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_ABSTRACT o

A method ;é-preoeated that simplifice the phyitcal content of an e:;pori-
mental result By removing & mo;xlma.l number of redundant variables. A
‘set of N primary bidary variables ‘s postulated t;) characterize each ";vent"
" of the sample, and an N-bit binary oigﬁatura {s congtructed that summarises
" the behavior of each ovent relative to thess N variobles. For well-chosen |
variables and an unbiased cxpor&n;euul sample, the sets of oigm.turu occur-
ring frequently can be uniquely decomposed anto physical .a‘nbutl if an appro- |
priate kind of physical relation holds among the variables. This gives a
global picture of the éorrelatiom among the :baoic variables, facilitates the
o;zparatioxi of real from background evonits and glvh a physlcal picture of

- the phyasc;l channels contributing to the cxpetimental dlstﬂbuticn. The

Boolom minimization approach inmated by Quine is used and the calcuhuons o

.~ arve performed, for large problemo. by a. computer. A dcuned example

A
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Separation of fundamental from redundant variables, that often tedious
necessity, ca.n'be facilitated by.a' Boolean Algebr'aic technique that decomposes |
an exnerimental sample as economically as poasible.into physically significant ‘- .
parts. With cert-ain physic.al assumptions, the decomposition is unique. The

ks .calculation, whtch has beon rcduced to a computer code. is 'based on an
'~ analysis initiated by Quine. ! The m'aj-or variables of the problem, however, -
- must be expresslble as binary variables. We discuss the method by uaing

" an example from high-energy physics.

' An experimentz was perfor.med in the Lawrence Radiation Laboratory's o
 72-in. Berkeley hydrogen bubble chamber to study the reaction 1"+ p =~ nd n; o :

" _as dis¢ussed in the preceding paper. 3 There wera two major experimental .

difftculties. broadly speaking -'detectabiltty and validity.' There were large
variations in the detectability of experimental events and many events were

" . of questxonable \’/ahdxty. Because validity and detectability may be correlated

it is important to study all the vatiables together and achieve a global picture
' so that we may compute correctly the aimultaneous inﬂuence of detection
-biases and background contamination. ‘\V
" The seven variablea chosen to characterize each. event are listed in Table I.

-

" Variables X Xy and X refer to the proton track and its situation relative '

2’ 4
| " to the film plane (which is parallel to the plane of the glass top of the chamber)
Variables X, and X6 refer to the missing mass calculated for the particlea
assurned to be emitted in the original reaction. Like X/, X, is also ; measure
- ‘;:',‘ ’ - of the validity of the event. ‘The parameter is less than 2.706 for 90% of o

L valid eventa (one conatratnt). The variable Xo is included becauee we are

interested only in events having forward neutral pions. no! s and we wish to

e examine any correlations h‘nat may arise. Variables X and X5 measure the 5o
'atringency imposed on the corresponding validity requirements }C1 and X6 a.nd.

conseqnently. their reliability. Co i
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Thus eaeh event we analyze {s characterized by a series of seven binary |

"..’-"ovariables. Consider, for example. an e\rent for which cos Gc.m. = 0.62,

2

= x“=1 45; 6h=1.52 deg. Lp'—' 0.91 cm, X = «441.1 deg, MM = 20 0 MeV/c .

. RD = 1.50 (i.e., MM = 165.0 MeV/c instead of the ideal 135.00). The

"'4:;'va1'ues of the variablea (X6. Xs. x X3. Xz. Xi. and Xo) are (0 1,0,0,0, 0.

| and 1), - We could write them in a more compact string 0100001, read it as

- a binary number (01.00001)2 = (33)10 and consider its decimal equwalent. 33,

the signature of the event, In other worda. £or the set-of variables X, we

21

con.stru'ct g Xi' and call that the signature of the event.. Because the

aignature ia based on bina.ry variables Xi. we may call it a Boolean signature.

