Ppa2 (x ac »1
whare ' S - ' L e e ,,'_._:.v;._\' .
- x(Y)=(umey Hotw, JH v oY {vi(mAwec)'mievi[‘(."‘”wed/-’-ni)'(i Vt/me”}} |
and : ST e
2 2y R AR SR
o C e (Y/w) [ Clorw )i “v]
nzms‘_ P pi ec ‘pe i .
_‘:: (Y) . .- o 4. “.
’rhe " gubscript on k han baen dropped We use’ Y in region 1 and
Y™ 4n region 2 when looking for zeroa of the function = ' R -
(w/c In () | SR ;

which correapond to the poles of the intagrand. of Eq. (9)
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: retaiaed An 2 increaees. the relativ¢ effect of g(k) decreaow.
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Since the boundary between regions 1 md’ 2 ip the otecpest descent cémour,i the
' ' . : . o o

contour's position in the k plane must be knowa in relation to the polee, : The .

coz\mur ia deﬁnmd by Im f{’z{.) = lm f(k ) i
cod
A !‘mmarical Wth aimws ﬂm contour to lecwa E:hc origin at the angm .'/ )

a = arg (w-w c-,i-. iv‘) and tend to infnity a.t the. angle -nf/ 2 with or without theﬁi_nplusion-

of the term J‘.p glit) in the vxpregsion for f£(k).  With g(k) excluded, tha .-co;;téu: has

. an asyiaptote at k = (3/2) Re k . An example of the contour was. oketched in Fig. 2.

pegde

The asymptote and the contour can_bg.aﬁ'e{ctgd; by g(k). We define_ . iy

50&
—m'—-—-
i *“’i

At thas value of z z, we find that the contour path and aeymptote a.re radicany ’
changad by the addition of g(k) when the pa.th passcs cloae toa pole. Thia !a .

precisely the a!tuaticn for which the path must be accurate and hence g(k) must be

T
e v E L T i

For z < zn@ ar' the steepeat descent aoproxzmatloa becomes maccurate,

2 ear in then the umaumt «iiatanc@ from tha hounde.ry for which th@ oteepeat-deacent

contour and ths value of B 12 are known to & reaaonable degreo of accuracy (about 40

For :h@ patamem rs

a‘o = -3,5)%10‘4 _<:m"3 .

B;) = 1.09%10% gauss,

3

and , 4

T, = 2X40° ax10%e

. N . . oy | s H hd ' . -
prcvioualy \med the results are very aaarly 1dentica1 to thoae prevxously obtained

Wo ﬁnd only two poles, whone trajectoriw fonow thoae outlined in F‘igs. 3 and 4.

lbef*ning
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1
B, zlasz exp(ikzz) '

B, = ai?’b exp(ikiz) ¢ .

and :
» - "w
“12 ”.312(‘“‘)}?% ' .

we find that the cocfficients a, and a, agreeto 1% with the coefficient;f A’i’, and AZ’
The sum a gt 3 is unity to a good approximation. This means that B 12 is negl},giblévv

at z = 0, since

= §i(0) + 5_2(0) 4 BiZ(O)

requires _ : ' e
Atz o0 345 z 10-20; Zear is_‘ quite small, Its maximum value is about 3 cm at

W E W Thus B 12 is completc‘lf ne'giigible and the expansions (electron vis.cqsit{r‘ -. :
and ion heat flow uegiected) prev-ously used are adequate for theué low te;mpe_ra\'_turea‘.‘
The next case we consider is
T, = 105~°K. . | ’

.
where we found the criterion for validity of the expansion to be yiéiateci; At this
‘temperature we still finfd two poles, ki and kz. Hvowe'\vrer,' fhéi_r tra_jeétox"ie;,' which
appear' in Fig. 6, show that their maghitudes are gmaller than those of thé lowe_r; ‘
temperature case of Fig. 4. Athirc; pole, vlaf'beled’ k3. also appears's&heﬁ Q")},i..
Its trajectory is shown in Fig. 6 for 1.1 <2 = 12 The trajectory is notié‘a'r'ried to

higher 12 because this pole does not contribﬁte to the solutio‘n. It ie a pole of the

