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It is shOim that although a scalar meson can be described by a 

renormalizable field theory, it is not possible for such a particle to !!bootstrap" 

itself, becau.se the force arising f'rom the crossed channels is too great. 'I'his 

result is in accordance 1-ri th the "bootstrap" philosophy that there should be 

only one solution of the S-matrix equations c:onBistent 1dth rna:x.il''Ja.l an::~lyt:i.city 

of the second kind, and also indicates the need for symmetrj_es in strong 

interactions. 
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INTRODUCTION 

It has been proposed that there should be only one solution for the 

~cattering matrix in strong interactions which is consistent with unitarity 

and maximal analyticity of the second kind. 1 All the poles should be continuable 

in angular momentum. This i¥ould mean that no experimental information need be 

included to derive the properties of all the observed particles, vlhether bound

states or resonances. Alternatively it may be that it is necessar:y to knovr 

the masses and coupling constants of a certain number of "elementary" particles 

before the properties of the other particles can be derived from purely 

dynamical considerations. 

As yet we are unable to perform calculations that encompass all the 

known particles, and so no decision can be made in tl).e matter, but one might 

be able to show that a set of particles other than those which have been 

observed can give rise to a self-consistent S-matrix, i. e., can "bootstrap" 

themselves, and thus demonstrate the need for the inclusion of at least some 

experimental information in order to arrive at the solution corresponding to 

the real world. 

Of course if the hypothetical set of particles is too complicated one 

is again unable to solve the S-matrix equations, but if only a single type of 

particle is considered the problem is quite tractable. The neutral scalar 

meson is a likely candidate, because it obeys the renormalizable Hurst-Thirring2 

field theory >-lith an interaction Lagrangian 

(1) 
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a.n.ci. thus is viable as an independent particle. Other renormaliza.ble field 

theories involve the j_nteraction of tvm different types of particles. It is 

cortainJ.y not obvious that a "bootstrap"solution can exist becEu"e, a.s 1.-.re 

sb.1Il shmr, there t:lre fever free parmneters than conditions to b.;;~ satisfied, 

but of cours.2 this is also true of '[:,he hypothetical solution involvinG all the 

:o;tron,;~ly inteT::3.ctj.n;;; particles, In this article -vre shaJ.,l t.1-y to d.iscover ~>rhether 

i ~; i '' possl.ble -~'<)J· neutral scalar mE::sorw alone to form a solu.tion of the "bootstrap11 

eq_ut'.tions, :in ccmtra.chction to the "bootstrap'' philosophy. 

'-!:IE CIWSi2ING SY!'1t-1E'i.'HIC SCATTERING f\.MPLrrlJDE 

In our ca:t · ~J .. a.tion ue include forc.>s from the exchanc;e of.' 

1 ~ a), ::,s "i.:el.l as t\·TO-particle state~ (Fig. 1. b), but neglect forces 

· f~6~ the exc~1nge of three or more particles (Fig. 1. c). Correspondingly 

-,_:e; J;c:::lc:ct i.n the unitarity condition the contribut~on of. interrn.ec1ia.te states 

tl.n:·e~~ or more pa.:c·t:I.cle:; uhose threr;holds lj .. e at 9m2 a:nd a:bove. 
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1.rhe:r.e s, t, and u are the usual sq_uarer3 of the four-momentum invariants~ 

g = }, 2 , and At and A are the absorptive 'parts in the 
u 

t and u channels. 

e is the scattering angle, and g
5 

is the center-of-mass momentu.rn~ in the 

s channel: 

s = t = - 2a 2(1 + cos e) 
~s 

u =- 2q 2(1- cos B). 
s 

If maximal analyticity of the second l<:ind is assumed, the pole in s is contained 

in the integrals over A 
t 

and A 
u 

.. 
1de define the partial-<.rave amplitude 

A1(s) = ~ Jl d(cos 9) P,_(cos 9) A(s, cos 0) , 

-1 

( 3) 

Substituting (2) in (3)~ 1·Te find that the S-1·mve amplitude has, in addition to 

the fixed s singularities of A(s, cos B) shmm in Fip;. 2, branch-points at 

2 
s = 3m- from the pole terms, and at s = 0 from the elastic t and u 

thresholds. The inelastic thresholds in the crossed channels would give rise 

to branch points at -5 cr2, but again 1ve neglect these. The singularities of 

A0 are shown in Fig. 3. 

'I'he imaginary part of A 
0 

=~E-
s-l~m2 

2 

s-4m2 

along these left-hand cuts is 

for 

0 

2 
O<s<3m 

J A (t~s)dt~ t . 