' .. This signature expresaes unamb&guously ina single number, the character

of the event with respect to the basic binary variables.

| . }feving computed the signature fo_r each event, we plot the distribution of
signatures. In éenerai we may'expeet that not all possible signatures will be
represented in the statistical serrxple. Rather, if the basic variables are

" ~ well chosen and are prxysiéauy 8ignificant. v;e may expect that‘certain combina-

tions of variables will occur more frequenﬁ'y than others. In particular, there

T might be correlations between variables that will exclude the 6ccurrence of

_take the two extreme cases. .

' ¢ertain combinations. One must remember that neerly all the physics lies
" in the choice of variables. . Inoeed. tﬁe method does no more than summarize o
' economically the pﬂysics thus fed in. 'To understand the effect of choice, we :

s

' First, assume that all possible combinationa of varia.bles (signatures)

- are represented approximately equauy. The result of the analysis is that all .

i the variables ahould be considered redundant. no combinations of variables

‘:f’;~3;:‘ characterize the experimental set. The experiment does not di“ing“is}‘ any

n "phyaically signifxcant combinations £rom among the possible combinations '

presented. -
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~Second, consider the case in which only one combination of variables

(signature) occurs. In that case there are no redundant variables. _The

L ‘experiment distinguishes exactly one physical combination, and each variable

is needed to specify it. !(If for example. one variable were redund_ant. then two -
- combinations differing only in the one redundant variable, would occur. ) |

" In each of these 'extreme cases, the n:rethod gives no information that is

not immediately apperent on iospection. The 'ca.ses do illustrate, though. the _' -

domain of the method. the compact expreaaion of the reaults of an experiment

‘relative toa pre-chosen set of blnary variables.’

One exceedingly impurtant assumption should be _stated explicitly. We
assume any two events to be similar to each other if they differ in the value .
of precisely one w)arie.ble. If the kind of simuarity being treated in a problem ‘ |
is not of that kind, the analysie we £ollow is useless in its simple form.

. We have spectﬁed. then,; a set of basic bin.ary variables each of which
has a definite value for each experimental event.. For each event, we cOmpute
- a Boolean signature relative to the set of binary variables, and we examine
the distribution of the experimental signatur‘es.b Some' signetures are relatively
popular, and some, unpopular. Here..--.a‘__second'and last lne‘er‘tion‘ of physical
information occure. fOnle must decide'. for each signature, whether it is 'intere st

"ing. What is called "interesting" deoenda on the problem. A signaturé may

.. .be interesting becaose it occurs ofterl'. because it fails to occur, or for any

B reason., The signatures we choose. £or a given applicatxon, to call mterestlng

s are expressed by this procedure in their most compact form. _

Ia there. for an arbitrary set S. o£ interesting Boolean signatures. a

unique most compact expression? No. in general there are several. Each

- of these. however. has a certain set of terms in commou with 311 the others. ‘

. -Each such term is called an essential °eu" X
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We can illustrate the terminology with a simple example. Suppose we

“ " "have three binary variables and that the interesting signatures are = (0) +

o (1) +(3) + (4) + (6). We remind ourselves that the signature (0) means

| X,=0, and X, = 0, and X, = 0; the sigaature (6) means X, = 0, and X, =1, .-

" and X,=1. It {s usual to indicate X;=1by ‘}-Cl. and X, = 0 simplf by X,.

.. Thus the slgnatuie (0) is written szixo. and the signature (6), X2X1x°

" The set S, then represents the union of interesting cases which is written, '

" " in Boolean Algebra, as a sum of products

5= (0) + (1) +(3) + (4) +(6)

-8 = XZX1X0+ X2X1Xo+ xZXiXO*..¥2x1x0+ szixo = SO' _

.Now the following relations, among others, hold in Boolean Algebra:

'x+x';x;'x+'i=1;'x'5€=o; o4x=x; 0:X=0; +Xa1; 14X =X, .