L 4

function - keikz - | L . o S ..K ,
K - W/ mir) . ‘
} . . L4 : . ) .4
and it occurs to the left of the steepest-descent contours for Z car and '

T zznear’ whicvh. are sketched ip Fig. | 6 £oxf ,Q = 4.2, Only povles_of tl#df\'x;xc::t‘ion _'

- which lie to the right of the contour contribute to B(z)..‘ Notice that the contour e



e e e g

»
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aéppfoache;s the imaginary .a:ds_a with increasing K . At some o >> Doyt the |
steepest-descent contour will be on the other side of 'ks at 2= 4.2, Then k3 . o
will be part of the complete solution. However, -at this Astance (» 10 metéra) the' '
contribution of this pole to the solution {s infinitesimal, since its damping length is
1 cm. - - | o b e
We thercfore have only two diaéinct wavéa from the poles Mth.expjonantial |
spatial dependence. The branch-cut contribution, B 42° which was negugibla at
lower temperatur'es. is now on the threéhold of importance, The‘coeiﬁcie‘nts ‘é, 4
and a, are plotted in Fig. 6 along with aiz(O) The maximum value 6:! aiz(d)
occurs near moonanca. where a Z(O) = 0.2, Thua B(z) may still be approximted
by the two exponential solutions. However. the moment equations incorrectly
describe these solutions, They must be obtained by the kinetic treatinent._ ‘
The {inal case we consider is | |

" To = 5)(105.!(. . . ) \

.

This cace is representative of tha‘low-colliaion-irequency regime in which. Bi?. is
aigniﬂca.nt. We again find two poles. Their tmjectoriw are plotted in Fig, 7.

A check of the regults \ming a collisionless theory shows assentmuy the same’ renults

"5

for k. kp, 84, &, and therefore a,,(a = 0). At ':ro = 5X40°° K, we _ha.ve |

v = 7.7%10° sec"? < <o

=5.24X40" sec”t.

Thus collisions are negligible when o # “i o At resonance the function Gi. in the
index of refraction hao the .a.rgument’. ® = “L/ka'! . &ince lk“gl @ 1.75(107 se'c'_'i |

for both ki and kz near regonance, we have ! @tl = 0,045 < <4, Now, for

-

Qmall @i ,

La i /W ‘z
».vGL =& ke~ " kK& Lo

+O( )]
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The leading term is independent of vi ' Bo for'vv‘i << @, or for v, << la

£ i resonanc

the dielactric conatant. Eq. (17). may be replaced by the simpler result obtained in a

Loy, ) ooy ES

couiaionleaa theory,

nz@)f 1__+. (upi’zb/w)vc.’fi”(l::) - wpez/w(ngc) . '

with very little change in the solutions . B { -and B,. The criterion for 'néglectihg

collisions at resonance is, . .. . e o D FU
B 7 ] , . . . . | A
B i LA . . Lot TR i“J‘.",‘“}
. , <<, . ) . o '
ka s , . . ;
Lo . . © P . i B ) P : I“'A‘l o »'1;\::\'?“! 4{,~_e‘.’:;’"'l"~,;“

We now obtain the value of k at resomce. R.eplac'ih;g' G bytho ﬁvfét_terixn ‘

og' the amau o expa.nmion. we have

v L : 2
2 2 p— 2
wicz S “ie kaﬁ R ‘.Qic(wic +;wec)- S b

Ignozring Y, W, in the third term, we have L S o

12 % e ¥t (a3 /w 1 S S
: A e L

= +
PR c * 8 e
since :
2_ ® 2 '
pe . _pi o com o
@ (V) ¢ . . * U R
, - A . ic SR . S . . TR -

‘ _ Since w ol >> o the firet term ie negligible compared wich the thlrd The
third term is not negligible compared with the necend It is about half the magnitude
of the second term in this case. This 'indicateqmtha_‘t the contribution of the electren
current to the éielectric constant that produces this term should be kept even éft ion
cyclotron resonance. For the imrpoae of obtaining an ord‘er-of—m&gnitude'#pp;oxi-_

mation to K, we ignore it here and ob;ain

R s
. R b
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!