-4q 2 

for s < 0 ' 

s 
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vrhere we remember that A = A = A for our symmetrical problem. 
s t u 

If we are to have a self-consistent solution, these left-hand cuts 

;_;hould provide an attractive force sufficient to produce the bound state at 

2 
s = m Since ve have the parameter g at our dispo~;al, it will be possible 

to choose it such that this condition is satisfied, keeping A = A • s t Hmrever, 

self-consistency also demands that the residue of the pole be equal to the 

value of c vrhich vre have used. ·There is no guarantee a priori that this can 

be so, because we have no further free parameters in the problem. It will be 

realized that the mass, m , is not a parameter because it serves only to define 

the size of our energy unit. There is only one \iimensionless free parameter, 

0 
(7,/mc:. , but there are two criteria to be satisfied: crossing symmetry of both 

the pole positions and its residue. 

THE H/D EQUATIONS 

The problem may conveniently be solved follo~Ting the method of Che•·r 

anu i\'iandelstam. 3 

i4e define the amplitude to be 

= N(s) 
D(s) ' 

lvhere N(s) has the left-hand cuts of A
0 

, and D(s) has the richt-hand 

unitary cut. 

Im N(s) = D(s) Im A
0
(s) for 

Along the right-hand u11i tary cut we may ·Hri te 

iO( s) 
e sin cS.( s). A (s) = 

0 p(s) 

( 5) 

(6) 

, 

I 
1./ 

' 
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where o(s) is the phase-shift, and p(s) 2 1/2 = [(s- 4m )/s] , and comparing 

real and imaginary parts, we have 

Im (l/A0) = ~ ~(s) , 

or 

Im D = - p(s) N(s) for 

Thus we may write dispersion relations for N and D, 

1 
N(s) = 

D(s) = 1 -! 
1T 

D ( s 1) Im A
0 

( s 1 ) 

s 1 
- s 

p(s') N(s 1
) dsl 

s '-s · 

ds 1 

. ( 8) 

(9) 

(10) 

(11) 

where we have normalized D to 1 , and N to 0 , at infinity, selecting 

the solution without poles in N or D prescribed by second-degree analyticity. 

Substituting (10) in (11) and integrating over the right-hand cut, we obtain 

3m2 

where 

D(s) 
1 = 1 + ~ 
1T J 

-oo 

K(s,s') = 
2 

[ 
s 1 

- s 

K(s,s 1 ) Im A
0
(s 1

) D(s 1
) ds' ' 

( 

1/2 ( 2 1/2 1/2) 
s : 4m

2
) log ( s - 4m ~ + s 

- (.:;.s -~ -:'":"' . .-4m_2_f2 ( 
{sl -

log · 

1/2 
4m2 ) 

2m 

1/2 
I 

+ s ) ] . 

(12) 
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If an A( s 1 ) vanishes as ·sr -+ - oo, this is a Fredholm equation for D 

which can be solved p~oviding that we know At in Eq. ( 5) ~ Along the right- , 

hand cut Re(l/A) = Re D/N , and comparing real and imaginary parts in Eq. (8), 

we find 

for (13) 

If we suppose that the imaginary part of the amplitude is contained wholly in 

the s-wave, we can identify 

The validity of this approximation will be discussed later. R~embering that 

As should be equal to At , we now have a means of calculating the secopd 

term on the right-hand side of formula (5) in a self-consistent manner. One 

easily verifies that the resulting Im· A0( s) vanishes as s -+ - oo. 

We first take Im A0 to be given just· by the first term' of (4), and 

solve (12) ·for · D • With this solution: we solve (10) for N , and then obtain 

A from (13). Substituting this value of A in Eq. (4), we can repeat the 
s ' s 

cycle, and continue until self-consistency is achieved. 

The equations were solved on a computer, using the transformed variable 

x2 = .,.(4m2/s-4m2 ) for th¢ integral equation, so that the range of integration 

in (12) becomes x = 0 to 2. In this range· fifty mesh points were taken, and 

the equation was solved by matrix inversion. Five cycles were required to 

produce self-consistenc~ betwee~ the elastic disc.ontinuities in the crossed 

and direct channels. Various values of g were tried until a solution with 

a zero in D(s) at s = m2 was obtained. This gives an amplitude which is 

v 

• 
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also self-consistent as regards the pole positions in the crossed and direct 

channels, and fixes the value of g. A graph of the·solution is given in 

Fig. 4. 

It only remains to discover whether the residue of this direct channel 

pole is equal to g • Now 
1 _ D(s) 

ArsT- NrsT , and expanding about s = m2 , and 

remembering that D(m2 ) = o, we have 

1 
A = (s - m2 ) 

so that the residue is 

(~ D(s)) 

N(m2 ) 

+ ... 
t 

If we have found a bootstrap solution, g' will be equal to g • In fact 

(15) 

we find that to get a direct channel pole at m2 requires g/m2 = 9.3 , but 

that in this case g'/m2 = 67 • This discrepancy is so great that it is most 

unlikely that it could be rectified by improving the approximations. 