\Mth these, we seek to simplify the expression £or S.

For example the second and third terms in S. szixo + xzxixo have Vo

o the common f{actor szo. We remove it and express the terms as

23.{6 (since we have X + 5.( =1 for all X in this algebra). =

Similarly, _with the fourth and fifth te_rihs. we have szixo + szixo

Xo(X, +X,) =X

(X + X ) = ;(ZXO' Thusb'we can express S in a more succ.i.nct form

’ s = X, X, X, + X, X, + X,X, 2 S,, wm'ch has 3 terms with 7 variables in '

, 271770 2°°0 2°°0
. . all, where the onginal axpression. SO had 5 terms and {5 variablea._ The

e ‘expreasion S,» however, is not yet as auccinct as possxble.- We can simplify

s it by uaing the theorem

We pro&e this by writing , - A, S
i xx:xx<x+x)=x20xi+xx

\‘
L.
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Xy

x X, = X x1xo‘+. X ZX‘XO o | '

»i

8= XX, X+ xzx0 + X X, = 5,

- xzx'ix +xx1x0+xx +x

279

‘= X xi(xo+ Xo) + sz + xoxz = Xz t szo + xoxz e SZ'

0

: Thnﬁ Sz has three terms, as does Si. but contains only six variables wherev
S1 has seven. The expreuion Sz is therefore more economical than S

By a prechely analogouo argument we can ohow that szo a szo + xzx 1){0' .
‘and ultlmatel}'o that . - ','\ ‘ 7'-‘_ S . BN

- X X°+ xzxo + szo - 83

Collecting our expressions we have

S. & X.X, + X

2 254 zx°+xzx°; 's‘3-x‘x + X, X, + X, X

0 270 2o’

two different minimal expressions for S that are equally succinct. Notice

‘" 'that two terms xzxo and :'czxo appear in bo§h minimal expreuioxis. Each of

these is what we have caugd an essential cell. (We have not proved that

these exp:;soiona are the most suécinqt in the foﬁn of sums of products, nor that
they are the only ones. Both of thené "anertions are trQe and are auuxﬁed in
this discussion. ) . |

We now give a geometric interpretation of the procedure we followed in o

the example. Each signature based on three binary variables corresponds to '

L one of the 2°= 8 vertex poinfs of a three-dimensional cube. The set S forms

S a subset of these vertex painta. For example, the signature (6) = }-(23-(1)(0

i meaning »"xz- 1, and X, = 1, and Xot 0" corresponds io the vertex point

;vff'”(xz' x‘.xo, - ('4"'1 0). In Fig. 1, all ve:tex pointa correapondmg to interenting

4

_signaturea are mn'kod ‘with circlu containing the correoponding cignature. .

. - . L. s
N C A i
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!
In our Boolean reduction above we expressed the signatures (1) + (3) =

XX, zxixo = xzxo = (Ei" Geometrically this is -repl'acing the two

Be points (1) +(3) by the line E,. The expreaaion for the two points names six s
. variables. Its costis 4 + 2 = 3. The systematic search for common factors 'v L
) . that leave iaotor; of the form X + X alweys gives the expression having the

C ioiveat'cost (cost = number oi fer’ms + number of varia'blos named). Further, ° s

this procednre is eqnivalent to expressing the original set of pointe as a set of SR
as few cubes of as high dimension as possible. In the example, we replaced -

- the five points (cubes of dimension 0) by three lines (cubes of dimension 1).

The economy is achieved by removing a maximum number of redundant

- . variables (variables that are not needed to describe S).