ka c pi P DR '~. ) B, S
-] a » e . ) \ o
, IR ‘ c‘“ai : A A
ao ) ) ) . ; . : B . ‘ ‘ . [ _. e e S J_ ) H i
Tk, 12 . 2 ,4/2/2 A
4,2 ic pt . B TR
Cur crite'ﬁon .in.the’p
vy l 3 cz vi3 o (ln A) i -
SRR ' o~ <<t o o 0 (23)
ka < 2 1172 e
i a, wicwpi 4/7 . 3$0T : . o
. : R . 1 oAy . i
for ignoring collisions in obtaining ‘Bi' and By | - et

This criterion is of no uge for B,,. The bra.nch-cut contr!bution ie heavﬂ.y :

dependent on comolons. Mear resonance we have
?xlzear = 59 i“i/ “i

R near

)ﬁ 1 vi/a’ (25)1/3 le/3a . “‘:‘. ' - ‘y,“ ’ ;Q‘.,_.
Therefore ‘(k ) = 3 a.t reaonance. We then have G (Qi) teplaced by its

asympsatic value for large argument to obtain, Gi = -1/l vt -

~

1 v
In contramt to the case of the polea where . E—é—- < < 1 and Gﬁ. io iudepondent
i .
v . ‘ . 4 2
of v{» We have E;é'; >1, and Gi is now depcnd.ent on v,{.i '

'rhua at higher temperatureu. at which the criterlon (23) u aatiaﬁed the :

collisions must mn be kept for tha inventigation of the branch-cut contribution when

this contribution is evaluated by the method of steapast deucent. E |

\':‘ Pat N .

For this low-collision regime, the aigniﬁcance of the branch cut is £urther

illustrated by the following occurrence, Referring to Fig. 7, we see that tho tx‘a-

- jectory of kz' now rgmé.ina near the imaginary axis throughoug t_h_e frequency _tgpgg N

of intersst, A I
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For w<«< W4 o the branch cut is in the upper left quarter plane for all =, and

k, ia on another sheet; k therefore makea no contribution to the oolutionr For
W > w

ic
tributes to the solution. Of course, the total solution varies continuously thro_ug"h.

» the branch cut is in the upper right quarter plane for all 5, and kz cop- | ', '

this apparently discontinucus change in the resvits, Since B 12 iz evaluated at

Zoear’ 2 distance at which the contribution of kz to the solution is less than 10'38

for we W o0 the presence or absence of kz is imperceptibie. At =z = 0, the presence

" or abasence of k, is important, since it has a coefﬁéiént. a, 50,7 for wew

ic* !
Since a, = 0.65 for wwm W by Eq. (22) we must have a'iz(O) = 0,35 for’.u <o
and a ‘z.(O) = -« 0.35 for w> R This illustrates the 'futility of attempting to

attribute independence to cach of the three terms B i. Bz. and B 12° The existence

of B, and Bz as solutions and ihe valuc of B 12 are‘whouy dependent o_nl the choice

1
of the position of the branch cut in the k plane.

Thus B 12 {s significant near resonance in the low-com-ion-froquency'regime.
However, the steepest-descent aPproximation we have used does not give us the form

of B,, at small z. The smallest distance at which the approximation is vaud.

i
L eap’ '8 Of the order of meters for T = BXiO ‘K and w sw . At this distance

B, and a?_ are leas than 10 B, ., and B‘znio

1 Bb. The steepest-descent
approximation determines B, , accurately only where it 1s small, This feoulg has |
been useful at low temperatures (To S 10 *K), where it dgmogstra.ted thz;t B 12

could bs neglected conipared with -Bi'*' Bé. At these higher temperatures, however, i
will be necessary to aband;on the stoepest-descent approximation near recdmce in
order to study the behavior of B 12 at reasonable distancee from the bounda.r{r. A
numerical integration of the complex integral in Eq. (11) %uld have to be performe&
We have not attempted this numerical &nalyaia. In tl.xl- low-collision regimc. ln which
v €< % the effecta of collisions may not be adequately represented by the i
Liboff collision model we have used. The reasons for this are given in the conclud.ing

section.
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v, Summa.r'y’.; Conclucions, and Sng&alav:tibna for Further,Work. "'

We have shown that collisional effects on the ion cyclotron wave allowthc e

wave to be described in termo of a cold plasma theory (that is,. vi.é. the moment. ..