One approximation has been to use Eq. (14), whereas the full expression 

is 

A (s,t) = 
s 

00 

L 
i=O 

( 2.t + 1) Im A Q. ( s) P (1 + ~) , 
2qs 

(16) 

though this is not convergent for large It! • Because of parity, there is 

no coupling of the even and odd partial waves, so the lowest neglected wave 

is the D-wave. \ve can estimate its order of magnitude by taking the D-wave 

Born term generated by the crossed channel poles, 
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· g [ ( m2 ) B
2

(s) = ---- Q2 1 + ----
2q 2 2q 2 

s s 

and applying elastic unitarity, 

(17) 

We find that Im A2 is only a few percent of Im A
0 

in the region 

between the threshold and the inelastic threshold, although it rises to nearly 

one-third of its value at s = 15 m2 • However, it is the low-energy region 

just above threshold whic.h is· important for the integral in Eq. ( 5), except 

for large negative s • [Remember tnat At is obtained from (16) by inter

changing s and t]. The D-wave contribution. to the total force should 

thus be small, and even if there is. some additional force it is unlikely 

that it will change the ratio of g to g 1 greatly. An indication is given 

by the fact that if we solve the problem including only the force from the 

poles but not from the S-wave elastic discontinuity, though g has to be 

increased to 26.0 , g 1 becomes 165 , and the large discrepancy is 

maintained. 

DISCUSSION OF THE RESULTS 

Of course if we had included a pole in the equation for N , writing 

(10) in the form 

N(s) 1 
=iT J 

3m2 

-co 

D ( s 1 ) Im A0 ( s 1 ) 

' 
s 1 

- s 

,, 
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and normalized D(s) to unity at s = m2 , it would have been possible to impose 

complete crossing symmetry for any value of g vThich is not so great as to 

produce a zero of D • This introduction of a "CDD" pole4 corresponds to 

treating the meson as an elementary particle, and gives the solution corresponding 

to the A¢3 field theory. Our solution of the N/D equations gives a bound-

state pole which lies on a Regge trajectory, and is the solution corresponding 

to maximal analyticity of the second kind. 

Implicit in the calculation is the a2silmption that this trt:.jectory, 

Fig. 5, is the leading trajectory. It is the fact that a(t) < 0 for t < 0 

which assures the required asymptotic behavior of the kernel in (12), and enables 

us to avoid a cut-off parameter.5 Through crossing symmetry the total cross 

section goes to zero at high energy as sa(O) - 1 and the low-energy elastic 

S-wave dominates the dynamics. However, it could be that the meson is not on the 

leading trajectory, but that the high-energy behavior is controlled by one or 

more higher trajectories. For example, we show in Fig. 6 a Pomeranchuk trajectory 

(which would give a constant total cross-section at high energy), the scalar 

meson being associated with a secondary trajectory. Such a solution, if it is 

possible,would probably contain a spin 2 (D-wave) resonance, and high-energy 

effects vTould be crucial. But if our neglect of this possibility is justified 

••e ·have shown that a scalar meson can not "bootstrap" itself. 

A final point 1.fhich may be remarked is that we are unable to obtain a 

self-consistent solution .because the force from the crossed channels is too 

great (g < g'). However, if instead of a single particle we had a set forming 

a representation of some symmetry group, the crossed and direct channels would 

be related by a crossing matrix, and only some fraction of the strong s-wave 

force would be available to any given two-particle channel. Thus for su2 

the isotopic spin crossing matrix is3 
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1 1 .2. 
3 3 

SII' = 1 1 5 
3. 2 6 

1. 1 1 -- 6 3 2 

and so, for our p~oblem with I = 0 , the contribution from I' = 0 would be 

only one-third as great. Higher symmetries give smaller fractions 

(l/(n2-l) for SUn),6 and our results perhaps indicate the need for there to 

be such symmetries if "bootstrap" solutions are to be obtained. 

!; 

v 
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FIGURE CAPTIONS 

Fig. 1. The unitarity diagrams. 

Fig. 2. Singularities of the scattering amplitude in the s channel. 

Fig, 3. Singularities of A0( s). 

Fig. 4. The solution for D( s). 

Fig, 5. The Regge trajectory. 

Fig, 6. Pomeranchuk and meson trajectories. 
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Fig. 1. The unitarity diagrams. 



.. 

Fig. 2. Singularities of the scattering amplitude in the s channel. 
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D(s) 

MUB-3043 

Fig. 4. The solution forD (s) . 
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Fig. 5. The Regge trajectory. 
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Fig. 6. Pomeranchuk and meson trajectories. 
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