It is useful to notice a geometric property of the cens E, and E:2 Why,

after all. -do they appear in every minimal covering of S? Let us look first

‘at cen E, and vertex (3). We notice that E, is the largest cube composed
~ entirely of vertioe's in S that contains vertex (3). Even more, every such

. cube is contained in Ei

In particular, the two cubes (3) and (1) + (3) are contained in E,, and

v _ ‘there are no larger cubea containing (3) that are composed entirely of

- vertices ix) S. It is also true that any cube, C. composed entirely of vert.ices"
. in 8 appeare in every minimal expre:sstn for S if C contains aey 4ve'r.te'x.V‘ .
~ia S and ali the vertices in S thet.ere adjacegt 'to. V. In particular, E, is
.":‘f«such an essential cell, since it contains (3), vertex in S, and all the vertices 'A_‘
' in S that are adjacent to (3). namely vertex (1). Simuarly. E, is essential '
.becauae it containe vertex (6) and the only vertex, (4). in S thatis adjacent

T to (6). .

On the other hand. Ci is not an essential cell. It contains vertex (1),

v

but it does not contain both the vertices in S» (0) and (3). that are adjacent

.to (.‘L). ISxmzlarly.~ it contains. vertex (0),.‘.but not'a11~ the.Vertices‘m S that are .

adjacent to it. ‘In the senie way, we find that 'Cz’_is not an essential cell,
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Ifa cell, C, is c'ompos‘ad entirely of vertices in 5, and contains every

o cell in S that covers some vertex V in S. it fonowa that the most economical

e covering of V (and we m\ut cover V and every other vertex in S) contains C.

SR U V were covered with some ‘other. cube, C'. that cube, by our assumption, o

o,

B . would be of lower_dimenuion than C {since C contains every cube that covers

. V). Thea C' would contain more variables than C, and the resulting expres«

" slon (or co#eﬂng)“_would beil.eea economical than it would have been had we
"used C instead. . The covering containing c' thoteforo'is not minimal. This

: exoiains why all the esa'enti‘al colle appear in over'y minfmal covering of S.

The first step in the reduction of any set, S.. of Boolean signatu'res to

~ its minimal expression, then, I tho' nearchiog out oi all essential cells.
_Those mgnaturea. R, in S that are not covered by essential cells must be

covared separately by celle C. There will be no unique minimal covering of R.

[ ]
4

In the example given, essential cells Ei and EZ cover the vertices (1),
(3), .(4). and (6) but leave a residue R s (O) of one uncovered vertex. The
latter may be covered minimally in two ways. by Ci or by C2 This concludes
| our general introduction to the problem of the reduction of an arbitrary set of .
Boolean signatures to its minimal forno. . The references give a more satis~
| faotoif., complete, and x;igoroua disco“ion of the genera} arguments indlcated_.
above. | | | B - o

We now puﬁ some physical con;tent .h'xto our discussion. To. this point our

: general conclusions have held for arbitrary sets of Boolean signatures. 2( The-

i sets that occuxj in physical experiments are not arbitrary, and we wish to

. take advantage of their spacial quanties. In particular. we wish to show that, :
ina cortain approximation for sets of physitally sxgnificant signatures. only
) _ the esaentlal ceus are of interest and there ia, therefore. a ynique result.

" This is 1ntere_sting. because itfpormita us to assign »to ao e_xperimental

o G A S . . .
L4 .o s . . e, v g
e . . . .
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.distribution a umque signature that exh1b1ts nakedly the dependence of the
' dzstrxbution on what it (the distribution) finds to be ‘the fundamental variables.

To understand the approximation and the appropriate conditions, let us
consider an analogy. Sup?o_se that a clan is a set of individual members
such that each member has an intimate relationehip With ever.y‘other member.
Assume too that ﬁo person ox}tside the'clafx satisfies this des‘cr-iption.‘ It is
‘usual thoﬁgh. _fo;- members of the clan to have intimate friends outside it.
For a large enough clan, there may be one or more members who have_ no
inti't‘nate'r_elationships outside fhe clan. The relations of such a recluse define
the l:‘aoundaw..ries‘ of the clan. If every member of the clan (including the very
‘young) had at least one intimate relationship eutside the clan, then the boun-
daries of the clan would be harder to find. In the more clannish clans, the
latter'is net the case. Some members operate eni:irely within the clan, and
their reletionshfps,’ unalloyed thh foreign substance, define it. We could
pick a clan out ef a crowd by looking for such members and knowing their
friends. | |

The essential cells are analvogous to the"_cla_nnish clans, with the signatures
playing the roles of the clan members. A fr.iendship correspdnds to member-
ship in a cube that is completely filled with elements of the set S.