equations with zero pressure tensor) when tho criterion . LTy
@, z'r 3. gep o AM/2 0 o e
00 _ ic P . 80 o , Lo
o N e ~z g, KA e
vy ey, B, Hnd) e S
- R . . . '..{! A o s
is saticfied. The dimensions are - ‘

T, in * Kelvia, n incm -3, angg in gauss, © U

J

-

W Rk

" The thermal effecta may be included aolaly thromgh the components of the ion-
pressure tensor that lead to vmcosity if the resultant wavee ‘have* [k “g' / v €4 at

TEBONANCA. A coa.rae amd pessimintic uriterion is

. . *v.i:' RE L )
]ka. | 2w e T 0% T M2 |
= ‘o iezpz = g e S 4 :
T 4 i ' Lo :,
i o "1”& ¢ m, n, (¢n )™ 7 U
I «®aq, the resultant waves might still have o o ~'$_ 3 , a \
eagl /<

ﬁ‘ not, the moment equation approach must be aba.ndoned. Under theac cenditions. -

the use of even higher moments than the preaaure tensor ie of no help, aince the -

additioa of each highet moment io equivalent to keeping another term in an asymptotic
expansion of the plasma dispersion function. Since the aaymptotic expansion 1o lin- |
valid for {k a | /v v £ 1, the moment expa.nzion will then be incorrect.” -

. Using the kineuc approach. we ehowad tha.t the aolution of a boundarypvalue
problem for the wavea comains a new term which can be 1mportmt near resonance

at low collision £requencxea. This term has the exponential depend.ance :
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‘ e w‘.(a) .{rivk Z/3 ’ e T .ﬁ',-'." C A
' 3 ic i 3/3 L : o
exp|=-3 | —-—-21-3-1-—-—- o T
9 who dxscovered a a!milar term by ueing s

at large 3, whi.ch led Shafrané;r,
collicionless theory for thea alectron cyclotron wave, to can it the domim.n% tefm near
resonance. We have shown that this term is neither domixmm nor negligible ne&r; ',
resonance for low collision frequencies, and that its value is negli;gibly small and -
strongly dependen§ on collisiona at large a.‘ wherao the steepeat-daméént method ‘ia'v
valid, e |
According to our kinetic madel. collisions Imvo no effect on waves with

iks

dependence e~ near resonanmce if v, << [ka | . Usingthe comeionleu thaory

to estirmate k at resocnance, we f{ind the criterion for neglectmg.colhsmns to be

' m c?v? n anny
¢ ol 1172 <<1i. ) L
Z'J—To e, i . .3B°T° . R L

Figure 8 {9 a logarithmic plot of the lnes ¢°% =4, ¢® =4, and of = t asa
function of density and tempsrature tof the cage B°= 194 .gausa. - The fou_r‘case.s we
have treated are marked by circles, ' | o . |
The region below the line % a i comistn of the va.lue@ of na and 'r for
which the thermal effects may be ignored, Betweon this line Md the line .e = 4, the_

thermal effects may be introduced by lon viscosity alone, Thus below %=1, the

moment equation approach with heat flow neglected is valid, Above the line e Sy,

the kinetic 'tréatment must be used. Above the lne ¢ 1-;‘_‘ the collisions have no ‘
effect on the waves with k2 dependence according to the cauisional made!. we use,

In this region. the new term becomes important, but is inadaquately dwcribed without



-37- | UCRL-11407 Rev.

Further work will be necessary for the region above the line qi =1, This

region where numerical 'analyais will Be ‘néaensary ie aiso the éeg’ion where th.é re-

5 which we have used, may be inaufﬂcient for the

16

laxation collision model of Libqff.
description of coluiaional effecta, J.P. Dougherty’" has recently introduced a model
Fokker«Flanck equation for the colllsions of a single apecies of particle. “His model,
which necessitates aqlving a differential eqn&tibn inv velocity space, _requi;fcint :_;u-; o
me_rica.l analysis. He shows that if v << hw model pred&cta.large?,eifgcto“ of
i}zgn—icm collisions when applied to ionoépheric radar ecattering tha{u. does a simpler :

model of the form we use, For v, > , both models give similar reauun‘.l -
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