If we may mix our termmologzes. our procedure seeks to break the set
S into clans, leaving a residue R, of perhaps a few signatures that are un-
' effiliated with any of the clans. We then assume that the character of the
set S'is expresseci in the clans it contains. |
‘“W_e need only justify our emphasis on clens_ (.essent.ial cells) to complete
,our.heuristic description of the method. We assume first, that the Boolean
signatures are computed relative to a well-chosen set of physical binary

‘criteria. Second we assume that two signatures in S that differ in precisely

one argument are similar in a physically interesting way. Last, we must



physicauy interestlng signatures. This statement. as well a: the ﬂrat two..'x :

. 'il meant to indlcate limtto on the valid use of the method.
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- . assume that the set 5 is an unbiased representative of the physically

' . interesting signatures.

We should comment on these assumptions before proceeding. A good
set of criteria helps insure that the compositien of the se't. $ will contain
the interesting p);yeical information. 1f the criteria do not d(stinguish
i:hysically interesting from physically unifxtereotiug caaes.A the compact

expression for the signatures S stated to be “interesting' will haveno

' physical content.

‘ Because the 'method of Booiean reduction looks for cubes filled with

interesting signatures (see the example above), it cannot analyze cases where

‘adjacent vertices do not correspond to phyuieauy similar situations. For

- example, suppose we wished to a.nalyze the similarities of a set of signatures '

that had the property that the binary representation of each had the same

‘number of """ bits. In particular, suppose that there were three argumentu..

and each member of this particular set of interesting signatures had one ''1"

bit. The interesting signatures then would be (001, 010, 100), S = (1) + (2) + o
{(4). Since no two of these signatures are adjacent on the 3 eube. no reduc-
tion is possible. Tho method would state that the most economical expresaion

for S in terms of sums of products is S = (1) + (2) + (4) (1. e. the form

"given if originally). Ia doing so, the method would ignore the regularity R
" we know fo exist. This empheetze’s the point that.: it is essentially the
.adjacency reletiona of S that are analyzed. The method is unsuitable for |
a analysis of any other kind of simuarity., If a problem has another kind of |

‘simuarity. it must be recast, or another method of analyah used.

The last assumption is that S be an unbiaued reprecentat&ve of the

.
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. A representative set of Aphysical signatures L'e(unbiased if all physically
interesting eignaturee are repreeented. For example, if a statlsticalveample."."-.:,:"“j": ’
s analyzed relative to too large a set of variables, many signatures may be . |
phyeicany interesting, but unrepreeented because of thellow atatisties. We

ehould regard. this assumption as a restrictlon on the number of variables to be -

“ : ueed in the analyeie of a atatistlcal eample. Other biases may be introduced i
2 ‘. by adding or discarding signatures in an unphysical way. - |
B . The meathod is most naeful. obviously, where the number of redundant
o variablee is large. A large clan is more likely to have members who operate
entirely \gitﬁin_ it, having no intimate friendships outside the group. Such
clans, we have seen, are easler to .pi.ck out of a crowd. Analogously, essential
cells with many -rednndent variables (i..e. ' 'iarge eeils) are more reliably
'ascerteined by our method than are small cells. Granting that the resulte
are weaker for caeee of small esaentlal cells, we must note that they are less
interesting as well, since for such cases, the r_esults are_ often derivable by
2 inspection without the apparatus we have developed. | | \

We now give results of the analysls’ of the experimental eet of Boolean
eignaturee derived from the actual phyeicel experiment described at the start."
-The seven criteria were glven in Table I, and Fig., 2 mhowe the distrlbution of

‘the experimental Boolean signatures for some 150 events. We choose to e

consider interesting thoee signaturee that occur more than twice. The set S

" then coneiste of the twenty algnaturee S s (0. 32. 33, 44, 66 78, 97 98, .
99. 100. 101 102. 103, 108, 109, HO. 1114, 113. 115. 121), each involving
| ‘seven variables. The "cost" of this. v.nreduced expreasion. SO‘ is therefore . ',

' 20 +7 X 20 = 160. When we reduce S we find that there are seven essential “A“F,_'- i .

‘one signature (33) 1s unafﬂliated with any clan. that u. R= (33) This e

celle (clana)-—one compoeed of valid. and eix oi spurious. events.} Further. Ll
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- supborta our contention that the set of ‘.signaturee will split into physical sets.

"'+ Are there any other internal checks? Yes, if the essential cells really

o ' correspond to different physical sets, we should expect thom not t0 everlap ° L

~or else to overlap very little. The latter is the case. Three signatures

(to8, 110, 113) fepruenting a very emall' aumber of experimental events

(see Table II) appear in tnore than one essential cell. This may be regarded .'
as consistent with our insistence on sepa;at,ones fér the ideal case. 'In‘

E thlo lnstance, since the statistics are meager for several of the signatures,

_ and since there are relatively few rednndant variables in "mos't of the essential

cells, we _may regard our result as consistent with expectatlona in first order.

' © Note too, that when a signature does appear In two essential cells, at least

| ‘one cell has only one redundant variable.

. Table II summarizes the results of the Boolean analysis of the part of S
resolvable into éssentialli:ells. - The remainder R = (33) composed of a single
signature is ignored.. Since our variables have been chosen so that X, = 0 |
' corresponds to the more desirabl.e alternative in each case, events having the ._ "

| signature 0 nre acceptable relative to each "criterion. We are most anxioua.

thereiore. to examine the essential cell containing the signature 0 to see if

"7 -. it contalns any other signatures. The implication of the presence of events of

_~ such a signature is that the distribution regards them as physically similar -

relative to the basic variables. We might say, alternativeiy. that one or -

'v\more variables thought originally to characterize the clan of valid events - |

' are redundant from the point of view of the distribution. We must stress

recognizea no gradations in fundnmental importance between the va.riables

e ‘ 'presented to it. We may rega;d our procedure as an analysis of the cor-

B th;t our method is phenomenological from the point of view of the physical -

o informntion. It ylelds only the {nformation given by the dletribution. and it

s

e relations between frequency of appeara.nce and the crude beha.vior oi certain
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l' variabiaa approxirnatc'd by two-valued variables. IHaving understood the
_‘ correlationa, w'e.'elir'ninate.as‘ many variables as possible that do not core- -
relate with the high frc-quency of experitne"ntal occurrence.

With these restrictions in rnind. we examine the results given in
. Taole II 'We'not‘ice that the distribution separates 's.ignatures {0) and (32)
from the others, regarding them as indiet.inguishable from each other. This
implies that we ghould suspect the presence of valid events [signature (0)]
in the class [signature (32)] of events that are valid but weakly constrained
in t.hat the errors on the computed mxssmg mass are large. - That is, we
-fear that some valid events look suspicious because our mformation about them
‘is not precxse. Just as some innocent men would be lost to socxety if it were
the custom to convict all suspects who lacked an alibi. We apply an appro-
l'priate correction to our experlmental results. That no further signature |
lies in the same’ class as our real events implies that the distribution ttself
distinguishes the valid events from all except perhaps those invalid events
~ having signature 32. This may be takcn to justify a confidence that no further
corrections are ‘:cquirec.l. _and no other sonf'Ce of spurious, inseparable back-
B grouno exists.. | |
By inspecting the lat'gcr essential cells, we can grasp a few global
o characteristics of our backg?xoand. Examininé, for exampie. the fifth and
sxxth cells in Table II (whxch do not overlap, are the largest cells, and surn-
-marize the behavxor of well over half the reJected evenxs). we see that both
»;are characterized by high deviation of the mxssing mass from its i.deal value

relative to a high error in that calculated mass. Further, these events all

L have low dip errors. This is a global statement about the bulk of the back-

ground that is as general (economical) as the distribution permits. More.

detailed statcrnents. containing equally succinct information can be had by
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examinixig fhe_ seven essé_ntial cells in detail. The cost of the final expres-
.slon'for. S given in.Tal')le Iliis, gqual to (number of cells) + (nﬁmber of

s ‘va..riablgs named m the cells) =7 + 39 = 46 as opposed to the original cost
of 19 +‘19 X 7 =152 to‘expr‘e's‘s'hthe 19 signatures of seven arguments each
in §rudest form.

We have summarized the properties of our experimental distribution,
reassured dursqlves somewhat that the'ac‘ceptance criteria we have applied
are éhysical. échieved a crﬁde glébal characterization of the background,
and' subject to the assun{ption'a of our method, found an argument to justify
- our estimate of contamidat'io_n by inseﬁarabl§ background. These results
- were extracted with élausible assumptions, and confer, within bounds, a

kind of order on our picture of the experimental results with less mechanical

effort than would have been needed by conventional analyses.

F
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Table I. The binary criteria used to characterize each event.

PR— — ——
C?ggffm X, relates to the phrase X, =(0,1) if
.0 Forward ' . cos 6™ g (B,é) 0.7
q Chi squared (x?) | X% s (<,>) 2.706
2 Dip error (§\) ' | 8N - is (S,>) 2.5 deg
| 3. Projected length (L'p)_ S L, is (2,<) 0.7 em
4 . Dip [relative to top glass] (A\) [n] is (<,>) 60 deg
5 'Missing mass error (6 MM)  bMM  is (<,>) 16.0 MeV/c2
6 Relative deviation of the : . RD is (£,>) 1.65
. , missing mass | |

RD = [MM - M(x°)] /6MM
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_ Table II. Summary.of Boolean analysis of fitted events.

o r— ——_.
——— ——

| : . Number MM-MU') ot Projection Dip error 2 Forward
Class - Representation - —— tMM PO _x0J . p ey X T T TERE

. of events MM recoil of .recoil of recoil S0

: A - . . , - ?

(0, 32 : X6 ()X4X3X2X1 X0 15 low L. flat long low ‘low yes
(44, 108 0X X, X, X, X, X, 12 - high flat ~ long  high low  yes
(66, 98) X 0X, X, X, X, X 15 high = - flat  long low high  yes .
(78, 110) X 0X, XX, X, X, 8 high - flat  short  high. high yes .L
(100, 104, X, X X, 0%X,0 (0 - 56 high high - flat - low = = - - v
108, 109, TR T A : .

110, 114) o - ST o .
(97, 99, R X5 0%, X, 0%, 50 -  high  high - long,  low - no

113, 145) | - < o
(113, 121) 3‘(6)'(5324()x2x1>'<0 7 .. high ‘high  steep - ~ low " low  no

0¥¥I-THON .
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FIGURE LEGENDS

. Fig. 1. _Gebmetric representation of a set S of inferesting signatures
S = (0) + (1) + (3) + (4) + (6)
and its two nqinimai, coverings '

S

. . .
aud‘ 4 82=c2+,E +E,.

i 2

Fig. 2. Distribution of the experiment events among the 27 = 128 possible

" Boolean signatures.
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. Fig. 1. .
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or for damages resulting from the use of any infor-
mation, apparatus, method, or process.disclosed in
this report.
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-Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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